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Abstract
New advances in large language models are
rapid, with a new model touting better perfor-
mance being released seemingly every week.
As such, the performance of models needs to
be quantitatively compared across standard-
ized datasets. We present CRUGS, a lan-
guage dataset for Compositional and Relational
Understanding using Geometric Shapes. Our
dataset is simple in nature, relying on syntheti-
cally generated canvases with ground-truth at-
tributes and answers. CRUGS utilizes a se-
ries of increasingly challenging tasks that re-
quire no human experts and are flexible to the
method of prompting and the number of shapes
in the canvas. We evaluated six large language
models on CRUGS and found that despite the
simplicity of the tasks, gaps exist in the perfor-
mance of the models.

1 Introduction

Recent large language models (LLMs) have shown
remarkable capabilities. While these models are
trained on simple next token prediction for a given
piece of text, this skill appears to generalize across
a number of different tasks, such as solving logic
puzzles and writing code. In fact, any task that can
be framed as completion of a sequence of text can
be fed into a LLM. As LLMs grow in size and in
training data, their capabilities appear to become
better. However, such qualitative observations of
performance need to be verified quantitatively in or-
der to justify their use for critical real-world tasks.

Beyond the problem of evaluating the perfor-
mance of a LLM is trying to evaluate the methods
that a LLM uses to complete a particular task. Re-
search has suggested that despite being trained on
next token prediction, LLMs go beyond memoriz-
ing surface level statistics and instead exhibit world
models that internally represent the task (Li et al.,
2023). However, such research relies on adhoc
data, not a standardized benchmark.

In this paper, we propose CRUGS, a dataset
to evaluate LLMs on their Compositional and Re-
lational Understanding using Geometric Shapes.
CRUGS is a simple dataset consisting of geomet-
ric shapes in a 2D canvas. We developed a series
of increasingly difficult compositional tasks that
asked questions about the state of the canvas along
with natural language descriptions of the canvas
that encode the attributes of the geometric shapes
and their positions.

While each canvas must be represented in natural
language for the model, they can be visualized on
the 2D plane. Hence, interpretability methods that
seek to reconstruct internal representations of the
model can be matched against the ground-truth
state.

We focused on a synthetic self-contained dataset.
This allows for a large amount of flexibility during
data generation. Specifically, our dataset is con-
figured to be extensible to new tasks without the
need for human experts, supports flexible prompt-
ing methods, and contains ground-truth answers in
both a textual and visual format. In summary, this
paper makes the following contributions:

• The development of CRUGS, a self-
containted geometric dataset of shapes in a
2-D canvas. Each canvas has descriptions of
the canvas in natural language and a series of
increasingly challenging compositional tasks
that ask about the state of the canvas. This
dataset is easily extensible for additional tasks
and additional methods of prompting.

• An evaluation of past and current state-of-the-
art LLMs on CRUGS. Six different LLMs are
evaluated via our dataset. Of particular note
are models that are finetuned from another
model on instruction-following data.



Transitive Description: There are 3 shapes in a
canvas. There is a large yellow square in the can-
vas. Below the large yellow square is a large green
triangle. Above the large yellow square is a large
blue square.
Transitive Task Question: Where is the large blue
square relative to the large green triangle?
Transitive Ground-Truth Answer: Above

Partial Description: There are 3 shapes in a can-
vas. There is a large green triangle in the canvas. A
large yellow square is to the above right of this large
green triangle. A large blue square is to the above
left of this large green triangle. There is a large
yellow square in the canvas. A large blue square is
to the above left of this large yellow square. There
is a large blue square in the canvas.
Count Task Question: Is there a blue square?
Count Ground-Truth Answer: Yes

Figure 1: An example of a canvas with three shapes. Both the transitive task and the count task are shown with their
respective descriptions of the canvas.

2 Related Works

Interpretability In recent years, research has
been conducted to investigate whether LLMs mem-
orize surface level statistics or if they utilize more
complex internal representations of the world state.

In a previous study, GPT was used to predict
legal moves in the game Othello (Li et al., 2023).
Through the use of latent saliency maps and prob-
ing techniques, the authors concluded that the
model encodes a nonlinear internal representation
of the board state despite having no knowledge of
the game rules. While small in scope, this points
towards a more complex form of representation
present in LLMs.

Evaluation Benchmarks A number of datasets
have been developed to evaluate the capabilities of
LLMs.

Google’s Beyond the Imitation Game benchmark
(BIG Bench) presents a total of 204 tasks across a
diverse set of domains and reasoning types (Srivas-
tava et al., 2022). Each task comes with a human-
evaluator and a human expert baseline. The dataset
is designed to be challenging for current state-of-
the-art LLMs in order to measure future capabili-
ties.

The Holistic Evaluation of Language Models
(HELM) provides a framework for evaluating
LLMs through the taxonomy of scenarios and met-

rics (Liang et al., 2022). A scenario is an instance
where a LLM can be applied (e.g. question answer-
ing or sentiment analysis) while metrics describe
what we want the LLM to do (e.g. accuracy or
fairness). Additionally, HELM uses the idea of
adaptations which allows a LLM to run on a new
instances of a scenario (e.g. prompting or finetun-
ing).

While BIG Bench provides a large number of
tasks across domains and HELM provides a frame-
work for benchmarks, neither benchmark meets all
three aspects of (1) extensibility for new tasks, (2)
scalability without the need for human experts, and
(3) flexibility for new methods of prompting.

Synthetic Diagnostic Datasets In computer vi-
sion, the Compositional Language and Elementary
Visual Reasoning diagnostics dataset (CLEVR) is a
synthetic dataset used to measure the capabilities of
visual question answering models (Johnson et al.,
2017). CLEVR generates a 3D scene consisting of
simple shapes along with questions about the scene
to measure the capabilities of a model. Due to the
synthetic nature of the dataset, the ground truth is
known for every shape in a scene. Our work is
inspired by the development of CLEVR.



3 The CRUGS Dataset

3.1 Overview
CRUGS provides a synthetically generated dataset
with ground truth answers. The data consists of
n canvases containing s shapes. Each shape is a
square, circle, or triangle, can be small or large
in size, and can be blue, red, orange, or green in
color. In total, this allows for 24 unique shapes.
By construction, each canvas defines the ground
truth, as the position, shape type, size, and color is
recorded for every shape in the canvas. From the
canvas, multiple natural language descriptions are
generated that encodes relevant information about
the shapes and their positions. For every canvas,
question-answer pairs are generated according to
a set of tasks. See Figure 1 for an example of a
canvas and tasks.

Note that simple, common geometric shapes
along with common colors, and often used words
for sizes are used so the dataset focuses on rea-
soning skills, not on the prior likelihoods of each
shape.

3.2 Canvas Generation
To generate a canvas, the shape type, color, and
size are randomly chosen with the constraint that
no two shapes are the exact same. Additionally, the
coordinates of the shape are chosen to ensure that
the boundary of the shape is within the 64 by 64
canvas and that no two shapes overlap or intersect.

3.3 Canvas Descriptions
To provide the LLM with the state of the canvas, a
natural language representation must be provided.
We identified two main methods of encoding the
attributes and positions of the shapes in the can-
vas in natural language: relative and coordinate
descriptions.

Relative Descriptions In a relative description,
the position of each shape in the canvas is provided
relative other shapes. To avoid ambiguity, we pro-
vide either the position of a shape relative to every
other shape in the canvas or the position of a shape
relative to only one other shape. In the latter case,
we reduce the description to one-dimension (i.e.
horizontal or vertical) and only give the relative
position of two shapes if there is no other shape in
between them.

Coordinate Descriptions In a coordinate de-
scription, the x-y position of the center of the shape

is given along with its numerical size (i.e. radius
or sidelength).

3.4 Tasks
There are six compositional tasks that range from
simple tasks, such as questions of existence, to
more complex tasks, such as modelling a sequence
of swaps. Each task is self contained and generates
question-answer pairs given a canvas. Additionally,
some tasks may define an additional canvas descrip-
tion or additional information to add to a canvas
description. Note also that the answer distribution
of the tasks is fixed to create a balanced dataset.

Existence Task The existence tasks asks whether
an object with one or more attributes exists in the
canvas. Note that descriptions do not contain dis-
tracting phrases, so this task could be completely
solved by an exact string match. The expected
answers are ”Yes” or ”No.”

Count Task The count task asks how many ob-
jects with one or more attributes exist in the canvas
(see Figure 1). Counting is a precursor to more
complicated arithmetic tasks and measures a ba-
sic capability. Additionally, some reasoning is re-
quired as the same shape may be referred to multi-
ple times in the description.

Transitivity Task The transitivity task presents
the relative positions of the shapes in a transitive
manner (see Figure 1) and then asks for the relative
position of two shapes that is not directly described.
This task measures the ability for a model to under-
stand the transitive property.

Coordinate Task The coordinate task presents
the coordinate positions of the objects and their
numerical sizes (i.e. radius or side length) and
asks for the relative position of two shapes. In gen-
eral, this task requires the understanding of integer
inequalities, but certain cases require the under-
standing of basic geometric formulas to determine
the boundary points of shapes.

Existence Tracking Task The existence tracking
task presents the initial set of shapes in the can-
vas and then presents a sequence of shapes that
are added to or removed from the canvas. This
task requires understanding of a dynamic situation
involving mental bookkeeping or internal model.

Shuffle Tracking Task The shuffle tracking tasks
presents the initial positions of the shapes in a sin-
gle line. A series of swaps of shapes is then given



Task Name GPT-J Dolly LLaMA Alpaca Flan-T5 ChatGPT
Existence 0.4730 0.5560 0.5570 0.5840 1.0000 0.9980

0.6700 0.6770 0.8560 0.6120 1.0000 0.9910
Count 0.0620 0.0170 0.0490 0.0120 0.4060 0.2710

0.4990 0.5420 0.4960 0.2570 0.5840 0.4360
Transitivity 0.6730 0.6450 0.3190 0.4595 0.9830 0.8755

0.5115 0.4840 0.4410 0.2360 0.9210 0.3790
Coordinate 0.0020 0.0035 0.0045 0.1655 0.0010 0.4470

0.5935 0.5275 0.2215 0.2150 0.3245 0.4610
Existence Tracking 0.5010 0.5000 0.6520 0.8160 0.7310 0.9740

0.4770 0.5210 0.7100 0.6660 0.8260 0.9820
Shuffle Tracking 0.3270 0.3250 0.3100 0.3100 0.3640 0.3400

0.9390 0.9130 0.9790 0.9810 0.7390 0.8950

Table 1: Task level performance for 3 shapes in a canvas. For each task, the top row reports the 0-shot performance
and the bottom row reports the 3-shot performance. Results in bold are the best in the respective task.

and asks for the shape present at a certain posi-
tion. This task requires modelling a sequence of
modifications to an initial state.

3.5 Task Scoring
Each task defines its own method to score a textual
answer given the ground truth answer. However,
each score lies in the range [0, 1] where a score of 0
corresponds to a completely incorrect answer and
a score of 1 corresponds to a correct answer. The
scoring methods award points for a correct answer
and subtract points for incorrect or hallucinated
information.

3.6 Few-Shot Prompting
Each task generates three question-answer pairs for
the given canvas. This allows for easy implemen-
tation of few-shot prompting. Note that few-shot
prompting relies on one canvas description and that
the few-shot question-answer pairs are fixed for a
given canvas. Both zero and few-shot prompting
ask the same question for the model to answer.

4 Experiments

Data Summary The experiments were con-
ducted with the number of shapes s in the canvas as
3 and 5. For each value of s, 1, 000 examples were
used. Additionally, for each value of s we tested
both the zero-shot setting and a few-shot setting
with the number of shots fixed at 3. Note that the
dataset was generated prior to evaluation, so all
canvases and shots are fixed across every iteration.

Models Six different models were evaluated:
GPT-J, Dolly-1.0, Flan-T5, LLaMA, Alpaca, and

ChatGPT (Wang and Komatsuzaki, 2021; Conover
et al., 2023; Chung et al., 2022; Touvron et al.,
2023; Taori et al., 2023; OpenAI, 2022). No-
tably, Dolly-1.0 and Alpaca are finetuned with
instruction-following data from GPT-J and LLaMA
respectively. All models were configured to return
a maximum of 50 tokens, which is significantly
longer than any expected answer, the top_p pa-
rameter was set to 0.9, and early stopping and sam-
pling were disabled. Note that for ChatGPT, the
gpt-3.5-turbo model was used.

Metrics Models were evaluated by their average
score on a task. For each task, scores lie in the
range [0, 1], where 1 corresponds to correctly an-
swering the task and 0 corresponds to a completely
incorrect answer.

5 Evaluation

Task Level Performance In Table 1 we present
the results of each model on each task with three
shapes in the canvas.

For the existence task, only Flan-T5 and Chat-
GPT performed significantly above the 0.5 baseline
of random chance when given zero-shot prompts.
From empirical observations, the models typically
gave an incorrect answer of ”Yes” when the ground
truth answer is ”No.” This may be a result of the
word ”Yes” having a higher prior likelihood than
the word ”No.” With three-shot prompts, the per-
formance of the majority of models increased to at
least outperform random chance.

Performance on the count task was poor. With
zero-shot prompting, only Flan-T5 outperformed



(a) Performance of each model on the tasks aggregated via the
number of shapes in the canvas and the number of shots.

(b) The overall average performance of each model. The
average is the standard arithmetic mean.

Figure 2

the random chance of 0.33. With three-shot prompt-
ing, performance improved, but not to a much
higher standard. When answering incorrectly, the
models often counted the number of times the
shape in question appeared in the prompt, not the
number of times it appeared in the canvas. While
the scores could then easily be influenced by the
method of prompting, this task can easily be solved
by a human with the current method of prompting.

All models performed above random chance on
the transitivity task. Flan-T5 scored almost per-
fectly on this task and ChatGPT also had a high
score. The other models performed above random
chance, with the exception of Alpaca on three-shot
prompts.

For the coordinate task, performance was quite
low with zero-shot prompting, with the exception
of ChatGPT. However, performance increased sig-
nificantly with three-shot prompting. Given the
difficulty of this task, which requires knowledge
of 2-D spatial relationships, inequalities, and basic
geometric formulas, the performance of the models
is encouraging. In the case of three-shot prompts,
the models outperformed random chance.

For the two dynamic tasks, existence and shuffle
tracking, the models performed surprisingly well,
especially with three-shot prompting. It’s inter-
esting that LLaMA and Alpaca had higher perfor-
mance for the dynamic task of existence tracking
than the static existence task when presented with
zero-shot prompts. On the shuffle tracking task,
three-shot prompting made the models perform ex-
ceptionally well, with five out of six models having
a score of 0.8950 or higher. Given the difficulty
of this task, which requires modelling shuffles to
an initial state and the understanding of relational

directions, these scores are impressive.

Shots In Table 1 the performance for zero and
three-shot prompts is given. Note that for the ma-
jority of tasks, three-shot prompting increased the
performance of a model. This is most notable in
the coordinate task; for example, GPT-J goes from
a score of 0.0020 to 0.5935, an improvement of
almost 300x.

However, the inclusion of multiple shots did not
universally increase performance. For example,
the transitivity task did not benefit from three-shot
prompting as the performance of all models de-
creased. In the case of ChatGPT, performance was
more than halved. Since the addition of multiple
shots increases the length of the prompt, this de-
crease in performance may be due to the phenom-
ena of catastrophic forgetting, where the model
forgets old information as new information is pre-
sented. The decrease in performance may also be
attributed to a poor method of prompting.

Data Size As seen in Figure 2a, the performance
of the models generally decreased as the number of
shapes in the canvas increases. This is expected as
the prompts become longer in length as the number
of shapes increases, which increases the likelihood
of catastrophic forgetfulness and decreases the per-
formance of pure chance. Additionally, having
more shapes in the canvas increases the general
complexity of a task. Note that the answer distri-
bution of a task was fixed so having more shapes
does not increase the chance of an answer (e.g. for
the existence task, having more shapes increases
the number of questions with an answer of ”Yes”,
but there is an even distribution of ”Yes” and ”No”
answers).



The one exception where a model performed
better with more shapes in the canvas is LLaMA.
LLaMA had slightly better performance with five
shapes than three shapes when presented with zero-
shot prompts. LLaMA’s high overall performance
on five shapes with zero-shot prompts is attributed
to LLaMA having a score of 0.3560 on the task
count with five shapes, as compared to 0.0490
with three shapes. On the other tasks, LLaMA per-
formed worse with five shapes than three shapes.

Overall Performance In Figure 2b, the aggre-
gated performance of each model is shown. De-
spite being finetuned with instruction-following
data, Alpaca and Dolly did not perform signifi-
cantly better than their base models of LLaMA and
GPT-J. In fact, Alpaca actually performed worse
than LLaMA. Flan-T5 and ChatGPT both signifi-
cantly outperformed the other models, with their
average score almost 0.2 points higher. Overall,
ChatGPT displayed the best performance.

6 Conclusion

We presented CRUGS, which is a simple geo-
metric dataset to aid in the evaluation of LLMs.
The goal of CRUGS is to have a dataset centered
around a singular reference with tasks of increasing
difficulty. The usage of simple shapes and prop-
erties allows for the reasoning skills of the model
to be tested. Additionally, our dataset is easily ex-
tensible for new tasks without the need of human
experts and flexible to new methods of prompting.

While the dataset is simple in nature, we showed
that current state-of-the-art models perform poorly
on certain tasks, most notably on the count task.
Additionally, we showed that the models typically
perform better with multiple shots and fewer shapes
in the canvas.

Future work could include interpretability stud-
ies to evaluate how a model internally represents
the canvas, prompting studies to evaluate how the
model performance is affected by the prompt, or
studies to determine how the complexity of the task
affects the model.
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