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Abstract

In this dissertation, I present multiple generative cognitive models of sequentially dependent

decision-making in risk-ambiguous environments. Cognitive models provide a means by which

we can test theorized latent mechanisms that give rise to observed behavior. Utilizing variants of

the Balloon Analogue Risk Task (BART), we investigate risk-related decision-making when the

likelihood of success and failure is unknown to participants. We present a novel performance

metric for the BART that compares participant performance to optimal performance, eliminating

the issue of data censorship associated with traditional performance metrics. We evaluate a

model of BART decision-making and use it to generate representations of subjective risk,

reward, and value in order to relate these model-predicted time series with hemodynamic

response via fMRI. We then investigate asymmetries in behavior in the contexts of risk taking

versus risk avoidance.
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1.1 INTRODUCTION

Decision-making is affected by a myriad of psychological and environmental factors. An

aspect of decision-making that is quite susceptible to these factors is risk-taking behavior. It is

well understood that some actions - such as not getting enough sleep or consuming a

mind-altering substance - can have detrimental effects on risk-taking behavior (Acheson et al.,

2007; Park et al., 2020). However, risk-taking behaviors need to be examined in the context in

which the behaviors are observed. Risk-taking behaviors are often assessed via self-report and/or

questionnaires. Self-report measurements may be skewed due to 1) the person self-evaluating

believing an undesirable outcome could occur by reporting risky behaviors, and/or 2) a skewed

perception of their own risk-related behaviors (Lejuez et al., 2002). Many tasks leave a need for

an experimental analogue of risk-taking (Lejuez et al., 2002). It is often the case that we are

forced to make choices when we are uncertain of the outcome, and doing so sub-optimally can

have lasting repercussions, such as poor decision making financial or economical decisions

(Grinblatt & Han, 2005). Although people’s actions differ greatly when the risk of failure is

known versus when it is ambiguous, we aim to examine risk-taking behavior in the latter

scenario. The Balloon Analogue Risk Task (BART) was developed to emulate real-world risky

decision making under uncertainty, making it an ideal experimental paradigm to build upon

(Lejuez et al., 2002).

The BART is widely employed in academic and clinical settings to assess risk-taking

behaviors. In the original task, participants see a virtual balloon on a computer screen. The

balloon is labeled with either a point or monetary value, usually starting at zero. Participants are

instructed to earn as many points or as much money as possible by incrementally pumping “air”

into a series of balloons. At any point, the participant is able to stop pumping and collect the
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balloon and add its value to a grand total/ bank, where the points/money are secure. However, if

the balloon is pumped too much and it pops, the points/money accrued in that balloon vanish.

When deciding whether to pump or collect, participants must balance the prospect of

sequentially risky, incremental gains against the increasing possibility of loss due to the balloon

popping. This process of comparing potential gains to potential losses is at the heart of prospect

theory models (Kahneman & Tversky, 1979). In prospect theory, when faced with a series of

choices in which the probabilities of possible outcomes are unknown, the person must alternate

between exploring the outcome probability distribution and then exploiting the knowledge

gained to maximize rewards.

In this dissertation, I present three studies that altogether build, test, and utilize generative

cognitive models of the BART in order to gain insight into the possible cognitive mechanisms at

play during sequentially dependent risk-taking behavior and uncover individual differences in

risky decision making. The objective of the first study is to develop a novel version of BART,

performance metric, and underlying computational model that are more sensitive to individual

differences than prior BART versions, measurements and models. The second study is an initial

exploration into using a BART model to make continuous predictions of brain activity. The third

study outlines the development of a new model that captures behavior of the BART and a new,

mirror-image version of the task called the Balloon Risk Avoidance Task (BRAT). The BRAT

can be conceptualized as the inverse of the BART, in which deflate balloons in order to prevent

them from popping while still trying to earn as much money/points as possible. I have developed

a model in which both BART and BRAT can be fit independently and simultaneously.
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2. Model-based Analysis of a Novel Variant of the Balloon Analogue Risk Task Improves

Sensitivity to Risk-taking Behavior

Authors: Adam W. Fenton1, Per B. Sederberg1
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Summary

In this chapter, I present a study in which we developed a new version of the BART with the

purpose of making a fast yet sensitive paradigm for assessing risk taking behavior. We also

explaining the shortcomings of traditional methods for assessing BART performance and present

a new metric based upon deviance from optimal performance. We present a the development

process of a new generative cognitive model of the BART called PLUM (Predictive Linear

Utility Model), then demonstrate its ability to fit and recreate observed BART behaviors.

2.1 Introduction

The main objective of the BART is to mimic real-world scenarios in which the person

must maximize a beneficial reward in an environment where the probability of a negative

outcome is initially completely unknown (Lejuez et al., 2002). The BART is a type of n-armed

bandit task - a category of psychological tasks in which there are negative consequences to

certain actions. The BART, like other n-armed bandit tasks, creates an experimental environment

in which participants must balance between exploration and exploitation of the task. In the task,

participants must pump up a balloon untilParticipants have no prior knowledge of the likelihood

of the balloons’ popping points and must learn the balloons’ popping probabilities through trial

1 Department of Psychology, University of Virginia
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and error. The BART has excellent test-retest reliability both behaviorally and neurally (White et

al., 2008; Li et al., 2020).

BART performance has been closely correlated with various self-report measures of

risk-taking behaviors in real-world settings, including greater tendencies to engage in alcohol

abuse, drug abuse, and risky sexual behaviors (Lejuez et al., 2003). The task has also been useful

in assessing differences between various clinical populations and drug trials, such as the

administration of oxytocin to patients with bulimia nervosa and binge eating disorder engaging

in less risky decision making compared to placebos (Reddy et al., 2014; Leslie et al., 2019).

Most healthy participants demonstrate risk-averse behavior on the BART (Trepel et al., 2005). In

the BART, people with lower self-reported impulsivity are more risk-averse when potential

rewards are higher due to the potential loss growing in step while people with higher impulsivity

are less affected by the increasing levels of risk (Bornovalova et al., 2009).

However, there are multiple drawbacks with the BART. There are three different balloon

types, each with a different pop probability. The upper limits of these balloon types are vastly

different, with the largest pop distribution having an upper limit of 128 pumps before popping.

This vast range of popping points makes it very difficult for participants to learn the probability

of the balloon popping (de Groot, 2020) and increases task completion time. A second issue lies

in the method by which BART performance is assessed. The performance metric used in various

BART studies - the adjusted score - is calculated by taking taking the average number of pumps

across only the balloons that were collected (Lejuez et al., 2003). This metric discards the

information in popped balloons, yet it is still in use today (Plescak et al., 2008; Chandrakumar et

al., 2018). Removing popped trials can bias the adjusted score lower due to trials in which risks

were taken by pumping the balloon more are censored (Chandrakumar et al., 2018).
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Here, we present a new version of the BART that is aimed at quantifying differences

between individuals across the entire spectrum of risk processing and examining the sequential

dependencies of the decision-making process. In order to do so, we have made modifications to

the tasks reward and balloon pop probability structures. BART that includes variable rewards and

balloon categories with more distinctive pop probability distributions that induce meaningful

choices on at each decision point, providing more room for response variability. Greater response

variability between individuals allows us to better capture individual differences even among a

cognitively healthy population, providing support for a more attuned representation of the

cognitive process at play during risk-taking. We created a new variant of the BART with five

goals in mind: 1) Encourage participants to learn the pop probabilities of the balloons, 2) Provide

opportunity for participants to explore and learn multiple distinctive probability distributions

while minimizing task length, 3) Develop a new methodology for assessing BART performance

that uses all data, and 4) Compare several possible cognitive mechanisms that could be at play

during the decision-making process.

2.2 METHODS AND MATERIALS

2.2.1 Participants

85 participants (age range 18-43 years; mean = 20 years) were recruited via posted fliers

from the University of Virginia and greater Charlottesville, VA community. As mandated by the

Institutional Review Board for Social & Behavioral Sciences (IRB-SBS), participants provided

written informed consent. Participants were compensated $10 per hour.

2.2.2 Experiment Testing Environment & Apparatus
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A desktop computer with Windows OS and a 1920 x 1080 24” 144Hz display was used

to display the computer-based tasks. Participants performed a series of cognitive tasks multiple

times in a cognitive battery (see Weichart et al., 2020). All experiment instructions and task

stimuli were presented via the State Machine Interface Library for Experiments (SMILE;

https://github.com/compmem/smile). SMILE records participant responses, response times, and

the timings of all experiment-related stimuli. Participants made “pump” or “collect” responses

using the outer-two buttons of a four-button Black Box Toolkit response pad.

2.2.3 Task Design

Participants read the BART task description and instructions and then perform a brief

practice session in which three gray-colored balloons were sequentially presented. These

balloons could be pumped or collected. These practice balloons could also pop if pumped to their

popping point. Once the practice session finished, the participants would be informed that they

would start the actual task.

As illustrated in Figure 1, the participant sees a colored balloon on the screen. The

balloon initially begins with a value of $0.00 if collected, and the bank (which is to one side of

the screen) begins with $1.00. A fixation cross appears in the box below the balloon, followed by

a monetary amount selected from a uniform reward distribution of $0.05 to $0.25. The

participant must either press the ‘1’ button or the ‘4’ button on a button response box.

Counterbalanced across participants, one of the buttons performs the pump action, the other

performs the collect action. Selecting the pump action causes the pump value in the box below

the balloon to be added to the balloon’s total net value. The balloon will then either grow slightly

or it will pop. If the balloon pops, the balloon will pop visually, and a new balloon will then

https://github.com/compmem/smile
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appear after 750 ms. If it does not pop, then the participant is given another opportunity to pump

or collect. If the participant selects the collect action, the pump value is not added to the balloon.

Instead, the balloon moves over to the bank, and the balloon’s net value is added to the total

within the bank. It is important to note that once the pump value appears in the box below the

balloon, 1 cent will be lost from the bank every 450 ms and the bank font color flashes to yellow.

This rapid, intermittent deterioration of the bank’s value incentivizes participants to make

decisions quickly, thereby increasing the sense of urgency and to make the task more engaging..

Figure 1. Image of the BART task.

There were a total of 18 balloons in each of the two blocks of the BART performed by

participants. There were three different types of balloons, with six balloons for each type. We

refer to these different types of balloons as different “bags” of balloons in the context of this

experiment in the task instructions. Each balloon within a bag has a popping point that is selected
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from the same uniform distribution. Balloons from the same bag have the same color, thus

providing participants the opportunity to learn the popping point range of each bag type through

trial and error. The colors for each bag are selected at random. Participants were not told what

the maximum and minimum popping points were ahead of time. They were told that each bag

had a different “quality” of balloons, in that some balloon types could possibly be pumped more

than other types. The different bags of balloons had the following uniform distributions from

which a balloon’s popping point was selected: [0, 8], [8, 16], and [0, 16]. These distributions are

similar to those from a prior BART study, with the difference being the [8, 16] range balloon

type (Schonberg et al., 2012). Each balloon was given a popping point that was randomly

generated from its respective pop point distribution. These distributions were selected to best

differentiate participant behaviors and were based off similar distributions used by Schonberg

and colleagues (2012). The outcomes of the first balloons can significantly impact a participant’s

perception of the balloons’ pop probabilities (Koscielniak et al., 2016; Schürmann et al., 2019).

The presence of three different pop probability distributions helps to mitigate this effect, as a

balloon pop early in a bag is likely to only affect the participant’s interpretation of that bag’s pop

distribution. The presence of three different bags also encourages the participant to learn and

differentiate those distributions. The [8,16] balloons provide an opportunity for the participant to

pump more often, with no chance of the balloons popping until the eighth pump at the earliest.

The presence of these different pop distributions allows participants to explore these

distributions, indicating that they are willing to take risks, at least to a certain extent. participants

who consistently collect the [8,16] balloons prior to the eighth decision point are performing

conservatively. This balloon structure allows us to tease out differences in risk-taking behavior
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without need of more time for the participant to pump balloons with a much larger distribution of

pop points.

2.3. ANALYSIS

2.3.1 Assessing Performance: A New Performance Metric

Performance on the BART has conventionally been assessed via the adjusted BART

score, which is calculated by taking the average number of pumps made on collected balloons

(Lejuez et al., 2002). The adjusted score is useful for detecting large-scale differences between

healthy and unhealthy participants (Lejuez et al., 2003, Reddy et al. 2014). However, we have

found that there is room to enhance the sensitivity of this task to be able to differentiate smaller

differences within an individual over time or between cognitively similar people. We turn to

model-based approaches in order to gain a deeper understanding of the individual choice-level

decision-making process within the context of the BART. However, there are three limitations of

the adjusted score. Firstly, all information from the popped balloons is ignored (Pleskac et al.,

2008; Chandrakumar et al., 2018; Young & McCoy, 2019). There is still useful information about

behavior in popped balloons, especially if the participant was purposefully engaged in

exploratory behavior. The adjusted score does not account for this. Indeed, the creators of the

BART themselves acknowledge that the adjusted score is biased, as balloons may terminate early

(Pleskac et al., 2008). Secondly, the adjusted score does not take into consideration the fact that

participants are learning the distribution of the balloons’ popping points. For example, if a

participant pumped the previous four balloons 20, 15, 9,and 25 times prior to the balloon

popping or collection. There is then evidence that they should pump on the 6th decision point of

the next balloon since they have not experienced a pop prior to pumping the balloon 9 times.
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Even if the balloon were to pop on that 6th choice, it is informative that the participant made the

attempt to pump in light of past experience. Third, In response, they developed a BART variant

in which a participant must decide at the onset of each trial how many times to pump each

balloon. However, evidence suggests that making risky decisions a priori versus sequentially and

in the moment can result in different risk-taking behaviors (Figner et al., 2008; Dijkstra et al.,

2020). In order to gain a more nuanced understanding of the differences between individuals, we

developed a novel metric that is sensitive to risk-taking differences within a healthy participant

population.

The performance metric we present here is based upon the model mechanisms rooted in

prospect theory itself. Our metric, denoted throughout as M, is on a scale from 0.0 to 1.0, with

0.5 being optimal performance. We define optimal performance, , as that exhibited by an

omniscient participant who knows the underlying pop probability distributions of the balloons

and the reward distribution ahead of time. To calculate M, we first calculate the expected value

for every possible decision point in the balloons the participant experienced in the task. This

value is calculated from the perspective of an omniscient participant that already knows the

true average of the reward distribution and the popping point ranges for the different bags. is

determined strictly by monetary values and the probability of popping. diminishes as the

number of pumps increases, eventually becoming a negative value. When is positive, the

optimal choice is to pump the balloon and realize . When is negative, the optimal choice

is to stop and collect the balloon, thus not realizing and instead realizing zero. We take the

difference between the values realized by the participant and for every choice. It is

important to note with this methodology, if pumping a balloon results in a pop, the decision to

pump is the optimal decision as long as is a positive value.

https://www.codecogs.com/eqnedit.php?latex=O#0
https://www.codecogs.com/eqnedit.php?latex=E#0
https://www.codecogs.com/eqnedit.php?latex=E#0
https://www.codecogs.com/eqnedit.php?latex=E#0
https://www.codecogs.com/eqnedit.php?latex=E#0
https://www.codecogs.com/eqnedit.php?latex=E#0
https://www.codecogs.com/eqnedit.php?latex=O#0
https://www.codecogs.com/eqnedit.php?latex=E#0
https://www.codecogs.com/eqnedit.php?latex=E#0
https://www.codecogs.com/eqnedit.php?latex=E#0
https://www.codecogs.com/eqnedit.php?latex=E#0
https://www.codecogs.com/eqnedit.php?latex=O#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=E#0
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, when (1)

, when (2)

Thus, deviation from optimal performance is the cumulation of the difference between optimal

and realized values We calculate this sum for each balloon b as in Equation 3 below.

(3)

We then scale each score by the following: score by the following:

, when (4)

, when (5)

is the optimal expected value of pumping on the first pump of a given balloon. The first

pump of a balloon has the largest optimal expected value, as there is no penalty for popping a

balloon that does not yet have any value in it, and there are potential rewards to be gained by

pumping. is the optimal expected value at the popping point, and is a negative value as the

only outcome for pumping at this point would be to lose the value of the balloon. Our

performance metric M is then the overall average performance of all across all balloons. This

https://www.codecogs.com/eqnedit.php?latex=O%3DE#0
https://www.codecogs.com/eqnedit.php?latex=E%3E0#0
https://www.codecogs.com/eqnedit.php?latex=O%3D0#0
https://www.codecogs.com/eqnedit.php?latex=E%3C%3D0#0
https://www.codecogs.com/eqnedit.php?latex=m_%7Bb%7D%3D%20%5Csum_%7Bi%3D0%7D%5E%7Bstop%7D%20O%20-%20E(realized)_%7Bi%7D#0
https://www.codecogs.com/eqnedit.php?latex=m_%7Bh%7D#0
https://www.codecogs.com/eqnedit.php?latex=m_b#0
https://www.codecogs.com/eqnedit.php?latex=M_b%20%3D%200.5%20-%20%5Cfrac%7B0.5%20*%20m_b%7D%7BE_%7Binitial%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=m_%7Bb%7D%3C0#0
https://www.codecogs.com/eqnedit.php?latex=M_b%20%3D%200.5%20%2B%20%5Cfrac%7B0.5*m_b%7D%7BE_%7Bpop%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=m_%7Bb%7D%3E0#0
https://www.codecogs.com/eqnedit.php?latex=E_%7Binitial%7D#0
https://www.codecogs.com/eqnedit.php?latex=E_%7Bpop%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_b#0
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performance metric not only shows how suboptimal a participant is performing, but it also shows

in what direction they are performing suboptimally. Scores below 0.5 indicate that the participant

was more risk-averse and less willing to risk popping the balloon. Scores above 0.5 indicate that

the participant was willing to take greater risks.

2.3.2 Model Mechanisms

Our model of the BART is based upon a prospect theory Bayesian sequential risk-taking

model (BSR) account of the task proposed by Wallsten and colleagues (Wallsten et al., 2005).

This prospect theory account posits thus: Given an ambiguous probability of a negative net gain,

the participant compares the potential gain to the potential loss. Since humans have various

biases, the participant’s perception of value for potential gains and losses is not perfect. Instead,

it is modulated by their own predisposition to avoid or engage in risk-taking behavior. We refer

to the participant’s personal interpretation of value as the expected value, E. In this study, we

present several possible mechanisms by which E may be modulated.

Estimating the Probability of a Balloon Popping

One of the mechanisms governing the value of E is the participant’s estimation of the

likelihood of the balloon popping on a given decision. An assumption of this model - and many

other prospect theory models in general - is that the participant possesses an initial estimate of

this outcome likelihood. This initial belief is subjective and be influenced by extraneous factors

such as stress (Molins et al., 2022). In the case of the BART, that likelihood is based upon the

participant’s estimate of how many times they can pump the balloon until it pops. We call this

estimated popping point n. A participant could assume that the pop probability, p, grows in an
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exponential fashion (as it truly does) or in a linear fashion. For a participant that assumes the

former, the popping point p at choice i is defined as:

(6)

If the participant assumes p grows in a linear fashion, it is defined as:

(7)

Thinking Ahead: Calculating Expected Value and Considering Future Rewards

An individual making sequentially dependent decisions can do so in one of two ways: 1)

consider the potential reward immediately available in comparison to the potential loss, or 2)

consider the immediate potential reward in conjunction with future possible rewards, comparing

the total sum of immediate and future rewards to the potential loss. If the participant considers

only the current rewards, the subjective value of pumping on at choice/decision point i is:

, (8) ,

where q is 1-p (the probability of the balloon not popping if the participant chooses to pump), r is

the amount of money that would be added to the balloon if the participant chooses to pump, and

b denotes the current monetary value of the balloon. is a free parameter for loss aversion. is

a free parameter modulating nonlinear perceptions of monetary value. When is higher, the

https://www.codecogs.com/eqnedit.php?latex=p%3D%5Cfrac%7B1%7D%7Bn-i%2B1%7D#0
https://www.codecogs.com/eqnedit.php?latex=p%20%3D%20%5Cfrac%7Bi%7D%7Bn%7D#0
https://www.codecogs.com/eqnedit.php?latex=E(%5Ctext%20%7Bpump%7D)_%7Bi%7D%3Dq%20r_%7Bi%7D%5E%7B%5Cgamma%7D-%20%5Ctheta%20p%20b%5E%7B%5Cgamma%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
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difference between monetary values increases exponentially. We present model variants with

both one and two separate parameters, denoted by for modulating rewards and for

modulating losses, respectively. There is considerable evidence supporting the view that

participants can have asymmetric valuations of rewards and losses (Trepel et al., 2005;

Schonberg et al., 2011).

If the participant does, however, take into account future possible rewards, then the value of

pumping is:

(9)

The equation for calculating E(future) is as follows:

. (10)

E(future) is the summation of the mean reward seen thus far multiplied by q, up to the

estimated stopping point n. This method discounts possible future rewards based upon the

likelihood of reaching that pump number i in the balloon. Simply put, less likely future rewards

are down weighted in value. To summarize, the equation above shows that E is the comparison

of the current and possible future rewards that this balloon could yet provide with the potential

loss if the balloon were to pop. E(future) diminishes as i approaches n.

With E calculated, the participant must decide whether to pump the balloon or to collect

the balloon. Our models posit that the participant compares the potential gains against the

https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma%5E%7B%2B%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma%5E%7B-%7D#0
https://www.codecogs.com/eqnedit.php?latex=E(%5Ctext%20%7Bpump%7D)_%7Bi%7D%3Dq%20r_%7Bi%7D%5E%7B%5Cgamma%7D%20%2B%20E(%5Ctext%7Bfuture%7D)-%20%5Ctheta%20p%20b%5E%7B%5Cgamma%7D#0
http://www.texrendr.com/?eqn=E(%5Ctext%7Bfuture)_%7Bi%7D%3D%5Csum_%7Bk%3Di%2B1%7D%5E%7Bn_h%7D%20q_%7Bk%7D%20%5Coverline%7Br%7D%5E%7B%5Cgamma%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Coverline%7Br%7D#0
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potential losses. By this reasoning, the participant should be more likely to pump if the expected

reward is greater than the potential loss and be more likely to collect when the perceived loss is

greater than the potential reward (Figure 2).

Figure 2: Prospective Gains v Losses. Prospect theory in relation to the BART suggests that
when perceived potential losses are greater than perceived potential, the optimal decision is to
stop pumping and collect the balloon. When perceived potential gains are greater than perceived
potential losses, the participant should pump the balloon.

Choice Probability Function

The mechanism by which the likelihood of the participant’s choice i is determined by the

following sigmoid equation:

if the participant pumped, or (11)

https://www.codecogs.com/eqnedit.php?latex=d_i%3D%5Cfrac%7B1%7D%7B1%2Be%5E%7B-%5Ctau%20*%20E_i%7D%7D#0
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if the participant collected. (12)

where is a temperature parameter representing the participant’s predisposition to selecting an

action at random.

Updating the Perceived Balloon Pop Probability Distribution

Once a decision is made, the outcome of the decision is considered. In this version of the

BART, we have three different categories of balloons, each with different popping point ranges.

Our model has three separate initial n parameters that are updated independently of one another,

providing a mechanism by which the model can account for the participant learning these

different pop distributions. n is a free parameter. We explore model variants in which each initial

n is fit independently as well as when each n is set to the same initial value. To distinguish the n

parameters, we denote them with h for a bag type, resulting in three n values: , , and

. The degree to which deviated from the resulting popping point at decision

point/choice i is calculated.

If the balloon does not pop,

. (14)

If the balloon does pop,

. (15)

https://www.codecogs.com/eqnedit.php?latex=d_i%20%3D%201%20-%20%5Cfrac%7B1%7D%7B1%2Be%5E%7B-%5Ctau%20*%20E_i%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau#0
https://www.codecogs.com/eqnedit.php?latex=n_%7B0%2C8%7D#0
https://www.codecogs.com/eqnedit.php?latex=n_%7B0%2C16%7D#0
https://www.codecogs.com/eqnedit.php?latex=n_%7B8%2C16%7D#0
https://www.codecogs.com/eqnedit.php?latex=n_h#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20n%20%3D%20p%20*%20(n_h-i)#0
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This makes a greater magnitude of change when the previous estimate of differs greatly

from i. Also, this rule asserts that more information is available for updating when the

balloon pops than when it does not. This is reasonable, as from the participant’s perspective,

pump decisions in which the balloon does not pop may slightly reinforce their confidence in their

estimate of the likelihood of the balloon popping. How different participants respond to

prediction errors/reinforcements is dependent upon the individual. To capture this difference, we

use the following:

, (16)

where is a free learning rate parameter. scales the magnitude of the prediction

error/reinforcement. This scaled difference is then added to . We compare model variants in

which the is updated after every choice to variants in which is updated only at the

conclusion of a balloon. When is updated on every choice, it slowly increases over the course

of sequential pumps, causing choices that do not result in a pop to provide slight

evidence/confidence for pumping again.

3.2.5 Modeling Sequentially Dependent Choices

Generative cognitive models provide an ideal test-bed for assessing the validity of

hypothesized cognitive processes. Like other cognitive models, generative models can be used to

extract parameter estimates that most likely gave rise to the observed behaviors (Busemeyer &

Stout, 2002; Huys et al., 2016). The likelihood of this a critical factor in many BART models
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based upon prospect theory is the sequentially-dependent nature of choices. The likelihood of a

participant’s specific pattern of behavior becomes increasingly low as the number of choices

made increases. This is further compounded when one considers the number of events in which

the participant is forced to update their estimated outcome probabilities (i.e., update their pop

probabilities after a choice). Therefore, an accurate model of the BART should, given a set of

priors enveloping the correct posterior distribution of true parameter values, be able to reliably

predict the exact sequence of choices made once fit to the observations. Our analytic likelihood

function is the product of all the observed choice likelihoods. The likelihood function for our

observed data X for our choice models is thus:

, (17) ,

where B is the balloon number/trial number, N is the number of balloons, i is the choice number,

and is the choice at which point the last decision was made. Table 1 presents descriptions of

each parameter. Parameter priors were selected to be uninformatively wide.

Table 1: PLUM Model Parameters

Table S1 in the supplementary materials contains a breakdown of which mechanisms are present

in each model.
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2.3.3 Fitting Models

All models were fit to each subject and block independently. We define a set of priors for

each parameter (Table 1). Using differential evolution with Markov Chain Monte Carlo

(DE-MCMC), we generate parameter samples from the priors, calculating the likelihood of the

observed data X given the parameter values (Turner & Van Zandt, 2012; Turner et al., 2013; see

Weichart et al., 2020). To do so, we used the Python library RunDEMC

(https://github.com/compmem/RunDEMC) . We utilized 50 chains for the model, performing

600 iterations of burn-in to find the maximum a posteriori (MAP) estimate, followed by 1400

iterations of sampling with a purification step every 5 iterations.

2.4 RESULTS

We first examine the behavioral results and evaluate the utility of our proposed BART

performance metric M. We then perform a model comparison to investigate which of the

proposed cognitive mechanisms are the most likely to give rise to the observed behavior.

2.4.1 Behavioral Results

Performance on the BART task was on average below optimal performance (first block:

average M = 0.46; second block: M = 0.45) indicating that participants were likely to behave

conservatively in that they were, on average, not reaching the optimal stopping point on the

balloons. Figure 3 shows he distributions of performance for each block were very similar. This

is a common finding in risk-taking studies that cognitively normal participants are more likely to

be risk-averse (Tom et al., 2007). . Figure 4a (84 participants, 2 blocks each, n = 164) shows that,
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on average, participants performed nearly optimally on the [0, 8] bag. Participants were

increasingly suboptimal on average for the other bags that had higher upper pump limits and

tended to behave conservatively. This indicates that many participants were unwilling to fully

explore the full popping point distributions of the [0, 16] and the [8, 16] bags. It is especially

interesting to note that when no balloons popped prior to the eighth pump in the [8, 16] bag,

many participants were still cautions of pumping too many times, indicating very conservative

behavior even when the opportunity for greater exploration presents itself.

Figure 3: Performance Metric: The left plot shows participants (N=84) scored on average below
optimal performance of 0.5 (the black vertical line). First block mean: 0.46 (red vertical line);
Second block mean: 0.45 (blue vertical line). The right plot shows the average performance for
each balloon type. We see that, on average, participants tok greater risks on the smallest range
balloon [0,8] and were conservative on both the [0,16] and [8,16] balloon types on average.

To assess the sensitivity of our performance metric, M, we compare it to the adjusted BART

score. Figure 5 shows how M strongly correlates with the adjusted score, but is able to

differentiate deviance from optimal performance. This suggests that M could be useful in BART

studies assessing individual differences in risk taking without the need to remove data. It also

provides a sense of in the direction (i.e., conservative or risk-taking) of the risk taking behavior

within the participant’s specific trial-level context.
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Figure 4: Adjusted Score vs. Deviation from Optimal (M) Across All Blocks. (N=163) The black
vertical line represents optimal performance (M = 0.5). M correlates strongly with adjusted score,
indicating that it would be useful in diagnostic studies that utilize adjusted score whilst being
more sensitive to true performance.

2.4.2 Modeling Choices: Model Results and Comparisons

2.4.2.1 Model BPIC Comparison

After fitting each model to all subjects within each block independently, we calculate the

Bayesian Predictive Information Criterion (BPIC) of each fit. BPIC is a useful tool for assessing

goodness of fit, as it assesses model fit while penalizing for more parameters (Ando, 2007).

Lower BPIC scores indicate a better model fit.



25

Figure 5: Comparing Model Fits.Within-subject mean-centered BPIC scores are presented. The
models are arranged in descending order of model average BPIC across participants. Lower
BPIC values (blue) represent a better fit. For a given model, any participants that it fit to better
than the other models are outlined in black. The number of participants a model had the best fits
for are at the right of the heatmap. Refer to Table S1 in the supplementary materials for a
breakdown of each model, listed by Model ID Number. Model number 3 was the overwhelming
winner, as it had the lowest BPIC score for the most subjects across both blocks.

Model 3 was the top performing model. We refer to model 3 as the Predictive Linear Utility

Model (PLUM). The assumptions of the PLUM model are as follows:
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1. The participant assumes the likelihood of a balloon popping increases linearly on

successive pumps (equation 7)

2. The initial estimated popping point for each bag type is same.

3. The participant is taking into account the prospect of future gains on consecutive pumps

(equations 9 & 10).

4. The participant updates only at the conclusion of every balloon.

In summary, the PLUM model is composed of the following mechanisms:

(7)

(18)

Figure 6 below puts equation 16 into the experimental context.

Figure 6: Representing Expected value in PLUM.

2.4.2.3: Simulations
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Using the best fitting parameters from our model fits, we are able to simulate the

sequence of choices made by participants in the exact order they were made. We simulated each

participants’ behavior 1000 times. We then score each simulation via our performance metric M

and compare the average M of the simulations to the participant’s true M. The correlations of the

simulated average and true observed M (r=0.98, p<0.001) for both blocks are very strong (Figure

7), suggesting that the model is capturing the behavior of the posited cognitive mechanisms well.

Figure 7: True vs. Simulated Performance for PLUM: Simulations using best-fitting parameters
were robustly accurate in recreating observed patterns of pumping and collecting.

We next examine the relationships between model parameters and M. We correlate the best

fitting parameters for each participant’s M for each block.
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Figure 8: Parameters predicting performance: The parameters , (for the first block), and
are significantly correlated with M. See table S2 in the Appendix for all pairwise comparisons.

Loss aversion is negatively correlated with M for both blocks, indicating that more

loss-averse participants performed more conservatively. is positively correlated with M, but

was not significantly correlated with (r = 0.127, p = 0.12). This suggests that participants

similarly loss-averse could have different initial estimates of the pop probability.

A a posterior predictive distribution (PPD) is a distribution of simulated or predicted

observations conditional on the data that was observed (Gelman et al., 1996). To generate a PPD

for a given subject, we sample multiple sets of parameters from each parameter’s posterior

distribution. With each sample, we then simulate behavior. The better-performing model will

have more accurate choice-level predictions. For each model, we drew 100 parameter sets from

https://www.codecogs.com/eqnedit.php?latex=%5Ctheta#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
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the model fit posteriors. For each parameter set, we simulated behavior 100 times. Figure 9

shows the PPDs for one subject fit with PLUM. We calculate the PPDs 95% HDI within each

subject and block, then evaluate the distribution of differences of max deviations from the true M

within each subject.

Figure 9: PPD Balloon-Level Performance. For this subject, we are able to see the distribution
of points at which the simulations either popped or collected the balloon (box plots). We can
compare this to the participant’s pop and collection points (black dots for collection points, red
x’s for the popping points).

2.5 Model comparisons: Comparing PLUM to other modern models of BART

decision-making.

Comparing different computational models of the BART is critical for refining model

development and improving our understanding of the possible cognitive mechanisms at play

during risk-taking. Majority of the BART models are based in prospect theory, stating that

participants evaluate the expected value when deciding whether or not to pump a balloon or stop

and collect. Thus, many BART models share similar model mechanisms and free parameters

such as loss aversion. Given that we have a novel BART variant that is more complex than many
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other versions of BART, comparing PLUM to other models not based upon the same prospect

theory framing would be useful for future model development.

Our new BART version is quite complex in that it contains multiple balloon probability

structures with staggered probability distributions (pump ranges of 0-8, 0-16, and 8-16) and is

shorter than most BART tasks, thus speeding up task time. Our variant has only 18 balloons (6

balloons from each category) instead of the more common 30 balloons, with the largest balloon

types having a maximum pump upper limit of only 16 pumps as opposed to the more common

128 pump limit. The presence of three different types of balloons encourages the participant to

differentiate them and learn their underlying pop probability distributions in order to maximize

earnings. The BART variant presented here also has random rewards for pumping the balloon,

which could drastically impact the performance of models that do not properly account for this.

PLUM was created with multiple balloon types and variable rewards in mind. Comparing PLUM

to other BART models will allow us to explore multiple cognitive mechanisms and determine

which of these mechanisms are most likely at play in a participant’s decision-making process.

2.5.1 Competing Models Descriptions

In recent years, two other models of BART performance have been developed to evaluate

individual differences in decision-making during the BART. In this section, we present each of

these two models, discussing their proposed cognitive mechanisms and how they compare to one

another.

2.5.1.1 The Exponential-Weight Mean-Variance Model

The exponential-weight mean-variance model (EWMV) is based upon the notion that the

subjective utility of pumping a balloon is determined by the linear combination of the variance

and expected value of potential outcomes (Park et al., 2021). The EWMV model is similar to the
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BART model by Wallesten and colleagues presented in 2005 (Park et al., 2021; Wallesten et al.,

2005), which is also the inspiration for PLUM as well, making this comparison very applicable.

The EWMV model’s central mechanism is based upon mean-variance analysis, which can be

used to mimic prospect theory (see Park et al, 2021; Boorsman & Sallet, 2009). A critical

distinction from PLUM is that the EWMV operates under the assumption that the participant’s

estimation of the pop probability remains static during the pumping of a balloon (Park et al.,

2021). The participant instead begins the task with a prior belief of the pop probability, . At the

end of each balloon, the participant compares the number of successful pumps to the total

number of pumps made in order to assess the observed probability of popping:

, (19)

and updates their estimation of the pop probability, , by taking into consideration . The

following equation shows how this pop probability estimate is calculated.

(20)

The free parameter is an updating exponent that determines the degree to which observations

are factored into assessing . The subjective utility for pumping on trial k (aka balloon

number) and pump number, l, is given by:

(21)

(22)

The value r is the reward for pumping the balloon. is the participant’s loss aversion. The

parameter is the participant’s risk preference. Values of less than 0 indicate the participant
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prefers choices with a larger variance in potential outcomes. A of 0 indicates that the expected

value is the determining factor in assessing the subject utility. A greater indicates the

participant prefers to choose options with smaller outcome variance. The likelihood of the

participant pumping on a given trial is determined by the following softmax:

. (23)

is an inverse temperature parameter.

2.5.1.2 The Scaled Target Learning Model

A second modern BART model is the Scaled Target Learning model (STL) developed by

Zhou, Myung, and Pitt (2021). Notably, this model does not utilize prospect theory, making it a

fitting model to compare with the PLUM and EWMV models which both are based in prospect

theory. Indeed, this model is based upon a target model of the BART. Target models operate by

assuming the participant is updating a subjective ideal number of pumps over the course of the

BART (Zhou et al., 2021). After a successful balloon collection, the ideal stopping point for

pumping is increased. After a balloon pop, the stopping point decreases. This target number of

pumps is denoted as , and is initially a free parameter, similar to how PLUM has the initially

free parameter . After the initial balloon, is updated in one of two ways depending on the

balloon’s outcome:

, (24) if the participant collects, and

, (25) if the balloon pops.
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win and loss are free parameters that are greater than 0. represents the task design’s

maximum pop point. The STL utilizes to ascertain the likelihood that the participant will

pump at a given choice point via the following softmax equation:

, (26)

represents choice randomness, or “behavioral consistency” (Zhou et al., 2021).

The presence of the experimental design parameter in the STL differentiates it

from the the other two models. In the BART used in this study, participants have no knowledge

of the balloons’ maximum pump ranges. To address this, we include an additional model called

STLnmax that makes a free parameter such that .

2.5.2 Comparing Model Mechanisms

A critical distinction separating PLUM from the EWMV model is that PLUM assumes

the participant understands that every pump increases the likelihood that the balloon is going to

pop. In the EWMV model, the participant is assumed to have a static representation of the pop

probability while pumping the balloon (Park et al., 2021). Notable work with the BART by

Schürmann and colleagues provides evidence that BART participants do not have static internal

estimations of pop probability as a function of pump. Self-report measures show individuals

perceive the balloon’s pop probability to increase with each consecutive pump and that the

subjective pop probabilities can drastically differ from the true, objective pop probability

distribution (Schürmann et al., 2019). The STL model implements this increasing likelihood of

the balloon popping indirectly via its choice likelihood softmax equation, which compares the

distance of the current choice, , from the target number of pumps, .
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As aforementioned in chapter 2, PLUM makes explicit use of the possible current and

future rewards in its utility function for calculating expected value at each pump opportunity. It is

able to account for variable rewards, as it tasks into consideration the current and future rewards

in it’s calculator of expected value (eq 9). The STL model, however, ignores rewards entirely,

suggesting that the participant is strictly focusing on ascertaining ideal target numbers of pumps.

If the STL model performs better than the PLUM and EWMV models, it may suggest that

participants are completely ignoring rewards themselves. Given the design of this new version of

BART, I hypothesized PLUM would perform best, followed by the EWMV model and then the

STL model.

2.5.3 Model Fitting, Comparison Methods, & Results

The EWMV, STL, and STLnmax models were fit in an identical manner as PLUM. Table S3 in the

appendix provides the priors selected for the free parameters in these models. We again utilize

the BPIC score for comparing model goodness of fit to the observed behavioral data.

Model Comparison Results: BPIC Scores & Simulations
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Figure 10: Comparison of PLUM, STL, STLnmax, and EWMV:Models are ordered vertically based
upon average within-participant centered BPIC score across participants. To the right are the
counts of the number of participants that a given model fit the best out of all other models.

STL consistently outperformed the EWMV model, contrary to our hypothesis that it

would outperform the STL. The STL model and PLUM were very close in terms of BPIC

performance. For the first block, the STL model had the lowest BPIC score on average, with

PLUM being second, STLnmax being third, and EWMV being last. However, STL and PLUM

BPIC scores were not significantly different from one another (t = 0.39, ), and PLUM

BPIC scores were significantly lower than STLnmax (t =-12.72, ) STL and PLUM

both fit 42 participants the better than the other models. In the second block, PLUM had the

lowest BPIC score overall, followed by STL, STLnmax, and EWMV models. PLUM also fit the

best to 48 participants, with STL fitting the remaining 33 the best. PLUM scores were not

significantly different than STL scores on the second block (t = -1.99, ). PLUM

BPIC was significantly lower than STLnmax in the second block (t = -10.32, ). The

addition of the free parameter in in the STLnmax model, however, reduced the goodness of

fit two third place in this comparison, due to BPIC penalizing for more parameters. This

distinction is critical, as it means that when the STL model takes into account that participants do

not know the upper limit of the pump range of the balloons, the model’s performance suffers.

We assessed each model’s ability to recreate the observed behavior using best-fitting

parameters as we did with PLUM. Each model was simulated 1,000 times, with each simulation

being scored using performance metric M. Average simulation performance was then compared

to the participant’s behavior (Figure 11). All models show good simulation accuracy.

PLUM-generated performance correlated the strongest with observed behavior ( 1st block:

; p < 0.001 , 2nd block: , p < 0.001), followed by STLnmax ( 1st block:

https://www.codecogs.com/eqnedit.php?latex=p%20%3D%200.70#0
https://www.codecogs.com/eqnedit.php?latex=p%20%3C%200.001#0
https://www.codecogs.com/eqnedit.php?latex=p%20%3D%200.0505#0
https://www.codecogs.com/eqnedit.php?latex=p%20%3C%200.001#0
https://www.codecogs.com/eqnedit.php?latex=n_%7Bmax%7D#0
https://www.codecogs.com/eqnedit.php?latex=r%20%3D%200.98#0
https://www.codecogs.com/eqnedit.php?latex=r%20%3D%200.98#0
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; p < 0.001 , 2nd block: , p < 0.001), STL ( 1st block: ; p < 0.001 ,

2nd block: , p < 0.001), and EWMV ( 1st block: ; p < 0.001 , 2nd block:

, p < 0.001).

https://www.codecogs.com/eqnedit.php?latex=r%20%3D%200.96#0
https://www.codecogs.com/eqnedit.php?latex=r%20%3D%200.97#0
https://www.codecogs.com/eqnedit.php?latex=r%20%3D%200.95#0
https://www.codecogs.com/eqnedit.php?latex=r%20%3D%200.95#0
https://www.codecogs.com/eqnedit.php?latex=r%20%3D%200.92#0
https://www.codecogs.com/eqnedit.php?latex=r%20%3D%200.92#0
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Figure 11: Simulation Performance of Models. The left column shows model performance in the

first block, while the right column shows simulation performance in the second block. Models

are arranged in descending order of best two worst simulation accuracy.

2.6 DISCUSSION

Our new version of the BART puts a participant in an ambiguous risk-taking environment

that encourages learning the likelihood of failure of different categories of balloons. The

performance metric M provides more insight than the adjusted score into a participant’s actual

level of risk taking performance by comparing their performance to that of an optimal

participant. Critically, this metric does not censor any data and considers the trial-by-trial

sequence of choices. We hypothesized several possible cognitive mechanisms that could be

involved in the BART. We identify PLUM as the winning model. This model assumes that the

participant actively compares the potential gains to potential losses at each choice point. Unlike

past BART models, PLUM projects potential gains into the future, meaning it assumes that the

participant is not merely focusing on just the immediate possible gains, but also considering

future gains. Reinforcing this is the fact that the top three performing models contain the

mechanism for considering future rewards (eq 10). PLUM also assumes the participant is

updating their expected pop probability every choice while delaying in updating the estimated

popping point until the end of the balloon.

The manner in which the estimated pop probability increases, however, is linear in

PLUM, indicating that participants are updating the probability of the balloon in a simplified

manner and not as it is in reality. However, it should be noted that this could be due to constraints

of the task. A future version of this task in which the different bags had pop distributions with
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greater upper limits would be useful for investigating this, as this would provide longer

sequences of choices prior to a resolution (pop or collect). Despite PLUM being the most

complex model out of those compared, it was tied in BPIC scores with the STL that contained

information outside of the participants’ knowledge and fit better than the STLnmax model. PLUM

also demonstrated the greatest simulation accuracy.
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Abstract

In this chapter, I conduct an exploratory analysis in which I compare model-predicted

values of risk and value to their objective counterparts. I then assess if PLUM’s predictions of

expected value are correlated with brain activity. For this analysis, I fit the PLUM model to

behavioral data. I then use those best fitting parameters to generate model-based predictions of

participants’ perceptions of risk and value as a timeseries, correlating these with fMRI recorded

brain activity.

PLUM is based in prospect theory, and it evaluates the expected value of a risky choice

(Kahneman & Tversky, 1979). This expected value (E) is a comparison between potential gains

and losses, each of which are a product of their point/monetary value and the likelihood of that

event occurring. It is likely that PLUM has a defined mechanisms that captures the participant’s

projection of attaining future consecutive pumps via expected future rewards and factoring this

in during deliberation. This mechanism is useful for modeling choices in which a reward is

higher than average but likelihood of current and future pump success is low (especially towards

the balloon’s estimated popping point), as well as when the reward for pumping is low but the

estimated risk of current and immediate future pops is also low (often near the beginning of a

balloon).

3.1 Introduction



41

The decision-making process when taking risks is profoundly influenced by the

participant’s interpretation of outcome likelihoods. Ambiguity in the likelihood of known

outcomes or being uncertain of the what the outcome actually entails can impact an individual’s

behavior. It has long been known that people behave quite differently when the odds of

success/failure are ambiguous. Often in ambiguous circumstances people will tend to perform

overly conservatively and thus far from optimality (Ellsberg, 1961; Camerer & Weber, 1992;

Trepel et al., 2005; Levy et al., 2009; Wu et al., 2021; Gärling et al., 2009). It is worth

investigating the distinction between decision-making in risky environments (situations in which

the probability of success is a known value) and ambiguous environments (situations in which

the probability of success is unknown) because ambiguous risk-taking is a common occurrence

in our lives. The majority of research investigating risk-taking behaviors with fMRI examines the

differences in decision-making between conditions of varying degrees of known risk (see Wu et

al., 2021 for review). The human brain likely utilizes much of the same brain regions in

formulating a course of action between known risk and ambiguous risk conditions, with evidence

to suggest that there are distinct differences as well (Levy et al., 2009; Wu et al., 2021). Studies

examining the differences between risky conditions and ambiguous conditions have shown

increased orbitofrontal cortex (OFC) (Hsu et al., 2005), dorsal medial prefrontal cortex (dmPFC),

anterior insula, posterior parietal cortex, amygdala, and inferior frontal gyrus (Huettel et al.,

2005) in ambiguous conditions compared to conditions in which risk is more explicit (Wu et al.,

2021; Levy et al., 2009).

Functional imaging studies with the BART have shown profound effects of risk-taking

behaviors in hemodynamic responses. Broadly, the mesolimbic-frontal pathway, parietal,

subcortical, ventral striatum, and prefrontal brain regions all play a role in risk-ambiguous
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decision-making (Preuschoff et al., 2006; Rao et al., 2008; Li et al., 2020). The ventral striatum

has been shown to have greater activity in risk-averse people compared to risk-seekers in

anticipation of high-risk gambles (Rudorf et al., 2012). The dorsal lateral prefrontal cortex

(dlPFC) has been linked with active risk-taking as opposed to passive observation of risk-taking

in the BART (Rao et al., 2008; Aupperle et al., 2015). Schonberg and colleagues have shown that

during the sequential BART, the anterior insula, dlPFC, and dorsal anterior cingulate cortex

(dACC) activity increased the more times participants pumped a given balloon (Schonberg et al.,

2012). These results are further supported by later findings in which ACC and dlPFC activity

increased with the amount of risk in the BART (Li et al., 2020). These results suggest that the

participant is paying attention to and considering the changes in expected value at each choice

point. A more recent study examining the effects of immediate vs. delayed decision outcome

presentation when taking risks demonstrated a distinctive network made up of the dlPFC and

dACC associated with prediction-error monitoring when taking risks under ambiguity (Fiore and

Gu, 2021). The Schonberg and colleagues study also showed ventromedial prefrontal cortex

(vmPFC) activity decreases as a function of pumps in a balloon, suggesting that the vmPFC may

be engaged in representing increasing potential loss and/or decreasing expected value

(Schonberg et al., 2012). Supporting this is the fact that the vmPFC is highly interconnected with

the ventral striatum - a region of dopaminergic neurons that adaptively encode for subjective

value and expected reward in both humans and (Tobler et al., 2005; Hiser & Koenigs, 2018;

Helion et al., 2019; Gallistel et al., 2014).

Past fMRI BART studies typically use the objective risk, the actual pop probability, as a

regressor in analyses using general linear models to examine how neural activity changes with

varying levels of risk (Schonberg et al., 2012). However, objective risk and the participant’s
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subjective estimate of risk could be very different. Indeed, though the participant understands

that the balloon is more likely to pop as consecutive pumps are made, the participant does not

know the true underlying pop probability distribution - especially at task onset. Participants can

have subjective estimates of the pop probability that are very different from the true underlying

pop distribution (Schürmann et al., 2019). Our prior work with PLUM demonstrates that it is

possible that participants in BART utilize a more linear representation of increasing pop

probabilities, whereas the objective probabilities of the balloons popping as a function of pump

number is exponential. Schonberg and colleagues in 2012, in an attempt to circumnavigate using

objective measures of risk, took the average number of pumps for each of three balloon types,

then took the difference between pump number and the corresponding balloon type mean to get

the demeaned number of pumps as a more subjective/participant-specific regressor. However,

they only examined the rewarded balloons (Schonberg et al., 2012). This approach likely suffers

from the same issues of data censorship associated with the performance measure of adjusted

score (Pleskac et al., 2008; Coon and Lee, 2022). Also, many BART imaging tasks are

configured such that the reward for every pump is the same, as is the case in the aforementioned

study by Schonberg and colleagues. This consistent reward structure could make risk confounded

with reward/loss/expected value (de Groot, 2020), leading to risk and reward/loss/expected value

being more difficult to differentiate in fMRI signals. In our version of BART, the reward for each

pump is drawn from a uniform distribution from $0.05 to $0.25. Ideally, this motivates the

participant to be more attentive to rewards for pumping when evaluating the utility of a given

choice, given that the expected value is not changing in-step with perceived pop probability.

3.2 Hypotheses
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We predict that examining the relationships between fMRI voxel-wise activity and

model-based estimations of risk, reward, loss, and expected value as they evolve over the course

of the task may be a more direct and insightful approach than using objective/experiment based

measures for 1) improving computational models of sequential risk-taking, and 2) investigating

roles of brain regions in the context of sequentially-dependent decision making in

risk-ambiguous environments. The BART is an ideal task for this venture, as participant’s begin

with no knowledge of the pop probabilities and must learn from experience (Kóbor et al., 2018;

Wu et al., 2021). As participants proceed through the task, individual differences will dictate

when and if they transition from an ambiguous, exploratory mode to a more exploitative,

methodical risk-taking stratagem in line with risk-taking with known odds (de Groot, 2020). The

BART straddles these two disparate conditions of defined risk and ambiguous risk. PLUM is also

well-suited for this investigation. Unlike many other models of the BART, PLUM assumes the

participant understands that the pop probability of a balloon increases with each pump. Many

models of the BART assert that the participant keeps a static representation of pop probability

over the course of a balloon, such as the aforementioned EWMV model and earlier BART

models (Lejuez et al., 2005; Zhou et al., 2021; Park et al., 2021). We compare the results of using

objective regressors to those using model-based regressors. We hypothesize that

PLUM-generated regressors will lead to different correlations with hemodynamic responses

compared to using experimental, objective regressors such as objective risk, or objective values

of gains/losses.
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3.3 Methods
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Figure 12: From Behavior to Model-Generated Regressors. 1) Depicts the observed behavior,
which is every choice made by the participant. 2) We fit the observed behavior with PLUM to
extract best-fitting parameters. 3) Using best-fitting parameters, we generate model-latent values
that change over time, in this case expected value. 4) We convolve the generated latent values
with an HRF (a Glover HRF model was used in this example).

3.3.1 Participants

27 participants (age range 18-43 years; mean = 20 years) were recruited via posted fliers from

the University of Virginia and greater Charlottesville, VA community. As mandated by the

Institutional Review Board for Social & Behavioral Sciences (IRB-SBS), participants provided

written informed consent. Participants were compensated $10 per hour.

3.3.2 Task Design

Participants completed one block of the BART task identical to the task previously presented.

Participants pumped 18 balloons in total (6 of each balloon type, randomly ordered). Participants

made responses via an MRI compatible button box. Brain images were collected using a Siemens

Trio Magnetic Resonance Imaging with TIM system. The BART was administered as a part of a

larger task battery (Weichart et al., 2021).

3.3.3 fMRI Model-Based Analyses

All fMRI processed fMRI data was analyzed using the NiLearn Python library, which

utilizes the Scikit-Learn Python library (Abraham et al., 2014). For each participant, I will

instantiate a first-level general linear model (GLM). Each participant’s GLM utilizes an event

matrix customized for the respective participant. The event matrix contains information

regarding the onset and duration of both experiment-related events, objective measures of value

and risk, and PLUM-generated estimates of subjective risk, subjective value, and subjective

utility. These events were then convolved with a Glover hemodynamic response function (HRF)
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to generate a set of explanatory variables (EVs) for the first-level GLMs (Weber et al, 2015). We

also include a contrast of between the subjective regressors and the objective regressors in order

to detect any differences in significantly correlating voxel activity. Motion artifacts were

included as nuisance regressors. A gray matter mask was formed from the aggregate of all

participants and used in the first-level GLMs to help differentiate gray matter voxels from other

brain tissues. For cluster differentiation, a minimum distance of 8mm3was used.

3.3.4 Model-Generated Subjective VS Objective Explanatory Variables

Experiment-related EVs include rewards for pumping, current balloon value, and

objective balloon pop probability. Once individual behavioral data is fit with PLUM, we utilized

the best-fitting parameters from each model fit to generate model-subjective regressors. These

regressors represent various PLUM-predicted time series of subjective risk, subjective reward,

and subjective loss. PLUM will generate these values at each choice point. Thus, we can

convolve these values with a model of the HRF to create a continuous time series that can be

correlated with individual voxels in the first-level GLM.
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Comparison Description PLUM
Equation

Probability Probability of balloon popping Eq 7

Pump Reward Reward added to total for pumping rewardγ

Balloon Total Value of balloon 𝛉balloonγ

Table 2: Comparing Objective and Subjective Values of PLUM Mechanisms

To compare subjective and objective valuations of risk and value, we fit three first-level

GLMs for each participant (Table 2). For example, we fit a first level GLM in which the

subjective and objective pop probabilities are EVs and compute a contrast between them. Once

every subject is fit via a first-level GLM, we model the group-level data using a second-level

GLM (Monti, 2011; Gläscher & O’Doherty, 2010, Weber et al., 2015) . A second-level GLM

includes the individual-level regression coefficients as the input variables and allows for the

identification of brain regions that show consistent activation across subjects as well as the

estimation of the variability of the effects across subjects. The issue of multiple comparisons

arises when performing voxelwise analyses. To correct for this, we use a false positive rate

(FPR) correction in conjunction with cluster-extent thresholding to identify significant clusters

(corrected p < 0.05, cluster size > 12) (Wu et al., 2021). Cluster-extent thresholding was

performed via AFNI’s 3DCulstSim tool (Cox, 1996; Cox & Hyde, 1997; Cox et al., 2017a; Cox

et al., 2017b). We then compared the subjectexamining any overlapping or distinct significantly

correlating brain regions.We compare the maximum correlation statistical values between the
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objective regressors with those of the model-based regressors, assessing any differences between

the subsequent significant clusters.

3.4 RESULTS

3.4.1 Behavioral Results

Participant performance was measured using the performance metric previously described (M).

This performance metric ranges from 0 to 1, with 0.5 being considered optimal performance.

Scores above and below 0.5 are considered suboptimal. Scores below 0.5 reflect overly

conservative decision making (not taking risks). Scores above 0.5 reflect overly risky decision

making. On average, participants performed slightly conservatively with a mean score of 0.44,

indicating participants were risk-averse overall.

Figure 13: Participant BART Performance. Participants (N=27) performed on average slightly
conservatively. The black line indicates optimal performance of 0.5.
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3.4.2 Imaging Results

3.4.2.1 Comparing Subjective and Objective EVs

Presented here are the results of our regression and clustering analyses. For full tables of

cluster correlations, see appendix S2.

Contrasting subjective and objective pump reward did not demonstrate much

differentiation, for both did not portray much correlation with voxel activity after thresholding.

The superior parietal lobule (Z = 5.5, size = 416mm3) contained the highest peak activation for

subjective pump reward.. It was also was associated with left middle OFC (Z = 4.2, size =

128mm3). Objective pump reward was also associated with activity in the superior parietal

lobule, but in the opposite direction (Z = -5.4, size = 424). It too was associated with the OFC as

well (Z = -4.5, size = 584mm3).

The contrast for balloon total was similarly stark. The strongest peak activation was most

correlated with left middle occipital lobe for subjective totals (Z = 5.6, size = 4272mm3). The

strongest peak for objective total was left superior frontal gyrus (Z = 4.80, size=128mm3).

Pop probability was the most informative comparison. Contrasting subjective pop

probability and objective pop probability shows that modeled subjective probability was

correlated with many significant clusters. Objective probability had only two significant clusters,

with the strongest positive correlation being in the right superior temporal lobe (Z = -4.8, size =

168mm3). This region has been associated with risk taking under ambiguity and has been shown

to differentiate risk-taking strategies in alternative choice tasks (Paulus et al., 2001). It has also

been singled out in differentiating sex and age differences during risky decision making (Lee et
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al., 2009). Subjective probability was correlated with multiple regions, with the strongest being

the frontal gyrus (max Z = 6.96, size = 5464.0mm3) with a subcluster in the right inferior OFC (Z

= 4.98). ACC activity was correlated with subjective probability. ACC activity is associated with

response error monitoring, conflict, and likelihood estimation (Brown & Alexander, 2017;

Brown & Braver, 2005; Brown & Braver, 2008; Fukunaga et al., 2012). Subjective probability

correlated significantly with various clusters in the motor cortex, possibly indicating a

relationship between perceived pop probability and motor planning or inhibitory control. An

important mechanistic distinction between the objective probability and the subjective

probability is that PLUM makes the assumption that participants perceive the balloon’s pop

likelihood to be increasing in a more linear manner. The objective probability, however, is

exponential. The disparity in number of significantly voxel activity and clusters provides some

evidence that subjective probability is a more useful and more fitting predictor of brain activity

than objective risk.

Figure 14: Pump Reward Contrast
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Figure 15: Balloon Total Contrast
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Figure 16: Neural Correlates of Pop Probability
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3.4.2.1 PLUM-Estimated Expected Value

We also assessed if PLUM-predicted expected value would be significantly correlated

with brain activity. The max peak was located in the left precuneus (Z = 5.14, size = 2904mm3).

The precuneus has been noted to be at the heart of much speculation We also observed some

correlated right medial OFC activity (Z=4.35, size=168mm3). Previous work demonstrates that in

youths with greater risk-taking tendencies, precuneus activation is stronger than peers with lower

risk-taking tendencies (DeWitt et al., 2014; Eckstrand et al., 2017).

Figure 17: Neural Correlates of Expected Value

3.5 Conclusions and Future Work

This preliminary investigation into neural correlates of model-based cognitive

mechanisms provides some support that computational models of cognition can be used to

generate subjective values of risk in a neurally meaningful way. This work represents a stepping

stone for evaluating models of risky decision making by using models to generate a time series

that can then be correlated to neural activity over the course of a task. This work also steps away
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from traditional BART studies that typically use parametric forms of risk and average across

different conditions (Schonberg et al., 2012; Li et al, 2020). Instead, we convolved a

model-produced time series with an HRF to make predictions choice-by-choice predictions of

brain activity. Participants are learning a probability space of outcome likelihoods over time

through trial and error, having to balance the draw of more reward with the weight of increasing

failure (Lejuez et al., 2002; Lejuez et al., 2005). Even with the limited data in this data set, we

found evidence that a cognitive model can generate a more accurate predictor of neural activity

than using objective ones. This method could also be used to compare and contrast BART

models beyond just assessing their goodness of fit to behavioral data alone. Instead, model

mechanisms can be singled out if they are capturing a latent mechanism observed in neural data,

thus allowing the model builders to modify the task and/or the model to better suit their needs.

In future work, careful consideration should be made to the BART when being set up for

fMRI analysis. One consideration is the reward structure. Though we had varying rewards, we

did not see a relationship between subjective or objective reward with neural activity. However,

this could have played a role in why balloon total was also not affiliated with brain regions

normally associated with risk-taking in BART, as the balloon’s total no longer increased in-step

with risk. If this is so, it means that varying the reward structure should be considered in future

BART variants to better disentangle gains, losses, and risk in imaging studies. A future task

variant could increase the upper limit of the reward range to perhaps better elucidate a more

careful consideration of it. It is also the case that the BART task presented here had a bank that

slowly lost value as participants deliberated. This could be detrimental to collecting fMRI data,

as the diminishing bank pushes participants to respond faster and possibly not take as much time

to deliberate their choices as they normally would.
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4. Study 3: Utilization of the Framing Effect to Differentiate Risk-Taking & Risk-Avoidant

Behaviors

Authors: Adam W. Fenton1, Peter J. Castagna2, Michael J. Crowley3, Per B. Sederberg1

Summary

In this chapter, I present a computational model designed to investigate asymmetrical

risky decision making behaviors. We utilize the Balloon Risk Avoidance Task (BRAT) - a task

similar to the BART but in which participants deflate balloons instead of inflating them.

4.1 INTRODUCTION

Despite being a time of peak physical health, adolescents experience a spike in morbidity

and mortality largely from preventable risky behaviors (e.g., car crashes, unprotected sex, drug

use, binge drinking; Eaton et al, 2012). This volatility in youths has led to significant efforts to

understand why adolescence is a time of excessive risk-taking (Moore et al., 2013), develop

ways to measure an individual’s propensity to engage in risky behaviors, and find out how these

behaviors might be prevented (Reyna & Farley, 2006).

The Balloon Analogue Risk Task (BART) (Lejuez et al, 2002) was developed as a

clinical-oriented measure of risk-taking predispositions, and therefore, aims to identify

individuals more likely to engage in risky behaviors (Lejuez.et al, 2002; Lejuez et al, 2005). The

BART can successfully identify high risk-taking individuals (Aklin et al 2005; Lejuez et al,

2002; Lejuez et al, 2004). For instance, performance on the BART is related to several constructs

highly related to risk-taking such as sensation-seeking, impulsivity, and psychopathy (Hunt et al

3 Yale Child Study Center, Yale School of Medicine
2 Department of Psychology, University of Alabama
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2005; Lauriola et al 2014), as well as engagement in risky behaviors (Lejuez et al, 2004). BART

performance has been linked to social cues such as peer pressure (Kessler et al., 2017).

Whereas a great deal of literature has focused on adolescent risk-taking behaviors (e.g.,

Lejuez et al., 2005), risk avoidance has received considerably less attention. Risk avoidance has

been defined as the action of evading behaviors that expose the individual to loss or harm

(Crowley et al., 2021). Adolescence serves as pivotal period for the development of anxiety

disorder (e.g., Kessler et al., 2007), making it reasonable for one to expect a rise in risk avoidant

behaviors in some adolescents (Lorian and Grisham, 2011).

Given that risk-taking is conceptualized as approach motivation and sensation seeking

(Coffey et al., 2011; Collado et al., 2014; Jones & Lejuez, 2005; Shoham et al., 2016), assessing

risk avoidance is critical to get a complete picture of avoidance versus approach motivations.

Recent evidence suggests that the validity of a novel behavioral measure of risk avoidance, the

Balloon Risk Avoidance Task (BRAT) (Crowley et al, 2021). Specifically, avoidance behavior on

the BRAT was positively associated with anxiety and fear, negatively related to risk taking as

measured by the BART, and unrelated to depressive symptoms, trait surgency (approach

motivation), IQ and age.

The BRAT is a variation of the automatic BART (Lejuez et al., 2002; Pleskac et al.,

2008). In the BRAT, participants are presented with a balloon that they watch grow to be fully

inflated on a computer screen. A meter beside the balloon rises vertically from safe to danger.

Participants are shown that if no action is taken, the balloon is sure to pop. Participants prevent

the balloon from popping by choosing the number of “pumps of air” (between 1-128) they wish

to remove from the balloon, thereby deflating it and reducing the likelihood that it pops. The

larger the number that they choose, the less points they can earn for that trial (for example,
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choosing 20 pumps would result in saving 108 points). The BRAT differs from most other

behavioral risk tasks in that it favors risk avoidance. This framing biases participants to move

away from risk, making the application of the BRAT in the present study a measure of risk

avoidance.

Though risk-taking and risk avoidance may at first glance appear to be two sides of the

same coin, it is possible that the underlying cognitive mechanisms operating in such

circumstances differ in critical respects. The BRAT and the BART are essentially the same task,

but the decision maker (participant) is given a different initial perspective or framing. This

framing effect can have important ramifications for how prospective gains and losses are

evaluated, even if the risks are identical (Khaneman & Tversky, 1981,1984; De Martino et al.,

2006).

In recent years, there have been a number of advances in the computational modeling of

behavioral tasks to improve the measurement of underlying cognitive processes (Ahn et al.,

2014; Park et al., 2021; Zhou et al., 2021; Ratcliff, 1978). Given the promising behavioral results

of the BRAT and success of applying computational models to BART performance (eg., Park et

al., 2021), the purpose of the current study is to investigate differences between BART and

BRAT risk taking behavior. In doing so, we 1) propose a computational model that is able to

account for both risk-taking and risk avoidance scenarios, and 2) gain evidence that the BRAT is

tapping into a different aspect of one's cognitive signature compared to the BART.

4.2 METHODS

4.2.1 Participants.
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The sample consisted of 127 children (67 female), recruited via a mass mailing list

provided by a credit mailing company, Experian, targeting the towns surrounding New Haven,

CT. The reported ethnicity among the final sample of children was as follows: 12\% African

American, 8.8\% Hispanic, 6.4\% Asian, 3.2\% Native American and 68\% White, 1.6\% other.

Four children lacked a BRAT behavioral assessment, and three children lacked a questionnaire

assessment. The final dataset consisted of 120 children. Children were fluent in English and had

no evidence of serious mental illness (psychosis, autism, bipolar disorder), assessed via a

parental telephone screen. Children were considered ineligible for the study if their caregiver,

typically their mother, reported that the child in question was being treated for, or carried a

diagnosis of psychosis, autism, or bipolar disorder. Children were intellectually in the normal to

high normal range (verbal IQ mean = 112.25, SD = 12.88, range 82-139) (Wechsler, 1999). The

mean age of the children was 13.82 years (SD = 2.03 years, range = 10.10 - 17.78 years). This

research was approved by the Yale University School of Medicine Human Investigation

Committee.

4.2.2 Tasks

There were two tasks in this study: The balloon analogue risk task (BART) and the

balloon risk avoidance task (BRAT). Participants performed one block of each and were

counter-balanced. Before beginning the tasks, each participant viewed a prize book, with prizes

values associated with points earned.

4.2.2.1 The Balloon Risk Avoidance Task (BART)

The BART involves inflating a computer-generated balloon that can pop if over-inflated.

The BART consists of 30 balloons, played one at a time, each worth a maximum of 128 points.
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On each trial, the participant is presented with a balloon and must inflate the balloon by inputting

a number between 1 and 128 where higher numbers indicate more pumps/inflation and more

points. However, by inflating the balloon the participant also increases the potential risk for

explosion and a total loss of points for the current trial. Explosion points are predetermined,

following a normal distribution (Lejuez.et al., 2002), with a mean of 64.

4.2.2.2 The Balloon Risk Avoidance Task (BRAT)

The BRAT involves deflating a computer-generated balloon that is guaranteed to pop if

participants do nothing. The BRAT consists of 30 balloons, played one at a time, each worth 128

points. The participant initially sees a question mark in the center of the screen prompting them

that the trial is about to begin. Next, the participant watches a balloon inflate to the point of

popping, indicating the maximal level of risk. A meter next to the balloon rises from a safe level

(blue) to a red level (danger). The participant has 6 seconds to deflate the balloon before it pops.

A red, segmented timer indicates the elapsed time. If the participant fails to deflate the balloon,

then it immediately pops. The participant can deflate the balloon by inputting a number between

1 and 128 into a dial with a mouse. However, by deflating the balloon the participant also returns

some of the points they could possibly earn. For example, if the participant decides to deflate the

balloon by 88 points, and the balloon does not pop, then the participant keeps the remaining 40

points. If a balloon is left inflated past its popping point, then the balloon pops and the

participant loses all the points for that trial. Explosion points are predetermined, following a

normal distribution identical to the BART (Lejuez et al, 2002), with a mean of 64.
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Figure 18: BRAT Design. The BART for this study was identical except for the balloon starting
deflated.

4.2.3 Independent Measures

Youth Risk Behavior Survey (YRBS). The adolescent completed the YRBS, a self-report

measure of risk-taking behaviors (version 2007; Brener et al., 2002; Center for Disease Control

and Prevention 2007). In order to increase adolescent honesty, participants were told that their

responses to the substance use questions were confidential and would not be shared with their

parents except in cases regarding self-harm or concern for others safety. A certificate of

Confidentiality (COC) was obtained, and the adolescents were told that the confidentiality of

their reports of illegal behaviors (including substance use) were protected by the COC. The

YRBS monitors several categories of health risk behavior including safety, violence-related

behaviors, sad feelings and attempted suicide, tobacco use, alcohol use, drug use, sexual

behavior, body weight, dietary behavior, physical activity, and other health related topics.
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We were particularly interested in questions assessing the use of alcohol, illicit drugs,

nicotine, and marijuana, as well as physical fighting. The alcohol use subscale consisted of five

questions (e.g., “During the past 30 days, how often did you drink alcohol?”, “During the past 30

days, on how many days did you have at least one drink of alcohol?”). Illicit drug use was

assessed by twelve questions (e.g., “During the past 12 months, has anyone offered, sold, or

given you an illegal drug?”, “During your life, how many times have you used ecstasy (also

called MDMA)?”). Risky sexual behavior was comprised of three questions (e.g., “How old

were you when you had sexual intercourse for the first time?”, “The last time you had sexual

intercourse, did you or your partner use a condom?”). Nicotine use was assessed by three

questions (e.g., “Have you ever tried cigarette smoking, even one or two puffs?”, “During the

past 30 days, on how many days did you smoke cigarettes?”). Marijuana use subscale was also

comprised of three questions (e.g., “During the past 30 days, how many times did you use

marijuana?”, “How old were you when you tried marijuana for the first time?”). Finally, physical

fighting was assessed by three questions (e.g., “Have you ever been in a physical fight in which

you were hurt and had to be treated by a doctor or nurse?”, “Have you ever been in a physical

fight?”).

4.3 MODEL

One of the hallmarks of the BART is that the risk of failure is initially uncertain. The

decision maker learns information about the probability space of the task from experience.

Performance on the BART is a balancing act between exploration and exploitation. It is

advantageous to explore the balloon popping point distribution and then exploit the knowledge

gained. Modeling BART behavior necessitates capturing this process of learning an ambiguous
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probability distribution and making decisions upon an updating internal representation of the

probability of success/failure.

Developing a model of any cognitive task requires acknowledging the constraints

presented by the structure of the task itself. In this case, the participant must enter a number for

how many pumps they wish to add or remove from the balloon for the BART and BRAT

respectively. BART versions in which the participant enters a number of pumps, holds down a

key to inflate or presses a key to stop continuous inflation are known as automatic BART

versions. Including the original BART, some versions have the participant make each pump of

the balloon individually. Behavior on sequential versions compared to automatic versions are

essentially identical (Young and McCoy, 2019). The automatic versions of the BART have the

distinct advantage of typically being faster to administer than version in which participants must

make individual pumps. In BART versions in which the participant makes each pump

individually, as long as the participant is keeping track of how many times they have pumped a

given balloon, they know precisely the number of pumps it took to pop a balloon if a balloon

pops. This knowledge of the true popping point of a balloon is very informative for updating the

participant’s internal representation of the balloon’s pop probability space., in the versions of

BART and BRAT presented here, no feedback about the point at which the balloon popped is

provided. When the participant enters the number of pumps they desire, they watch the balloon

change size accordingly. Once the balloon has reached the particular size, it either pops or is

collected. This means that in the event of a pop, the exact point at which the balloon popped is

unclear. For example, when performing the BART block in this study, a participant may select

for 50 pumps to be added to the balloon that has a popping point of 40 pumps. The balloon will

inflate and 50 points will be added, then it will pop, obscuring the fact that the popping point was
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at 40 pumps. A model for this type of automatic BART and BRAT must take into consideration

the lack of clear feedback.

Figure 13: Model Mechanisms. The participant keeps track of observations of pops and
collections independently from one another. The participant has an initial bias for expecting pops
across choice values (the red line), but has a uniform distribution for expecting collections across
all choices (the green line). The participant compares the odds of popping to the odds of
collecting at a given choice point via an odds ratio, which is then transformed into a perceived
probability of the balloon popping. This pop probability, P, is used to evaluate the expected value
(E) of each possible choice. When a choice is made and subsequent outcome observed, the
underlying outcome of distribution is updated, capturing the process of learning the probability
space of the balloons.

Due to the lack of accurate feedback in regards to balloon popping points, we

hypothesize that the participant must then keep track of the outcomes observed in relation to the
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pump number given., we suggest that the participant is keeping track of pops and collections

separately. For developing a generative model to test this assertion, we turn to signal detection

theory (SDT). SDT models are useful for a wide variety of cognitive processes and can represent

many 2-choice decision processes (Turner et al., 2011). We instantiate two initial distributions;

one representing observations of pops (P) and one representing observations of collections (C).

These are not representative of the probability of a balloon popping or being collected. Rather,

these represent trials in which participant responses resulted in pops or collections. P is a

truncated normal distribution with a mean of and a standard deviation of . Both parameters

are free parameters in the model. C is a uniform distribution from 0 to 128. and together

form the shape of P initially, representing the initial pop observation bias at the start of the

experiment. P and C are probability mass functions in that they represent a range of discrete,

whole values of pumps (ie, there can’t be a half pump). We then utilize the P and C distributions

to calculate the estimated pop probability via calculating an odds ratio as seen in Equation 27.

, (27)

Normalizing this odds ratio, we get P, which is the normalized probability of the balloon

popping.

, (28)

https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma#0
https://www.codecogs.com/eqnedit.php?latex=%20odds_%7Bi%7D%20%3D%20%5Cfrac%7BP_i%7D%7BC_i%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20P_i%20%3D%20%5Cfrac%7Bodds_i%7D%7B1%2Bodds_i%7D%20#0
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This allows us to calculate the probability of the balloon popping at each specific choice i by

calculating the cumulative sum for each choice up to and including i.

, (29)

We then utilize prospect theory to calculate the expected value E for a given choice. Prospect

theory posits that the participant estimates the value of a given choice by comparing the possible

reward scaled by the estimated likelihood of success to the value of a punishment associated with

loss scaled by the likelihood of losing. Equation 30 shows this comparison.

, (30)

is a free parameter representing the modulation of value, with higher gamma increasing the

disparity between reward values non-linearly. represents the participant’s overall loss aversion,

and thus scales the perceived possible punishment for getting a pop.

Utilizing a softmax equation, we calculate the likelihood of the participant’s choice. A softmax

equation turns relative strengths into relative probabilities of making a choice - in this case,

relative expected values into relative likelihoods of making each respective number of pumps.

, (31)

https://www.codecogs.com/eqnedit.php?latex=%20p_i%20%3D%20%5Csum_%7Bi%3D1%7D%5E%7B128%7D%20P_i%20#0
https://www.codecogs.com/eqnedit.php?latex=%20E_i%20%3D%20q_i*r_%7Bi%7D%5E%7B%5Cgamma%7D%20-%20%5Ctheta*p_%7Bi%7D*r_%7Bi%7D%5E%7B%5Cgamma%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta#0
https://www.codecogs.com/eqnedit.php?latex=%20d_i%20%3D%20%5Cfrac%7Be%5E%7BE_%7Bi%7D*%5Ctau%7D%7D%7B%5Csum_%7Bi%3D0%7D%5E%7Bi%7De%5E%7BE_%7Bi%7D*%5Ctau%7D%7D%20#0
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is a free temperature parameter. Lower values of tau flatten the perceived differences between

choices, thus making the likelihoods of far-apart choices more similar than if a higher were

used. Once a choice is made, the participant observes the result and the corresponding

distribution of observations is updated by means of a kernel, K. If the balloon popped, the P

distribution is updated. If the balloon was collected, the C distribution is updated by means of a

box kernel, K. We refer to the observed outcome distribution as O in equation 33 (refer to Turner

and Van Zandt, 2011 for more on this box kernel approach).

, (32)

, (33)

is a free parameter determining the width of the kernel, and is a free parameter determining

the degree to which the distribution within the bounds of h is updated, acting as a learning

parameter and scales the rate of decay. The box kernel increases values within the boundary h

and decays the values outside of that boundary. Figure 14 demonstrates the updating process of

the distributions as a result of trial decisions and outcomes.

https://www.codecogs.com/eqnedit.php?latex=%5Ctau#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau#0
https://www.codecogs.com/eqnedit.php?latex=K%5Cleft(%5Cfrac%7Bx-x_i%7D%7Bh%7D%5Cright)%3D%20%5Cbegin%7Bcases%7D%5Cfrac%7B1%7D%7B2%20h%7D%20%26%20%5Ctext%20%7B%20for%20%7D%5Cleft%7Cx-x_i%5Cright%7C%20%5Cleq%20h%20%5C%5C%200%20%26%20%5Ctext%20%7B%20else%20%7D%5Cend%7Bcases%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7Bf%7D_%7BO%2C%20i%7D(x%20%3B%20h)%3D(1-%5Clambda)%20%5Chat%7Bf%7D_%7BO%2C%20i-1%7D(x%20%3B%20h)%2B%5Clambda%20K%5Cleft(%5Cfrac%7Bx-x_r%7D%7Bh%7D%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=h#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda#0
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Figure 19: Updating Representations. The initial representation of pops (red) is determined by
the free parameters and . The collection representation (green) is a uniform distribution from
0 to 128. In the first trial, the participant makes a response (denoted by the black “x”), resulting
in a win. The representation for collections is then updated, with free parameter h determining
the width of the box kernel over the distribution. Free parameter scales how much the
representation within range h spikes, while the values outside of h decay. Trial 2 results in
another win, and so the win representation is updated again. Trial 3 results in a pop, so the pop
representation is updated.

4.3.1 Model Fitting

Our model proposed here allows us to derive estimated parameter values that most likely

manifested the observed behavior given the model’s mechanisms (Busemeyer & Stout, 2002;

Huys et al, 2016). Given that we have a generative model, once we fit a participant’s data with

the model, we can then use the best-fitting parameters to simulate the participant’s behavior. A

good model should be able to reliably recreate the observed data. We establish a prior

distribution for each parameter, then use differential evolution in conjunction with Markov chain

Monte Carlo (DE-MCMC) to sample values from each prior distribution for each parameter.

Using these sampled parameter values, we calculate the likelihood of observed behavioral data

https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda#0


69

(Turner & Van Zandt, 2012; Turner et al., 2013). We make use of the freely available Python

codebase RunDEMC (https://github.com/compmem/RunDEMC). We performed a total of 1000

iterations with the first 400 being burn-in iterations to reach the maximum a posterior (MAP)

estimate and the later 600 iterations sampling with purification once every fifth iteration.

Table 3: Model Parameters.

4.4 RESULTS

4.4.1 Behavior

We first examined the behavioral differences between participant’s performance on

BART and BRAT. The metric by which we measure performance in this study is the mean

number of pumps across all balloons within a task. Looking at the mean number of pumps each

participant made for both tasks, we find that participants generally left more pumps remaining in

the balloon for BRAT than they did for BART. This means that participants tended to take greater

risks in the BRAT than the BART. Within-subject performance was skewed negatively when

calculating the difference between BART and BRAT, whereby the mean pump for BART was X

(SD = X) and the mean pump for BRAT was Y (SD = Y) (subtracting BRAT mean pumps from

BART mean pumps) (type of t-test, t(DF) = -5.54, p < 0.001). While performance on these two

tasks is moderately correlated (r=0.492, p < 0.001), they are not perfectly correlated. This lack of

perfect collinearity provides evidence that, while BART and BRAT are mirror-images of one
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another, the perception of moving toward or away from risk could profoundly affect the way

participants perceive and react toward risk in this task.

Figure 20: BART vs. BRAT Behavior: Performance on the BART and BRAT is measured via the
average amount of pumps of air the participant chooses to have remain in the balloon. The left
plot shows that performance on BART and BRAT is moderately correlated with one another. The
right panel shows the distribution of within-subject performance differences between BART and
BRAT. A two-sample t-test shows that participants were significantly more conservative on the
BART than they were on the BRAT (t = -5.54, p < 0.001).

4.4.2 Model Simulations

To assess the efficacy of the model, we fit the model to each participants’ BART &

BRAT data independently. Using the best-fitting parameters from each fit, we then simulate each

respective task. For a given participant, we performed 1000 simulations for each task, with each

simulation using the exact same balloons the participant experienced in the same order. This

provides a distribution of simulated choices and overall behavior. Figure 16 shows an example of
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simulating two participants’ behaviors. = Since the participants enter the number of

pumps/deflations at the onset of a balloon, we need not be concerned by issues associated with

sequential BART tasks in which participants make individual pumps such as data censorship

(Pleskac et al., 2008; Coon and Lee, 2022). Figure 17 shows that the model was able to reliably

reproduce the observed behaviors. Model generated BART performance correlated very strongly

with observed BART performance (r(DF) = 0.975, p < 0.001), and generated BRAT performance

correlated strongly with observed BRAT performance (r = 0.966, p < 0.001). We also examined

how similar the standard deviation of simulated choices was to that of the observed choices. We

found that the simulated choice standard deviation for both tasks was strongly correlated with the

observed choice standard deviations (BART: r = 0.962, p < 0.001; BRAT: r = 0.923, p < 0.001).

Figure 21: Single Simulation. Depicted here are the model-based likelihoods of any of the 128
choices being selected for two different subjects. The top figure shows the choice likelihood
estimates for a participant that took greater risks. The bottom figure shows the results of a
participant that performed conservatively. The black and red circles indicate the actual choices
made by the participant. Red circles indicate outcomes where the balloon popped, while black
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circles indicate collections. Lighter, yellow regions indicate higher model-based choice
likelihoods, while darker regions indicate lower choice likelihoods.

Figure 22: Simulation Results. Simulations were conducted using best-fitting parameters for all
subjects. 1000 simulations were performed for each subject. Average simulation performance is
correlated with observed performance.
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4.4.3 Relationships Between Parameters & Behavior

Our proposed model is able to accurately generate observed behavior. Thus, we can

examine interactions between the model parameters themselves and the observed behavior. For

all statistical comparisons, see Table 4. Here we will report the significant statistics. , the box

kernel width, is not significantly correlated with mean pumps in the BART and is weakly

inversely correlated with mean pumps in the BRAT. It is also not significantly correlated between

BART and BRAT. , the learning rate, is not significantly correlated to performance in both

BART and BRAT, nor is correlated with itself between the two task fits. , the initial mean of

the pop representation, is correlated with BART performance (r=0.53, ) and

correlated with BRAT performance(r=0.40, ). It is also correlated between BART and

BRAT (r=0.23, ). , the initial standard deviation of the pop representation, is weakly

correlated both BART and BRAT performance (r=0.23, ; r=0.23,

respectively), and not correlated with itself between the two tasks (r=-0.01, ).

modulates the reward value. is correlated with mean pumps in the BART (r=0.19, )

and correlated with performance in the BRAT (r=0.17, ). However, in the BART is

correlated with in the BRAT (r=0.534, ), implying that the participant’s subjective

perception of reward value may be similar in both tasks. , the perceived inter-choice difference,

was weakly negatively correlated with performance in both BART and BRAT (r=-0.26,

and r=-0.38, , respectively). was correlated with itself between the two

tasks, indicating that participants viewed the differences between pump values differently

between the two tasks (r=0.29, ). , the loss aversion parameter, was inversely

correlated with performance in both BART (r = -0.67, ) and BRAT (r =-0.64,

). This is to be expected, as a greater loss aversion would upscale the value of the

https://www.codecogs.com/eqnedit.php?latex=h#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=p%3C0.001#0
https://www.codecogs.com/eqnedit.php?latex=p%3C0.001#0
https://www.codecogs.com/eqnedit.php?latex=p%3C0.05#0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma#0
https://www.codecogs.com/eqnedit.php?latex=p%3C0.05#0
https://www.codecogs.com/eqnedit.php?latex=p%3C0.05#0
https://www.codecogs.com/eqnedit.php?latex=p%3D0.88#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=p%3C0.05#0
https://www.codecogs.com/eqnedit.php?latex=p%3C0.05#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=p%3C0.001#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau#0
https://www.codecogs.com/eqnedit.php?latex=p%3C0.001#0
https://www.codecogs.com/eqnedit.php?latex=p%3C0.001#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau#0
https://www.codecogs.com/eqnedit.php?latex=p%3C0.001#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta#0
https://www.codecogs.com/eqnedit.php?latex=p%3C0.001#0
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potential loss when determining the expected value for a given choice, thereby inducing more

conservative decision making (eq. 30). Interestingly enough, loss aversion between BART and

BRAT was not strongly correlated (r=0.32, ), implying that loss aversion between

BART and BRAT can differ greatly within the same participant. This provides evidence that the

perception of moving toward risk in the BART and moving away from risk in the BRAT are

viewed through non-identical lenses. The fact that the s for BART and BRAT were moderately

correlated with one another provides further evidence of this, as participants’ perception of

point/monetary value did not drastically change between the tasks.

Table 4: Correlating Independently-Fit Model Parameters with Performance: ‘*’ indicates a
correlation p-value below 0.05. ‘**’ indicates a p-value below 0.001.

4.4.4 Validity evidence for BRAT

We conducted analyses to assess the validity of the BRAT and BART computational models as a

measure of risk-taking. In terms of the BRAT, correlation analyses indicated that the BRAT

parameter of loss aversion ( ) was positively associated with drug use (r = .19, ),

alcohol use (r = .19, p < .05), and fighting (r = .22, ). Youths’ standard deviation of the

pop representation ( ) was positively related to drug use (r = .26, p < .01), marijuana use (r =

.17, ), alcohol use (r = .21, ), and fighting (r = .24, ). The BRAT

https://www.codecogs.com/eqnedit.php?latex=p%3C0.001#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta#0
https://www.codecogs.com/eqnedit.php?latex=p%20%3C%20.05#0
https://www.codecogs.com/eqnedit.php?latex=p%20%3C%20.01#0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma#0
https://www.codecogs.com/eqnedit.php?latex=p%20%3C%20.05#0
https://www.codecogs.com/eqnedit.php?latex=p%20%3C%20.01#0
https://www.codecogs.com/eqnedit.php?latex=p%20%3C%20.01#0
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parameter of monetary value ( ) was also positively associated with drug use (r = .19, ).

In regard to the BART model, the loss aversion parameter ( ) was only positively related to

fighting (r = .18, ). Average number of pumps on the BRAT and BART were unrelated

to any of youths’ risk-taking behaviors.

4.5 BART vs BRAT: Investigating Cognitive Differences

The model proposed is able to re-create observed behavior reliably, and we have model

parameters that are predictive of performance for both BART and BRAT while being only

weakly correlated with each other across the two tasks. This provides evidence that participants

are initially perceiving the popping probability spaces differently (via and ) and weighing

potential losses differently between the two tasks (via ) whilst having a consistent perception of

relative point value across both tasks (via ). Since the model and data for both tasks is identical,

we can fit the model to both tasks simultaneously. To do so, we create two sets of model

parameters - one for each task. This doubles the number of model parameters. For example, the

model has both and . We then systematically reduce parameter pairs into one

parameter, testing every combination of task-exclusive/shared parameters (128 combinations in

total). We followed the same procedure of model fitting as when fitting the model to BART and

BRAT independently. We then calculated the Bayesian Predictive Information Criterion (BPIC)

for each model variant for each subject. The more parameters a model has, the more it is

penalized, making it a conservative assessment of goodness-of-fit (Ando, 2007). We calculated

the within-subject mean-centered BPIC score for each model fit and ranked each model from

lowest (best) average BPIC across all participants to highest mean BPIC.
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The top 10 model variations (Figure 18) were not significantly different from one

another, but patterns emerge in terms of which parameters are shared. All 10 models shared h

and , with 7 sharing . was shared 6 times, with the top 4 models sharing . and were

shared 5 times. was shared 4 times. Upon closer inspection, 2 out of the 4 times is shared,

is not shared, implying that if is fixed between BART and BRAT, then takes up part of the

role in differentiating value between the tasks. The model with the lowest average BPIC shared

all parameters except for and . The second and third place models also did not share and

, but then shared and respectively. The model that fit best for the most subjects was the

model that shared all parameters between BART and BRAT except for loss aversion, .
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Figure 23: Combined Model Comparisons. Filled in circles indicate a parameter was shared
while empty circles indicate the presence of two independent parameters (one for BART, one for
BRAT). The first 10 models are listed, rank ordered from best (lowest BPIC score) to worse
(higher BPIC score). The column on the right labeled “Wins” indicates how many subjects a
given model fit best for. The model that fit the most participants the best is included at the
bottom within the box.

These patterns of parameters being shared/not shared provides evidence that loss aversion

and inter-choice differences were not the same within individuals during BART and BRAT.

For the best-fitting model that shared all parameters except loss aversion and inter-choice

https://www.codecogs.com/eqnedit.php?latex=%5Ctheta#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau#0
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difference, and were significantly different from each other between the two tasks

(two-sample t-tests: t(DF) = 5.75, p < 0.001 for and t(DF) = -3.03, p = 0.003 for ). Loss

aversion was significantly higher in the BRAT. At first glance, this may seem to contradict with

the behavioral measures of performance, as participants left more air in the balloons in the BRAT

than they added to the balloon in the BART (see figure 15). However, perceived inter-choice

differences were greater in BRAT than in BART for most participants. We theorize there are two

possible explanations for this: 1) Participants either perceive the distance needed to move to

relative “safety” is smaller in the face of certain failure (ie, a false sense of security), or 2) when

forced into a state of maximal risk, deflating the balloon in BRAT artificially gives the

impression of “losing points”, thereby making the balloon’s value more salient and thus loss

aversion is higher in BRAT than in BART.

Figure 24: Impacts of Loss Aversion and Temperature Parameters on Decision Making. The left
plot shows the effect higher and lower values of has on the perceived expected value.
increases or decreases the magnitude of the expected value. The right plot shows how different
values of can affect the overall likelihood of which choice will be selected, with lower values
of flattening the likelihoods between options.

https://www.codecogs.com/eqnedit.php?latex=%5Ctheta#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau#0
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4.6 Examining Relationships Between Model Parameters and Behavioral Reports via

Canonical Correlation Analysis.

The creators of the BRAT found that BART and BRAT performance related to different

aspects of risk-related behaviors. BRAT performance was found to be related to risk-avoidant

behaviors such as. With our model-based analysis, we fit the model to both BART & BRAT data

independently and were able to reliably recreate observed participant responses. To examine the

relationships between model parameters and independent measures (such as sleep, anxiety, etc.),

we could perform a large number of pairwise correlations. However, not only would we have to

account for a very large number of multiple comparisons (as we have parameter fits for two

tasks), we would be ignoring the relationships between the independent measures as well as the

model parameters at multiple levels.

In order to examine relationships between fit model parameters and behavioral measures,

we must first examine the relationships within these two sets of data. Due to the nature of PLUM

(like most other cognitive models) and the fitting process, the model parameters have various

relationships with one another and can correlate with each other. Behavioral measures are also

likely to correlate with one another, such as amount of sleep and anxiety. When attempting to

find relationships between two datasets with within-set relationships, standard pairwise

regressions and multiple regression approaches are not adequate. The within-set relationships

violate the underlying assumptions about the data in order to perform multiple regression. In

such situations, a possible solution is canonical correlation analysis (CCA). CCA finds the linear

combinations of elements from both sets such that the correlation between the two sets is

maximized in order to examine the relationships between the sets (Hotelling, 1936; Hardoon et

al., 2004; Parkhomenko et al., 2009). The comparisons in question are as follows: 1) BART
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parameters vs independent measures 2) BRAT parameters vs independent measures, and 3)

Combined model BART & BRAT parameters vs independent measures.

Figure 25: Examining canonical correlations between model parameters and behavioral
measures.

Comparison 1 & 2 will provide insight as to whether the proposed cognitive mechanisms in the

model are weighted differently between the two tasks whilst taking into consideration the

within-task parameter correlations. The results of this CCA can then be compared to the pairwise

correlations presented previously, which show how some parameters correlate between the two
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tasks while others do not. We can also compare these CCA results to the results of the combined

model BPIC comparisons, in which we found the best model to be the one in which all parameter

values are shared between the two tasks except for loss aversion and perception of interchoice

distance.

To conduct this analysis, we utilized the Python library CCA-Zoo (Chapman & Wang,

2021). After fitting a CCA, we used permutation testing to assess the significance of each model

by randomly shuffling both sets of data 1000 times, generating a distribution of canonical

correlations (components). Then using a null hypothesis test, we assess whether or not each

component is significant where the null hypothesis is that there is no relationship between the

model parameters and independent measures.

4.6.1 CCA Results

Significant results will be reported here. For all CCA results, please see appendix S3. We

did not find any significant relationships between the model parameters and the independent

measures when the model was fit to BART and BRAT independently. CCA does show a

significant relationship between the combined model best-fitting parameters and independent

measures. After permutation testing the 9th component of this CCA model shows a statistically

significant relationship between the two sets (r = 0.14, p = 0.027) (figure X). The figure in
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Figure 26: Combined Model Best-Fitting Parameters and Independent Measures. This barplot
shows the correlation coefficients of each CCA model component. These coefficients represent
the correlation between the combined model best-fitting parameters and the independent
measures as a whole. Of the 9 components in this model, only one component was significant
(outlined in orange).
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Figure 27: Features of the significant component. This figure shows the weights of each feature
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for both the best-fitting combined model parameters and independent measure for the significant
component.

The magnitude (absolute value) of the feature weights indicates the strength of the relationship

between each feature and the linear combination (also known the canonical variate) it contributes

to. The higher the absolute value of a weight, the stronger it is associated with the linear

combination between sets. The direction (positive or negative) indicates if a feature is positively

or negatively associated with the canonical variate. In this instance, for the model parameters, h,

, , and had the greatest weight magnitudes (0.75, 0.35, -0.28, and, 0.26

respectively). In the model comparison, the top performing model was the one that shared all

parameters except for and . This provides some evidence that these two parameters of

inter-choice difference and loss aversion are different between the two tasks, and that loss

aversion in the BRAT may map onto manifested behaviors differently than loss aversion in

BART. Marijuanna usage had the most significant influence on the canonical correlations

between the sets (0.47), followed by risky activity (0.40) and sense of safety (-0.33).

Discussion

The context of risk-ambiguous environments greatly impacts a participant’s evaluation

process. BART and BRAT are essentially the same task. Participants select a certain number of

pumps of air to be in the balloon, observe the result, and update their underlying representations

of the outcomes. The only thing that differs between BART from BRAT is the way the task is

framed. In BART, the participant moves from a position of low risk and no reward (0 pumps of

air in the balloon at onset) into a state of greater reward and greater risk. In the BRAT, the

participant is moving from a position of certain failure and no reward to a position of lower risk

https://www.codecogs.com/eqnedit.php?latex=%5Ctheta_%7BBRAT%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta_%7BBART%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta#0
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and variable reward. Superficially, it makes sense to think that an agent would behave identically

in both tasks due to the essence of both tasks being to select a number of pumps to be in a

balloon and add those points to a score. However, the results presented here demonstrate that

risk-taking and risk avoidant behaviors may not have a one-to-on relationship. Though these two

behaviors may utilize the same/similar cognitive mechanisms, these mechanisms may be

weighted differently.

This asymmetry between these behaviors creates an opportunity for more research to be

conducted that investigates risk-avoidant behaviors both independently as well as in conjunction

with examining risk-taking behaviors. A problem with studying risk-related behaviors is that the

behavior is often observed and quantified in a vacuum, ignoring the context driving the behavior.

This could lead to misidentifying risk-avoidant behaviors as risk-taking ones and vice versa.

Behaviors deemed to be risk-taking can actually be the manifestation of avoiding some other

stimulus (Kashdan et al., 2008). For example, a youth could abuse drugs not because they are

willing to take the risk of possible bodily harm so that they can experience the drug's effects or to

gain standing with some group, but because they are avoiding being ostracized from said group.

It is possible that this was in part why CCA analysis of the independently fit model to BART and

BRAT was unsuccessful in finding any significant linear combinations between best-fitting

parameters while the combined model CCA found a significant component. Perhaps more

risk-avoidance and risk-taking tasks should be administered in tandem or fit in a united model of

risky decision making that can accommodate both paradigms. Herein lies an opportunity for the

dissection of risk-related behaviors via generative modeling. A generative model can provide a

more detailed insight into the machinations of the cognitive processes that manifested outward

behaviors and be useful for accurately labeling them as risk-taking or risk-avoidant. Given the
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scant scientific work investigating risk avoidance in general, it is likely that there is much to

discover in this regard.

The model presented here performs admirably, but there is still room for improvement.

Currently, the model is able to capture behavior when a simulated agent consistently makes the

same, relatively low risk number of pumps several times in a row, then suddenly switches to

making consistent high-risk choices. However, the model is inflexible in its ability to account for

the opposite response pattern of moving from consistent high-risk choices to low-risk choices.

Figure 21 demonstrates this inconsistency. A possible method for improving the model is to

instantiate an initial cumulative pop probability distribution as the prior perceived likelihood of

the balloon popping at each possible choice . We would remove and parameters, and

instead have both of the observation probability mass functions be initially uniform distributions.

The initial pop probability would utilize a beta distribution given shape via free parameter .

After each choice, the observation distributions O would be updated via kernel , but the

degree to which O would be updated is modulated by a mixture mechanism with . In effect,

this mixture mechanism is suggesting that the participant is combining their initial bias of the

pop probability with observed outcomes. The degree to which the participant relies upon or

abandons this initial bias would be parameterized and impacted by the number trials, with the

initial bias having less impact as more observations have been made.

https://www.codecogs.com/eqnedit.php?latex=p_%7B0%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma#0
https://www.codecogs.com/eqnedit.php?latex=%5Crho#0
https://www.codecogs.com/eqnedit.php?latex=K#0
https://www.codecogs.com/eqnedit.php?latex=p_%7B0%7D#0
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Figure 28: Simulated Bifurcating Agents. The top panel shows a simulated agent selecting 40
pumps to be in the balloon for the first half of the session, followed by 80 pumps for the
remaining 15 balloons. We see that the model-estimated choice likelihoods are able to reasonably
capture the simulated behavior. However, when reversing the simulation (80 pumps followed by
40 pumps), the model is unable to adjust to this behavior.



88

5. Conclusion

In this dissertation, I have presented the development and evaluation of cognitive

generative models of risk-related decision making under ambiguity using the BART paradigm.

With prospect theory as a backbone, we have created and tested several risky decision models

geared to two different kinds of BART: One in which participants make each pump choice

individually, the other when participants select the number of pumps ahead of time. Though this

distinction may seem arbitrary, the implications it carries when developing computational models

cannot be understated. Both of these models are able to reliably recreate observed behavior,

providing evidence that they are tapping into possible latent cognitive mechanisms. In a

preliminary analysis, we’ve demonstrated how to use model-based fMRI analysis to assess a

novel model of the BART (PLUM) and investigate brain regions that may be involved in the

risky decision-making process. Testing models against neural data lead to development of better

models and better task designs for specific hypotheses.We developed a model of risk taking that

is able to capture both risk-taking and risk-avoidance behavior in a task in which very little

information about the likelihoods of failure is gleaned. With this model, we were able to uncover

asymmetries in risk-related behavior that would normally not be seen via general performance

metrics. Generative computational models provide the means to provide a window into

cognition. They are only limited by one’s imagination and available computing power.
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S2.1: fMRI Cluster Tables
Significant clusters from the resulting neural analysis from chapter 3. Keys: L = Left, R = Right,
Inf = Inferior, Sup = Superior, Mid = Middle, Ant = Anterior

Subjective Pop Probability

Continued on next page:
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Table S.2.1.1 Significant Clusters: Subjective Risk

Objective Risk

S.2.1.2 Significant Clusters: Objective Risk

Subjective Balloon Total
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Table S.2.1.3 Significant Clusters: Subjective Balloon Total

Objective Balloon Total

Table S2.1.4 Significant Clusters: Objective Balloon Total
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Subjective Pump Reward

Table S2.1.5 Significant Clusters: Subjective Pump Reward
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Objective Pump Reward

Table S2.1.6 Significant Clusters: Objective Pump Reward
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Expected Value

Table S2.1.7 Significant Clusters: Expected Value

S2.2
fMRI Prep Boilerplate:
fMRI Data Collection

Results included in this manuscript come from preprocessing performed using fMRIPrep 21.0.4

(Esteban, Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which is

based on Nipype 1.6.1 (K. Gorgolewski et al. (2011); K. J. Gorgolewski et al. (2018);

RRID:SCR_002502).
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Preprocessing of B0 inhomogeneity mappings

A total of 11 fieldmaps were found available within the input BIDS structure for this particular

subject. A B0-nonuniformity map (or fieldmap) was estimated based on two (or more)

echo-planar imaging (EPI) references with topup (Andersson, Skare, and Ashburner (2003); FSL

6.0.5.1:57b01774).

Anatomical data preprocessing

A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset.The

T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with

N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.3.3 (Avants et al. 2008,

RRID:SCR_004757), and used as T1w-reference throughout the workflow. The T1w-reference

was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow

(from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of

cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the

brain-extracted T1w using fast (FSL 6.0.5.1:57b01774, RRID:SCR_002823, Zhang, Brady, and

Smith 2001). Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1,

RRID:SCR_001847, Dale, Fischl, and Sereno 1999), and the brain mask estimated previously

was refined with a custom variation of the method to reconcile ANTs-derived and

FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle

(RRID:SCR_002438, Klein et al. 2017). Volume-based spatial normalization to one standard

space (MNI152NLin2009cAsym) was performed through nonlinear registration with

antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference and the

T1w template. The following template was selected for spatial normalization: ICBM 152
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Nonlinear Asymmetrical template version 2009c [Fonov et al. (2009), RRID:SCR_008796;

TemplateFlow ID: MNI152NLin2009cAsym].

Functional data preprocessing

For each of the 11 BOLD runs found per subject (across all tasks and sessions), the following

preprocessing was performed. First, a reference volume and its skull-stripped version were

generated using a custom methodology of fMRIPrep. Head-motion parameters with respect to the

BOLD reference (transformation matrices, and six corresponding rotation and translation

parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL

6.0.5.1:57b01774, Jenkinson et al. 2002). The estimated fieldmap was then aligned with

rigid-registration to the target EPI (echo-planar imaging) reference run. The field coefficients

were mapped on to the reference EPI using the transform. BOLD runs were slice-time corrected

to 0.346s (0.5 of slice acquisition range 0s-0.693s) using 3dTshift from AFNI (Cox and Hyde

1997, RRID:SCR_005927). The BOLD reference was then co-registered to the T1w reference

using bbregister (FreeSurfer) which implements boundary-based registration (Greve and Fischl

2009). Co-registration was configured with six degrees of freedom. Several confounding

time-series were calculated based on the preprocessed BOLD: framewise displacement (FD),

DVARS and three region-wise global signals. FD was computed using two formulations

following Power (absolute sum of relative motions, Power et al. (2014)) and Jenkinson (relative

root mean square displacement between affines, Jenkinson et al. (2002)). FD and DVARS are

calculated for each functional run, both using their implementations in Nipype (following the

definitions by Power et al. 2014). The three global signals are extracted within the CSF, the WM,

and the whole-brain masks. Additionally, a set of physiological regressors were extracted to

allow for component-based noise correction (CompCor, Behzadi et al. 2007). Principal
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components are estimated after high-pass filtering the preprocessed BOLD time-series (using a

discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and

anatomical (aCompCor). tCompCor components are then calculated from the top 2% variable

voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM and

combined CSF+WM) are generated in anatomical space. The implementation differs from that of

Behzadi et al. in that instead of eroding the masks by 2 pixels on BOLD space, the aCompCor

masks are subtracted a mask of pixels that likely contain a volume fraction of GM. This mask is

obtained by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and it

ensures components are not extracted from voxels containing a minimal fraction of GM. Finally,

these masks are resampled into BOLD space and binarized by thresholding at 0.99 (as in the

original implementation). Components are also calculated separately within the WM and CSF

masks. For each CompCor decomposition, the k components with the largest singular values are

retained, such that the retained components’ time series are sufficient to explain 50 percent of

variance across the nuisance mask (CSF, WM, combined, or temporal). The remaining

components are dropped from consideration. The head-motion estimates calculated in the

correction step were also placed within the corresponding confounds file. The confound time

series derived from head motion estimates and global signals were expanded with the inclusion

of temporal derivatives and quadratic terms for each (Satterthwaite et al. 2013). Frames that

exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated as motion

outliers. The BOLD time-series were resampled into standard space, generating a preprocessed

BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped

version were generated using a custom methodology of fMRIPrep. All resamplings can be

performed with a single interpolation step by composing all the pertinent transformations (i.e.
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head-motion transform matrices, susceptibility distortion correction when available, and

co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were

performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to

minimize the smoothing effects of other kernels (Lanczos 1964). Non-gridded (surface)

resamplings were performed using mri_vol2surf (FreeSurfer).

Functional data preprocessing

For each of the 11 BOLD runs found per subject (across all tasks and sessions), the following

preprocessing was performed. First, a reference volume and its skull-stripped version were

generated using a custom methodology of fMRIPrep. Head-motion parameters with respect to the

BOLD reference (transformation matrices, and six corresponding rotation and translation

parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL

6.0.5.1:57b01774, Jenkinson et al. 2002). The estimated fieldmap was then aligned with

rigid-registration to the target EPI (echo-planar imaging) reference run. The field coefficients

were mapped on to the reference EPI using the transform. BOLD runs were slice-time corrected

to 0.348s (0.5 of slice acquisition range 0s-0.695s) using 3dTshift from AFNI (Cox and Hyde

1997, RRID:SCR_005927). The BOLD reference was then co-registered to the T1w reference

using bbregister (FreeSurfer) which implements boundary-based registration (Greve and Fischl

2009). Co-registration was configured with six degrees of freedom. Several confounding

time-series were calculated based on the preprocessed BOLD: framewise displacement (FD),

DVARS and three region-wise global signals. FD was computed using two formulations

following Power (absolute sum of relative motions, Power et al. (2014)) and Jenkinson (relative

root mean square displacement between affines, Jenkinson et al. (2002)). FD and DVARS are

calculated for each functional run, both using their implementations in Nipype (following the
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definitions by Power et al. 2014). The three global signals are extracted within the CSF, the WM,

and the whole-brain masks. Additionally, a set of physiological regressors were extracted to

allow for component-based noise correction (CompCor, Behzadi et al. 2007). Principal

components are estimated after high-pass filtering the preprocessed BOLD time-series (using a

discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and

anatomical (aCompCor). tCompCor components are then calculated from the top 2% variable

voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM and

combined CSF+WM) are generated in anatomical space. The implementation differs from that of

Behzadi et al. in that instead of eroding the masks by 2 pixels on BOLD space, the aCompCor

masks are subtracted a mask of pixels that likely contain a volume fraction of GM. This mask is

obtained by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and it

ensures components are not extracted from voxels containing a minimal fraction of GM. Finally,

these masks are resampled into BOLD space and binarized by thresholding at 0.99 (as in the

original implementation). Components are also calculated separately within the WM and CSF

masks. For each CompCor decomposition, the k components with the largest singular values are

retained, such that the retained components’ time series are sufficient to explain 50 percent of

variance across the nuisance mask (CSF, WM, combined, or temporal). The remaining

components are dropped from consideration. The head-motion estimates calculated in the

correction step were also placed within the corresponding confounds file. The confound time

series derived from head motion estimates and global signals were expanded with the inclusion

of temporal derivatives and quadratic terms for each (Satterthwaite et al. 2013). Frames that

exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated as motion

outliers. The BOLD time-series were resampled into standard space, generating a preprocessed
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BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped

version were generated using a custom methodology of fMRIPrep. All resamplings can be

performed with a single interpolation step by composing all the pertinent transformations (i.e.

head-motion transform matrices, susceptibility distortion correction when available, and

co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were

performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to

minimize the smoothing effects of other kernels (Lanczos 1964). Non-gridded (surface)

resamplings were performed using mri_vol2surf (FreeSurfer).

S3: CCA Analysis: Combined Model Permutation Testing
CCA analysis exploring best-fitting parameters in the independently fit BART
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Figure S3.3: CCA Permutation Testing. Permutation testing in CCA occurs by shuffling the two
data sets and refitting numerous times to see if a stronger linear combination of component
features can be found. Permutation testing was performed with 1000 permutations. The red
dotted line represents the observed CCA score. The blue histograms show the scores of 1000
permutations. Dimension 9 is the only component that demonstrates the linear combination
between the observed data sets is significant.


