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DEDICATION
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before me as student. Every failed experiment, every erroneous hypothesis, every bit of red ink on a
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Shayn — this is the greatest thing you have taught me. Both by example and by flat out telling me
to my face, you taught me that fearing failure was the only way to actually go wrong. Fear of failure
stifled my curiosity, pinned me in place, and caused me to stagnate in self-doubt while | searched for a
“correct” answer that did not actually exist. You took me, with care and patience, from my greatest
disappointments to where | am now — proud and thrilled to be a scientist. Not least of all, you have been
a true friend. We have shared laughs and spent countless hours discussing everything BUT science. |
don’t know how many half hour meetings turned into three-hour summits, but | do know that both of
our planners would be more accurate if we multiplied scheduled meeting times by a factor of six. Thank
you for your guidance, friendship, and ceaseless encouragement.

Assisting Shayn to guide me down this winding road was a fantastic advising committee that has
challenged me to grow as a scientific investigator. Jason, your ability to ask the obvious question that no
one else thought to ask has always impressed me, and your levity amid even the most serious scientific
debate is a truly enviable trait. Kevin, your words of advice — to treat hypotheses as a series of columns |
should try to topple rather than reinforce — have stuck with me since the thesis proposal. Feilim, you
have been a mentor, a friend, and now a committee member; in all these roles you have inspired me to
try harder and strive for excellence. Coleen, you have endured my obsession with computational
methods and kept me grounded in the physiology that is the actual reason why we study biology in the
first place. You have all been invaluable, and | sincerely thank you for believing in me.

Unofficially, my friends, colleagues, and collaborators from Chapel Hill have mentored me and
helped to get my first real project off the ground. Vicki and John, without your help I’'m not sure where |

would be today. Also, thanks for inviting me to the cool kids table while we were at NAVBO.
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In the trenches alongside me were my friends and fellow graduate students. Members of the
Peirce lab, past and present, were always willing to lend a hand or assist with an experiment. Scott, Kyle,
Molly, Bruce, Bryan, and Jason — you all had a hand in my success and | can only hope that | have
reciprocated. Anthony, our lab manager and second-in-command, you kept the ship afloat despite all
our best efforts to try and sink her. And my MSTP colleagues, especially Dave and Jim, I'm glad that no
matter where we are (BBQ, brewery, beach, camping, etc.) we can spontaneously start a scientific
debate (much to the chagrin of our wives).

My family still doesn’t know exactly what it is that | do, but that has never stopped them from
telling me how proud they are of everything I’'ve done. They don’t need to know the details of my
experiments to hear the disappointment or excitement in my voice. They have supported my dreams
and enabled me to go down a truly privileged path. Perhaps the best way to thank them is an assurance:
don’t worry; one day I'll get a real job.

To my wife, Alexis, who will wish that | just referred to her as “Lex” because she doesn’t like
when | introduce her as “Alexis” — thank you for, well, everything else. You uprooted your life for me to
pursue graduate school, following me to Charlottesville before we were even engaged. You have kept
me sane despite my best efforts to the contrary. From proofreading my work to quizzing me before
exams, you have always encouraged me to succeed. Thank you for being bright, strong, courageous, and
confident all those times when | couldn’t be. Also, thank you for kicking me in the shin when I’'ve been

talking too much and should really wrap things up.
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ABSTRACT

Angiogenesis — the formation of new capillary vessels from a preexisting microvascular network —is a
concerted cellular process driven by endothelial cell proliferation and migration. Chemotactic cues
through the vascular endothelial growth factor (VEGF) pathway combined with intercellular signaling via
Notch1-DLL4 are a canonical driving force behind this patterning process. Despite having identified
these two fundamental signaling pathways in angiogenesis, we do not yet understand how these signals
propagate thorough multicellular networks and ultimately give rise to geometric pattern diversity.
Further, even less is known about the interplay between pericytes, the support cells that enwrap all
capillaries, and endothelial cells during angiogenesis. Despite playing a pivotal role in capillary health,
we still do not know the extent to which pericytes modulate endothelial cell behaviors or interface with
VEGF and Notch1 signaling in vascular networks.

This body of work addresses these questions sequentially through a bottom-up computational
modeling approach in combination with in vitro and in vivo experimental assays. Using agent-based
models (ABMs), | have demonstrated that the Notch1-DLL4 signaling axis combined with VEGF receptor
binding is sufficient to accurately predict the frequency and location of angiogenic endothelial sprouting
events. This computational modeling approach is novel in its use of time course imaging to inform initial
simulated endothelial cell positions and locations of subsequent sprouting events. By comparing
experimental outcomes with predictions made by the ABM, | was able to directly and independently
determine the accuracy of the ABM in predicting the number of capillary sprouting events and their
locations during angiogenesis in an embryoid body tissue culture environment.

As an extension of this work, | developed a second ABM of retinal angiogenesis that
incorporates pericytes while maintaining endothelial intercellular signaling through Notch1-DLL4 and

chemotactic cuing through VEGF receptor binding. Through quantitative analysis of geometric network
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properties compared to those of the mouse retinal vasculature, | demonstrated that simulated retinal
vascular networks with pericytes produced more physiologically accurate geometries than those
generated with endothelial cells alone. Further, these simulations suggested that pericytes act as buffers
to endothelial signaling and, as a result, significantly affect vascular network geometries in the
developing retina, a novel mechanistic hypothesis that warrants additional experimental investigation.
Through the combined use of ABM and experimental assays of angiogenesis, | have explored
how intracellular signaling and multi-cellular interactions integrate to produce emergent patterning of
geometrically-heterogeneous and dynamic networks of blood vessels. In so doing, my work has
generated a novel biological hypothesis and contributed new computational approaches for multi-cell

modeling and model validation.
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MULTICELLULAR AGENT-BASED MODELS OF
ANGIOGENESIS EVALUATE ENDOTHELIAL CELL
SIGNALING AND THE ROLE OF PERICYTES IN
VASCULAR NETWORK PATTERNING

By Joseph Brian Walpole
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“l have to say that those who have a modicum of scientific training tend to go
the extra mile. For many, such thinking is second nature. This might not
necessarily come from their scientific training per se (beware causality), but
possibly from the fact that people who have decided at some point to devote
themselves to scientific research tend to have an ingrained intellectual curiosity
and a natural tendency for such introspection.”

-Nassim Nicholas Taleb, Fooled By Randomness
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CHAPTER 1: INTRODUCTION

All tissues of the body rely on an uninterrupted supply of blood flow to maintain homeostasis and
prevent tissue necrosis due to metabolic deregulation. The blood vessels that conduct blood throughout
these tissues are comprised of a finite number of cellular components — endothelial cells that line the
blood vessel lumen and perivascular cells that support the blood vessel through chemical and
mechanical means. Despite being derived from the same fundamental cells, vascular networks have
unique, tissue-specific geometries that arise during development. In observing these vascular networks,
| have often asked myself the simple question: how did this specific network geometry form? In this
thesis | present a body of work that addresses this question using computational modeling as a method
of hypothesis testing and generation.

In seeking highly quantitative methods for analyzing the network dynamics of intercellular
signaling, computational modeling was a natural approach. A computational model allows me to test a
minimum set of endothelial cell and pericyte behaviors while simultaneously monitoring the signaling
state and magnitude of every cell in the simulation. In particular, agent-based models (ABMs) excel at
simulating the behaviors of individual cells and allowing for emergent phenomena to arise as a result of
intercellular interactions. Without a priori behavioral rules for network-level signaling and organization,
ABMs can generate spontaneous complex cellular networks that are a function of a finite set of cellular-
level behaviors. In this way, ABMs allow for systematic testing of simplified cellular behaviors while still
producing complex network-level outputs.

| have developed two ABMs of angiogenesis to evaluate the formation of vascular networks as a
function of endothelial cell signaling and pericyte coverage. Specifically, | have (1) used a combination of
stochastic and deterministic approaches to assess angiogenic sprout initiation as a function of Notch1-

DLL4 signaling in multicellular endothelial networks, and (2) used quantitative geometric analysis to
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assess the function of pericyte coverage by directly contrasting ABM simulations of retinal angiogenesis
with developing mouse retinal vascular networks.

Herein, | demonstrate that an ABM incorporating Notch1-DLL4 and vascular endothelial growth
factor (VEGF) signaling is capable of predating the frequency and location of angiogenic sprout initiation
in multicellular networks with physiologically defined geometries. Further, my ABM of retinal vascular
angiogenesis has generated a novel hypothesis for pericytes as “buffers” to endothelial intercellular
signaling. The geometric properties of endothelial networks generated by the ABM most closely
matched images of murine retinal vascular networks in simulations that incorporated pericytes as
passive entities (i.e. without direct control over endothelial signaling) — simulations with only endothelial
cells generated more dense, less branched networks that did not mimic physiologic geometric
properties.

These combined experimental and ABM studies contribute to a growing field of computational
systems biology in which simulations provide accelerated hypothesis generation and testing. Indeed, my
work has both generated and tested new hypotheses in the field of vascular biology. Beyond the niche
of endothelial cell and pericyte interactions, this extends the broader study of multi-cell self-assembly

paradigms in biology using bottom-up modeling approaches.

BACKGROUND

Angiogenesis, the formation of new blood vessels from an existing vascular network, is necessary for the
growth, development, and repair of all tissues (Eilken and Adams 2010). Pathologies of the
microvasculature are intimately tied to angiogenesis where proliferative diseases (diabetic retinopathy,
vascular malignancies, endometriosis) inappropriately engage angiogenic pathways, leading to
inappropriate growth of immature vessels (Ferrara 2005, Ejaz, Chekarova et al. 2008, Hammes, Feng et

al. 2011, Bandello, Lattanzio et al. 2013). Because angiogenesis is an incompletely understood complex
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system, single-target therapeutic approaches, such as Vascular Endothelial Growth Factor (VEGF) gene
therapy and blocking antibodies, have had mixed results in the clinical setting (Stewart, Kutryk et al.
2009, Mac Gabhann, Annex et al. 2010).

Angiogenesis is a concerted multicellular event coordinated by endothelial cells and perivascular
support cells (pericytes) that can be spatiotemporally subdivided into three main stages: (1) vessel
activation, (2) sprout extension/guidance, and (3) anastomosis (Chappell, Wiley et al. 2011, Peirce-
Cottler, Mac Gabhann et al. 2012). The first two stages require phenotypic switching of quiescent
endothelial cells into a migratory phenotype, dubbed the tip cell (Potente, Gerhardt et al. 2011). These
tip cells then respond to soluble growth factor cues such as VEGF to guide a developing endothelial stalk
that will potentially lumenize and form a new, patent blood vessel (Xu and Cleaver 2011). Two parallel
pathways have been implicated in this process: endothelial-endothelial (EC-EC) lateral inhibition via
Notch1-Delta Like Ligand 4 (DLL4) signaling and heterotypic intercellular communication through
pericyte-endothelial (PC-EC) adhesions (Paik, Skoura et al. 2004, Tillet, Vittet et al. 2005, Derycke,
Morbidelli et al. 2006, Hellstrom, Phng et al. 2007, Simonavicius, Ashenden et al. 2012, Pedrosa,
Trindade et al. 2015). Prior investigations of sprouting angiogenesis have primarily focused on
endothelial cell behaviors, leaving many unanswered questions regarding the contribution of other cells

types, such as pericytes, to both physiologic and pathologic vessel growth (Dulmovits and Herman 2012).

Endothelial signaling pathways

Although there are myriad signaling pathways that converge to regulate angiogenesis, | have chosen to
focus on the canonical Notch1-DLL4 signaling axis that is directly integrated with VEGF and VEGF
receptor (VEGFR) dynamics (Figure 1.1) (Hellstrom, Phng et al. 2007). Notch1 is a transmembrane
protein whose extracellular domain is capable of binding multiple ligands in several different

configurations (Benedito, Roca et al. 2009, Sprinzak, Lakhanpal et al. 2010, Pedrosa, Trindade et al.
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2015). Ligation of delta-like ligand 4 (DLL4) in trans-configuration (i.e. intercellularly) activates the
receptor and releases the Notch intracellular domain (NICD) that localizes to the nucleus and acts as a
transcription factor, reducing the expression of VEGFR2 (Leslie, Ariza-McNaughton et al. 2007). Because
VEGFR2 is upstream of DLL4 expression, this ultimately forms a reinforcing feedback loop in which an
endothelial cell with high levels of VEGFR2 phosphorylation can limit the VEGFR2 expression in its
neighboring cells, generating a so-called “salt and pepper” pattern of DLL4 expression (Bentley,
Gerhardt et al. 2008, Bentley, Mariggi et al. 2009, Jakobsson, Franco et al. 2010). Finally, these pathways
are fundamental to angiogenesis as disruption of any of their constituents causes profound disruption of
blood vessel networks (Noguera-Troise, Daly et al. 2006, Hofmann and Luisa Iruela-Arispe 2007,

Chappell, Wiley et al. 2011, Wiley, Kim et al. 2011, Louvi and Artavanis-Tsakonas 2012).

VEGF
Activation
+ /// SVEGFR1
VEGFR2 === == mVEGFR1 ce Se
-Secret

| . DLL4 § | y-Secretase

Notch

— P | []_> Transcriptional
e Regulation
Endothelial Cells I—> Quiescence

FIGURE 1.1: NoTCH1-DLL4 AND VEGF SIGNALING PATHWAYS.

The ABM simulations in this thesis both incorporate Notch1-DLL4 signaling and VEGF/VEGFR binding to
inform endothelial cell behaviors. In this example of neighboring endothelial cells, the left cell has
become activated through phosphorylation of VEGFR2, increasing DLL4 expression. Notch1 signaling in
the right cell causes transcriptional regulation to reduce VEGFR2 expression, leading to a more quiescent
phenotype. Membrane and soluble forms of VEGFR1 (m and s, respectively) act as decoy receptors that
can competitively inhibit VEGF-VEGFR2 binding.

A role for pericytes in angiogenesis

Pericytes are a phenotypically diverse set of cells that encircle blood vessels and make direct

connections through the basement membrane to endothelial cells (Sims 1986, Kelly-Goss, Sweat et al.
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2013). Functioning as support cells, pericytes can exert mechanical stabilization of blood vessels
(potentially altering capillary flow patterns) and may assist in guidance of extravasated leukocytes (Lee,
Zeiger et al. 2010, Stark, Eckart et al. 2013). Loss of pericyte coverage is associated with proliferative
vascular diseases, resulting in increased endothelial sprouting and formation of poorly organized
vascular networks (Bjarnegard, Enge et al. 2004, Ejaz, Chekarova et al. 2008, Motiejunaite and
Kazlauskas 2008, Armulik, Genové et al. 2011). Additionally, pericytes may directly interact with Notch1-
DLL4 signaling — Pedrossa et al. demonstrate a loss of pericyte coverage in DLL4 KO with associated
increase in vascular permeability (Pedrosa, Trindade et al. 2015).

Despite having a clear functional impact on maintenance of vascular integrity and endothelial
cell health, a mechanistic role for pericytes during angiogenesis remains elusive. Particularly in the retina,
where pericytes cover almost 100% of capillary area and are directly associated with the angiogenic
front during development (Frank, Dutta et al. 1987, Frank, Turczyn et al. 1990), there is a clear need for
understanding their function as regulators of endothelial cell behavior during angiogenesis at a

mechanistic level.

Agent-based modeling of angiogenesis

While cutting-edge imaging has begun to provide new insight into these fundamental questions,
computational modeling offers a powerful alternative approach to hypothesis testing. Computational
modeling has been leveraged in endothelial biology to produce significant advances in our
understanding of complex Notch1 ligand intercellular signaling during sprouting angiogenesis, providing
new hypotheses for patterning and tip cell selection (Bentley, Gerhardt et al. 2008, Jakobsson, Franco et
al. 2010, Artel, Mehdizadeh et al. 2011, Hashambhoy, Chappell et al. 2011, Carlier, Geris et al. 2012,

Bentley, Franco et al. 2014). ABM techniques are specifically useful as they allow for emergence of
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patterning phenomena using rule-based behaviors on the cellular scale that are agnostic to network-
scale events.

There are a limited number of ABM simulations of angiogenesis incorporating pericytes (or a

| “ |II

general “mural cell” population) and endothelial cells. Kleinsteuer et al. developed a model of liver
vasculogenesis (de novo formation of blood vessels) with angiogenic components using a Cellular Potts
Model (aka Glazier-Graner-Hogeweg model) approach that uses energy minimization equations to
inform stochastic cellular behaviors (Kleinstreuer, Dix et al. 2013). Their success with incorporating

pericytes has inspired my ABM of retinal angiogenesis, though | have adopted an alternative to the

energy minimization techniques of Cellular Potts models.

OVERVIEW OF DISSERTATION — INTEGRATING COMPUTATIONAL, IN VITRO, AND IN VIVO STUDIES
Reviewing current methods

This document is divided into chapters that catalogue my investigation of ABM techniques to study
angiogenesis and vascular network patterning. Chapter 1 reviews multiscale computational modeling in
biological systems, not strictly limited to ABMs or to vascular biology. This highlights the challenges
associated with modeling across spatial and temporal scales, while suggesting potential methods to
overcome these challenges. In particular, the discussion of stochastic and deterministic modeling is
relevant to future chapters that leverage the contrast between these techniques to garner greater
understanding of endothelial cell biology. The section on multiscale model validation is also important as
it highlights some challenges that | faced in validating my own ABMs, such as the selection of proper

biological endpoints.

8 | Walpole



Modeling in vitro endothelial cell behavior

Chapter 2 focuses exclusively on the role of endothelial cells in the patterning of in vitro vascular
networks. This first foray into multi-agent cellular modeling uses sequential imaging data of embryoid
bodies collected by the Bautch Laboratory (University of North Carolina, Chapel Hill) to inform both the
initial and final endothelial cell locations in the ABM — the former are used as initial conditions, while the
latter provide validation data for the frequency of endothelial cell extension. Combining high-resolution
confocal imaging and ABM simulations allows for direct comparison between the computational model
output and the biological system it is simulating. This unique 1:1 mapping of endothelial cell position
and angiogenic sprout initiation is a novel contribution to the field of vascular biology and more broadly
to the development of ABM validation strategies.

A key feature of this work is the analysis of endothelial sprout localization. Demonstrating the
accuracy of endothelial sprout frequency was trivial as the biological data was readily available for a
concrete comparison. However, determining if the ABM could accurately predict the location of
endothelial sprouts provided a challenge — we knew if the locations were accurate, but there was no
gold standard measure of inaccuracy. For example, it was not clear if a specific true positive prediction
rate was representative of a “good” model prediction. Incorporating a Monte Carlo analysis of purely
stochastic cell behavior allowed for a meaningful comparison: is the rule-based ABM better than
random chance at predicting where endothelial sprouts occur. Ultimately, the ABM demonstrated better
predictive power than the Monte Carlo, suggesting that the Notch1 signaling network implementation
was indeed sufficient for basic endothelial network patterning. To our knowledge, this work is the first
to use Monte Carlo simulations as a benchmark comparator for ABM predictions, as was essential for

my model validation strategy.
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Exploring in vivo systems and pericyte behavior

As noted, computational modeling efforts to date have not explored the behavior of perivascular cells in
retinal angiogenesis. Based on the ABM simulations in Chapter 2, | extended my work to explore the
impact of pericytes on vascular network formation in the murine retina. This represents two advances:
first, moving towards a more physiological relevant biological model and, second, incorporating the
effects of pericytes on endothelial behaviors in the retina. Chapter 3 describes this most recent work
and the investigation into quantitative imaging analysis using Minkowski functionals.

Again, the question of model validation is important, and finding a truly accurate quantitative
measure of model performance is paramount. The Minkowski functionals are a relatively new tool for
studying vascular network geometry and are ideal for studying computational systems. Through
measuring binary image parameters (area, perimeter, and Euler characteristic) as a function of image
dilation, the Minkowski functionals provide a “fingerprint” of network geometries that can be compared
across length scales and imaging modalities. This new ABM of retinal angiogenesis uses the Minkowski
functionals to instantiate accurate astrocyte cell networks as initial conditions in the ABM, while also
testing the accuracy of predicted endothelial network geometries.

Pericytes are incorporated into the ABM as motile cells that actively wrap endothelial cells
without directly modulating cell signaling. Because the function of pericytes on endothelial cell behavior
remains unclear | felt it best to first investigate their function simple as a signaling buffer by proposing
and testing the hypothesis that pericytes contribute to overall vascular network patterning through the

interruption of EC-EC connections.
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Discussion of current work and future directions

Finally, | discuss the synthesis of these contributions and potential new avenues of investigation based
on my findings. Much has been written about angiogenesis to date, yet still several fundamental
guestions remain unanswered: what is the role of pericytes during angiogenic sprouting? Is the
endothelial cell network geometry purely a function of EC-EC signaling? Are proliferative angiogenic
pathologies due to deregulation of endothelial cells, pericytes, or both? Chapter 4 discusses my
contribution to these fundamental questions and suggests the logical next experiments to continue this
work.

In the context of this evolving field, computational modeling is beginning to flourish as a method
for expanding our knowledge and positing new hypotheses. Truly, biomedical engineering offers the
tools necessary for advancing fundamental scientific inquiry — not as a singular method, rather as a
manner of thought that might conduct research forward through informed computational investigation

in a close marriage with experimental studies.
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ABSTRACT

Integration of data across spatial, temporal, and functional scales is a primary focus of biomedical
engineering efforts. The advent of powerful computing platforms, coupled with quantitative data from
high-throughput experimental platforms, has allowed multiscale modeling to expand as a means to
more comprehensively investigate biological phenomena in experimentally relevant ways. This review
aims to highlight recently published multiscale models of biological systems while using their successes
to propose the best practices for future model development. We demonstrate that coupling continuous
and discrete systems best captures biological information across spatial scales by selecting modeling
techniques that are suited to the task. Further, we suggest how to best leverage these multiscale models
to gain insight into biological systems using quantitative, biomedical engineering methods to analyze
data in non-intuitive ways. These topics are discussed with a focus on the future of the field, the current

challenges encountered, and opportunities yet to be realized.
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INTRODUCTION

Biological systems are inherently complex in nature; they are comprised of multiple functional networks
that operate across diverse temporal and spatial domains to sustain an organism’s growth, development,
and reproductive potential. These so-called “multiscale” systems extend from the most basic of amino
acid substitutions that alter protein function to concerted multicellular signaling cascades regulating
hormone release throughout an entire lifetime. Computational models are uniquely positioned to
capture the connectivity between these divergent scales of biological function as they can bridge the
gap in understanding between isolated in vitro experiments and whole-organism in vivo models.

While seemingly transparent, a careful definition of multiscale should be explored as it can very quickly
spiral into the realm of catch-all scientific jargon. Fundamentally, a multiscale model must explicitly
account for more than one level of resolution across measurable domains of time, space, and/or
function. To clarify, many models of physical systems implicitly account for multiple spatial scales by
simplifying their boundary conditions into “black boxes” where assumptions about other spatial or
temporal domains are summarized by governing equations. Further, explicitly modeled tiers of
resolution must also provide additional information that could not be obtained by independently
exploring a single scale in isolation.

The classic engineering exercise of heat transfer through an insulated rod is an excellent case
study in implicit multiscale modeling. Whether solved using continuous PDEs or a discrete finite element
approach, all solutions to this problem rely on carefully defining spatial boundary conditions, the
fundamental laws of thermodynamics of a closed system, and material properties such as a thermal
conductivity coefficient. Using these tools, engineering students unwittingly wrangle molecular motion
at the femtometer scale to reliably predict the distribution of temperatures across an idealized one-
dimensional landscape measured in meters. However, were we to explicitly account for the motion of

each molecule of metal in the rod would we gain any additional information about the system (assuming
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that this were not a computational intractable challenge)? In this case, the governing equations of
thermodynamics sufficiently capture the probabilistic distributions of molecules without requiring
explicit representation in the model.

Ultimately, this model system is explicitly analyzed at the scale of the rod while implicitly
accessing information about molecular thermal motion using established equations of thermodynamics.
However, as a “Law of Biological Systems” has yet to be codified into governing equations, the
biomedical scientist lacks the means to accurately make assumptions across multiple tiers of measurable
resolution. This challenge is further compounded by the complex nature of the system that is being
investigated; that is to say, components of biological systems act differently in isolation than they do
when integrated into the larger machinery of a living organism.

To further illustrate the need for explicit multiscale models in biology, let us consider the multiple levels
of spatial, temporal, and functional scale that are known to operate in the pathophysiology of diabetic
retinopathy (Figure 2.1). At its most advanced stage, proliferative diabetic retinopathy can result in
blindness due to retinal detachment at the macroscopic level. This event, however, is preceded by years
of tissue damage caused by microvascular hemorrhage and fibrovascular remodeling of the retinal
basement membrane. These defects in the vessel wall are the result of pericyte (abluminal vascular
support cell) apoptosis, leading to aberrant vessel growth and increased vessel permeability throughout
the retina. Finally, pericyte apoptosis occurs due to reduction of PDGF receptor survival signaling
mediated by activation of PKC-delta and downstream phosphatases in the setting of chronic
hyperglycemia (Frank 2004, Geraldes, Hiraoka-Yamamoto et al. 2009).

At what tier of resolution is the most information available for understanding the underlying
mechanisms of this complex disease? Conversely, is there a tier of resolution that offers the least
understanding of the disease? The debatable answers to these questions have driven model building for

decades as investigators attempt to develop the highest information yield from their intellectual
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FIGURE 2.1: DIABETIC RETINOPATHY AS A CASE STUDY IN MULTISCALE PATHOPHYSIOLOGY.
A detailed look at how the pathogenesis of diabetic retinopathy is a function of multiple spatial scales

across biology.

investments in computational modeling approaches. More recently however, investigators are turning

to multiscale modeling techniques to generate detailed information about complex biological systems.

In these multiscale models, perturbations to fine-grained parameters (e.g. protein modifications) can

generate observable and measurable changes to coarse-grained outputs (e.g. tissue patterning), and

vice versa. This integration across functional, spatial, and temporal scales in biological systems
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introduces a powerful tool for capturing and analyzing biological information that is inaccessible to
other modeling and experimental techniques.

Herein we describe a meta-analysis of multiscale modeling, focusing foremost on recent
publications from the biomedical engineering community. First, we will describe the tiers of biological
resolution that have been modeled and the computational techniques leveraged to obtain insightful
conclusions. Focus will shift to a discussion of best practices in model verification and validation as we
discuss challenges unique to multiscale modeling. Once we have covered the questions and tools used
to answer them, we will expand on how multiscale models capture biologically relevant data that may
be inaccessible using conventional wet laboratory techniques. Finally, we will look to the future of the
field and pose a set of specific landmarks that, if accomplished, may provide even greater insight into

the form and function of complex biological systems.

CURRENT MULTISCALE MODELING EFFORTS

Although computational models take many shapes and forms, we propose a simple taxonomy for
defining characteristic styles that will serve to define multiscale models for illustrative purposes (Figure
2.2). These “types” of models are neither absolute nor comprehensive; rather, this taxonomy provides a
simple reference that will allow for criteria-based discussion of the examples used herein. Type 1 models
are iterative approaches in which data from a single scale of simulation is fed into the next tier of
resolution. Outputs at each tier are available, however they do not necessarily inform events at
previously simulated tiers of resolution. Type 2 approaches rely on independently simulating each scale
of resolution to generate outputs for other simulations. In this way, information is passed between tiers
of resolution in discrete packets of inputs/output data. Finally, Type 3 approaches use simulations run in

parallel with constant communication between tiers of resolution. This approach can also be viewed as a
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way for a low-resolution simulation to control and receive information from many simulations at higher

resolution.
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FIGURE 2.2: MULTISCALE MODEL TAXONOMY

A proposed system of nomenclature for categorizing the techniques used to generate multiscale models
for the purposes of this manuscript.

Scales of Biology: What Are We Modeling?

Multiscale models are pervasive in the biological sciences, covering many tiers of resolution and many
disciplines. Using a selection of literature from the last decade we have highlighted and clustered broad
biomedical disciplines based on the levels of spatial resolution they are investigating with multiscale
models (Figure 2.3). A clear trend is shown in which metabolomics and genomics research are clustered
separately as they are uniquely focused on sub-cellular resolutions (Cosgrove, Alexopoulos et al. 2009,
Seok, Xiao et al. 2009, Barua, Kim et al. 2010, Milne, Eddy et al. 2011, Modi, Camacho et al. 2011).
Further, studies of tissue mechanics and disciplines interested in cellular trafficking (i.e. cancer and
immunology) display the most work at the organ and multisystem scales (Caputo and Hammer 2009,

Pospieszalska, Zarbock et al. 2009, Sander, Stylianopoulos et al. 2009, Shirinifard, Gens et al. 2009, Adra,
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Sun et al. 2010, Brown, Price et al. 2011, Eissing, Kuepfer et al. 2011, Folcik, Broderick et al. 2011, Scheff,

Mavroudis et al. 2011, Sharafi, Ames et al. 2011, Fallahi-Sichani, Kirschner et al. 2012).
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FIGURE 2.3: CLUSTERGRAM OF MULTISCALE MODELS AS A FUNCTION OF BIOLOGICAL DISCIPLINE AND SPATIAL
RESOLUTION.

Each publication was scored as containing (1) or not containing (0) a biological scale within the described
multiscale model. For each discipline, the Boolean values were summed and then normalized to the
total number of publications within that category, such that the weighted heatmap is scaled from 0 to 1.
For example: of the 7 publications in Vascular Biology, 5 involved Whole Cell components, resulting in a
weighted score of 5/7 = 0.71. A total of 39 publications were included in this analysis.

As might be expected, much effort is focused on the interrogation of biology at many
resolutions, from signaling networks (i.e. subcellular simulations where proteins are not explicitly
modeled) through to cell networks (i.e. tissue-level simulations comprising more than a single cell). In
particular, the fields of cell biology, developmental biology, vascular biology, and cardiovascular
research all share a very similar pattern of work at these tiers (von Dassow, Meir et al. 2000, Meir,
Munro et al. 2002, N'Dri, Shyy et al. 2003, Longo, Peirce et al. 2004, Bailey, Thorne et al. 2007, Tomlin
and Axelrod 2007, Grima 2008, Newman, Christley et al. 2008, Schmidt, Papin et al. 2009, Bauer, Jackson

et al. 2010, Brodland, Chen et al. 2010, Das, Lauffenburger et al. 2010, Friedl and Wolf 2010, Sample and

Shvartsman 2010, Silva and Rudy 2010, Aguado-Sierra, Krishnamurthy et al. 2011, Greenstein and
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Winslow 2011, Hashambhoy, Chappell et al. 2011, Holland, Krainak et al. 2011, Liu, Qutub et al. 2011,
Moreno, Zhu et al. 2011, Thorne, Hayenga et al. 2011, Vempati, Popel et al. 2011, Causey, Cowin et al.
2012). A common theme among these fields is a desire to understand how subcellular networks may
influence tissue-level patterning through the actions of individual cells.

Of course, it should be emphasized that these are trends from a subset of papers that have been
broadly classified based on the field of biological research and the explicitly modeled tiers of resolution.
This meta-analysis is also purely an evaluation of the quantity of publications in a given field and not the
quality of the models being developed. Clearly, other disciplines are also using multiscale modeling to
their advantage; even the disciplines shown contain researchers whose work does not neatly conform to
the selected scales. This meta-analysis does, however, demonstrate a clear trend in the literature, which
may allow us to glean some insight into current gaps in computational coverage within our disciplines of
interest.

Most importantly, this analysis demonstrates that a major goal of the field is yet to be realized:
no single comprehensive “gene-to-organism” multiscale model has been developed. Based on our
observations there are many open avenues of research within each of the listed disciplines where
multiscale efforts are either sparsely represented or completely nonexistent. This deficit is not a
shortcoming, but rather an opportunity to push the boundaries of knowledge in these biomedical
investigations using multiscale modeling as a platform for high-throughput, high-yield hypothesis

generation and testing.

Models Within Models: That Which Comprises A Multiscale System
All modeling methodologies have strengths and weaknesses with regards to their ease and fidelity of
capturing biological system dynamics. Typically, these techniques are broadly classified into continuous

and discrete modeling strategies based on how the solution space is acquired. Additional classification
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into deterministic and stochastic models is an alternative method that divides systems based on
whether they contain a degree of “randomness” that allows for multiple solutions to the same initial
conditions. Importantly, while not an exhaustive list, the modeling techniques presented here are all
taken from published multiscale models; these examples are already validated against experimental
data and, therefore, serve as a foundation for future computational efforts.

Continuous modeling strategies include using systems of ordinary differential equations (ODEs)
and partial differential equations (PDEs) to solve for steady state solutions. Solutions to these
continuous systems are deterministic as they obey the Picard-Lindelof Existence and Uniqueness
Theorem (Coddington and Levinson 1955). Because numerical tools for solving PDEs such as Finite
Element and Finite Volume methods rely on reduction to a system of ODEs, the assumption of
uniqueness still holds despite their ability to contain stochastic elements.

Generally, systems of ODEs using the law of Mass Action Kinetics are leveraged to represent
chemical reactions within the cytosol and nucleus of the cell (Adra, Sun et al. 2010, Greenstein and
Winslow 2011, Laise, Di Patti et al. 2011, Quo, Moffitt et al. 2011, Scheff, Mavroudis et al. 2011, Fallahi-
Sichani, Flynn et al. 2012, Fallahi-Sichani, Kirschner et al. 2012). As the kinetics of molecular binding,
conformational switching, and diffusion are often occurring over very small time scales the assumption
of steady state in the overall model architecture (which may be discretized into hours, days, weeks, etc.)
is typically valid. Sun et al. (Sun, Adra et al. 2009) employed a Type 3 approach using a system of ODEs
executed with the COmplex PAthways Slmulator (COMPASI) to explicitly model TGF-B1 function in a
multiscale model of epidermal wound healing. Using this technique they expanded on a previous single-
scale model and were able to decouple the pro-migratory and anti-proliferative effects of TGF-B1 on
various cell types in an in silico skin wound closure model over time. Analogous reasoning and

techniques are also used for analysis of metabolic and signaling networks in which a steady state flux is

Walpole | 21



desired for informing higher tiers of function (Barua, Kim et al. 2010, Haggart, Bartell et al. 2011, Milne,
Eddy et al. 2011, Modi, Camacho et al. 2011, Quo, Moffitt et al. 2011).

Models of reaction diffusion kinetics are also typically modeled in continuous time and are often
used to represent intra- and extracellular molecular binding and diffusion (Sample and Shvartsman 2010,
Hashambhoy, Chappell et al. 2011, Liu, Qutub et al. 2011, Vempati, Popel et al. 2011, Tveito, Lines et al.
2012). These models differ from previous diffusion/pathway models as they typically rely on systems of
PDEs that are then solved using numerical approaches. Broadly speaking, finite element methods (and
related finite volume methods) are also uniquely suited for monitoring geometrically-constrained
properties such as cell surface interfaces and mechanical properties of tissues across all scales (Du,
O'Grady et al. 2010, Goktepe, Abilez et al. 2010, Liu, Qutub et al. 2011, Sharafi, Ames et al. 2011,
Zahedmanesh and Lally 2011, Zhang and Gan 2011, Thompson, Gayzik et al. 2012). Aguado-Sierra et al.
(Aguado-Sierra, Krishnamurthy et al. 2011) generated a patient-specific three-dimensional model of
heart failure in which a finite element mesh was fitted to echocardiographs and mechanical parameters
were directly estimated from a combination of MR and cardiac ultrasound (modified Type 2 approach).
This work highlights the clinical value of computational models by using patient data to generate
electrical conduction and mechanical contractility maps with the potential to inform interventional
decisions as processing cost and time decrease. Note that these approaches are a hybrid of continuous
and discrete strategies as finite element methods rely on discretization of continuous equations to
generate numerical solutions for otherwise irreducible PDEs.

Discrete stochastic modeling techniques are a heterogeneous group of computational
foundations that rely on non-deterministic solutions to generate constrained distributions of outputs.
These techniques include methods such as Markov Chains, whose probabilistic transition matrices are
suited to biological systems whose functions can be discretized into independent states. Along with the

related class of discrete state-based Boolean Networks, these techniques have modeled receptor
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activation states (e.g. cardiomyocyte ion channels), compartmentalized signaling networks, and
functional protein conformations (Bauer, Jackson et al. 2010, Das, Lauffenburger et al. 2010, Silva and
Rudy 2010, Greenstein and Winslow 2011, Moreno, Zhu et al. 2011, Trayanova and Rice 2011). Barua et
al. (Barua, Kim et al. 2010) have recently developed an algorithm, GeneForce, to explore the Boolean
rules in metabolic signaling networks and correct for inconsistencies between experimental results and
model predictions. The model “forces” an optimized output by allowing for a set degree of rule
violation; these perturbations to the original rule set revealed incorrectly silenced gene transcription
which, when correct, allowed for agreement with experimental results. This Type 3 approach generated
as much as an 8% improvement in model predictive accuracy and was applied to well curated
metabolome libraries for organisms such as E. coli. From a multiscale perspective, this model identifies
genetic-level phenomena that impact metabolomic signaling outputs.

Recently, Agent Based Modeling (ABM) has become a very popular and powerful tool for
representing discrete stochastic biological processes as either compartmentalized or spatially defined
models. These models include geometries in one-, two-, and three-dimensional configurations and may
be scaled such that each fundamental agent is as large (groups of organisms) or as small (sub-cellular
membrane components) as is desired. Zahedmanesh et al. (Zahedmanesh and Lally 2011) incorporated a
lattice-free ABM with a finite element approach to explore the effects of porosity, compliance, cyclic
strain, and flow-induced shear stress on tissue engineered blood vessels (Type 2 approach). This
investigation was able to explore how these complex and non-intuitive parameters combined to affect
development of intimal hyperplasia over time with potential to make predictions across time scales that
cannot be investigated using in vitro techniques. Owing to their diversity of scale, AMBs have been used
to describe multicellular processes including tissue electrical conduction, cell trafficking, tissue
mechanics, immunomodulation, arterial remodeling, inflammation and many others (Bentley, Gerhardt

et al. 2008, Adra, Sun et al. 2010, Das, Lauffenburger et al. 2010, Artel, Mehdizadeh et al. 2011, Brown,
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Price et al. 2011, Folcik, Broderick et al. 2011, Liu, Qutub et al. 2011, Thorne, Hayenga et al. 2011,

Fallahi-Sichani, Flynn et al. 2012).

Selecting a Computational Method Based on Function and Spatial Resolution

The computational techniques presented in the previous section were selected as examples currently
being employed in multiscale models. We classified the techniques into continuous-deterministic and
discrete-stochastic (with some exceptions and hybrids), while highlighting specific spatial and temporal
domains that these models are suited to represent. This classification forms the basis for a discussion of
how multiscale models can be designed by selecting the best computational techniques for the task
rather than forcing a modeling technique to approximate a system for which it is poorly suited. To this
end, we propose some guidelines for how these individual techniques can be combined across scales
(Figure 2.4).

As a class of modeling techniques, network analyses include discrete state-based techniques (e.g.
Markov chains, Boolean networks) as well as continuous systems biology approaches (e.g. Flux Balance
Analysis). These methods are well suited to modeling the smallest tiers of resolution: genomic,
proteomic, and metabolomic. Note that these are different scales of network connectivity and represent
their own tiers of resolution. Genomic data is spatially compartmentalized to the nucleus and is
temporally independent of proteomic concentrations and posttranslational modification. Similarly,
events occurring at the metabolic scale, while dependent on proteomic data, integrate multiple proteins
and their relative concentrations and localizations. As such, these sub-cellular regimes, while

biochemically codependent, are independent modules for simulation.
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FIGURE 2.4: MAP OF MODELING TECHNIQUES BY SCALE
Conceptual map of modeling techniques divided into continuous and discrete categories across spatial
scales for which they are most suited.

Recently demonstrated by Milne and colleagues (Milne, Eddy et al. 2011), construction of a
composite Gene-Protein-Reaction (GPR) model to simulate regulation of butanol production as a
function of growth conditions (e.g. growth medium, atmosphere) supported the hypothesis that
Clostridium beijerinckii was an ideal candidate for biofuel applications. The iCM925 model contained 925
genes coding for 938 reactions involving 881 metabolites — approximately 18% of the protein coding
genome of C. beijerinckii. This level of detail and network annotation for a relatively understudied

organism was captured and analyzed with linear algebraic equations defined by a homogenous ODE

constrained with mass balance principals. Simply put, a vast amount of multiscale data (genetic
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expression and metabolomic network connectivity) was integrated using a single computational
technique through a Type 1 approach.

In the sub-cellular regime, continuous-deterministic systems of ODEs and PDEs are also ideal for
monitoring concentrations of signaling molecules in both the intra- and extracellular domains. These
systems are often less comprehensive than the previously described network analyses due to the
paucity of relevant kinetic parameters; however, they excel at explicitly accounting for binding kinetics
and monitoring rates of reactions as a function of time. Sample et al. (Sample and Shvartsman 2010)
demonstrate the use of these continuum approaches to solve for gradients of morphogens within the
developing Drosophila embryo. In their model, solving for compartment-dependent degradation rates
was integral to understanding nuclear-cytoplasmic shuttling of morphogens, which are responsible for
long-range patterning (hybrid of Type 1 and Type 2 approaches). Although only focusing on a single
protein, this technique expands the resolution from purely intracellular reactions to subcellular
components with intercellular interactions.

At this point, many of the internal cellular components (i.e. genome, proteome, and signaling
networks) have been explicitly accounted for; the next tier of resolution, the whole cell, now requires
additional consideration as the functions of interest are again interwoven with the scale of investigation.
Here, the cell may be viewed as a mechanical entity with discretized membrane segments and
interconnected cytoskeletal components or it may be viewed as itself being the smallest component of
the system. This biological scale is a natural transition point where both continuum and discrete
modeling approaches have been successful, and it falls to the investigator to make the final decision
guided by the hypothesis to be tested. Practically, if the cell is the largest entity in the system (i.e. only a
single cell is being modeled) a more fine-grained approach is necessary. The converse is also true: if the
cell is part of a larger tissue network it must be more coarsely resolved to allow for observations to be

feasible given limited computing resources.
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For the sake of simplicity we will consider that the cell is itself a transition state between the
sub-cellular and super-cellular domains (this notably excludes mechanical analyses of single cells which
are often performed at the whole-cell level). Such a view favors a discrete-stochastic approach to cell
behavior as this captures a degree of biological noise and allows for easy representation in physical
space. ABMs are well suited to this task as they can be specifically adapted to represent cells as either
single- or multi-agent entities within the system. Bentley et al. (Bentley, Gerhardt et al. 2008) chose the
later approach and represented a capillary as a linear array of ten endothelial cells, each comprised of
1288 membrane agents. This representation was necessary as their analysis required discrete
membrane localization of receptors, as well as detailed filopodial sprouting within a three dimensional
extracellular space (Type 1 approach). Bailey et al. (Bailey, Thorne et al. 2007) opted on the former
approach, representing each endothelial cell in the network as a single agent to generate a larger
microvascular system (Type 1 approach). Again, this selection was reasonable based on the analysis at
hand: leukocyte extravasation as a function of adhesion molecule expression in a tissue bed.

Tiers of resolution beyond the cell network and tissue level, as demonstrated in Figure 2.3,
remain largely unexplored as components of multiscale models. This focus may be due to technical
limitations such that computational power is not yet available to track discretized agents throughout an
entire organism. Larger, whole-organ models do exist and typically adopt a finite element approach
where each cell is represented as part of the discretized mesh. Moreno and colleagues (Moreno, Zhu et
al. 2011) were very successful with this technique, using a finite element approach to analyze the effects
of antiarrhythmic pharmaceuticals on cardiac conduction through a fully rendered three-dimensional
human heart (several Type 1 iterations). This model stands out particularly, because the smallest
explicitly resolved element was the well-studied cardiomyocyte sodium channel. This voltage-gated
channel was modeled using Markov states that were altered in the presence of various inhibitors. Most

notably, cardiotoxic concentrations of antiarrhythmics could not be predicted at the single-cell scale;
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however, when cells operating with the same parameters were linked into a network (and ultimately a
complete tissue), the model very closely matched clinically observed data.

To summarize: function and spatial resolution beget modeling technique. Based on our current
understanding and computational limitations it is necessary to view some biological processes as
continuous equations and others as discrete states. As we ascend from sub- to super-cellular resolutions,
continuous models that were once exceptionally accurate begin to lose resolving power. Conversely,
discrete models are often computationally expensive and become most useful at lower resolution for
cell networks and tissues where cells are easily viewed as individual modules. Yet larger systems may
require a return to network approaches to account for spatial distances and boundaries between organ

systems that are too large to be explicitly modeled at the cellular level.

VERIFICATION AND VALIDATION OF MULTISCALE MODELS

Validating Across Multiple Scales

As with all computational models, multiscale approaches must be rigorously tested against independent
data sets for proper validation prior to use as experimental constructs. Recently, Qu and colleagues (Qu,
Garfinkel et al. 2011) have reviewed how information is translated between scales of models and
highlighted several of the challenges associated with validation across tiers of resolution. A key
observation from this review is that inherently noisy stochastic systems and noiseless deterministic
systems can generate dramatically different outputs when used to model the same biological
phenomena (Keizer’s Paradox). Furthermore, adding noise to a previously noiseless system by
combining deterministic and stochastic models may increase the likelihood of phase transitions,
increasing the number of stable solutions. These additional solutions may be biologically relevant;
however, they may also become problematic as their addition could be viewed as incongruence

between continuous and discrete systems.
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Ultimately, this challenge reduces to the simple fact that we lack the computational resources to
explicitly model every protein in a living organism simultaneously. Multiscale models must rely on
techniques such as those mentioned above (selecting appropriately resolvable approaches based on
function and spatial scale; using integrative systems biology) to capture accurate and robust information
from each tier of resolution. It stands to reason that by linking potentially divergent modeling
techniques we may introduce inconsistencies into our multiscale systems. To reach model agreement
(both inter-model agreement and agreement with biological experiments), we must decide on a

validation strategy that is both theoretically sound and computationally practical.

Individual Verification vs. Complete Multiscale Verification

Multiscale models often originate by linking individual models from two different scales to generate a
composite system. In the cases where each tier of a model has been independently published they must,
by definition, be validated at the single-scale level before validating at the multiscale level. Our lab has,
in collaboration with others, followed this strategy to generate Type 2 multiscale models from
successfully implemented single-scale models (Valentin and Humphrey 2009, Valentin and Humphrey
2009, Thorne, Hayenga et al. 2011). In this particular example, the multiscale model captured
continuum elements (extracellular matrix composition, fluid dynamics, etc.) as well as discrete elements
(mechanical properties as determined by cell number and orientation) to generate a blood vessel wall
for measuring adaptation to chronic hypertension.

As explored by Hayenga and colleagues (Hayenga, Thorne et al. 2011), prior to generating a
comprehensive model, the continuum and discrete systems shared common outputs that were
independently validated. Importantly, despite sharing independently validated outputs, the models
were not in complete agreement as they drew on data from different scales. The discrete agent based

model was generated from cell-level data acquired primarily from reduced in vitro systems that no
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longer maintained systems-level responses. Conversely, the continuous constrained mixture model was
based on tissue-level data from studies of tissue parameters in which different systems-level responses
were potentially still intact. Disagreement between the models presented a significant challenge, as
neither was, strictly speaking, incorrect.

Ultimately, to reconcile these differences between scales and allow for comprehensive model
validation, agreement on shared variables was required. As such, each model was deemed equally
“unreliable” for the purposes of weighting parameters for a genetic algorithm approach to parameter
estimation. Agreement between the continuous and the discrete models was achieved for shared
parameters, allowing for validation of independent terms using a shared data set.

Fedosov et al. (Fedosov, Lei et al. 2011) describe a multiscale model of erythrocyte membrane
mechanics in the context of malaria infection and how changes in material properties and cell geometry
impact bulk blood viscosity (Type 1 approach). In this example, validation was performed at the cellular
level using optical-tweezer and optical magnetic twisting cytometry to measure deformability of
erythrocytes during different stages of malaria parasite development. Bulk blood viscosity was validated
against a separate data set to demonstrate that each tier of model resolution independently achieved
agreement with biologically relevant data sets. In order to perform these validations, previously
dimensionless particle models had to be scaled using erythrocyte diameter as a reference length. This
example highlights how careful selection of units and appropriate parameter selection is necessary to
achieve multiscale validation.

Multiscale models are subject to scrutiny at both individual and integrated tiers of resolution. To
appropriately parameterize a model and achieve validation, it is necessary to ensure that each module
or computational technique is itself in agreement with biological data before advancing to a complete
multiscale simulation. Further validation of the multiscale model is required to test the reliability of data

transfer between computational scales such that crosstalk between continuous and discrete systems
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does not introduce artifacts or discrepancies. As with all modeling efforts, thorough and thoughtful
validation is key to achieving acceptance in the biological community; the predictive power of a model is

dependent on the rigor of this validation.

BIOLOGICAL INSIGHT FROM MODELS

Measuring the Unmeasurable

Most modeling endeavors begin with a hypothesis that cannot be easily tested using even the most
cutting edge experimental assays. Tracking individual macrophages in real time in vivo, measuring
chemokine concentration gradients throughout an entire tissue region, determining frequency
responses to mechanical stimuli in the human ear, observing capillary and lymphatic filling as a function
of muscle contraction, quantifying the effects of drug therapy on granuloma formation over the course
of 300 days with receptor-level resolution — these are just a few examples of recent investigations that
would not otherwise be possible without multiscale modeling approaches (Bailey, Thorne et al. 2007,
Vempati, Popel et al. 2011, Zhang and Gan 2011, Causey, Cowin et al. 2012, Fallahi-Sichani, Flynn et al.
2012). Multiscale models are capable of quantifying any explicitly implemented variable as an output
across all tiers of resolution.

In addition to quantifying individual variables with relative ease, multiscale models also allow for
simultaneous observation of multiple parameters across resolution domains. Tracking multiple variables
across a range of parameter values allows for construction of valuable phase planes to describe systems-
level behaviors (Bentley, Gerhardt et al. 2008, Sample and Shvartsman 2010, Moreno, Zhu et al. 2011,
Fallahi-Sichani, Kirschner et al. 2012). Bifurcations in these phase plane analyses offer insights into
system stability and potential interventional targets that may yield higher likelihoods of maintaining
transitions from one equilibrium state of a biological system to another. For example, Kim et al. (Kim

and Maly 2009) explored reorientation of individual CD8" T-killer lymphocytes in the two-dimensional
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parameter space defined by microtubule length and initial centrosome orientation relative to a target
cell (Type 2 approach). This analysis reveals complex relationships between the parameters, suggesting
certain combinations that would render the T-killer unable to properly orient itself for productive
cytolytic activity. Such incompatible orientations could not be predicted by either parameter alone,
emphasizing the need for more rigorous analysis.

Similarly, as in Holland et al. (Holland, Krainak et al. 2011), acquiring large sums of data across
multiple scales of resolution allows for more informed selection of reducible components within
complex systems (Type 2 approach). Using a graphical approach in a normalized phase plane to study
the kinetics of B-adrenergic signaling, this investigation demonstrates a method to identify reactions
that can reasonably be reduced reasonably to steady-state when evaluating system dynamics. Each
reaction trajectory in the system was compared relative to steady-state values: trajectories in the phase
plane with greater deviations from steady-state had larger hysteresis loops and could be identified as
necessary for capturing dynamics of system behaviors.

These examples highlight how traditional engineering approaches to capturing system behaviors
can be applied to biological systems. However, as these approaches generally require large sums of
guantitative data to be useful, traditional wet lab experiments are not easily translated to these analysis
techniques. Computational models, in particular multiscale models, offer an alternative source of data
that can be acquired across many parameter values in a high throughput manner. As experimental
methodologies develop, these predictions can themselves be independently validated or they may

provide insight into unexplored hypotheses that can be tested immediately.

The Virtual Bench: in silico Perturbations
Beyond simply capturing otherwise inaccessible measurements with high resolution across large

changes in scale, multiscale modeling allows for precise manipulation of network variables to isolate
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true effects from experimental artifacts. Even the most precise RNA interference strategies (including
small interfering, short hairpin, and micro RNA) are capable of producing off-target effects either
directly (e.g. silencing alternative binding sites) or indirectly (e.g. diminution of native RNA translation),
resulting in confounding or erroneous observations (Singh, Narang et al. 2011). This statement does not
imply that models are error-free; models simply are capable of isolating perturbations as defined by the
user’s constraints without concern of unknown interactions.

Thus, at first glance multiscale modeling offers the unique advantage of being able to make
perturbations across any tier of resolution. This is potentially very powerful as it allows for not only
knockdown and overexpression experiments, but also very precise changes to the degree of expression
of a single gene or set of genes. This control, quite simply, is not possible with current microbiology
techniques. While not a replacement for experimental investigation, these approaches can serve to
contextualized data and reconcile discrepancies that may be caused by off-target effects. Further,
computational methods may also refine experimental approaches by surveying all possible
perturbations to narrow the scope of experimental interrogation.

As an example, Fallahi-Sichani and colleagues (Fallahi-Sichani, Flynn et al. 2012, Fallahi-Sichani,
Kirschner et al. 2012) have described the effect of modifying NF-kB signaling mechanisms at the level of
transcript stability with implications of temporal variables (e.g. degradation rate, activation rate)
affecting the outcomes of Mycobacterium tuberculosis infection (Type 2 approach). In this work,
pharmaceutical therapies were applied using a system of ODEs to capture intracellular signaling
pathways while cellular behaviors were executed as a discrete probabilistic agent based model at the
tissue level scale. This union of subcellular pathway manipulation and multicellular function allows for
direct investigation of pharmaceutical intervention on a relevant pathophysiological outcome that

would otherwise be unobtainable by modeling an individual tier of resolution.
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Alternatively, for systems being modeled with a top-down approach, more general questions
can be answered by completely removing subsystems from multiscale models. In these cases functional
impairments are evaluated as opposed to specific physiological interventions. Using this approach,
Shirinifard and colleagues (Shirinifard, Gens et al. 2009) demonstrated unique growth patterns in
avascular tumors by removing the capability for angiogenic growth from their multiscale model of solid
tumors. Insights from such a broad phenotype perturbation (i.e. complete abrogation of angiogenesis
rather than impairment of a single component in the pathway with downstream effects) allow for
investigations into the minimal functions necessary for individual system behaviors.

Further, the concept of in silico perturbations can be extended as a direct analogy to bench work
— with the exception that it can be executed at high throughput with low resource allocation. More so
than modeling at a single resolution, multiscale models can be directly mapped to biological assays for
both experimental validation and hypothesis testing. For some of these cases, multiscale models have
proven predictive for optimizing biopolymer scaffolds based on altering material properties to
investigate extracellular matrix mechanotransduction and cell seeding (Sander, Stylianopoulos et al.
2009, Artel, Mehdizadeh et al. 2011, Zahedmanesh and Lally 2011). Here, small parameter changes that
could easily be completed with computational iteration would require extensive material cost and time

commitment to generate comparable data sets.

LOOKING FORWARD

Throughout this review we have highlighted the currently available computational tools for multiscale
modeling and the best practices for their implementation. As shown in Figure 2.3, many disciplines of
biological research have yet to fully leverage the power of multiscale modeling across more than a few
tiers of resolution. That being said, examples do exist that span the spectrum from the most

fundamental genetic modifications to organ-level perturbations. Combining these tools across all of
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these scales simultaneously may seem at this point an intractably difficult problem; however, some
preliminary efforts are already emerging.

The Physiome Projects are a collection of biological databases, mathematical models, and
utilities being gathered with a singular purpose: integration (Bassingthwaighte and Chizeck 2008,
Bassingthwaighte 2010). Models from every spatial, temporal, and functional scale are being curated as
individual modules such that they can be preserved for integration into larger, multiscale simulations.
The efforts of this project are ongoing as it recognizes that, primarily due to computational limitations, a
single, whole organism model that explicitly incorporates all tiers of biological resolution has yet to be
realized. As we have noted earlier, the majority of information is concentrated near the cellular level
with decreasing availability of models and data at the genetic and whole organism levels. This ongoing
effort shows much promise as a means to begin generating larger multiscale models from validated,
optimized modules that have been assembled with integration in mind.

Beyond implementing better and more comprehensive multiscale models, the future of the field
also holds potential to advance other recently accelerating fields of biomedical engineering. In particular,
efforts in synthetic biology are using multiscale data and analysis to inform design optimization and
control systems theory of novel biological systems. In a recent publication, Nawroth and colleagues
(Nawroth, Lee et al. 2012) describe the design, development, and implementation of a synthetic jellyfish
capable of self-propulsion dubbed the “Medusoid.” They describe the reverse engineering process as
occurring over several orders of space and time in order to capture the necessary information to
generate synthetic muscle fibers capable of productive, concerted contraction. Callura et al. (Callura,
Cantor et al. 2012) are similarly beginning to use multiscale approaches as they scale up from a single
gene to a composite “genetic switchboard.” Capable of regulating four metabolic genes in E. coli, this
synthetic regulatory system reliably shunted flux through different carbon-utilizing pathways as

measured by mRNA levels and direct quantification of metabolites. This effort demonstrates in a strictly
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in vitro sense how multiscale theory can be applied to better understand and engineer biological
systems.

Multiscale modeling, above all, strives to better understand the fundamental processes that
sustain biological life. Unquestionably, effects at the genetic level are responsible for both subtle and
dramatic phenotypic expression of an entire organism. We are only just starting to begin to construct
computational models that can explicitly demonstrate this same degree of emergent pattern
phenomena through appropriate inter-scale connectivity. It is our hope that the techniques and
practices presented here are able to guide future efforts in this field towards high quality multiscale

model implementation.

SUMMARY POINTS

1. Multiscale models are explicitly executed simulations of complex biological systems that have
been integrated across temporal, spatial, and functional domains. Through simultaneous
evaluation of multiple tiers of resolution, multiscale models provide access to systems behaviors
that are not observable using single-scale techniques.

2. A combination of multiple computational techniques, including both continuous and discrete
systems, is optimal for efficiently capturing information across biological scales. Each spatial
scale can be summarized by the biological functions occupying that tier of resolution, allowing
for modeling techniques to be implemented based on how well they represent these functions.

3. Multiscale models more closely recapitulate traditional bench top experimentation while
allowing for high throughput hypothesis generation and testing, quantitation of values that
cannot be measured, and translation to in vivo systems. Perturbations to high-resolution

parameters (e.g. protein binding constants) can generate low-resolution outputs that are
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biologically relevant (e.g. tissue developmental patterning), allowing for simultaneous access to
guantifiable values across all scales of biology.
FUTURE ISSUES

1. Fundamental to the model building process, sensitivity analyses are performed to explore the
parameter space for potentially interesting and useful “tuning” variables on which system
outputs are strongly dependent. Multiscale models must be thoroughly investigated to
determine whether sensitivities are truly a function of the system behavior or an artifact of
coarse-graining lower resolution outputs. This area will require further investigation through the
continued development of multiscale and complex systems models.

2. Appropriate parameter selection remains a concern in the computational modeling community,
as many of the parameter values required to develop multiscale models are either difficult or
impossible to measure. Values obtained from in vitro data may not be suitable for multiscale
models operating at a tissue network or larger spatial scale. As such, exploration of parameter
estimation techniques may be required to better parameterize multiscale models. Alternatively,
emerging in vivo molecular imaging techniques may grant access to previously unobtainable

parameter values.
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ABSTRACT

Many biological processes are controlled by both deterministic and stochastic influences. However,
efforts to model these systems often rely on either purely stochastic or purely deterministic methods.
To better understand the balance between stochasticity and determinism in biological processes a
computational approach that incorporates both influences may afford additional insight into underlying
biological mechanisms that give rise to emergent system properties. We apply a combined approach to
the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This
complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which
sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an
agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and
location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy.
ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic
simulations could not generate sprout locations as accurately as the rule-informed agent-based model.
These findings support the use of deterministic approaches for modeling the complex mechanisms

underlying sprouting angiogenesis over purely stochastic methods.
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INTRODUCTION

To understand, harness, and modulate complex systems, science must go beyond a
deterministic cause-and-effect view of the natural world. While some biological subsystems may be
described using deterministic rules, many must be supplemented with probabilistic or stochastic
methods to understand, model, and predict the outcomes of biological processes (Blake and Collins
2005, Kaern, Elston et al. 2005, Balazsi, van Oudenaarden et al. 2011). Randomness in model
descriptions of a biological system can be included at three tiers: (1) the biology itself may include
stochastic elements or events (e.g. gene expression) that are described in the model using stochastic
methods (Kaern, Elston et al. 2005, Laise, Di Patti et al. 2011), (2) measurements of the biological system
may introduce sampling errors that propagate random noise, which should be accounted for in a model
to understand the underlying biological mechanism being sampled; or (3) underlying deterministic
behavior can be modeled using validated stochastic approaches as a method to reduce model
complexity and computational cost without loss of insight (Alber, Chen et al. 2006, Cotter, Klika et al.
2014). Further, stochastic behavior may represent a contextual phenotype — a system may normally
exist with strict deterministic control but then transition to stochastic behavior when certain conditions
are met (e.g. chemokine signaling or pathological pathway activation) (Kulkarni, Shiraishi et al. 2013).
Alternatively, a system may be stochastic at physiological conditions but converted to deterministic
behavior when integrated into a more robust signaling network, such as in bacterial colony formation
(Weber and Buceta 2013, Ben-Jacob, Lu et al. 2014).

We sought to explore this balance of stochastic and deterministic behaviors in the setting of
sprouting angiogenesis, a fundamental biological process underlying blood vessel network growth
throughout development (Potente, Gerhardt et al. 2011). In the adult, sprouting angiogenesis has roles
in both wound healing and endometrial vascularization. Additionally, pathologic sprouting angiogenesis

is implicated in the expansion of solid tumors (Folkman 1971, Plank, Sleeman et al. 2004, Strieter,
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Burdick et al. 2006, Swanson, Rockne et al. 2011), growth of ectopic endometrial tissue in endometriosis
(Fainaru, Adini et al. 2008, Machado, Berardo et al. 2010), and in neoangiogenesis of diabetic
retinopathy (Hammes, Feng et al. 2011, Bandello, Lattanzio et al. 2013, Bressler, Qin et al. 2013).
Sprouting angiogenesis can be approximated by five main stages: (1) tip cell selection, (2) endothelial
stalk extension, (3) stalk guidance to neighboring or nearby vessels, (4) anastomosis with a neighboring
vessel (success) or regression/collapse to the originating vessel (failure), and (5) maturation and
lumenization of anastomosed vessels (Chappell, Wiley et al. 2011). Regardless of the final fate of the
sprout, this process must begin with appropriate selection of a quiescent endothelial cell to undergo
phenotype switching, becoming a tip cell with increased filopodial extension frequency. These cell
behaviors, in aggregate and in conjunction with external signaling cues, have been presumed to dictate
where new vessels initially form within a blood vessel network.

Regulation of endothelial phenotype switching is closely tied to several signaling pathways,
including the well-studied Notch1/Delta-Like-Ligand 4 (DLL4) intercellular pathway (Noguera-Troise,
Daly et al. 2006, Bentley, Gerhardt et al. 2008, Merks, Perryn et al. 2008, Benedito, Roca et al. 2009,
Staton, Reed et al. 2009, Eilken and Adams 2010, Chappell, Wiley et al. 2011, Potente, Gerhardt et al.
2011, Louvi and Artavanis-Tsakonas 2012), which suppresses sprout initiation, and the vascular
endothelial growth factor receptor (VEGFR) axis that signals to increase phenotype switching and sprout
frequency (Ferrara 2005, Potente, Gerhardt et al. 2011, Wiley, Kim et al. 2011). Disruption of either the
suppressive pathway (Notch1/DLL4) or the activating pathway (VEGF/VEGFR) results in dramatic blood
vessel phenotypes ranging from early embryonic lethality to significant vascular dysmorphogenesis (e.g.
hypersprouting, hyperbranching phenotypes). Further, there are several isoform and dimerization states
of VEGFRs allow for differential signaling (Ferrara, Gerber et al. 2003, Ferrara 2005, Benedito, Roca et al.
2009, Chappell, Taylor et al. 2009, Louvi and Artavanis-Tsakonas 2012). In this work, we explore the

balance between pro-angiogenic VEGFR2 and VEGFR1, which can function as a decoy receptor for VEGF.
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As such, the balance between the DLL4 and VEGFR signaling axes is crucial to vascular patterning.
However, endothelial cell behaviors leading to sprout initiations in the context of intercellular signaling
and capillary network connectivity remain unclear.

Computational models offer unique insight into the study of biological systems, enabling us to
guery unmeasurable, unobservable, or inaccessible metrics pertinent to biomedical science (Kirschner
and Linderman 2009, Gopalakrishnan, Kim et al. 2013, Long, Rekhi et al. 2013, Walpole, Papin et al. 2013,
An and Kulkarni 2015, Cilfone, Ford et al. 2015). In assembling a model, the investigator is able to
explicitly define methods for simulating each aspect of the biological processes they are modeling —
either as stochastic or as deterministic. Comparisons between models that assume different relative
contributions of stochastic and deterministic behaviors empower investigation of the underlying system
properties by contrasting the accuracy of each technique. The relevant question then becomes: what do
we learn from modeling a system using separate deterministic and stochastic techniques that both
provide verifiable results?

Several other computational models have been developed using primarily deterministic
methods to explore the process of sprouting angiogenesis with single-cell and subcellular resolution.
These include ABMs of endothelial phenotype switching that focus on filopodial extension and
intercellular Notch1 signaling (Bentley, Gerhardt et al. 2008). Bentley and colleagues have extended this
model to bone regrowth as the multiscale model of osteogenesis and sprouting angiogenesis
incorporating lateral inhibition of endothelial cells (MOSAIC) (Carlier, Geris et al. 2012), and more
recently used it to explore endothelial cell motility in the context of the extending sprout stalk with and
without genetic mosaics (Bentley, Franco et al. 2014). At the subcellular level, Hashambhoy et al. have
used mass action kinetics models to explore VEGF diffusion, VEGFR dimerization, and surface signaling in
simulated endothelial extensions (Hashambhoy, Chappell et al. 2011). Finally, Kleinstreuer et al. used a

Cellular Potts Model to study vasculogenesis of the fetal liver with subsequent endothelial sprout
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formation as a screening tool for high throughput toxicology analysis (Kleinstreuer, Dix et al. 2013).
Though the specific approaches differ, these models all sufficiently capture and explore the possibility
for a deterministic (or rule-informed) basis for cellular behaviors in sprouting angiogenesis at multiple
resolutions. However, while these deterministic approaches are certainly valid, they do not compare
their results to stochastic alternatives that may be similarly predictive of biological behavior.

Here, we describe a new agent based model (ABM) of angiogenic sprout initiation informed by
high-resolution dynamic spatial and temporal data from the three-dimensional embryoid body (EB)
model of embryogenesis (Kearney and Bautch 2003). Our ABM includes Notch1-DLL4 and VEGF signaling
within and between cells to predict the frequency and location of endothelial sprout initiation events in
image-based realistic multicellular networks and is validated against the data from the EB time-lapse
movies. This is the first report of validating an ABM one-to-one with dynamic data of angiogenic sprouts.
Further, we constructed a Monte Carlo simulation as a benchmark for asserting accuracy of sprout
localization using purely stochastic methods. By comparing the rule-based ABM to the Monte Carlo we
demonstrate that rule-based models more accurately simulate endothelial cell sprout initiation location.
This combined approach supports the hypothesis that the location of sprout initiations in multicellular
endothelial networks occur with in a deterministic manner, informed by underlying cell-signaling

pathways.
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EXPERIMENTAL
Embryoid body experiments
Maintenance and differentiation of mouse embryonic stem (ES) cells was described previously (Kearney
and Bautch 2003) Stable expression of PECAM-eGFP in ES cell lines was previously reported (Kearney,
Kappas et al. 2004) Real-time imaging of day 7-8 differentiating ES cell cultures was conducted as
follows: confocal images were acquired at 4-10 min intervals for 16-20 hr with an Olympus FluoView
FV1000 or FV10i system (full environmental controls) using either a 10x or 20x objective. At each
location, a z-stack of 6-8 images was acquired with 4-6 microns between focal planes. These images
were compressed post-acquisition into a single frame for each time point.
Agent based model

Agent and time definitions. The ABM was built using Netlogo 5.0 and data were analyzed using
MATLAB (Wilensky 1999). Each endothelial cell (EC) is spatially defined by eight membrane nodes
(mNode) and a single centroid “nucleus” linked to each membrane node; the mNodes are connected to
each other by membrane links (Figure 3.1A). The two-dimensional space occupied by cells is discretized
into 10 um x 10 um pixels. During the course of the simulation the each cell adjusts its shape to
approach an average endothelial cell surface area (ECsa, Table 3.1); this is achieved by having links
convey movement between their attached nodes — when a node is moved all linked nodes attempt to
follow but may be hindered by other links. The time step of the simulation is 24 minutes, enough time to
resolve micron-scale changes in cell position and still capture changes in protein levels (Barkefors, Le Jan

et al. 2008) (Figure 3.2).
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TABLE 3.1: ABM PARAMETER VALUES

Parameter Description Value Reference
ECsa EC Surface Area 962E-8 cm? (Adamson 1993)
o - Hashambhoy, Chappell et
dsVEGFR1 Initial sSVEGFR1 Secretion Rate 2.8E-10 nmol cm? -s* ;I 2011) v PP
o - Hashambhoy, Chappell et
dmVEGFR1 Initial MVEGFR1 Insertion Rate 2.8E-10 nmol cm? -s™* ;I 2011) v PP
2 - Mac Gabhann and Popel
dVEGFR2 Initial VEGFR2 Insertion Rate 8.4E-10 nmol cm™ s (2004) P
o - Hashambhoy, Chappell et
dVEGF VEGF Production Rate 5.0E-10 nmol ecm™? s ( v PP
al. 2011)
dDLL4 Initial DLL4 Insertion Rate 0 Estimated
dNOTCH Initial Notch Insertion Rate 0 Estimated
Xmin Minimum insertion rate 1.0E-12 nmol cm? -s™* Estimated
Xmax Maximum insertion rate 1.0E-8 nmol cm? s Estimated
Estimated from (Liu, Ratner
_ et al. 2007, Barkefors, Le Jan
EC.ix Chemotactic Migration Rate 30 um -h !
et al. 2008, van der Meer,
Vermeul et al. 2010)
o Notch Transfer Coefficient Model Specific Parameter Fit

Modeling molecular biology: VEGF and DLL4 signaling axes. Each pixel stores concentration

values of soluble VEGFR1 (sVEGFR1) and VEGF. sVEGFR1 is secreted by endothelial cells and in this

simulation are produced by the mNodes. VEGF is secreted by cells throughout the tissue and therefore is

produced by the pixels in this model. Diffusion is included using a simple distribution command — 25% of

each diffusible species in each pixel is equally distributed among its eight neighboring pixels (Moore

neighborhood).
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FIGURE 3.1: CONSTRUCTION OF ABIM FROM EXPERIMENTAL TIME-LAPSE MOVIES.

Each cell is comprised of multiple agents including mNodes, nuclei, inter-, and intra-cellular links as
shown in the cartoon (A). The embryoid body movie’s initial frame is converted to an ABM
representation to match EC locations. Simulation predictions of sprout initiations (circles) are then
compared to observed sprout initiations from the EB movie (squares) and scored as true positive or false
positive (B).
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FIGURE 3.2: ABM WORKFLOW.
Each of the main subroutines occurs sequentially at every time step: section and binding, rate
adjustment, and phenotype switching and chemotaxis.
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Receptor binding kinetics are assumed to be 1:1 interactions between dimerized VEGFRs and
dimeric VEGF (Mac Gabhann and Popel 2004, Vempati, Popel et al. 2011)- if a pixel contains VEGF and
also includes either (1) an mNode with membrane-bound VEGFR1 (mVEGFR1), (2) an mNode with
VEGFR2, or (3) sVEGFR1, then binding will occur until one of the pools (ligand or receptor) is completely
depleted. For example, if there 10 molecules of VEGF and 100 available VEGFR2, the ABM will remove all
VEGF from the pixel, while the local mNode reduces VEGFR2 to 90, and adds 10 phosphorylated VEGFR2
(pR2). When binding sVEGFR1 or mVEGFR1 there is no downstream function — receptor-ligand
complexes are removed from the cell surface without further impact on signaling. These binding rules
do not account for equilibria or mass action kinetics, favoring simpler, lower resolution molecular
interactions at the multicellular scale. When VEGFR2 is converted to pR2 it increases the DLL4
production in that cell, following the formula:

DLL4;,; = DLL4; + (k X pR2) — (kg4eg X DLL4;) (3.1)
where DLL4,, expression level is defined as the current amount of DLL4,, increased by activation of pR2,
and decreased at a constant degradation rate (Figure 3.2).

Based on what is known about the molecular biology of these families in endothelial cells,
production rates of the VEGFRs are directly related to DLL4 expression on neighboring cells by the
formula:

Fmin = Xmin + (Xmax — Xmin) e~ = DM Aneighbors (3.2)
where x is the production rate per time-step of receptor x, and Xmi, and Xmay are the minimum and
maximum production rates, respectively. The DLL4 content of each neighboring cell (defined as having
an intercellular link between mNodes) is summed and then scaled by the Notch1 transfer coefficient a.
When a is 0 there is no information transfer between neighboring cells. Notch1 signaling alters the

transcriptional regulation of VEGFRs, increasing the production of both sVEGFR1 and mVEGFR1 and
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decreasing the production of VEGFR2 (Figure 3.2). VEGFR production rates are updated with each time-
step.

Initial production rates for VEGF and VEGFRs are estimated based on literature-derived values
(Table 4.1). In the case of Notch1 and DLL4, the initial values were set at 0 and instantiated based on
Equation 3.2 and basal production rates. Minimum and maximum production rates (Xmin and Xmax,
respectively) were estimated to be two orders of magnitude above and below the basal production rate.

Phenotype switch from quiescent to tip cell. When the pR2 levels on an endothelial cell in the
model are above a particular threshold they undergo transition to the tip cell phenotype. Activated tip
cells respond to VEGF signaling via chemotaxis towards the nearest source of VEGF. To calculate the
direction of movement, the cell determines the mNode with highest pR2, and moves in the direction of
the neighboring pixel with the highest VEGF concentration. This ability to sense VEGF concentrations at
a distance of up to 10 um accounts for the effects of filopodial extension without explicitly modeling
individual filopodia in the ABM. Endothelial cells in the tip cell state that drop below the pR2 threshold
return to a quiescent phenotype.

Rendering embryoid body data as ABM geometries. Projections of confocal image stacks were
converted to 16-bit intensity maps and loaded into the ABM using a custom image processing program
written in Netlogo (Figure 3.1B). Loaded images were then converted to starting ABM configurations by
manually selecting cell locations and then allowing for membrane shape change to approach the
average endothelial cell surface area, ECsa. Using the EB image as a guide, each cell mNode could be
manually edited to better match the geometric configuration of the fluorescence intensity data. The EB
image was then cleared and the resulting vessel geometry file exported for use in simulations (Figure
3.1B).

Parameter estimation of Notch Transfer Coefficient. From each of three EB movies a quadrant

was selected and used as training data to determine the Notch Transfer Coefficient (a, Equation 3.2) for
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subsequent simulations. Simulation of sprouting using these starting configurations was performed over
a parameter range from 0 to 2 in increments of 0.2, yielding a total of 16 different parameter values,
each evaluated in 20 replicate ABM simulation runs. The number of sprout initiations over the course of
each simulation was compared to raw sprout initiation counts from the paired EB movie and the best fit
Notch Transfer Coefficient value was determined.

The Notch Transfer Coefficient value that generated the best fit from the parameterization was
then validated in seven additional, independent EB Movie quadrants to confirm its accuracy and
robustness across different initial network geometries. An example of true positive predictions as
compared to false positives is shown in Figure 3.4B.

Sensitivity analysis. A local approach was used to evaluate sensitivity to the ABM Notch
Transfer Coefficient: all other variables were held constant while sampling the parameter space of the
Notch Transfer Coefficient between 0 and 2.0 using a 0.2 step size. A total of 20 simulations were run at
each parameter value for each of the eleven total starting geometries defined by EB Movie quadrants.

Monte Carlo analysis of stochastic sprouting without molecular control. For each EB movie
guadrant, Monte Carlo simulations were performed using Netlogo. Unlike the ABM, the Monte Carlo
simulation randomly selects endothelial cells to undergo phenotype switch to tip cells (i.e. this method
does not include the molecular mechanisms of VEGF and Notch1 signaling). The cells chosen were
selected from a uniform distribution with replacement — this allowed the same cell to be chosen to be a
tip cell more than once, as might occur in the ABM or EB model if a tip cell becomes quiescent and then
reactivates at a later time point. The Monte Carlo simulations were not tasked with predicting the
number of sprout initiation events; rather, the number of sprout initiation events (i.e. number of tip cell
selection events) was drawn from a normal distribution with mean and standard deviation taken from

ABM predictions. Each EB movie quadrant was evaluated over 1000 replicates.
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The set of available sprout initiation locations available to the Monte Carlo simulation was
bounded by the location of endothelial cells in the starting configurations of each EB movie quadrant. A
performance index was defined as the difference between true positive frequencies in the ABM and
Monte Carlo analyses — a positive value indicates better predictive performance of the ABM whereas a
negative value indicates better predictive power of the Monte Carlo simulation.

Genetic algorithm. A genetic algorithm (GA) was applied to four parameters of the ABM (Notch
Transfer Coefficient, tip cell activation threshold, sVEGFR1 production rate, and mVEGFR1 production
rates) with the goal of maximizing the true positive frequency of the worst performing simulation, using
the following objective function:

1 —Xrp = F(xq,%2,%3,%4) (3.3)
where X7p is the true positive rate achieved by the ABM using a set of parameter values x,. Minimum
values for each parameter (x, in Equation 3.3) were set to zero while maximum values were set to 100x
the initial parameter value (Table 4.1). The simulation was run for 190 generations with 20 ABM
replicates at each generation to determine an average true positive frequency.

Statistical analysis. Confidence intervals, Pearson’s correlation, and partial least squares
regression analysis were performed using GraphPad Prism version 5.0d for Mac OSX. Unless otherwise

stated, significance was asserted at P < 0.05.
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RESULTS

ABM Notch Transfer Coefficient parameter estimation. Lacking a literature-derived value for
the Notch Transfer Coefficient (a, Equation 3.2), the key parameter governing the strength of Notch1
intercellular signaling, necessitated the use of parameter estimation. A single quadrant from each of
three independent EB movies was evaluated over 16 different Notch Transfer Coefficient (a) parameter
values (Figure 3.3D). As the strength of Notch lateral inhibition increases (increasing a), the number of
sprout initiations occurring over the course of the simulations decreases, as would be expected. Above a
value of a = 1.6 all three simulated movie quadrants converged to 0 sprout initiation events, effectively
preventing any phenotype switching. Conversely, when the Notch Transfer Coefficient parameter was
maintained at 0, no lateral inhibition was possible, and every cell in the simulation attempted to sprout.
A Notch Transfer Coefficient parameter of approximately 0.6 resulted in agreement between the ABM
predictions of sprout initiations and the observed sprout initiations in the three training quadrants
(Figure 3.3D).

ABM simulates sprout initiation frequency. We sought to validate the Notch Transfer
coefficient value of 0.6 established by parameter estimation with 3 training EB movie quadrants. To
achieve this, 8 additional test EB movie quadrants were analyzed (Figure 3.3E). For all but one simulation
(M3Q3), the observed number of sprout initiations in the corresponding EB movie quadrant fell within
the ABM predicted 95% confidence interval of sprout initiations. This discrepancy for M3Q3 may be due
to having a high number of sprout initiations occurring in close proximity in the EB movies — two sprout
initiations that occur in close proximity may be underestimated by the ABM which predicts only one

sprout initiation.
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FIGURE 3.3: PARAMETERIZATION AND VALIDATION OF ABIM BASED ON A DIVERSE POPULATION OF EB MoOVIES.

The vessel network characteristics of each EB Movie are not uniform and represent a diverse sampling
of possible EC network architectures (A-C). Using three EB Movies the ABM Notch Transfer Coefficient
was parameterized to predict the number of sprout initiations (D). The Notch Transfer Coefficient value
of 0.6 was then tested in all other EB Movies. The number of sprout initiations observed in the EB
Movies (red squares) is shown to fall within the 95% confidence interval of ABM predictions (black
circles and error bars, E). Performing the same sweep of the Notch Transfer Coefficient from 0.0 through
2.0 for all EB Movies demonstrates a similar trend, possessing a linear response region from 0.0 to 1.0
(shaded region is one standard deviation, F, G).
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Sensitivity of ABM to Notch Transfer Coefficient parameter. All EB movie quadrants were
evaluated for sensitivity to the Notch Transfer Coefficient. Across the range of tested parameter values
(o =0.0-2.0) all simulated vessel networks demonstrated a sprout initiation frequency that was inversely
proportional to the Notch Transfer Coefficient (Figure 3.3F). Despite variations in vessel network
morphology such as number of endothelial cells and vessel length density (Figure 3.3A-C), all simulated
movie responses could be estimated using linear functions within the parameter range from 0.0 to 1.0
(Figure 3.3G) with coefficients of determination greater than 0.80 for all simulations except one (M3Q3,
R? = 0.70) and with non-zero slopes that were statistically significant (p < 0.05). These data demonstrate
sensitivity to the Notch Transfer Coefficient across all tested EB movie vessel networks.

Use of a Monte Carlo model to evaluate accuracy of ABM-simulated sprout initiation locations.
The trued positive frequency of ABM sprout initiation locations was scored using the methods described
in Figure 3.1B. A Monte Carlo analysis was performed to determine the likelihood of correctly predicting
sprout initiation locations purely by random chance, given the mean and standard deviation of paired
ABM simulation sprout initiation events as input. The frequency of true positive events (determined by
comparison to the observed sprout initiations in the EB movies) as generated by Monte Carlo simulation
was compared to that of the ABM in the range of sprout initiation frequency when the Notch Transfer
Coefficient parameter is set to 0.6 (Figure 3.4A).

Using the difference in true positive frequency as a performance index we demonstrated that
the ABM has higher spatial accuracy in 7 of 11 starting geometries (Figure 3.4B). There appeared to be
no correlation between performance index and initial conditions of the EB movie networks, such as
number of sprout initiations, number of starting endothelial cells, vessel length density, or sprout

initiation density (Figure 3.4C-F).
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FIGURE 3.4: COMPARING ABM AND MONTE CARLO PREDICTIONS OF SPROUT INITIATION LOCATIONS.

For each movie, the Monte Carlo (red) and ABM (black) prediction of sprout initiations (x-axis) and true
positive frequency (y-axis) were compared (SEM, A). A performance index, defined as the difference
between ABM and Monte Carlo true positive frequency, was calculated. The ABM outperforms the
Monte Carlo simulation in 7 out of 11 EB Movie simulations (Green Bars, B). C-F, Metrics of EC network
structure from each EB Movie plotted as a function of the performance index; no correlation could be
discerned.
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Unsupervised parameter identification in ABM using GA. The parameter values used in the
ABM simulations were literature-derived values (Table 3.1), with the exception of the Notch Transfer
Coefficient, which was estimated (Figure 3.3). However, it is possible that a set of optimal parameters
could improve the performance index of the ABM simulations. To explore this possibility, we used an
unsupervised approach to search for a set of parameter values that could maximize the true positive
frequency of the simulation with the worst performance index, M1Q1 (Figure 3.4B).

We used a GA to identify, in an unsupervised manner, the values of four key parameters
(Notch Transfer Coefficient, tip cell activation threshold, sVEGFR1 production rate, VEGFR1 production
rate, Equation 3.3) over the range from 0 to 100 times their original simulation values. As shown in
Figure 3.5A the true positive frequency of the GA derived parameter values approach 40% accuracy. This
rank ordering of all generations demonstrates four populations of outcomes: zero accuracy (no sprout
initiations), low accuracy (less than 10%), medium accuracy (10%), and the highest accuracy (40%).
Notably, these are all less than the original true positive frequency of the ABM (approximately 60%,
Figure 3.4A).

Of interest, the GA obtained its best results when minimizing the activation threshold for
phenotype switch from quiescent endothelium to tip cell. Conversely, reduced values of the Notch
Transfer Coefficient (a) were associated with poorer performing populations (Figure 3.5C). Additionally,
for the highest true positive frequency population (defined as >36%), the average value of a was 0.63
(Figure 3.5B), in agreement with the parameter estimation performed in Figure 3.3.

The GA derived production rates of mMVEGFR1 and sVEGFR1 were both approximately six orders
of magnitude higher than the values used in Table 3.1, with the ratio of soluble to membrane bound

production being 1.6 (data not shown).
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FIGURE 3.5: PARAMETER OPTIMIZATION USING GENETIC ALGORITHM TO IMPROVE PERFORMANCE INDEX.

The true positive frequency for each generation was plotted in increasing rank order to highlight four
distinct outcome populations: no sprouting, low-, medium-, and high-populations (mean * SD, A). The
Notch Transfer Coefficient (a) was plotted using the same rank-ordered generations and found to
approach a value of 0.6 (B). To achieve improved true positive frequency the genetic algorithm
attempted to minimize the activation threshold for phenotype switch from quiescent EC to tip cell (C).
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CONCLUSIONS

With the advent of innovations in intravital microscopy, such as light sheet microscopy, confocal,
and multi-photon microscopy, imaging dynamic processes in living tissues and in ex vivo engineered
tissue model systems has become more feasible (Fukumura, Duda et al. 2010, Giannouli, Chandris et al.
2014, Tanaka, Toiyama et al. 2014). These approaches generate data-rich movies that capture the
dynamic behaviors of cells as they migrate within tissues and form multicellular structures, such as
blood vessels (Brown, Campbell et al. 2001, Padera, Stoll et al. 2002, Jain, Munn et al. 2013). Viewing
movies of tissue morphogenesis prompts the observer to ask a number of questions about underlying
mechanisms, such as: are these behaviors defined by deterministic pathways? Are they the result of
stochastic biological noise? Or, perhaps, are they controlled by some combination of both deterministic
and stochastic influences? By combining computational modeling with confocal imaging we have
attempted to address these questions in the context of angiogenic sprouting. We compared two
different modeling approaches: (1) an ABM in which endothelial cell behaviors are governed by a set of
deterministic rules and (2) a Monte Carlo simulation with purely stochastic cell behaviors, uninformed
by signaling pathways.

In developing our ABM, we had to make several simplifying assumptions. In particular, diffusion
and binding kinetics play important roles in signaling through the VEGFR family, including homo- and
heterodimerization states that were not included in the ABM. Furthermore, VEGF itself was modeled as
a single diffusive isoform with properties similar to the VEGF,,; splice variant that lacks a heparin binding
domain (Ferrara, Gerber et al. 2003). We feel these assumptions are valid in the context of simulating
the locations and frequencies of sprout initiations; however, simulating subsequent steps in sprouting
angiogenesis, such as extension of the sprout away from its parent blood vessel, would likely require
more high-resolution simulation of these molecular pathways, incorporating the physics of particle

diffusion and mass action kinetics (Mac Gabhann and Popel 2004, Hashambhoy, Chappell et al. 2011,
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Vempati, Popel et al. 2011). It is important to note that while the ABM simulations are driven by
deterministic rules, diffusion of VEGF was modeled as a stochastic process, allowing for variation in
receptor binding for each simulation.

Additionally, the ABM demonstrates sensitivity to the Notch Transfer Coefficient with a
response region that can be approximated by a linear response with a non-zero slope. This permits
tuning of the model to additional experimental conditions. For example, decreasing the Notch Transfer
Coefficient parameter mimics inhibition of the Notch1-DLL4 pathway and produces increased sprout
initiations as would be expected by small molecule inhibition (e.g. the gamma-secretase inhibitor DAPT)
(Hellstrom, Phng et al. 2007, Benedito, Roca et al. 2009).

The Monte Carlo simulation, with no molecular mechanisms included, was constructed to
compare a purely stochastic method of modeling endothelial cell behavior against ruled-based ABM-
generated sprout initiation locations. Whereas we could directly compare the number of sprout
initiations simulated by the ABM to the number of sprout initiations observed in the EB movies, there
was no gold standard for evaluating the accuracy of sprout initiation locations. The Monte Carlo
provided a benchmark for assigning a performance index (Figure 3.4B) of ABM accuracy as compared to
the accuracy of random chance.

We demonstrate that the ABM accounting for Notch1-DLL4 lateral inhibition under control of
VEGFR regulation is capable of simulating the frequency of angiogenic sprout initiations within the EB
(Figure 3.3E). Despite disparate initial endothelial cell network configurations from one EB movie to the
next (Figure 3.3A-C), the ABM predicted the correct number of sprout initiation events in all but one of
the EB movie quadrants. Further, the ABM outperforms the Monte Carlo simulation of endothelial
sprout initiation location in 7 of 11 EB movies (Figure 3.4B), strongly suggesting that deterministic rules

are necessary for accurately simulating sprout initiation locations.
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Using a GA, we attempted to improve the performance of an ABM with the lowest performance
index as defined by the Monte Carlo. Four key parameters were selected and systematically tested by
the GA to maximize the ABM true positive accuracy for that movie quadrant (Equation 3.3). Despite the
use of this optimization algorithm, there was no improvement in the ABM'’s ability to accurately
simulate sprout locations. This suggests that the literature-derived parameter values are better
approximations of the underlying biological processes that they describe, as compared to the values
obtained in an unsupervised manner by the GA.

Taken together, our use of a Monte Carlo simulation and a GA optimization algorithm to score
ABM performance and attempt to improve upon that performance, respectively, lead us to conclude
that inclusion of additional biological mechanisms in future iterations of the ABM may be necessary to
improve its predictive capabilities. We speculate that the addition of new rules accounting for the
presence of perivascular cells, for example, or that simulate VEGF molecular diffusion and receptor
binding at the cell surface with higher spatial resolution, may extend the ABM’s capabilities.

Others have also begun to explore how accurately angiogenic sprouting can be modeled by
purely stochastic methods. Silva et al. recently investigated the frequency of sprouting events in a fibrin
bead assay by comparison to a theoretical Poisson distribution and demonstrated that this probabilistic
approach consistently underestimated sprout frequency (Silva, Eseonu et al. 2014). They concluded that
enrichment with “efficient” sprouting endothelial cells was responsible for the discrepancy — indeed,
isolation of a population of endothelial cells expressing low levels of CD143 and subsequent analysis in
bead sprouting assays demonstrated significant increase in sprout frequency over both control (mixed)
and isolated “inefficient” sprouting cells. Thus, after demonstrating that a probabilistic model
insufficiently captured the features of fibrin bead sprouting, a new hypothesis — the existence of
populations of endothelial cells with differential sprouting capacity — was generated and tested.

Including this new deterministic cellular behavior (efficient or inefficient sprouting) into the theoretical
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Poisson distribution generated sprout frequency predictions in agreement with experimentally observed
results. Our present study is consistent with theirs, and suggests that probabilistic models that lack the
inclusion of deterministic mechanisms may be insufficient for accurately simulating sprouting
angiogenesis.

Our manuscript represents a first step towards greater understanding of sprouting angiogenesis
through the integration of ex vivo, dynamic imaging techniques and computational simulations with
both deterministic and stochastic methods. Our ABM uses a minimal set of rules to simulate, with
considerable accuracy, the frequency and locations of endothelial sprout initiations in the EB during
sprouting angiogenesis. By comparing ABM to Monte Carlo predictions, we were able to quantitate the
spatial accuracy of the ABM and evaluate whether or not unsupervised parameter exploration improved
its performance. Moreover, our simulations suggested that deterministic rules that account for key
biological mechanisms are better able to recapitulate experimentally observed angiogenic sprout
initiations than random chance, suggesting that deterministic influences predominate over stochastic

influences in this setting of embryonic vascular development.
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CHAPTER 4

COMPUTATIONAL MODEL OF RETINAL
ANGIOGENESIS SIMULATES RETINAL
VASCULAR NETWORK MORPHOLOGY AS
A FUNCTION OF PERICYTE COVERAGE.
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ABSTRACT

Endothelial cells and pericytes act in concert to grow and maintain a healthy vascular network in the
retina that is easily damaged by disruption of either cell type. Although endothelial cell signaling has
been explored in detail, it remains unclear how pericytes function to modulate these signals that lead to
a diverse set of vascular network geometries in health and disease. We have developed an agent-based
model of retinal angiogenesis that incorporates both endothelial cells and pericytes to investigate the
formation of vascular networks as a function of pericyte coverage. We use our model to test the
hypothesis that pericytes interrupt Notch1-DLL4 signaling in endothelial cell-endothelial cell interactions.
The ABM simulations that include pericytes are more physiologically accurate than simulations that lack
pericytes and suggest that pericytes may influence sprouting behaviors through physical blockade of
endothelial intercellular connections. This study supports a role for pericytes as a buffer to signal

propagation for proper vascular network formation.
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INTRODUCTION

The developing murine retinal vasculature has long been a mainstay model for both studies that explore
physiological and pathological angiogenesis (Fruttiger 2007). Mouse pups are born before their retinas
are fully formed, with a stereotyped and conserved pattern of vascular patterning occurring over the
course of approximately two weeks (Milde, Lauw et al. 2013). During the first 7 days of postnatal
development, an angiogenic front of endothelial cells (ECs) grow along a template of astrocytes,
beginning from the optic nerve and radiating outward to the distal retinal edge (Dorrell, Aguilar et al.
2002, West, Richardson et al. 2005, Scott, Powner et al. 2010). Over time, the angiogenic front advances,
with the older, more proximal vasculature beginning a process of maturation — development of
arterial/venous polarity, growth of vessels that penetrate deeper into the retinal tissue, and capillary
rarefaction.

Throughout this process, pericytes (PCs), cells that enwrap endothelial cells, are maintained in
close proximity to the EC network (Hughes 2008). Throughout the body, pericytes have been shown to
affect vascular permeability (Armulik, Genove et al. 2010, Wisniewska-Kruk, Hoeben et al. 2012),
capillary sprouting (Chang, Andrejecsk et al. 2013), capillary diameter (Durham, Surks et al. 2014), and
leukocyte trafficking (Stark, Eckart et al. 2013). Loss of PCs in the eye plays a key role in the pathogenesis
of several human eye diseases, notably proliferative diabetic retinopathy (DR), retinopathy of
prematurity, and cancer-associated retinopathy (Ejaz, Chekarova et al. 2008, Cao, Xue et al. 2010,
Hammes, Feng et al. 2011, Bandello, Lattanzio et al. 2013, Wu, Fernandez-Loaiza et al. 2013, Hartnett
2015). We have previously published evidence suggesting that an adipose-derived stem cell treatment
may in fact replete PC loss in multiple murine models of DR, reducing capillary loss (Mendel, Clabough et
al. 2013). Further, several groups have proposed an interplay between the Notch1-DLL4 EC signaling axis

and PC function (Benedito, Roca et al. 2009, Simonavicius, Ashenden et al. 2012).
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Despite the prevalence of retinal models of angiogenesis and a key role for PCs in retinal
vascular development and health, much is still unknown about the function of PCs during vascular
development. Specifically, the canonical Notch1-DLL4 signaling pathway in ECs has been studied in great
detail (Noguera-Troise, Daly et al. 2006, Hellstrom, Phng et al. 2007, Chappell, Taylor et al. 2009,
Chappell, Wiley et al. 2011), yet little has been done to elucidate how PCs may modulate that signaling
axis. Computational models of the vascular endothelial growth factor receptor (VEGFR) and its effects on
EC Notch1-DLL4 signaling have also been used to investigate endothelial behavior in angiogenic sprouts
and vessel networks, but they do not explicitly account for putative effects of PCs during angiogenesis
(Bentley, Gerhardt et al. 2008, Jakobsson, Franco et al. 2010, Hashambhoy, Chappell et al. 2011, Carlier,
Geris et al. 2012, Kleinstreuer, Dix et al. 2013). Therefore, we have developed an agent-based model
(ABM) for simulating EC and PC interactions at the angiogenic front during retinal vascular development.

Our ABM incorporates Notch1-DLL4 intercellular signaling between ECs, allowing for signal
propagation throughout a multicellular network. EC directed chemotaxis is achieved through a
stochastic model of VEGFR binding kinetics that accounts for competition between pro-angiogenic
VEGFR2 and anti-angiogenic VEGFR1 (Fong, Rossant et al. 1995, Chappell, Taylor et al. 2009). A
procedurally generated astrocyte network is included as the source of VEGF (West, Richardson et al.
2005, Fruttiger 2007, Scott, Powner et al. 2010). Our novel application of Minkowski functionals to both
experimental and simulated angiogenic networks allows us to quantitatively compare the geometries of
ABM-generated EC networks with images of actual angiogenic fronts taken from P3 murine retinas
(Milde, Lauw et al. 2013).

Our results suggest that the presence of PCs alone, without any direct signaling to ECs, affects
network formation. As compared to simulated networks comprised of only ECs, simulated networks with
PCs more closely match the geometric properties of physiologic retinal vascular networks. Further, this

effect cannot be replicated solely by increasing or decreasing the density of ECs in the network — PCs

64 | Walpole



must be present in the simulation to best match physiologic geometries. This supports a role for PCs a
signaling “buffers” — spacing ECs to limit their intercellular contacts and preventing aberrant vessel

growth due to inefficient or inaccurate intercellular communication.

METHODS

Retinal Dissection and Immunohistochemistry

All procedures were approved by the University of Virginia’s Institutional Animal Care and Use
Committee (IACUC). Adult C57bl/6 mice were obtained from Jackson Laboratories and maintained in
breeding pairs. At postnatal day 3 (P3) mouse retinas were dissected as previously described (Taylor,
Seltz et al.). Briefly, eyes were enucleated and placed in a 0.4% paraformaldehyde solution for 7 minutes
and then maintained in a phosphate buffered saline (PBS) solution for the remainder of dissection until
slide mounting. While visualized using a Nikon SMZ1500 stereomicroscope, the sclera, lens, and hyaloid
vasculature were removed and four relaxing incisions were made in a radially symmetric pattern around
the posterior eyecup (Claybon and Bishop 2011). The remaining tissue was whole mounted on gelatin-
coated slides.

Visualization of retinal vascular ECs and astrocytes was achieved by immunohistochemical
staining. Griffonia simplicifolia isolectin B4 (IB4) preconjugated to Alexafluor-647 was used to identify
ECs (Molecular Probes/Invitrogen/Life Technologies, Eugene, OR) (Gerhardt and Betsholtz 2003).
Astrocytes were visualized by staining with a primary antibody against glial fibrillary acidic protein (GFAP,
Dako/Agilent Technologies, Santa Clara, CA) (Fruttiger 2007, Milde, Lauw et al. 2013) and a secondary
goat-anti-rabbit antibody conjugated to alexfluor 546 (Molecular Probes/Invitrogen/Life Technologies,
Eugene, OR).

Retinas were permeablized with 1mg/mL Digitonin (Sigma-Aldrich, St. Louis, MO) in PBS for 1

hour followed by 3 washes with 1% bovine serum albumin (BSA) (Jackson ImmunoResearch, West Grove,
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PA) in PBS for 10 minutes each. Blocking of non-specific binding was accomplished by a 1 hour
incubation in 1% BSA-PBS. Primary antibodies were diluted in 1% PBS-BSA (1:200 IB4, 1:1000 GFAP) and
allowed to incubate on retinas for 1 hour followed by 3 washes with 1% BSA-PBS for 10 minutes each.
All of the preceding procedures were carried out at room temperature. Secondary antibodies for GFAP
were diluted at 1:300 in 1% BSA-PBS and allowed to incubate overnight at 4°C. Finally, retinas were
washed 3 additional times with 1% BSA-PBS for at 10 minute intervals before applying a 50/50
glycerol/PBS solution and sealing slides with cover glass. Samples were viewed immediately, with less

than 24 hours between initial retinal harvest and confocal imaging.

Minkowski Analysis
Image processing was performed using ImageJ) and MATLAB. The Minkowski analysis is a method of
guantitatively comparing images based on three geometric parameters: (1) area, (2) perimeter, and (3)
Euler coefficient. Milde et al. have previously demonstrated the efficacy of the Minkowski analysis for
identifying blood vessel patterns in the murine retina as a function of postnatal age (Milde, Lauw et al.
2013). We have adapted the technique to study both astrocytic and endothelial cell networks at the
leading edge of the developing vascular front in both experimental and in silico angiogenic networks.
To perform a Minkowski analysis, the image (either immunohistochemical staining or ABM-
derived) was first filtered through a binary mask. In the case of the astrocyte template studies, images
were then skeletonized to reduce the network to a single pixel in diameter. The image area, perimeter,
and Euler coefficient were then calculated as a function of the image dilation index (R). Through
progressive image dilation a set of Minkowski functionals were generated that characterized the
geometric properties of the original image. These image-processing steps are summarized in Figure 4.1.
Area and perimeter values were normalized by the total area of the image to allow for comparison

between images of different sizes and with different pixel dimensions.
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FIGURE 4.1: IMAGE PROCESSING WORKFLOW FOR RETINAL IMINKOWSKI ANALYSIS.

Images of the extending vascular front of P3 retinas are collected (1 per retinal wing) to visualize
astrocytes (red, GFAP) and endothelial cells (green, IB4). These channels are then separated and a binary
mask is applied. For the astrocytic template, the image is then skeletonized prior to performing the
Minkowski analysis. Minkowski functionals are a function of the image dilation value (R). Scale bars =
100 pm.

ABM Temporal and Spatial Constraints

The total ABM simulation space was 0.087 mm? and is comprised of 5 um? square pixels. Each EC and PC
were assumed to maintain an average area of 500 um*and therefore maintain a shape defined by 100
pixels (based on the assumption that in 2D only half of the total 1000 pm? surface area is present)
(Adamson 1993). The ABM time-step was set to 10 minutes to simulate cell behaviors that take place on
the time scale of days. As such, receptor binding and cell movement were iterated more than once per

time-step. Specifically, cell movement occurred either 2 times (for quiescent ECs) or 4 times (for ECs

with a tip cell phenotype). Receptor binding occurred with variable frequency each time step, with a
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minimum of 20 stochastic binding iterations per pixel. Simulations were run for a total of 80 time steps,

or equivalently 13.3 hours.

Astrocyte template generation
Models were instantiated with a procedurally generated astrocyte template based on the Minkowski
functionals of P3 murine retinal astrocytes. A variable number of starting pixel locations were randomly
selected from the base of the model space. From each of these starting pixels, a new pixel “grew” within
a 20 degree arc of the previous pixel’s heading, extending the astrocyte template skeleton. At any time,
branching events occurred with probability (Ppranch), generating new paths. If forward movement
converged upon an already existing path, the two branches converged and further progress was halted.
The number of starting locations and Ppanch Were fit to generate an image with Minkowski functionals
matching those of skeletonized astrocyte images from P3 murine retinas.

The finished ABM astrocyte template skeleton provided the only source of VEGF for the
simulation with production and degradation rates of ks and kqeg, respectively (Table 4.1). During each
time-step, 40% of each pixel’s VEGF concentration was equally distributed within its Moore

neighborhood (8 adjacent pixels) to simulate diffusion.
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TABLE 4.1: ABM PARAMETER VALUES

Parameter Description Value Reference

ECsa EC Surface Area 968 umz (Adamson 1993)
Estimated from (Liu, Ratner
et al. 2007, Barkefors, Le Jan

EC.ix Chemotactic Migration Rate 30 um h?t
et al. 2008, van der Meer,
Vermeul et al. 2010)
o Notch Transfer Coefficient Model Specific n/a
6 Tip Cell Activation Threshold Model Specific n/a
kB2 VEGF binding to VEGFR2 1.0e7M%s? (Stefanini, Wu et al. 2008)
kRL VEGF binding to VEGFR1 3.0E7 Ms* (Stefanini, Wu et al. 2008)
KRz, VEGF dissociation from VEGFR2 1.0E-3s™ (Stefanini, Wu et al. 2008)
kR, VEGF dissociation from VEGFR1 1.0E-3s™ (Stefanini, Wu et al. 2008)
Kint Internalization rate of VEGFR2 2.8E-45" (Stefanini, Wu et al. 2008)

Cell types and initial conditions

Three different experimental conditions were evaluated: simulations with both ECs and PCs, simulations
with only ECs, and simulations sparsely populated with ECs. After generating the astrocytic template,
ECs and PCs were seeded into the simulation within 65 um of the bottom to simulate the angiogenic
front of a developing mouse retina. All simulations had at least 21 starting ECs. Simulations with ECs only
had an additional 12 ECs (total of 32), while simulations with ECs and PCs had an additional 12 cells that
each had a 25% chance of being PCs.

Finally, simulations with sparsely populated ECs followed the same rules except that the
additional 12 cells each had a 25% chance to be removed. This third experimental condition with
sparsely populated ECs was meant as a control for total EC number, matching the number of ECs in
simulations with PCs — this allowed for separation of effects caused by purely reducing the EC count or

by introducing PCs.

Receptor Binding

In the ABM, ECs expressed two different forms of the VEGF receptor: VEGFR1 and VEGFR2. As was done
previously by Mac Gabhann et al., receptor binding was approximated using a modified Gillespie
algorithm for stochastic mass action kinetics (Gillespie 1977, Mac Gabhann, Yang et al. 2005). Reaction
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rates were defined based on the number of VEGF molecules (V), VEGFR1 (R1), VEGFR2 (R2), VEGF-

VEGR1 complexes (VR1), and VEGF-VEGFR2 complexes (VR2):

R2
pRz = _Kon g (4.1)
UOl . NA
R1
Al =—""—-V-R1 (4.2)
UOl . NA

and normalized by the reaction volume (vol, one pixel of area 5 pm?” with pseudo height assumed to be 1
pm) and Avogadro’s number (N4). The receptor off rates were defined as:

rofr = kafs - VR2 (4.3)
rots = kats - VR1 (4.4)

The probability of receptor binding was thus a function of the on and off rates for both receptors at a

given time, defined a Pg; and Py, for receptors VEGFR1 and VEGFR2, respectively:

Pry = Ton (4.5)
R1 =™ “R1 . _RL .
r(,}fql + rfflf
R2
T
PRZ - on (46)

r(,}ff + rffzf
A random number (p;) was generated and compared to the probabilities of binding to determine the

binding reaction outcomes:

R1=R1+1
VR1=VR1-1
R2=R2-1

VR2=VR2+1

V=V-2
R1=R1-1
VR1=VR1+1
R2=R2-1

VR2=VR2+1
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Integration of new VEGFR2s and internalization of receptors or receptor complexes followed a similar
algorithm whereby the insertion rate (sR) was initially balanced with the internalization rate (ki.:) given
100 receptors at the cell surface:

SR =100 " kip; (4.8)
This was then modified to reduce the insertion rate as a function of the Notch1 activity in the cell:

Notch
) (4.9)

SR = sR - (1 e —
Notchy gy

such that when Notch1 activity is maximal, no new VEGFR2 were expressed on the surface. Finally, the

probability of incorporating a new receptor (Pi.sert) was defined as:

P SR (4.10)
insert — 5-}\2 + kint . (RZ + VRZ) .
and a random number (p,) was generated to determine the VEGFR2 turnover at the cell surface:
R2=R2-1
or P2 < Pinsert R2 = R2 + 1}p; > Pinsert (4.11)
VR2=VR2 -1

Note that there is an equal probability of removing either VEGFR2 (R2) or a VEGF-VEGFR2 complex (VR2)
given that p; < Pinsert- VEGFR1 was assumed to be maintained at a steady state concentration, such that
the insertion and internalization rates are equal — thus, VEGFR1 surface turnover is not explicitly

simulated.

Intercellular Signaling

ECs were capable of communicating via a simulated Notch1-DLL4 mechanism, allowing for cells to
modulate the insertion rate of new VEGFR2 molecules in their neighbors per equation 9. Each time step,
ECs sum the DLL4 activity of their neighboring ECs (defined as any non-self EC within a Moore

neighborhood) to determine their own Notch1 activity as defined by equation 12:
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Notchleyy = (a x 2 DLL4,) (4.12)

where a is the Notch transfer coefficient. This a value scales the current DLL4 input from neighboring

ECs such that increasing a increases the Notch1 activity; conversely, a value of a = 0 decouples the
system and simulates a loss of Notch1-DLL4 signaling.

Simulated Cell Behaviors

The primary cellular behaviors and a process diagram of their implementation can be found in Figure 4.2.
ECs and PCs both maintained cell contacts with cells that they were already in contact with. Importantly,
loss of cell contacts was a condition for cell death — if ECs completely lost contact with any other ECs or
PCs they underwent apoptosis. Similarly, if a PC lost contact with all neighboring ECs they also
underwent apoptosis.

ECs were also capable of chemotaxis in response to VEGF. Specifically, when an EC moved it
surveyed neighboring empty spaces (i.e. not already occupied by an EC or PC) and moved towards the
one with the highest VEGF concentration. ECs transitioned from a quiescent to a tip cell phenotype if the
number of ligated VEGFR2 molecules (VR2 in Equation 7) exceeded a threshold value of . If VR2
dropped below B, the EC returned to a quiescent state. ECs with the tip cell phenotype had increased
motility, which was simulated by doubling the number of migration attempts per time-step over
quiescent ECs.

As cells migrated away from the initial starting positions, new ECs and PCs were added to
simulate the growth of cells trailing the leading edge of the angiogenic front. The placement of these
new cells followed the same rule set as the placement of the t,cells, such as the probability of placing an
EC or PC (in simulations that have both cell types). Probabilities of cell placement and model

instantiation steps are summarized in Table 4.1 and Figure 4.2.
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Maintain Cell Contacts (ECs and PCs)

Form Astrocyte Network
Astrocytes produce VEGF (green heatmap below)

Seed Initial Cells
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Receptor Binding & Cell Signaling (ECs)

VEGF Binding to VEGFR1 and VEGFR2 is a
1 competative binding reaction modeled using
stochastic mass action kinetics approach.

EC& PC EC Only Sparse EC Only

PVEGFR2 == DLL4 =f—ampp Notch1

25% Chance of adding  100% Chance of adding  25% Chance of no cell

PCs between EC stalks  ECs between EC Stalks added between EC stalks G e

Insertion of VEGFR2 is a stochastic process

3 modulated by Notch1. Increasing Notch1
Cell Movement (ECs)

decreases VEGFR2 insertion probability.
Repeat 4x Move to an empty Y Tip Cell Phenotype
Tip Cell? neighboring patch 4 PVEGFR2>B?
Repeat 2x with highest [VEGF] N =P Quiescent Phenotype

Repeat Every Time Step (At = 10 minutes)

FIGURE 4.2: RETINAL ABM PROCESS DIAGRAM

Formation of the astrocyte network (Figure 4.3) and initial cell seeding are performed at the beginning
of each simulation. Cell movement, maintenance of cell contacts, receptor binding, and cell signaling
occur at each time step (highlighted in orange). Simulations are run for a total of 80 time steps after
which EC locations are saved as tif images for Minkowski analysis.

Statistics and Linear Regression
Confidence intervals, one-way analysis of variance (ANOVA), partial least squares regression analysis,

and calculation of associated root mean squared error (RMSE) were performed using GraphPad Prism

version 5.0d for Mac OSX and MATLAB. Unless otherwise stated, significance was asserted at P < 0.01.
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RESULTS

ABM Astrocyte Template

Skeletonized immunohistochemical images of astrocytes labeled for GFAP (Figure 4.1) were compared
to procedurally generated ABM astrocytic templates using their respective Minkowski functionals
(Figure 4.3B). As Pyanch increased, the ABM astrocyte networks became more highly branched, causing
an increase in the total AREA covered by astrocytes. Conversely, increased branching reduced the total
PERIMETER of the network, however this effect is comparatively small relative to the increase in AREA.
Finally, the EULER NUMBER (e.g. measure of “laciness” or number of “holes” in the network) decreases
with increased branching, confirming that more closed loops are generated in a more highly branched
network.

These results were compared to the Minkowski functionals (AREA, PERIMETER, and EULER
CHARACTERISTIC) obtained from harvested P3 retinal astrocyte networks (Figure 4.3B, black lines with grey
fill). The skeletonized P3 retinal astrocyte networks closely followed the pattern of ABM networks with
Poranch = 5% according to the AREA functional. Conversely, the PERIMETER functionals for skeletonized P3
retina astrocyte networks were highly variable and did not converge until the dilation size (R) was
approximately 15. Above a dilation size of 15, however, the P3 retina astrocyte networks again were
most closely approximated by ABM astrocyte networks with Py anch = 5%.

The EULER CHARACTERISTIC metric for actual P3 retina astrocyte networks was challenging to
guantify below a dilation size of approximately 15 due to discontinuities in the skeletonized binary
image. Because this metric is sensitive to the number of discontinuous objects, a certain amount of
image dilation is necessary to generate a continuous network. Again, more negative values
corresponded to more closed loops within the system. The P3 retina astrocyte networks at higher
dilation sizes trended toward the ABM astrocyte networks with higher Py anch, although variability in the

P3 retina data did not allow for a clear best fit.

74 | Walpole



Astrocyte Formation Astrocyte Template ABM Astrocytes

V5 um]

o)
" branch
20°
k\
) | | |
Starting Points
B Area C Perimeter
1.5+ 0.10+
g
© o 0.08+4
g IS
< =
o S 0.064
N el
= O
©
,E_ % 0.04
o
=z g 0.02+
=
0.00

Dilation Size (r) Dilation Size (r)

O

Euler Characteristic
0.0005+

ABM Astrocyte P, . ..

o0 a2 ¢4
1 ¢v3 o5

%

Normalized Euler Number

—e— P3 Retina

-0.0015+ Dilation Size (r)

FIGURE 4.3: DEVELOPMENT OF RETINAL ABM ASTROCYTE TEMPLATE

The astrocyte template is instantiated at random starting points on the base of the simulation space and
advances within a 20° arc of its current heading, with a possibility of branching defined by Pyranch (A). This
path is then converted into a discrete grid of 5um? pixels for comparison to P3 retina astrocyte skeleton
images (B-D). Data shown are Mean + SD (error bars for ABM data, shaded region for P3 retina data). N
= 6 retinal wing images, N = 100 ABM simulation replicates.
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Based on these results, a Pyranch = 5% was selected to generate the ABM astrocyte network
templates for all subsequent simulations. ABM astrocyte networks generated using this probability
closely matched the AREA and PERIMETER Minkowski functionals for actual P3 retina astrocyte networks

and did not diverge significantly from the EULER CHARACTERISTIC.

Network Morphology Characterization

A total of 160 different combinations of a and B were tested with 10 replicate simulations being
performed for each combination using each of the three experimental conditions. Recall that the
astrocytic template and cell positions were stochastically generated, such that each replicate had a
different starting configuration. This produced an ensemble of 4,800 ABM EC network images, each of
which was characterized in an automated manner using Minkowski functionals. The Minkowski
functionals for ABM-generated EC networks were compared to the Minkowski functionals generated for
immunohistochemically stained P3 mouse retinas.

The similarity between the ABM-generated networks and real P3 retinas was evaluated by
determining whether or not the Minkowski functionals for the ABM-generated networks fell within the
95% confidence interval (Cl) of the Minkowski functionals for the actual P3 retinae. This similarity
criterion allowed us to quantitatively assess the “performance” of the ABM; better performance was
indicated by having more data points that fell within the 95% CI. ABM performance for all parameter
combinations and all experimental conditions is shown in Figure 4.4, and an example of single
parameter analysis is shown in Figure 4.5A. Observe that simulations with ECs and PCs greatly
outperformed both other cell configurations when assessing the AREA functional (Figure 4A). Similarly,
with respect to the EULER CHARACTERISTIC functional (a measure of closed loops within the network)
simulations with both ECs and PCs also exhibited the best performance (Figure 4.4C). In contrast, ABM

performance as characterized by the PERIMETER functional was not distinguishable between simulations
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FIGURE 4.4: ABM MINKOWSKI FUNCTIONALS COMPARED TO P3 RETINA ECs.

Minkowski functionals were calculated from the positions of ECs at the final time step of the ABM for
160 combinations of a and B parameters. The percentage of ABM-generated data points falling within
the 95% confidence interval of the Minkowski functionals for P3 retinas is plotted as a function of
parameter combinations for each of the experimental conditions (ECs & PCs, ECs only, or sparsely
seeded ECs. Data shown for the AREA (A), PERIMETER (B), and EULER CHARACTERISTIC (C) are absolute
percentages, while data for Cumulative Fit (D) is the sum of the former 3 (i.e. out of 300% rather than
100%). N = 10 ABM simulations per parameter combination, N =9 P3 retinal wings.
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with PC and EC, sparse EC, or EC only, and marginally better performance was seen in simulations with
only ECs (Figure 4.4B).

Sparsely populated EC networks performed modestly across all Minkowski functionals. For only
a few alpha and beta combinations did they outperform networks with both ECs and PCs, but for both
the AREA functional and EULER CHARACTERISTIC functional, sparsely populated EC networks clearly
performed better than more densely populated EC-only networks.

Finally, a cumulative performance score was generated by summing each of the Minkowski
functionals (Figures 4.4D and 4.5C). This score mirrors what is described above, with ABM simulations of
both ECs and PCs having the best overall performance, followed by sparsely populated EC simulations.
We did not find a parameter combination for the ABM simulations with only ECs that performed better

than the simulations with sparse ECs or both ECs and PCs.

Pericytes produce networks with greater branching and larger loops

The slope of the Minkowski functionals provides additional insight into network morphology. As shown
in an example analysis (Figure 4.5A,B), simulations with ECs and PCs have a more gradual rise in their
AREA functional as compared to other simulation types. Across all 160 parameter combinations,
simulations with ECs and PCs had a significantly smaller slope within the first 10 image dilations (ANOVA
p<0.01, average RMSE = 0.018, Figure 4.5D), which is characteristic of a network that, on the whole, has
fewer intercellular spaces and less tortuosity.

Similarly, the PERIMETER functional demonstrates a shallower slope in the example case for the
simulation with ECs and PCs (Figure 5A). This was, again, true across all parameter combinations, where
simulations having both ECs and PCs had a significantly less negative slope compared to all simulations
with only ECs (ANOVA p<0.01, RMSE = 9.98E-4, Figure 4.5E). A shallow slope for the PERIMETER functional

is associated with more simple structures, lacking the complexity associated with vessel tortuosity.

78 | Walpole



A Area Perimeter Euler Number
0.04
0.03 42"
0.02

0.01

0.00

.0
NUD KGO OA DI OO R OP PP PP PP

Dilation (R) Dilation (R) Dilation (R)
. EC& PC . ECOnly A Sparse EC Only P3 Retina 95% ClI

NS K6 0A DO GO R OD N PP NUD X604 D OGO R OD N PP

C Best Fit to Retinal
Minkowsky Functionals
g 150 -
[0}
=
© O
& & 100 -
5
g5
Ko} =
€ o 50
>
=2
0 =
i ¢ <L xv ¥
v ,@é’& S &° @
‘\ <</ (/e’ ((\\)
Q® R S
&
[l EC&PC [ ECOnly [ Sparse EC Only
E Perimeter
0.0000 -
-0.0005 -
@ -0.0010 o
o
(%]
-0.0015 - %
[ J
0.030 - -0.0020 - %
0.025 -0.0025
EC& PC ECOnly  Sparse EC Only EC & PC ECOnly  Sparse EC Only

FIGURE 4.5: AMB SIMULATIONS WITH PCS OUTPERFORM ALL OTHER SIMULATIONS FOR GENERATING EC
NETWORKS WITH GEOMETRIES SIMILAR TO THOSE FOUND IN P3 RETINAS.

Minkowski functionals for a single parameter combination (a =20, B =30, symbols) as compared to P3
retinas (shaded region) over a range of image dilation values (A). Binary images used for the Minkowski
functionals shown in A, clockwise from top left: exemplar P3 Retina immunohistochemical stained ECs,
ABM with ECs & PCs, ABM with sparsely populated ECs, ABM with only ECs (B). For all parameter
combinations, the total number of times each experimental condition has the best performance (e.g.
highest percent match to P3 Retinal 95% Cl) as individual Minkowski functionals or cumulatively (C).
Slopes for AREA and PERIMETER functions were significantly different (P<0.01) between all models (D and
E).
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Assigning an average slope value to the EULER CHARACTERISTIC functional was more challenging
due in part to the high variability in some datasets, exemplified by the EC-only simulations (Figure 4.5A).
This generated large residuals (average RMSE = 0.95 for the EULER CHARACTERISTIC functional) relative to
the observed data, rendering associated linear fits unreliable. Large negative slopes for the EULER
CHARACTERISTIC functional are indicative of high-density blind-ended loops, which was the trend for
simulations with only ECs. Small positive slopes, as seen in the EC and PC simulations, suggest the
presence of lacunae (vascular loops) of various sizes that gradually close as the image is dilated. Both of
these trends were observed in the example EULER CHARACTERISTIC functional graph (Figure 4.5A); however,
we were unable to identify any significant differences between ABMs with ECs only, sparse ECs, or PCs

and ECs.
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DISCUSSION

In this paper, our objective was to develop a novel ABM of developmental retinal angiogenesis in order
to test the hypothesis that pericytes can exert an indirect “buffering” effect on endothelial cells during
capillary sprouting. Our ABM of murine retinal angiogenesis focused on cellular behaviors at the
angiogenic front. Explicitly, we programmed receptor binding, intercellular communication via Notch1-
DLL4 pathways, and subsequent chemotaxis that can be modulated by the phenotype of the EC (e.g.
qguiescent ECs migrate at half the speed of tip cell ECs that pass the VEGFR2 activation threshold, B).
Additionally, we incorporated PCs that serve as buffers to intercellular signaling — they themselves exert
no direct effect on EC behavior, but they do limit the number of intercellular connections that ECs can
make by physically providing a barrier to movement. Subsequent formation of cellular networks and
geometric morphologies as quantitated by Minkowski functionals occur purely as a result of these rules
without additional input.

Our study suggests that the mere presence of PCs as buffers to EC signaling and movement
more closely recapitulates the actual geometry of the angiogenic front than ABM simulations with only
ECs (either densely or sparsely populated). Importantly, this does not preclude direct effects of PCs on
EC function and signaling — to the contrary, much has been written about the nuanced role that PCs play
in maintaining EC function throughout the body (Diaz-Flores, Gutiérrez et al. 1991, Ejaz, Chekarova et al.
2008, Scheef, Sorenson et al. 2009, Armulik, Genové et al. 2011, Ribatti, Nico et al. 2011, Simonavicius,
Ashenden et al. 2012, Kelly-Goss, Sweat et al. 2013). This ABM asserts a more basic question: can PCs
play a role in EC network signaling through their presence alone? Furthermore, is this a function of PCs
or simply a feature of vascular networks with fewer ECs? Indeed, our results support a role for PCs in
supporting EC network formation that cannot be achieved simply by reducing the number of total ECs.

Our unbiased analysis using Minkowski functionals revealed that the microvascular network

architecture of P3 retinas and ABM simulations with ECs and PCs agrees with our understanding of
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vessel networks at the angiogenic front. As described by the slopes of the AREA and PERIMETER functionals
(Figures 5D & 5E), these simulated vessel networks were characterized by having many branches and
asymmetrically sized lacunae. Conversely, networks simulated by the EC-only ABM were thicker, more
tortuous, and had more blind-ended branches. This description is consistent with the observed
phenotype of pericyte loss in the retina, which is characterized by poorly formed vascular networks
(Motiejunaite and Kazlauskas 2008, Mendel, Clabough et al. 2013, Wu, Fernandez-Loaiza et al. 2013,
Hartnett 2015).

Simonavicius et al. have demonstrated that knockout of endosialin (CD248) in PCs leads to a
defect in vascular regression and pruning despite normal recruitment to the EC network in the mouse
retina (Simonavicius, Ashenden et al. 2012). Their study suggested that PC-derived endosialin binding to
EC-generated (or EC-modified) basement membrane modulated VEGF binding to VEGFR2 — loss of the
pathway promoted increased vessel density and loss of normal EC apoptosis during vessel maturation.
Taken in context with our ABM findings, these studies suggests that the interplay between ECs and PCs
during vascular development in the context of Notch1-DLL4 signaling may in fact be more important
than previously thought.

That PCs exert no direct effects on EC signaling was a major assumption of our model. Pedrosa
et al. have recently proposed a mechanism by which perivascular cells (PCs and vascular smooth muscle
cells) directly interact with the Notch1 signaling axis of developing EC networks, although this was
performed in skin wound healing assays, not in the developing retina (Pedrosa, Trindade et al. 2015).
Specifically, overexpression of DLL4 led to an increase in PC coverage, decrease in vascular density, and
a decrease in vessel leakage as measure by dye extravasation into the extracellular space. Additionally,
we simplified EC function by only including signaling via VEGFR and Notch1-DLL4 pathways. The
propagation of EC signaling at a network level through Notch1-DLL4 pathways has been described

previously (Hainaud, Contreres et al. 2006, Hellstrom, Phng et al. 2007, Bentley, Gerhardt et al. 2008,
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Benedito, Roca et al. 2009). Clearly, Notch1 signaling plays an important role in patterning the
developing retinal vasculature. Several other key signaling pathways are implicated in retinal vascular
development, including Notch4-EphrinB2 (Hainaud, Contreres et al. 2006) and the bone morphogenic
protein family (BMP9 and BMP10) (Ricard, Ciais et al. 2012). However, given the current emphasis on
VEGF and downstream signaling in treatment for proliferative diabetic retinopathy (Hammes, Feng et al.
2011, Bandello, Lattanzio et al. 2013, Bressler, Qin et al. 2013), we felt it prudent to focus on VEGF and
Notch signaling. In our ABM, we also simplify the behaviors governing cell-cell contacts by including a
rule that states that ECs and PCs must attempt to maintain contact with one another. Notably, this does
not allow for the dynamics of EC cadherin expression that has recently been suggested as a mechanism
for EC shuffling along angiogenic stalks (Bentley, Franco et al. 2014). Also, the ABM simulations all
occurred on a planar surface in 2D — however, given the planar nature of the developing retinal
vasculature (particularly at P3 when penetrating branches are rare) (Milde, Lauw et al. 2013), we feel
that this and the preceding assumptions are valid for the present study.

The assembly of network structures from heterogeneous components is an ongoing area of
intensive research across a broad array of disciplines. Indeed, Bentley et al. describe self-assembling
systems ranging from robotics to vascular biology (Bentley, Philippides et al. 2014). In ABMs, the notion
of self-assembly is commonly referred to as “emergent behavior” and describes the observation of a
behavior that was not explicitly programmed into the model (Thorne, Hayenga et al. 2011, Borlin, Lang
et al. 2014). This is a strength of so-called “bottom-up” approaches to modeling biological phenomena,
allowing for a minimal rule set to generate a larger cohort of behaviors (Walpole, Papin et al. 2013).This
work represents the first ABM specifically built to understand the interplay of ECs and PCs in the
developing retina. Despite the many ocular diseases that are tied to the health of PCs, little has been
done to computationally model the direct impact of perivascular cells on endothelial cells in retinal

vascular networks undergoing angiogenesis. Our ABM simulations suggest that PCs can exert a direct
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effect on EC network formation without explicitly modifying EC behavior through signaling pathways.
This possible buffering effect should be taken into account in future studies of EC-PC interactions,

particularly those involving active angiogenesis.
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CHAPTER 5;
DISCUSSION AND FUTURE DIRECTIONS

SYNTHESIS

The unifying theme of this body of work is applying computational modeling techniques to study the
development of dynamic and geometrically heterogeneous multicellular networks. Specifically, |
leverage ABM techniques to simulate angiogenesis in vitro and in vivo with a focus on understanding
intercellular signaling through the VEGF and the Notch1-DLL4 axis. A key strength of ABMs is their
capacity for representing and studying emergent phenomena — rather than explicitly programing
network-level outcomes, | am able to instantiate rules that govern individual cells’ behaviors and
observe how those cells act in consort to form multicellular networks.

This work began with the presentation of a straightforward question: what governs the
patterning of vascular networks? While a comprehensive answer remains elusive, | have begun the
process of teasing apart the process using a bottom-up approach. By adding progressively more
complicated components, | have built a pair of ABM simulation platforms that begin to address aspects
of my original question. First, the Notch1-DLL4 and VEGF-VEGFR signaling axes sufficiently capture
endothelial cell communication to inform spatially accurate predictions of tip cell initiations in vitro
(Chapter 3). Certainly other signaling pathways are involved in the fine-tuning and regulation of vascular
morphogenesis — yet a model accounting for these two interconnected canonical pathways remains
uniquely sufficient for capturing this particular endothelial cell behavior. Second, in an ABM of retinal
vascular development, | tested the hypothesis that pericytes affect capillary sprouting by serving as
signaling buffers to endothelial intercellular communication (Chapter 4). Simulations lacking pericytes

generated less accurate vessel geometries as defined by unbiased Minkowski functional analysis. This
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guantitative approach to geometric analysis has allowed for direct comparison between physiologic
images of P3 retinal angiogenesis that | obtained experimentally and ABM-derived vascular networks.

My simulations support a hypothesis that pericytes, through interupting endothelial connections,
buffer intercellular signaling and reinforce Notch1-DLL4 signal distribution to generate properly formed
vascular networks in the developing retina. Note that this does not preclude other mechanisms of
pericyte-mediated modulation of Notch1-DLL4 signaling in endothelial cells. Indeed, others have
previously shown that pericytes can modulate Notch1-DLL4 signaling in endothelial cells both directly
through intercellular connections (Pedrosa, Trindade et al. 2015) and indirectly through modifications of
the basement membrane (Simonavicius, Ashenden et al. 2012). A logical next step will be to incorporate
pericyte modulation of endothelial cell behavior through these mechanisms and see how they compare
to the more simplified hypothesis that | chose to test.

The embryoid body ABM in Chapter 3 informed the development of the retinal ABM in Chapter
4 by supporting the hypothesis that rule-based simulations better capture endothelial sprout initiation
behavior as compared to purely stochastic Monte Carlo simulations. Inclusion of Notch1-DLL4 signaling
proved integral to predicting the correct endothelial sprout initiation locations, necessitating its
inclusion in further studies. Indeed, as shown in Figure 5.2, Notch1-DLL4 activation patterns in the
retinal ABM are more consistent with observed expression data (Hofmann and Luisa Iruela-Arispe 2007)
when pericytes are included in the model (high DLL4 expression at the leading edge with higher Notchl
expression in neighboring endothelial cells). Further, exploration of the parameter space using a Genetic
Algorithm approach (Figure 3.5) revealed sensitivity to both the Notch transfer coefficient (a) and the
VEGF activation threshold (B). Informed by these results, the retinal ABM output was not only analyzed
as a function of pericyte coverage, but also as a function of these tunable parameters (a and B, Figure

4.4).
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Importantly, the embryoid body is generated from mouse embryonic stem cells that
spontaneously differentiate, however only endothelial cells were observed in this transgenic mouse
system because they expressed GFP under control of the lineage-specific marker PECAM (Figure
3.1B)(Kearney and Bautch 2003). The remaining space is, in fact, a milieu of other cell types, including
pericytes (Magnusson, Looman et al. 2007), which could not be identified using dynamic confocal
microscopy as they did not express a fluorscent reporter protein. Nonetheless, the effects of other cell
types on sprout initiation (e.g. produced by heterotypic intercellular interactions with endothelial cells)
may be implicitly accounted for by our parameterization of the Notch1 transfer coefficient (a). As such,
the effect of pericytes on sprout initiation was not explicitly studied in Chapter 3, but their effects may
still be partially captured by parameter estimation that was conducted for the ABM of the EB. However,
this still may not account for all the effects of pericytes on sprouting in the EB. For example, it is
hypothesized that pericytes must be displaced for underlying endothelial cells to initiate sprouting
(Potente, Gerhardt et al. 2011) — if the locations of pericytes in the embryoid body movies could be
identified and included in the ABM, it may have limited the number of locations where endothelial cells
could sprout, thereby reducing false positive frequency.

This is a noteworthy distinction when considering the ABM of retinal angiogenesis presented in
Chapter 4. Rather than implicitly modeling the effects of other cell types, we explicitly include pericytes
and astrocytes as further constraints on endothelial cell migration and subsequent network formation.
Including these additional rules did, in fact, produce a more accurate geometric representation of the
retinal vasculature and allowed us to directly probe heterotypic intercellular interactions. As suggested
by Chapter 3, including pericytes in the retinal ABM simulation improved model performance as
compared to simulations without pericytes, and this allowed us to posit a novel hypothesis for the role

of pericytes as signaling buffers that interrupt endothelial-endothelial intercellular connections.
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In developing these models a major change to the ABM visualization and represenation of cell
types was performed (compare Figures 3.1B and 4.2). This adaptation was necessary to accommodate
the types of questions each ABM sought to study. The embryoid body ABM focused on localizing
sprouting initiation events, allowing for reshaping of the endothelial cell network without broad cell
migration event (e.g. it did not generate endothelial stalks). To allow for a more dynamic cell migration
simulation the retinal ABM was developed using a grid-based cellular geometry; while this limited the
resolution of cell shape and discretized the positions cells could occupy it also allowed for improved
control of cell migration behaviors. This shift in model architecture improved the ability to simulate

In summary, | have reviewed multiscale computational modeling across biological systems and
presented two new ABMs of angiogenesis and vascular pattern development. In addition to suggesting a
new testable hypothesis for how pericytes might influence endothelial cells during angiogenic sprouting,
| have also developed new computational modeling techniques that have advanced the field of agent-
based modeling. Specifically, | have: (1) developed new approaches for specifying ABMs based on
images of vascular networks from both in vitro and in vivo experiments; (2) employed optimization
strategies based on supervised and un-supervised methods; (3) simultaneously validated ABM
predictions against experimental data and by comparing stochastic (e.g. Monte Carlo) and rule-based
modeling approaches comparison to other modeling approaches; (4) employed functional analysis to
directly compare ABM-generated cellular networks with my own library of developing retinal vascular
networks (e.g. Minkowski Analysis); and (5) merged stochastic mass action kinetics of receptor binding
with ABM spatial modeling (Gillespie algorithm for VEGFR binding). These efforts are a beginning —a
series of steps towards a more multiscale understanding of vascular network development that spans

molecular signaling to cellular behaviors to tissue-scale vascular network adaptations.
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CONTRIBUTIONS AND EXTENDED APPLICATIONS

Spatially accurate model of endothelial tip cell behavior

| have generated an ABM that accurately predicts the frequency and location of endothelial tip cell
extension events in the embryoid body model system. Previous work in this field has been limited to
studying tip cell behaviors of smaller or less complicated (i.e. linear) networks of endothelial cells
(Bentley, Gerhardt et al. 2008) or to simulations without explicit Notch1-DLL4 signaling (Kleinstreuer, Dix
et al. 2013). My work extends this field by allowing for more complicated, physiologically mimetic
endothelial cell geometries to be modeled and evaluated for tip cell behavior. Additionally, my model
has the potential to be extended by incorporating additional signaling pathways or improving the
resolution of current VEGF/VEGFR binding kinetics. Such additions would allow the ABM to potentially
model more complicated tip cell behaviors, such as formation of endothelial stalks and shuffling of
endothelial cells within the developing vascular network (Bentley, Mariggi et al. 2009, Bentley, Franco et

al. 2014).

Directly matching biological data and using stochastic surrogates for validation

A key innovation of the work in Chapter 3 is the marriage of high-resolution image sequences with an
ABM. Through our collaboration with the Bautch laboratory (UNC Chapel Hill, Chapel Hill, NC), | was
given access to time course data that was invaluable for generating my first ABM of tip cell behavior.
Not only was this data necessary for designing accurate 2D embryoid body vessel networks, it also
allowed for input-output matching — given a time course of data and the associated network of
endothelial cells | could directly test the ability of the ABM to predict tip cell behavior. This method of
matching imaging data to spatial modeling should act as a paradigm for future work — the strength of my

ABM simulation was greatly enhanced by having high quality images and analysis to provide validation.
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In my review of multiscale models, | discuss in silico perturbations and the “future” issues
regarding parameter space exploration in models of complex systems that closely resemble their
biological counterparts. This very issue became evident in my own work and required the generation of
a unique performance index for quantifying the accuracy of ABM outputs. In seeking to evaluate the
accuracy of my ABM | leveraged stochastic Monte Carlo methods to provide a baseline for performance.
Thus, validation of my ABM required multiple approaches — spatiotemporal data and stochastic

simulations were combined to demonstrate the accuracy of simulated tip cell behavior.

First ABM of retinal angiogenesis incorporating pericytes

Many computational models of vascular development have been developed — some dealing with very
specific physiology or pathophysiology (Plank, Sleeman et al. 2004, Tawhai, Burrowes et al. 2006, Carlier,
Geris et al. 2012, Stapor, Azimi et al. 2012, Kleinstreuer, Dix et al. 2013), and others covering more broad
endothelial cell biology (Mac Gabhann, Yang et al. 2005, Das, Lauffenburger et al. 2010, Hashambhoy,
Chappell et al. 2011, Bentley, Franco et al. 2014). To date, no ABM of retinal angiogenesis has been
developed incorporating pericytes or any other cell types that interact with endothelial cells.
Furthermore, few ABM simulations actually incorporate perivascular cells of any type when studying
endothelial cell behaviors. Through the development of this ABM of retinal angiogenesis, | have begun

to explore the interplay between endothelial cell signaling and pericyte coverage.

Quantitative comparisons between ABM and retinal vascular networks
Several quantitative methods have been employed to describe vascular networks — vascular length
density, tortuosity, vessel diameter, etc. (Seaman, Peirce et al. 2011). These methods were developed

specifically for studying labeled blood vessels and provide syntax for discussing the geometric qualities
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of vascular networks across disciplines. However, these techniques are not optimized for high
throughput image processing or analyzing general geometric properties of images.

| have employed Minkowski functional analysis to compare the geometric qualities of thousands
of ABM-generated endothelial networks with those of P3 murine retinas. This method uses sequential
image dilation to generate a series of Minkowski functional curves — area, perimeter, and Euler
characteristic. These three parameters in ensemble quantitatively describe the features of an image and
have been previously used to stage retinal vascular development (Milde, Lauw et al. 2013) as well as to
classify small breast lesions on MRI (Nagarajan, Huber et al. 2013).

Using the Minkowski functionals, | demonstrated that ABM simulations containing pericytes
more closely match the geometric properties of P3 retinal vascular networks than simulations
containing only endothelial cells. As a control, to test if endothelial density was responsible for this
result (simulations with or without pericytes had the same total number of cells, therefore EC-only
simulations contained a higher density of endothelial cells), | examined networks that were sparsely
populated with endothelial cells (i.e. same density as simulations with pericytes). While reducing the
endothelial density did improve the accuracy of simulations, it still was not as accurate as simulations
containing pericytes.

This analysis would have been computationally intractable to perform on an image-by-image
basis as many studies of vascular networks are performed. Use of the Minkowski functionals proved to
be an invaluable technique — one that should continue to gain in popularity as others become aware of

the utility of morphological image analysis algorithms.
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Pericytes as buffers for endothelial Notch1-DLL4 signaling

A novel hypothesis generated by the ABM presented in Chapter 4 is that pericytes may provide intrinsic
signal buffering in developing endothelial networks. As discussed, my ABM did not include any direct
signaling between endothelial cells and pericytes — nevertheless, simulations with pericytes generated
endothelial cell networks with geometric parameters most closely matching those of P3 retinal vascular
networks. To my knowledge this is an untested hypothesis and may represent an alternative method for
pericyte-modulation of endothelial cell signaling. This is an exciting theory that will require further

investigation both experimentally and computationally.
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FUTURE DIRECTIONS

Extending ABMs to study additional stages of angiogenic sprouting

A clear segue from the work presented in Chapter 3 would be developing an ABM capable of studying
tip cell behavior subsequent to sprout initiation. Specifically, sprout guidance, extension, anastomosis
(or retraction), and lumenization are key stages in sprouting angiogenesis that are also typically studied
in isolation (Chappell et al., Flt-1 (VEGFR-1) Coordinates Discrete Stages of Blood Vessel Formation, in
review). A comprehensive model of sprouting angiogenesis would account for all stages, following the

initiation of tip extension through to the final fate of that particular endothelial branch.

Incorporating true multiscale simulations of angiogenesis

As described in my review of multiscale modeling, different modeling strategies are better suited to
simulating different scales of biology. An ongoing challenge in multicellular ABM simulations is the
handling of subcellular processes — mass action binding kinetics, intracellular signaling, etc. This is
partially due to computational limitations, as modeling the motion of all the individual molecules in the
interstitial space of a tissue is both unrealistic and potentially uninformative. Rather, a method that
performs these subcellular calculations when necessary and relies on lower resolution (spatial or
temporal) calculations for relatively static regions would be ideal.

A solution would be a spatiotemporal adaptive mesh technique that uses high resolution
modeling methods in regions where rapid dynamics are important while using computationally cost-
effective methods in regions with slower dynamics. Zheng et al. have explored using a finite element
adaptive mesh in a simulation of tumor progression — higher resolution calculations were made at the
tips of angiogenic sprouts while quiescent regions were updated less frequently and with less spatial
resolution (Zheng, Wise et al. 2005). This technique was accomplished based on a theoretical energy

minimization — regions were modeled as having a weighted “tension” function based on surface

Walpole | 93



characteristics to define a spring energy constant. A region with high tension could be broken into
smaller regions to minimize the system energy.

Admittedly, applying such a method would be a very large undertaking and would require
collaboration with investigators having experience in adaptive mesh methods (or are at least familiar
with the associated mathematical methods). | have previously attempted a first pass at incorporating
multiscale modeling by combining my ABM of tip cell selection (Chapter 3) with a partial differential
equations (PDE) model of VEGF diffusion and receptor binding developed by Hashambhoy et al. for
studying local soluble VEGF gradient formation (Hashambhoy, Chappell et al. 2011). Using endothelial
cell positions defined by the ABM, the PDE model generated high-resolution maps of VEGFR2 activation
on the endothelial cell surface. These receptor activation states were then translated into changes in
DLL4 expression and subsequent Notch1 activation to provide transcriptional regulation and
chemotactic cues.

This initial test proved promising but required a great deal of hands-on observation and file
handling to generate an closed-loop multiscale model of sprouting angiogenesis (e.g. a Type 2 Multiscale
Model as defined by Figure 2.2). More recently, we have used this connection to generate a
monodirectional multiscale model (e.g. a Type 1 Multiscale Model as defined by Figure 2.2) whereby
endothelial cell geometries were generated by the ABM and fed into the PDE model for exploration of
VEGF binding to VEGFR2 in multicellular networks with and without expression of soluble VEGFR1. This
data is as yet unpublished, but will be appearing in a Chappell et al. publication entitled “Flt-1 (VEGFR-1)

Coordinates Discrete Stages of Blood Vessel Formation” (Figure 5.1).
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FIGURE 5.1: MULTISCALE MODELING USING ABM OF TIP CELL SELECTION FOR ENDOTHELIAL CELL PLACEMENT.

Figure adapted from Chappell JC et al. Flt-1 (VEGFR-1) Coordinates Discrete Stages of Blood Vessel
Formation, in review. Endothelial cells were mapped from embryoid body images (Experiment panels i, ii,
v, and vi) using the techniques outlined in Chapter 3. These ABM-generated endothelial positions were
then used by F. Mac Gabhann to define boundary conditions for a PDE reaction diffusion model of VEGF
receptor binding. A gradient of VEGFR2 activation (phopho-Flk1) across the endothelial cell surface
could then be generated with and without soluble VEGFR1 production (flt-1). These data highlight

increased VEGFR2 activation in the interior of closed loops (arrows, panel viii) that may contribute to
vessel collapse in the fIt'/'embryoid body model.

| hope to continue this work through ongoing collaboration and exploration of multiscale
modeling techniques. A combined approach that strategically uses subcellular simulations to inform

multicellular ABMs would be a truly unique contribution to the field of vascular biology.

Exploring the effects of pericytes on Notch1-DLL4 signaling in endothelial cells

In Chapter 4, | presented an ABM that suggests the novel hypothesis that pericytes limit the number of
endothelial cell-endothelial cell adhesions, interfering with Notch1-DLL4 signaling, and that this is the
mechanism for improved ABM accuracy versus simulations with only endothelial cells. These ABM
simulations set the stage for interesting follow-up work that would further test the hypothesis that

pericytes affect EC-EC signaling through a signal “buffering” mechanism. Specifically, a study of signal
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propagation is a clear next step to determine if the distribution of Notch1 activity in endothelial cell
networks is affected by the presence or absence of pericyte coverage. Figure 5.2 shows images from the
simulations presented in Chapter 4 that correspond to VEGF, VEGF-VEGFR2, Notch1, and DLL4 values
distributed throughout the endothelial cell networks. Note that in the simulation with pericytes there is
a clear increase of DLL4 along extending ECs (arrowhead, Figure 5.2C). A neighboring cell has relatively
higher Notch1 signal (double arrow, Figure 5.2B) compared to nearby cells, as would be expected based
on observations of Notch1-DLL4 patterning in the retina. Conversely, an example EC-only network
demonstrates very high Notch1 activity at the leading edge (Figure 5.2F), which is not typical patterning
in the developing retina. Further investigation of the patterns of expression and/or
phosphorylation/activation of these molecules as a function of pericyte coverage would more directly

test my proposed buffering hypothesis.

VEGF Notchl DLL4 VEGF-VEGFR2

EC+ PC

EC Only

FIGURE 5.2: SAMPLE HEATMAPS OF SIGNALING MOLECULES GENERATED BY THE RETINAL ANGIOGENESIS ABM.
Distribution of intercellular signal intensity, VEGF concentration, and VEGF-VEGFR2 receptor ligand
complexes for ECs in simulations with (top) and without (bottom) pericytes. Levels of signaling
molecules are shown on a relative scale for (A,E) VEGF, (B,F) Notch1, (C,G) DLL4, and (D,H) VEGF-VEGFR2.
Endothelial cells are masked in black in (A,E) and outlined in white in (B,C,D,F,G,H). Arrowhead points to
an EC with high VEGF-VEGFR2 levels (relative to neighboring cells) and a correspondingly high relative
DLL4 level. The neighboring EC (double arrowhead) exhibits increased relative Notch1 levels as a result.

96 | Walpole



As this presents a key question in angiogenesis, | have envisioned a series of experiments to
study these phenomena. A simple first step would be to evaluate the pattern of Notch1 activation and
DLL4 expression in the developing retina with and without pericyte coverage using
immunohistochemical staining and confocal microscopy. Typically, Notch1 activity is highest in the
angiogenic front and is often seen at vessel bifurcations whereas DLL4 expression is more distributed,
but its expression is highest in tip cells and stalk cells at the angiogenic front (Hofmann and Luisa lruela-
Arispe 2007). Disruption of pericyte recruitment to blood vessels is a hallmark of the endothelial-specific
KO of platelet-derived growth factor-B (PDGFB) (Bjarnegard, Enge et al. 2004). Therefore, a study of P3
retinas from the EC-PDGF KO mouse may reveal a redistribution of Notch1 and DLL4 patterning not
previously described. For example, retinas lacking pericyte coverage and immunohistochemically stained
for DLL4 might demonstrate increased overall DLL4 expression at the angiogenic front with subsequent
increases in Notch1. Alternatively, loss of pericyte buffering may lead to overall diminution of DLL4 and
Notchl expression as such a highly connected endothelial network may be unable to properly establish
and reinforce a stable signaling pattern.

Results from such a study would be difficult to attribute purely to a signal buffering mechanism,
however they would support the hypothesis for pericyte-mediated modulation of Notch1-DLL4 signaling
in endothelial cell networks. For example, completely ablating the pericyte population might affect
basement membrane composition and indirectly alter endothelial network geometry, independent of a
direct effect on the number of endothelial cell intercellular adhesions. Simonavicius et al. have
demonstrated that pericyte-derived endosialin interacts with endothelial-derived basement membrane
components to maintain normal vascular pruning — loss of endosialin resulted in increased vessel
density but not a reduction of pericyte recruitment (Simonavicius, Ashenden et al. 2012). Furthermore,

pericytes may also directly interact with endothelial Notch1-DLL4 signaling — Pedrosa et al. have shown
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that DLL4 may in fact play a role in properly recruiting pericyte to the endothelium (Pedrosa, Trindade et
al. 2015).

Nevertheless, a thorough exploration of network-level Notch1-DLL4 signal transduction patterns
as a function of pericyte coverage have not yet been evaluated. Naturally, incorporation of these
signaling pathways into the existing ABM simulation of retinal angiogenesis would provide an alternative
means for generating a hypothesis that combines active and passive pericyte modulation of Notch1-

DLL4 signaling.
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CONCLUSION

A seemingly straightforward question — what governs the patterning of vascular networks? At least, |
believed it to be a simple question when | was staring at blood vessels under a microscope. From there |
have spun a tangled collection of experiments and computational methods in an effort to better
understand a fundamental biological process while contributing to the ever-growing body of vascular
biology knowledge.

| have demonstrated that ABM techniques can accurately simulate endothelial cell behavior
during angiogenesis. Further, | have used ABM techniques to posit a new and unique hypothesis for the
role of pericytes in Notch1-DLL4 signaling during retinal vascular development. Put simply — the
formation of blood vessel networks is much greater than the sum of each individual cell. The
connectivity of endothelial cells and pericytes (and likely leukocytes and other mural cells) is truly
paramount to establishing a healthy vasculature. As a result of my dissertation work, computational
methods that study the emergent properties of developing vascular networks can better account for the
multiscale connectivity between molecular mechanisms, cellular behaviors, and network-level
geometric changes. These tools are now better poised to uncover new mechanistic hypotheses that
could inform future experiments that may lead to medical advances in the treatment of proliferative
vascular pathologies.

This process of self-assembly — a term used across multiple fields of research — continues to
baffle, intrigue, and excite me. Endothelial cells have the capacity to generate complicated structures of
vascular networks with the support of perivascular cells in a context-dependent manner. Bowman’s
capsule of the kidney, hepatic sinusoids, the retinal vasculature, and many other tissues — all of these
specialized vascular networks are derived from the same component parts and are seemingly unrelated
beyond the most basic comparison. To me, this typifies the beauty and mystery of biology. | hope that

my efforts to elucidate — in a quantitative and mechanistic manner — a small part of this marvelous
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machinery will contribute to a greater understanding of the fundamentals of tissue development at a

cellular level.
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APPENDIX |
REPLACING THE BAR GRAPH

Acknowledgements: William Green*, Elizabeth O'Brienf, Angela Jividen*,
Jeana Ripplef, Shayn M. Peirce’

*University of Virginia, Department of Biomedical Engineering
fUniversity of Virginia, School of Architecture

Data display is an exercise in pragmatism. An author must balance the clarity of a message with its
breadth of information in an effort to convey an idea or thought to an observer with high fidelity.
Sacrificing either clarity or breadth can result in misinterpretation or misunderstanding, both of which
undermine communication of technical material. Whether explicitly or implicitly, authors who draft
graphs or figures of data display must engage in this editing process when preparing their work for
presentation. Sometimes this drafting process results in becoming confounded by their own data when
they are unable to share their observations with peers because they lack the tools to do so.

Through collaboration with the School of Architecture and support from the Jefferson Trust Big
Data grant, | explored alternative methods for displaying multiparametric data sets generated by the
ABM presented in Chapter 3. Traditional 2D data display methods proved unwieldy for presenting and
analyzing the large datasets generated by performing multiparametric parameter space exploration —
the density of data was so great that any attempt to plot on a Cartesian coordinate plane resulted in

over plotting and over complexity (Figure 1.1).
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FIGURE |.1: CHALLENGES DISPLAYING BIG DATA SETS

A loss of dimensionality through parameter reduction can sometimes lead to a lack of hierarchy (A) or
an over simplification that lacks complexity (E). Conversely, attempting to display an entire dataset can
result in over plotting (B) or overly complex graphics (D). Finally, the order of axes in multiparametric
data is an important consideration as it may change the shape of data trends, revealing or concealing
important information (C).

Our collaboration generated a series of plotting alternatives based on a parallel coordinate
systems approach. Parameter values are plotted radially along a series of parallel axes — specific
parameter combinations are shown as lines crossing each axis at their respective values (Figure I.2A).
Outputs from a simulation (e.g. accuracy of a modeling prediction for a parameter combination) are
conveyed by the line weight or hue, thereby preserving the breadth of the dataset without over plotting
the information. The most recent versions of this display technique have been dubbed “Lightning Plots”
for their visual similarity to lighting strikes (Figure 1.2B).

A case study in data visualization is currently in preparation based on this collaboration. The
manuscript will include a review of data display methods and challenges (Figure 1.1) for large data sets as
well as introduce our specific Lightning Plot methodology. Further, A. Jividen and E. O’Brien have

produced an online resource for compiling methods of data display that can be found at

http://explico.virginia.edu. This website, Project Explico, will serve as a live version of the manuscript

that can be updated with additional data display methods and resources over time.
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FIGURE |.2: LIGHTNING PLOT DESIGN

Modified radial parallel coordinate phase space shown with lines connecting all possible parameter
combinations (A). Phase space with example Lightning Plot where line hue represents density of data (i.e.
how many times a parameter combination was tested) using a test dataset (B).
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APPENDIX I
SCIENCE NEWS FOR STUDENTS:
VIRTUAL WOUNDS: COMPUTERS PROBE HEALING

Acknowledgement: Naila Moreira
As part of an article reviewing the use of computational models in biology, | was interviewed by N.
Moreira (Science News for Students) to discuss how an ABM might be used to study wound healing. In
addition to providing a background of the immune process and how a prototypical skin abrasion might
heal, | constructed a simple ABM for students to explore the process on their own (Figure 11.1). By
manipulating parameters such as the bacterial proliferation rate, the user is able to observe the time
course of an immune response.

Under certain conditions (i.e. highly infectious bacteria, poor immune response) the infection
lingers and enters a steady state where the immune system is unable to properly clear the bacterial load,
as might be seen in an immunocompromised patient. Conversely, with a healthy immune response the
infection is cleared following a typical progression of neutrophil invasion followed by macrophage
recruitment. Between these two extremes (swift healing and latent infection) there are many other
system behaviors to be explored based on chosen parameter values. For example, the duration of
infection is highly dependent on initial bacterial load and proliferation rate.

This work has been published as: Moreira, Naila. “Virtual wounds: Computers probe healing.”

Science News for Students. The Society for Science and the Public. January 16, 2015.
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FIGURE I1.1 VIRTUAL WOUND MODEL

A snapshot of the interface of the Virtual Wound Model for students. The user can select the duration of
the simulation (one hour, one week, or until resolved), the initial bacterial load, the immune cell
infiltration rate, the proliferation rate of bacteria, and the effectiveness of either the macrophage or
neutrophil response. A visualization of the wound shows the various cell types interacting spatially,
while graphs plot the population size of each cell type and the amount of inflammatory debris (e.g.
necrotic tissue). This interface was designed for a primary school student to explore the fundamental
immune response to a skin abrasion.
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VIRTUAL WOUND MODEL NETLOGO CODE
globals
[

clock

generations ; a counter to keep track of the number of times the cells have
divided

number-of-cells ; a counter used to keep track of the number of total cells in
the world

Migration-Probability

Macrophage-Strength

Neutrophil-Homing-Range

ShowDebris
]
breed [bacteria bacterium] ; this is the sub-category of turtles that are
bacterial cells
breed [neutrophils neutrophil] ; this is the first wave of immunes cells, they
release anti-microbial cytokines and can also phagocytose bacteria
breed [macrophages macrophage] ; this is the second wave of immune cells, the

phagocytes that "clean up" debris and remove aged neutrophils

turtles-own [age] ; a counter to keep track of turtles age after dividing
(replaces "clock")
patches-own [

debris ; all dead cell become "debris" that must be removed to fully
heal the wound
wound ; only a subset of patches are in the "Wound" and this

represents where bacteria can enter from

]

to setup
_ clear-all-and-reset-ticks ; clear all
ask patch 0 0 [ask patches in-radius 15 [set wound 1 set pcolor red]]

if Neutrophil Response = "Low" [create-neutrophils ceiling (.1 * Immune-Cell-
Infiltration)]
if Neutrophil Response = "Normal" [create-neutrophils ceiling (1 * Immune-Cell-
Infiltration)]
if Neutrophil Response = "High" [create-neutrophils ceiling (2 * Immune-Cell-
Infiltration)]
ask neutrophils
[
setxy random-xcor random-ycor ; randomize turtle locations to locations
within the boundaries of the world
setxy pycor pxcor ; place the turtles on the center of each
patch
set shape "neutrophil" ; denote the shape of the turtle as an

bacteria cell shape
set age 1

]

set Migration-Probability 70
set Macrophage-Strength 3
set Neutrophil-Homing-Range 1
set ShowDebris true

end

to Run-Simulation
proliferate-bacteria
proliferate-neutrophils
proliferate-macrophages
migrate
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85

90

95

100

105

110

115

120

125

Leukocyte-Actions

if any? bacteria [

if Neutrophil Response = "Low" and ticks mod 3 = 0 [create-neutrophils ceiling (.1
* Immune-Cell-Infiltration) [setxy random-xcor random-ycor setxy pycor pxcor set shape
"neutrophil" set age 1]]

if Neutrophil Response = "Normal" [create-neutrophils ceiling (1 * Immune-Cell-
Infiltration)[setxy random-xcor random-ycor setxy pycor pxcor set shape "neutrophil"
set age 1]]

if Neutrophil Response = "High" [create-neutrophils ceiling (2 * Immune-Cell-
Infiltration) [setxy random-xcor random-ycor setxy pycor pxcor set shape "neutrophil"
set age 1]]

]

if any? patches with [debris > 0 and ticks > 24] [

if Macrophage Response = "Low" and ticks mod 3 = 0 [create-macrophages ceiling (.1
* Immune-Cell-Infiltration) [setxy random-xcor random-ycor setxy pycor pxcor set shape
"macrophage" set age 1]]

if Macrophage Response = "Normal" [create-macrophages ceiling (1 * Immune-Cell-
Infiltration)[setxy random-xcor random-ycor setxy pycor pxcor set shape "macrophage"
set age 1]]

if Macrophage Response = "High" [create-macrophages ceiling (2 * Immune-Cell-
Infiltration) [setxy random-xcor random-ycor setxy pycor pxcor set shape "macrophage"
set age 1]]

]

ifelse ShowDebris ;set patches to report debris by
color

[ask patches with [wound = 1 and debris > 0][set pcolor scale-color yellow debris 0
511 ;scale patch color based on amount of debris

[ask patches [set pcolor black]]

ask patches with [wound = 1 and debris = 0][set pcolor red] ;reset patch color to
red or black based on previous wound state

ask patches with [wound = 0 and debris = 0][set pcolor black]

ask neutrophils with [age > 48][if 100 * (age / 96) > random 100 [die ask patch-here
[set debris debris + 1]]]

ask macrophages with [age > 96][if 100 * (age / 192) > random 100 [die]]

ask patches [if debris < 0 [set debris 0]]

ask turtles [set age age + 1]

set number-of-cells count bacteria ; this counts the total number of
bacteria cells, which is shown in the counter window below the main world.

set clock clock + 1

tick

end

to infect
ask patch 0 0 [
ask n-of Initial-Bacteria patches in-radius 15[
sprout 1 ; create the number of initial bacteria as designated by the
slider on the interface tab

[

set breed bacteria ; denote the 'breed' of the turtle as an
"bacteria" cell
set shape "bacteria" ; denote the shape of the turtle as an

bacteria cell shape
set age random prolif-rate

]
]
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130 end

to proliferate-bacteria ; this sub-routine simulates cell proliferation
without any contact inhibition [
ask bacteria [

135 if age mod prolif-rate = 0 and count bacteria-on neighbors < 8 ;
cell division happens for every cell at the same time (i.e. clock tick) according to
the 'prolif-rate' set on the interface tab. See 'proliferate' sub-routine below.

[
hatch 1 [
140 let attempted-moves 0
while [any? other bacteria-here and attempted-moves < 16]

[

if not any? neighbors with [wound = 1 and not any? bacteria-here][die]

move-to one-of neighbors with [wound = 1 and not any? bacteria-here]
145 set attempted-moves attempted-moves + 1]

]
]
]
150 end
to proliferate-neutrophils ; this procedure simulates cell

proliferation with contact inhibition for neutrophils
ask neutrophils [
155 if age mod 6 = 0 and age < 48 and count neutrophils-on neighbors = 0
[
hatch 1 [
let attempted-moves 0
while [any? other neutrophils-here and attempted-moves < 16]
160 [
move-to one-of neighbors with [not any? neutrophils-here]
set attempted-moves attempted-moves + 1]

165 ]
1

end

170 to proliferate-macrophages ; this procedure simulates cell
proliferation with contact inhibition for macrophages
ask macrophages [
if age mod 15 = 0 and age < 48 and count macrophages-on neighbors = 0
[

175 hatch 1 [

let attempted-moves 0

while [any? other macrophages-here and attempted-moves < 16]

[

move-to one-of neighbors with [not any? macrophages-here]

180 set attempted-moves attempted-moves + 1]

]
185

end

to migrate
if random 100 <= migration-probability ; migration is probabalistic based
190 on a slider value
[

ask bacteria

[
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if any? neighbors with [not any? bacteria-here and wound = 1] ;
195 migration only occurs if there is at least one empty neighboring patch
[
move-to one-of neighbors with [not any? bacteria-here] ; migrate to one of the
8 neighboring patches without a cell in it already
1
200 ]

]

ask neutrophils ;neutrophils move towards bacteria in their homine range, or to a
random neighboring patch

205 [
ifelse any? bacteria in-radius Neutrophil-Homing-Range [
face min-one-of bacteria [distance myself]
fd 1
]
210 [move-to one-of neighbors]

]

ask macrophages
[
215 ifelse any? bacteria-on neighbors or any? neighbors with [debris > 0]
[move-to one-of neighbors with [any? bacteria-here or debris > 0]]
[move-to one-of neighbors]

]

end
220
to Leukocyte-Actions
ask neutrophils [if any? bacteria-on patch-here
[
ask patch-here [set debris debris + (count bacteria-here)]
225 ask bacteria-on patch-here [die]
]
]
230 ask macrophages [if any? bacteria-on patch-here
[ask bacteria-on patch-here [die]]
if [debris] of patch-here > 0
[ask patch-here [set debris debris - Macrophage-Strength]]
]
235

end
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APPENDIX Il

NETLOGO CODE FOR EMBRYOID BODY SIMULATIONS

[leader leaders]
[follower followers]
[nucleus nuclei]
[tip-cell tip-cells]

globals [InitialConditionsFile counter location x location_y my-ID move-OK? start x
start_y mitosis-counter recording ESCAPE? DIRECTORY

basal-sVEGFR1-Production basal-mVEGFR1-Production basal-VEGFR2-Production basal-
dll4-production basal-notch-activity SVEGFR1-EC-Production mVEGFR1-EC-Production

kNotch kVEGFR]
turtles-own [cell-ID pulling-force leader-state age VEGFR2 polarity VEGFR2-activity
mVEGFR1l-activity NOTCH-activity NOTCH-activity-rate sVEGFR1 Dll4-activity]
nucleus-own [NOTCH-input NOTCH-production NOTCH-production-rate DLR4-production
VEGFR2-production mVEGFRl-production sVEGFR1l-production Dll4-production DLL4-
production-rate]

links-

own [link-ID]

patches-own [VEGF SVEGFR trueSproutLocation]
undirected-link-breed [membrane membranes]
undirected-link-breed [cell-to-cell cell-to-cells]
directed-link-breed [cyto cytos]

cell-to-cell-own [NOTCH]

to RESET
clear-all
reset-ticks
file-close-all

end

to Setup

if not Use-Current-Directory? [set-current-directory user-directory]

set

set

recording false

InitialConditionsFile "WT1llQlworld.csv"

Make-Cell

let
set
set
set
set
set

EC-Surface-Area 962E-8 ;cm”2, from Adamson RH 1993
SVEGFR1-EC-Production 2.8E-10 ;nmol cm”-2 s”-1 Hashambhoy 2011
mVEGFR1-EC-Production 2.8E-10 ;nmol cm”-2 s”-1 Hashambhoy 2011
basal-sVEGFR1-Production EC-Surface-Area * sVEGFR1-EC-Production
basal-mVEGFR1-Production EC-Surface-Area * mVEGFR1-EC-Production

basal-VEGFR2-Production EC-Surface-Area * mVEGFR1-EC-Production * 3

insertion rate from Mac Gabhann 2003

set
set

basal-dll4-production le-16
basal-notch-activity le-16

if RunGeneticAlg? [importGenAlgParameters]

ask

nucleus [

set sSVEGFRl-production basal-sVEGFRl-production
set mMVEGFRl-production basal-mVEGFR1l-production
set VEGFR2-production basal-VEGFR2-production
set DLL4-production basal-DLL4-production

set NOTCH-activity basal-NOTCH-activity

ask out-cytos-neighbors [

set notch-activity basal-notch-activity / 8

’
’

nmol/s
nmol/s

Walpole
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set dll4-activity basal-dll4-production / 8

60
]
]
ask patches [set trueSproutLocation 0]
65 importSproutLocations
reset-ticks
end
to Go
70 ;set-current-directory "C:\\Users\\jbw2w\\Dropbox\\2012-12-07-Test"
;while [not file-exists? "Ready-for-ABM.txt"][wait 5]
;file-delete "Ready-for-ABM.txt"
; Input-From-PDE ;Reads files from PDE simulation (without PDE input,
calculates VEGF gradients)
75 make-gradient ;Surrogate VEGF Production (not using PDE values)
Calculate-Rates ;Calculates production rates based on NOTCH and VEGF
activation, Polarity Matrix
Follow-Gradient ;Cells move up VEGFR2 activity gradient
Adjust-Connections ;Geometries of connections are curated
80 ;Output-To-PDE ;Sends Geometry, Production rates, and FLAG file to PDE
tick
end
85

;Follow-Gradient governs the movement of cells in response to [VEGF] in patches
to Follow-Gradient
;New gradient code: determine the membrane element with highest VEGF concentration and
the membrane element with lowest VEGF concentration.

90 ;Next, set the heading of the membrane with highest VEGF to be that of the dx/dy
between lowest and highest membrane elements.
;Essentially, this sets the trajectory of the cell in the direction of the steepest
gradient accross the cell.

95 ask nucleus [
let highest-activity max-one-of out-link-neighbors [VEGFR2-activity]
let lowest-activity min-one-of out-link-neighbors [VEGFR2-activity]

;show [VEGFR2-activity] of highest-activity - [VEGFR2-activity] of lowest-
activity
100
if ([VEGFR2-activity] of highest-activity - [VEGFR2-activity] of lowest-
activity) >= (VEGF-Tolerance * 10) [
let delta-x ([xcor] of highest-activity - [xcor] of lowest-activity)
let delta-y ([ycor] of highest-activity - [ycor] of lowest-activity)
105

ask max-one-of out-link-neighbors [VEGFR2-activity] [
set leader-state 2

if delta-x = 0 and delta-y > 0 [set heading 0]

if delta-x = 0 and delta-y < 0 [set heading 180]
110 if delta-y = 0 and delta-x > 0 [set heading 90]

if delta-y = 0 and delta-x < 0 [set heading 270]

if delta-x != 0 and delta-y !
movement 1.25
set breed tip-cell

0 [set heading tan (delta-x / delta-y)]

115
set shape "circle"
]
if leader-state = 0 [
output-type ticks output-type output-type (round((xcor + max-pxcor) * 100)
120 / 100) output-type " " output-print (round((ycor + max-pycor) * 100) / 100)
set leader-state 1

]

non
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end

;Make-Cell is the code used to generate a nucleus linked to 8 membrane nodes at an
130 input location.
;The nucleus, membrane nodes and all links share the same Cell-ID or Link-ID for
indentification
to Make-Cell
if Initial-Position = "Random"

135 [
set start_x 0 set start_y -15

repeat num_of_ cells [
create-nucleus 1 [
140 set location x start x + 2 - random 5
set location_y start y + 2 - random 5
set cell-ID count nucleus
setxy location_x location_y
set color red
145 set shape "circle"
set Notch-production 1
set DLR4-production 1
set VEGFR2-production 1
set sSVEGFRl-production 1
150 set mMVEGFR1l-production 1

;The nuclei must be placed to avoid overlap or edge compression of the membrane:

while [any? other turtles in-radius 6 OR (abs xcor) > (max-pxcor - 3) OR (abs
ycor) > (max-pycor - 3) OR (ycor) > -5 or ycor < -25]]
155 let old-x location_x
let old-y location_y
set location_x location_x + 1 - random 3
set location_y location_y + 1 - random 3

carefully [setxy location_x location_y][set location x old-x set location_y
160 old-y]
]
]

;Generate the 8 Membrane elements in a circle around the nucleus:
create-ordered-follower 8 [
165 set cell-ID count nucleus
set polarity 1
set color blue
set shape "circle"
setxy location_x location_y
170 jump 3]
ask nucleus with [cell-ID = count nucleus]]|
create-cyto-to follower with [cell-ID = count nucleus]
ask my-out-links [set 1link-ID count nucleus set color red]
ask out-link-neighbors [
175 while [(count my-links) < 3] [
create-membrane-with min-n-of 2 other (follower with [cell-ID = [cell-ID] of
myself]) [distance myself]
ask my-membrane [set 1link-ID count nucleus set color blue set thickness .3]

]

180 ]
]
ask follower with [cell-ID = count nucleus AND count my-cell-to-cell = 0][
let neighbor min-one-of follower with [(cell-ID != [cell-ID] of myself) AND (count
my-cell-to-cell = 0)] [distance myself]
185 carefully [

if distance neighbor < 3 [
create-cell-to-cells-with neighbor [set color green]
ask my-cell-to-cell]|
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if any? other links with [crossed? self myself]

190 [die]
1
1
101
1
195 ]
1
if Initial-Position = "User-Defined"
[
200 repeat num of cells [

set counter true
while [counter] [
if mouse-down? [set location_x mouse-xcor set location_y mouse-ycor set
205 counter false]
wait 0.1

]

create-nucleus 1 [

210 set cell-ID count nucleus
setxy location_x location_y
set color red
set shape "circle"
set Notch-production 1

215 set DLR4-production 1
set VEGFR2-production 1
set sSVEGFRl-production 1
set mVEGFRl-production 1

220 ;The nuclei must be placed to avoid overlap or edge compression of the membrane:
while [any? other turtles in-radius 6 OR (abs xcor) > (max-pxcor - 3) OR (abs
ycor) > (max-pycor - 3)][

let old-x location_x
let old-y location_y

225 set location x location_x + 1 - random 3
set location_y location_y + 1 - random 3
carefully [setxy location_x location_y][set location x old-x set location_y
old-y]
]
230 ]

;Generate the 8 Membrane elements in a circle around the nucleus:
create-ordered-follower 8 [
set cell-ID count nucleus
set polarity 1
235 set color blue
set shape "circle"
setxy location_x location_y

jump 3]
ask nucleus with [cell-ID = count nucleus]]|
240 create-cyto-to follower with [cell-ID = count nucleus]

ask my-out-links [set 1link-ID count nucleus set color red]
ask out-link-neighbors [
while [(count my-links) < 3] [
create-membrane-with min-n-of 2 other (follower with [cell-ID = [cell-ID] of
245 myself]) [distance myself]
ask my-membrane [set 1link-ID count nucleus set color blue set thickness .3]
]
]

250 ask follower with [cell-ID = count nucleus AND count my-cell-to-cell = 0][
let neighbor min-one-of follower with [(cell-ID != [cell-ID] of myself) AND (count
my-cell-to-cell = 0)] [distance myself]

carefully [
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295

300
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315

if distance neighbor < 3 [
create-cell-to-cells-with neighbor [set color green]
ask my-cell-to-cell]|
if any? other links with [crossed? self myself]
[die]

if Initial-Position = "Import"

[

let VEGF-tolerance-hold VEGF-Tolerance

let DLL4-TO-NOTCH-FACTOR-hold DLL4-TO-NOTCH-FACTOR
;import-world WT1llQlstart.csv

import-world InitialConditionsFile

set VEGF-Tolerance VEGF-tolerance-hold

set DLL4-TO-NOTCH-FACTOR DLL4-TO-NOTCH-FACTOR-hold
random-seed timer

reset-ticks

if Initial-Position = "Fixed"

[

file-open "Fixed-Positions.txt"
set counter true
while [counter]][

create-nucleus 1 [

set cell-ID count nucleus

set location_x file-read

set location_y file-read

if file-at-end? [set counter false]

set Notch-production 1

set DLR4-production 1

set VEGFR2-production 1

set sSVEGFRl-production 1
set mVEGFRl-production 1
setxy location_x location_y
set color red

set shape "circle"

]

;Generate the 8 Membrane elements in a circle around the nucleus:

create-ordered-follower 8 [

set cell-ID count nucleus
set polarity 1

set color blue

set shape "circle"

setxy location_x location_y
jump 3]

ask nucleus with [cell-ID = count nucleus]]|

create-cyto-to follower with [cell-ID = count nucleus]
ask my-out-links [set 1link-ID count nucleus set color red]
ask out-link-neighbors [
while [(count my-links) < 3] [
create-membrane-with min-n-of 2 other (follower with [cell-ID =

myself]) [distance myself]

[cell-ID] of

ask my-membrane [set 1link-ID count nucleus set color blue set thickness

]
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]
]
ask follower with [cell-ID = count nucleus AND count my-cell-to-cell = 0][
let neighbor min-one-of follower with [(cell-ID != [cell-ID] of myself) AND (count
my-cell-to-cell = 0)] [distance myself]
carefully [
if distance neighbor < 3 [
create-cell-to-cells-with neighbor [set color green]
ask my-cell-to-cell]|
if any? other links with [crossed? self myself]
[die]
]

]
101

file-close

]

end

; MOVEMENT is the procedure for any turtle to proceed forward. It receives [dist] as
you would for jump or bk,
; however it checks to make sure that moving forward does not cause illegal overlaps
within the cell
to movement [dist]
jump dist
set my-ID cell-ID
set move-OK? false
;First make sure that moving won't cause the cell shape to invert on itself
;while [move-OK? = false]][
ask links with [link-ID = my-ID][
ifelse any? other links with [crossed? self myself] ;calls crossed? procedure to
determine if links are crossed
[set move-OK? false] ;if crossed, don't move
[set move-OK? true] ;if not crossed, moving is OK
]
;Second, make sure that leaders don't pass through another cell to get to the
chemokine
if breed = leader [
ask my-links [
ifelse any? other links with [crossed? self myself]
[set move-OK? false]
[set move-OK? true]
]
]

;Third, make sure that the movements does not over-extend the cell membrane
if any? my-membrane with [link-length > Max-Link-Length]

[set move-OK? false]

ifelse move-0K? []

[jump -1 * dist] ;set heading random 360 jump 0.5]

il

end

;Adjust-Connections curates intercellular links (adds/subtracts as definted by
length/tension)

;and also adjusts the distance between link neighbors of all types
;Adjust-Conncetions also call the Mitosis command for cells that have grown too large

to Adjust-Connections

;Firstly, make new connections with neighboring cells that are within a critical
distance

ask-concurrent turtles [if age > 0 [set age age - 1]]

ask-concurrent turtles with [count my-cell-to-cell = 0][
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410
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435

440

445

let neighbor min-one-of turtles with [(cell-ID != [cell-ID] of myself) AND (count
my-cell-to-cell = 0)] [distance myself]
carefully [
if distance neighbor < 6 [
create-cell-to-cells-with neighbor [set color green]
ask-concurrent my-cell-to-cell]|
if any? other links with [crossed? self myself]
[die]
]
]
111
]
;Set Notch level of cell-to-cell links based on the type of cell they are connected
to
ask-concurrent cell-to-cell [
ifelse [breed] of endl = tip-cell OR [breed] of end2 = tip-cell [set NOTCH 2][set
NOTCH 1]
]

;Next, adjust the distances between linked turtles
ask follower [
let furthest max-one-of membranes-neighbors [distance myself]
if distance furthest > 3 [face furthest movement [distance myself] of furthest /
3]

carefully([

set furthest max-one-of cell-to-cells-neighbors [distance myself]

if distance furthest > 0.5 and [breed] of furthest = tip-cell [face furthest
movement [distance myself] of furthest / 3]

if distance furthest > 0.5 and [breed] of furthest != tip-cell [face furthest
movement [distance myself] of furthest / 3]1][]

]

;break cell-to-cell links that cross, become too long, or that orginate from the
same cell

ask-concurrent cell-to-cell |

if link-length > Max-Link-Length [die]

if any? other links with [crossed? self myself] [die]
]
ask-concurrent turtles |

if count my-cell-to-cell > 1 |

ask one-of my-cell-to-cell [die]

]

]

ask-concurrent tip-cell|
let furthest max-one-of membranes-neighbors [distance myself]
if distance furthest > 3 and [breed] of furthest = leader [face furthest movement
0.6]
if distance furthest > 3 and [breed] of furthest != leader [face furthest movement
0.5]
1
ask-concurrent nucleus [
let furthest max-one-of out-link-neighbors [distance myself]
if distance furthest > 3 and [breed] of furthest = leader [
face furthest movement 0.5
1
if distance furthest > 3 and [breed] of furthest != leader [
face furthest movement 0.25
1
1
;Finally, adjust distances by moving away from agents that are too close
ask-concurrent turtles |
let closest min-one-of other turtles [distance myself]
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if distance closest < 2 AND (not cell-to-cells-neighbor? closest) [

face closest movement -0.75

if distance closest < 0.1 AND (cell-to-cells-neighbor? closest) [

]

face closest movement -0.1

;Call Cell Division command based on the size of a cell and it's age (i.e. cell
cannot have divided recently)

;ask-concurrent nucleus with [sum [link-length] of my-out-links > Mitosis-Threshold
and all? out-link-neighbors [breed = follower]] [divide [cell-ID] of self]

end

;Cell Division;

to divide [ID]
set mitosis-counter mitosis-counter + 1
let max-ID max [cell-ID] of nucleus + 1
ask follower with [cell-ID = ID and any? my-cell-to-cell]][
set pulling-force [link-length] of max-one-of my-cell-to-cell [link-length]

]

repeat 30]
ask-concurrent follower with [cell-ID = ID]

[

let closest min-one-of membranes-neighbors [distance myself]
let furthest max-one-of membranes-neighbors [distance myself]
if distance closest < 4 [face closest jump -.25]
if distance furthest > 4 [face furthest jump .25]

]

ask-concurrent nucleus with [cell-ID = ID]

[

let closest min-one-of out-cytos-neighbors [distance myself]
let furthest max-one-of out-cytos-neighbors [distance myself]
if distance closest < 5.2 [ask closest [face myself jump -.25]]
if distance furthest > 5.2 [ask furthest [face myself jump .25]]

;First, identify the followers that will become part of the daughter cells and which

will

retain parent cell-ID

ask max-one-of turtles with [cell-ID = ID] [pulling-force][

]

let furthest max-n-of 4 other turtles with [cell-ID = ID] [distance myself]
ask furthest [

set cell-ID max-ID

ask my-in-cyto [die]

]

ask nucleus with [cell-ID = ID] [

]
132

hatch 1 [

set cell-ID max-ID
create-cyto-to other turtles with [cell-ID = [cell-ID] of myself][
set color red
set 1link-ID [cell-ID] of myself
1
facexy mean [pxcor] of out-link-neighbors mean [pycor] of out-link-neighbors
movement (mean [link-length] of my-out-links) / 2
1

facexy mean [pxcor] of out-link-neighbors mean [pycor] of out-link-neighbors

movement (mean [link-length] of my-out-links) / 2
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;Delete links between the two cell membranes
515 ask membrane with [[cell-ID] of endl != [cell-ID] of end2][die]

;generate new membranes

ask patch (mean list one-of [pxcor] of nucleus with [cell-ID = ID] one-of [pxcor]
of nucleus with [cell-ID = max-ID])
520 (mean list one-of [pycor] of nucleus with [cell-ID = ID] one-of [pycor] of

nucleus with [cell-ID = max-ID])[

foreach [1.5 -1.5 3 -3 ][
let $i ?
525 foreach [1 2][
sprout-follower 1
[
set color blue
set shape "Circle"

530 face one-of nucleus with [cell-ID = ID]
ifelse 2 =1
[
jump .5
set cell-ID ID
535 1
[
jump -.5
set cell-ID max-ID
1
540 rt 90
jump $i
1
1
1
545 1
repeat 2]
ask nucleus with [cell-ID = ID][
set age 10
550 create-cyto-to follower with [cell-ID = ID]
ask my-out-links [set 1link-ID ID set color red]
ask-concurrent out-link-neighbors [
if (count my-membrane) < 2 [
create-membranes-with min-one-of other follower with [cell-ID = [cell-ID] of
555 myself AND count my-membrane < 2] [distance myself]
ask my-membrane [set link-ID ID set color blue set thickness .3]
1
1
1
560 ask nucleus with [cell-ID = max-ID]|
set age 10
create-cyto-to follower with [cell-ID = max-ID]
ask my-out-links [set link-ID max-ID set color red]
ask-concurrent out-link-neighbors [
565 if (count my-membrane) < 2 [
create-membranes-with min-one-of other follower with [cell-ID = [cell-ID] of
myself AND count my-membrane < 2] [distance myself]
ask my-membrane [set 1link-ID max-ID set color blue set thickness .3]
1
570 ]

575 to-report crossed? [link-a link-b]
;; store nodes in variables for easy access
let al [endl] of link-a
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let a2 [end2] of link-a
let bl [endl] of link-b
let b2 [end2] of link-b
let nodes (turtle-set al a2 bl b2)

;; 1f the links share a node, they don't cross

if 4 > count nodes [ report false

]

;; but if two nodes are on top of each other, we will say
;7 the links do cross (so you can't cheat that way)
if 4 > length remove-duplicates [list xcor ycor] of nodes

[ report true ]

i
i
;; then the links cross
report [subtract-headings towards
subtract-headings towards
and [subtract-headings towards
subtract-headings towards
end

to Output-To-PDE

a2 towards
a2 towards
b2 towards
b2 towards

bl
b2
al
a2

<
<
<
<

if the ends of link-a are on opposite sides of link-b,
and the ends of link-b are on opposite sides of link-a,

0 xor
0] of al
0 xor
0] of bl

set DIRECTORY "C:\\Users\\jbw2w\\Dropbox\\2012-12-07-Test"

set-current-directory DIRECTORY
carefully([

file-delete (word "Cell-Locations.txt")

file-delete (word "sVEGFR1-Production.txt")
file-delete (word "mVEGFR1-Production.txt")

file-delete (word "VEGFR2-production.txt")

]
[1]

file-open (word "Cell-Locations.txt")

foreach sort-on [cell-ID] nucleus
ask ? [
file-type(word Cell-ID " ")

[

foreach sort out-cytos-neighbors [

ask ? [

file-type(word (round((xXcor + max-pXcor)

pycor) * 10) / 10) " ")
1
1
1
file-print "\r"
1

file-close

file-open(word "sVEGFRl-production.txt")
foreach sort-on [cell-ID] nucleus [

ask ? [
file-type(word Cell-ID " ")

* 10)

/ 10)

file-type(word (round(sVEGFRl-production * lel9) / lel9)
foreach sort out-cytos-neighbors [

ask ? [
file-type(word polarity " ")
1
1
1
file-print "\r"
1

file-close

file-open(word "mVEGFRl-production.txt")
foreach sort-on [cell-ID] nucleus [

ask ? [
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650

655

660
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670

675

680

685

690

695

700

705

file-type(word Cell-ID " ")
file-type(word (round(mVEGFRl-production * lel9) / lel9) " ")
foreach sort out-cytos-neighbors [

ask ? [

file-type(word polarity " ")

]
]
]
file-print "\r"

]

file-close

file-open(word "VEGFR2-production.txt")
foreach sort-on [cell-ID] nucleus [
ask ? [
file-type(word Cell-ID " ")
file-type(word (round(VEGFR2-production * 1lel9) / 1lel9) " ")
foreach sort out-cytos-neighbors [
ask ? [
file-type(word polarity " ")
]
]
]
file-print "\r"
]

file-close

file-open "Ready-for-PDE.txt"
file-print "All yours!"
file-close

set-current-directory (word DIRECTORY "\\ABM-History")

set counter 1

while [file-exists? (word "Cell-Locations-" counter ".txt")] [set counter counter +
file-open (word "Cell-Locations-" counter ".txt")
;file-print "Cell-ID Node-1x Nodely Node-2x Node-2y Node-3x Node-3y Node-4x Node-4y

Node-5x Node-5y Node-6x Node-6y Node-7x Node-7y Node-8x Node-8y\r"

foreach sort-on [cell-ID] nucleus [
ask ? [
file-type(word Cell-ID " ")
foreach sort out-cytos-neighbors [

ask ? [
file-type(word (round((xcor + max-pxcor) * 10) / 10) " " (round((ycor + max-
pycor) * 10) / 10) " ")

]
]
]
file-print "\r"
]

file-close
file-open(word "sVEGFRl-production-"
foreach sort-on [cell-ID] nucleus [
ask ? [
file-type(word Cell-ID " ")
file-type(word (round(sVEGFRl-production * 1lel9) / 1lel9) " ")
foreach sort out-cytos-neighbors [
ask ? [
file-type(word polarity " ")

counter ".txt")

]
]

]
file-print "\r"
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]

file-close

file-open(word "mVEGFRl-production-'
;file-print "Cell-ID mVEGFRl-production Polarity Matrix\r"

"

foreach sort-on [cell-ID] nucleus [
ask ? [
file-type(word Cell-ID " ")

file-type(word (round(mVEGFRl-production * lel9) / lel9)

foreach sort out-cytos-neighbors [

]
]

ask ? [
file-type(word polarity " ")
]

file-print "\r"

]

file-close

file-open(word "VEGFR2-production-'
;file-print "Cell-ID VEGFR2-production Polarity Matrix\r"

foreach sort-on [cell-ID] nucleus [
ask ? [
file-type(word Cell-ID " ")

file-type(word (round(VEGFR2-production * 1lel9) / lel9)

foreach sort out-cytos-neighbors [

]
]

ask ? [
file-type(word polarity " ")
]

file-print "\r"

]

file-close

file-open "Ready-for-PDE.txt"
file-print "All yours!"
file-close

end

to Input-From-PDE

while [not file-exists? "pVEGFR1l.txt"] [wait 0.1]

file-open "pVEGFR1.txt"
while [not file-at-end?]]
let current-cell file-read
ask nucleus with [cell-id = current-cell]

]
]

;set mMVEGFRl-activity file-read
foreach sort out-cytos-neighbors [

counter ".txt")

counter ".txt")

[

ask ? [set mVEGFRl-activity file-read ]

]

file-close
file-delete "pVEGFRl.txt"

while [not file-exists? "pVEGFR2.txt"] [wait 0.1]

file-open "pVEGFR2.txt"
while [not file-at-end?]][
let current-cell file-read
ask nucleus with [cell-id = current-cell]

136

;set VEGFR2-activity file-read
foreach sort out-cytos-neighbors [
ask ? [set VEGFR2-activity file-read]
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775

780

785

790

795

800

805

810

815

820

825

830

835

file-close
file-delete "pVEGFR2.txt"

end

to Calculate-Rates
ask nucleus |

set VEGFR2-activity sum [VEGFR2-activity] of out-cytos-neighbors
set mVEGFRl-activity sum [mVEGFRl-activity] of out-cytos-neighbors

;let kVEGFR 1lel3

let max-DLL4 le-14

let min-DLL4 le-16
VEGFR2-activity)))

set DLL4-production Delta-ODE DLL4-production VEGFR2-activity

ask out-cytos-neighbors [

set Dll4-activity [Dll4-production] of myself / 8

]
]

ask nucleus|

;let kVEGFR 1lel3
;let kNOTCH 1lel3

ask out-cytos-neighbors|

set NOTCH-activity sum ([Dll4-activity] of cell-to-cells-neighbors) * DLL4-TO-

NOTCH-FACTOR
]

set NOTCH-activity NOTCH-ODE NOTCH-activity sum ([NOTCH-activity] of out-cytos-

neighbors)

let max-VEGFR2-production le-14
let min-VEGFR2-production le-16

let max-mVEGFR1l-production
let min-mVEGFR1l-production
let max-sVEGFR1l-production
let min-sVEGFR1l-production

set VEGFR2-production (min-VEGFR2-production + (max-VEGFR2-production - min-

le-14
le-16
le-14
le-16

VEGFR2-production) * (exp( - kNOTCH * (NOTCH-activity))))

set mMVEGFRl-production (min-mVEGFRl-production + (max-mVEGFRl-production - min-

mVEGFR1-production) * (1 - exp(

- kKNOTCH * NOTCH-activity)))

set sVEGFRl-production (min-sVEGFRl-production + (max-sVEGFRl-production - min-

mVEGFR1-production) * (1 - exp(
]

end

- kNOTCH * NOTCH-activity)))

to-report Delta-ODE [DLL4in pR2in]

let kDLL4 .1

let kR2 .1

let kdegDLL4 .1
let maxDLL4 le-14

let DLL4 DLL4in
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let pR2tot pR2in

repeat time[
let pR2 (pR2tot)
let dDLL4 (kDLL4 * (maxDLL4) + kR2 * pR2 - kdegDLL4 * DLL4)
set DLL4 (DLL4 + dDLL4)

]
report DLL4

end

to-report NOTCH-ODE [NOTCHin DLL4in]

let kDLL4 .1

let kNOTCH* .1

let kdegNOTCH .1
let maxNOTCH le-14

let NOTCH* NOTCHin

let DLL4tot DLL4in

repeat time[
let DLL4 (DLl4tot)
let ANOTCH (kNOTCH* * (maxNOTCH ) + kDLL4 * DLL4 - kdegNOTCH * NOTCH*)
set NOTCH* (NOTCH* + dNOTCH)

1

report NOTCH*

end

to make-gradient

if remainder ticks 1 = 0 [

let numpatch (count patches / 2)
ask n-of numpatch patches [

let current-VEGF VEGF

set VEGF (current-VEGF + (random-float 0.5 + 0.75) * VEGF-Production-Rate * le-7)
]

1
diffuse VEGF 0.5

ask patches [
set VEGF (VEGF - sVEGFR)
if VEGF < 0 [set VEGF 0]
;set pcolor scale-color yellow VEGF 0 (10 * VEGF-Production-Rate * le-7)

]

ask nucleus [
ask out-cytos-neighbors [
set VEGFR2 (VEGFR2 + ([VEGFR2-production] of myself * (random-float 0.5 +

.75))) / 81

]

ask turtles with [breed = tip-cell or breed = follower] [
let receptors [VEGFR2] of self
ifelse [VEGF] of patch-here >= receptors
[set VEGFR2-activity receptors
ask patch-here [set VEGF (VEGF - receptors)]]
[set VEGFR2-activity ([VEGF] of patch-here)
ask patch-here [set VEGF 0 ]]

set SVEGFR1 (SVEGFR1l + ([SVEGFRl-production] of one-of in-cytos-neighbors / 8))
ask patch-here [set SVEGFR [sVEGFR1] of myself]
set sVEGFR1 0

1
diffuse sSVEGFR 0.25

end

138 | WALPOLE



to importSproutLocations
905 file-open "MlQlsproutLocationsABM"
while [not file-at-end?]][
let currentX file-read
let currentY file-read

910 ask patch currentX currentY [ask patches in-radius 5 [set trueSproutLocation 1]]
1
file-close
end

915 to exportTruePositives
file-open "M1QltruePositives"
let truePositiveSprouts count nucleus with [leader-state = 1 and
[trueSproutLocation] of patch-here = 1]
file-write truePositiveSprouts
920 file-close
end

to importGenAlgParameters
file-open "ParametersForABM"
925 set DLL4-TO-NOTCH-FACTOR file-read
set VEGF-Tolerance file-read
set VEGF-Production-Rate file-read
set kNotch file-read
set KVEGFR file-read
930 file-close

end
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APPENDIX IV

NetLogo Code for Retinal Angiogenesis Simulations

patches-own [astrocyte branchPoint EC PC VEGF tipCell NOTCH DLL4 VEGF_VEGFR1
VEGF_SsVEGFR1 VEGFR1 VEGF_VEGFR2 VEGFR2 sVEGFRI1 DLL4-input VEGFR2-production sVEGFR1-
production mVEGFRl-production originalColor]

globals [ECcount PCcount listOfECs 1listOfPCs leadingEdge listOfContacts
listofNotchLevels listofPhosphoR2 listofDLL4Levels listofTipCells maxVEGF
outputFileName VEGFR2list Pinsert VEGF_VEGFR1llist]

;1 patch = sgrt(5) um x sqrt(5) um = 5 um”2

to setup
instantiateVariables

MakeAstrocyteTemplate
MakeGradient
seedEC
foreach listofECs[repeat 5 [ECmove ?]]
repeat 5 [
MakeGradient
maintainCellContacts
newReceptorBinding
cellSignaling
]

reset-ticks
end

to instantiateVariables
clear-all
set ECcount 0
ask patches [
set astrocyte 0
set branchPoint 0
set EC 0
set tipCell 0
set NOTCH 0
set DLL4 0
set VEGFR1 0
set VEGFR2 0
set VEGF_VEGFR2 0
set sVEGFR1l 0
set DLL4-input 0
set VEGFR2-production 0
set mVEGFRl-production 0
set SVEGFRl-production 0
1
set listofTipCells [ ]
set listofPCs [ ]
set maxVEGF max [VEGF] of patches
end

to Go
;tip cells move more than non-tip cells
set maxVEGF max [VEGF] of patches
foreach 1istOfECs]
ifelse any? patches with [EC = ? and tipCell = 1]
[repeat 4 [ECmove(?)]] ;increased from 5 to 7
[repeat 2 [ECmove(?)]]
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]

maintainCellContacts
newReceptorBinding
cellSignaling

if ticks mod 2 = O[makeGradient]
ask patches with [EC = 0 and PC = 0][
set pcolor scale-color green VEGF 0 maxVEGF
]
ask patches with [tipCell = 1][set pcolor yellow]
ask patches with [EC != 0 and tipCell = 0][set pcolor originalColor]

set listofTipCells [ ]

foreach listofECs]
if [tipCell] of one-of patches with [EC = ?] =1
[set listofTipCells lput ? listofTipCells]

]

addNewCells
tick

if OutputData [updateOutputFile]
end

to MakeAstrocyteTemplate
ask n-of numberOfStartingBranches patches with [pycor = min-pycor] [sprout 1 [set
heading 0 + (random 90 - 45)]]
while [any? turtles] [
ask turtles [

moveAndDraw 1

if random 100 < branchProbability [
hatch 1 [set heading heading + 20]
set heading heading - 20

]

]

end

to seedEC
let startingPositions (list 5 15 25)
foreach startingPositions [

ask patches with [pycor = min-pycor + ? and remainder pxcor 5 = 0 and pxcor !=
max-pxcor]|[
if remainder pxcor 20 = 0 [makeEC]
;if (not (remainder pxcor 22 = 0)) and (? = 5 or ? = 15) [ifelse random 100 <

25 [makeEC][makePC]]

]
]
foreach [10 20][
ask patches with [pycor = min-pycor + ? and remainder pxcor 10 = 0 and not
(remainder pxcor 20 = 0) and pxcor != max-pxcor]]|
ifelse random 100 < 25 [makeEC]

[

if StartingCellLayout "ECs" [makeEC]
if StartingCellLayout = "ECandPC" [makePC]
if StartingCellLayout = "SparseECs" []

]
]

foreach 1istOfECs [
if not any? patches with [EC = ? and astrocyte = 1]]
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ask patches with [EC = ?]]
set EC 0
set pcolor black
set VEGFR1 0
set VEGFR2 0
1
set 1listOfECs remove ? 1listOfECs
1

]
foreach 1istOfPCs [

if not any? patches with [PC = ? and any? neighbors with [EC != 0]][
ask patches with [PC = ?]]
set PC 0

set pcolor black
]

set listofPCs remove ? listofPCs

]

end

to moveAndDraw [movement ]
repeat movement [

if patch-ahead 1 = NOBODY [die]
if [pcolor] of patch-ahead 1 = blue [die]
if [pycor] of patch-ahead 1 = max-pycor [die]
;if [pycor] of patch-ahead 1 = round (.25 * max-pycor) [die]
;if [pycor] of patch-here = round (.25 * max-pycor) [die]
ask patch-here [set pcolor blue set astrocyte 1]
if random 100 < 25 [set heading heading + (random 40 - 20)]
forward 1

]

end

to makeEC
set ECcount ECcount + 1
if 1istOfECs = 0 [set listOfECs (list 1)]
set 1istOfECs lput ECcount 1listOfECs
set 1istOfECs remove-duplicates 1listOfECs
let colorOfThisCell 12 + random-float 6
set pcolor colorOfThisCell set EC (ECcount)
let x pxcor
let y pycor
ask patches with [pxcor < (x + 5) and pxcor > (x - 6) and pycor < (y + 5) and pycor
> (y - 6)][set pcolor colorOfThisCell set EC ECcount]
ask patches with [EC = ECcount][
set originalColor colorOfThisCell
set VEGFR2 100
set VEGFR1 100
]

end

to makePC

set PCcount PCcount + 1

if 1istOfPCs = 0 [set 1listOfPCs (list 1)]

set 1istOfPCs lput PCcount 1listOfPCs

set 1istOfPCs remove-duplicates 1listOfPCs

let colorOfThisCell 102 + random-float 6

set pcolor colorOfThisCell set PC (PCcount)

let x pxcor

let y pycor

ask patches with [pxcor < (x + 5) and pxcor > (x - 6) and pycor < (y + 5) and pycor
> (y - 6)][set pcolor colorOfThisCell set PC PCcount]

ask patches with [PC = PCcount][set originalColor colorOfThisCell]
end

142 | WALPOLE



190

195

200

205

210

215

220

225

230

235

240

245

250

to addNewCells
ask patches with [pycor = min-pycor + 5]]
let x pxcor
let y pycor
if not any? patches with [pxcor < (x + 5) and pxcor > (x - 6) and pycor < (y + 5)
and pycor > (y - 6) and (EC != 0 or PC != 0)][
ifelse random 100 < 50 [makeEC]

[

if StartingCellLayout = "ECs" [makeEC]
if StartingCellLayout = "ECandPC" [makePC]
if StartingCellLayout = "SparseECs" []

end

to ECmove [ECnumber]

;Find patches that are adjacent to the EC border, then pick the one with highest
VEGF concentration to move to:

set leadingEdge patches with [EC = ECnumber and count neighbors with [EC = ECnumber]
>= 5 and any? neighbors with [EC = 0 and PC = 0]]

let destination max-one-of patches with [any? neighbors with [member? self
leadingEdge] and EC = 0 and PC = 0][VEGF]

if is-patch? destination [

let origin max-one-of patches with [EC = ECnumber][distance destination]

if is-patch? origin
[swapPatches origin destination]

]

;Fill any gaps generated by EC movement:
if any? patches with [EC = 0 and count neighbors with [EC = ECnumber] = 8]
set destination one-of patches with [EC = 0 and count neighbors with [EC =
ECnumber] = 8]
let origin max-one-of patches with [EC = ECnumber][distance destination]
swapPatches origin destination

]

end

to MakeGradient
ask patches with [astrocyte = 1] [set VEGF VEGF + 1 ] ;VEGF production rate 5e-5
molecules/um”2 per second
ask patches [
let kDegVEGF 0.001 ;VEGF solube degradation rate
let dVEGF (- (VEGF * kDegVEGF))
set VEGF VEGF + dVEGF
]
repeat 5 [diffuse VEGF 0.4]
set maxVEGF max [VEGF] of patches
if ShowVEGF[
ask patches with [EC = 0 and PC = 0][
set pcolor scale-color green VEGF 0 maxVEGF
]
]

end

to astroExport
set-current-directory("/Users/josephwalpole/Desktop/John Retinal
Model/astrocyteNetworkImages/Branching")
let num 1
while [file-exists? (word "branchProb" branchProbability "astroImage" num ".png")]
[set num num + 1]
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export-view (word "branchProb" branchProbability "astroImage" num ".png")
end

to maintainCellContacts
;reinforce cell-cell contacts

foreach 1istOfECs [
let currentEC ?
let contacts patches with [EC = ? and any? neighbors with [(EC != ? and EC != 0)
or PC != 0]]
set listOfContacts ([EC] of patches with [any? neighbors with [EC = ?] and (EC !=
0 or PC != 0) and EC != ?])
set listOfContacts remove-duplicates listOfContacts

foreach listOfContacts]
let neighboringEC ?
repeat 5 [
if count contacts with [any? neighbors with [EC = neighboringEC]] < 5 [
ask contacts with [any? neighbors with [EC = neighboringEC]] [
if any? neighbors with [EC = 0 and PC = 0][
let destination min-one-of neighbors with [EC = 0 and PC = 0][distance
myself]
let origin max-one-of patches with [EC = currentEC and not any?
neighbors with [EC != currentEC and EC != 0]][distance destination]
swapPatches origin destination

foreach 1istOfPCs]
let currentPC ?
let contacts patches with [PC = ? and any? neighbors with [EC != 0]]
set listOfContacts ([EC] of patches with [any? neighbors with [PC = ?] and EC !=
01)
set listOfContacts modes listOfContacts

repeat 5 [

foreach listOfContacts]
let neighboringEC ?
if count contacts with [any? neighbors with [EC = neighboringEC]] < 20 [
ask contacts with [any? neighbors with [EC = neighboringEC]] [
if any? neighbors with [EC = 0 and PC = 0][
let destination min-one-of neighbors with [EC = 0 and PC = 0][distance
myself]
let origin max-one-of patches with [PC = currentPC and not any?
neighbors with [EC = neighboringEC]][distance destination]
swapPatches origin destination

]

]
]

while [objects? currentPC > 1][
ask one-of patches with [PC = 0 and EC = 0 and count neighbors with [PC =
urrentPC] > 4]

let destination self
let origin one-of neighbors with [PC = currentPC]
swapPatches origin destination

Ne e Ne e me e (O e o~

]
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;Kill any ECs that are no longer in contact with the network:
foreach 1istOfECs [

if not any? patches with [EC = ? and any? neighbors with [EC != ? and (EC != 0 or
PC !=0)]]
[ask patches with [EC = ?]
[

set EC 0

set pcolor scale-color green VEGF 0 maxVEGF

set EC 0

set DLL4 0

set NOTCH 0

set VEGF_VEGFR2 0

set VEGFR2 0

set VEGFR1 0

set tipCell 0

set VEGFR2-production 0
set sSVEGFRl-production 0
set mVEGFRl-production 0
set originalColor 0

set TipCell 0

set listOfECs remove ? l1listOfECs

]

end

to cellSignaling
set listofNotchLevels (list 0)
set listofPhosphoR2 (list 0)
set listofDLL4Levels (list 0)
set VEGFR2list (list 0)
set VEGF_VEGFR1llist (list 0)

foreach 1istOfECs]

let currentEC ?

let contacts patches with [EC != currentEC and EC != 0 and any? neighbors with [EC
= currentEC]]

let neighboringCells ([EC] of contacts)

set neighboringCells remove-duplicates neighboringCells ;make a list of ECs that
are in contact with the current cell

let currentDLL4-Input (list 0)

foreach neighboringCells]
set currentDLL4-Input lput [DLL4] of one-of patches with [EC = ?] currentDLL4-
Input
1
set currentDLL4-Input sum currentDLL4-Input
ask patches with [EC = currentEC][
set DLL4-Input currentDLL4-Input

]

]

foreach 1istOfECs]
let DLL4-Input* [DLL4-Input] of one-of patches with [EC = ?]
let Notch* [Notch] of one-of patches with [EC = ?]

set Notch* (DLL4-Input* * ALPHA - (Notch* * .4))

;Previously used NOTCH-ODE to determine new Notch. Now use a simpler transfer
function that is linearly dependent on alpha.
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let DLL4* [DLL4] of one-of patches with [EC = ?] ;* gets the current DLL4 state of
the cell

let VEGF_VEGFR2* sum [VEGF_VEGFR2] of patches with [EC = ?] ;* is the cumulative
VEGF_VEGFR2 signal

set DLL4* DLL4* + VEGF_VEGFR2* - (DLL4* * .4); DLL4 is degraded by 10% of its
current value, while adding an amount based VEGF_VEGFR2

;Previously used Delta-ODE to determine new DLL4 state.
ask patches with [EC = ?]]
;Set the amount of NOTCH and DLL4 signal in the cells
set NOTCH NOTCH*
set DLL4 DLL4*

]
ask one-of patches with [EC = ?][

set listofNotchLevels lput (sum [NOTCH] of patches with [EC = ?])
listofNotchLevels

set listofPhosphoR2 lput (sum [VEGF_VEGFR2] of patches with [EC = ?])
listofPhosphoR2

set listofDLL4Levels lput (sum [DLL4] of patches with [EC = ?]) listofDLL4Levels

set VEGFR2list lput (sum [VEGFR2] of patches with [EC = ?]) VEGFR2list

set VEGF_VEGFR1llist lput (sum [VEGF_VEGFR1] of patches with [EC = ?])
VEGF_VEGFRlliSt

]
]

foreach listofECs [
ask one-of patches with [EC = ?][
ifelse (sum [VEGF_VEGFR2] of patches with [EC = ?]) > Beta
[ask patches with [EC = ? ][set tipCell 1]]
[ask patches with [EC = ? ][set tipCell 0]]

]

end

to-report NOTCH-ODE [NOTCHin DLL4in]
let kDLL4 .1
let kNOTCH .1
let kdegNOTCH .1
let maxNOTCH le-14
if NOTCHin > maxNotch [set NOTCHin maxNotch]

let dNOTCH ((1 - NOTCHin / maxNOTCH) * kDLL4 * DLL4in - kdegNOTCH * NOTCHin)
report (NOTCHin + dNOTCH)
end

to-report Delta-ODE [DLL4in pR2in]
let kDLL4 .1
let kR2 .1
let kdegDLL4 .1
let maxDLL4 le-14

if DLL4in > maxDLL4 [set DLL4in maxDLL4]

let dDLL4 ((1 - DLL4in / maxDLL4) * kR2 * pR2in - kdegDLL4 * DLL41in)
report (DLL4in + dDLL4)

end

to changeViewMode [viewMode]
if viewMode = "ECs"

[
foreach listofECs

[
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ask patches with [EC
]
foreach listofPCs
[

ask patches with [PC
]

?][set pcolor originalColor]

?][set pcolor originalColor]

]

if viewMode = "DLL4"
[ifelse max [DLL4] of patches > 0

[let big max [DLL4] of patches ask patches [set pcolor scale-color red DLL4 0

big]]
[ask patches [set pcolor black]]

]
if viewMode = "Notch"
[ifelse max [NOTCH] of patches > 0

[let big max [NOTCH] of patches ask patches [set pcolor scale-color red NOTCH 0

big]]
[ask patches [set pcolor black]]

]
if viewMode = "VEGF_VEGFR2"
[ifelse max [VEGF_VEGFR2] of patches > 0

[let big max [VEGF_VEGFR2] of patches ask patches [set pcolor scale-color red

VEGF_VEGFR2 0 big]]
[ask patches [set pcolor black]]
]

if viewMode = "R2production”
[ifelse max [VEGFR2-production] of patches > 0

[let big max [VEGFR2-production] of patches ask patches [set pcolor scale-color

red VEGFR2-production 0 big]]
[ask patches [set pcolor black]]

]

end

to-report objects? [PCid]
let Ex O
let In O

ask patches with [pxcor > min-pxcor and pycor > min-pycor]|[

let cornerCount 0

if [PC] of self = PCid [set cornerCount cornerCount + 1]

if [PC] of patch-at 1 0 = PCid [set cornerCount cornerCount + 1]
PCid [set cornerCount cornerCount + 1]
if [PC] of patch-at 1 -1 = PCid [set cornerCount cornerCount + 1]

if [PC] of patch-at 0 -1

if cornerCount = 3 [set Ex Ex + 1]
if cornerCount = 1 [set In In + 1]
]
report abs (Ex - In) / 4
end

to swapPatches [origin destination]

ask destination [
set pcolor [pcolor] of origin
set EC [EC] of origin
set PC [PC] of origin
set DLL4 [DLL4] of origin
set NOTCH [NOTCH] of origin
set VEGF_VEGFR2 [VEGF_VEGFR2] of origin
set VEGFR2 [VEGFR2] of origin
set VEGFR1 [VEGFR1] of origin
set tipCell [tipCell] of origin

set VEGFR2-production [VEGFR2-production] of origin
set sVEGFRl-production [SVEGFRl-production] of origin
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set mVEGFRl-production [mVEGFRl-production] of origin
set originalColor [originalColor] of origin

515 set VEGF_VEGFR1 [VEGF_VEGFR1] of origin
set VEGF_VEGFR2 [VEGF_VEGFR2] of origin

]

ask origin [
520 set pcolor scale-color green VEGF 0 maxVEGF
set EC 0
set PC 0
set DLL4 0
set NOTCH 0
525 set VEGF_VEGFR2 0
set VEGFR2 0
set VEGFR1 0
set tipCell 0
set VEGFR2-production 0
530 set SVEGFR1l-production 0
set mVEGFRl-production 0
set originalColor 0
set VEGF_VEGFR1 0
set VEGF_VEGFR2 0
535

end

540 to makeOutputFile
let fileCounter 1
let date date-and-time
repeat 16 [set date remove-item 0 date]
while [file-exists? (word "RetinaModel " StartingCellLayout " A" ALPHA "B" BETA "_"

545 filecounter) ][set fileCounter fileCounter + 1]
set outputFileName (word "RetinaModel " StartingCellLayout " A" ALPHA "B" BETA " "
filecounter)

file-open outputFileName
file-print "Step, TipCells, ECs, meanNotch, stdNotch, meanDLL4, stdDLL4"
550 file-close

end
to updateOutputFile
file-open outputFileName
555 file-type word ticks ", "
file-type word length listOfTipCells ", "
file-type word length listOfECs ", "
file-type word mean listOfNotchLevels ", "
file-type word standard-deviation listOfNotchLevels ", "
560 file-type word mean listOfDll4Levels ", "
file-print standard-deviation 1listOfDll4Levels
file-close
end

565 to newReceptorBinding
let kint 2.8e-4 ;internalization of VEGF Receptors
let sR 100 * kint;insertion rate of VEGF Receptors, set to balance with kint for
steady state of 100 VEGFR2 on a patch

570 ;NOTE: at "steady state" the insertion and internalization rates are equal. Notch
activity will reduce the insertion rate of new receptors. VEGFR1 is assumed to be
maintained as a steady state concentration.

let R2_kon le7
575 let R2_koff le-3

let R1_kon 3e7

let R1_koff le-3
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let sR1l_kon 3e7
let sR1_koff le-3

let C (6.022e23 * 2.5e-15) ; converts pM to molecules

ask patches with [EC != 0 and VEGF >= 2 and (VEGFR2 > 0 or VEGF_VEGFR2 > 0)][
let ronR2 (R2_kon / C) * VEGF * VEGFR2
let ronRl (R1l_kon / C) * VEGF * VEGFRIL

let roffR2 R2_koff * VEGF_VEGFR2
let roffR1 R1_koff * VEGF_VEGFRI1

let dt (1 / (ronR2 + roffR2) * log (1 / random-float 1) 10) ;time step in seconds

repeat (20)[ ;Assume a 10 minute time step

let p random-float 1

let Pr2 ronR2 / (ronR2 + roffR2)
let Prl ronRl / (ronRl + roffR1l)

if p <= Pr2 and p > Prl and VEGFR2 > 0 and VEGF_VEGFR1l > 0]
set VEGFR2 VEGFR2 -1
set VEGF_VEGFR2 VEGF_VEGFR2 + 1

set VEGFR1 VEGFR1l + 1
set VEGF_VEGFR1 VEGF_VEGFR1 - 1
]

if p <= Prl and p > Pr2 and VEGF_VEGFR2 > 0 and VEGFR1l > 0 [
set VEGFR2 VEGFR2 + 1
set VEGF_VEGFR2 VEGF_VEGFR2 - 1

set VEGFR1 VEGFR1l - 1
set VEGF_VEGFR1 VEGF_VEGFR1 + 1
]

if p <= Pr2 and p <= Prl and VEGFR2 > 0 and VEGFR1 > 0 and VEGF >= 2]
set VEGF VEGF - 2

set VEGFR2 VEGFR2 - 1
set VEGF_VEGFR2 VEGF_VEGFR2 + 1

set VEGFR1 VEGFR1l - 1
set VEGF_VEGFR1 VEGF_VEGFR1 + 1
]

if p > Prl and p > Pr2 and VEGF_VEGFR2 > 0 and VEGF_VEGFR1l > 0[
set VEGF VEGF + 2

set VEGFR2 VEGFR2 + 1
set VEGF_VEGFR2 VEGF_VEGFR2 - 1

set VEGFR1 VEGFR1l + 1
set VEGF_VEGFR1 VEGF_VEGFR1 - 1

]
;Now, either add or subtract 1 VEGFR2 from each patch

ask patches with [EC != 0][
let rinsert sR
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if Notch > 0 [set rinsert (sR - sR * Notch / [Notch] of max-one-of patches

[Notch])]

let rintern (kint) * (VEGFR2 + VEGF_VEGFR2)

;let dt (1 / (rinsert + rintern) * log (1 / random-float 1) 10) ;time step in

seconds

repeat 10]

ifelse rinsert = 0 [set Pinsert 0][set Pinsert rinsert / (rinsert + rintern)]

let p random-float 1

;if removing receptors, equal chance to remove bound or unbound, unless there are

none to remove

if p <= Pinsert [
let p2 random-float 1
if VEGFR2 = 0 and VEGF_VEGFR2 >= 5 [set VEGF_VEGFR2 VEGF_VEGFR2 - 5]
if VEGF_VEGFR2 = 0 and VEGFR2 >= 5 [set VEGFR2 VEGFR2 - 5]

if VEGFR2 >= 5 and VEGF_VEGFR2 >= 5]
ifelse p2 <= 0.5 [set VEGFR2 VEGFR2 - 5][set VEGF_VEGFR2 VEGF_VEGFR2 - 5]

]

if p > Pinsert [

set VEGFR2 VEGFR2 + 5
]
]

]

end

to exportImages

let ImageFileName outputFileName
let big max [VEGF_VEGFR2] of patches ask patches [set pcolor scale-color red

VEGF_VEGFR2 0 big]

"

export-view (word ImageFileName " pVR2image.png")

set big max [VEGF] of patches ask patches [set pcolor scale-color red VEGF 0 big]
export-view (word ImageFileName " VEGFimage.png")

set big max [DLL4] of patches ask patches [set pcolor scale-color red DLL4 0 big]
export-view (word ImageFileName " DLL4image.png")

set big max [NOTCH] of patches ask patches [set pcolor scale-color red NOTCH 0 big]
export-view (word ImageFileName " NOTCHimage.png")

ask patches [set pcolor scale-color green VEGF 0 maxVEGF]

foreach listofECs [ask patches with [EC = ?][set pcolor originalColor]]

foreach listofPCs [ask patches with [PC = ?][set pcolor originalColor]]
export-view (word ImageFileName " Cellimage.png")

ask patches [set pcolor black]

foreach listofECs [ask patches with [EC = ?][set pcolor blue]]

end
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