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ABSTRACT 
 

Obesity, characterized by an excess of adipose tissue, is a leading cause of 

metabolic disease. It is now well accepted that obesity-induced adipose tissue 

inflammation contributes to systemic insulin resistance and glucose intolerance 

that can lead to type 2 diabetes. B cells and their secreted antibodies have 

recently emerged as important regulators of adipose tissue inflammation and 

insulin resistance associated with obesity, but roles for specific B cell subsets are 

still unclear. The helix-loop-helix factor Id3 mediates B cell function and obesity 

development, suggesting it may link B cells and metabolism. Here, we used a 

mouse containing a B cell-specific deletion of Id3 (Id3Bcell KO) to study the role B 

cells play in diet-induced adipose tissue inflammation and glucose intolerance. In 

addition, we assessed an obese human cohort for associations between adipose 

tissue B cells, natural IgM antibodies, and indices of inflammation and insulin 

resistance. Id3Bcell KO mice had increased numbers of visceral adipose tissue B-1b 

B cells and attenuated high-fat diet (HFD)-induced glucose intolerance compared 

to littermates. Omental visceral fat from Id3Bcell KO mice displayed enhanced local 

natural IgM secretion. Furthermore, Id3Bcell KO mice fed a short-term HFD had less 

inflammation and improved insulin signaling in omental fat compared to controls. 

Transfer of B-1b B cells null for Id3 was sufficient to attenuate diet-induced 

glucose intolerance in Rag1-/- hosts, while B-1b B cells unable to secrete IgM had 

no effect. In humans, a recently identified CD20+CD27+CD43+ B cell with B-1-like 

characteristics was identified within omental fat, and correlated with serum 

natural IgM levels. In addition, IgM antibodies were inversely associated with the 
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inflammatory chemokine MCP-1 and insulin resistance. Results presented here 

provide the first evidence that IgM antibody-producing B-1b B cells attenuate 

diet-induced glucose intolerance in mice. In addition, we link anti-inflammatory 

natural IgM antibodies with reduced inflammation and improved metabolic 

phenotype in obese humans. Together, these findings suggest role for B-1 B 

cells and natural IgM antibodies in mediated obesity associated metabolic 

dysfunction. 
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Pathogenesis of obesity 

 Obesity, defined by an excess of body fat, is an epidemic in the Western 

world, and dramatically increasing rates in developing countries have made it 

one of the prominent global health concerns of the 21st century. According to the 

World Health Organization, obesity rates have nearly doubled since 1980. 

Worldwide, 35% of adults are overweight, with 11% being obese. Obesity is a 

systemic disease that contributes to a wide range of metabolic, cardiovascular, 

and neurological disorders1-3. However, many of these pathophysiological effects 

stem from obesity-induced insulin resistance and glucose intolerance, two main 

factors that lead to the development of diabetes4. Thus, understanding how 

obesity impacts glucose metabolism is a key area of study with the ultimate goal 

of developing preventative treatments for many downstream consequences 

brought on by obesity. 

 

Adipose tissue dysfunction during obesity 

 While obesity induces wide-ranging detrimental effects throughout the 

entire body, its impact on adipose tissue signaling and function is especially 

pronounced (Figure 1). Adipose tissue is a highly complex and essential 

metabolic organ made up of fat cells (adipocytes), connective tissue, vascular 

cells, and immune cells. In addition to being the predominant site for energy 

storage, adipose tissue secretes a wide variety of cytokines and hormones that 

regulate diverse processes including, but not limited to, satiety, blood pressure,  
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Figure 1. Adipose tissue dysfunction during obesity. (A) Under normal 

conditions, glucose uptake and energy release are tightly regulated by insulin 

signaling. This promotes energy storage when nutrients are in excess and 

energy release during times of need. (B) In obese adipose tissue, ER stress 

caused by adipocyte hypertrophy and hypoxia, along with inflammatory 

cytokines, contribute to impair adipocyte response to insulin. Insulin resistant 

adipocytes display reduced glucose uptake and increased lipolysis. The 

uncontrolled release of metabolites and inflammatory factors by adipose tissue 

can lead to systemic lipo- and gluco-toxicity, insulin resistance, glucose 

intolerance, and other complications associated with obesity.  



 5 

inflammation, and pancreatic insulin secretion5, 6. During the development of 

obesity, adipocyte hypertrophy leads to cellular ER stress and causes tissue 

growth. Expanding adipose tissue that outpaces the available oxygen supply 

creates a local hypoxic environment, which can further impair cellular function 

and cause cell death. In parallel, adipocytes, along with immune cells within 

adipose tissue, increase production of pro-inflammatory factors that serve to 

directly impact local signaling as well as recruit additional inflammatory cells as 

part of a feed-forward process. All of these factors contribute to impair adipocyte 

function and insulin signaling7-15, which reduces adipocyte glucose uptake and 

promotes lipolysis. The resulting breakdown of stored triacylglyceride and 

release of free fatty acids (FFA) and glycerol contributes to systemic gluco- and 

lipo-toxicity that impairs metabolic function in other tissues. Utilization of tissue-

specific knockout mice has provided evidence that enhancing insulin sensitivity in 

adipocytes improves hepatic and skeletal muscle insulin sensitivity16-18, whereas 

impairing adipocyte insulin signaling leads to insulin resistance in these insulin-

sensitive tissues19, 20. Interestingly, altering insulin sensitivity in either liver or 

muscle tends to only impact local signaling21-24. These findings indicate that 

obesity-induced adipose tissue insulin resistance has widespread systemic 

metabolic effects. 

 

Adipose tissue distribution 

Nearly 70 years ago, it was first observed that adult humans display two 

distinct patterns of fat distribution25. Subsequent studies demonstrated that 
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accumulation of upper-body fat, rather than lower-body fat, was associated with 

various chronic diseases26. Since then, many studies comparing anatomical fat 

distribution (reviewed elsewhere27-29) confirmed that intra-abdominal visceral 

adipose tissue (VAT) accumulation is more closely associated with impaired 

insulin sensitivity and type 2 diabetes development than increased subcutaneous 

(SC) fat30-33. Adipocytes from VAT are more metabolically active, and VAT is a 

greater source of obesity-induced pro-inflammatory cytokines than SC fat8, 10. In 

addition, surgical removal of VAT34, 35, but not SC fat36, 37, results in improved 

insulin sensitivity. In light of these findings, it is well accepted that obesity-

induced changes in VAT signaling and function contribute strongly to 

downstream metabolic disease. 

 

Inflammation and insulin resistance 

 Anti-inflammatory drugs have long been known to lower blood sugar levels 

in diabetic patients38, 39, and studies in the 1980s noted systemic insulin 

resistance in pathological inflammatory states such as sepsis40, 41, 

endotoxemia42, and trauma43. However, it was not until 1991 that treatment of 

adipocytes with the inflammatory factor tumor necrosis factor alpha (TNFα) was 

shown to impair insulin-stimulated glucose uptake44. Several years later, this 

effect was rescued in obese rats by TNFα neutralization45. Additional mechanistic 

studies indicated that TNFα promotes insulin resistance through insulin receptor 

substrate-1 (IRS-1) serine phosphorylation, which inhibits insulin-induced IRS-1 

tyrosine phosphorylation and prevents downstream insulin signaling46-49. The in 
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vivo relevance of these studies was confirmed when two groups independently 

generated TNFα knockout mice that were protected against high-fat diet (HFD)-

induced glucose intolerance and insulin resistance50, 51. These findings sparked 

clinical studies that demonstrated circulating levels of TNFα, as well as other 

inflammatory factors such as interleukin-6 (IL-6) and C-reactive protein (CRP), 

were not only positively associated with human obesity, insulin resistance, and 

diabetes52-56, but were also predictive of future type 2 diabetes (T2D) diagnosis in 

healthy patients57, 58. 

 While analyzing circulating factors helped identify a novel link between 

inflammation and obesity-induced metabolic dysfunction, it was still unclear 

where this immune response was located or which cells were involved. In the 

same study that identified the insulin sensitizing effects of TNFα neutralization, 

Spiegelman and colleagues demonstrated that TNFα expression was elevated in 

adipose tissue of obese rodents45. Additional studies showed that TNFα 

expression in human adipose tissue correlated strongly with obesity and insulin 

resistance, and local expression decreased following weight loss and improved 

insulin sensitivity59-61. Further analysis of human and murine adipose tissue 

revealed enriched expression of various inflammatory markers including 

plasminogen activator inhibitor-1 (PAI-1), IL-6, and transforming growth factor 

beta (TGFβ)62-65, together suggesting that adipose tissue may harbor previously 

unknown immune activity. Indeed, studies shortly thereafter in mice66 and 

humans67 identified macrophages in adipose tissue. Finally, in 2003, two seminal 

publications68, 69 demonstrated that bone marrow-derived macrophages 
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accumulate in obese adipose tissue and produce several of the previously 

identified pro-inflammatory factors, thus contributing substantially to the local 

inflammatory environment. These findings strengthened the hypothesis that 

obesity is a disease of chronic inflammation, and that adipose tissue may be the 

epicenter of a detrimental immune response. 

 

Macrophages and T cells in adipose tissue  

Since these initial reports, much work has gone into characterizing the 

immune cell phenotype within adipose tissue, and how cell composition changes 

during obesity (Figure 2). Elegant studies utilizing genetic knockouts of 

inflammatory factors and transfer or ablation of specific immune cell subsets 

have helped identify key roles for macrophages and T cells in regulating adipose 

tissue function. Here, a brief summary of these findings is provided, as they have 

been reviewed extensively elsewhere70-75. In lean adipose tissue, alternatively 

activated M2 macrophages are found in abundance and secrete the anti-

inflammatory cytokine interleukin-10 (IL-10) that blunts inflammatory cell activity 

and directly promotes adipocyte insulin sensitivity. IL-10 is also secreted by 

regulatory T cells (TREGS), and type 2 helper (TH2) T cells produce interleukin-4  
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Figure 2. Obesity causes adipose tissue inflammation. (A) Resident immune 

cells in lean adipose tissue primarily possess regulatory functions and secrete 

anti-inflammatory cytokines. (B) During obesity, inflammatory immune cells 

infiltrate adipose tissue. Obese adipose tissue is characterized by elevated pro-

inflammatory cytokines and clusters of M1 macrophages surrounding dead 

adipocytes called crown-like structures (CLS). 
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(IL-4) and interleukin-13 (IL-13) that help maintain M2 macrophage signaling. 

During the onset of obesity, visceral adipose tissue experiences an influx of 

inflammatory cells. Obese adipose tissue produces elevated levels of monocyte 

chemoattractant protein-1 (MCP-1) that serves to recruit circulating monocytes 

that differentiate into classically activated M1 macrophages once they enter the 

tissue. M1 macrophages form clusters around dead and dying adipocytes called 

crown-like structures (CLS) where they secrete high levels of TNFα and 

interleukin-1 beta (IL-1). These factors impair adipocyte function by inhibiting 

insulin sensitivity and inducing secretion of inflammatory cytokines and lipids that 

further activate M1 macrophages. This feed-forward loop is further exacerbated 

by type 1 helper (TH1) and CD8+ cytotoxic T cells that enter obese adipose tissue 

and secrete interferon gamma (INFγ), a cytokine that also serves to activate M1 

macrophages and impair insulin sensitivity in adipocytes. Together, these 

findings have not only identified a clear pathogenic effect of adipose tissue 

inflammation, but have illustrated that immune function within adipose tissue is a 

highly complex process involving many more participants than originally thought. 

 

A role for B cells in obesity 

 B cells are unique immune cells that secrete antibodies, which bind 

specific antigens. While B cells are also found in adipose tissue76-82, their role(s) 

in mediating local inflammation and adipose tissue function have not been fully 

explored. CD19+ B cells have been reported to infiltrate murine epididymal 

adipose tissue prior to M1 macrophages during the early stages of diet-induced 



 12 

obesity (DIO)78, and B cells were found in sites of inflammation within SC 

adipose tissue of obese humans80. In addition, B cell-deficient (μMT) mice fed a 

HFD gain less weight, have reduced adipose tissue inflammation, and display 

improved insulin signaling and glucose tolerance compared to WT controls77, 81, 

suggesting that B cells do play a role in regulating the metabolic effects of 

obesity. While only a few studies have looked in depth at specific roles B cells 

may play in this context, results highlighted below indicate that, similar to what 

we know about macrophages and T cells, B cell regulation of adipose tissue 

inflammation and insulin resistance is likely subset-dependent. 

 

B cell subsets 

 B cells are divided into two functionally distinct families, B-1 and B-2 

(Figure 3). Follicular (FO) B-2 B cells undergo class switching and somatic 

hypermutation in response to T-dependent antigen. These cells then either 

differentiate into long-lived plasma cells that spontaneously secrete high amounts 

of antibody, or become memory B cells that are primed for a rapid antibody 

response after antigen re-exposure83. Antibodies secreted from terminally 

differentiated FO B-2 cells are highly antigen specific and comprise an essential 

component of the adaptive immune system84, 85. Marginal zone (MZ) B cells are 

another class of B-2 B cells that reside in the splenic marginal zone86. MZ B cells 
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Figure 3. B cell subsets and known roles in obesity. B cells can be divided 

into two major subsets: B-1 and B-2. It is unclear whether IL-10-secreting BREG B 

cells belong to either subset or develop independently. B cell subsets differ in 

their function within the immune system, and our limited understanding suggests 

their roles in obesity may vary as well. However, much more study is needed to 

understand how B cells function in adipose tissue and how they may impact 

obesity-associated metabolic disease. 
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are components of the innate immune system that respond immediately to 

circulating antigens filtered through the spleen. 

 B-1 B cells develop from a distinct lineage earlier in ontogeny than B-2 B 

cells and reside primarily in the coelomic cavities and spleen87-89. Although most 

characterization of B-1 B cells stems from murine studies, recently a human B 

cell subset with B-1-like characteristics was identified90. Despite being fewer in 

number than B-2 B cells, B-1 B cells possess the unique ability among B cells to 

self-renew91, allowing for a smaller number of cells to maintain a functional 

population. B-1 B cells are further divided into B-1a and B-1b B cells that have 

overlapping functions, but exhibit differences in activation and response to 

infection92-95. Both B-1 subsets secrete antibodies that are termed “natural 

antibodies” because they are produced without previous antigen exposure. As 

antibodies from B-1 B cells are produced spontaneously or in immediate 

response to stimulation, are independent of T cell help, and do not require affinity 

maturation, B-1 humoral responses are quicker than those from B-2 B cells and 

play key preventative roles during the early stages of infection96. 

 Regulatory B cells (BREGS) are a recently discovered group of B cells that 

suppress inflammation primarily through IL-10 production97, 98. As B cells 

expressing a mix of surface markers generally used to define B-1 and B-2 B cell 

subsets have been shown to secrete IL-10, it is currently unclear whether these 

B cells represent unique developmental subsets or if IL-10 production is a shared 

feature among various B cell families. Given their potential therapeutic use in 
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treating autoimmune and inflammatory disease, additional studies of these 

unique B cells are needed. 

 

B cell regulation of adipose tissue inflammation and obesity-induced 

metabolic dysfunction 

Several studies have demonstrated specific roles for B cells in obesity-

induced inflammation and downstream metabolic dysfunction (Figure 3). Mice 

null for B cell activating factor receptor (BAFF-R) have a severely reduced B-2 B 

cell population99 and, when challenged with a HFD, display attenuated adipose 

tissue inflammation as well as improved insulin sensitivity and glucose tolerance 

compared to WT controls100. Another study found FO B cells from obese mice to 

secrete increased IL-6 and reduced IL-10 compared to cells from lean controls, 

suggesting an inflammatory phenotype77. Interestingly, mice fed a HFD displayed 

an influx of class-switched B-2 B cells, as well as IgG antibodies, within visceral 

adipose tissue81. Adoptive transfer of WT B-2 B cells, but not B-2 B cells with 

impaired ability to present antigen, were able to drive insulin resistance in μMT 

mice. This group went on to show that IgG, but not IgM, from DIO mice activated 

macrophage TNFα production and was sufficient to induce systemic insulin 

resistance and glucose intolerance. Together, these findings suggest that B-2 B 

cells promote diet-induced insulin resistance through an adaptive IgG humoral 

response.  

Very little is known about potential roles of other B cell subsets in obesity 

and diet-induced metabolic dysfunction. B cells from type 2 diabetic patients 
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display impaired IL-10 secretion compared to B cells in non-diabetics101. A recent 

study identified IL-10-producing B cells within adipose tissue and showed that B 

cell-specific deletion of IL-10 attenuated the inflammatory effects of obesity and 

protected against HFD-induced insulin resistance and glucose intolerance102. 

These findings suggest that different B cell families may have contrasting 

functions in the context of obesity-induced metabolic disease. Although B-1 B 

cells are enriched in adipose tissue compared to other compartments81 and 

comprise a large fraction of milky spots found in omental fat82, their role in 

obesity is unknown. 

 

Natural antibodies 

 Natural antibodies103, primarily produced by B-1 B cells in mice, are 

generally of the IgM isotype and arise independent of antigen exposure in mice 

and humans. Unlike antibodies derived from B-2 B cells, natural antibodies do 

not undergo affinity maturation and contain few point mutations or non-templated 

nucleotide additions104. Interestingly, natural antibody repertoires of naïve 

individuals demonstrate similarity both within105-108 and across109, 110 species, 

providing evidence that these antibodies are not generated randomly. Indeed, 

natural antibody repertoires demonstrate preferential heavy and light chain 

pairings that allow for recognition of conserved structures such as carbohydrates, 

nucleic acids, and phospholipids that are often found on the surface of foreign 

pathogens111-114. In some cases, these same epitopes are expressed on 

damaged self-cells109; thus providing natural antibodies dual roles in preventing 
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infection and maintaining tissue homeostasis. The best-studied example of this 

multi-functionality is the T15 family of natural antibodies that recognize a 

phosphocholine (PC)115 moiety expressed on pneumococcal cell membranes as 

well as on the surface of apoptotic cells116 (Figure 4). IgM specific for PC (T15-

IgM or PC-IgM) plays important roles in protecting against lethal Streptococcus 

pneumoniae infection117, 118 and facilitating apoptotic cell clearance116, 119, 120. 

These studies have helped demonstrate a unique regulatory niche for natural 

antibodies in a layered immune system. 

 

Natural IgM and inflammation 

 Multiple factors inherent to natural antibodies contribute to their general 

anti-inflammatory function121, 122. First, IgM is less inflammatory than IgG. The  

constant region of IgM antibodies cannot bind activating Fc receptors 

responsible for triggering inflammatory responses induced by certain IgG 

isotypes (i.e., IgG2a/c and IgG2b in mice). Second, natural IgM antibodies 

promote efficient apoptotic cell clearance that prevents the accumulation of dead 

cells116, 119, 120, 123-125. The cellular contents from uncleared dead cells promote 

inflammation and can introduce the body to normally hidden auto-antigens126, 127. 

Indeed, mice lacking the ability to secrete IgM have defective apoptotic cell  
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Figure 4. Multifunctionality of natural IgM antibodies is best summarized by 

T15. Natural antibodies arise without previous antigen exposure and often 

recognize evolutionarily conserved moieties. The T15 family of natural antibodies 

recognizes a phosphocholine (PC) epitope that is expressed on certain gram 

positive bacteria such as S. pneumoniae, as well as on apoptotic cells. PC-

recognizing IgM can promote bacteria neutralization and facilitate apoptotic cell 

clearance, thus playing important roles in initial defense against invading 

pathogens and in maintaining tissue homeostasis. (Adapted from Binder, Nat. 

Med., 2002128)  
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clearance123 and develop a Systemic Lupus Erythematosus (SLE)-like phenotype 

characterized by inflammatory IgG auto-antibodies directed at double-stranded 

DNA (dsDNA)129. In addition, IgM antibodies have been shown to reduce 

apoptotic cell numbers and macrophage content of atherosclerotic plaques130, 

suggesting a protective role in a model of diet-induced inflammation. Third, 

recent evidence suggests IgM natural antibodies can directly attenuate 

inflammation in myeloid cells. While the mechanism has yet to be elucidated, 

T15-IgM treatment significantly attenuated lipopolysaccharide (LPS)-stimulated 

TNF and IL-6 production by RAW264.7 macrophages and impaired primary 

dendritic cell activation119. Together, B-1 B cell-derived natural IgM antibodies 

can function through various pathways to attenuate inflammation. However, while 

IgM antibodies have been reported in adipose tissue81, their ability to regulate 

diet-induced adipose tissue inflammation or downstream insulin resistance has 

not been evaluated. 

 

Omental adipose tissue 

 The omentum is a unique fatty tissue attached to the greater curvature of 

the stomach that comprises the largest visceral adipose tissue depot in humans. 

The omentum has long been known for its role in preventing infection and 

promoting wound healing and tissue regeneration within the peritoneal cavity 

(reviewed elsewhere131-133). While recent studies in humans have shown omental 

adipose tissue inflammation associates with insulin resistance134, 135, most rodent 

studies on adipose tissue function in obesity focus on perigonadal depots 
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(epididymal in males, parametrial in females) that are not present in primates or 

humans. Although these fat deposits make up the largest adipose regions in 

mice, their systemic drainage allows for secreted metabolites and cytokines to 

bypass the liver, thus diluting their metabolic impact. In contrast, inflammatory 

factors produced by portally-draining omental adipose tissue go directly into the 

liver where they can impact systemic metabolism136, 137. Indeed, epididymal 

adipose tissue transplants led to substantial systemic insulin resistance in 

recipients when connected portally compared to systemically138. While mice do 

have omental adipose tissue that displays similar structural characteristics as in 

humans139, surprisingly few studies have evaluated murine omental fat in the 

context of obesity.  

 

Omental milky spots 

In addition to differences in drainage, the immune cell composition and 

organization distinguishes murine and human omental adipose tissue from other 

depots. In SC and epididymal fat, immune cells are primarily found interspersed 

between adipocytes. However, omental adipose tissue contains organized 

clusters of macrophages and B cells that reside adjacent to adipose-rich areas. 

These cell clusters are called milky spots due to their opaque white appearance, 

and have been described since the mid-nineteenth century140. Milky spots (MS) 

trap intraperitoneal (i.p.)-injected antigens, expand during peritoneal infection, 

and contribute moderate immunity in mice lacking traditional lymphoid tissues 

such as lymph nodes and Peyer’s patches82, 133, 141, 142. While thorough immuno-
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phenotyping of MS is lacking in humans, the majority of B cells residing in murine 

MS are B-1 B cells82. This is in contrast to the recently discovered fat-associated 

lymphoid clusters (FALCs) that populate human and murine mesenteric fat and 

contain large numbers of “natural helper” lymphocytes, but few B cells143. Thus, 

further study of omental fat may enhance our understanding of how B cells 

function within adipose tissue, and particularly, how their activity may mediate the 

metabolic dysfunction caused by obesity. 

 

Inhibitor of differentiation proteins 

 Inhibitor of differentiation (Id) proteins are helix-loop-helix (HLH) factors 

that regulate transcription in a dominant-negative manner144-146. While Id proteins 

are known to regulate cell cycle progression, differentiation, and survival, their 

exact function can vary widely between cell types147. Four known Id homologs – 

named sequentially in order of discovery Id1-Id4 – exist in humans and rodents. 

In general, Id expression is highest in developing tissues and proliferating cells, 

while decreasing in healthy adult tissues and terminally differentiated or 

quiescent cells147, 148. Genetic knockout studies have demonstrated that while no 

single Id gene is essential for viability, various combinations of double Id 

knockouts confer embryonic lethality149, suggesting that Id proteins have 

overlapping but non-redundant functions. 

 

Id3: a link between B cells and obesity? 



 24 

 Id3 has been implicated in B cell development, activation, and antibody 

response. While Id3 is similar to other Ids in that it is highly expressed in the 

embryo and progressively declines during development150-152, Id3 is present in 

both developing and mature lymphocytes153, 154. In developing lymphocytes and 

B cell progenitors, Id3 expression prevents maturation by inducing apoptosis155, 

156 and downregulation of Id3 is essential for B cell lineage commitment157. In 

contrast, Id3 is quickly upregulated following antigen stimulation by B cell 

receptor (BCR) crosslinking and promotes BCR-mediated proliferation in B-2 B 

cells158. Furthermore, Id3 has been shown to regulate immunoglobulin class-

switching in activated B-2 B cells158-160, suggesting that Id3 may be involved in 

various aspects of antibody response. 

 Studies using mice globally null for Id3 (Id3-/-) suggest that Id3 may be a 

key regulator of both B cell function and obesity development. While Id3-/- mice 

have relatively normal numbers of splenic B-2 B cells158, 161, they have impaired 

antigen-specific antibody responses158. In contrast, several studies have 

indicated that Id3-/- mice have increased titers of IgM antibodies at baseline162, 163. 

Recently, we showed that global loss of Id3 results in reduced VAT expansion 

and attenuated DIO164. In this study, we identified high Id3 expression in the 

stroma-vascular fraction (SVF) of VAT, suggesting that Id3 may function in a 

non-adipocyte cell in adipose tissue. Together, these findings suggest that Id3 

likely plays important roles both in regulating B cell function and obesity 

development. 
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B cell specific Id3 knockout mouse 

 The use of the Id3-/- mouse has generated many questions regarding Id3’s 

role in B cell biology and obesity progression. However, Id3’s ubiquitous 

expression during development and known regulation of T cell function165-169 

made it necessary to generate a B cell-specific knockout mouse to address 

whether Id3 function in B cells directly impacts DIO. To accomplish this, we 

crossed floxed Id3 (Id3fl/fl) mice170 containing LoxP sites flanking the first two 

exons of Id3 with CD19cre (CD19Cre/+) mice containing the Cre recombinase 

gene knocked into the first coding exon of the pan B cell marker, CD19 (Figure 

5A). The resulting C57Bl/6 Id3fl/fl CD19Cre/+ (Id3B cell KO) mouse lacked Id3 only in B 

cells (Figure 5B). As described in chapter 3, this mouse provided us a unique tool 

to explore potential ways B cells regulate HFD-induced metabolic dysfunction. 
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Figure 5. Mouse containing a B cell-specific Id3 deletion. (A) Schematic 

showing CD19cre x Floxed Id3 cross to generate Id3BcellKO mouse. (B) Id3 

Western blot of purified splenic B cells (lanes 1-4) or B cell-depleted splenocytes 

(lane 5). Numbers represent cells from the following genotypes: 1=Id3fl/+ 

CD19cre/+; 2=Id3fl/fl CD19cre/+; 3=Id3fl/fl CD19+/+; 4=Id3+/+ CD19cre/+; 

5=Id3fl/fl CD19cre/+. *Cells from Id3Bcell KO mice. 
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CHAPTER 2: 

Materials and Methods 
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Animals: 

All animal protocols were approved by the Animal Care and Use Committee at 

the University of Virginia.  C57Bl/6J and MT mice were purchased from Jackson 

Laboratory (stock# 000664 & 002288, respectively). Id3-/- and Id3fl/fl mice were a 

generous gift of Dr. Yuan Zhang (Duke University), CD19cre/+ and Rag1-/- mice 

were gifted by Timothy Bender (University of Virginia), and sIgM-/- mice were 

kindly provided by Dr. Peter Lobo (University of Virginia). Id3fl/fl mice were 

crossed to CD19cre/+ mice to generate Id3fl/flCD19cre/+ mice. These mice were 

then bred to Id3fl/flCD19+/+ mice to generate Id3fl/flCD19cre/+ (Id3B cell KO) and 

littermate control Id3fl/flCD19+/+ (WT) mice. All mice were on a pure C57BL/6 

background, and confirmation of B cell specific Id3 deletion was confirmed by 

PCR and Western blot171.  Only male mice were used for experiments, and all 

animals were given standard chow diet and water ad libitum until they were 

genotyped. For high-fat feeding studies, littermates were placed on a 60% kCal 

fat diet (Research Diets, D12492) for the designated length of time. 

 

Metabolic analysis 

For all metabolic studies, mice were fasted for the designated time in individual 

wood chip-lined cages. Mice had access to water ad libitum throughout all 

experiments. 

Glucose tolerance test (GTT): Mice were fasted overnight. At the beginning of 

each experiment, a small tail snip was made and baseline blood glucose levels 

were determined. Mice were then injected i.p. with 1.4-2.0g dextrose (Hospira) 



 30 

per kg body weight, and blood glucose levels were measured at 10, 20, 30, 60, 

90, and 120 minutes post-injection. 

Insulin tolerance test (ITT): Mice were fasted for four hours. Baseline blood 

glucose levels were determined as in GTT. Mice were injected with (0.75U/kg) 

insulin (Eli Lilly), and blood glucose levels were measured at 15, 30, 60, 90, and 

120 minutes post-injection and normalized to baseline readings. 

Insulin signaling studies: Following an overnight fast, mice were injected with 

10U/kg insulin (Eli Lilly). Mice were euthanized after five minutes and omental 

adipose tissue was removed and flash-frozen for later analysis (see tissue 

processing and Western blot protocol below). 

 

Adoptive transfers: 

B-2 adoptive transfer: Donor C57Bl/6 and Id3-/- mice, along with host MT mice 

were fed a HFD for eight weeks prior to transfer. Splenic B-2 cells (>98% purity) 

were harvested from donor animals as described previously162. Hosts received a 

single i.p. injection of either 107 B-2 B cells in 300μl saline or saline alone 

(vehicle control), and were continued on a HFD for the remainder of the 

experiment. 

B-1b adoptive transfer: Pooled peritoneal fluid from 8-12 week old WT, Id3B cell KO, 

or sIgM-/- donor mice was stained with fluorophore-labeled antibodies (see 

below). CD19+B220mid/loIgMhiCD5- B-1b B cells were sorted and resuspended in 

200μl saline. Eight-ten week old Rag1-/- hosts were injected with either 8.0x104 B-
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1b B cells or with saline alone (vehicle control). Hosts were allowed one week to 

recover before being placed on a HFD for the remainder of the experiment. 

 

Tissue processing 

Murine flow cytometry: Splenocytes, peritoneal cells, and epididymal stroma-

vascular fraction were isolated as previously described164, 171 Cells from omental 

adipose tissue were obtained using a “walk-out” method172. 

Human flow cytometry: Omental and subcutaneous adipose tissue was 

processed using methods adapted from Zimmerlin et al.173. In brief, adipose 

tissue was placed in PBS supplemented with 5.5mM glucose and 50g/ml 

gentamicin and processed as soon after collection as possible. Ten (g) adipose 

tissue was minced with scissors and digested in 30ml PBS containing 1% BSA 

(Gemini) and 2.5g/L Collagenase II (Worthington) in a shaking 37 incubator for 

15 minutes. PBS containing 0.1 % BSA and 1mM EDTA was added to stop the 

collagenase activity. The SVF was then successively passed through 425m and 

180m sieves (WS Tyler), and finally through a 40m filter. The remaining SVF 

was stained for flow cytometry. 

Adipose tissue lysates for ELISA: Adipose tissue was homogenized in 2ml RIPA 

buffer containing protease inhibitors and lysed on ice for 30 minutes. Protein 

lysate was collected and used for ELISA analysis. 

Adipose tissue lysates for Western blot: Ten (mg) adipose tissue was 

homogenized in 250l protein lysis buffer (10% glycerol, 1% NP-40, 137mM 

NaCl, 25mM HEPES pH 7.4, 1mM EGTA) containing protease inhibitors (Sigma-
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Aldrich) and phosphatase inhibitors (Sigma-Aldrich) and lysed on ice for 30 

minutes. Protein lysate was collected and used for Western blot analysis. 

 

Flow Cytometry: 

Red blood cells were lysed if necessary with RBC lysis buffer (155mM NH4Cl, 

10mM KHCO3, 0.1mM Na2EDTA, pH 7.4). All cells were strained through 70m 

filters and incubated with Fc-block (FCR-4G8, Invitrogen) for 10 minutes on ice 

prior to staining. Cells were stained on ice and protected from light for 20 

minutes. Fc-block and antibodies were diluted in either FACS buffer (PBS 

containing 1% BSA and 0.05% NaN3) for flow cytometry or sorting buffer (PBS 

containing 1% BSA) for cell sorting experiments. Murine flow cytometry 

antibodies: B220 (RA3-6B2), CD3ε (145-2C11), CD5 (53-7.3), CD11c (N418), 

CD19 (1D3), CD21 (4E3), CD23 (B3B4), F4/80 (BM8), and IgM (II/41) were 

purchased from eBioscience; Annexin V (Cat# 556420), BrdU (B44), and CD43 

(S8) were purchased from BD Bioscience; CD206 (C068C2) was purchased from 

BioLegend. Human flow cytometry antibodies: CD43 (84-3C1) was purchased 

from eBioscience, CD3 (5KY), CD20 (L27), CD27 (M-T271), and CD45 (2D1) 

were purchased from BD Bioscience. Viability was determined by either 

LIVE/DEAD® fixable yellow cell staining (Invitrogen) or DAPI (Sigma-Aldrich). 

Cells were run on a CyAN ADP (Beckman Coulter), or sorted on a Reflection Cell 

Sorter (iCyt) or an Influx Cell Sorter (Benton-Dickenson). Data were analyzed 

with FlowJo software (Tree Star Inc) using fluorescence minus-one controls for 
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gate determination when appropriate. Counting beads (CountBright™ Absolute 

Counting Beads, Molecular Probes) were used for quantitation. 

Gating strategies: Adipose tissue macrophages174, peritoneal and adipose tissue 

B cells175, and splenic B cells176, 177 were identified as described previously. 

 

ELISA: 

Self-coated ELISAs: 96 well microtiter plates (Corning) were incubated at 4C 

overnight with capture antibody diluted in coating buffer (0.1M disodium 

phosphate pH 9.0). Capture antibodies and concentrations for IgM and IgG 

assays: unlabeled IgM (625ng/ml), IgG1 (625ng/ml), IgG2b (1250ng/ml), IgG2c 

(2500ng/ml), or IgG3 (625ng/ml) (Southern Biotech). For T15-IgM assays: AB1-2 

(303ng/ml) (ATCC, HB-33). For PC-IgM assays: PC-BSA (10g/ml) (Biosearch 

Tech). Plates were blocked (PBS containing 0.5% BSA, 0.1% TWEEN-20, and 

0.01% NaN3), incubated with sample, and then treated with IgM or IgG detection 

antibody conjugated to alkaline phosphatase for two hours at room temperature. 

Detection antibodies and dilutions used: murine IgM-AP (IgM: 1:8000; T15-IgM: 

1:1000), murine IgG-AP (IgG1: 1:8000; IgG2b: 1:4000; IgG2c: 1:4000; IgG3: 

1:8000), human IgM-AP (PC-IgM: 1:1000) (all purchased from Southern Biotech). 

Plates were then developed with pNPP solution (Southern Biotech) for 30-60 

minutes and read at 405nm using a SpectraMax 190 (Molecular Devices). IgM 

and IgG isotype concentration was determined through a standard curve of 

purified immunoglobulin (Southern Biotech) using a range of 0.78-200ng/ml. T15-

IgM and PC-IgM levels were determined by normalization to serial dilutions of 
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standardized mouse (range: 1:50-1:25,600) or human serum (range: 1:50-

1:12,800), respectively. Serum from sIgM-/- or Rag1-/- mice was used as negative 

controls, and EO6 (Avanti Polar Lipids Inc) was used as a positive control for 

T15-IgM assays. All dilutions were determined through careful titration, and only 

values within the range of standard curves with readings at least 3-fold higher 

than negative controls were used. 

Commercial and previously validated ELISAs and metabolic assays: Mouse 

TNFα (eBioscience, 88-7324), IFNγ (R&D, MIF00), and FFA (Zen-Bio, SFA-1) 

levels, along with human MCP-1 (SABiosciences, SEH00192A) levels were 

determined with commercial kits. IgM-IC, IgG-IC, IgM MDA-LDL, and IgG MDA-

LDL were determined as previously described178.  

 

Confocal microscopy 

Epididymal and omental adipose tissue were fixed in 4% PFA overnight at 4C. 

Samples were blocked and permeabilized for three hours at room temperature in 

PBS containing 5% normal rat serum and 0.3% Triton X-100. Adipocytes were 

stained with BODIPY Green (Invitrogen) for 20 minutes at room temperature and 

then with B220-AF647 (BioLegend) at 4 overnight. Samples were then stained 

for 20 minutes at room temperature with CYTOX Orange (Invitrogen) for nuclei 

detection. After washing, samples were mounted in a 50:50 PBS/glycerol solution 

on gelatin-coated slides. Whole-mounted specimens were imaged by confocal 

microscopy (Nikon; model TE200-E2). Z-stack Images (24m range, 3m step) 

were taken using a 10x objective. Images were adjusted using ImageJ software. 
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Omental ex vivo culture 

Murine omental adipose tissue was removed, weighed, and placed in sterile 48 

well cell culture plates containing 200µl media (RPMI-1640, 10% FBS, L-

glutamine, penicillin-streptomycin, 55M β-mercaptoethanol). Cultures were 

incubated overnight (TNFα and IFNγ studies) or for four days (T15-IgM studies) 

and supernatant was collected for ELISA analysis. 

 

B-1b Proliferation and survival study 

Mice (8-12 weeks of age) were injected with 40μg LPS (Sigma-Aldrich) or a 

saline vehicle control at t=0. All mice were injected with 1.5mg BrdU at t=24 and 

t=36 hours. At t=48 hours, mice were euthanized and omental adipose tissue 

was processed for flow cytometry and stained for B-1b B cell surface markers. 

Cells were then split into two groups: group 1 was stained for BrdU incorporation 

using a FITC BrdU Flow Kit (BD Biosciences), and group 2 was stained for 

Annexin V surface expression in the presence of Annexin V-binding buffer 

(10mM HEPES pH 7.4, 140mM NaCl, 2.5mM CaCl2). Cells were fixed and 

analyzed by flow cytometry as described above. 

 

Western blot 

Protein lysates were supplemented with 11% β-mercaptoethanol and 0.5% 

bromophenol blue. Samples were resolved on 4-20% Tris-glycine gels 

(Invitrogen) and transferred to a polyvinylidene difluoride membrane (BioRad). 
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Western blotting was carried out using an antibody against Thr308 pAKT 

(1:1,000, Cell signaling) or AKT (1:1,000, Cell signaling), followed by horseradish 

peroxidase-linked secondary antibody (Jackson). Immunoreactive bands were 

visualized by enhanced chemiluminescence after incubation with ECL or ECL 

plus reagent (Amersham Pharmacia Biotech). Relative AKT phosphorylation was 

determined by normalizing pAKT to total AKT in each sample. 

 

Human studies 

Patients were recruited through the Bariatric Surgery Clinic at the University of 

Virginia. All patients were ≥18 years of age and obese (BMI ≥30), and provided 

informed written consent prior to participation in the study. The study was 

approved by the Human IRB Committee at the University of Virginia, and all 

procedures were in accord with the declaration of Helsinki. Patients were divided 

into two groups, and both cohorts of bariatric patients were consented under the 

same criteria at UVA. Cohort 1 represents patients where we performed flow 

cytometry on fresh adipose tissue and blood (surgery dates between October, 

2012 and October, 2013). Blood, subcutaneous adipose tissue, and omental 

adipose tissue were collected and processed within two hours and analyzed by 

flow cytometry. Cohort 2 represents patients from whom frozen tissue samples 

were analyzed by ELISA (surgery dates between May, 2009 and August, 2010). 

Metabolic syndrome was defined as any three of the following: large waist 

circumference (men: >40in; women: >35in), hypertension, low HDL (men: 

<40mg/dl; women: <50mg/dl), high triglcyerides (>150mg/dl), high blood glucose 
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(>100mg/dl). In all patients, pre-operative creatinine and blood glucose values 

were used. Serum was stored for future ELISA analysis and/or NMR lipid 

analysis (LipoScience Inc). 

 

Statistics 

For mouse data, a student’s t-test was performed on data with normal distribution 

and equal variance. If data sets had unequal variance, a t-test with Welch’s 

correction was used. For non-Gaussian distributed data, a Mann-Whitney test 

was performed to determine statistical significance. For comparisons of three or 

more independent variables, a one-way ANOVA test was used with a Kruskal-

Wallis post-hoc test. Results are displayed containing all replicated experiments, 

and values shown are mean ± SEM unless otherwise noted. For human clinical 

data, baseline characteristics are reported as mean ± standard deviation for 

normally distributed variables, and as median with interquartile range for non-

normally distributed variables. Spearman correlation coefficients were used to 

determine the strength of association between variables. Data were analyzed 

with Prism 6.0a (GraphPad Software, Inc.) or SAS 9.3 and displayed using Prism 

6.0a. 
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CHAPTER 3: 

 
Loss of Id3 in B-1b B cells attenuates high-fat diet-induced 

glucose intolerance 
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Introduction 

Obesity is an epidemic in the Western world, and dramatically increasing 

rates in developing countries have made it one of the prominent global health 

concerns of the 21st century. Obesity-induced visceral adipose tissue (VAT) 

inflammation leads to systemic insulin resistance and glucose intolerance11. 

While macrophages and T cells have been implicated in this process70, 72, 

emerging evidence suggests that B cells also modulate obesity-induced adipose 

tissue inflammation and insulin resistance. 

B cells have been identified in murine and human adipose tissue76, 78, 79, 81, 

82, 141, 179, and localize to sites of inflammation80. Recently, IgG, but not IgM, from 

DIO mice was shown to drive adipose tissue inflammation and promote systemic 

insulin resistance81. These pathogenic IgG antibodies were localized in VAT and 

came from adaptive B-2 B cells – the major B cell subset that differentiate into 

memory B and plasma cells capable of producing class-switched, high affinity 

antibodies180, 181. In mice, the majority of IgM derives from B-1 B cells, a self-

renewing innate B cell population that differ from B-2 cells in response to stimuli 

and antibody repertoire96. B-1 B cells protect against early infection and are 

further divided into B-1a and B-1b subsets that have overlapping functions, but 

exhibit differences in activation and response to infection92-95. While B-1 B cells 

have known anti-inflammatory properties and are found in similar proportions 

within adipose tissue as B-2 B cells81, their role(s) in mediating obesity-induced 

adipose tissue inflammation and insulin resistance remains unknown. 
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A major proportion of B-1-derived IgM are termed “natural antibodies” as 

they arise without previous antigen exposure and contain few mutations or N-

additions182. IgM is less immunogenic than IgG121 and natural antibodies often 

recognize epitopes expressed on both invading pathogens and damaged self-

cells182, 183, providing dual roles in curbing inflammation and promoting tissue 

homeostasis. Among the many known natural antibodies, the best studied are 

members of the T15 family that bind phosphocholine (PC)115, an epitope present 

on pneumococcal cell membranes as well as on oxidized phospholipids of 

oxidized LDL and apoptotic cells116. T15 natural IgM antibodies (T15-IgM or PC-

IgM) have direct and indirect anti-inflammatory functions119, 120, 184, and are 

thought to protect in specific instances of diet-induced chronic inflammation184, 

185. IgM antibodies localize to areas of adipose tissue inflammation81, yet it is 

unclear whether they are produced locally or if they serve any role in mediating 

the metabolic dysfunction brought on by obesity. 

The HLH protein Id3 is a ubiquitously expressed dominant-negative 

transcription regulator that, along with its binding partners, mediates various 

stages of B cell development and function154, 158. Mice globally null for Id3 have 

impaired antigen-specific antibody responses158 and increased levels of 

circulating IgM162, 163. Recent work from our group has shown a role for Id3 in B 

cell regulation of diet-induced chronic inflammation162, 186. Additional studies 

using a mouse model of obesity showed that mice with global deletion of Id3 are 

protected against diet-induced VAT expansion164. Together, these findings 

suggest Id3 may be a key factor that links B cell function and obesity.  
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Results 

B cell specific deletion of Id3 leads to improved diet-induced glucose 

intolerance. 

 To evaluate whether Id3 expression is important for B cell-mediated 

effects of obesity, mice null for Id3 specifically in B cells (Id3Bcell KO) and WT 

littermates were fed either chow or HFD for 12 weeks. No genotype-dependent 

differences in epididymal adipose tissue mass, body weight, or serum FFA levels 

were detected (Figure 6A). Insulin tolerance tests (ITT) revealed that while Id3Bcell 

KO mice fed a HFD displayed a slightly improved initial response to insulin 

compared to HFD WT controls, this difference did not persist throughout the 

experimental time course, suggesting little differences in systemic insulin 

resistance (Figure 6B). Interestingly however, administration of glucose tolerance 

tests (GTT) showed that Id3Bcell KO mice fed HFD did have improved glucose 

clearance compared to controls (Figure 6C), suggesting a role for Id3 in B cell 

regulation of HFD-induced metabolic dysfunction. 

 To test whether these findings stem from loss of Id3 function in a B-2 cell, 

we performed adoptive transfers of splenic B-2 B cells into B cell-deficient MT 

hosts. MT mice contain a deletion in the mu heavy chain that is required for 

surface BCR expression and is essential for both B-1 and B-2 development187. 

As a previous study demonstrated that B-2 B cells only impact systemic 

metabolism when derived from a DIO mouse and injected into DIO hosts81, ten 

million splenic B-2 cells isolated from HFD-primed WT or Id3-/- donors were  
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Figure 6. Loss of Id3 in B cells attenuates HFD-induced glucose 

intolerance. Id3Bcell KO and WT littermates were fed standard chow (WT n=6-7; 

Id3Bcell KO n=8-9) or a HFD for 12 weeks (WT n=9-10; Id3Bcell KO n=9-14). (A) Body 

and epididymal adipose tissue weights, and serum FFA levels. (B) Insulin 

tolerance test. (C) Glucose tolerance test. Error bars represent ± SEM. *p<0.05.   
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injected i.p. into μMT mice that had been fed a HFD for eight weeks. Recipient 

mice, including a control that received a vehicle saline injection, were continued 

on a HFD and tested for glucose tolerance at two and six weeks post-transfer 

(Figure 7A). At the end of the experiment, viable B cells were found in adoptive 

transfer hosts, and there were no Id3-dependent variations in recovery number 

(Figure 7B). While no differences in body mass or epdidymal adipose tissue were 

observed (Figure 7C), and all three groups demonstrated similar glucose 

tolerance at week two (Figure 7D), WT hosts had significantly impaired glucose 

clearance compared to vehicle controls six weeks post-transfer (Figure 7D). This 

corroborates previous findings81 that B-2 cells impair glucose homeostasis. 

However, hosts receiving WT and Id3-/- B-2 cells had nearly identical glucose 

clearance patterns (Figure 7D), providing evidence that improved glucose 

tolerance in Id3Bcell KO mice is not due to loss of Id3 function in a B-2 B cell, and 

suggesting other B cell subsets may modulate obesity associated metabolic 

dysfunction.  

 

Id3Bcell KO mice fed a HFD have increased B-1 B cells, total IgM, and T15-IgM 

natural antibodies in adipose tissue. 

Immune cells within adipose tissue can impact glucose homeostasis in a 

subset-dependent manner70, 72 Flow cytometry studies in epididymal fat from DIO 

Id3Bcell KO mice revealed no differences in F4/80+CD206-CD11c+ M1 or 

F4/80+CD206+CD11c- M2 macrophages174 or total CD3ε+ T cells (Figure 8A). 
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Figure 7. Id3 not is required for B-2 B cell driven glucose intolerance in DIO 

μMT mice. (A) DIO μMT mice received either an i.p. vehicle (V, n=6) saline 

injection or adoptive transfer of 107 B-2 cells from DIO WT (n=7) or Id3-/- (n=7) 

donors and were continued on HFD for six additional weeks. (B) B cells 

recovered in epididymal adipose tissue after week 6. (C) Body and epididymal 

adipose tissue weights. (D) GTT at two (left panel, representative of two 

independent experiments) and six (right panel, composite of two independent 

experiments) weeks post-transfer. Error bars represent ± SEM. #p<0.05 WT vs. 

V. 
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Figure 8. Adipose tissue-specific increases of B-1 B cells in Id3Bcell KO mice 

fed a HFD. Id3Bcell KO and WT littermates were fed a HFD for 12 weeks. Flow 

cytometry analysis of (A) epididymal adipose tissue F4/80+CD206-CD11c+ M1 

and F4/80+CD206+CD11c- M2 macrophages (left panel, WT n=6; Id3Bcell KO n=6), 

CD3+ T cells (middle panel, WT n=8; Id3Bcell KO n=11), and B220mid/loCD19hi B-1 

and B220hiCD19mid/lo B-2 B cells (right panel, WT n=6; Id3Bcell KO n=8). (B) Splenic 

B-1 and B-2 B cells (WT n=6; Id3Bcell KO n=8) and T cells (WT n=8; Id3Bcell KO 

n=11). Error bars represent ± SEM. **p<0.01. 
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There was a trend toward an increase in B-2 cells, although this change did not 

reach statistical significance. In contrast, Id3Bcell KO mice had significantly elevated 

numbers of B-1 B cells within epididymal fat compared to WT littermates (Figure 

8A). No differences were observed in splenic B-1 B cells, B-2 B cells, or T cells 

(Figure 8B), suggesting that Id3-dependent regulation of B-1 cells may be tissue-

specific.  

 B-1 B cells are a major source of natural IgM antibodies, including PC-

recognizing T15-IgM, that promote tissue homeostasis and attenuate 

inflammation115, 116, 119-121, 182-185. Epididymal adipose tissue IgM (Figure 9A) and 

T15-IgM (Figure 9B) levels were elevated in DIO Id3Bcell KO mice compared to 

WT. Neither varied significantly in the circulation, suggesting that differences in 

adipose tissue were not just a reflection of elevated systemic production. 

Furthermore, we observed no variations in circulating or adipose tissue IgG 

antibodies (Table 1). Together, findings demonstrate that loss of Id3 in B cells 

leads to increased adipose tissue B-1 B cell numbers and local natural IgM 

antibodies. 

 

Loss of Id3 in B cells leads to elevation of peritoneal and adipose tissue B-

1b B cells and increased omental T15-IgM production. 

 The majority of B-1 B cells are found in the peritoneal cavity and the 

spleen and can be divided into CD5+ B-1a and CD5- B-1b. Since both are 

capable of producing natural antibodies96 many studies do not distinguish  
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Figure 9. Adipose tissue-specific increases in total IgM and T15 natural IgM 

antibodies in Id3Bcell KO mice fed a HFD. Id3Bcell KO (n=6) and WT (n=6) 

littermates were fed a HFD for 12 weeks. (A) Total IgM by ELISA in epididymal 

adipose tissue (left panel) and serum (right panel). (B) T15-specific IgM by 

ELISA in epididymal adipose tissue (left panel) and serum (right panel). Error 

bars represent ± SEM. *p<0.05, ***p<0.001.  
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Table 1. IgG antibody levels in serum and epididymal fat of mice fed a HFD for 12 
weeks. 

 WT (n=6) Id3B cell KO (n=6) p-value 

Serum (μg/ml)    
IgG1 51.7 ± 8.2 33.2 ± 4.4 0.0742 
IgG2b 137.2 ± 8.3 121.5 ± 16.9 0.4246 
IgG2c 92.3 ± 12.3 67.1 ± 9.0 0.1277 
IgG3 45.4 ± 5.4 77.6 ± 23.6 0.2363 

Epididymal fat (ng/g fat)    
IgG1 1914 ± 203 1433 ± 423 0.3295 
IgG2b 4054 ± 495 4053 ± 759 0.9988 
IgG2c 1729 ± 157 1852 ± 322 0.7376 
IgG3 2345 ± 706 4514 ± 1572 0.2365 

Values presented as mean ± SEM 
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between the two. However, B-1a and B-1b B cells exhibit differences in activation 

and response to infection92-95, 182, indicating they likely have differing functions. 

Peritoneal fluid from Id3Bcell KO mice was analyzed to distinguish whether elevated 

B-1 numbers in the absence of Id3 was due to an overall increase in both 

subsets, or a specific increase in one. Interestingly, Id3Bcell KO mice displayed a 

three-fold increase in peritoneal B-1b B cells, but no difference in B-1a B cells 

(Figure 10A). Similar to our initial findings (Figure 8), no differences in B-1a, B-

1b, FO, or MZ B cell subsets were identified in the spleen (Figure 10B, data not 

shown). The Id3Bcell KO mouse contains only one functional CD19 allele. As 

alterations of CD19 expression specifically impact B-1b B cell number94, analysis 

of peritoneal fluid from Id3+/+CD19Cre/+ mice confirmed that our findings were due 

to deletion of Id3 in B cells and not CD19 haploinsufficiency (Figure 11). 

 Similar to findings in the peritoneal fluid, loss of Id3 in B cells also led to a 

specific increase in B-1b B cell numbers within epididymal (Figure 12A) and 

omental (Figure 12B) adipose tissue. Consistent with previous reports82, 

substantially more B-1 B cells were found in omental fat than epididymal fat 

relative to tissue mass (Figure 12A & B), and only omental adipose tissue 

contained MS clusters that stained heavily for the B cell marker B220 (Figure 

12C). In addition, omental fat cultured ex vivo from Id3Bcell KO mice produced 

three-fold more T15-IgM than controls (Figure 12D), providing evidence that 

natural IgM is produced in omental adipose tissue in proportion to the number of 

B-1b cells. Together, our findings indicate that Id3 is an important regulator of  
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Figure 10. Peritoneal B-1b B cells are elevated in chow-fed Id3Bcell KO mice. 

(A) B-1a (CD19+B220mid/loIgMhiCD5+) and B-1b (CD19+B220mid/loIgMhiCD5-) 

gating strategy (top) and cell numbers (bottom) in peritoneal fluid of WT (n=5) 

and Id3Bcell KO (n=8) mice. (B) B-1a (CD23-IgMhiCD21-CD43+CD5+), B-1b 

(IgMhiCD21-B220mid/loCD5-), and FO/T2 (CD23+IgMmid/lo) gating strategy and cell 

numbers in spleens of WT (n=5) and Id3Bcell KO (n=8) mice. Error bars represent ± 

SEM. **p<0.01.  
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Figure 11. No difference in Id3+/+CD19Cre/+ peritoneal B-1a or B-1b B cells. 

Flow cytometry analysis of peritoneal fluid B-1a (CD19+B220mid/loIgMhiCD5+) and 

B-1b (CD19+B220mid/loIgMhiCD5-) B cells in 8-10 week old Id3+/+CD19+/+ (n=3) 

and Id3+/+CD19Cre/+ (n=3) littermates. 
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Figure 12. Loss of Id3 in B cells leads to increased adipose tissue B-1b B 

cells and IgM secretion in chow-fed mice. (A) Epididymal B-1a and B-1b B 

cells in 8-10 week old Id3Bcell KO (n=8) and WT (n=5) littermates. (B) Omental B-

1a and B-1b B cells in 8-10 week old Id3Bcell KO (n=7) and WT (n=5) littermates 

(C) Representative flow cytometry and 10x confocal microscopy images of 

murine epididymal (top panels) and omental (bottom panels) adipose tissue. 

Scale bar=200m. (D) T15-specific IgM in supernatant of Id3Bcell KO (n=3) and WT 

(n=4) omental adipose tissue cultures. Error bars represent ± SEM. *p<0.05, 

**p<0.01.  
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adipose tissue B-1b B cell population size, and that loss of Id3 leads to 

significantly more B-1b B cells and subsequently elevated local natural IgM 

production. 

 

Loss of Id3 promotes omental B-1b B cell survival 

 B-1 B cells survive better than B-2 B cells and have the ability to self-

renew, allowing for self-governing population maintenance. Our findings in the 

Id3Bcell KO mouse that loss of Id3 leads to elevated B-1b B cell number in adipose 

tissue suggest dysregulated mature B-1b B cell population maintenance. 

However, it is also possible that Id3 deficiency leads to accelerated B-1b 

development. To test whether Id3 regulates population maintenance in mature B-

1b B cells, we adoptively transferred equivalent numbers (8.0x104) of 

fluorescence-activated cell sorted (FACS) mature B-1b B cells from WT or Id3Bcell 

KO donors into B and T cell-deficient Rag1-/- hosts. Rag1-/- mice were used 

instead of μMT mice because B-1 B cells do not survive after i.p. transfer into 

μMT mice188. Three weeks after transfer, we confirmed a B-1b B cell population 

within omental fat (Figure 13A). Moreover, there were a significantly greater 

number of omental fat B-1b B cells if the donor cells were null for Id3. This 

indicates that the enhanced B-1b B cell numbers in Id3Bcell KO mice is intrinsic to 

loss of Id3 in mature B-1b B cells. 

Population maintenance depends on a balance between cell proliferation 

and cell death, and increased cell numbers can result from defective regulation of  
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Figure 13. Id3 regulates survival in mature B-1b B cells. (A) B-1b B cells 

recovered in omental fat three weeks after adoptive transfer of 80k WT or Id3Bcell 

KO B-1b B cells into Rag1-/- hosts (V (vehicle), n=6 ;WT, n=6 ; Id3Bcell KO, n=5). (B) 

BrdU incorporation (left) and Annexin V staining (right) of B-1b B cells from WT 

and Id3Bcell KO mice treated with vehicle (n=3-4) or 40μg LPS (n=5-7). Error bars 

represent ± SEM. *p<0.05. 
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either process. To test whether Id3 mediates proliferation or survival in B-1b B 

cells, WT and Id3Bcell KO mice were injected with LPS – a rapid B-1b activator189. 

Mice were then injected with BrdU to label proliferating cells, and B-1b B cells in 

omental fat were analyzed for proliferation and survival. LPS-activated B-1b B 

cells in omental adipose tissue displayed no Id3-dependent differences in BrdU 

incorporation (Figure 13B). However, loss of Id3 in B cells led to lower Annexin V 

staining in omental B-1b B cells in LPS-treated mice (Figure 13B). This indicates 

reduced apoptosis, and suggests that Id3 is an important mediator of B-1b B cell 

survival. 

 

Attenuated HFD-induced inflammation and insulin resistance in omental 

adipose tissue of Id3Bcell KO mice. 

 Omental fat of Id3Bcell KO mice contains higher numbers of B-1b B cells and 

produces more anti-inflammatory T15-IgM antibodies, suggesting that loss of Id3 

in B cells may attenuate HFD-induced adipose tissue inflammation. To test this 

hypothesis, WT and Id3Bcell KO mice were fed a HFD for two weeks, and 

inflammatory cytokines secretion in omental adipose tissue was evaluated. 

Indeed, omental fat from Id3Bcell KO mice displayed attenuated diet-induced 

inflammation as there was significantly less TNFα and IFNγ produced compared 

to diet-matched WT controls (Figure 14A). There were no genotype-dependent 

differences in chow-fed animals, suggesting that the local anti-inflammatory 

function may only occur in response to elevated inflammatory activity, such as  
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Figure 14. Loss of Id3 in B cells leads to reduced inflammation and 

improved insulin sensitivity in omental fat of mice fed a short-term HFD. (A) 

WT and Id3Bcell KO littermates were fed chow (n=4-5) or a HFD (n=5-7) for two 

weeks. TNF (top) and IFN (bottom) ELISA analysis of supernatant of omental 

adipose tissue cultures from chow-fed (left) and HFD-fed (right) mice. (B) AKT 

phosphorylation normalized to total AKT in omental fat five minutes after insulin 

injection in WT (n=3) and Id3Bcell KO (n=3) littermates fed a HFD for two weeks. 

*p<0.05. Error bars represent ± SEM. *p<0.05. 
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what is known to occur in adipose tissue of HFD mice. In addition, tissue-specific 

insulin signaling studies revealed better insulin sensitivity in omental adipose 

tissue of Id3Bcell KO mice fed a HFD (Figure 14B). These results demonstrate 

reduced inflammation and improved insulin sensitivity in adipose tissue in a 

mouse model with locally elevated B-1b B cells and natural IgM production. 

Together, this raises the hypothesis that increasing B-1b B cell number may 

attenuate the metabolic consequences of obesity. 

 

B-1b B cells lacking Id3 attenuates diet-induced glucose intolerance, while 

B-1b B cells unable to secrete IgM have no effect. 

 Together, findings in the Id3Bcell KO mouse suggest that improved B-1b B 

cell survival leads to increased local IgM production that may protect against 

downstream metabolic dysfunction. To test this, FACS-sorted B-1b B cells from 

WT, Id3Bcell KO, or sIgM-/- donors were adoptively transferred into Rag1-/- hosts, 

and the mice were fed a HFD for 12 weeks (Figure 15A). While B cells from 

sIgM-/- mice express surface IgM and secrete IgG, they cannot secrete IgM175. 

Interestingly, while no body weight differences were observed after 12 weeks of 

HFD (Figure 15B), hosts that received Id3Bcell KO B-1b B cells had improved 

glucose tolerance compared to vehicle controls, and hosts treated with WT cells 

showed a trend toward improved glucose clearance (Figure 15C). No differences 

were seen between sIgM-/- hosts and vehicle controls (Figure 15C). These results 

suggest a role for B-1b B cells in attenuating the metabolic consequences of 

obesity that is  
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Figure 15. B-1b B cells lacking Id3 attenuate diet-induced glucose 

intolerance, while B-1b B cells unable to secrete IgM have no effect. (A) 

Rag1-/- mice received either an i.p. vehicle (V, n=5) saline injection or adoptive 

transfer of 8.0x104 B-1b B cells from WT (n=4), Id3B cell KO (n=5), or sIgM-/- (n=3) 

donors. After a recovery week, hosts were placed on a HFD for 12 weeks. (B) 

Body weight of Rag1-/- hosts after 12 week of HFD. (C) GTT on Rag1-/- hosts. 

#p<0.05 Id3B cell KO vs V. 
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enhanced in the absence of Id3 and is dependent on the ability to secrete IgM 

antibodies. 
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Discussion 

Recent studies implicate B cells in the metabolic perturbations associated 

with DIO76, 78, 80, 81. As the helix-loop-helix factor Id3 has emerged as an important 

factor in regulating obesity development164 and B cell function158, 162, 163, we used 

the Id3Bcell KO mouse to test the role of Id3 and B cells in HFD-induced obesity. B 

cell-specific deletion of Id3 led to improved glucose handling and a specific 

increase in B-1b B cells and natural IgM production within omental adipose 

tissue. Interestingly, loss of Id3 in B cells also blunted HFD-induced inflammation 

and insulin resistance in omental fat, suggesting a protective role for B1-b B cells 

in DIO. Indeed, adoptive transfer of B-1b B cells from Id3Bcell KO mice led to 

improved glucose clearance in DIO Rag1-/- mice, while transfer of sIgM-/- B-1b B 

cells did not. Together, our results provide evidence for a novel IgM-dependent 

role of B-1b B cells in attenuating HFD-induced metabolic dysfunction. 

There are several ways by which IgM antibodies may regulate processes 

affected by obesity. Natural IgM antibodies produced by B-1 cells bind apoptotic 

cells183, facilitating their clearance and promoting tissue homeostasis121. Indeed, 

infusion of T15-IgM rescued impaired apoptotic cell clearance in sIgM-/-123 and 

MT119 mice. Uncleared dead cell accumulation in obese adipose tissue 

contributes to tissue inflammation190, 191, and B-1-derived IgM reduces 

inflammation in vivo119, 130. IgM can also regulate metabolism independent of 

antigen recognition. Adipocytes treated with polyclonal IgM demonstrated 

significantly elevated lipogenesis, glucose oxidation, and glucose uptake192, 193. 

These effects were similar to those observed after insulin stimulation and were 
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Fc-dependent. Thus, identification of this novel mechanism leading to increased 

local IgM production in adipose tissue may serve to limit inflammation and the 

metabolic consequences of obesity. Indeed, we found reduced inflammatory 

cytokines and improved insulin signaling in the omental fat of Id3Bcell KO mice. 

 Results presented here provide evidence that loss of Id3 in B cells 

increased B-1b B cell number and enhanced their regulatory role in HFD-induced 

obesity. Reduced Annexin V staining on B-1b B cells in Id3Bcell KO mice suggests 

that Id3 is a key regulator of B-1b B cell survival. While Id3 is known to promote 

apoptosis in developing bone marrow B cell progenitors through caspase-2156, 

further studies are needed to identify whether Id3 regulates similar pathways in 

B-1b B cells. Interestingly, Id3-dependent regulation of B-1b B cells cell number 

appears to impact B-1b-mediation of HFD-induced glucose intolerance. Despite 

transfer of an equal numbers of cells, there were significantly more B-1b B cells 

in omental fat and a greater improvement in glucose tolerance if the transferred 

cells lacked Id3. These findings are consistent with previous immunization 

studies184 showing that enhanced B-1 B cell antibody response attenuated the 

detrimental effects of diet-induced inflammation. Additional studies are needed to 

evaluate whether further boosting of B-1b B cell numbers in vivo can enhance 

their regulatory function in obesity-associated metabolic disease.  

Results of the present study also highlight the importance of studying 

omental fat. The omentum is a unique fatty tissue that connects the spleen, 

pancreas, stomach, and colon, and plays an important role in peritoneal 

immunity194. In humans, omental fat comprises a major portion of VAT that has 
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high metabolic activity and where inflammation correlates with insulin 

resistance135, 195. In contrast to epididymal fat, inflammatory lipids and cytokines 

from omental adipose tissue drain portally into the liver where they can impair 

hepatic insulin sensitivity138, 196. Within omental fat, organized clusters of mostly 

B-1 B cells and macrophages82, 141 called milky spots reside in close proximity to 

adipocytes. Mice lacking milky spots have severely reduced T15-IgM titers82, 179, 

suggesting that omental fat supports local antibody production. Our findings are 

the first to demonstrate active production of natural IgM antibodies in murine 

omental adipose tissue. Furthermore, we demonstrated that mice with increased 

omental B-1b B cell numbers and elevated IgM production displayed attenuated 

HFD-induced inflammation and better insulin signaling within omental fat than 

WT controls, suggesting that this depot may be key to understanding how B cells 

may regulate metabolic function. Moreover, due to the known structural 

similarities of omental fat across species139, results obtained from studies of 

murine omental fat may have important relevance to human disease. 
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CHAPTER 4: 
 

Adipose tissue B cells and IgM antibodies in an obese human 
cohort 
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Introduction 

The use of murine models has been instrumental in developing treatments 

for many human diseases. However, despite possessing structurally similar 

immune systems, mouse and human B cells display differences in surface 

markers, response to cytokines, and intracellular signaling197-199. These factors, 

along with relative inaccessibility of most lymphoid tissues, have made identifying 

a human B-1 B cell equivalent difficult. However, the well-documented presence 

of human natural IgM antibodies107-110 suggests that a B cell with functional 

capabilities similar to murine B-1 B cells exists in humans. 

Recently, Rothstein and colleagues identified a subset of circulating B 

cells in humans shown to share several unique properties of murine B-1 B cells90. 

This B cell population possessed a CD20+CD27+CD43+ surface phenotype and, 

in contrast to CD20+CD27-CD43- or CD20+CD27+CD43- B cells, spontaneously 

secreted IgM antibodies. Additional studies on sorted CD20+CD27+CD43+ B cells 

revealed other B-1-like properties including antigen-independent T cell 

stimulation and tonic intracellular signaling. Furthermore, a fraction of this 

population was able to bind PC, suggesting the ability to produce antibodies that 

recognize the same epitope as the T15 family. Importantly, CD20+CD27+CD43+ 

B cells were enriched in umbilical cord blood, suggesting functional capabilities 

well before the development of humoral memory. Despite these findings, it 

remains unknown whether, like murine B-1 B cells, this population is enriched in 

human omental adipose tissue or if natural antibody levels are associated with 

the number of these B cells. 
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Similar to mice, natural IgM antibodies in humans are associated with 

reduced indices of cardiovascular and inflammatory disease200-204. In addition to 

IgM antibodies specific for PC (PC-IgM), IgM to malondialdehyde-low density 

lipoprotein (MDA)-LDL and IgM-apoB immune-complexes (IgM-IC) are 

associated with reduced inflammation and decreased risk of death, myocardial 

infarction, and stroke in prospectively followed subjects from the general 

community178, 205. Thus, although PC-IgM has been the most extensively studied, 

it represents only one of several IgM antibodies known to be inversely associated 

with human disease206-208. Despite this, to our knowledge, our study is the first to 

evaluate whether natural IgM antibodies associate with inflammation or insulin 

resistance in an obese human population. 

Several methods are generally used to assess metabolic function and 

insulin sensitivity in humans. The homeostatic model assessment of insulin 

resistance (HOMA-IR) uses equations derived from physiological studies to 

estimate glucose regulation and beta cell function based on fasting insulin and 

glucose levels209. However, this measurement relies on a data taken from a 

snapshot in time, and acute changes to insulin or glucose levels may skew the 

results. In addition, this model does not take into account factors such as 

circulating lipoproteins and triglycerides that are known to be associated with 

insulin resistance. Recently, a method that evaluates circulating lipoproteins 

through nuclear magnetic resonance (NMR) was shown to be highly correlated 

with insulin resistance and was predictive of diabetes development. Because 

NMR has the capacity to measure both size and particle concentration of low-
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density lipoprotein (LDL), very low-density lipoprotein (VLDL), and high-density 

lipoprotein (HDL), lipoprotein insulin resistance (LP-IR) analysis accounts for 

parameters missed by normal lipid panels that only measure particle 

concentration. Indeed, this method is highly predictive of progressive insulin 

resistance after multivariate analysis210-213 Furthermore, as LP-IR measurements 

are reflective of long-term metabolic function, they better reflect overall metabolic 

health as they are not altered by the acute environmental factors that regulate 

blood glucose and insulin levels. 

In this study, we analyzed blood and adipose tissue from patients 

undergoing bariatric surgery at the University of Virginia for B cell subsets and 

natural IgM antibodies. While all patients were enrolled under the same criteria, 

individuals were recruited into our studies at two distinct time frames and 

different endpoints were measured. As such, they are divided into cohort 1 and 

cohort 2 and analyzed separately (see materials and methods). Blood, SC 

adipose tissue, and omental adipose tissue samples from cohort 1 were 

analyzed for CD20+CD27+CD43+ B cells via flow cytometry. Samples from cohort 

2 were used for protein quantitation and LP-IR analysis. Results show for the first 

time that CD20+CD27+CD43+ B cell reside within human omental adipose tissue 

and correlate with circulating PC-IgM antibodies. Additional findings provide 

evidence that PC-IgM antibody levels within omental adipose tissue correlate 

strongly with circulating PC-IgM. Moreover, analysis of circulating natural IgM 

antibodies revealed inverse associations with inflammation and insulin 

resistance. Together, these findings identify additional similarities between 
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murine B-1 B cells and human CD20+CD27+CD43+ B cells, and suggest that 

elevated levels of natural IgM antibodies may predict an improved metabolic 

phenotype in obese humans. 
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Results 

CD20+CD27+CD43+ B cells are present in human omental adipose tissue 

and correlate with circulating PC-IgM levels. 

 Recently, Griffin et al. identified a subset of circulating B cells 

(CD20+CD27+CD43+) in humans that shared several unique properties of murine 

B-1 B cells90. Murine B-1 B cells are found in marked abundance within omental 

adipose tissue relative to other adipose depots. To determine whether the same 

may be true for the putative human equivalent of murine B-1 B cells, we 

performed flow cytometry on omental fat in an obese cohort of patients 

undergoing bariatric surgery (cohort 1). We observed a marked enrichment of 

CD20+CD27+CD43+ B cells in the omental adipose depot compared to 

subcutaneous fat or blood in four of 16 patients analyzed. Figure 16A is a 

representative flow cytometry plot of the patients whose samples displayed 

marked enrichment. Interestingly, patients with a higher fraction of omental 

adipose tissue B cells that were CD20+CD27+CD43+ also had elevated serum 

PC-binding IgM (Figure 16B). While some debate remains over the exact nature 

of CD20+CD27+CD43+ B cells214-216, our novel results provide additional evidence 

supporting CD20+CD27+CD43+ B cells as the human equivalent of murine B-1 B 

cells. Moreover, consistent with our murine findings, the number of 

CD20+CD27+CD43+ B cells correlates with increased circulating PC-IgM 

antibodies. 
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Figure 16. CD20+CD27+CD43+ B cells in human omental adipose tissue 

correlate with serum PC-IgM levels. (A) Flow cytometry on omental fat, 

subcutaneous (SC) fat, and blood from a single patient. (B) Fraction of omental 

CD20+CD27+CD43+ B cells plotted against serum PC-IgM levels in patients from 

cohort 1 (n=16). Solid line represents Spearman correlation and dashed lines 

represent 95% confidence intervals. 
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PC-IgM antibodies in omental adipose tissue correlate with circulating PC-

IgM. 

 In chapter 3, it was shown that PC-recognizing IgM antibodies can be 

produced locally within omental fat in mice. In a separate cohort of bariatric 

surgery patients (cohort 2, Table 2), PC-IgM in omental adipose tissue lysates 

was measured. Results demonstrated a strong positive correlation between PC-

IgM in omental adipose tissue and circulating PC-IgM (Figure 17). These findings 

are consistent with the identification of a B-1-like B cell in omental fat, and 

suggest the hypothesis that omental adipose tissue may also be a site of natural 

IgM production in humans. Furthermore, as circulating biomarkers do not always 

reflect levels within tissue, our findings give credence to the potential use of 

circulating PC-IgM as a predictor of omental adipose tissue PC-IgM levels. 

 

PC-IgM antibodies in circulation and within omental adipose tissue 

negatively correlate with MCP-1 levels and age. 

PC-recognizing IgM antibodies have anti-inflammatory characteristics, and 

chapter 3 described attenuated HFD-induced inflammation in mice with elevated 

T15-IgM production in omental fat. Furthermore, B-1 cells decrease in older 

mice217 and humans90, suggesting that their protective effects may decline with 

age. We examined serum for the inflammatory cytokines IFNγ, TNFα, and MCP-

1 in cohort 2. IFNγ and TNFα levels were below the level of detection in our 

assay (data not shown). However, MCP-1 – a macrophage chemoattractant 

  



 82 

Table 2. Cohort 2 baseline characteristics 

Patients 122 
Male 29 (24%) 
Female 93 (76%) 

Metabolic HealthA,B  
Diabetic 50 (43%) 
Non-diabetic, with 

metabolic syndrome 
47 (41%) 

Non-diabetic 19 (16%) 

Age 44 ± 10 
Creatinine (mg/dl) 0.9 (0.8, 1.0) 
HDL (mg/dl) 38 (33, 45) 
Triglycerides (mg/dl) 125 (100, 174) 

LPIRC  
Large VLDL-P (nmol/L) 5.8 (3.1, 11.3) 
Small LDL-P (nmol/L) 786 ± 281 

Large HDL-P (mol/L) 3.1 (2.1, 4.6) 

VLDL size (nm) 55 ± 8.4 
LDL size (nm) 20.3 ± 0.5 
HDL size (nm) 8.9 (8.7, 9.2) 

 
Values presented as mean ± standard deviation or as median (interquartile range) 

depending on data distribution 
AMetabolic syndrome defined as any three of the following: large waist 

circumference (men: >40in; women: >35in), hypertension, low HDL (men: 
<40mg/dl; women: <50mg/dl), high triglcyerides (>150mg/dl), high blood glucose 
(>100mg/dl) 

BMetabolic health information not available for six patients 
CLPIR = Lipoprotein measurement of insulin resistance 
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Figure 17. Human omental adipose tissue PC-IgM correlates with serum 

PC-IgM levels. Omental PC-IgM levels plotted against serum PC-IgM levels in 

patients from cohort 2 (see table 2). Solid line represents Spearman correlation 

and dashed lines represent 95% confidence intervals. 

  



 85 

protein known to be highly predictive of insulin resistance218, 219 – could be clearly 

measured and consistent with an anti-inflammatory role for PC-IgM, we found 

that circulating levels of MCP-1 had inverse correlations with PC-IgM in both the 

circulation and within omental adipose tissue (Table 3). Interestingly, both 

circulating and omental PC-IgM were also inversely associated with age (Table 

3). Consistent with murine results, our studies provide evidence that PC-IgM 

antibodies are present in human omental adipose tissue, associate with reduced 

inflammation, and decline with age. 

 IgM antibodies against PC and MDA-LDL, along with IgM-apoB immune 

complexes, are associated with lower indices of inflammatory disease. To 

determine if these human IgM antibodies and immune complexes were 

associated with insulin resistance, each patient in cohort 2 was given a score 

from 0 (most insulin sensitive) to 100 (most insulin resistant) based on NMR-lipid 

analysis. While we found no correlation with LP-IR scores and circulating PC-IgM 

(data not shown), LP-IR was negatively associated with IgM-IC and displayed a 

trending inverse correlation with IgM antibodies to MDA-LDL (Table 4). Both IgM-

IC and IgM MDA-LDL were positively associated with HDL. No correlations were 

observed between either insulin sensitivity or HDL and IgG-IC or IgG MDA-LDL 

(Table 4). Together, our results suggest that multiple natural IgM antibodies are 

associated with protective phenotypes in an obese human population.  
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Table 3. PC-IgM negatively correlates with serum MCP-1 and age. 
 

Measurement MCP-1 (serum) Age 

 Spearman r p-value Spearman r p-value 

PC-IgM     
Serum -0.19 0.05 -0.25 0.007 
Omental fat -0.21 0.02 -0.23 0.01 

 
 
 
 
 

Table 4. IgM autoantibodies and apoB-immune complexes correlate with HDL 
levels and improved LP-IR scores. 

     
Measurement LP-IR HDL  

      
 Spearman 

coefficient 
p-value Spearman 

coefficient 
p-value  

      
IgM-IC -0.24 0.01 0.32 0.0005  
IgG-IC -0.002 0.98 0.08 0.35  
IgM MDA-LDL -0.15 0.12 0.19 0.04  
IgG MDA-LDL -0.08 0.38 0.02 0.85  
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Discussion 

Much of the knowledge about immune regulation of disease has come 

from murine studies, and in many cases, the relevance to human disease is 

unclear. While immunohistochemical analysis has demonstrated B cells within 

human omental fat76, 141, the lack of a known human B-1 cell equivalent had 

made subset analysis difficult. However, the well-known existence of natural 

antibodies in humans suggests the presence of a B-1 cell. Recently, a circulating 

human CD20+CD27+CD43+ B cell with several characteristics similar to murine 

B-1 B cells, such as the ability to spontaneously secrete IgM and bind PC 

antigen, was identified90. Here, we show for the first time that, like murine B-1 B 

cells, CD20+CD27+CD43+ B cells are enriched in human omental adipose tissue 

compared to subcutaneous adipose tissue and blood. While not all omental 

adipose tissue samples displayed high numbers of these cells, the variability in 

omental CD20+CD27+CD43+ B cells may be due to uneven clustering and 

distribution of milky spots within individual depots, variable sampling at the time 

of surgery, or a reflection of differences in individual patients. Despite the 

variability, we showed the presence of omental CD20+CD27+CD43+ B cells 

correlated with circulating PC-IgM levels. Our findings add to the known 

similarities between murine B-1 B cells and human CD20+CD27+CD43+ B cells, 

and indicate that further analysis of omental adipose tissue may improve our 

understanding of the role B-1 B cells play in metabolic regulation. 

 Additional studies revealed that IgM autoantibodies and immune 

complexes were associated with decreased MCP-1 levels, increased HDL, and 
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improved LP-IR score in a cohort of obese individuals. Natural IgM antibodies 

have long been associated with reduced risk of cardiovascular disease178, 200, 

and our findings suggest they may also be important biomarkers of metabolic 

function. Interestingly, neither of the IgG antibodies we analyzed had any 

association with inflammation or LP-IR, supporting the hypothesis that protection 

is specific to IgM. Our mixed associations with a variety of IgM antibodies 

suggest that protection may stem from overall increased natural IgM production, 

and additional studies are needed to identify whether additional IgM antibodies 

associate with insulin sensitivity. Further understanding of B-1 B cells and natural 

IgM antibodies in murine and human adipose tissue may lead to novel 

biomarkers and new strategies to limit inflammation and the metabolic 

consequences of obesity. 
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CHAPTER 5: 

Summary, General Discussion, and Future Directions 
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Summary 

 In chapter 3, a mouse containing a B cell-specific deletion of the HLH 

factor Id3 was used as a tool to examine a potential role for B cells in the context 

of HFD-induced obesity. When challenged with a HFD for 12 weeks, these mice 

displayed a modest but significant improvement in glucose tolerance compared 

to HFD-fed littermate controls. While Id3 has reported roles as a regulator of B-2 

B cell function, adoptive transfer studies suggested that loss of Id3 function in a 

B-2 B cell could not account for the metabolic phenotype observed in the Id3B cell 

KO mouse. Further analysis provide the first evidence that loss of Id3 in B cells 

leads to a specific increase in B-1b B cell number and natural IgM production in 

adipose tissue. Follow-on studies demonstrated that Id3 likely functions to 

negatively regulate B-1b B cell survival. Interestingly, increased B-1b B cell 

number and IgM production correlated with blunted HFD-induced inflammation 

and improved insulin signaling in omental adipose tissue. Moreover, adoptive 

transfer of B-1b B cells lacking Id3 was able to attenuate HFD-induced glucose 

intolerance in Rag1-/- mice. As transfer of sIgM-/- B-1b B cells had no effect, 

results suggest that B-1b B cells may play a protective role in mediating 

metabolic dysfunction associated with obesity through production of IgM 

antibodies. 

 In chapter 4, studies using human tissue were performed to test the 

hypothesis that B-1 B cells and natural antibodies are present in human omental 

adipose tissue. Similar to findings in mice, we identified a human B cell known to 

have B-1-like qualities in omental adipose tissue of patients undergoing bariatric 
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surgery. The frequency of these B cells in omental fat correlated with circulating 

levels of PC-IgM antibodies, providing further support that these cells are the 

human equivalent of murine B-1 B cells. Additional studies showed that various 

natural IgM antibodies and immune complexes negatively correlated with 

systemic inflammation and insulin resistance, suggesting that elevated 

production of IgM antibody may be associated with improved metabolic function. 

 Together, studies performed in mice and humans provide the first 

evidence that B-1 B cell-derived natural IgM antibodies may play important roles 

in regulating inflammatory and metabolic dysfunction associated with obesity. 

Future studies are needed to further evaluate B-1 B cell function in adipose 

tissue, to determine the potential protective mechanism(s) of IgM in the context 

of obesity, and to test whether enhancing B-1 B cell production of natural IgM 

antibodies may have therapeutic potential for attenuating obesity-induced 

metabolic disease.  
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General discussion and future directions 

B cells likely regulate obesity and metabolism in a subset-dependent 

manner. 

Over the last decade, it has become evident that crosstalk exists between 

metabolic tissues and members of the innate and adaptive immune systems. 

Recently, B cells have been identified as important players in the emerging field 

of immuno-metabolism. B cells can be divided into two major subsets with 

differing roles in the immune system. B-2 B cells respond to T-dependent 

antigens, undergo class switching and somatic hypermutation, and produce high-

affinity antibodies that are crucial components of the adaptive immune system83. 

On the other hand, B-1 B cells produce evolutionarily-conserved natural 

antibodies, either spontaneously or rapidly after activation, that contribute to 

initial defense against infection and contribute to tissue homeostasis96. Insight 

into how B cells function in the context of other inflammatory diseases such as 

atherosclerosis have provided strong evidence that B-1 and B-2 B cells may 

have differing – and sometimes opposing – roles in disease220. Recent studies 

identifying a pathogenic role for B-2 B cells in obesity-related insulin resistance, 

combined with results from our studies that suggest B-1b B cells may attenuate 

metabolic dysfunction in obesity, indicate that differing B cell subsets likely have 

opposing impacts on adipose tissue function and metabolic health as well. 

While B cells had previously been identified in VAT76-78, 82, 179, a high-

impact study by Winer and colleagues in 2011 was the first to identify B-2 B cells 

as promoters of HFD-induced insulin resistance81. In this report, the authors 
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found that DIO led to a systemic adaptive antibody response highlighted by 

increased circulating IgG antibodies, along with elevated spontaneous IgG 

secretion and reduced IgM production by splenocytes. Preliminary studies in our 

laboratory support the notion that HFD promotes T-dependent antibody 

responses, as a trend for more germinal center B cells are found in the spleens 

of DIO mice (Figure 18). Further analysis by Winer and colleagues revealed an 

accumulation of class-switched IgG+ B-2 B cells and an abundance of pro-

inflammatory IgG2c antibodies within VAT, indicating that DIO may also induce a 

local adaptive immune response within fat. Adoptive transfer studies showed that 

B-2 B cells were able to drive glucose intolerance and insulin resistance in B cell-

deficient μMT mice. Our studies corroborate these findings, as we obtained 

similar impairment of glucose tolerance after injecting WT B-2 B cells into μMT 

mice. Interestingly, Winer et al. found this effect was blunted when donor B-2 B 

cells lacked functional major histocompatibility complex (MHC) I or II, suggesting 

that antigen presentation to T cells is required for B-2 B cells to negatively impact 

metabolic function. Additional studies showed that transfer of IgG purified from 

obese donors into μMT hosts was sufficient to impair glucose homeostasis. As 

IgG from chow-fed donors and IgM from DIO mice had no impact, these findings 

provide evidence that DIO induces a pathogenic T-dependent B-2 IgG antibody 

response that impairs systemic metabolic function. 
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Figure 18. HFD may lead to splenic germinal center formation. C57Bl/6J 

mice were fed chow (n=3) or a HFD (n=5) for 12 weeks. (A) Flow cytometry 

staining for splenic B220HiCD19+GL7HiCD95+ germinal center B cells. (B) 

Quantitation of germinal center B cells. Each dot represents a single mouse.  
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Identification of class-switched B-2 B cells and IgG2c antibodies in VAT, 

along with previous reports of VAT-resident T cells containing a restricted T cell 

receptor (TCR) repertoire81, 221 suggest a local immune response. Recently, 

adipose tissue macrophages were shown to induce T cell proliferation and TH1 

polarization through MHC II antigen presentation222. A significant fraction of 

macrophages expressing MHC II were found near proliferating T cells in FALCs, 

suggesting that these regions may be important for antigen-driven immune 

responses in fat. Interestingly, obesity progression led to a redistribution of 

macrophage-T cell interactions toward CLS, which are regions of high 

inflammatory output surrounding uncleared dead adipocytes190, 191. It is possible 

that apoptotic adipocytes are a source of autoantigen that helps drive the 

inflammatory IgG response seen in obesity. In support of this, IgG autoantibodies 

against phosphogluconate dehydrogenase – a highly expressed protein in 

adipocytes – were found in roughly 40% of overweight insulin-resistant patients81. 

More studies are needed to address the antigen specificity of B-2 B cells in 

adipose tissue. Identifying whether antibodies against certain antigens are driving 

a pathogenic response during obesity may allow for targeted immunotherapy 

aimed at improving metabolic function. 

In chapter 3, we show that a mouse model with specifically increased B-1b 

B cells and elevated IgM production in fat has an improved inflammatory and 

metabolic phenotype after a HFD compared to WT controls. Adoptive transfer 

studies showed that B-1b B cells could attenuate the development of diet-

induced glucose intolerance only when able to secrete IgM. Most insight into B-
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1b B cell function stems from infection studies223, and our findings are the first to 

identify B-1b B cells as regulators of obesity-induced metabolic dysfunction and 

provide evidence that they play a contrasting role to B-2 B cells in this context. 

As described here in following sections, further analysis regarding B-1b B cell 

function in obesity and the specific role(s) IgM may play in adipose tissue biology 

is needed. 

In addition to antibody production, cytokines derived directly from B cells 

may contribute to metabolic regulation. B-2 B cells have the capacity to secrete a 

multitude of TH1 and TH2 polarizing cytokines. Sorted FO B-2 B cells from obese 

mice secreted more IL-6 and macrophage inflammatory protein-2 (MIP-2), and 

less IL-10 than lean controls, suggesting a pro-inflammatory phenotype77. Similar 

results were found in T2D patients, where circulating B cells secreted more IL-8 

(an ortholog of murine MIP-2) and less IL-10 in response to toll-like receptor 

(TLR) stimulation than B cells from healthy controls101. Very recently, a subset of 

IL-10-producting B cells, possessing a different surface phenotype than on 

previously characterized BREG B cells, was identified in adipose tissue102. 

Interestingly, these cells were able to spontaneously secrete IL-10 ex vivo – a 

feature absent in previously described BREGS that require several hours of 

stimulation for IL-10 production. Adipose tissue IL-10-secreting B cells decreased 

with progressing obesity, and B cell-specific deletion of IL-10 led to increased 

adipose tissue inflammation and insulin resistance. As IL-10 has known functions 

in suppressing activated M1 macrophages224 and can directly protect adipocytes 

from TNFα-induced insulin resistance225, B cell IL-10 production may be an 
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important mechanism by which B cells can protect against adipose tissue 

dysfunction. Further analysis of this unique B cell subset is needed to fully 

understand their function and potential use as a therapeutic agent. Additional 

study is also needed to identify whether adipose tissue B cells produce cytokines 

that may have other immuno-regulatory or metabolic functions. 

 

B-1b B cells are poorly understood. 

 Results described in chapter 3 indicate more study is needed to 

understand how B-1b B cells function in adipose tissue and what role they play 

during the progression of obesity. In order to do this, more insight into B-1b B cell 

biology is required. Owing mostly to the shared surface phenotype of B-1a and 

B-1b B cells – the only known distinction is their expression of CD5 – many 

studies do not distinguish between the two, thus making our understanding of B-

1b B cells incomplete. However, despite sharing several properties such as self-

renewal and natural IgM production, evidence suggests that B-1a and B-1b B 

cells are distinct B cell subsets with overlapping, but non-redundant functions96. 

The existence of B-1a B cells prior to birth and B-2 development is well 

documented87, but B-1b development is less understood. Studies have identified 

precursor cells that produce only B-1a B cells as early as E8.5 during 

development in the splanchnopleura region88. However, both B-1a and B-1b 

precursors are found in the fetal liver, well before B-2 B cells develop89. 

Additional studies in adult mice have shown that transfer of lymph node cells can 

reconstitute B-1b, but not B-1a, populations in Rag1-/- hosts226. Moreover, 
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transfer of bone marrow preferentially generates B-1b B cells over B-1a B cells, 

and this skewed ratio becomes more pronounced with increasing donor age217. 

Elegant work from Ghosn and colleagues showed that transfer of a single Lin-

CD34-cKit+Sca1+C150+ hematopoietic stem cell (HSC) from an adult Kusabira 

Orange transgenic mouse was able to replenish splenic and peritoneal B-2 

populations of lethally irradiated hosts. Interestingly, a population of B-1b B cells 

within the peritoneal cavity was partially restored, but no B-1a B cells were 

generated227. To further complicate things, a progenitor population found in fetal 

liver, and to a lesser degree in bone marrow, was able to reconstitute B-1b and 

limited B-1a populations, but not B-2 B cells.228 These findings suggest that B-1b 

B cells share developmental timing with both B-1a and B-2 B cells, and at least 

have the potential to differentiate from overlapping progenitor populations. 

Presently, it is unclear if B-1b B cells generated during development differ 

functionally from those derived from adult precursors, and further studies are 

needed to delineate the developmental differences between B-1b B cells and 

other B cell subsets. 

In addition to possessing distinct developmental patterns, B-1a and B-1b 

B cells appear to have different effector functions. At the onset of infection, both 

B-1a and B-1b B cells migrate from the peritoneal cavity to the spleen or mucosal 

tissues where they differentiate into antibody-secreting cells177, 229. However, 

while only B-1a B cells localize in the respiratory tract draining lymph nodes and 

produce IgM after influenza virus infection93, B-1b B cells are sufficient to protect 

against B. hermsii bacteria and appear to mount a memory response after 
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immunization92, 230. Furthermore, while B-1a B cells protected against sublethal 

infection of S. pneumoniae in naïve mice, only B-1b B cells conferred 

immunization-dependent survival in mice treated with a lethal dose of the same 

bacteria94. These findings are supported by studies showing high junctional VH 

diversity in B-1b compared to B-1a B cells, providing evidence that B-1b B cells 

have the ability to generate a memory-like response231-233. In addition to being 

critical mediators of immunity, a recent study identified a protective role intrinsic 

to B-1b B cells in autoimmunity95. Here, the authors found that B-1b B cells were 

required to produce an IgM antibody that attenuated IL-17-producing TH cells 

(TH17) activity and reduced disease progression in SLE-prone mice. Together, B-

1b B cells appear to be a unique bridge between the innate and adaptive immune 

systems and play critical roles in mediating infection and autoimmunity that are 

not replicated by other known B cell subsets. 

 

B-1b B cells may be an important mediator of adipose tissue and metabolic 

function. 

 The results presented in chapter 3 indicate that B-1b B cells may play a 

protective role in obesity-associated metabolic disease, and additional studies 

are needed to identify how these cells function in adipose tissue (Figure 19). Our 

findings are the first to show that cells within omental fat are a source of T15-IgM 

natural antibodies. As increased production was observed in Id3B cell KO mice that 

have specifically elevated B-1b B cell numbers, we hypothesize B-1b B cells are 

a major source of natural IgM antibodies in adipose tissue. To test whether this is 
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the case in WT animals, similar T15-IgM ELISAs described in chapter 2 could be 

performed on culture supernatants from B-1a, B-1b, and B-2 B cells sorted from 

omental fat of C57Bl/6 mice. The main challenge to these experiments is limited 

cell yield – several attempts at sorting omental cells in our hands produced no 

more than 5,000 of any one B cell subset from a single mouse (data not shown) 

– suggesting that pooling mice or further optimizing cell extraction techniques will 

be necessary. In parallel, more sensitive ELISPOT assays that quantify antibody-

secreting cells could be utilized to determine the fraction of T15-IgM-producing 

cells from each B cell subset in omental fat. Similar studies looking at antibody 

production from B cell subsets in obese adipose tissue are also needed to 

determine whether obesity progression results in altered local IgM production. 

As our findings in humans described in chapter 4 suggest that other IgM 

antibody clones besides those that recognize PC may be associated with insulin 

sensitivity, full analysis of immunoglobulin repertoires of omental B-1b B cells is 

needed. High-throughput sequencing can identify heavy and light chain variable 

regions (VH and VL, respectively) that make up the antigen-binding portion of the 

BCR. Since this technology is generally used to determine the frequency of  
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Figure 19. Model for how B-1b B cells may play a protective role in 

mediating obesity-induced metabolic dysfunction. In the absence of Id3, B-

1b B cell numbers are elevated in adipose tissue. This correlates with reduced 

inflammation and improved insulin sensitivity in adipose tissue of mice fed a high-

fat diet, suggesting that boosting B-1b B cell number may improve adipose tissue 

function. Furthermore, B-1b B cells null for Id3 were able to attenuate obesity-

induced systemic metabolic dysfunction in Rag1-/- hosts, while WT B-1b B cells 

had a moderate effect. B-1b B cells from sIgM-/- mice had no effect, suggesting 

that secreted IgM may a key regulator of metabolism. Future studies into how B-

1b B cells and IgM antibodies function in adipose tissue and whether increasing 

B-1b B cell number and antibody response via vaccination improves metabolic 

health are needed. 
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specific VH and VL regions in pooled B cell populations, antigen binding 

information that can be gleaned from specific VH and VL combinations is often 

lost. However, recent advances in next-generation sequencing allow for the VH 

and VL combination of large quantities of single cells to be determined234. This 

approach to characterizing omental B-1b B cell antibody repertoires could 

provide an unbiased method for determining specific antigens that antibodies 

from this B cell population may recognize. Studies that compare VH and VL 

combinations between B-1b B cells in lean and obese omental fat may help 

determine specific protective antibody clones that decrease with progressing 

obesity, and conversely, could potentially identify changes in B-1b B cell antibody 

repertoires that contribute to disease progression. Results from these studies 

could then be used to determine the therapeutic potential of targeted adipose 

tissue antibody delivery or neutralization on obesity-induced metabolic 

dysfunction. 

 Our results showing that adoptive transfer of B-1b B cells lacking Id3 

attenuated obesity-associated glucose intolerance in Rag1-/- mice suggests that 

immunotherapy using these B cells could improve metabolic function. However, 

since recipients of WT B-1b B cells displayed a trend that approached 

significance for improved systemic glucose tolerance, more study is needed to 

determine whether this effect can also be induced by WT B-1b B cells. Despite 

the transfer of equivalent numbers of cells, Rag1-/- hosts that received Id3B cell KO 

B-1b B cells had roughly two-fold more omental B-1b B cells three weeks post-

transfer than those that received WT cells, suggesting that increased B-1b B cell 
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number may lead to an improved metabolic phenotype. As our adoptive transfers 

consisted of a single injection of 8.0x104 B-1b B cells, it is possible that simply 

increasing the number of cells transferred, or including additional booster 

injections, may confer a higher level of protection. Furthermore, since our studies 

were performed in mice lacking all B cells and T cells, studies are also needed to 

evaluate B-1b transfer into hosts with a more complete immune repertoire. While 

no complete B-1b-specific knockout model currently exists, TLR9-/- mice have a 

specific reduction in peritoneal B-1b B cells95. Obesity studies comparing these 

mice and those receiving WT B-1b adoptive transfers would help elucidate 

whether B-1b B cells have therapeutic potential in the presence of other immune 

cells known to play a role in mediating the effects of obesity. Due to their ability to 

self-maintain and self-expand, B-1b B cells have intriguing potential as an 

immunotherapy agent and additional studies evaluating them in this context may 

reveal exciting therapeutic roles for B-1b B cells in obesity and other 

inflammatory diseases. 

 Immunization is another potential method for enhancing any protective 

features B-1b B cells may have. B-1b B cells can produce antigen-specific 

antibodies to various T-independent antigens223, 226; a response that aids in the 

clearance of B. hermsii and S. pneumoniae92, 94. Indeed, immunization of mice 

with heat-killed S. pneumoniae resulted in an IgM antibody response, and 

attenuated the development of atherosclerosis184. As this response is driven by 

B-1b B cells94, these findings highlight the potential use of immunization to 

induce B-1b antibody responses that may protect against diet-induced 
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inflammatory disease. Interestingly, although milky spots in omental adipose 

tissue lack follicular dendritic cells required for normal germinal center 

reactions82, 235, they are able to trap bacteria and particulates suspended in the 

peritoneal fluid236-238 and can support a limited immune response in SLP mice 

lacking conventional secondary lymphoid organs82. These findings suggest that 

these unique clusters of B-1 B cells and macrophages may be important sites of 

adipose tissue antibody production. Studies are needed to analyze if 

immunization with S. pneumoniae leads to local B-1b antibody response in 

adipose tissue, and whether this can protect against glucose intolerance and 

insulin resistance in obesity. 

 

Id3 is a regulator of B-1b B cells  

Id3 is a member of the HLH family of transcription factors that also 

includes basic-HLH (bHLH) proteins containing a basic DNA-binding domain. 

After bHLH members homo- or hetero-dimerize, they can bind DNA at E-box 

(CANNTG) motifs and directly activate or repress transcription144. Id3 can also 

dimerize with bHLH proteins, but due to a lack of a DNA-binding domain, Id3 acts 

in a dominant-negative manner to prevent bHLH function146. Prior to our studies, 

no role for Id3 in B-1b B cells had been identified, and understanding of Id3’s 

function in B cells is limited to studies in B-2 B cells. In these cells, much of Id3’s 

activity is thought to be through regulation of bHLH proteins E47 and E12 (two 

splice variants of the E2A gene) that play prominent roles in B-2 cell 

development and function153, 161, 239, 240. Id3 has been shown to regulate various 
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aspects of B-2 B cell function such as proliferation after BCR crosslinking158 and 

class-switch recombination159, 160. As both Ig class switching and clonal 

expansion are critical components of an antibody response, these findings may 

help explain the impaired T-dependent and T-independent IgG antibody 

responses in Id3-/- mice158, although the contribution of loss of Id3 in other cells 

must also be accounted for. In addition to a potential role in antibody response, 

Id3 over-expression induced apoptosis and growth arrest in B-2 progenitors155, 

156, and down-regulation of Id3 was required for E47-mediated B cell lineage 

specification157. Despite these findings, Id3-/- mice have normal mature B-2 B cell 

numbers158, 168, suggesting that loss of Id3 has a limited impact on B-2 B cell 

development. 

In contrast to B-2 B cells, results described in chapter 3 indicate that loss 

of Id3 in B cells leads to a specific increase in peritoneal and adipose tissue B-1b 

B cells. Adoptive transfer studies indicated that this effect is, at least in part, due 

to loss of Id3 in mature B-1b B cells. As LPS-injection studies in Id3B cell KO mice 

revealed reduced omental B-1b Annexin V staining but no differences in BrdU 

incorporation, we hypothesize that Id3 regulates mature B-1b B cell number by 

limiting survival. Furthermore, the trend for reduced B-1b Annexin V expression 

in untreated mice could explain the disparity of B-1b B cell numbers at baseline, 

as consistent small variations in B-1b apoptosis could lead to substantial 

differences in cell number over time. However, these findings do not rule out the 

possibility that Id3 could also regulate B-1b B cell development. While 

understanding of B-1b B cell development is incomplete, flow cytometry analysis 
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of fetal liver or bone marrow of Id3B cell KO mice could be performed to identify 

differences in progenitors known to be capable of producing B-1b B cells227, 228. If 

Id3 plays a role in regulating B-1b B cell development, we might expect to see an 

increase in one of these populations. Two emerging technologies, including one 

that allows for quantitation of mRNA by flow cytometry, and mass cytometry241 

that can evaluate up to 40 surface or intracellular markers at once, have the 

potential be instrumental in identifying gene expression and signaling patterns in 

minute progenitor populations. Utilization of these novel methods will allow for 

further evaluation of potential checkpoints that Id3 and other factors may regulate 

during B-1b development. 

While B-1 B cells are able to self-maintain their population in the absence 

of specific stimulatory signals, the mechanisms that regulate B-1 B cell survival 

are unclear. Our findings suggest that Id3 may be a key regulator of B-1b B cell 

survival, and additional study into how Id3 functions in B-1b B cells may reveal 

important differences between these cells and other B subsets. One 

characteristic that distinguishes B-1 from B-2 B cells is the constitutive 

expression of various transcription factors in their activated form that are only 

found in B-2 B cells after stimulation. Two of these factors expressed in their 

activated, phosphorylated form in B-1 B cells, signal transducer and activator of 

transcription-3 (STAT3)242 and extracellular signal-regulated kinase 1/2 

(ERK1/2)243, 244, are known inducers of survival245, 246. As Id3 is activated by the 

Ras-ERK MAPK cascade in thymocytes247, it is possible that ERK1/2 signaling 

activates Id3 to serve as a regulator against uncontrolled survival in B-1b B cells. 
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In addition, E2A-mediated STAT6 activation of IgE class-switch recombination in 

Id2-/- B cells was inhibited by Id2 overexpression248, suggesting a synergistic role 

for E2A in and STAT proteins. Future work is needed to determine whether E12 

or E47 work with STAT3 to promote survival in B-1b B cells, and whether Id3 

may serve as a negative regulator of this process. Another study demonstrated 

that TGFβ was able to induce apoptosis in B lymphocyte progenitor cells in a 

mechanism dependent on Id3 expression155. Follow-up analysis showed that this 

effect was dependent on caspase 2 signaling156, and further studies are needed 

to test whether Id3 regulates B-1b B cell survival in a similar manner. 

In addition to targeted studies derived from known Id3 function in other cell 

types, comparative microarray analysis of WT and Id3-/- B-1b B cells should also 

be performed. As Id3 is known to function very differently depending on the cell 

type and available binding partners149, 154, this could reveal important factors that 

are alternatively expressed in the absence of Id3 in an unbiased manner. 

Furthermore, comparison array studies between WT and Id3-/- B-1a and B-1b B 

cells could be performed to identify factors differentially expressed only in Id3-/- B-

1b B cells. This could identify factors crucial for distinguishing the two similar B 

cell subsets. Together, these studies have the potential to uncover novel 

pathways that are not only regulated by Id3, but that may be critical for 

understanding the differences between B-1a and B-1b B cells. 

 

Possible mechanisms for IgM regulation of adipose tissue biology 
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 The studies presented here show that when challenged with a HFD, a 

mouse model with elevated IgM antibodies displays reduced adipose tissue 

inflammation, improved adipose tissue insulin signaling, and attenuated systemic 

glucose intolerance. Adoptive transfer studies suggest that some of these effects 

may be dependent on IgM secretion by B-1b B cells, and additional studies in 

humans suggest that reduced levels of IgM may contribute to improved insulin 

sensitivity. While these findings are consistent with the previously defined role for 

IgM as a protector against inflammation and chronic disease121, more work is 

needed to uncover the mechanism(s) by which IgM functions in adipose tissue 

(Figure 20). 

One possibility is that IgM assists with dead cell clearance and 

maintaining local tissue homeostasis. In adult humans, billions of dead cells must 

be cleared every day – it is estimated that throughout the body, roughly one 

million cells undergo apoptosis per second249. Despite this remarkable amount of 

cell turnover, removal of dead cells occurs so quickly that uncleared apoptotic 

cells are rarely observed in healthy tissue249. However, defective removal of 

apoptotic cells results in elevated inflammation, and can lead to autoimmune  



 111 

  



 112 

Figure 20. Possible functions for IgM antibodies in adipose tissue. IgM is 

known to clear apoptotic cells, inhibit macrophage activation, and enhance 

adipocyte function. Studies are needed to further evaluate how IgM acts in 

adipose tissue in vivo. 
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diseases including SLE126, 127, which is associated with insulin resistance in 

mice250, 251 and humans252. In the same study described above by Winer and 

colleagues81, analysis of IgG autoantibodies in obese insulin-resistant and obese 

insulin-sensitive patients revealed that most autoantibodies enriched in the 

insulin-resistant cohort recognized intracellular proteins, suggestive of impaired 

dead cell clearance. Together, these findings suggest that in addition to being 

primary sites of inflammation, uncleared dead cells in obese adipose tissue might 

contribute to the pathogenic IgG response observed in obesity.  

Secreted IgM is an important mediator of dead cell clearance and tissue 

homeostasis, and sIgM-/- mice also develop an SLE-like phenotype129, 253. Cell 

surface expression patterns change during apoptosis, and IgM antibodies 

specific for moieties present on apoptotic, but not healthy, cells promote 

apoptotic cell clearance254. An example of such antibodies are members of the 

T15-IgM family that recognize the PC phospholipid that is expressed during the 

early stages of apoptosis. T15-IgM binds apoptotic cells and facilitates the 

binding of C1q and mannose-binding lectin (MBL)119, 120, 255 – two proteins that 

assist phagocyte-mediated apoptotic cell clearance256-259. T15-IgM has been 

shown to promote apoptotic cell phagocytosis both in vitro120 and increase 

defective phagocytosis in vivo in uMT119 and sIgM-/-123 mice, suggesting that IgM-

mediating apoptotic cell clearance is an important physiological process. In 

addition to PC-IgM antibodies, IgM specific for MDA has been shown to facilitate 

apoptotic cell clearance in Rag1-/- mice109. Furthermore, IgM antibodies that 

preferentially bind apoptotic cells have been identified260-262, and there are known 
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IgM clones specific for apoptotic cell surface markers such as cardiolipin, 

phosphatidylserine, and Annexin V263-266, suggesting that multiple natural 

antibodies may participate in the removal of dead cells and thereby prevent 

downstream inflammation and tissue destruction. 

Likely due to a combination of the inflammatory and hypoxic 

microenvironment of obese adipose tissue, along with the physical demands of 

excess lipid storage, the progression of obesity strongly correlates with increased 

adipocyte death in mice and humans190, 191, 267. Interestingly, reduction in serum 

concentrations of MBL strongly correlates with indices of inflammation and 

reduced insulin sensitivity in mice and humans268, and genetic MBL 

polymorphisms associate with gestational diabetes269, suggesting that reduced 

concentration or function of apoptotic clearance machinery can impact glucose 

metabolism. CLS consisting of M1 macrophages surrounding uncleared dead 

adipocytes are a hallmark of obese adipose tissue, and contribute a major 

fraction of adipose-derived pro-inflammatory cytokines270. Several studies have 

shown that mice containing global267 and adipocyte-specific271  deletions of pro-

apoptotic genes have reduced adipose tissue inflammation and display improved 

glucose homeostasis compared to controls, supporting the hypothesis that 

adipocyte death contributes to metabolic disease. 

It is currently unknown whether IgM participates in removing apoptotic 

cells in adipose tissue. IgM antibodies have been reported to localize to CLS81, 

but these findings must be confirmed using sIgM-/- negative controls to avoid the 

possibility that this staining was detecting IgMhi B-1 B cells within CLS. Additional 
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studies that quantify CLS or measure apoptotic cells through TUNEL staining in 

adipose tissue of HFD sIgM-/- mice are also needed to determine if loss of 

secreted IgM leads to a noticeable reduction in apoptotic cell accumulation. If this 

were the case, follow-up experiments that transfer sorted B-1a or B-1b B cells 

into sIgM-/- hosts would test whether IgM derived from a B-1 subset is involved in 

preventing apoptotic cell accumulation in adipose tissue. While infusion of IgM 

antibodies known to assist in dead cell clearance (such as T15-IgM or IgM 

against MDA-LDL) into sIgM-/- recipients would allow for further delineation into 

whether these antibodies localize to sites of dead adipocytes and promote their 

clearance, such experiments are costly and require large quantities of antibody. 

  While CLS identification and TUNEL staining can detect uncleared dead 

adipocytes, relatively little is known regarding the apoptotic process in adipocytes 

or the physical factors regulating the removal of dead cells from adipose tissue. 

Recent studies suggest that dying adipocytes share much of the known apoptotic 

machinery of other cells272, but gene overexpression and deletion studies are 

needed to confirm this. Furthermore, thorough microarray analysis is needed to 

identify any unique factors to adipocyte apoptosis that may have been missed by 

studies focusing on well-studied pathways. Understanding how programmed cell 

death works in adipocytes may allow for cell-specific antagonists of adipocyte 

apoptosis aimed at improving insulin sensitivity during periods of over-nutrition. In 

addition, the average adipocyte has a diameter of about 100μm, and can double 

or triple in size during obesity. As most apoptosis studies focus on clearing 6μm 

apoptotic thymocytes, obvious physical hurdles must be overcome to remove 
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these giant, lipid-laden cells. Co-culture studies could be performed to test if IgM 

promotes adipocyte clearance. In this experiment, labeled apoptotic adipocytes 

would be incubated with macrophages and treated with either T15-IgM or vehicle 

control. All studies would be performed in the presence of serum from sIgM-/-, 

Rag1-/-, or μMT mice to provide the complement factors, but not IgM antibodies, 

required for IgM-mediated phagocytosis119, 120. After several hours, adipocyte 

phagocytosis could be quantified by flow cytometry or immunofluorescent 

microscopy. Results of these studies, along with others that test specific roles of 

M1 and M2 macrophages in adipocyte clearance, will enhance our understanding 

of how to improve adipose tissue homeostasis when local cell death increases 

during obesity. 

In addition to promoting apoptotic cell clearance, IgM antibodies have 

reported direct anti-inflammatory properties. In a murine model of atherosclerosis 

– another disease characterized by chronic inflammation – B-1a B cells 

adoptively transferred into splenectomized hosts reduced aortic plaque size and 

macrophage content in a mechanism dependent on their ability to secrete IgM130. 

Interestingly, IgM antibodies have been identified in atherosclerotic lesions109 and 

EO6 – a specific IgM clone of the T15 family116 – was able to inhibit macrophage 

uptake of oxidized LDL and prevent foam cell formation185, 273. In a separate 

study, T15/E06 IgM infusion attenuated the development of joint inflammation 

and cartilage damage in a mouse model of arthritis119. Interestingly, EO6 was 

also able to prevent OxPAPC-induced macrophage activation274 and TLR-

mediated dendritic cell and macrophage activation119, suggesting that IgM 
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antibodies may directly reduce inflammatory cell activity. Consistent with these 

findings, preliminary studies in our laboratory suggest that treatment of omental 

adipose tissue with IgM or EO6 may reduce TNFα production by M1 

macrophages (Figure 21). While no mechanism for this anti-inflammatory activity 

has been proposed, the previously designated Fas apoptotic inhibitory molecule 

3 (TOSO)275 was recently shown to act as an IgM Fc receptor (FcμR)276, 277 and 

to be involved in pro-inflammatory TLR4 signaling278. It is possible that IgM can 

blunt inflammatory macrophage signaling through TOSO binding. Additional 

studies are needed to test if IgM antibodies can regulate adipose tissue 

macrophage inflammation, and whether any effect on activity is dependent on 

IgM binding to this novel FcμR. 

A third mechanism by which IgM may regulate adipose tissue function is 

through direct interaction with adipocytes. Studies in the 1980s showed that 

polyclonal human IgM was able induce glucose uptake and stimulate lipogenesis 

in rat adipocytes better than insulin192, 279. Interestingly, competition assays 

showed that IgM did not compete with insulin binding, suggesting that it acts 

through a different receptor279. Additional work by the same group revealed that 

IgG antibodies have a similar metabolic effect on adipocytes280, suggesting that  
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Figure 21. IgM antibodies may attenuate omental adipose tissue M1 

macrophage TNFα secretion. Whole omental adipose tissue explants from 

C57Bl/6 mice fed a HFD for three weeks treated overnight with either IgM isotype 

or EO6 (T15-IgM). Explants were then activated with PMA/Ionomycin in the 

presence of Brefeldin A for five hours. F4/80+CD11b+CD11c+ M1 (left) and 

F4/80+CD11b+CD11c- M2 (right) TNFα expression was quantified by flow 

cytometry. Each dot represents one mouse. 
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regulation may not be limited to IgM antibodies. A more recent study identified 

IgG Fc receptors on the cell membranes of human adipocytes and showed that 

Fc fragments of IgG antibodies were sufficient to stimulate lipogenesis and 

reduce IL-1β and IL-6 expression in adipocytes76. Together, these findings 

suggest that antibodies may have important regulatory effects on adipocytes, and 

follow-up studies are needed to determine whether adipocytes express TOSO or 

other receptors that specifically bind IgM. In addition, determining whether IgM 

treatment can rescue insulin-mediated metabolic function of insulin resistant 

adipocytes will be of great interest and has the potential to uncover novel 

signaling pathways that could be exploited for future therapeutic treatment. 

 

Additional characterization of human CD20+CD27+CD43+ B cells is needed. 

 While the existence of a human B-1 B cell equivalent has long been 

hypothesized, several factors have made its identification elusive. Unlike in mice, 

no single cell surface marker is known to identify human B-1 B cells. Murine B-1 

B cells were first discovered as a unique CD5+ B cell that spontaneously 

secreted IgM281. Using CD5 expression as a starting point, subsequent studies 

were able to identify characteristics and surface expression patterns specific for 

murine B-1 B cells. These studies led to the identification of a CD5- B-1 B cell282 

and the distinction between CD5+ B-1a and CD5- B-1b B cells in mice. In humans 

however, while CD5 is found on IgM-producing B cells283, 284, it is also expressed 

by other B cell subsets285, 286, and no other B-1 distinguishing marker has been 

proposed. In addition to complications arising from differences in murine and 
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human B cell surface expression, much of our understanding of B-1 B cells in 

mice stems from unlimited access to bone marrow, peritoneal fluid, and lymphoid 

tissue. For obvious ethical and practical reasons, the majority of immune analysis 

in humans comes from studies of circulating cells. As few circulating B-1 B cells 

are found in mice, it is not surprising that our knowledge of B-1 B cells in humans 

has lagged behind. 

While Griffin and colleagues’ discovery of a novel human 

CD20+CD27+CD43+ B cell population90 is exciting, follow-up confirmatory studies 

by other groups will be important. Results from our studies described in chapter 4 

indicate additional similarities between this B cell population and murine B-1 B 

cells, most notably their enrichment in omental adipose tissue and correlation 

with circulating natural IgM antibodies. Future studies to examine whether these 

B cells are a source of natural antibodies, if they have the capacity to self-renew, 

and where else they may be located will be instrumental in determining their true 

nature. Importantly, now that this cell has been identified, multi-color flow 

cytometry, microarray analysis, and the recently introduced mass cytometry 

technology241 can be used to further characterize its gene expression pattern, 

antibody repertoire, and surface marker phenotype. 

The identification of CD20+CD27+CD43+ B cells in human omental 

adipose tissue highlights the need for additional analysis of these cells in the 

context of obesity and insulin resistance. Due to the relatively low numbers of 

patients that we have been able to analyze by flow cytometry, our study is 

incapable of delineating any correlations between CD20+CD27+CD43+ B cells 
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and clinical outcomes. However, based on our murine findings, we would 

hypothesize that increased numbers and/or IgM production from these B cells 

would correlate with reduced adipose tissue inflammation and an improved 

metabolic phenotype. As recent evidence suggests that obesity and T2D alters B 

cell activity, further study is needed to evaluate how CD20+CD27+CD43+ B cells 

in omental adipose are altered in this context. B cells from T2D patients secrete 

higher levels of IL-8, attenuated amounts of IL-10, and are more equipped to 

induce IL-17 expression in T cells77, 101, indicating a pro-inflammatory phenotype. 

Obese individuals also have significantly reduced circulating IgM compared to 

age-matched controls, suggesting a reduction in either number or function of 

IgM-producing B cells287. Since a significant fraction of our patient cohort were 

obese and either diabetic or non diabetic with metabolic syndrome, additional 

studies are needed to determine whether CD20+CD27+CD43+ B cell number or 

function is different in omental fat of healthy individuals. Results from these 

studies may uncover novel relationships between these B cells and metabolic 

disease, and allow for further insight into whether this newly discovered B cell 

population could be a potential immunotherapy agent.  
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