
Distributed and Secure Sparse Machine
Learning

A Thesis

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

in partial fulfillment
of the requirements for the degree

Master of Science

by

Lu Tian

August 2018

Abstract

With the growth of the volume of data used for machine learning, and the availability

of distributed computing resources, distributed machine learning has received increas-

ing attention from machine learning researchers and practitioners. In the meantime,

the extensive usage of private data in machine learning makes the privacy issue a

major concern of participants of collaborative machine learning. This thesis proposes

a communication-efficient algorithm for distributed sparse linear discriminant analy-

sis (LDA), where each local machine gets a debiased estimator from local data, the

central machine aggregates the debiased estimators and outputs a final sparsified es-

timator. At the core of the algorithm is a debiasing step by which the bias caused by

regularizer is compensated. It is proved that, with much less communication cost, the

aggregated estimator attains the same statistical rate with the centralized estimator,

as long as the number of machines is chosen appropriately. Based on the distributed

sparse LDA algorithm, we propose a secure multi-party sparse learning method, in

which a secure multi-party computation (MPC) protocol was employed to aggregate

the local models. The protocol ensures that the local model owned by each party

would not be revealed to other parties while the correct aggregated model can still

be obtained. Experiments on both synthetic and real world datasets corroborate the

performance of the distributed sparse LDA algorithm and the efficiency of the secure

multi-party sparse learning method.

Acknowledgements

I would first like to thank my advisor Prof. Quanquan Gu. Working with him is a

productive and enjoyable experience. Under his guidance, I got a solid understanding

on the foundation of machine learning, including statistical learning theory, optimiza-

tion, statistics, etc. I would also like to thank Prof. David Evans. He guided me to

the field of secure computing, a field that I am always interested in but did not have

a chance to study in depth before. I would also like to acknowledge Prof. Farzad

Farnoud. His advice on the thesis is very valuable.

I would also like to thank my colleagues in the Department of Computer Science,

especially Bargav Jayaraman and Pan Xu, who are also my close collaborators. With-

out their tremendous support, this thesis cannot be completed. Last but not least,

I would like to thank my colleagues in the Statistical Machine Learning Lab. The

daily discussion in various topics is very helpful to my study and life.

Author

Lu Tian

To my parents...

Contents

1 Introduction 2

2 Distributed Sparse Machine Learning 5

2.1 Introduction . 5

2.2 Related Work . 8

2.3 Distributed Sparse Linear Discriminant Analysis 10

2.4 Main Theory . 13

2.5 Experiments . 16

2.5.1 Synthetic Data Experiments 17

2.5.2 Real Date Experiments . 19

2.6 Conclusions and Future Work . 20

3 Secure Multi-Party Machine Learning 21

3.1 Introduction . 21

3.2 Related Work . 22

3.3 Garbled Circuit . 22

3.3.1 Oblivious Transfer . 23

3.3.2 Building Garbled Circuit by Oblivious Transfer 23

3.4 The Proposed Method . 25

3.5 Experiments . 25

3.6 Conclusion . 27

4 Conclusion and Future Work 28

A Proof of Theorems 36

A.1 Proof of Theorems, Corollaries and Propositions in Chapter 2 36

A.1.1 Proof of Proposition 2.4.5 . 37

A.1.2 Proof of Theorem 2.4.6 . 38

i

A.1.3 Proof of Corollary 2.4.8 . 39

A.1.4 Proof of Theorem 2.4.10 . 40

A.1.5 Proof of Corollary 2.4.11 . 41

A.2 Proof of Lemmas in Appendix A.1 . 41

A.2.1 Proof of Lemma A.1.1 . 43

A.2.2 Proof of Lemma A.1.2 . 46

A.3 Proof of Lemmas in Appendix A.2 . 47

A.3.1 Proof of Lemma A.2.1 . 48

A.3.2 Proof of Lemma A.2.2 . 48

A.3.3 Proof of Lemma A.2.3 . 49

A.3.4 Proof of Lemma A.2.4 . 50

A.3.5 Proof of Lemma A.2.5 . 51

A.4 Proof of Auxilliary Lemmas in Appendix A.3 53

A.4.1 Proof of Lemma A.3.1 . 53

A.4.2 Proof of Lemma A.3.2 . 53

A.5 Auxiliary Definitions, Lemmas and Theorems 54

1

Chapter 1

Introduction

With the explosive growth of data generated everyday, it has been very common

to store data in different machines. In the meantime, the development of computer

network makes it possible to process the data in a distributed fashion. Researchers

have been studying distributed data processing algorithms for decades. The advan-

tage of a distributed algorithm includes i) it can fully make use of the distributed

computing resources; ii) there is no need to transfer data between machines, which

can potentially be very expensive in communication.

Machine learning, which is originated in 1960s, has become one of the most active

research topics in computer science. In this style of research, an agent learns a

concept from large amount of instances, rather than user-defined rules. For example,

a machine learning agent trying to learn a classifier for cat images get many cat

images (and potentially non-cat images) as input and “trains” itself according to

some pre-defined algorithm. Now machine learning algorithms have been applied

ubiquitously in our daily life. For example, they have been used in the back-end of

e-commercial websites, hospitals, financial institutions, etc. They are used to predict

users’ preference on shopping [32], predict the patient’s readmission rate [16], detect

fraud transactions [46], etc.

When distributed data encounters machine learning, many problem emerges. Typ-

ically, the performance of a machine learning algorithm improves as the input data

size increases. Therefore, machine learning practitioners are willing to make use of

data stored on distributed machines as fully as possible. This leads to the research

of designing distributed machine learning algorithms [4, 27, 28, 40, 44, 48, 54]. The

main challenges in distributed machine learning algorithm design include:

• In the situation that the communication between machines are limited, can we

2

achieve comparable performance to centralized machine learning algorithms?

• Can we develop algorithms without complicated inter-process communication,

such as synchronization primitives?

Both of the two challenges are highly related with efficiency of the algorithms. Now

the bandwidth between machines is still much less than that within a single machine.

Therefore, communication between machines is still the main bottleneck restricting

the speed of distributed algorithms. Moreover, too much synchronization steps causes

many sleep and wake, as well as context switching between processes, which is very

time consuming. In this thesis, we mainly focus on the first challenge, while the

second one is also a hot topic in the machine learning community [28, 40].

High dimensionality is a major challenge in many machine learning applications.

It not only increases the computation cost but also causes the issue of overfitting,

i.e., the output of the learning algorithm performs very well on the training data but

badly on other data that is not “seen” by the learning agent before. Moreover, in

the scenario of distributed machine learning, high dimensionality causes additional

problems. People usually employ regularizers to suppress overfitting. However the

regularizer also causes bias to the machine learning algorithm. In distributed machine

learning, the models learned by each machines are ususally aggregated by averaging.

However, the bias cannot be eliminated by simple averaging. Some prior work [15, 22]

proposed the debiased estimator for specific tasks such as linear regression, graphical

model, etc. In this line of work, the bias contained in a model was estimated and

subtracted, and an unbiased model remains. The original aim of debiased estimator

designing lies in the field of statistics, such as confidence interval estimation and hy-

pothesis testing. Very fortunately, it can also be used in distributed machine learning

as a tool for improving the accuracy of model aggregation [27]. In this thesis we

follow this line of research. We propose to improve the performance of distributed

sparse linear discriminant analysis (LDA) [1] by the debiased estimator designed for

sparse LDA. We will provide theoretical guarantees and empirical evidence of the

performance of the proposed approach.

More and more private data are generated everyday. With the development of

cloud storage and social network site, many private data are actually stored on In-

ternet rather than private devices. Moreover, user preference or browsing/purchasing

history on these websites are usually recorded in order to ease the users’ further us-

ing. With the deployment of machine learning algorithms on various web services,

3

users’ concern on the privacy of their data increases. Generally, machine learning

algorithms get users’ own data as input and generate a model (classifier/predictor)

as output, while these algorithms are often public. Therefore, given the knowledge

of the algorithm used, a malicious party may infer user’s data from the output. In

order to protect user privacy to the maximum extent, we should design our machine

learning algorithm very carefully to defend the data against adversaries.

There are mainly two lines of research in private machine learning. The first is

to leverage cryptography protocols such that each party’s input and intermediate

results are not known by other parties while the final output of the algorithm is

still accessible by all parties [30, 51, 55]. A representative protocol that can fulfill

this requirement is the Garbled Circuit proposed by Yao [57]. In the other line,

researchers try to inject the noise into the algorithm such that the output is random

enough such that the adversary cannot infer the data accurately by the output. This

line of research includes Chaudhuri and Monteleoni [10], Kifer, Smith, and Thakurta

[24], and Talwar, Thakurta, and Zhang [47]. There are also studies combining the

two lines, such as Pathak, Rane, and Raj [38].

In this thesis, we will follow the first line of research and propose a multi-party

private sparse learning method which can be shown to be quite effecient in high-

dimensional case. The method is based on secure multi-party computation (MPC)

and the debiased estimator proposed in the last work. It is worth noting that although

this work follows the first line, it has the potential to be extended such that the

advantages of both lines are taken.

The thesis is organized as follows. Chapter 2 demonstrates the motivation, details

and theoretical guarantees of the new distributed learning algorithm. In Chapter 3,

we will combine it with Garbled Circuit, and show the effectiveness of the new secure

algorithm. Chapter 4 concludes the thesis and proposes a couple of potential future

work. The results described in Chapter 2 has been published as Tian and Gu [48].

Part of the content of Chapter 3 has been published as Tian, Jayaraman et al. [49].

4

Chapter 2

Distributed Sparse Machine

Learning

2.1 Introduction

High dimensionality is a main challenge in machine learning applications. It usually

leads to high time and space requirements for processing the data. What is more,

overfitting is another problem that machine learning methods would meet in the

presence of high dimensionality. A common way to address the problems caused by

high dimensionality is the dimensionality reduction. Principal Component Analysis

(PCA) [23] is probably the most well known and widely used dimensionality reduc-

tion method. However, PCA is basically an unsupervised dimensionality reduction

method. It only considers the distributions of features of instances, without taking

into account the labels of the data.

In order to leverage the label information into dimensionality reduction, supervised

dimensionality reduction methods are favored. Linear Discriminant Analysis (LDA)

[1], which is initially proposed as a classification method, is an important supervised

dimensionality reduction method. The motivation of LDA is as follows. Let there be

two classes, and the data of each class are drawn independently from a multivariate

normal distribution. Moreover, we assume that the two normal distributions share

the same covariance matrix but with different mean vectors. Formally, we denote

the distribution of data in Class 1 as N(µ1,Σ
∗) and Class 2 as N(µ2,Σ

∗). For a

new observation Z that is drawn with equal prior probability from the two normal

5

distributions, the Fisher’s linear discriminant rule takes the form

ψ(Z) = 1((Z − µ)>Θ∗µd > 0), (2.1.1)

where µ = (µ1 + µ2)/2, µd = µ1 − µ2, Θ∗ = Σ∗−1 is the precision matrix (a.k.a.,

the inverse covariance matrix), and 1(·) is the indicator function. It is well known

that the Fisher’s linear discriminant rule minimizes the misclassification rate and it

is Bayesian optimal. However, in practice, µ1,µ2 and Σ∗ are unknown, and we need

to estimate µ1, µ2 and Σ∗ from observations. Typically, they can be estimated by

sample means and sample covariance matrix. More specifically, let {Xi : 1 ≤ i ≤ n1}
and {Yi : 1 ≤ i ≤ n2} be independently and identically distributed random samples

from N(µ1,Σ
∗) and N(µ2,Σ

∗) respectively. The estimations of µ1,µ2 and Θ∗ in

the classical regime are µ̂1 = n−11

∑n1

i=1Xi, µ̂2 = n−12

∑n2

i=1 Yi, and Θ̂ = Σ̂−1, where

Σ̂ = n−1
[∑n1

i=1(Xi− µ̂1)(Xi− µ̂1)
>+

∑n2

i=1(Yi− µ̂2)(Yi− µ̂2)
>] is the pooled sample

covariance matrix with n = n1 + n2. Plugging these estimators into (2.1.1) gives rise

to the empirical version of ψ(Z), i.e., ψ̂(Z). Theoretical properties of ψ̂(Z) have been

well studied when d is fixed, e.g., see Anderson [1]. However, in the high-dimensional

regime where d increases with the same order of n, the pooled sample covariance

matrix procedure is not well-conditioned and the plug-in estimator is not reliable.

For example, Bickel and Levina [5] showed that it is asymptotically equivalent to

random guess when the dimensionality increases at some rate comparable to the

number of samples. To overcome this curse of dimensionality, it is natural to impose

some structural assumptions on the parameters of the discriminant rule in (2.1.1).

For example, Cai and Liu [8] made the assumption that the weight vector of the

classifier in (2.1.1), i.e., β∗ = Θ∗µd is a sparse vector. They proposed the following

estimator:

β̂ = argmin
β
‖β‖1 subject to ‖Σ̂β − (µ̂1 − µ̂2)‖∞ ≤ λ, (2.1.2)

where ‖β‖1 =
∑d

j=1 |βj| is the `1 norm, and ‖ · ‖∞ is the element-wise max norm, Σ̂,

µ̂1 and µ̂2 are defined as above and λ > 0 is a tuning parameter. In our study, we

will focus on the above sparse LDA estimator, because it is comparable to or even

better than many other sparse LDA estimators [14, 33, 43].

On the other hand, with the increase in the volume of data used for machine

learning, and the availability of distributed computing resources, distributed statisti-

6

cal estimation [3, 4, 27, 34, 41, 59, 60] and distributed optimization [7, 12, 61] have

received increasing attention. The main bottleneck in distributed computing is usu-

ally the communication between machines, so the overarching goal of the algorithm

design in distributed setting is to reduce the communication costs, while trying to

achieve comparable performance as centralized algorithms. The problem becomes

even more challenging when high dimensionality meets huge data size.

To address the challenge of both high dimensionality and huge data size, in this

paper, we propose a distributed sparse linear discriminant analysis method. In the

proposed algorithm, each “worker” machine generates a local estimator for the sparse

LDA and sends it to the “master” machine, where all local estimators are averaged to

form an aggregated estimator. At the core of our algorithm is an unbiased estimator

for the sparse linear discriminant analysis. It is worth noting that our proposed

algorithm requires only one round of communication between the worker nodes and

the master node. That is, each worker machine only needs to send a vector to the

master node. Thus, our algorithm is very communication-efficient. We prove the

estimation error bounds for the proposed algorithm in terms of different norms. More

specifically, we show that the proposed distributed algorithm attains O(
√
s log d/N+

max(s, s′)m
√
s log d/N) estimation error bound in terms of `2 norm, where N is the

total sample size, m is the number of machines, d is the dimensionality, s = ‖β∗‖0 and

s′ = max1≤j≤d ‖θ∗j‖0 are the number of nonzero elements in β∗ and θ∗j respectively,

with θ∗j being the j-th column of Θ∗. From the estimation error bound, we address

an important question that how to choose m such that the information loss due to

the data parallelism is negligible. In particular, if the machine number m satisfies

m .
√
N/log d/max(s, s′), our distributed algorithm attains the same statistical

rate as the centralized estimator [8], which is O(
√
s log d/N) in terms of `2-norm.

Furthermore, we show that given minj |β∗j | &
√

log d/N , our estimator achieves the

model selection consistency, which matches the minimax lower bound for support

recovery in sparse LDA [14, 25]. However, the model selection consistency established

in Kolar and Liu [25] relies on the irrepresentable condition, which is very stringent.

In sharp contrast, the model selection consistency of our algorithm does not need this

condition.

Notation In this chapter, we use lowercase letters x, y, . . . to denote scalars, bold

lowercase letters x,y, . . . for vectors, and bold uppercase letters X,Y, . . . for matrices.

We denote random vectors by X,Y . We denote ej as the column vector whose j-th

entry is one and others are zeros. Let A = [Aij] ∈ Rd×d be a d × d matrix and

7

x = [x1, . . . , xd]
> ∈ Rd be a d-dimensional vector. For 0 < q < ∞, we define the `0,

`q and `∞ vector norms as ‖x‖0 =
∑d

i=1 1(xi 6= 0), ‖x‖q = (
∑d

i=1 |xi|q)1/q, ‖x‖∞ =

max1≤i≤d |xi|, where 1(·) represents the indicator function. For any real number C

and symmetric matrix A, A � C means that the minimum eigenvalue of A is larger

than C. Specifically, A � 0 means that A is a positive definite matrix. We use the

following notation for the matrix `∞, `1, `∞,∞ and `1,1 norms:

‖A‖∞ = max
1≤j≤d

d∑

k=1

|Ajk|, ‖A‖1 = ‖A>‖∞, ‖A‖∞,∞ = max
1≤i,j≤d

|Aij|, ‖A‖1,1 =
∑

1≤i,j≤d
|Aij|.

For a vector x and an index set S, xS denotes the vector such that [xS]j = xj if j ∈ S,

and [xS]j = 0 otherwise. For sequences fn, gn, we write fn = O(gn) if |fn| ≤ C|gn|
for some C > 0 independent of n and all n > D, where D is a positive integer. We

also make use of the notation fn . gn (fn & gn) if fn is less than (greater than) gn

up to a constant. In this paper, C, c, C ′, C1 etc. denote various absolute constants,

not necessarily the same at each occurrence.

2.2 Related Work

In this section, we briefly review the related work on sparse linear discriminant anal-

ysis (LDA) and distributed machine learning.

LDA has been widely studied in the high dimensional regime where the number

of features d can increase as the sample size n [8, 14, 33, 43]. One important problem

in the high dimensional regime is that the estimation of Θ∗ will be unstable because

the sample covariance matrix Σ̂ is often singular. To address this problem, a common

assumption is that both µd and Σ∗ are sparse. Under this assumption, Shao et al.

[43] proposed to use a thresholding procedure to estimate µd and Σ∗ respectively,

followed by the standard procedure to estimate ψ(Z). Cai and Liu [8] assumed

that β∗ = Θ∗µd is sparse and estimated it directly. While sparse LDA has been

investigated extensively, it is not clear how to extend it to the distributed setting,

where the data are distributed on multiple machines.

With the growth of the size of available datasets, distributed algorithms become

more and more attractive in the machine learning and optimization communities. In

general, distributed algorithm can be categorized into two families: (1) data paral-

lelism, which distributes the data across different parallel computing nodes/machines;

8

and (2) task parallelism, which distributes tasks performed by threads across differ-

ent parallel computing nodes. In this paper, we focus on data parallelism. The most

important problem in data parallelism is how to minimize the communication cost

among different machines. A commonly used approach in distributed statistical esti-

mation is averaging: each “worker” machine generates a local estimator and sends it

to the “master” machine where all local estimators are averaged to form an aggregated

estimator. This type of approach has been first studied by Balcan et al. [3], Mcdonald

et al. [34], Zhang, Duchi, and Wainwright [59], Zhang, Wainwright, and Duchi [60],

and Zinkevich et al. [61]. Nevertheless, the above distributed statistical estimation

methods are in the classical regime. In the high dimensional regime, averaging is

not an effective way for aggregation any more [41]. Moreover, many estimators in

the high dimensional regime are based on the penalized estimation, which introduces

some bias to the estimator. For example, the Lasso estimator [50] is biased due to

the `1-norm penalty. Since averaging only reduces variances, not the bias, the per-

formance of averaged estimator would not be better than the local estimator due to

the aggregation of bias when averaging. To address this problem, Lee et al. [27] pro-

posed distributed sparse regression methods, which exploits the debiased estimators

proposed in Geer et al. [15] and Javanmard and Montanari [22] for distributed sparse

regression. Similar distributed regression methods are proposed by Battey et al. [4]

for both distributed statistical estimation and hypothesis testing. However, all the

above studies on distributed statistical estimation are focused on regression. It is not

easy to extend them to distributed dimensionality reduction.

In fact, the problem of distributed dimensionality reduction is still relatively

under-studied. Liang et al. [29] proposed a distributed approximate PCA algorithm,

which speeds up the computation and needs low communication cost but with a low

accuracy loss. Balcan et al. [2] extended the kernel PCA to the distributed setting

and proposed a communication-efficient distributed kernel PCA algorithm. Valcarcel

Macua, Belanovic, and Zazo [52] developed a distributed algorithm for linear dis-

criminant analysis on a single-hop network. Nevertheless, all these algorithms are in

the classical regime, and cannot be applied to sparse LDA in the high dimensional

regime.

9

2.3 Distributed Sparse Linear Discriminant Anal-

ysis

In this section, we present a distributed linear discriminant analysis algorithm.

The problem setup of distributed sparse linear discriminant analysis is as follows.

Let there be m machines, where the l-th machine stores n1l amount of data with

label 1, and n2l data with label 2. Let X(l) ∈ Rn1l×d, l ∈ {1, 2, . . . ,m} be the data

matrix of the first class stored on the l-th machine, each row of which is sampled

i.i.d. from the multivariate normal distribution N(µ1,Σ
∗). Similarly, let Y(l) ∈

Rn2l×d, l ∈ {1, 2, . . . ,m} be the data matrix of the second class stored on the l-th

machine, where each row is sampled i.i.d. from the multivariate normal distribution

N(µ2,Σ
∗). Without loss of generality, we assume n11 = n12 = . . . = n1m = n1 and

n21 = n22 = . . . = n2m = n2. Let n = n1 + n2, which is the total number of data

stored in a single machine. We also assume n1 ≤ n2 and n1 = rn, where r ≤ 1/2 is a

constant. We propose a distributed sparse LDA algorithm based on Cai and Liu [8]

to directly estimate β∗ in Algorithm 1.

Algorithm 1 Distributed Sparse Linear Discriminant Analysis

Require: X(1), . . . ,X(m),Y(1), . . . ,Y(m)

Ensure: β̄, the aggregated sparse discriminant vector

Workers:
Each worker computes Σ̂(l) and µ̂

(l)
1 , µ̂

(l)
2

Each worker computes a local sparse LDA estimator β̂(l) by (2.3.1)

Each worker computes a debiased estimator β̃(l) by (2.3.4)

Each worker sends β̃(l) to the master machine

Master:
while waiting for β̃(l) sent from all workers do

if received β̃(l) from all workers then
Compute the aggregated sparse estimator β̄ by (2.3.5)

end if
end while

In detail, for the l-th machine, we denote by X
(l)
i and Y

(l)
i the i-th row of X(l) and

Y(l) respectively. On each machine, we can use the sparse LDA estimator in (2.1.2)

to obtain a local estimator as the following:

β̂(l) = argmin
β∈Rd

‖β‖1 subject to
∥∥∥Σ̂(l)β − µ̂(l)

d

∥∥∥
∞
≤ λ, (2.3.1)

10

where λ > 0 is a tuning parameter, µ̂
(l)
d = µ̂

(l)
1 − µ̂(l)

2 with sample means µ̂
(l)
1 =

(
∑n1

i=1X
(l)
i)/n1 and µ̂

(l)
2 = (

∑n2

i=1 Y
(l)
i)/n2 and

Σ̂(l) =
1

n

[n1∑

i=1

(X
(l)
i − µ̂(l)

1)(X
(l)
i − µ̂(l)

1)> +

n2∑

i=1

(Y
(l)
i − µ̂(l)

2)(Y
(l)
i − µ̂(l)

2)>
]
,

which is the total intra-class sample covariance matrix of the l-th machine. The choice

of λ will be discussed in Section 2.4.

The estimator in (2.3.1) is biased due to the shrinkage property of the estimator.

Since averaging only reduce the variance, rather than the bias, if we naively average

β̂(l)’s, the error bound of the averaged estimator will remain in the same order as that

of the local estimators. To address the bias, several debiasing techniques have been

proposed, such as Lee et al. [27] and Battey et al. [4]. However, Lee et al. [27] focused

on the Lasso estimator, and the debiasing method proposed in Battey et al. [4] is only

suitable for regularized estimators. In order to construct an unbiased estimator for

the Dantzig-type estimator, we propose a new debiasing procedure as follows: First,

the CLIME estimator [9] is used to estimate the precision matrix:

Θ̂(l) = argmin ‖Θ‖1,1 subject to ‖Θ>Σ̂(l) − I‖∞,∞ ≤ λ′, (2.3.2)

where λ′ is a tuning parameter, and its choice will be clear from Section 2.4. It

is worth noting that (2.3.2) can be decomposed into d independent optimization

problems, where each one takes the form

θ̂
(l)
j = argmin ‖θ‖1 subject to ‖Σ̂(l)θ − ej‖∞ ≤ λ′, (2.3.3)

for j ∈ {1, 2, . . . , d} and θ̂
(l)
j corresponds to the j-th column of Θ̂(l). Therefore, they

can be solved in parallel.

Second, based on Θ̂(l), we construct a debiased estimator β̃(l) in the following

way:

β̃(l) = β̂(l) − Θ̂(l)>
(
Σ̂(l)β̂(l) − µ̂(l)

d

)
. (2.3.4)

Note that the second term in the right hand side of (2.3.4) can be seen as the esti-

mation of the bias introduced by the penalized estimator in (2.3.2). We subtract the

estimation of the bias from β̂(l) and obtain an unbiased estimator β̃(l).

Finally, the workers send back the unbiased local estimators in (2.3.4) generated by

11

different machines to the master node, and the master node averages all the debiased

local estimators followed by hard thresholding in order to get a sparse estimator.

More specifically, the sparse aggregated estimator is as follows

β̄ = HT

(
1

m

m∑

l=1

β̃(l), t

)
, (2.3.5)

where HT(·) is the hard thresholding operator, which is defined as

[HT(β, t)]j =

{
βj, if |βj| > t,

0, if |βj| ≤ t.

Here t > 0 is a pre-specified threshold. The setting of t will be discussed in Section 2.4.

The proposed distributed algorithm has a low communication cost. In detail,

compared with the naive distributed algorithm in which Σ̂(l)’s and µ̂
(l)
d ’s are computed

separately on each machine and then sent back to the master node, our algorithm

only needs to send d-dimensional vectors rather than d × d matrices to the master

node, which significantly reduces the communication cost. Moreover, we will prove

later that, while keeping low communication cost, our algorithm can attain the same

convergence rate as the centralized method if we choose the number of machines

appropriately.

The time complexity of our algorithm can be illustrated as follows: in order to

obtain β̂(l), the main computation overhead lies on computing Σ̂(l), whose time com-

plexity is O(Nd2/m). For the CLIME estimator, using the FastCLIME method [37],

the time complexity is O(d2). Thus the total time complexity of the proposed algo-

rithm per machine is O(Nd2/m). In contrast, for centralized estimator which collects

the data from all local machines and performs the estimation, the time complexity

is O(Nd2). Therefore, as the number of machine grows, a near linear speedup in

the number of machines can be achieved for our distributed algorithm. Furthermore,

as will be demonstrated in the main theory, in order to make the information loss

caused by the data parallelism negligible, the appropriate choice of m can be as large

as O(
√
N), which implies a time complexity of O(d2

√
N) on each machine. This

suggests that the proposed algorithm has a lower time complexity while attaining the

same statistical rate as the centralized method.

12

2.4 Main Theory

In this section, we establish the main theory for our distributed LDA algorithm.

Before we present the main result of this chapter, we first introduce some necessary

assumptions.

We make the following assumptions on the covariance matrix and the precision

matrix of the two normal distributions.

Assumption 2.4.1 There exists a constant K ≥ 1, such that the maximum and

minimal eigenvalues of Σ∗ can be bounded as follows:

1/K ≤ λmin(Σ∗) ≤ λmax(Σ
∗) ≤ K.

Furthermore we assume that K does not increase as d goes to infinity.

Assumption 2.4.2 Θ∗ belongs to the following set:

U(s′,M) =
{

Θ : Θ � 0, ‖Θ‖1 ≤M, max
1≤j≤d

d∑

k=1

1(Θjk 6= 0) ≤ s′
}
.

Assumption 2.4.2 is a common assumption made in the literature of sparse precision

matrix estimation [9]. It implies that the data can be viewed as generated from a

sparse Gaussian graphical model, where the maximum degree of the graph is no larger

than s′. Note that Assumption 2.4.2 immediately implies that ‖θ∗j‖1 ≤ ‖Θ∗‖1 ≤ M

for all j ∈ {1, 2, . . . , d}.
In most literatures on high dimensional sparse estimation [6, 35], it is assumed that

the sample covariance matrix satisfies the restricted eigenvalue condition. Following

is the definition of the restricted eigenvalue condition that we use in the theory.

Definition 2.4.3 A matrix A ∈ Rd×d satisfies the restricted eigenvalue (RE) condi-

tion with parameters (s, α, γ) if and only if for any index set S with |S| ≤ s, for any

vector v in the cone

C(S, α) = {v ∈ Rd : ‖vSc‖1 ≤ α‖vS‖1},

we have v>Av ≥ γ‖v‖22.

With this definition, the assumption made on the sample covariance matrices can

be presented as follows.

13

Condition 2.4.4 For each l ∈ {1, 2, . . . ,m}, Σ̂(l) satisfies the restricted eigenvalue

condition with respect to the parameters (max{s, s′}, 1, λmin(Σ∗)/16).

The following proposition shows that Condition 2.4.4 is satisfied with high prob-

ability when the sample size n is sufficiently large.

Proposition 2.4.5 If n > max{s, s′}r−1C1K
3 log d, Condition 2.4.4 is satisfied with

probability at least 1 − mC2 exp(−C3n) − 2m/d, where C1, C2 and C3 are absolute

constants.

Now we are ready to present the main theorem bounding the estimation error of

β̄.

Theorem 2.4.6 Under Assumptions 2.4.1, 2.4.2 and Condition 2.4.4, if

λ = C1K
2
√

log d/(rn)‖β∗‖1, λ′ = C2K
2M
√

log d/n for some C1 and C2, and t is

chosen as

t = C ′M

√
log d

N
‖β∗‖1 + C ′′max(s, s′)M

m log d

N
‖β∗‖1, (2.4.1)

where C ′ and C ′′ are absolute constants, then the following inequality holds with prob-

ability at least 1− 18m/d− 4/d:

‖β̄ − β∗‖∞ ≤ C ′M

√
log d

N
‖β∗‖1 + C ′′max(s, s′)M

m log d

N
‖β∗‖1. (2.4.2)

Moreover, with probability at least 1− 18m/d− 4/d we have

‖β̄ − β∗‖2 ≤
√
sC ′M

√
log d

N
‖β∗‖1 +

√
sC ′′max(s, s′)M

m log d

N
‖β∗‖1, (2.4.3)

and with probability at least 1− 18m/d− 4/d we have

‖β̄ − β∗‖1 ≤ sC ′M

√
log d

N
‖β∗‖1 + sC ′′max(s, s′)M

m log d

N
‖β∗‖1. (2.4.4)

The proof of Theorem 2.4.6 is in Appendix A.1. It is worth noting that in the

linear discriminant analysis, only the direction of β̄ affects the discrimination, while

the norm of β̄ does not matter. Therefore, the relative error, i.e., the ratio of the norm

of β̄ − β∗ to the norm of β∗, can better characterize the accuracy of the estimator.

14

Remark 2.4.7 The centralized estimator can be regarded as a special case of the

biased estimator (2.3.1) where m = 1 and n = N . Hence by Lemma A.2.4 the error

bound of the centralized estimator can be obtained: with probability at least 1 − 6/d

we have

‖β̂centralized − β∗‖1 ≤ sCK2

√
log d

N
‖β∗‖1,

where C is a constant. Compared with our distributed estimator, it can be seen that

the error bound of the centralized estimator is of the same order with the first term of

our proposed estimator, which is in the order of O(
√

log d/N). And the second term

of the error bound of our estimator is in the order of O(m log d/N), reflecting the loss

caused by the data distribution and one round of communication.

Corollary 2.4.8 Under the same assumptions with Theorem 2.4.6, if the number of

machines m is chosen to be

m . 1

max(s, s′)

√
N

log d
, (2.4.5)

then with probability at least 1− 18m/d− 4/d the following inequalities holds:

‖β̄ − β∗‖∞ ≤ CM

√
log d

N
‖β∗‖1, ‖β̄ − β∗‖2 ≤

√
sCM

√
log d

N
‖β∗‖1,

‖β̄ − β∗‖1 ≤ sCM

√
log d

N
‖β∗‖1,

where C is a constant.

Remark 2.4.9 Generally speaking, the distributed estimation may cause information

loss and lead to a worse estimation error bound. However, Corollary 2.4.8 suggests

that if the number of machines m satisfies m .
√
N/ log d/max(s, s′) when N, d, s

and s′ grow, the information loss is negligible and the distributed algorithm can attain

the same rate of convergence as the centralized algorithm.

In fact, the `∞ estimation error bound in Theorem 2.4.6 ensures that the estimated

parameter vector correctly excludes all non-informative variables and includes all

useful variables provided that

|β∗j | > C ′M

√
log d

N
‖β∗‖1 + C ′′max(s, s′)M

m log d

N
‖β∗‖1,

15

where C ′ and C ′′ are the same as in Theorem 2.4.6. Therefore, in order to achieve

the model selection consistency, it is sufficient to assume that the minimum signal

strength βmin := minj∈S |β∗j | is not too small. More specifically, we have the following

theorem:

Theorem 2.4.10 Under the same assumptions with Theorem 2.4.6, if

βmin > C ′M

√
log d

N
‖β∗‖1 + C ′′max(s, s′)M

m log d

N
‖β∗‖1, (2.4.6)

where C ′ and C ′′ are those appeared in Theorem 2.4.6, we have with probability higher

than 1− 18m/d− 4/d that sign(β̄j) = sign(β∗j) for any j ∈ {1, 2, . . . , d}.

Similar to Corollary 2.4.8, we have the following conclusion:

Corollary 2.4.11 Under the same assumptions with Theorem 2.4.10, if the following

two condition holds:

m . 1

max(s, s′)

√
N

log d
, βmin > CM

√
log d

N
‖β∗‖1 (2.4.7)

for some C, then we have with probability at least 1 − 18m/d − 4/d that sign(β̄j) =

sign(β∗j) for any j ∈ {1, 2, . . . , d}.

Remark 2.4.12 In Cai and Liu [8], the authors did not provide theoretical guarantee

on the support recovery. Mai, Zou, and Yuan [33] showed that the condition on βmin

needed for model selection consistency is βmin & s
√

log(sd)/N . The condition for the

ROAD estimator proposed in Fan, Feng, and Tong [14] to satisfy the model selection

consistency is βmin &
√

log d/N [25], which is proved to be minimax optimal. It is

obvious that our condition implied by Corollary 2.4.11 matches the minimax lower

bound in Kolar and Liu [25] and is better than Mai, Zou, and Yuan [33]. However,

for the ROAD estimator, a very stringent irrepresentable condition is required for the

model selection consistency to hold. For our algorithm, the irrepresentable condition

is not required.

2.5 Experiments

In this section, we verify the performance of the distributed LDA algorithm using

both synthetic data and real data. We compared it with the centralized sparse LDA

16

number of machines, m
20 40 60 80 100

F
1

sc
o
re

0

0.2

0.4

0.6

0.8

1
F1 scores of support recovery

number of machines, m
20 40 60 80 100

E
rr

or
in

` 2
n
o
rm

0

1

2

3

4
Estimation error in `2 norm

number of machines, m
20 40 60 80 100

E
rr

or
in

` 1
n
o
rm

0

1

2

3

4
Estimation error in `1 norm

Centralized LDA
Naive Averaged
Distributed LDA

Figure 2.1: The F1 score and estimation error (in `2 and `∞ norms) of the proposed
estimator versus the centralized estimator and the naive averaged estimator when the
total sample size N is fixed as 10000.

number of machines, m
20 40 60 80 100

F
1

sc
or

e

0

0.2

0.4

0.6

0.8

1
F1 scores of support recovery

number of machines, m
20 40 60 80 100

E
rr

or
in

` 2
n
or

m

0

1

2

3

4
Estimation error in `2 norm

number of machines, m
20 40 60 80 100

E
rr

or
in

` 1
n
or

m

0

1

2

3

4
Estimation error in `1 norm

Centralized LDA
Naive Averaged
Distributed LDA

Figure 2.2: The F1 score and estimation error (in `2 and `∞ norms) of the proposed
estimator versus the centralized estimator and the naive averaged estimator when the
sample size on each machine n is set to 200.

estimator, and naively averaged sparse LDA estimator. In the centralized SLDA, all

samples are collected in one machine and the model is estimated by Cai and Liu [8].

In the naively averaged SLDA estimator, we apply Cai and Liu [8] to the data on

each machine to obtain local estimators. The local estimators are directly averaged

without debiasing. In other words, the naively averaged SLDA estimator can be

written as β̂n = (
∑m

l=1 β̂
(l))/m.

2.5.1 Synthetic Data Experiments

The synthetic data are generated by setting Σ∗ and µ1,µ2 as follows: Σ∗ ∈ Rd×d

with d = 200, and Σ∗jk = 0.8|j−k| for all j, k ∈ {1, . . . , d}. Additionally, we choose

µ1,µ2 ∈ Rd as µ1 = 0 and µ2 = (1, 1, . . . , 1, 0, 0, . . . , 0)>, where the number of 1’s

is 10. It is easy to get that β∗ is a sparse vector with 11 nonzero entries. We set

r = 0.5, which means that there are equal number of samples from the two normal

distributions on each machine.

We use the following metrics to evaluate the performance of algorithms for com-

17

Table 2.1: The computation time of distributed LDA vs. centralized LDA (m = 1
indicates centralized algorithm).

m 1 20 40 60 80 100

time (in second) 863.4 48.37 33.65 21.87 15.46 10.38

parison: the `2 and `∞ norms of parameter estimation error. Additionally, to measure

the support recovery, F1 score is used to measure the overlap of estimated supports

and true supports. The definition of F1 score is as follows

F1 =
2 · precision · recall

(precision + recall)
,

where precision = | supp(β̄)∩supp(β∗)|/| supp(β̄)| and recall = | supp(β̄)∩supp(β∗)|/| supp(β∗)|,
where β̄ is some estimator. The symbol | · | here means the cardinality of a set.

For the centralized estimator and the naively averaged estimator, there is one

regularization parameter λ. By the theoretical result, a proper choice of λ should

be in the order of O(
√
N−1 log d) for centralized estimator, and O(

√
n−1 log d) for

naively averaged estimator. Therefore, we set λ = C
√
N−1 log d (or C

√
n−1 log d)

and tune C by grid search. For the proposed estimator, other than λ, there are two

more parameters to be tuned: λ′ and t. The theoretical result reveals that λ′ should

be in the order of O(
√
n−1 log d). Thus, we simply set λ′ = λ. The parameter t is

tuned in a similar way as the tuning of λ. We report the best results for all methods

for the sake of fairness.

To investigate the effect of number of machines m, we fix the total sample size

N = 10000 and vary the number of machines. Figure 2.1 shows how the F1 score

and estimation error (in `2 and `∞ norm) of the proposed estimator change as the

number of machine grows. The widths of the curves represent the standard deviations

of metrics such as F1 scores and `2, `∞ norms. The standard deviations are obtained

after repeating the experiments 20 times.

From Figure 2.1, it can be seen that the proposed distributed LDA algorithm is

comparable to the centralized LDA estimator in both support recovery and param-

eter estimation when m is small, while the naive averaged estimator is much worse.

Moreover, we can see that the estimation error of distributed LDA will be larger than

that of centralized LDA as m surpasses a certain threshold. This is consistent with

the result of Theorem 2.4.6. That is, if m is too big, the dominating term in the

estimation error bound will be the second term, which depends on m.

18

Table 2.2: Misclassification rates of different methods on the real dataset

m Centralized SLDA Naive Averaged SLDA Distributed SLDA

4 0.208± 0.012 0.329± 0.035 0.220± 0.017

Next we focus on the effect of averaging, we increase the number of machines m

linearly as the total sample size N , that is, the sample size on each machine n is fixed.

More specifically, we choose n = 200. Figure 2.2 displays the F1 score, estimation error

of our estimator, naively averaged estimator and centralized estimator in terms of `2

and `∞ norms. We can see that the performance of distributed LDA is comparable

to that of centralized LDA, while the performance of naively averaged estimator is

much worse. We can also observe that as N grows linearly with respect to m (i.e.,

n is fixed), the estimation error of distributed LDA decreases slower than that of

centralized LDA. This is consistent with what Theorem 2.4.6 suggests: in (2.4.2) and

(2.4.3), if n is fixed and m is growing, the first term of the error bounds will decrease

because it is of the order O(1/
√
N). However, the second term in the error bounds

will not decrease because it depends on m/N = 1/n. Therefore, the total estimation

error of our algorithm will converge to a positive constant rather than zero.

The empirical computation time of distributed LDA and centralized LDA are

summarized in Table 2.1. We set d = 200, N = 106 and vary m between 20 and

100. For distributed LDA algorithm, we only take into account the time used in one

local machine, rather than the total CPU time consumed by all machines, because

the local computations are carried out in parallel. The experiment platform is Linux

operating system with 2.8GHz CPU. From Table 2.1 we can see that the distributed

algorithm has lower time cost than the centralized algorithm. Furthermore, Table

2.1 also demonstrates a near linear speedup with the number of machines, which is

consistent with the time complexity analysis in Section 2.3.

2.5.2 Real Date Experiments

To verify the effectiveness of the proposed algorithm on real datasets, we use the Heart

Disease dataset1 to conduct the experiment. This dataset contains information of

920 heart disease patients across 4 hospitals. For each patient, there are 13 attributes

associated, including gender, age, laboratory test results, etc. Every patient is labeled

1https://archive.ics.uci.edu/ml/datasets/Heart+Disease

19

with the diagnosis result, i.e., whether he or she is diagnosed as heart disease. In the

preprocessing step, we extend all categorical attributes into binary dummy variables.

For the missing values in any numeric attributes in the dataset, we replace them with

the average value of the attribute that it belongs to. After the preprocessing, we get

920 entries, each with 22 numerical attributes.

The dataset is naturally divided into 4 parts by the hospital where each patient

is diagnosed. We consider each part as the local data stored in one machine. In

every part, we randomly choose half of the data as the training set and the remaining

half as the test set. To get a proper choice of parameters, as in the synthetic data

experiment, we set λ = C
√
N−1 log d (or C

√
n−1 log d), λ′ = λ and use 5-fold cross

validation on the training set to tune C and t. After the training phase, we test the

misclassification rate of classifiers obtained by different methods on the test set. The

experiment is repeated 10 times (i.e., training and test set splitting) and the averaged

misclassification rates along with their standard deviations are reported in Table 2.2.

It can be seen that the proposed method greatly decreases the misclassification rate

compared with the naive averaged estimator, and achieves a comparable performance

with the centralized LDA estimator. This verifies the effectiveness of our algorithm

on real data.

2.6 Conclusions and Future Work

We proposed a communication efficient distributed algorithm for sparse linear dis-

criminant analysis in the high dimensional regime. The key idea is constructing a

local debiased estimator on each machine and averaging them over all machines. We

addressed an important question that how to choose the number of machines such

that the aggregated estimator will attain the same convergence rate as the centralized

estimator. Experiments on both synthetic and real datasets corroborate our theory.

20

Chapter 3

Secure Multi-Party Machine

Learning

3.1 Introduction

As stated in Chapter 1, privacy is one of the major concerns of participants in col-

laborative machine learning. Communication between machines is unavoidable in

distributed machine learning. When sensitive data are stored in machines, commu-

nication may leak the privacy to other parties, even if the content of communication

is just a processing result of the data, rather than the raw data themselves, since a

malicious adversary may infer the private input data through the output of an al-

gorithm. Privacy-preserving machine learning has been investigated by researchers

for years [10, 11, 20, 21, 24, 45, 47]. More specifically, security problems on differ-

ent threat models and different privacy notions have been investigated. Most of the

work focuses on preserving the privacy of a single party, such as Chaudhuri and Mon-

teleoni [10], Chaudhuri, Monteleoni, and Sarwate [11], Jain, Kothari, and Thakurta

[20], Jain and Thakurta [21], Smith and Thakurta [45], and Talwar, Thakurta, and

Zhang [47]. In the meantime, multi-party privacy preserving machine learning meth-

ods have also been studied by Hamm, Cao, and Belkin [17], Pathak, Rane, and Raj

[38], and Shokri and Shmatikov [44]. An important component in multi-party privacy

preserving machine learning is a protocol to securely aggregate models generated by

different parties. This is typically fulfilled by Multi-Party Computation (MPC) pro-

tocol. A well-known implementation of MPC is Garbled Circuit [31, 56, 57], which

will be discussed in detail in Section 3.3.

In this chapter we propose a secure multi-party sparse learning algorithm. This

21

algorithm leverages the debiased estimator presented in Chapter 2 to get an accurate

aggregated model while employing MPC to keep the aggregating process being secure.

The detail of the proposed method will be demonstrated in Section 3.4. The experi-

ment to verify the effectiveness of the proposed method is presented in Section 3.5.

3.2 Related Work

Some prior arts [30, 51, 55] have proposed encrypting the data and using MPC

throughout the machine learning algorithm. This approach provides strong privacy

guarantee, and the output of the approach is exactly the same as non-secure ap-

proaches since no noise ore approximation was involved. However, it is less effective

due to the relatively high computational cost of MPC.

In Pathak, Rane, and Raj [38], each party first trains a local model, and then the

local models are aggregated using MPC and published after adding some noise. Shokri

and Shmatikov [44] proposed to add noise on the update of each iteration in training

deep neural networks. These methods are very efficient because the local models are

trained in a distributive way and can be aggregated asynchronously. However, the

accuracy of the output model is decreased due to the injected noise in the algorithm.

Hamm, Cao, and Belkin [17] proposed to learn a differential private classifier from

local models with the help of unlabeled data. All these models are restricted to

the classical low-dimensional regime. It is not clear how to extend them to high-

dimensional setting.

3.3 Garbled Circuit

Garbled Circuit is a protocol that allowing multiple parties collaboratively perform

computation without revealing the input data of each party to other parties. It is

based on a more fundamental protocol called Oblivious Transfer (OT) [13]. Here we

first briefly introduce oblivious transfer, then discuss how to build garbled circuit

based on oblivious transfer. Part of the content in this section is based on Lindell

and Pinkas [31].

22

3.3.1 Oblivious Transfer

Oblivious transfer is a building block for secure multi-party computation. Here we

use a simple example to show the functionality of oblivious transfer. Let there be

two parties, a sender and a receiver. The sender input a pair strings (s0, s1) and the

receiver inputs a bit σ ∈ {0, 1}. By oblivious transfer, the receiver gets sσ, i.e., the

string corresponding to the receiver’s own input. Moreover, both the sender and the

receiver learn nothing from the transfer except what they are supposed to know. In

other words, after the transfer, the sender does not know which string was got by

the receiver, and the receiver does not know the content of the other string. If there

is a protocol that meets the requirements above, it is called a 1-out-of-2 oblivious

transfer.

Oblivious transfer can be implemented by cryptological approaches. For example,

if we assume the semi-honest threat model, i.e., we assume that the parties honestly

follow the protocol but are curious about other parties’ secret, the 1-out-of-2 OT can

be implemented as follows. The receiver randomly samples a public key Pσ whose

decryption key it knows, and another public key P1−σ whose decryption key it does

not know. The receiver sends the two keys to the sender, the sender encrypts the two

strings by the two keys and send the encrypted strings back to the receiver. Since the

receiver only knows one decryption key, it can only get one string among the two. In

the threat model that parties can be malicious, the implementation would be a little

bit difficult. The detailed implementation of oblivious transfer is out of the scope of

this thesis.

3.3.2 Building Garbled Circuit by Oblivious Transfer

Let us take two-party secure computation as an example. Let f(x, y) be the function

that we wish to compute securely, where x is the input of party A and y is the input

of party B. Without loss of generality, we assume that x and y are two strings of

bits. Garbled Circuit is based on decomposing f(x, y) into combination of logic gates,

i.e., a circuit. Based on the circuit representation of f(·, ·), garbled circuit generally

consists of the following three steps:

1. Party A hardwires its input into the circuit, i.e., generating the circuit comput-

ing f(x, ·).

2. For every wire in the circuit (corresponding to every intermediate result in the

23

Table 3.1: Garbled truth table for an AND gate

Wire a Garbled Wire b Garbled Wire c Garbled Encrypted Entry
0 W 0

a 0 W 0
b 0 W 0

c EW 0
a
(EW 0

b
(W 0

c))

0 W 0
a 1 W 1

b 0 W 0
c EW 0

a
(EW 1

b
(W 0

c))

1 W 1
a 0 W 0

b 0 W 0
c EW 1

a
(EW 0

b
(W 0

c))

1 W 1
a 1 W 1

b 1 W 1
c EW 1

a
(EW 1

b
(W 1

c))

calculation), party A assign two random numbers for two states, one and zero.

The random numbers are called garbled values.

3. For every gate, party A prepares the encrypted truth table according to the

random numbers generated in the last step. Each entry of the table is the

encrypted value of the garbled output using the garbled inputs as the encryption

key. The details are shown below.

4. For all wires for party B’s input, use oblivious transfer to transfer the corre-

sponding garbled values to party B.

5. Party A sends all garbled values of its input to Party B. Party B evaluate all

gates by decoding the truth tables.

Preparing the garbled truth table for each gate is the core of the protocol. Taking

AND gate as an example, let the input wires be as the a and b-th wire, and the output

wire be the c-th. Furthermore, let the two random numbers for wire i be W 0
i ,W

1
i ,

corresponding to value 0 and 1. The real and garbled values, as the encrypted version

of the truth table are shown in Table 3.1. Here Ek(·) is a symmetric encryption

function with key k. The last column of Table 3.1 would be calculated by party A

and sent to party B. If party B knows the garbled value of two input, say W 0
a on

wire a and W 1
b on wire b, it can decrypt only one of the four entries and get W 0

c .

Here we assume that the decryption algorithm can tell party B that the decryption

is correct or not. Here party B can get the garbled representation of the result but

not the real result, because the correspondence between garbled value and real value

is hold by party A. Party B can use the garbled result for further gate evaluation.

24

3.4 The Proposed Method

Based on the MPC protocol and debiased estimator presented in Chapter 2, we pro-

pose the following method for secure multi-party sparse machine learning. The data

flow of the method is illustrated in Figure 3.1. In this framework, each party possesses

some private data, and generates a debiased estimator by the algorithm presented in

Chapter 2. Then the debiased estimators are aggregated using MPC module. It

is worth noting that garbled circuit is designed for calculating functions defined on

boolean values, and potentially it can be extended to any discrete values. However,

the value appeared in machine learning is typically a floating point number. Although

the addition of floating numbers can also be implemented by gates, it is usually too

complicated and may cause a high computational cost for MPC. To simplify the cal-

culation and ensure that all input numbers are represented by the same number of

bits, we multiply each floating point number input by a big integer (say, 108) and

ignore the fractional part. Since the MPC module in the method only executes the

accumulation, we can get back to the original scale by dividing the output by the same

big integer. Note that the truncation may cause some accuracy loss. Nevertheless,

the experiment result reveals that the accuracy loss is negligible.

To simplify the procedure of MPC, we employ secret sharing [42] to convert the

multi-party computation task to a 2-party computation task. Secret sharing is a

method to distribute a secret among a group of parties such that the secret can be

recovered only when a sufficient number of parties combine the pieces owned by them

together. In other words, each party cannot recover the secret individually. In our

case, a two-party secret sharing is enough. More specifically, we assume that there

are two trustful parties (i.e., they do not collude), S1 and S2. For any data owner Pi,

it generates a random bit string r(i), sends it to S2, performs bitwise Exclusive OR

(XOR) between r(i) and the debiased estimator β̃(i) and sends the result to S1. Then

we only need to perform secure two-party computation between S1 and S2. Due to

the presence of the random bit strings, either S1 or S2 have no knowledge about the

output of each data owner as long as they do not collude.

3.5 Experiments

It is worth noting that using MPC to perform calculation on floating point numbers

requires the user to round the numbers to fixed number of decimals, therefore might

25

P1 P2 Pm
D1 D2 Dm

LDA LDA LDA

β̃(1) β̃(2) β̃(m)

S1 S2

β̃ (1)⊕
r (1)

r (1)

β̃
(2
) ⊕

r
(2
) r (2)

β̃
(m) ⊕ r

(m)

r
(m
)

MPC

β̃

Figure 3.1: Illustration for Secure Multi-Party Sparse Linear Discriminant Analysis

be inaccurate. Moreover, the time consumption of the MPC protocol is also worth

investigation. We perform experiments on both synthetic dataset and real-world

dataset.

We use Obliv-C [58] to implement the MPC protocol in the proposed method.

Obliv-C is a wrapper for C compilers that enables users to easily embed secure compu-

tation protocols inside C programs. Moreover, Obliv-C contains recent improvements

on garbled circuits [18, 19, 26].

The experiment setting is basically the same as in Chapter 2. The difference is

that we involve the secure multi-party LDA in comparison. We only consider the

experiment setting that the dataset size in each machine is fixed and the number of

machines varies among {20, 40, 60, 80, 100}. Here we focus on the misclassification

rate of the model learned by different methods. We are also interested about the

computational cost of MPC. The misclassification rates, as well as the number of

gates evaluated in both the synthetic and real datasets experiments are shown in

Table 3.2.

From Table 3.2 it can be seen that the approach introduced in Chapter 3 has nearly

the same performance with the distributed LDA introduced in Chapter 2. This means

that the round error is negligible in practice. In terms of the computational cost, we

can see that the number of gates evaluated scales linearly with the number of parties,

which is consistent with our expectation. Since the MPC gate evaluation speed is over

4M gates per second, the time to perform MPC is within one second. This indicates

that our method can scale to larger datasets.

26

Dataset m Misclassification Rate Number
of gates

Centralized LDA Distributed LDA Our Approach for MPC

Synthetic 20 0.168± 0.002 0.182± 0.003 0.182± 0.003 1,056,800

Synthetic 40 0.167± 0.001 0.180± 0.002 0.180± 0.002 1,295,600

Synthetic 60 0.166± 0.001 0.179± 0.002 0.179± 0.002 1,559,800

Synthetic 80 0.166± 0.001 0.179± 0.001 0.179± 0.001 1,786,400

Synthetic 100 0.165± 0.001 0.179± 0.001 0.179± 0.001 2,062,600

Real 4 0.208± 0.012 0.220± 0.017 0.220± 0.017 94,200

Table 3.2: Experimental Results (20 repetitions on Synthetic data and 10 repetitions
on Real data)

3.6 Conclusion

In this chapter we introduced several important concepts in secure multi-party com-

puting and proposed a framework for secure multi-party sparse linear discriminant

analysis. We conducted experiments to show that in this application, the MPC mod-

ule is very efficient and does not cause any perceivable performance loss to the output

of the machine learning algorithm.

27

Chapter 4

Conclusion and Future Work

In this thesis, a new communication-efficient distributed sparse LDA algorithm is

proposed. Combining with secure multi-party computation protocols, we also propose

a secure multi-party sparse LDA algorithm. We proved the theoretical guarantee of

the proposed distributed algorithm. More specifically, we proved that, as long as the

number of machines is less than a threshold, the distributed algorithm can attain the

same statistical rate with centralized algorithms, where all data are stored in a single

machine and easily accessible by the algorithm. For the secure multi-party sparse

LDA algorithm, we conducted experiments on both synthetic and real-world datasets

to show that the secure algorithm has no accuracy loss compared with the non-secure

algorithm.

It is worth noting that the debiasing technique can not only be used in high-

dimensional linear discriminant analysis, but also in other machine learning methods

that employ a convex loss function and a regularizer to avoid overfitting, such as sparse

linear regression [27], sparse Logistic regression, ridge regression, high dimensional

graphical model [15, 54], etc. Therefore the proposed approaches presented in both

chapters can be generalized to a wider range of machine learning methods.

In the future we will also explore other privacy notions in secure machine learning,

such as differential privacy and its variants. We will also explore secure machine

learning methods involving non-convex optimization, such as training deep neural

networks, sparse learning by iterative hard-thresholding, etc.

28

Bibliography

[1] T. T. W. Anderson. An introduction to multivariate statistical analysis. John

Wiley & Sons, 1968.

[2] M.-F. Balcan, Y. Liang, L. Song, D. Woodruff, and B. Xie. “Distributed Kernel

Principal Component Analysis”. In: arXiv preprint arXiv:1503.06858 (2015).

[3] M.-F. Balcan, A. Blum, S. Fine, and Y. Mansour. “Distributed learning, com-

munication complexity and privacy”. In: arXiv preprint arXiv:1204.3514 (2012).

[4] H. Battey, J. Fan, H. Liu, J. Lu, and Z. Zhu. “Distributed Estimation and Infer-

ence with Statistical Guarantees”. In: arXiv preprint arXiv:1509.05457 (2015).

[5] P. J. Bickel and E. Levina. “Some theory for Fisher’s linear discriminant func-

tion,’naive Bayes’, and some alternatives when there are many more variables

than observations”. In: Bernoulli (2004), pp. 989–1010.

[6] P. J. Bickel, Y. Ritov, and A. B. Tsybakov. “Simultaneous analysis of Lasso

and Dantzig selector”. In: The Annals of Statistics (2009), pp. 1705–1732.

[7] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. “Distributed optimiza-

tion and statistical learning via the alternating direction method of multipliers”.

In: Foundations and Trends R© in Machine Learning 3.1 (2011), pp. 1–122.

[8] T. Cai and W. Liu. “A direct estimation approach to sparse linear discriminant

analysis”. In: Journal of the American Statistical Association 106.496 (2011).

[9] T. Cai, W. Liu, and X. Luo. “A constrained `1 minimization approach to sparse

precision matrix estimation”. In: Journal of the American Statistical Associa-

tion 106.494 (2011), pp. 594–607.

[10] K. Chaudhuri and C. Monteleoni. “Privacy-preserving logistic regression”. In:

Advances in Neural Information Processing Systems. 2009, pp. 289–296.

29

[11] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. “Differentially Private Em-

pirical Risk Minimization”. In: Journal of Machine Learning Research 12.Mar

(2011), pp. 1069–1109.

[12] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. “Optimal distributed

online prediction using mini-batches”. In: The Journal of Machine Learning

Research 13.1 (2012), pp. 165–202.

[13] S. Even, O. Goldreich, and A. Lempel. “A randomized protocol for signing

contracts”. In: Communications of the ACM 28.6 (1985), pp. 637–647.

[14] J. Fan, Y. Feng, and X. Tong. “A Road to Classification in High Dimensional

Space: the Regularized Optimal Affine Discriminant”. In: Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 74.4 (2012), pp. 745–771.

[15] S. Van de Geer, P. Bühlmann, Y. Ritov, R. Dezeure, et al. “On Asymptotically

Optimal Confidence Regions and Tests for High-Dimensional Models”. In: The

Annals of Statistics 42.3 (2014), pp. 1166–1202.

[16] M. Grzyb, A. Zhang, C. Good, K. Khalil, B. Guo, L. Tian, J. Valdez, and Q.

Gu. “Multi-task cox proportional hazard model for predicting risk of unplanned

hospital readmission”. In: Systems and Information Engineering Design Sym-

posium (SIEDS), 2017. IEEE. 2017, pp. 265–270.

[17] J. Hamm, P. Cao, and M. Belkin. “Learning Privately from Multiparty Data”.

In: arXiv preprint arXiv:1602.03552 (2016).

[18] Y. Huang, D. Evans, J. Katz, and L. Malka. “Faster Secure Two-Party Com-

putation Using Garbled Circuits”. In: USENIX Security Symposium. 2011.

[19] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. “Extending Oblivious Transfers

Efficiently”. In: Annual International Cryptology Conference. 2003.

[20] P. Jain, P. Kothari, and A. Thakurta. “Differentially Private Online Learning”.

In: arXiv preprint arXiv:1109.0105 (2011).

[21] P. Jain and A. Thakurta. “Differentially Private Learning with Kernels”. In:

International Conference on Machine Learning 28 (2013), pp. 118–126.

[22] A. Javanmard and A. Montanari. “Confidence Intervals and Hypothesis Test-

ing for High-Dimensional Regression”. In: The Journal of Machine Learning

Research 15.1 (2014), pp. 2869–2909.

[23] I. Jolliffe. Principal component analysis. Wiley Online Library, 2002.

30

[24] D. Kifer, A. Smith, and A. Thakurta. “Private Convex Empirical Risk Mini-

mization and High-Dimensional Regression”. In: Journal of Machine Learning

Research 1 (2012), p. 41.

[25] M. Kolar and H. Liu. “Optimal feature selection in high-dimensional discrim-

inant analysis”. In: Information Theory, IEEE Transactions on 61.2 (2015),

pp. 1063–1083.

[26] V. Kolesnikov and T. Schneider. “Improved Garbled Circuit: Free XOR Gates

and Applications”. In: International Colloquium on Automata, Languages, and

Programming. 2008.

[27] J. D. Lee, Y. Sun, Q. Liu, and J. E. Taylor. “Communication-Efficient Sparse

Regression: a One-Shot Approach”. In: arXiv preprint arXiv:1503.04337 (2015).

[28] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J.

Long, E. J. Shekita, and B.-Y. Su. “Scaling Distributed Machine Learning with

the Parameter Server.” In: OSDI. Vol. 14. 2014, pp. 583–598.

[29] Y. Liang, M.-F. F. Balcan, V. Kanchanapally, and D. Woodruff. “Improved Dis-

tributed Principal Component Analysis”. In: Advances in Neural Information

Processing Systems. 2014, pp. 3113–3121.

[30] Y. Lindell and B. Pinkas. “Privacy Preserving Data Mining”. In: Advances in

Cryptology?-CRYPTO. Springer. 2000, pp. 36–54.

[31] Y. Lindell and B. Pinkas. “Secure Multiparty Computation for Privacy-Preserving

Data Mining”. In: Journal of Privacy and Confidentiality 1.1 (2009), p. 5.

[32] G. Linden, B. Smith, and J. York. “Amazon. com recommendations: Item-to-

item collaborative filtering”. In: IEEE Internet computing 7.1 (2003), pp. 76–

80.

[33] Q. Mai, H. Zou, and M. Yuan. “A Direct Approach to Sparse Discriminant

Analysis in Ultra-High Dimensions”. In: Biometrika (2012), asr066.

[34] R. Mcdonald, M. Mohri, N. Silberman, D. Walker, and G. S. Mann. “Efficient

Large-Scale Distributed Training of Conditional Maximum Entropy Models”.

In: NIPS. 2009.

[35] S. Negahban, B. Yu, M. J. Wainwright, and P. K. Ravikumar. “A unified frame-

work for high-dimensional analysis of M -estimators with decomposable regular-

izers”. In: Advances in Neural Information Processing Systems. 2009, pp. 1348–

1356.

31

[36] M. Neykov, Y. Ning, J. S. Liu, and H. Liu. “A Unified Theory of Confidence

Regions and Testing for High Dimensional Estimating Equations”. In: arXiv

preprint arXiv:1510.08986 (2015).

[37] H. Pang, H. Liu, and R. J. Vanderbei. “The fastclime package for linear pro-

gramming and large-scale precision matrix estimation in R.” In: Journal of

Machine Learning Research 15.1 (2014), pp. 489–493.

[38] M. Pathak, S. Rane, and B. Raj. “Multiparty Differential Privacy via Aggrega-

tion of Locally Trained Classifiers”. In: NIPS. 2010.

[39] G. Raskutti, M. J. Wainwright, and B. Yu. “Restricted eigenvalue properties for

correlated Gaussian designs”. In: Journal of Machine Learning Research 11.Aug

(2010), pp. 2241–2259.

[40] B. Recht, C. Re, S. Wright, and F. Niu. “Hogwild: A lock-free approach to

parallelizing stochastic gradient descent”. In: Advances in neural information

processing systems. 2011, pp. 693–701.

[41] J. Rosenblatt and B. Nadler. “On the Optimality of Averaging in Distributed

Statistical Learning”. In: arXiv preprint arXiv:1407.2724 (2014).

[42] A. Shamir. “How to share a secret”. In: Communications of the ACM 22.11

(1979), pp. 612–613.

[43] J. Shao, Y. Wang, X. Deng, S. Wang, et al. “Sparse Linear Discriminant Anal-

ysis by Thresholding for High Dimensional Data”. In: The Annals of Statistics

39.2 (2011), pp. 1241–1265.

[44] R. Shokri and V. Shmatikov. “Privacy-Preserving Deep Learning”. In: ACM

Conference on Computer and Communications Security. 2015.

[45] A. Smith and A. Thakurta. “Differentially Private Feature Selection via Stabil-

ity Arguments, and the Robustness of the Lasso”. In: Proceedings of Conference

on Learning Theory. 2013.

[46] S. Stolfo, D. W. Fan, W. Lee, A. Prodromidis, and P Chan. “Credit card fraud

detection using meta-learning: Issues and initial results”. In: AAAI-97 Work-

shop on Fraud Detection and Risk Management. 1997.

[47] K. Talwar, A. Thakurta, and L. Zhang. “Nearly Optimal Private Lasso”. In:

NIPS. 2015.

32

[48] L. Tian and Q. Gu. “Communication-efficient Distributed Sparse Linear Dis-

criminant Analysis”. In: Artificial Intelligence and Statistics. 2017, pp. 1178–

1187.

[49] L. Tian, B. Jayaraman, Q. Gu, and D. Evans. “Aggregating Private Sparse

Learning Models Using Multi-Party Computation”. In:

[50] R. Tibshirani. “Regression Shrinkage and Selection via the Lasso”. In: Journal

of the Royal Statistical Society. Series B (Methodological) (1996), pp. 267–288.

[51] J. Vaidya, M. Kantarcıoğlu, and C. Clifton. “Privacy-Preserving Naive Bayes

Classification”. In: The VLDB Journal 17.4 (2008).

[52] S Valcarcel Macua, P. Belanovic, and S. Zazo. “Distributed linear discriminant

analysis”. In: Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE

International Conference on. IEEE. 2011, pp. 3288–3291.

[53] R. Vershynin. “Introduction to the non-asymptotic analysis of random matri-

ces”. In: arXiv preprint arXiv:1011.3027 (2010).

[54] P. Xu, L. Tian, and Q. Gu. “Communication-efficient Distributed Estima-

tion and Inference for Transelliptical Graphical Models”. In: arXiv preprint

arXiv:1612.09297 (2016).

[55] Z. Yang, S. Zhong, and R. N. Wright. “Privacy-Preserving Classification of

Customer Data without Loss of Accuracy”. In: SIAM International Conference

on Data Mining. 2005.

[56] A. C. Yao. “How to Generate and Exchange Secrets”. In: Symposium on Foun-

dations of Computer Science. 1986.

[57] A. C. Yao. “Protocols for Secure Computations”. In: Symposium on Foundations

of Computer Science. 1982.

[58] S. Zahur and D. Evans. Obliv-C: A Language for Extensible Data-Oblivious

Computation. Cryptology ePrint Archive, Report 2015/1153. http://eprint.

iacr.org/2015/1153. 2015.

[59] Y. Zhang, J. C. Duchi, and M. J. Wainwright. “Divide and Conquer Kernel

Ridge Regression: A Distributed Algorithm with Minimax Optimal Rates”. In:

arXiv preprint arXiv:1305.5029 (2013).

[60] Y. Zhang, M. J. Wainwright, and J. C. Duchi. “Communication-Efficient Algo-

rithms for Statistical Optimization”. In: NIPS. 2012.

33

[61] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. “Parallelized stochastic gra-

dient descent”. In: Advances in neural information processing systems. 2010,

pp. 2595–2603.

34

35

Appendix A

Proof of Theorems

A.1 Proof of Theorems, Corollaries and Proposi-

tions in Chapter 2

Before we prove the main results, we first lay out a key lemma, which is crucial to

establish the main theory.

Lemma A.1.1 Under Assumptions 2.4.1, 2.4.2 and Condition 2.4.4, if λ = C1K
2
√

log d/(rn)‖β∗‖1,
λ′ = C2K

2M
√

log d/n, we have with probability at least 1− 18m/d− 4/d that

∥∥∥∥
1

m

m∑

l=1

β̃(l) − β∗
∥∥∥∥
∞
≤ C ′M

√
log d

N
‖β∗‖1 + C ′′max(s, s′)M

m log d

N
‖β∗‖1,

where C ′ and C ′′ are constants.

Lemma A.1.1 gives an upper bound on the `∞ estimation error for the averaged

debiased estimator.

Lemma A.1.2 Under Assumption 2.4.1, for any l ∈ {1, 2, . . . , d}, if we define

Σ̃(l) =
1

n

[n1∑

i=1

(X
(l)
i − µ1)(X

(l)
i − µ1)

> +

n2∑

i=1

(Y
(l)
i − µ2)(Y

(l)
i − µ2)

>
]
, (A.1.1)

then with probability at least 1− 2/d the following inequality holds:

‖Σ̂(l) − Σ̃(l)‖∞,∞ ≤
CK2 log d

rn
.

Now we are ready to prove the main theorems and corollaries.

36

A.1.1 Proof of Proposition 2.4.5

Proof We denote s∗ = max(s, s′). For any index set S satisfying |S| ≤ s∗, and for

any vector u in the cone {u : ‖uSc‖1 ≤ ‖uS‖1}, we have

u>Σ̂(l)u = u>Σ̃(l)u + u>(Σ̂(l) − Σ̃(l))u ≥ u>Σ̃(l)u− |u>(Σ̂(l) − Σ̃(l))u|. (A.1.2)

Note that Σ∗ satisfies the RE condition with parameter (s∗, 1, λmin(Σ∗)) since Σ∗ is

a positive definite matrix following Assumption 2.4.1. From the definition of Σ̃(l) in

(A.1.1) and Theorem A.5.7, it gives rise that there exist three universal constants C1,

C2 and C3, such that if n satisfies the following inequality:

n >
C1ρ

2(Σ∗)

λ2min(Σ∗)
s∗ log d,

then with probability at least 1−C2 exp(−C3n), Σ̃(l) satisfies the RE condition with

parameters (s∗, 1, λmin(Σ∗)/8), i.e., u>Σ̃(l)u ≥ λmin(Σ∗)/8‖u‖22. From Assumption

2.4.1 we get that λmin(Σ∗) ≥ 1/K and ρ2(Σ∗) ≤ λmax(Σ
∗) ≤ K. Therefore we have

C1ρ
2(Σ∗)

λ2min(Σ∗)
s∗ log d ≤ C1K

3s∗ log d.

Next we give an bound on |u>(Σ̂(l) − Σ̃(l))u|: we have

|u>(Σ̂(l) − Σ̃(l))u| ≤ ‖u‖1 · ‖(Σ̂(l) − Σ̃(l))u‖∞ ≤ ‖u‖21 · ‖Σ̂(l) − Σ̃(l)‖∞,∞, (A.1.3)

where the first and second inequality follow from Hölder’s inequality. Moreover, by

‖uSc‖1 ≤ ‖uS‖1 we have ‖u‖1 = ‖uSc‖1 + ‖uS‖1 ≤ 2‖uS‖1. Substituting it into

(A.1.3) gives rise to

|u>(Σ̂(l) − Σ̃(l))u| ≤ (2‖uS‖1)2‖Σ̂(l) − Σ̃(l)‖∞,∞ ≤ 4s∗‖uS‖22 · ‖Σ̂(l) − Σ̃(l)‖∞,∞
≤ 4s∗‖u‖22 · ‖Σ̂(l) − Σ̃(l)‖∞,∞,

where the second inequality follows from Cauchy-Schwartz inequality. By (A.2.10)

with probability at least 1− 2/d we have

|u>(Σ̂(l) − Σ̃(l))u| ≤ 4s∗C4K
2 log d

rn
‖u‖22.

37

Applying this bound on (A.1.2) gives that

u>Σ̂(l)u ≥
(
λmin(Σ∗)

8
− 4s∗C4K

2 log d

rn

)
‖u‖22

with probability at least 1−C1 exp(−C2n)−2/d. If we set n > s∗r−1 max{64C4, C1}K3 log d,

it yields that u>Σ̂(l)u ≥ λmin(Σ∗)/16, i.e., Σ̂(l) satisfies the RE condition with pa-

rameters (s∗, 1, λmin(Σ∗)/16). Applying union bound over l ∈ {1, 2, . . . , d}, the prob-

ability of the RE condition to be satisfied by all Σ̂(l)’s is 1−mC1 exp(−C2n)− 2m/d.

This completes the proof.

A.1.2 Proof of Theorem 2.4.6

Proof From the definition of HT(·, t) we have that ∀u ∈ Rd,∀j ∈ {1, 2, . . . , d}, |(HT(u, t))j−
uj| ≤ t. Hence ‖HT(u, t)− u‖∞ ≤ t. By triangle inequality, we have

‖β̄ − β∗‖∞ ≤
∥∥∥∥β̄ −

1

m

m∑

l=1

β̃(l)

∥∥∥∥
∞

+

∥∥∥∥
1

m

m∑

l=1

β̃(l) − β∗
∥∥∥∥
∞

≤ t+

∥∥∥∥
1

m

m∑

l=1

β̃(l) − β∗
∥∥∥∥
∞

≤ 2t = 2C ′M

√
log d

N
‖β∗‖1 + 2C ′′max(s, s′)M

m log d

N
‖β∗‖1, (A.1.4)

where the third inequality follows from Lemma A.1.1. Now we consider the error

bound of the `2 and `1 norm. If the event E :=
{
‖
(∑m

l=1 β̃
(l)
)
/m − β∗

∥∥
∞ ≤ t}

happens, for any j ∈ Sc, we have

∣∣∣∣
1

m

m∑

l=1

β̃
(l)
j

∣∣∣∣ =

∣∣∣∣
1

m

m∑

l=1

β̃
(l)
j − β∗j

∣∣∣∣ ≤ t,

38

where the first equality follows from the fact that β∗j = 0. By the truncation rule, we

have β̄j = 0. Hence supp(β̄) ⊆ S. Therefore, under event E , we have

‖β̄ − β∗‖2 = ‖(β̄ − β∗)S‖2 ≤
√
s‖(β̄ − β∗)S‖∞

≤ √s‖β̄ − β∗‖∞ ≤ 2
√
st

= 2
√
sC ′M

√
log d

N
‖β∗‖1 + 2

√
sC ′′max(s, s′)M

m log d

N
‖β∗‖1,

where the second inequality follows from Cauchy-Schwartz inequality and the fourth

inequality follows from (A.1.4). Similarly, we have

‖β̄ − β∗‖1 = ‖(β̄ − β∗)S‖1 ≤ s‖(β̄ − β∗)S‖∞ ≤ 2st

≤ 2sC ′M

√
log d

N
‖β∗‖1 + 2sC ′′max(s, s′)M

m log d

N
‖β∗‖1.

This completes the proof.

A.1.3 Proof of Corollary 2.4.8

Proof Substituting (2.4.5) into (2.4.2), we obtain with probability at least 1 −
18m/d− 4/d that

‖β̄ − β∗‖∞ ≤ 2C ′M

√
log d

N
‖β∗‖1 + 2C ′′max(s, s′)M

(
C ′′′

max(s, s′)

√
N

log d

)
log d

N
‖β∗‖1

= CM

√
log d

N
‖β∗‖1.

Substituting (2.4.5) into (2.4.3), we obtain with probability at least 1− 18m/d− 4/d

that

‖β̄ − β∗‖2 ≤ 2
√
sC ′M

√
log d

N
‖β∗‖1 + 2

√
sC ′′max(s, s′)M

(
C ′′′

max(s, s′)

√
N

log d

)
log d

N
‖β∗‖1

=
√
sCM

√
log d

N
‖β∗‖1,

39

Substituting (2.4.5) into (2.4.4), we obtain with probability at least 1− 18m/d− 4/d

that

‖β̄ − β∗‖1 ≤ 2sC ′M

√
log d

N
‖β∗‖1 + 2sC ′′max(s, s′)M

(
C ′′′

max(s, s′)

√
N

log d

)
log d

N
‖β∗‖1

= sCM

√
log d

N
‖β∗‖1.

This completes the proof.

A.1.4 Proof of Theorem 2.4.10

Proof We define t as in (2.4.1), and the event E is defined as

E :=

{∥∥∥∥
1

m

m∑

l=1

β̃(l) − β∗
∥∥∥∥
∞
≤ t

}
.

This event is the event that the conclusion of Lemma A.1.1 holds. From Lemma

A.1.1 we know that E happens with probability at least 1− 18m/d− 4/d. Under the

condition that βmin > 2t, we have that

1. if β∗j > 0, which means that β∗j > 2t, it holds that β̄j ≥ β∗j −|β̄j−β∗j | > 2t−2t =

0.

2. if β∗j < 0, which means that β∗j < −2t, it holds that β̄j ≤ β∗j + |β̄j − β∗j | <
−2t+ 2t = 0.

3. if β∗j = 0, because event E happens we have |
(∑m

l=1 β̃
(l)
j

)
/m| ≤ t. By the

definition of the hard thresholding operator HT(·, t), we have β̄j = 0.

Conclusively we have sign(β∗j) = sign(β̄j) for all j ∈ {1, 2, . . . , d} if the event E
happens, which has a probability at least 1− 18m/d− 4/d.

40

A.1.5 Proof of Corollary 2.4.11

Proof Substituting (2.4.7) into (2.4.6), we obtain that the condition of βmin in

Theorem 2.4.10 can be rewritten as

βmin > 2C ′M

√
log d

N
‖β∗‖1 + 2C ′′max(s, s′)M

(
C1

max(s, s′)

√
N

log d

)
log d

N
‖β∗‖1

= CM

√
log d

N
‖β∗‖1.

It is obvious that our assumption on βmin satisfies this condition. Therefore by Theo-

rem 2.4.10 we have with probability at least 1−18m/d−4/d that sign(β∗j) = sign(β̄j)

for all j ∈ {1, 2, . . . , d}.

A.2 Proof of Lemmas in Appendix A.1

First, we lay out some lemmas which are crucial to the proof of Lemma A.1.1.

Lemma A.2.1 Let X1,X2, . . . ,Xn ∈ Rd be i.i.d. random vectors following normal

distribution N(µ,Σ). And the sample mean X̄ = (
∑n

i=1Xi)/n. Then the difference

between X̄ and µ can be bounded by

‖X̄ − µ‖∞ ≤ CKX

√
log d

n

with probability at least 1− 1/d, where C is an absolute constant, KX = ‖X1‖ψ2.

Lemma A.2.2 Let X1,X2, . . . ,Xn be i.i.d. random vectors following multivariate

normal distribution with zero mean and covariance matrix Σ ∈ Rd×d, then with prob-

ability at least 1− 2/d, the following inequality holds:

∥∥∥∥
1

n

n∑

i=1

XiX
>
i −Σ

∥∥∥∥
∞,∞
≤ CK2

X

√
log d

n
,

where C is an absolute constant, and KX = ‖X1‖ψ2.

41

Lemma A.2.3 Under Assumption 2.4.1, for any l ∈ {1, 2, . . . ,m}, we have with

probability at least 1− 4/d that

∥∥∥Σ̂(l) −Σ∗
∥∥
∞,∞ ≤ C2K

2

√
log d

n
, (A.2.1)

where C1 and C2 are absolute constants.

Lemma A.2.4 Under Assumption 2.4.1 and Condition 2.4.4, if we set λ as

λ ≥ CK2

√
log d

rn
‖β∗‖1, (A.2.2)

then we have with probability at least 1− 6/d that

‖β̂(l) − β∗‖1 ≤
128λs

λmin(Σ∗)
. (A.2.3)

Lemma A.2.5 Under Assumption 2.4.1, 2.4.2 and Condition 2.4.4, if we set λ′

λ′ ≥ CK2M

√
log d

n
, (A.2.4)

then for each l with probability at least 1− 4/d we have

‖θ̂(l)j − θ∗‖1 ≤
128λ′s′

λmin(Σ∗)

for all j ∈ {1, 2, . . . , d}.

Note that Lemma A.2.5 implies that for each machine,

‖Θ̂(l) −Θ∗‖1 ≤
128λ′s′

λmin(Σ∗)

holds with probability at least 1− 4/d.

42

A.2.1 Proof of Lemma A.1.1

Proof Substituting the definition of β̃(l), we have

∥∥∥∥
1

m

m∑

l=1

β̃(l) − β∗
∥∥∥∥
∞

=

∥∥∥∥
1

m

m∑

l=1

β̂(l) − β∗ − Θ̂(l)>(Σ̂(l)β̂(l) − µ̂(l)
d)

∥∥∥∥
∞

=

∥∥∥∥
1

m

m∑

l=1

(
I− Θ̂(l)>Σ̂(l)

)(
β̂(l) − β∗

)
− Θ̂(l)>Σ̂(l)β∗ + Θ̂(l)>µ̂(l)

d

∥∥∥∥
∞

=

∥∥∥∥
1

m

m∑

l=1

(
I− Θ̂(l)>Σ̂(l)

)(
β̂(l) − β∗

)
+ Θ̂(l)>(µ̂(l)

d − Σ̂(l)β∗
)∥∥∥∥
∞
.

(A.2.5)

Using triangle inequality, we can split (A.2.5) into two terms:

∥∥∥∥
1

m

m∑

l=1

β̃(l) − β∗
∥∥∥∥
∞
≤
∥∥∥∥

1

m

m∑

l=1

(
I− Θ̂(l)>Σ̂(l)

)(
β̂(l) − β∗

)∥∥∥∥
∞︸ ︷︷ ︸

I1

+

∥∥∥∥
1

m

m∑

l=1

Θ̂(l)>(µ̂(l)
d − Σ̂(l)β∗

)∥∥∥∥
∞︸ ︷︷ ︸

I2

.

Firstly we give an upper bound of I1. By triangle inequality we have

I1 ≤
1

m

m∑

l=1

∥∥(I− Θ̂(l)>Σ̂(l)
)(
β̂(l) − β∗

)∥∥
∞

≤ 1

m

m∑

l=1

∥∥∥I− Θ̂(l)>Σ̂(l)
∥∥∥
∞,∞
·
∥∥∥β̂(l) − β∗

∥∥∥
1
.

By (2.3.2) and Lemma (A.2.4) we have with probability at least 1− 6m/d that

I1 ≤
128λ′λs

λmin(Σ∗)
=

128sC1C2K
4M log d

λmin(Σ∗)rn
‖β∗‖1 ≤

sC3M log d

n
‖β∗‖1,

where C3 is a constant. Now we take a closer look at I2. This term can be further

rewritten as

I2 =

∥∥∥∥
1

m

m∑

l=1

Θ∗>
(
µ̂

(l)
d − Σ̂(l)β∗

)
+ (Θ̂(l) − Θ̂∗)>

(
µ̂

(l)
d − Σ̂(l)β∗

)∥∥∥∥
∞

≤
∥∥∥∥

1

m

m∑

l=1

Θ∗>
(
µ̂

(l)
d − Σ̂(l)β∗

)∥∥∥∥
∞︸ ︷︷ ︸

I3

+

∥∥∥∥
1

m

m∑

l=1

(Θ̂(l) − Θ̂∗)>
(
µ̂

(l)
d − Σ̂(l)β∗

)∥∥∥∥
∞︸ ︷︷ ︸

I4

.

43

Firstly we bound I4. By triangle inequality we have

I4 ≤
1

m

m∑

l=1

∥∥∥(Θ̂(l) − Θ̂∗)>
(
µ̂

(l)
d − Σ̂(l)β∗

)∥∥∥
∞
≤ 1

m

m∑

l=1

∥∥∥(Θ̂(l) − Θ̂∗)>
∥∥∥
∞
·
∥∥µ̂(l)

d − Σ̂(l)β∗
∥∥
∞.

In the proof of Lemma A.2.4, we get the conclusion that ‖µ̂(l)
d − Σ̂(l)β∗‖∞ ≤ λ with

probability at least 1−6/d. Moreover, using Lemma A.2.5 and union bound, we have

with probability at least 1− 10m/d that

I4 ≤
128λλ′s′

λmin(Σ∗)
=

128s′C1C2K
4M log d

λmin(Σ∗)rn
‖β∗‖1 ≤

s′C4M log d

n
‖β∗‖1,

where C4 is a constant. Finally, we give a bound on I3. This term can be rewritten

as follows:

I3 =

∥∥∥∥
1

m

m∑

l=1

Θ∗>(µ̂
(l)
d − µd + Σ∗β∗ − Σ̂(l)β∗)

∥∥∥∥
∞

≤
∥∥∥∥

1

m

m∑

l=1

Θ∗>(µ̂
(l)
d − µd)

∥∥∥∥
∞

+

∥∥∥∥
1

m

m∑

l=1

Θ∗>(Σ∗ − Σ̂(l))β∗
∥∥∥∥
∞

≤
∥∥∥∥

1

m

m∑

l=1

Θ∗>(µ̂
(l)
d − µd)

∥∥∥∥
∞︸ ︷︷ ︸

I5

+

∥∥∥∥
1

m

m∑

l=1

Θ∗>(Σ∗ − Σ̃(l))β∗
∥∥∥∥
∞︸ ︷︷ ︸

I6

+
1

m

m∑

l=1

∥∥∥Θ∗>(Σ̃(l) − Σ̂(l))β∗
∥∥∥
∞

︸ ︷︷ ︸
I7

,

where the first equality uses the fact that µd = Σ∗β∗. Furthermore, I7 can be

bounded by

I7 ≤
1

m

m∑

l=1

‖Θ∗>‖∞ · ‖(Σ̃(l) − Σ̂(l))β∗‖∞

≤ 1

m

m∑

l=1

‖Θ∗‖1 · ‖Σ̃(l) − Σ̂(l)‖∞,∞ · ‖β∗‖1.

By Lemma A.2.3, we have with probability at least 1− 2m/d that

I7 ≤
1

m

m∑

l=1

M
C5 log d

n
=
C5M log d

n
,

44

where the first inequality follows from the fact that ‖Θ∗‖1 ≤ M . In terms of I5, we

have

I5 =

∥∥∥∥Θ∗>
[(

1

m

m∑

l=1

µ̂
(l)
1 − µ1

)
−
(

1

m

m∑

l=1

µ̂
(l)
2 − µ2

)]∥∥∥∥
∞

≤ ‖Θ∗>‖∞ · (‖µ̂1 − µ1‖∞ + ‖µ̂2 − µ2‖∞),

where µ̂1 = (
∑m

l=1 µ̂
(l)
1)/m, µ̂2 = (

∑m
l=1 µ̂

(l)
2)/m. By Lemma A.2.1, we have with

probability at least 1− 1/d that

‖µ̂1 − µ1‖∞ ≤ C6K

√
log d

mn1

.

Similarly, we have with probability at least 1− 1/d that

‖µ̂2 − µ2‖∞ ≤ C6K

√
log d

mn2

.

Therefore we have with probability at least 1− 2/d that

I5 ≤ C6MK

(√
log d

mn1

+

√
log d

mn2

)
.

In terms of I6, we can apply similar procedure. Let us denote Σ̃ = (
∑m

l=1 Σ̃(l))/m.

By Lemma A.2.2 we have with probability at least 1− 2/d that

‖Σ̃−Σ∗‖∞,∞ ≤ C7K
2

√
log d

N
.

Therefore I6 can be bounded by

I6 = ‖Θ∗>(Σ∗ − Σ̃)β∗‖∞ ≤ ‖Θ∗>‖∞ · ‖(Σ∗ − Σ̃)β∗‖∞ ≤M · ‖Σ∗ − Σ̃‖∞,∞ · ‖β∗‖1

≤ C7MK2

√
log d

N
‖β∗‖1

45

with probability at least 1− 2/d. Combining the bound of I1, I4, I5, I6 and I7, we get

that

∥∥∥∥
1

m

m∑

l=1

β̃(l) − β∗
∥∥∥∥
∞
≤ sC3M log d

n
‖β∗‖1 +

s′C4M log d

n
‖β∗‖1 +

C5MK2 log d

n
+

C6MK

(√
log d

mn1

+

√
log d

mn2

)
+ C7MK2

√
log d

N
‖β∗‖1

≤ C ′M

√
log d

N
‖β∗‖1 + C ′′max(s, s′)M

m log d

N
‖β∗‖1

with probability at least 1− 18m/d− 4/d, where C ′ and C ′′ are constants.

A.2.2 Proof of Lemma A.1.2

Proof By the definition of Σ̂(l) and Σ̃(l), we have

‖Σ̂(l) − Σ̃(l)‖∞,∞ =
1

n

∥∥∥∥
n1∑

i=1

((
X

(l)
i − µ̂(l)

1

)(
X

(l)
i − µ̂(l)

1

)> −
(
X

(l)
i − µ1

)(
X

(l)
i − µ1

)>)

+

n2∑

i=1

((
Y

(l)
i − µ̂(l)

2

)(
Y

(l)
i − µ̂(l)

2

)> −
(
Y

(l)
i − µ2

)(
Y

(l)
i − µ2

)>)
∥∥∥∥
∞,∞

.

(A.2.6)

Note that

n1∑

i=1

((
X

(l)
i − µ̂(l)

1

)(
X

(l)
i − µ̂(l)

1

)> −
(
X

(l)
i − µ1

)(
X

(l)
i − µ1

)>)

=

n1∑

i=1

X
(l)
i X

(l)>
i − n1µ̂

(l)
1 µ̂

(l)>
1 − n1µ̂

(l)
1 µ̂

(l)>
1 + n1µ̂

(l)
1 µ̂

(l)>
1

−
n1∑

i=1

X
(l)
i X

(l)>
i + n1µ̂

(l)
1 µ

>
1 + n1µ1µ̂

(l)>
1 − n1µ1µ

>
1

= −n1µ̂
(l)
1 µ̂

(l)>
1 + n1µ̂

(l)
1 µ

>
1 + n1µ1µ̂

(l)>
1 − n1µ1µ

>
1

= −n1(µ̂
(l)
1 − µ1)(µ̂

(l)
1 − µ1)

>. (A.2.7)

46

Similarly, we have

n2∑

i=1

((
Y

(l)
i − µ̂(l)

2

)(
Y

(l)
i − µ̂(l)

2

)> −
(
Y

(l)
i − µ2

)(
Y

(l)
i − µ2

)>)
= −n2(µ̂

(l)
2 − µ2)(µ̂

(l)
2 − µ2)

>.

(A.2.8)

Substituting (A.2.7) and (A.2.8) into (A.2.6) and using the triangle inequality, we

can obtain

‖Σ̂(l) − Σ̃(l)‖∞,∞ ≤
n1

n
‖(µ̂(l)

1 − µ1)(µ̂
(l)
1 − µ1)

>‖∞,∞ +
n2

n
‖(µ̂(l)

2 − µ2)(µ̂
(l)
2 − µ2)

>‖∞,∞

=
n1

n
‖µ̂(l)

1 − µ1‖2∞ +
n2

n
‖µ̂(l)

2 − µ2‖2∞. (A.2.9)

By Lemma A.2.1, we know that ‖µ̂(l)
1 − µ1‖∞ ≤ C ′K

√
log d/n1 with probability at

least 1 − 1/d and ‖µ̂(l)
2 − µ2‖∞ ≤ C ′K

√
log d/n2 with probability at least 1 − 1/d.

Submitting the two high probability bounds into (A.2.9) and using the union bound

gives rise to

‖Σ̂(l) − Σ̃(l)‖∞,∞ ≤
C ′2K2 log d

min(n1, n2)
≤ C ′2K2 log d

rn
. (A.2.10)

This inequality holds with probability at least 1 − 2/d. Setting C = C ′2 completes

the proof.

A.3 Proof of Lemmas in Appendix A.2

First of all, we present some lemmas which are crucial to the proof of lemmas in this

section.

Lemma A.3.1 For the l-th machine, if the underlying true parameter β∗ lies in the

feasible set of the optimization problem (2.3.1), then the biased estimator β̂(l) lies in

the set {β : ‖(β − β∗)Sc‖1 ≤ ‖(β − β∗)S‖1}, where S = supp(β∗).

Lemma A.3.2 For the l-th machine, if the underlying true parameter θ∗j lies in the

feasible set of the optimization problem (2.3.3), then the optimal solution θ̂
(l)
j lies in

the set {θ : ‖(θ − θ∗j)Scθj ‖1 ≤ ‖(θ − θ
∗
j)Sθj ‖1}, where Sθj = supp(θ∗j).

47

A.3.1 Proof of Lemma A.2.1

Proof For the j-th component, by Theorem A.5.4, we have

P(|X̄j − µj| > t) ≤ exp
(
− C1nt

2

K2
X

)

for any t > 0, where C1 > 0 is an absolute constant. Using the union bound, we have

P(‖X̄ − µ‖∞ > t) ≤ d exp
(
− C1nt

2

K2
X

)
.

Taking t = KX
√

2 log d/C1n gives that with probability at least 1−1/d the following

inequality holds:

‖X̄ − µ‖∞ ≤ KX

√
2 log d

C1n
.

Setting C =
√

2/C1 yields the conclusion of this lemma.

A.3.2 Proof of Lemma A.2.2

Proof Denote the j-th entry ofXi as xij. We have (XiX
>
i)jk = xijxik following sub-

Exponential distribution. Because E(xijxik) = Σjk for all i, we know that xijxik−Σjk

is a centered sub-Exponential random variable. The ψ1 norm of xijxik can be bounded

using Lemma A.5.6 as ‖xijxik‖ψ1 ≤ C1 max{‖xij‖2ψ2
, ‖xik‖2ψ2

} ≤ C1K
2
X . By Theorem

A.5.5, for any t > 0 we have

P
(∣∣∣∣

1

n

n∑

i=1

xijxik − Σjk

∣∣∣∣ ≥ t

)
≤ 2 exp

[
− C2 min

(
t2n

C2
1K

4
X

,
tn

C1K2
X

)]
.

Using the union bound, we get the conclusion that

P
(∥∥∥∥

1

n

n∑

i=1

XiX
>
i −Σ

∥∥∥∥
∞,∞
≥ t

)
≤ 2d2 exp

[
− C2 min

(
t2n

C2
1K

4
X

,
tn

C1K2
X

)]
.

48

Setting 2d2 exp[−C2t
2n/(C2

1K
4
X)] = δ, we get

t = C1K
2
X

√
log(2d2/δ)

C2n
.

Setting δ = 2/d and C =
√

3C1/
√
C2, we get the conclusion that with probability at

least 1− 2/d, the following inequality holds:

∥∥∥∥
1

n

n∑

i=1

XiX
>
i −Σ

∥∥∥∥
∞,∞
≤ CK2

X

√
log d

n
.

A.3.3 Proof of Lemma A.2.3

Proof Following [36], using triangle inequality, we have

∥∥∥Σ̂(l) −Σ∗
∥∥∥
∞,∞
≤
∥∥∥Σ̂(l) − Σ̃(l)

∥∥∥
∞,∞

+
∥∥∥Σ̃(l) −Σ∗

∥∥∥
∞,∞

.

Now we bound the first term. In Lemma A.1.2 we have got that with probability at

least 1− 2/d, the first term is bounded by

∥∥∥Σ̂(l) − Σ̃(l)
∥∥∥
∞,∞
≤ C ′K2 log d

rn
.

For the second term, note that in each machine, X
(l)
i −µ1’s and Y

(l)
i −µ2’s are i.i.d.

random vectors following normal distribution with zero mean and covariance matrix

Σ∗. Hence by Lemma A.2.2 we have with probability at least 1− 2/d that

‖Σ̃(l) −Σ∗‖∞,∞ ≤ C ′′K2

√
log d

n
.

Combining the two high probability bounds together, we have with probability at

least 1− 4/d that

‖Σ̂(l) −Σ∗‖∞,∞ ≤ C ′′K2

√
log d

n
+
C ′K2 log d

rn
≤ 2C ′′K2

√
log d

n
.

49

Setting C1 = C ′4/C ′′2 and C2 = 2C ′′ completes the proof.

A.3.4 Proof of Lemma A.2.4

Proof First we will show that with high probability the true parameter β∗ = Θ∗µd

satisfies the constraint in (2.3.1), i.e., with high probability the inequality ‖Σ̂β∗ −
µ̂

(l)
d ‖∞ < λ holds . To show this, we consider

∥∥∥Σ̂(l)β∗ − µ̂(l)
d

∥∥∥
∞

=
∥∥∥Σ∗β∗ −Σ∗β∗ + Σ̂(l)β∗ − µd + µd − µ̂(l)

d

∥∥∥
∞

≤ ‖Σ∗β∗ − µd‖∞ + ‖(Σ̂(l) −Σ∗)β∗‖∞ + ‖µ1 − µ2 − µ̂(l)
1 + µ̂

(l)
2 ‖∞

≤ ‖Σ∗β∗ − µd‖∞ + ‖Σ̂(l) −Σ∗‖∞,∞ · ‖β∗‖1 + ‖µ̂(l)
1 − µ1‖∞ + ‖µ̂(l)

2 − µ2‖∞,
(A.3.1)

where the second inequality follows from triangle inequality and the definition of

µd and µ̂
(l)
d , and the third inequality follows from Hölder’s inequality and triangle

inequality. Note that by the definition of β∗ we have Σ∗β∗−µd = 0. For other terms,

by Lemma A.2.3 we have with probability at least 1 − 4/d that ‖Σ̂(l) − Σ∗‖∞,∞ ≤
C1K

2
√

log d/n. Additionally Lemma A.2.1 gives that ‖µ̂(l)
1 −µ1‖∞ ≤ C2K

√
log d/n1

and ‖µ̂(l)
2 − µ2‖∞ ≤ C2K

√
log d/n2. Substituting the three high probability bounds

into (A.3.1), we have with probability at least 1− 6/d that

‖Σ̂(l)β∗ − µ̂(l)
d ‖∞ ≤ C1K

2

√
log d

n
‖β∗‖1 + C2K

√
log d

min(n1, n2)
≤ CK2

√
log d

rn
‖β∗‖1.

This means that if λ satisfies (A.2.2), β∗ will lie in the feasible set of (2.3.1) with

probability at least 1− 6/d. Applying Lemma A.3.1 gives ‖(β̂(l)−β∗)Sc‖1 ≤ ‖(β̂(l)−
β∗)S‖1. By Condition 2.4.4 we have

(β̂(l) − β∗)>Σ̂(l)(β̂(l) − β∗) ≥ λmin(Σ∗)

16
‖β̂(l) − β∗‖22 ≥

λmin(Σ∗)

16
‖(β̂(l) − β∗)S‖22.

(A.3.2)

Additionally, we have

‖Σ̂(l)(β̂(l) − β∗)‖∞ ≤ ‖Σ̂(l)β̂(l) − µ̂(l)
d ‖∞ + ‖Σ̂(l)β∗ − µ̂(l)

d ‖∞ ≤ 2λ, (A.3.3)

50

where the second inequality follows from the fact that both β̂(l) and β∗ are feasible

solutions of optimization problem (2.3.1). Therefore we have

(β̂(l) − β∗)>Σ̂(l)(β̂(l) − β∗) ≤ ‖Σ̂(l)(β̂(l) − β∗)‖∞ · ‖β̂(l) − β∗‖1 ≤ 2λ‖β̂(l) − β∗‖1
≤ 4λ‖(β̂(l) − β∗)S‖1
≤ 4λ

√
s‖(β̂(l) − β∗)S‖2, (A.3.4)

where the first inequality follows from Hölder’s inequality, the second inequality fol-

lows from (A.3.3), the third follows from the fact that ‖(β̂(l) − β∗)Sc‖1 ≤ ‖(β̂(l) −
β∗)S‖1 and the last follows from Cauchy-Schwartz inequality. Combining (A.3.4) and

(A.3.2) gives that

‖(β̂(l) − β∗)S‖2 ≤
64λ
√
s

λmin(Σ∗)
.

Based on this result we can provide the estimation error bound of β̂(l) in terms of `1

norm:

‖β̂(l) − β∗‖1 ≤ 2‖(β̂(l) − β∗)S‖1 ≤ 2
√
s‖(β̂(l) − β∗)S‖2 ≤

128λs

λmin(Σ∗)
.

A.3.5 Proof of Lemma A.2.5

Proof First we will show that with high probability the true parameter θ∗j satisfies

the constraint in (2.3.3), i.e., with high probability the inequality ‖Σ̂θ∗j − ej‖∞ < λ′

holds. To show this, we consider

∥∥∥Σ̂(l)θ∗j − ej

∥∥∥
∞

=
∥∥∥Σ̂(l)θ∗j −Σ∗θ∗j

∥∥∥
∞
≤ ‖Σ̂(l) −Σ∗‖∞,∞ · ‖θ∗j‖1, (A.3.5)

where the first equality follows from the fact that Σ∗θ∗j = ej, and second inequality

follows from Hölder’s inequality. By Lemma A.2.3 we have with probability at least

1 − 4/d that ‖Σ̂(l) − Σ∗‖∞,∞ ≤ CK2
√

log d/n. Assumption 2.4.2 indicates that

‖θ∗j‖1 ≤ M for all j. Substituting the two high probability bounds into (A.3.5), for

51

all j ∈ {1, 2, . . . , d} we have with probability at least 1− 4/d that

‖Σ̂(l)θ∗j − ej‖∞ ≤ CK2M

√
log d

n
.

This means that if λ′ satisfies (A.2.4), θ∗j will lie in the feasible set of (2.3.1) with

probability at least 1− 4/d. Applying Lemma A.3.2 gives ‖(θ̂(l)j −θ∗j)Scθj ‖1 ≤ ‖(θ̂
(l)
j −

θ∗j)Sθj ‖1. By Condition 2.4.4 we have

(θ̂
(l)
j − θ∗j)>Σ̂(l)(θ̂

(l)
j − θ∗j) ≥

λmin(Σ∗)

16
‖θ̂(l)j − θ∗j‖22 ≥

λmin(Σ∗)

16
‖(θ̂(l)j − θ∗j)Sθj ‖

2
2.

(A.3.6)

Additionally, we have

‖Σ̂(l)(θ̂
(l)
j − θ∗j)‖∞ ≤ ‖Σ̂(l)θ̂

(l)
j − ej‖∞ + ‖Σ̂(l)θ∗j − ej‖∞ ≤ 2λ′, (A.3.7)

where the second inequality follows from the fact that both θ̂
(l)
j and θ∗j are feasible

solutions of optimization problem (2.3.3). Therefore we have

(θ̂
(l)
j − θ∗j)>Σ̂(l)(θ̂

(l)
j − θ∗j) ≤ ‖Σ̂(l)(θ̂

(l)
j − θ∗j)‖∞ · ‖θ̂(l)j − θ∗j‖1 ≤ 2λ′‖θ̂(l)j − θ∗j‖1

≤ 4λ′‖(θ̂(l)j − θ∗j)Sθj ‖1
≤ 4λ′

√
s′‖(θ̂j − θ∗j)Sθj ‖2, (A.3.8)

where the first inequality follows from Hölder’s inequality, the second inequality fol-

lows from (A.3.7), the third follows from the fact that ‖(θ̂(l)j − θ∗j)Scθj ‖1 ≤ ‖(θ̂
(l)
j −

θ∗j)Sθj ‖1 and the last follows from Cauchy-Schwartz inequality. Combining (A.3.8)

and (A.3.6) gives that

‖(θ̂j − θ∗j)Sθj ‖2 ≤
64λ′
√
s′

λmin(Σ∗)
.

Based on this result we can provide the estimation error bound of θ̂
(l)
j in terms of

`1-norm:

‖θ̂(l)j − θ∗j‖1 ≤ 2‖(θ̂(l)j − θ∗j)Sθj ‖1 ≤ 2
√
s′‖(θ̂(l)j − θ∗j)Sθj ‖2 ≤

128λ′s′

λmin(Σ∗)
.

52

A.4 Proof of Auxilliary Lemmas in Appendix A.3

A.4.1 Proof of Lemma A.3.1

Proof In the optimization problem (2.3.1), under the condition that β∗ is a feasible

solution, the optimality of β̂(l) yields

‖β∗S‖1 = ‖β∗‖1 ≥ ‖β̂(l)‖1 = ‖β̂(l)
S ‖1 + ‖β̂(l)

Sc‖1 = ‖β̂(l)
S ‖1 + ‖(β̂(l) − β∗)Sc‖1, (A.4.1)

where the last equality follows from the fact that (β∗)Sc = 0. (A.4.1) immediately

leads to

‖β∗S‖1 − ‖β̂(l)
S ‖1 ≥ ‖(β̂(l) − β∗)Sc‖1.

Moreover, by triangle inequality, we have

‖(β̂(l) − β∗)S‖1 ≥ ‖β∗S‖1 − ‖β̂(l)
S ‖1.

Combining the above two inequalities, we can obtain

‖(β̂(l) − β∗)S‖1 ≥ ‖(β̂(l) − β∗)Sc‖1.

This completes the proof.

A.4.2 Proof of Lemma A.3.2

Proof In the optimization problem (2.3.3), under the condition that θ∗j is a feasible

solution, the optimality of θ̂
(l)
j yields

‖(θ∗j)Sθj ‖1 = ‖θ∗j‖1 ≥ ‖θ̂(l)j ‖1 = ‖(θ̂(l)j)Sθj ‖1 + ‖(θ̂(l)j)Scθj
‖1 = ‖(θ̂(l)j)Sθj ‖1 + ‖(θ̂(l)j − θ∗j)Scθj ‖1,

(A.4.2)

53

where the last equality follows from the fact that (θ∗j)Scθj
= 0. (A.4.2) immediately

leads to

‖(θ∗j)Sθj ‖1 − ‖(θ̂
(l)
j)Sθj ‖1 ≥ ‖(θ̂

(l)
j − θ∗j)Scθj ‖1. (A.4.3)

Moreover, by triangle inequality, we have

‖(θ̂(l)j − θ∗j)Sθj ‖1 ≥ ‖(θ
∗
j)Sθj ‖1 − ‖(θ̂

(l)
j)Sθj ‖1. (A.4.4)

Combining (A.4.3) and (A.4.4), we can obtain

‖(θ̂(l)j − θ∗j)Sθj ‖1 ≥ ‖(θ̂
(l)
j − θ∗j)Scθj ‖1.

This completes the proof.

A.5 Auxiliary Definitions, Lemmas and Theorems

We define sub-Exponential random variables and its corresponding ψ1 norm as follows.

Definition A.5.1 (Definition 5.13 in [53]) A random variable X is called sub-

Exponential if there exists a constant K > 0 such that for all p ≥ 1 the following

inequality holds:

(E(|X|p))1/p ≤ Kp. (A.5.1)

The ψ1 norm of X, denoted as ‖X‖ψ1, is the smallest K that makes (A.5.1) holds.

In other words,

‖X‖ψ1 = sup
p≥1

p−1(E(|X|p))1/p.

Similarly, sub-Gaussian random variables and the corresponding ψ2 norm are defined

as follows:

Definition A.5.2 (Definition 5.7 in [53]) A random variable X is called sub-Gaussian

if there exists a constant K > 0 such that for all p ≥ 1 the following inequality holds:

(E(|X|p))1/p ≤ K
√
p. (A.5.2)

54

The ψ2 norm of X, denoted as ‖X‖ψ2, is the smallest K that makes (A.5.2) holds.

In other words,

‖X‖ψ2 = sup
p≥1

p−1/2(E(|X|p))1/p.

We can generalize the concept of sub-Gaussian random variable to sub-Gaussian

random vector.

Definition A.5.3 (Definition 5.22 in [53]) A random vectorX ∈ Rd is sub-Gaussian

if for any vector u ∈ Rd the inner product 〈X,u〉 is a sub-Gaussian random variable.

And the corresponding ψ2 norm of X is defined as

‖X‖ψ2 = sup
‖u‖2=1

‖〈X,u〉‖ψ2 .

It is obvious that for any sub-Gaussian random vectorX ∈ Rd, ‖X‖ψ2 ≥ maxdj=1 ‖Xj‖ψ2 .

It is proved in [53] that a centered Gaussian random variable X with variance σ2

is also a sub-Gaussian random variable with ‖X‖ψ2 ≤ Cσ where C is an absolute

constant. Therefore, we can easily show that a centered Gaussian random vector

X with covariance matrix Σ is also a sub-Gaussian random vector with ‖X‖ψ2 ≤
Cλmax(Σ).

The following theorem is the Hoeffding type inequality for sub-Gaussian random

variables, which characterizes the tail bound for the weighted sum of independent

sub-Gaussian random variables.

Theorem A.5.4 (Proposition 5.10 in [53]) Let X1, X2, . . . , Xn be independent cen-

tered sub-Gaussian random variables, and let K = maxi ‖Xi‖ψ2. Then for every

a = (a1, a2, . . . , an) ∈ Rn and for every t > 0, we have

P
(∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣ > t

)
≤ exp

(
− Ct2

K2‖a‖22

)
,

where C > 0 is an absolute constant.

Similarly, the following theorem is the Bernstein type inequality for sub-Exponential

random variables, which provides the tail bound on the weighed sum of independent

sub-Exponential random variables.

55

Theorem A.5.5 (Proposition 5.16 in [53]) Let X1, X2, . . . , Xn be independent cen-

tered sub-Exponential random variables, and let K = maxi ‖Xi‖ψ1. Then for every

a = (a1, a2, . . . , an) ∈ Rn and for every t > 0, we have

P
(∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣ > t

)
≤ 2 exp

(
− C min

{
t2

K2‖a‖22
,

t

K‖a‖∞

})
,

where C > 0 is an absolute constant.

Lemma A.5.6 For X1 and X2 being two sub-Gaussian random variables, X1X2 is

a sub-Exponential random variable with

‖X1X2‖ψ1 ≤ C max{‖X1‖2ψ2
, ‖X2‖2ψ2

},

where C > 0 is an absolute constant.

Lemma A.5.6 reveals that the product of two sub-Gaussian random variables is a

sub-Exponential random variable and gives an upper bound on its ψ1 norm.

Theorem A.5.7 (Corollary 1 in [39]) For any design matrix X ∈ Rn×d with i.i.d.

rows following Gaussian distribution N(0,Σ), if Σ satisfies the RE condition with

parameter (s, α, γ), and the sample size n satisfies

n >
C ′′ρ2(Σ)(1 + α)2

γ2
s log d,

then the sample covariance matrix Σ̂ = X>X/n satisfies the restricted eigenvalue

condition with parameter (s, α, γ/8) with probability at least 1− C ′ exp(−Cn), where

C, C ′ and C ′′ are absolute constants and ρ2(Σ) = max1≤j≤d Σjj.

56

