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ABSTRACT

An important challenge in agriculture and food security is the control of invasive alien species

(IAS) spread that a�ect important agricultural crops. However, optimal control of such epidemics

is a challenging problem. In this thesis, we consider the problem of controlling a multi-pathway

epidemiological process on a temporal network. Our focus is on the problem of group-scale

interventions, where the objective is to find an optimal set of regions (or groups of nodes) to intervene

at so as to minimize the spread. Such interventions correspond to region-wide management techniques,

which are more realistic compared to targeted interventions that are typically studied in network

science. In this collaborative work, we designed, implemented and analyzed an algorithm called

SPREADBLOCKING for intervention problem. Our method uses sample average approximation

technique and a linear relaxation of an integer linear program.

This thesis contributes to the implementation of the simulator, experimental framework and

analysis. We implemented the multipathway simulator using vectorization methods, and achieved

an order of magnitude speed improvement over the previous version. We integrated the simu-

lator with the intervention algorithm. This involved representing simulation instances, which

correspond to Susceptible-Exposed-Infectious (SEI) process on the input network to a Susceptible-

Infectious-Recovered (SIR) process on a time-expanded graph. For experimental evaluation of the

SPREADBLOCKING algorithm, we implemented popular baselines for comparison of our results.

Finally, we conducted experiments to evaluate our intervention algorithm on several real-world

networks with respect to budget, introduction scenarios and intervention delays.

Our results show superior performance across model parameters compared to the baselines. We

note that early discovery of the IAS and speed of intervention are critical to identify intervention

candidates under model uncertainty. We observe that groups with high inflow, even though

vulnerable, are not necessarily chosen as candidates for intervention. Across model parameters, we

note that performance of group-scale interventions is comparable to individual-based interventions

in performance, though the former is more practical from an implementation perspective.
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Chapter 1

Introduction

1.1 Background

An important challenge in agriculture and food security is the control of invasive alien species

spread (IAS) that a�ect important agricultural crops. Biological invasions cause disruptions to

native ecosystems, and negatively impact health and economy, with annual economic impact of

over $120B in the United States alone [25]. At the global scale, the economic impacts of IAS are

significant. For example, invasive insect species alone are thought to be responsible for more than

70 billion USD/year in lost ecosystem goods and services, and 6.9 billion USD/year in health costs,

far outweighing the economic benefits of these species [5]. Moreover, many IAS a�ect landscape

aesthetics and biodiversity, indirectly a�ecting tourism and other businesses related to recreation.

From researching various sources, it is clear that IAS management and control is an important

environmental, social, and economic issue [17]. In this work, we study the spread of a representative

pest called Tuta absoluta [3], which has been responsible for devastating tomato crops globally.

The spread of IAS has been successfully modeled using network and agent-based methods [32,

8, 23, 21]. In such models, nodes represent spatial regions (e.g., counties), and edges represent

flows between regions (e.g., through trade). Node and edge attributes vary in time reflecting

seasonal weather patterns and cropping cycles of host crops. Di�erent pathways of spread such as

self-mediated, wind, trade, etc. lead to multi-edged networks. Hence, we can say that IAS spread is



2
a multi-pathway phenomenon driven by various natural and anthropogenic factors [15]. We note

that many other natural and social phenomena can be modeled as epidemiological processes on

networks [20].

1.1.1 Multi-pathway Model

There are various ways in which a epidemiological processes can be modelled depending on the

characteristics of the studied phenomenon. In this thesis the di�usion process used is based on

Susceptible-Exposed-Infectious (SEI) process defined in Section 2.1. Some of the other popular

di�usion processes include Susceptible-Infectious-Susceptible (SIS) model, Susceptible-Infectious-

Removed (SIR) model (defined in Section 2.1).

In this thesis, we focus on the multi-pathway model developed for the spread of IAS in Mc-

Nitt et al. [21]. The study area is overlaid with a grid and induces the first-level nodes in the

network (Figure 2.1). Some nodes in this spatial network belong to groups (called localities),

which represent regions of major supply of host crops and demand. A node has two time-varying

attributes, suitability ‘(v, t) for pest establishment and infectivity fl(v, t). There are three pathways

of spread. Self-mediated dispersal corresponds to a di�usion from one cell to its adjacent cells, local

human-mediated dispersal is di�usion within a group (farmer-market interactions), and long-distance

dispersal corresponds to di�usion from cells from one group to another (trade). The probability

that a node can be infected through a pathway is modeled as a negative exponential function of

infectivity and pathway parameters, which can be expressed as edge weights between two nodes.

Accounting for various ways in which dispersal can occur typically results in a complex model. In

addition, lack of usable data and systematic modeling methods makes it very hard to validate these

models. Also, there are challenges in analyzing such processes. Analysis of even simple di�usion

processes on static networks is hard [11]. For complex di�usion processes, one usually would have

to rely on in-silico studies for insights into their behavior.
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1.2 Controlling Multi-pathway Spread of Invasive Species

Managing invasive species is a major challenge for society. In the case of newly established invaders,

rapid action is key for a successful management. Models and algorithms can be used to evaluate

various intervention strategies. However, interventions are resource intensive and therefore, are

typically applied with budget constraints.

Applying pesticides, setting up pheromone traps and imposing trade embargoes have been the

main methods applied to control T. absoluta. Such interventions incur huge economic costs, and

therefore, designing optimal interventions is a fundamental challenge in agriculture. As in the case

of other di�usion processes, controlling di�usion in a multi-pathway model is computationally very

challenging. In many ordinary di�erential equation models, which have been used in the study of

spread processes, interventions can be computed optimally (e.g., Medlock and Galvani [22]). However,

designing optimal intervention strategies in network-based di�usion models is much harder [4, 27, 29].

Wilder et al. [33] consider optimal interventions in a dynamic population under a continuous-time

SIS model. There has been a lot of work in di�erent types of models, e.g., [4, 33, 27, 29]. Prior

results do not immediately provide results for the problem considered because the multi-pathway

models like those in [21] are di�erent from SIS/SIR models used by the above-mentioned works,

and the goal is to minimize the expected number of infections, which is not captured by some of the

prior work, e.g., [27, 32, 8].

Typically controlling an outbreak corresponds to removing nodes (or edges) of the network in

order to stop or slow down the di�usion process. In an impending epidemic scenario, policy makers

have to develop strategies under resource constraints. Therefore, deciding which nodes to intervene

at is an important problem that has been well-studied in the context of infectious disease spread

and other social phenomena [4, 33, 27]. Here, we focus on developing practical control algorithms in

the context of IAS that a�ect important agricultural crops.
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1.3 Group-scale Interventions

This thesis studies group-scale interventions in the multi-pathway epidemiological process described

in Section 1.1.1. Throughout this thesis, intervening at a group (or locality) means removing all

nodes present in the group. Given resource constraints, we must be able to identify which are the

optimal groups to intervene, such that it reduces the total number of accumulated infections in

the network. We study group-scale interventions because optimal strategies based on node level

characteristics cannot be easily turned into implementable policies; targeted interventions are harder

as it is di�cult to include every field or cultivated patch of land in the model. In fact, even in

infectious disease spread, vaccination policies such as those specified by CDC are at the level of

groups (e.g., based on demographics), and almost all the e�orts in epidemiology are focused on

developing group level strategies, even though this may lead to sub-optimal solutions compared to

the node level intervention strategies.

1.4 Contributions

We focus on developing practical control algorithms for invasive alien species spread that a�ect

important agricultural crops, using the agent-based model of McNitt et al. [21]. Our contributions

are as follows.

1.4.1 Multi-pathway Model and its Implementation

Recall the brief description of the multi-pathway simulator in Section 1.1.1. We implemented an

improved and faster version of this model. Firstly, we used the concept of “live-edges”, where we

first randomly sampled edges consisting of an infectious source node and a susceptible target node

with a probability proportional to the edge weight, and then decided which nodes were infected in

the current time step. This enabled us to e�ectively use Pandas (in Python) vectorization methods

and leverage DataFrames to store edges, nodes, their attributes and state information. Secondly, for

two pathways, we applied aggregation of infections at the group level, which reduced the number of

edges to be processed. Here, we leveraged Pandas GroupBy, Join and Map operations to achieve
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further speedup. The revised simulator is about 10 times faster for a network of 200 nodes with the

same simulation parameters 2.1 compared to the older version. The simulator also used a generalised

notion of multi-scale spatial network. The input network for the simulator defines the relationship

of nodes at node level as well as “group” level.

1.4.2 Equivalence of Multi-pathway Model to SIR Process on a Time-Expanded

Network

To the best of our knowledge there is no work on intervention algorithms for SEI di�usion processes.

However, control of SIR di�usion processes is well-studied. To leverage such approaches, we come

up with the notion of time-expanded graph of a network, and show that SEI di�usion processes

on the multi-pathway network can be provably reduced to an SIR process on the time-expanded

network. In Chapter 4 we define the time expanded network and and show this equivalence. The

implementation details of representing simulation output as the corresponding subgraph of the

time-expanded graph is also described.

1.4.3 Group-scale Intervention Problem and Algorithm

We introduce a new group-scale intervention problem (IAScontrol) to formalize control strategies

for IAS. We design algorithm SpreadBlocking for IAScontrol for choosing which groups

to intervene, and when, given resource constraints. Our method is a combination of the sample

average approximation (SAA) technique, with a linear relaxation of an integer linear program

(ILP). We prove rigorous guarantees on its performance. A detailed explanation of these concepts

are present in Chapter 5. We also implemented three popular control methods (max. outflow,

vulnerability and exhaustive search) to compare the performance of our intervention algorithm with.

The Outflow-based method is is used in many works [28, 27, 23]. There are many variants depending

on the models used. Here, it is implemented by grouping the total outflows from each locality. In an

unweighted graph this would correspond to a degree based heuristic. The vulnerability of a node is

the probability that the node will be infected when no interventions are in place subject to certain

initial seeding. Candidates for intervention are chosen based on their vulnerability. The exhaustive
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baseline corresponds to considering all possible solution sets of size B (budget) in the solution space.

This baseline would provide the best solution within the limits of the sample average approximation.

More details on the implementation of these methods are present in sections 5.1, 5.2 and 5.3.

1.4.4 Experimental Analysis

We use SpreadBlocking to study real-world networks considered in McNitt et al. [21]. We perform

experiments and analyze the algorithm for its e�ectiveness and solution quality under di�erent

values of budget B, intervention delay ·d and model parameters. We compare the performance of

the intervention algorithm with the three baselines. The algorithm’s performance is also compared

with the targeted intervention case (each node belonging to a distinct group). We analyze the

structural properties of groups that appear prominently in the solutions to gain insights into the

structural and dynamical properties of the network that influence spread.

1.4.5 Specific Contributions

This thesis contributes to the work in Section 1.4.1, which corresponds to implementing the simulator,

and the conversion of simulation instances to equivalent subgraphs of the time-expanded network

(Section 1.4.2). In Section 1.4.3, this thesis contributes to the selection and implementation of the

algorithms that serve as baselines for the SpreadBlocking algorithm. Experiment design and

analysis is another major contribution of this thesis (Section 1.4.4).
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Chapter 2

The Multi-pathway model and its

Implementation

Spread dynamics of invasive species spread are influenced by habitat suitability and human activities.

The spread can occur across a network of nodes that represents the focus region, with linkages (or

edges) representing the potential movement between such habitats [9]. Our work uses one such

agent-based model to study the multi-pathway spread of invasive alien species. This model was

used by Mcnitt et al. [21] to investigate the spread of the South American tomato leafminer, a

tomato pest. The model accounts for both self-mediated and human-mediated spread, as well as the

propagation mechanisms’ spatial heterogeneity, temporal variations, and multi-scale design. The

authors demonstrate the significance of trade pathways in the spread of the pest. This model is

generic and can be applied to several biological invasion scenarios that include other pathways (for

e.g., wind dispersal). The objective of this chapter is to describe the Multi-pathway model and

it’s implementation. We first explain the concept of this model mathematically in Section 2.1 and

Section 2.2 and then describe how this model was improved and implemented using Pandas concepts

in Python in Section 2.3, which is a contribution to this thesis.



8
2.1 Preliminaries

Let G(V, E) be a temporal edge-weighted directed graph. Let the weight of an edge (u, v) œ E at a

discrete time step t = {0, 1, . . . , T} be denoted by w(u, v, t), where T is the maximum number of

time steps or the time horizon. Let Q = {Q1, Q2, Q3, .., Qk} be a collection of k disjoint subsets

of V . Each subset Qi is a group. For a vertex v, let g(v) denote the group it belongs to. Two types

of network-based di�usion processes are considered in this paper:

Susceptible-Infectious-Removed (SIR): A node is in Susceptible (S) state if it is not yet

infected. When a susceptible comes in contact with an infectious node (in state I), it can get

infected. If it gets infected, then, it transitions from state S to state I. The node stays in

state I for exactly one time step. It can infect any of its susceptible neighbors in that time

step. In the next time step, it moves to the Removed (R) state when it is e�ectively removed

from the network from the perspective of the di�usion process.

Susceptible-Exposed-Infectious (SEI): In this model, a susceptible node when infected, tran-

sitions to the exposed state E when it is infected but not infectious. It stays in the exposed

state for a fixed number of time steps, which is denoted by latency period ¸. After the latency

period, the node transitions to the I state.

Let S ™ V denote the initial set of nodes in state I that seed the di�usion process at t = 0.

In the SEI process, a node moves from E to I after ¸ time steps, where ¸ is referred to as latency

period.

2.2 Multi-pathway Model for IAS Spread

We will describe briefly the model developed in McNitt et al. [21]. It is illustrated in Figure 2.1. The

study region is divided into cells, which correspond to the set of nodes V of the spatial network. The

nodes are partitioned into groups (called localities in Mcnitt et al. [21]), which represent regions of

major supply of host crops and demand. It is possible that some nodes do not belong to any locality.

There are three pathways of spread. Self-mediated dispersal corresponds to di�usion from one
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cell to its adjacent cells, local human-mediated dispersal is di�usion within a group farmer-market

interactions), and long-distance dispersal corresponds to di�usion from cells from one group to

another (trade).

‘(v, t)fl(v, t)

ES I
–¸d

–¸

–s

¸

Spread

Infected node
Target susceptible node
Moore neighborhood
Infected group
Susceptible group

Moore neighborhood

Group
radius

Group/Locality

Long distance human-
mediated pathway

Short distance human-mediated
pathway

Natural-spread pathway

Fij(t)

Figure 2.1: An illustration of the multi-pathway model [21].

A node has two periodic time-varying attributes, suitability ‘(v, t) for pest establishment and

infectivity fl(v, t). Here, each period unit corresponds to a month in the year. The probability

that a node can be infected through a pathway is modeled as a negative exponential function of

infectivity and pathway parameters, which can be expressed as edge weights between two nodes.

For the short-distance dispersal, the probability that node v is infected by its neighbor v
Õ within its

Moore neighborhood Mv (where the range of the Moore neighbourhood is denoted by rM) is:

ps(v, t) = ‘(v, t)
3

1 ≠ exp
1

≠ –s

ÿ

vÕœMv(rM)
fl(vÕ

, t)
24

. (2.1)

Expression (2.1) can be disaggregated into source-target probability terms. There are two implicit

assumptions that have been made: (i) the probability that a neighbor of v, say v
Õ does not infect v

at time t is e
≠–sfl(vÕ

,t), and (ii) each neighbor independently infects v with this probability. Under

these assumptions, we can rearrange the expression for eq. (2.1) as follows:
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ps(v, t) = ‘(v, t)
3

1 ≠

Ÿ

vÕœMv(rM)
e

≠–sfl(vÕ
,t)

4
. (2.2)

The probability depends on the suitability of the cell ‘(v, t), infestation level of each neighbouring

cell in the Moore neighbourhood with range rM, fl(vÕ
, t), and the scaling factor, –s, the pathway

parameter. To state more clearly, e
≠–sfl(vÕ

,t) is the edge weight of node v to v
Õ. Here, 1 ≠ e

≠–sfl(vÕ
,t)

is the probability that node v
Õ will infect node v. Node v

Õ can be infected by any of the incoming

edge weights and hence, Equation 2.2 refers to the probability that at least one of the v
Õ infects v.

The same concept can be followed for the rest of the equations. In Equation 2.2, since it is a short

distance pathway v
Õ is a node/cell neighbour within the Moore neighbourhood of v.

Local human-mediated dispersal is modeled as the spread within a locality. Every cell v is

influenced by cells in its locality L based on their infectiousness:

p¸(v, t) = ‘(v, t)
3

1 ≠ exp
1

≠ –¸

ÿ

vÕœL

fl(vÕ
, t)

24
, (2.3)

where –¸ is the scaling factor. This equation can be written as:

p¸(v, t) = ‘(v, t)
3

1 ≠

Ÿ

vÕœL

e
≠–¸fl(vÕ

,t)
4

. (2.4)

Long-distance human-mediated dispersal corresponds to spread through trade between localities.

We define long distance edge-weighted flows Fij as flow of production from locality i to j. The

probability of spread is directly proportional to (i) the trade flow Fij from locality i to j and

(ii) total infectiousness of the locality, which is just the sum of infectiousness of cells belonging to

that locality. Suppose cell v belongs to locality i. Then, the probability of cell v being infected due

to this pathway is given by:

p¸d(v, t) = ‘(v, t)
3

1 ≠ exp
1

≠ –¸d

ÿ

j ”=i

ÿ

vÕœL(j)
Fjifl(vÕ

, t)
24

, (2.5)
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where –¸d is the pathway scaling factor. This equation can similarly be rewritten as:

p¸d(v, t) = ‘(v, t)
3

1 ≠

Ÿ

j ”=i

e
≠–¸Fji

q
vÕœL(j) fl(vÕ

,t)
4

(2.6)

2.3 The Multi-pathway Simulator

The simulator in McNitt et al. [21] was improved in terms of speed and capacity for handling

larger networks. The performance analysis was done and the results are in Table 2.1. The previous

implementation of the multi-pathway model used naive Python constructs. For every infected node

per time step, the neighbouring nodes were infected with corresponding edge probabilities. On being

infected/exposed, these neighbouring nodes would be respectively added to an “infected array” and

an “exposed array”. All the nodes in each array would be updated to their respective states in a for

loop. Although this method only performs operations on infected nodes at any given time step, it

does not scale well with larger networks having a higher degree of infection spread. This method is

only beneficial if only a small number of nodes are infected in the network and the infection does

not spread. If we have a large network with a very large spread in infections, sequentially checking

each infected node and performing sub-operations every simulation step can be quite slow. The new

version of the simulator leverages the vectorization and Groupby features of Pandas to significantly

improve the performance of the revised version of the simulator.

The basic data structures of Pandas – DataFrames and series – are based on arrays. The built-in

Pandas functions are carefully designed to operate on entire arrays, instead of sequentially on

individual values. Vectorization is the process of executing operations on entire arrays by leveraging

e�cient under-the-hood functions. Pandas includes a large collection of vectorized functions for

mathematical operations, aggregations and string functions. These functions are optimized to

operate specifically on Pandas series and DataFrames. Therefore, it is recommended that vectorized

Pandas functions be used wherever possible.
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Live edges. In the revised simulator we operate in terms of “edges” instead of “node” operations.

We check if an edge is “live” by checking the following:

1. The source state being infectious.

2. Target being suitable for infection.

3. Target being susceptible.

4. The probability of the source being able to infect the target is greater than the randomly

generated probability value. (The probability that the source will be able to infect the target

are calculated by the pathway equations.)

If all the above holds true then the edge is considered to be a live edge. Any target node that

participates in a live-edge, i.e, an end point of a live edge is considered to be exposed at this time

interval. Each of these above said operations/checks can be performed on the entire DataFrame at

once instead of sequentially in a for loop. All the live-edges at each simulation step are collected at

once by Pandas group-by operations and added to the time-expanded output.

Aggregation of infections and inter-level edges. We aggregate the infections for each local-

ity/group by summing up the infections of its constituent cells. This is done by grouping cells by

locality first. Pandas enables us to easily aggregate information at the locality level by its “Groupby”

operation. These values can further be used when calculating edge probabilities of infection through

the pathway equations explained in this section. This drastically lets us reduce the number of edge

Table 2.1: Simulator timings compared with the previous version [21] of the simulator. Parameters
used for evaluation: Time steps: 24, simulation runs: 10, start month: 5, Moore range: 1, suitability
threshold: 0, latency period: 2.

Network Nodes Simulator[Mcnitt et al.] Simulator(improved)

BD 211 1.5 minutes 7 seconds
PH 673 5.16 minutes 9 seconds
ID 3296 15.84 minutes 11 seconds
VN 503 4.30 minutes 7 seconds
TH 738 2.95 minutes 8 seconds
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operations (while calculating edge probabilities of infection in local human mediated pathway and

long distance human-mediated dispersal) on the network.

These pandas operations improve the speed of the simulator and thereby provide the capability

for handling large networks with larger spread in infections. Although one might argue that the

space complexity increases as we are storing states of every node and not just the infected nodes.

There is always the general notion of a trade-o� between time and space complexity. Reducing the

time-complexity would make a huge impact in terms of studying results and performing experiments

on large networks such as the USA and regional networks. We compared the two versions of the

simulator. Results are in Table 2.1.
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Chapter 3

Problem Definition

3.1 Preliminaries

Here, we define the group-scale intervention problem IAScontrol for the SEI process on a network.

Intervening at a group means removing all nodes in a group. The intervention is performed ·d time

steps after revealing the source. In the SEI process, a node moves from E to I after ¸ time steps,

where ¸ is referred to as latency period. Here, we would like to clarify that the interventions are

non-adaptive, i.e., the decision to intervene is not made by observing the system state at time ·d ≠ 1

or before. Instead, it is based on the expected state of the system at ·d. The reason for introducing

the delay parameter is to study the negative e�ects of delaying interventions. Suppose V
Õ
™ V is

the set of nodes intervened at ·d, then, let infT(G, S, ·d, V
Õ) (we can drop G, S, ·d when context is

clear) denote the expected number of nodes exposed at a time horizon T due to SEI di�usion with

source nodes S when intervention is applied at nodes in V
Õ at time ·d. Note that unlike SIR process,

the steady state for an SEI process is all nodes reachable from S becoming exposed. Therefore, the

intervention problem is relevant only when the time horizon T is finite. We will now define the

problem and provide an example of the intervention process.



15
3.2 IASCONTROL

The IAScontrol problem is formally defined below.

Definition 1 (IAScontrol problem).

Instance. Given a temporal edge-weighted directed graph G(V, E), a partition of the vertex set into

groups Q, source nodes S ™ V , SEI di�usion process on G with transmission probabilities equal to

edge weights, budget B, intervention delay ·d and time horizon T .

Goal. Find a set of groups Q
ú

™ Q such that |Q
ú
| Æ B and the expected number of infections

infT(G, S, ·d, {v | g(v) œ Q
ú
}) is minimized. Where, for a vertex v, let g(v) denote the group it

belongs to.

3.3 Example

Consider the example in Figure 3.1. There are 4 groups denoted by G1, G2, G3 and G4. G1 has

one outflow to G4 and G2 has 3 outflows to G1, G3 and G4. Let vs be the seed node at time step 0.

Let the probability with which a node can infect its neighbouring nodes through the three pathways

be 1. Let us also assume that Moore range of infection is 1 and delay equal to 0. At t = 1, node vs

infects all its neighbouring nodes (due to short-distance pathway/natural spread). At t = 2, the

infection spreads through entire G1 (due to short distance human-mediated spread) and G4 (due to

long-distance human-mediated spread). Let us now assume that the budget set by the policy maker

to intervene at a group is 1. By intuition, if we intervene at G2 because it has the highest number of

outflows (degree based intervention - a popular method of intervention) at t = 2 then the infection

count does not reduce and it does not a�ect the infection spread in our example network by much.

Hence, a node with high number of outflows is not necessarily an ideal candidate for intervention.

In example 3.2 let us assume the same setting as the previous example. We demonstrate through

this example that intervening at G1 at T=1 will prevent spread through G1 and rapid spread to G4

and the rest of the network in future time steps. Hence, discovery of an infected node early can be

beneficial.
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Figure 3.1: Example 1: A node with high number of outflows is not necessarily the ideal candidate
for intervention.

Figure 3.2: Example 2: Discovery of infected node early can be beneficial. Intervening at G1 at
T=1 prevents further spread in G1 and G4.
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Chapter 4

Time expanded network

In this section, we use the concept of time-expanded networks to represent multi-pathway model as

an SEI process on another network called the time-expanded network. In Section 4.1 we define the

time expanded network and in Section 4.2 we show that the SIR process on a network is “equivalent”

to the SEI process on a time-expanded network with an example. This thesis contributes to

the interfacing of the output of the simulator as a time expanded network with the intervention

algorithm, which will be described later in this chapter.

4.1 The Time-expanded Network

Let Hte(Vte, Ete) be the time-expanded network corresponding to the SEI process on G(V, E). The

key idea is to treat every node u at each time step as a distinct node, i.e., we have T + 1 copies

{u0, . . . , uT } of u, where ui represents the copy of u at time step i. To incorporate the exposed state

in SEI process, we have additional copies of a node at each time step, where for a latency period

¸ Ø 1 and each time step i, we have ¸ additional copies given by {ui,0, . . . , ui,¸≠1} of u. The edge

set Ete consists of exactly the following four types of edges which corresponds to di�erent events in

a SEI process:

• (vi, ui+1,0), ’(v, u) œ E with weight w(v, u, i) (captures S æ E)

• (ui,r, ui,r+1) for r œ [0, ¸ ≠ 2] (captures E æ E)
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• (ui,¸≠1, ui+¸) (captures E æ I)

• (ui, ui+1) (captures I æ I)

All edges of types other than S æ E have weight 1. For the special case of the SI di�usion process

(¸ = 0), there are no nodes of the form ui,r and it has two edge types, I æ I as defined above

and S æ I: (vi, ui+1,0) with weight w(v, u, i). An example of the time-expanded network is shown

in Figure 4.2. This is the time-expanded network of the graph G (a æ b æ c) shown in Figure 4.1.

Here the latency period is 2. The subscripts of each node denote the time-step copy of the node.

For example ‘a0’, the 0 indicates the copy of the node at time-step 0. The subscripts of the black

nodes indicate the time-step and the latency count. For example a0,0, the first 0 indicates the node

a at time-step 0 and the second 0 in the subscript indicates the first latency period.

4.2 Equivalence

We state equivalence by showing that the SEI process on G is equivalent to the SIR process on the

time-expanded network Hte. This is formally explained below. Let ‡G(v, t) be the state of a vertex v

in G at time t, which can be either S, E, or I. Similarly, let ‡Hte(ui, t) (resp. ‡Hte(ui,r, t)) be the

state of a vertex ui (resp. ui,r) in Hte at time t with S, I, and R being the possible states. Let OG

(example Figure 4.1) denote a stochastic disease outcome of the SEI model on G – this specifies

the state ‡G(v, t) for each v, t, and set of the edge-time tuples ((u, v), t) such that node u infects v

at time t. Similarly, let OHte (example Figure 4.2) denote a disease outcome in the SIR model on

Hte. We say OHte is consistent with OG if: (i) node u has ‡G(u, 0) = I in OG (resp. ‡G(u, 0) = S)

≈∆ node u0 has ‡Hte(u0, 0) = I (resp. ‡Hte(u0, 0) = S). (ii) node u has ‡G(u, i) = X in OG ≈∆

node ui has ‡Hte(ui, i) = X in OHte for X œ {S, I}. (iii) node u has ‡G(u, i + r) = E in OG for the

(r + 1)th time step (where r œ [0, ¸ ≠ 1]) of latency period ≈∆ node ui,r has ‡Hte(ui,r, i + r) = I.

(iv) node u has ‡G(u, i) = I s.t. ‡G(u, i ≠ 1) = I if and only if ‡Hte(ui, i) = R. (v) infection spreads

on an edge (u, v) œ E at time t = i in OG ≈∆ node ui≠1 infects node vi,0 at t = i in OHte

Given OG, for a time t, let OG(t) be a snapshot of OG up to time step t. Similarly, OHte(t) is a

snapshot of OG for t time steps.
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Figure 4.1: An example of network OG with time-steps at which the nodes become infected.

I

a0

b0

c0

a1

b1

c1

a2

b2

c2

a3

b3

c3

a4

b4

c4

Infection

a1,0 a1,1 a2,0 a2,1 a3,0 a3,1a0,0 a0,1

b0,0 b0,1 b2,1 b3,0 b3,1b1,1 b2,0b1,0

c0,0 c0,1 c1,0 c1,1 c2,0 c2,1 c3,0 c3,1

a0 b1,0 b1,1 b3 C4,0 C4,1 C6

E E I E E I

Figure 4.2: A snapshot of the time expanded graph OHte corresponding to OG(t) for latency
period ¸ = 2. (Bottom) Shows the infection path with the state of each node at each time-step.

Theorem 2. Consider the SEI di�usion process on G(V, E) for T time steps with a latency period ¸ Ø

0 and the SIR process on the corresponding time-expanded graph Hte(Vte, Ete) with the following initial

conditions: At time 0, ’v œ V (G), Pr(‡G(v, 0) = I) = Pr(‡Hte(v0, 0) = I), Pr(‡G(v, 0) = E) = 0,

Pr(‡Hte(v0, 0) = R) = 0 and the remaining nodes in Hte are in state S. Then, for any outcome

OG and a consistent outcome OHte, we have Pr[OG is the outcome in the SEI process on G] =

Pr[OHte is the outcome in the SIR process on Hte].
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The proof was contributed by the collaborators.

In the above example (Figure 4.1 and Figure 4.2), the probability of node a being infected at

time-step 0 in our original graph (OG) is equivalent to the probability of node a being infected at

time-step 0 (a0) in our time expanded graph OHte . In OG in the example (Figure 4.1), node a is

infected at time-step 0, b is infected at time step 1 and c is infected at time-step 4. This infection

spread is equivalent to the infection in OHte (Figure 4.2). In OHte each node is treated as a separate

node. The path of infection is denoted by the red double arrows and the black double arrows show

that the node is reachable from the source node of infection.

Node a0 is infectious at time-step 0 since it is the seed node. Then b1,0 and b1,1 transition to

the exposed (E) state at time step 1 and then transitions into infectious (I) state (b3) at time-step

3. C4,0 and C4,1 then go to the exposed state (E) before being infectious (I) at time-step 6 (C6)

and this process continues. The nodes go to the exposed (E) state before being infectious for two

time-steps because the latency period (¸) is equal to two in this example. Figure (4.1 bottom) shows

the representation of the infection path sub-graph of OHte with each node’s respective states shown.

This is just an example of one such path of infection.

4.3 Implementation

The multi-pathway simulator’s (Section 2.3) output was translated into a time-expanded network

so that it could be interfaced with the intervention algorithm (Chapter 5). Each simulation outcome

was mapped to its respective transitions. The events (S æ E,E æ E, E æ I, I æ I) were detected

in each simulation outcome for each node depending on the transition states of the nodes. These

’live-edges’ were collected at each sample and added to the output. The live-edge end points

correspond to graph G, they were converted to edges of graph Hte by recording the following

information:

• Simulation step or sample associated with the event.

• Source node corresponds to the node that a�ected the target node’s state change.
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• Target node gives the target node’s information.

• Source time-step and target time-step is the time-step at which the source node and

target nodes got its current states. This information is useful in terms of recording it as

OHte . For example, in Figure 4.2 the transition a1,0 to b1,0 corresponds to the transition from

S æ E, source time-step and target time-step record the first subscript in the variables (a, b)

which is the time-step information. Similarly in E æ E which is (b1,0 to b1,1) records the first

subscript information from one black node to another black node. E æ I corresponds to b1,1

to b3 which again records the first subscript (or time-step) information from the black node

to a white node transition in the example. I æ I corresponds to a transition from a white

node to another white node. In this way source and target time-steps retain information that

corresponds to the information related to the first subscript of the nodes in OHte .

• Source index and target index information correspond to the latency period information

in the time-expanded graph or the second subscript information of each node in the example

(Figure 4.2).

• Pathway through which the transition occurred (short-distance, short-distance human-

mediated and long-distance human-mediated pathway).

• Level 1 intervention node information provides information on locality/group the source

node (in the transition) belongs to. This column information is useful if we are intervening at

the locality level.

• Level 0 intervention provides source node information. In E æ E, E æ I, I æ I events it is

assigned -1. In S æ E events it is the source node of the transition. This column information

is useful if we are intervening at the cell/node level.

Our simulator has two modes for producing the output, the first mode being level 1 mapping

(at locality level) and the second mode being level 0 mapping (at node level). The second mode

is required to interface the simulator with the SpreadBlocking algorithm. Hence, we need to
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convert group–cell edges to cell–cell edges in the case of human-mediated dispersal pathways. This

increases the time complexity of the simulator.
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Chapter 5

Intervention Algorithms

In this section we will first discuss popular methods to compare our intervention algorithm against

(Sections 5.1, 5.2, and 5.3) and then describe the Algorithm SpreadBlocking in Section 5.4.

5.1 Outflow-Based Heuristic

In this method, given the budget B, we choose top B groups with the highest outflows in the

group-to-group network. In an unweighted graph this would correspond to a degree based heuristic.

Traditionally, this method is used in many works [28, 27]. For example, Nopsa et al. [23] identify

important nodes in grain networks, where nodes correspond to large storage cites. Preciado et al. [26]

consider the problem of containing an epidemic outbreak in a weighted, directed contact network

within a given budget and explore degree weighted based edges as a comparison to study their

problem. McNitt et al. [21] also consider high outflow nodes for intervention. Typically, the rationale

for this baseline is that higher the outflow from a node, the higher the probability that it infects its

network neighbors and therefore, spreading the infection throughout the network. We implement

this baseline by grouping the edges (locality to locality edges) by the source locality and calculating

the total sum of the weights. This signifies the total outflows from each locality. The localities are

then ranked from highest to lowest in outflows. The top B groups are chosen given budget B. The

sum of these weights are not time-dependent and weren’t summed based on month the weighted

outflow took place. Also, we note that this is invariant to the seeding scenario as well.
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5.2 Vulnerability of a Group

Vulnerability of a node corresponds to the probability that it will get infected when no interventions

are in place subject to certain initial seeding. In most works, the initial seeding corresponds to

randomly infecting a fixed number of nodes in the population. The empirical vulnerability is

computed by observing every other node and recording the number of times each node is infected.

The nodes infected the most number of times were chosen as the most vulnerable nodes. Vulnerability

corresponds to the introduction of random seeding scenarios by which we can study the groups

that are highly likely to be infected. Typically these random seeding scenarios are used to study

vulnerability but in our case this randomness isn’t very useful. Policy makers tend to have an idea

of possible introduction scenarios. This can be through prior invasion data, monitoring country

borders, transport hubs, etc. Hence, in our case the seeding scenarios have a prior, where cells

that are source nodes (seed nodes) are set to a probability infection of 1. Also, we note that since

the IAS spread considered in this work is an SEI process, as the time horizon T tends to infinity,

all nodes reachable from the seed node will be infected. Since our interest is in the short-term

predictions and control of IAS spread, we limited our time horizon to one year or 12 simulation

time-steps. By running simulations for these many time-steps under given seeding scenarios, we

compute the vulnerability of each cell to be the probability that it will be infected by T time-steps.

For this baseline, we group the probability of infection for all the cells in each locality until the 12th

time-step and rank them by the highest to lowest vulnerable groups. We then choose the top B

groups, where B corresponds to budget.

5.3 Exhaustive Search

This baseline corresponds to considering all possible solutions of size B in the solution space. Since

the number of solutions is exponential in B, this can be implemented only in cases where the number

of groups is small. For larger networks and budgets, reproducing an exhaustive solution set can be

quite computationally intensive and often times not feasible. We perform the exhaustive baseline

method for networks with at most 10 groups.
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5.4 The SpreadBlocking Algorithm

SpreadBlocking (Algorithm 1) is based on the sample average approximation (SAA) technique

from stochastic optimization. Let {H
1
, . . . , H

M
} be the set of M simulation outcomes corresponding

to SIR process on Hte, where each H
j = (Vte, E

j

te), such that E
j

te ™ Ete. We solve a linear

relaxation of the IAScontrol problem, restricted to these samples, and the resulting objective

value is guaranteed to be close to the actual expected number of infections. We use the following

quantities and variables in the linear program, referred to as LP·d . This algorithm was designed

and implemented by other members in our collaborative e�ort. In this thesis, we will describe it

briefly outlining its validity and performance guarantees.

Table 5.1: Summary of notation used.

Ste ™ Vte Fixed set of sources of infection ’H
j

R(Hj) ™ Vte Set of nodes in H
j reachable from Ste via a directed path

xq,·d = 1 if group Qq œ Q is intervened at time-step ·d
y

j

u,i
= 1 if ui œ Vte is infected in H

j at time-step i (there is a directed from Ste to ui in
H

j), i.e., ‡Hte(ui, i) = I.
y

j

u,i,r
= 1 if ui,r is infected in H

j at time-step i (there is a directed from Ste to ui,r in H
j),

i.e, ‡Hte(ui,r, i) = I
z

j
u = 1 if node ui or ui,r is infected in H

j (corresponds to u being infected within T in
G)

B #groups that can be intervened at time-step ·d Ø 1 (budget)

Let Q
Õ
™ Q be any intervention set for ·d. Let Vte(QÕ) = {vi, vi,r œ Vte | g(v) œ Q

Õ and i Ø ·d},

be the set of nodes in H
j to which intervention Q

Õ applies. Let V (QÕ) = {v œ V | vi, vi,r œ Vte(QÕ)}

be the set of nodes in G to which intervention Q
Õ applies. Let H

j
≠ Vte(QÕ) denote the subgraph

of H
j induced by removing all nodes in Vte(QÕ) from H

j . Let I
j(QÕ) = {v œ V | ÷i s.t. vi or vi,r œ

R(Hj
≠ Vte(QÕ))} denote the number of infections (nodes still reachable from Ste in H

j) in V . Let

I(QÕ) = 1
M

q
j

I
j(QÕ) denote the average number of infections in V restricted to the M simulations.

Let Q̂opt = argmin
Q

ÕÕ I(QÕÕ) be an intervention set that achieves the minimum average number of

infections on the simulations. Then, let Iopt = infT(V (Qú)), i.e, the expected number of infections

achieved by an optimal solution Q
ú to the given instance of the IAScontrol.
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Algorithm 1 SpreadBlocking algorithm
Input: G = (V, E), set of sources S ™ V , budget B, time horizon T , intervention delay ·d

Output: intervention set QSB ™ Q

1: Construct time-expanded network Hte from G

2: Construct M simulations of the SIR process
{H

1 = (Vte, E
1
te), . . . , H

M = (Vte, E
M
te )} with Ste = {u0 | u œ S} as sources on the time-expanded network

H corresponding to SEI process on G (as described in Section 5)
3: Solve the linear program LP·d defined as follows:

(LP·d) min 1
M

ÿ

j

ÿ

u

z
j
u

’i < ·d, ui, ui,r œ R(Hj) : y
j
u,i = 1, y

j
u,i,r = 1 ≠ ≠ > (1)

’ui, ui,r œ R(Hj) : z
j
u Ø y

j
u,i, z

j
u Ø y

j
u,i,r ≠ ≠ > (2)

’(vi≠1, ui,0) œ E
j
te : y

j
u,i,0 Ø y

j
v,i≠1 ≠ xg(u),·d ≠ ≠ > (3)

’(ui,r, ui,r+1) œ E
j
te : y

j
u,i,r+1 Ø y

j
u,i,r ≠ xg(u),·d ≠ ≠ > (4)

’(ui≠¸,¸≠1, ui) œ E
j
te : y

j
u,i Ø y

j
u,i≠¸,¸≠1 ≠ xg(u),·d ≠ ≠ > (5)

’(ui≠1, ui) œ E
j
te : y

j
u,i Ø y

j
u,i≠1 ≠ xg(u),·d ≠ ≠ > (6)

’i Ø ·d, ’ui, ui,r œ R(Hj) : y
j
u,i Æ 1 ≠ xg(u),·d ≠ ≠ > (7)

y
j
u,i,r Æ 1 ≠ xg(u),·dÿ

QqœQ

xq,·d Æ B

All variables œ [0, 1]

4: (Rounding) Let x, y, z be the optimal fraction solution to LP·d . Round it to an integral solution X, Y, Z

using the following rounding procedure: (i) For each H
j
, ui, set Y

j
u,i = 1 if y

j
u,i Ø

1
2 . Similarly, for each

H
j
, ui,r, set Y

j
u,i,r = 1 if y

j
u,i,r Ø

1
2 . (ii) For each H

j
, u œ V , set Z

j
u = 1 if z

j
u Ø

1
2 . (iii) For each Qq œ Q,

set Xq,·d = 1 if xq,·d Ø
1

2k where |Q| = k.

5: return QSB = {Qq | Xq,·d = 1}

5.5 Algorithm Approach

• Step 1: Construct the time-expanded network from G. Similar to the example shown in

Figure 4.1.

• Step 2: Run M simulations of the SIR process and create the subgraphs corresponding to

each simulation instance of the time-expanded network. This output is given by the simulator

mentioned in Section 2.3. An example of H, can be seen in the Figure 5.2. Let us assume
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each group consists of one node for simplicity. If one of the nodes is reachable from the source

(a0) then it is part of the H subgraph. For example, the double lines (in red) in the graph

indicate that the node is reachable from the seed node (a0) and is the path of infection spread.

Similarly, we have M such H subgraphs. Ete are the live edges in simulation H1 (j=1). An

example of a live edge here is the edge between a0 and b1,0. In the example shown in 5.1 we

only have a time horizon (T) of four. All the double lines in the graph are reachable nodes

from source node a0.

Any edge that is part of a path from the source to a node is reachable. Live edges are those

that are part of a path made of only live edges from the source to a node. An example of an

edge that is not live is a1 to b2.

• Step 3: Now that the concepts of live-edge and reachability are discussed, let us look into

solving the linear program LP·d in Step 3. The objective of the LP is to minimise 1
M

q
j

q
u

z
j
u.

The z variables are indicators of whether the nodes they represent are reachable from the

seed nodes. In Figure 5.1, if any node is reachable from the source it will be infected, and

zu,j = 1 if the nodes aren’t reachable from the source zu,j=0. All the nodes connected by

the red double-lined path of the figure have values of zu,j being 1. For example, the variable

corresponding to b1,0, zb,1 is equal to 1 since b1,0 is reachable from a0. Therefore, the sum in

the objective corresponds to total infections across all simulations. Including the factor 1/M

in the objective makes this expression the sum of empirical probabilities of each node being

infected.

Constraint 1: If the ui (the white nodes in the example) are reachable from the source and

ui,r (the black nodes in the example are reachable from the source) in the sample H,

their values are set to 1. If at least one of ui or ui,r are infected then we say that u is

infected in the sample.

Constraint 2: For every time-step less than ·d, any node reachable from the source will be

infected. Suppose we are intervening at time-step 3 (·d = 3). If any node appears before

that and it is reachable from the source then it is infected. Any black node or white
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node (Figure 5.1) in a simulation is going to be infected if it is reachable from the source

and if the i (white node) and/or i + r (black node) value is less than the intervention

time. If b2,0 is infected, and then vaccinated before time-step 4 then b4 is not taken

into consideration because b2,0 is already vaccinated by then. If node b2 is infected then

everything in the path b0, b1, b2 before it will be infected and hence the corresponding z

variables will have value 1. If node b2 is not infected, then the value is 0. However, there

is a possibility that it can be infected by some other path at some point of time i then

everything in its path can be 0/1. To summarize:

– If node v is intervened, then, v may or may not be infected.

– If v is not infected then v may or may not be infected (as it can be infected from

another edge).

– There are four scenarios for any edge from u to v in sample H1:

Case 1: u is infected, v is not intervened at.

Case 2: u is infected, v is intervened at.

Case 3: u is not infected, v is not intervened at

Case 4: u is not infected, v is intervened at

Constraint 3: This constraint corresponds to the S to E process in the graph edge. Note

that xq,·d = 1 means if group Qq œ Q is intervened at time-step ·d.

Constraint 4: This constraint corresponds to the I to E process in the graph edge.

Constraint 5: This constraint corresponds to the E to I process in the graph edge.

Constraint 6: This constraint corresponds to the I to I process in the graph edge. Example:

b2 to b3. If b2 is infected then b3 will also continue to be infected unless b3 is intervened.

Constraint 7: When a group that u belongs to is intervened then it shouldn’t be infected

else it may or may not be infected in the future time-steps if the group that u belongs to

hasn’t been intervened at.

• Step 4: This constraint corresponds to the summed values being rounded to 0 or 1.
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• Step 5: Returns the optimal solution set for intervention.

Figure 5.1: No action: A snapshot of the time-expanded graph OHte corresponding to OG(t) for
latency period ¸ = 2.

Figure 5.2: Interventions in the scenario depicted in Figure 5.1.

5.6 Guarantees of the algorithm

1. For any H
j , and any node ui œ Vte with y

j

u,i
<

1
2 (resp. for ui,r œ Vte with y

j

u,i,r
<

1
2), rounding

in SpreadBlocking algorithm ensures that the node ui (resp. ui,r) is not reachable from
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Ste in H

j
≠ Vte(QSB), where QSB is the intervention set computed by the algorithm.

2. Solution returned by our current approach is not optimal but we guarantee that it is closer to

the optimal solution. The algorithms is at most a fixed constant times worse than that of

the optimal solution. Informally, Theorem 3 states that with high probability (1 ≠ 1/k), the

total accumulated infections obtained with our solution is at most 6 times the accumulated

infections obtained by the optimal solution. To put it in naive terms, if a node belonging a

group is saved (i.e. not infected) then the algorithm guarantees that the intervention set will

contain groups to intervene at that ensure that all paths leading to that node will not be able

to infect that node.

3. The number interventions we perform may violate the budget constraint. However, violation

factor is at most the maximum number of distinct groups that a path from any two vertices

contains.

Theorem 3. Let M Ø 24nk log k. Let QSB be the intervention set computed by SpreadBlocking

algorithm. Then with probability 1≠
1
k
, infT (V (QSB)) Æ 6 infT (V (Qú)) where Q

ú
™ Q is the optimal

solution for the given instance of IAScontrol, and |QSB| Æ 2mB. Here, m is the maximum

number of distinct groups represented in a path between any two vertices.
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Chapter 6

Experiments and Results

We conducted experiments on several real-world networks and addressed the following questions:

1. Assessment of the algorithm: How does the algorithm fare w.r.t. popular heuristics for

intervention?

2. E�ect of budget, intervention delay, model parameters and seeding scenarios: How

do solution sets as well as e�cacy di�er under di�erent scenarios?

3. Comparison with targeted intervention: How do the results compare with the traditional

targeted intervention case (each node belongs to a distinct group)?

4. Structural properties of the solution set: What are the attributes of groups that appear

prominently in the solution set? What insights does this provide us into the structural and

dynamical properties of the network that influence spread?

5. Seeding Scenarios: When multiple sources of infection are introduced/combination of

seeding scenarios are implemented, how do the intervention solutions compare?

6.1 Data sets

Table 6.1 lists all networks incorporated in our analysis. These networks were constructed by

McNitt et al. ([21]) and are publicly available. There are several versions of the networks depending
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on the gravity model parameters. We used the values 2 and 500 for the distance function exponent

and cut-o� respectively. These are among the best model parameters obtained after calibration in

their work (again available in their supplementary material). Each network has groups containing on

an average 20–30 nodes capturing key urban and producing areas. For most countries, a significant

portion of the nodes do not belong to any group. However, these nodes together cover less than

20% of the total production and population in each country.

Table 6.1: List of networks used for experiments and their attributes.

network name nodes edges groups group edges

BD Bangladesh 211 6846 7 141

ID Indonesia 3296 110640 35 2181

PH Philippines 673 20108 16 450

TH Thailand 738 27666 5 48

VN Vietnam 503 16746 15 426

6.2 Experimental Setup

We modified the available multi-pathway model implementation [21] suitably to generate simulation

outcomes in the appropriate format for the IAScontrol algorithm. The range of values for each

parameter of the multi-pathway model were chosen to cover the best models with highest fit to

ground truth. We used a full factorial design for each network with the pathway parameters and its

values listed in Table 6.2.

Table 6.2: Multi-pathway Parameters.

parameter values

–s [300,500]

–¸ [0,0.2]

–¸d [50,200]

rM [1]

Start month 5

Number of Simulations 100

Time-steps (T) 24
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6.2.1 Implementation and Computational Resources

We used Python 3.7 and its libraries to implement the multi-pathway simulator and Sqlite to store

and analyze our data from our experiments. We used the Gurobi software [12] to implement and

solve the GroupInt algorithm. All experiments in this thesis was performed on an HPC system

that runs Linux x86_64 operating system with a memory of 100GB.

6.3 Performance Evaluation

We compared SpreadBlocking to the di�erent heuristics defined earlier for increasing values of

budget and intervention delay. In each case the average accumulated infections was used as the

metric for evaluation. This is the sum of the probabilities of node being infected by time T , where T

is the time horizon. The results for the networks are in Figures 6.1 and 6.2. We observe consistent

superior performance of SpreadBlocking across networks and model parameters, budget and

intervention delay. For small networks, we also see that SpreadBlocking performs close to

exhaustive search algorithm (Figure 6.1, BD network). Since SpreadBlocking is a bi-criteria

approximation algorithm, the solution provided can violate the budget constraints (Table 6.3). We

observed this phenomenon in experiments as well. Therefore, to compare with the other methods,

we considered the budget for which the solution was provided, not the budget that was provided in

the input specification.

In Table 6.3, we compare the intervention benefit obtained with the solution for the relaxed ILP

(LP·d) of SpreadBlocking. The approximation factor with respective objective of IAScontrol

is computed using the objective of LP·d , which is a lower bound on the optimal. We note that

SpreadBlocking has much better approximation guarantees in practice.
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Table 6.3: Performance of SpreadBlocking algorithm. Budget violation is the ratio of budget
used by SpreadBlocking to B, whereas “obj. approximation factor” is the ration of objective
value of SpreadBlocking to that of the LP·d . Each entry correspond to the {min, avg., max}
values of budget violation (and obj. approximation factor) computed over all runs on the network.

network budget violation obj. approximation factor

BD [1.00,1.57,5.00] [1.00,1.03,1.47]

ID [1.00,1.11,1.57] [1.00,1.00,1.01]

PH [1.00,1.57,3.00] [1.00,1.00,1.05]

VN [1.00,1.85,4.00] [1.00,1.01,1.07]

6.4 Analysis of Solution Sets

6.4.1 Assessment of the Algorithm with Popular Baselines

We analyzed the solution sets obtained under model uncertainty for di�erent (B, ·d) pairs. We

notice that the performance of SpreadBlocking proves to be consistently superior to the other

baselines and comparable to the exhaustive baseline (BD). In Figure 6.1 for the Bangladesh network

we observe that the SpreadBlocking algorithm performs almost as well as the exhaustive baseline

for a budget of foue. As intervention delay increases some groups become more prominent for

intervention and may contribute to reducing the overall number infections, hence at intervention

delay of six for the BD network is not as close to the exhaustive intervention. But as budget increases

the SpreadBlocking tends to do as well as the exhaustive intervention case. In the PH network

we observe that the max outflow baseline is very close to the SpreadBlocking. This is because

intervening at groups with higher weighted outflows prove more beneficial for the PH network. We

also observe that the vulnerability baseline consistently performs poorly (next to the no intervention

case) across all networks. Production areas which are very close to high-consumption localities

(large urban areas) are particularly vulnerable. Because local production typically does not satisfy

demands of such localities, they have high inflows from other production areas and possibly from

other countries. As a result, these localities are quickly infected. Once introduced to such localities,

farmer–market interactions (local human-mediated dispersal) can facilitate the introduction of the

pest to nearby production regions where it can establish [21]. They may take awhile to establish (at
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a higher delay) before really proliferating and infecting other nodes at a faster rate. Hence its role

in the spread throughout the entire country is quite limited.

In the VN network we see that SpreadBlocking does significantly better than the other

baselines at a lower budget, with higher budget scenarios the other baselines catch-up. For the ID

network max outflow and SpreadBlocking do significantly better than the vulnerability and no

intervention case.

Figure 6.1: Comparison of algorithm with respect to budget and intervention delay for the parameter
set: –s œ 500, –¸ œ 0.2, –¸d œ 200, Moore range rM = 1, start month= 5, countries: BD, PH.

6.4.2 E�ect of Budget, Intervention Delay, Model Parameters and Seeding Sce-

narios

For a given (B, ·d) pair, we gathered all solutions from the algorithm (including those that violated

the budget constraint) for di�erent model parameters and ordered the groups by their frequency of
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Figure 6.2: Comparison of algorithm with respect to budget and intervention delay for the parameter
set: –s œ 500, –¸ œ 0.2, –¸d œ 200, Moore range rM = 1, start month= 5, countries: VN, ID.

occurrence in the solution space. Figure 6.7 ranks the groups by the frequency of their occurrence

in the solutions for a given ·d. The results are network and seeding scenario dependent. In some

networks, some groups are consistently picked in the solutions for increasing ·d. These are major

production areas which are infected in the beginning of the invasion. Since this is an SEI process,

they continue to influence the spread. In Figure 6.7 (VN), we observe that Haiphong and Hanoi are

consistently picked and are at the same rank irrespective of delay, this is because the Haiphong-

Hanoi region are big sources of production (even surplus) in the northern Vietnam region [21]. This

prominence is also seen in the contour plot in Figure 6.3, by the consistent dark blue shades in the

map.

Similarly, in PH, Bandang and Bukittinggi have the second and third highest outflows and are

also highly weighted outflows which is why they remain highly ranked even as time delay increases.
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Figure 6.3: Study of varying model parameters. Model Parameters: (LHS) –s œ 300, –¸ œ 0,
–¸d œ 50, (MID) –s œ 400, –¸ œ 0.1, –¸d œ 100, (RHS) –s œ 500, –¸ œ 0.2, –¸d œ 200; Moore
range rM = 1, start month= 5, country: VN.

Cagayan de Oro and Manila are major production centers [21], which is why they are extremely

significant with a lower delay and lose significance as delay increases as infection spreads from these

localities to other localities with high outflows.

Hence, di�erent localities become more prominent with increase in delay, as the infection spreads

to cells close to them. This indicates that as ·d increases, the variability in the solutions increases,

this can also be seen in BD, more exapmles of BD are explained in Section 6.4.2.3. Our results

consistently indicate that early discovery of the IAS and speed of intervention are critical to obtain

stable intervention solutions under model uncertainty. These results vary depending on the seeding

scenario, location of major hubs and production sources and time delay.

From the contour map in VN (Figure 6.3), we also observe that di�erent models lead to di�erent

spread patterns in Vietnam. With lower values for pathway parameters, the infection doesn’t spread

to south but with higher values, the infection starts spreading to the south. Once, the infection

spreads to the south, localities geographically located very close to each other (almost in clusters)

tend to infect each other very quickly, this pattern can also be seen in Indonesia in Figure 6.7-ID
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where with increase in time delay there is high variation in the solution. This is due to the nodes

being infected in the south rapidly once the infection spreads. Hence, it is better to intervene before

the infection spreads to south in the early time delays.

6.4.2.1 Analysis of Start Month of Infection

With varying start months of infection spread, infection spread patterns change as well. From

Figure 6.4 we can see that infection spreads very rapidly in start month 3, this is possibly due

to the infection spreading during peak growing season. Hence, we can conclude that timing of

interventions is crucial depending on the peak growing season. For example, intervening early is

crucial at start month 3 due to peak production, growing and trade season, but not as crucial when

the start month is 7.

Figure 6.4: Study of intervention delays at start month (LHS) 3, (MID) 5, (RHS) 7. Model
Parameters: (a)–s œ 300, –¸ œ 0.1, –¸d œ 100, Moore range rM = 1.

6.4.2.2 Analysis of Inflows/Outflows of Localities

We also analyzed the frequency of occurrence with respect to node attributes inflow and outflow

(Figure 6.5). These graphs study the structural properties of the groups that appear in the solution

set. The Y-axis is total weighted accumulated outflows from a group and the X-axis is the total
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weighted inflows pertaining to the group. From these graphs we can see that with change in

intervention delay, certain groups become more prominent while other groups become less prominent.

For example, in the first figure it may be more beneficial to intervene at groups in the seeded

area and its nearby localities but as delay increases, (delay 18) other localities become much more

prominent/beneficial to intervene at and the prominence of the groups switches (change in size of

the blue dots in the image). The results of this analysis confirm the analysis made in Section 6.4.2.

Figure 6.5: Analyzing the rank with respect to node attributes for BD.

6.4.2.3 Analysis of Seeding Scenarios

For the country-specific studies, the seeded location was decided based on the analysis in Mc-

nitt et al. ([21]) of possible points of entry through di�erent pathways. Extra seeding scenario’s

for the countries Vietnam, Thailand and Bangladesh were added based on cases that were not

seen/studied before. In each case, we chose those cells or groups as seeds which are at high risk

of invasion. These include cells at the border of the neighboring infested country or groups which

have high influx of travellers or trading activity with other countries. For example, in Bangladesh

we seeded areas in the North (Rangpur) and in the East (Rajshahi) of the country. Figure 6.6

has the ranking plots and the contour plots (for the no intervention case) for both the seeding

scenarios. The darker shades of blue in the contour plots indicate the spread of infection at earlier

time delays and lighter as the time delay increases. Rajshahi and Rangpur are major production

areas in Bangladesh with high weighted outflows to neighbouring localities. From figure 6.6 we

can see that ranking of groups is dependent on the seeding scenario and intervention delay. In the
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Figure 6.6: Performance rank of groups based on their frequency of occurrence in solution sets for a
·d across various model parameters and seeding scenarios for BD alongside the no intervention map.

first seeding scenario, seven percent of the seeded nodes belong to Rajshahi, which is why in the

initial intervention delays it remains to be prominent in the ranking. With the increase in delay the

prominence of Rashahi reduces and Rangpur dramatically increases. This is because Rajshahi has

now infected Rangpur and it becomes prominent because it is a large production area and likely to

infect neighbouring localities fast, this could also be because there is evidence of vegetable flow from

Rangpur region to other regions particularly during winter [21]. Hence, intervening at Rangpur

at a later time delay would be more beneficial than intervening at Rajshahi even though it was

prominently the infector in the early time steps. Similarly we can see the same in the Rangpur

seeding scenario where majority of the nodes seeded belonged to Rangpur. But here we see the
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opposite scenario where Rajshahi loses significance. We can thus say that, with increasing delay,

production areas a�ected later become important to intervene at. Another interesting point is that

Mymensing starts o� ranking high in both seeding scenarios but also loses significance as time delay

increases. This is due to Mymensingh being positioned very close to the seeded and production

areas and hence one of the first few localities to get infected. With increase in delay other nodes

become more important to intervene. Seeded localities can lose significance over time but this is

scenario specific to Bangladesh.

6.4.3 Comparison with Targeted Intervention

The objective here is to assess the more practical and realistic group-scale intervention with a better

performing but di�cult-to-implement (in real life) individual-based interventions. In Figure 6.8,

we compare the two for one country. Since each group on an average has around 20 nodes, for

comparison sake, we have expressed the results for the group-scale intervention in terms of number of

nodes intervened at (# groups ◊ avg. nodes per group in the network). Across model parameters, we

note that performance of group-scale interventions is comparable to individual-based interventions.

This is because much of the production and population is centered around these groups. The number

and size of localities is controlled by population threshold and locality radius parameters [21].

6.5 Computation Time and Scalability

SpreadBlocking algorithm scales well for all networks considered in the paper. However, for

certain instances of BD network, it can take longer (¥ 15 minutes). This could be due to the

solution space of the instances of BD network. The main bottleneck is solving the linear program,

but additional pruning techniques can help reduce the variables in the linear program, thereby

speeding up the algorithm.
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6.6 Ongoing work

E�ect of number of input simulation instances on the solution quality and computation

time. Currently we have a fixed number of simulation instances and we would like to further

perform experiments to explore our solution set and impact of it on the results. In particular, we

would like to know how many simulation instances are required for the solution set to stabilize with

respect to number of instances. This would also depend on network structure and size.

Robust optimization under di�erent seeding scenarios. Given a temporal edge-weighted

directed graph G(V, E), a partition of the vertex set into groups Q, and a collection of sets of source

nodes T ™ 2V , and finite set of source nodes S ™ T as defined by the policy maker, the SEI di�usion

process on G with transmission probabilities equal to edge weights, budget B, intervention delay ·d

and time horizon T. The goal is to find a set of groups Qú ™ Q such that |Q ú | Æ B and maximum

of the expected number of infections infT(G, S, s, ·d, v|g(v) œ Qú) across the seeding scenarios is

minimised.
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Figure 6.7: Performance rank of groups based on their frequency of occurrence in solution sets for a
·d across various model parameters, countries: PH, ID, VN.
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Figure 6.8: Comparison of group-based and individual-based interventions for the parameter
set: –s œ 300, –¸ œ 0.2, –¸d œ 50, Moore range rM = 1, start month = 5.
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Chapter 7

Discussion

7.1 Agent-Based Models in IAS Spread

Agent-based models (ABMs) are made up of autonomous, interacting computational objects called

agents that are often located in space and time [14]. Agents can di�er in terms of di�erent properties,

such as being similar or having several unique properties; there can be millions of agents or a

small number of agents [2]. Depending on the context and modeling space, some agents may have

rule-based behavior (e.g., backward induction on an extensive game form) [16] or more complex

behaviours (e.g., based on heuristics derived from cognitive psychology or neuroscience). Agents in

an ABM receive feedback from their environment and react by taking actions.

In the recent years, ABM-based approaches are being increasingly applied to model the spread

of invasive alien species (IAS). They range in complexity from simple cellular automata models [11]

to multi-model frameworks [6] that include network, phenology and bioeconomic models. Ercsey-

Ravasz et al. [8] identify influential nodes in the international food trade network using a dynamic

food flux model. Sutrave et al. [31] use a network model to compare several strategies for selecting

optimal sentinel plots for monitoring pathogens. Xing et al. [34] evaluate global networks of cropland

connectivity for key vegetatively propagated crops important for food security in the tropics. For

each crop, potential movement between geographic location pairs is evaluated using a gravity model,

with associated uncertainty quantification.
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Here, we use the model of McNitt et al. [21], who develop a discrete-time SEI di�usion process

over a multi-pathway spatial network to model the spread of the pest in the South-East-Asia region.

Unlike SIR models, SEI models suppose that a susceptible individual first goes through a latent

(exposed) period before becoming infectious. Many realistic diseases are modeled this way [18].

Although some insight has already been gained from adaptations of network-theoretic models, the

real challenge is to understand the epidemiologically-important characteristics of real trade networks.

The spread of these infectious diseases are quite complex to model [13] as they can be transmitted

through multiple pathways such as trade, human-mediation, packages, etc. [21].

Modeling the spread of diseases through a generalised multi-pathway multi-scale network model

has the advantage of representing the propagation of the spread of disease through “node” level

(immediate transmission from one host crop to another) and through “group” level (trade or human

mediation from one region to another). Mcnitt et al. [21] explicitly consider multiple pathways of

introduction and spread for T. absoluta. Earlier modeling e�orts for T. absoluta have only accounted

for ecological aspects and self-mediated spread [7, 11].

Characteristics of diseases and pests may di�er in infectivity, transmissibility, host crop dis-

tribution, and extent of community spread. But those characteristics can easily be integrated

(parameterized) by controlling the model parameters and including appropriate spread kernels in

our simulator.

7.2 Control in Epidemiological Models

Managing invasive species is a major challenge for society. In the case of newly established invaders,

rapid action is key for a successful management. However, interventions are resource intensive and

many times limited in availability. Therefore, typically, the goal is to optimally intervene within

a given budget constraint (B). In addition, there is potentially a huge cost incurred when there

is a delay in discovering a biological invasion (much like in the case of infectious diseases such as

COVID-19). A question that arises (answered through our experiments) is what is the e�ect of

budget, intervention delay, model parameters and seeding scenarios on the solution set? How does

the solution set change as these parameters change? In the real world scenario, intervening/providing
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vaccinations can be quite expensive and limited to resources, hence every aspect of the solution set

needs to be studied carefully before making a decision to intervene.

A simple example of intervention is one in which the nodes with the highest degrees (largest

numbers of neighbors) are removed one by one until the budget is exhausted [28]. We use a similar

baseline to compare our algorithm (SpreadBlocking). Vaccination depending on susceptible

size is another example. In [19], authors initialize node scores with their degree values, recalculate

a specific immunized node’s score based on its local knowledge, and then substitute the specific

immunized node with its non-immunized higher-score neighbor. Another common strategy used is

page rank. Authors in [30] use an individual’s movement based vaccination (IMV) strategy, where

individuals are vaccinated based on their movement behaviours. This strategy is used on an SIR

model. There are also papers that focus on “edge” removal rather than “node” removal [24].

In ODE models, interventions can be computed optimally, e.g., Medlock and Galvani [22].

However, optimizing individual-based interventions in network SEIR models is much harder [4, 27, 29].

Wilder et al. [33] consider optimal interventions in a dynamic population under a continuous-time

SIS model.

7.3 Group Based Interventions

Since targeted immunization of specific nodes is harder to implement, optimal strategies based on

node level characteristics, such as the various methods described above, cannot easily be converted

into implementable policies. For example, Sutrave et al. [31] identify important counties to monitor

and intervene at. We note that the similar intervention policies are developed in the case of infectious

disease epidemiology as well. For example, CDC vaccine policies are at the group level (e.g., based

on demographics), even though this can result in sub-optimal solutions compared to node level

intervention strategies.

We build on the work of Sambaturu et al.([29]), who use the SAA approach for the simple SIR

model; specifically, we extend their approach to the IAS model by considering the process on a

time-expanded network, and searching for group interventions. We note that group-scale vaccination

has been studied in the context of infectious disease spread and other socio-technical phenomena,
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e.g., Zhang et al. [35]. Even though the work of Zhang et al. considers node removals in SIR

di�usion processes, there is a key di�erence in the problem formulation, which makes it hard to

compare it with our approach. The budget in their work corresponds to total number of individuals

who can be vaccinated, not number of groups. There, the objective is to find an optimal allocation

of vaccines to each group, while in our case, the objective is to select the best groups to intervene.

Once intervened, all individuals in our group will be vaccinated. Another important distinction is

that Zhang et al. (like the degree-based algorithm) does not account for the seeding scenario. In a

temporal graph setting, Gauvin et al. ([10]) rank sub-graphs using tensor decomposition, and thus

identify important groups to intervene at.

Through our experiments we find that group-based interventions are comparable to individual-

based interventions. This is partly because most of the production happens within a locality or in

the vicinity of a locality (Figure S1 in [21]). This implies that much of the susceptible cells are near

these localities or groups. Therefore, any solution set of individual-based intervention has a majority

of cells belonging to groups. Therefore most of the spread will occur near the locality/groups.

However, group-based interventions need not show the same e�cacy if this is not the case. Secondly,

we note that from Figure 6.8 that the node-based intervention is slightly inferior to group-based

intervention in some cases. This is because of di�erences in the actual and empirical probabilities

of infection and the fact that SpreadBlocking does not guarantee a solution that minimizes

accumulated infections.

7.4 Discussion on Group Size and Number of Groups

Spread of infections from one locality to another can be due to many factors such as start month,

pathway parameter, neighbouring localities, etc. In various epidemiological modeling scenarios

groups are considered to be a certain section of the population dependent on factors such as

age [1], temporal graphs of interaction or actions [10], etc. In modeling spread of diseases of the

tomato leafminer pest, McNitt et al. [21] consider the boundaries of a group or locality to be

modelled through existing data. The authors define a locality/groups as centers of consumption

and production. From the perspective of consumption, the authors selected cities with population
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greater than a certain population threshold in the entire study region. The number and size of

localities is controlled by population threshold and locality radius parameters. The authors chose

250,000 as the threshold for the model with the main criterion for the choice being coverage of

population and knowledge of major wholesale markets. Then major production centers were added

if their population did not meet the threshold [21]. A natural question is how modeling decisions

such as number of groups or size of the group are varied. Suppose the network has many more

localities participating in the transmission of the pest. On the outset, it is attractive as it has

the potential to provide intervention solutions at a higher spatial resolution. However, the main

limitation in having a high-resolution model is the unavailability of data to calibrate and validate

the model, which makes it harder to justify implementation of the given solution. A large number

of groups also increases computation time while simulating this infection spread. At the same time,

if the size of each group is increased, it would lead to lower accuracy in simulation results. Also, it

might not be feasible to intervene at a group if it is too large (like a state or a province). Hence,

careful consideration of the size of each group and total number of groups accurately is important.
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Chapter 8

Summary and Future Work

In this work, we developed a simulation-based group-scale intervention algorithm SpreadBlocking

for controlling the spread in a multi-pathway model. We applied it to study the spread of invasive

species. Our results show superior performance under uncertainty in model parameters compared to

popular baselines. Motivated by this, one possible direction of study is to design robust optimization

algorithms that account for uncertainty in introduction scenarios. Also, multi-stage interventions

are relevant for the IAS domain since in most scenarios, the country is not prepared for the invasion

and therefore, limited resources are available for immediate control. Scalability to large networks

with large number of groups is a challenge. Pruning techniques can be explored to reduce the

number of variables and constraints in the integer linear program.
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