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Abstract 

Artificial intelligence (AI) can be leveraged to solve modern day medical challenges such as a timely 

diagnostic for cardiac disease. These diagnostics are crucial for patient-specific diagnoses and treatments. 

Cardiologists diagnose and treat cardiovascular diseases, including hypertrophic cardiomyopathy (HCM) 

and acute myocardial infarction (AMI), through manual image segmentation of left ventricular (LV) 

scarring from cardiac magnetic resonance imaging (MRI) slices. Manual segmentation of scar is often an 

arduous task that is subjected to bias, error, and physician fatigue. An existing AI algorithm that automates 

LV scar segmentation, developed by Carina Medical, has 19% and 5% false positive (FP) and false negative 

(FN) rates respectively for the identification of scar. The segmentation algorithm has a scar identification 

accuracy of 76%. The high error rates make scar identification unreliable; thus, this paper discusses the 

development of a novel ensemble learning pipeline that couple segmentation and classification deep 

learning algorithms to help improve the robustness of scar identification in cardiac MRI. By aggregating 

the results of multiple deep learning algorithms, the pipeline can more confidently identify the presence of 

LV scar. Instances where the segmentation and classification model disagree on the presence of scar are 

filtered out and classified as warning cases for cardiologists to manually analyze. The coupled pipeline 

improved scar identification accuracy to 88.1% and reduced cardiologist workload by 68.4%. FP rates were 

reduced from 19% to 6.4%, while FN rates remained similar at 5% and 5.5% when comparing the 

segmentation model and the novel coupled segmentation and classification pipeline. 

 

Keywords: LV Scar Classification, LV Scar Segmentation, Ensemble Learning, Myocardial Infarction, 

Deep Learning in Medical Imaging.

Introduction 

Cardiovascular disease is the leading cause of death in the 

United States, accounting for 1 in every 4 deaths [1]. A 

strong predictor of sudden cardiac death is LV dysfunction, 

which can be caused by the development of myocardial scar 

tissue. An increased presence of myocardial scar tissue is 

associated with higher risk and mortality rate from 

cardiovascular disease. Early detection of LV scar can be 

treated by a ventricular reconstruction surgery or 

medications, but improvement of LV function with severe 

damage is often unlikely, and mortality remains high [2]. 

The paper focuses on two diseases of interest: AMI and 

HCM. HCM patients often have thickening of the cardiac 

wall paired with regions of scar due to infarction, while 

AMI patients often have collagenous scar that results from 

the replacement of dead myocytes within the myocardium. 

Segmentation and quantification of the myocardial scarring 

in HCM patients and AMI patients is vital to guide 

personalized patient treatments [3].  

Cardiac MRI allows clinicians to perform non-invasive and 

quantitative analysis of potential cardiac disease states by 

extracting imaging biomarkers [4]. Late gadolinium 

enhanced MRI (LGE-MRI) can be used to visualize 

myocardial infarction and identify the size and shape of LV 

scar [5]. LV scar is analyzed through image segmentation 

where the location, size, and shape of the scar is identified 

from the MRI scans. Current clinical image segmentation 

practices are insufficient because images are manually 
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segmented by cardiologists, often leading to human error 

and inter-observer biases [6]. Manual segmentation is also 

laborious and slow which can be detrimental during time-

sensitive medical procedures [7].  

Deep learning, a subset of AI, segmentation algorithms have 

been leveraged in several fields to automate and standardize 

manual image segmentation. Similar deep learning 

segmentation algorithms can be used on medical images to 

increase the accuracy and efficiency of diagnosis by 

obtaining quantitative and qualitative biomarkers from 

medical images. There are currently several deep learning 

algorithms in development for automated LV scar 

segmentation. Carina Medical previously developed an LV 

scar segmentation deep learning model. The model was 

trained on the EMIDEC dataset, which consisted of AMI 

patient LGE-MRI scans, and a HCM patient dataset [8]. The 

segmentation model used a UNet-2D architecture to 

segment four main regions of interest (ROIs): LV blood 

cavity, normal LV myocardium wall, myocardial infarction 

area, and no-reflow scar area [9]. Although the 

segmentation model can effectively segment key ROIs 

including infarction scar, exploratory analysis of the model 

shows that the model produces several FPs and FNs for scar 

identification, resulting in a high error rate. A FP is defined 

when the model segments scar when there is no scar present 

in the ground truth while, and a FN is defined when the 

model fails to segment scar when there is scar present in the 

ground truth. The ground truth is the segmentation map 

manually produced by the cardiologist. The model 

accurately identified the presence of scar 76% of the time; 

19% of the MRI slices are FPs, and 5% of the MRI slices 

are FNs. A high number of FPs and FNs result in poor 

patient diagnoses and decreased physician and patient 

confidence in medical deep learning algorithms.  

To improve the LV scar segmentation, several ensemble 

learning algorithms have been developed. Ensemble 

learning algorithms aggregate the results of several deep 

learning algorithms to improve a task's accuracy. For 

instance, CMPU-Net cascades two different UNet 

segmentation algorithms to segment LV scar [10]. Although 

the algorithm performs well, the model was trained on a 

small number of patients. For a deep learning segmentation 

model to be accurate and generalizable, the model must be 

trained on large, diverse patient populations. 

Generalizability is essential because cardiologists in clinical 

practice see patients of various age groups, races, and 

disease states. The CMPU-net algorithm, which couples 

two segmentation algorithms, is computationally expensive 

and subsequently difficult to transition to clinical use. Other 

studies have tried to couple a segmentation model and a 

computationally inexpensive classification algorithm to 

improve segmentation tasks. For example, a YNet 

architecture was developed by coupling instance-level 

segmentation masks and instance-level probability maps 

from classification. Both are combined to produce a 

segmentation mask for a ROI [11]. YNet was tested on 

breast biopsy images. To our knowledge, YNet has not been 

tested on LV scar MRIs.  

Thus, we propose a novel pipeline that uses ensemble 

learning by coupling a scar classification model with Carina 

Medical’s LV scar segmentation model to lower the scar 

identification error rate (Figure 1). The pipeline uses a 

computationally inexpensive classification model to filter 

out FPs and FNs. Furthermore, both the segmentation and 

classification models are trained on diverse patient 

populations. The pipeline creates a semi-automated LV scar 

segmentation and classification model where only filtered 

FPs and FNs are manually analyzed by a cardiologist. The 

pipeline is confident in segmentations that are not filtered 

out by the classification model. In addition, the pipeline 

does not combine the masks and maps of the segmentation 

and classification models like YNet. The pipeline is a 

simpler aggregation of the segmentation and classification 

models where each deep learning model runs 

independently.  

As shown in Figure 1, the classifier and the segmentation 

algorithms work in parallel. The classifier identifies 

whether scarring exists on an MRI slice while the Carina 

Medical LV segmentation model segments the size and 

location of scar. From the classifier, we do not obtain the 

location of the scar, size of scar, or shape of the scar. The 

most important outputs for our pipeline are the scar size and 

location from the segmentation model and the binary 

decision from the classifier regarding the presence of scar 

within a given slice. Subsequently, processing of the outputs 

is best visualized by the truth table shown in Figure 1. If the 

classification and segmentation models agree on the 

presence of scar, the pipeline is confident in the output of 

those slices and sends the segmentation map to the 

cardiologist. Specifically, the models agreeing means that 

the classifier identified scar and the segmentation algorithm 

segmented scar, or the classifier identified no scar and the 

segmentation algorithm segmented no scar. If the classifier 

and segmentation model disagree on the presence of scar, 

the respective MRI slice is considered a warning slice. The 

cardiologist must manually segment warning slices. As a 

result, the pipeline creates a semi-automated segmentation 
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algorithm where only warning slices must be manually 

segmented.  

The project aims to couple the Carina Medical LV scar 

segmentation model and a scar classifier to improve the 

confidence of a deep learning model in identification of LV 

scar. The bulk of the project focuses on building and 

validating a deep learning classification model. Lastly, the 

project analyzes the effectiveness of the coupled pipeline to 

reduce FPs and FNs.  

Materials and Methods 

Dataset Description 

To train the scar classifier and encourage model 

generalizability, two unique LGE-MRI datasets were used: 

the EMIDEC AMI patient dataset and a subset of the 

National Heart Lung and Blood Institute HCM patient 

dataset. Both datasets contain MRI slices that are 8 mm 

thick, acquired at 1.5 or 3 Tesla on MRI systems using 

electrocardiographic gating after the injection of 

gadolinium-based contrast agent. However, the acquisition 

protocol between the AMI and HCM datasets differ. The 

acquisition of EMIDEC dataset is 10 min post-contrast 

using the Siemens MRI system, while the HCM datasets 

acquire information 5-, 14-, and 29-minutes post-contrast 

using MRI systems from the 3 primary vendors (General 

Electric, Philip Medical System, and Siemens), resulting in 

different image contrasts and resolutions.  

The AMI dataset contained 100 anonymized patients. 60 

pathological patients had scarring from AMI while 40 

patients were normal. The mean patient age was 61 years 

old. 12% of the patients were diabetic, and 57% of the 

patients were overweight. Race, ethnicity, and 

socioeconomic status are unknown [8]. The training and 

testing split was 60/40, where 60 patients were used for 

training and 40 patients were used for testing. As a result, 

422 and 286 MRI slices were used for training and testing, 

respectively. 

The subset of the HCM dataset used contained 67 

anonymized patients. All patients were 65 years or younger. 

Data was collected from 41 hospital sites across the United 

States, Canada, and Europe [3]. Additional demographic 

information regarding the dataset is unavailable. The 

training and testing split was 70/30, where 46 patients were 

used for training and 21 were used for testing. As a result, 

366 and 169 MRI slices were used for training and testing, 

respectively.  

The training and testing MRI slices were combined across 

the two datasets, meaning there were a total of 106 training 

patients and 61 testing patients. A training and validation 

split of 80/20, respectively, was applied to the combined 

training data. As a result, 630 MRI slices were used for 

training, 158 MRI slices were used for validation, and 455 

MRI slices were used for testing.  

Classification Algorithm  

The Xception transfer learning convolutional neural 

network (CNN) framework was used to build the 

classification algorithm. A CNN uses a series of 

convolutions to extract unique features from a given image. 

 

Fig. 1.  Depicted is the organization of our novel coupled pipeline. The pipeline leverages a scar classifier in tandem with the Carina 

Medical LV scar segmentation algorithm to improve scar identification and limit the number of FPs and FNs. 
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Xception’s architecture is based entirely on depth wise 

separable convolutions. They consist of a single pointwise 

convolution, which down samples data from each channel 

within a slice, followed by a series of depth wise 

convolutions, which focus on aggregating data from 

neighboring pixels within slice [12]. By combining 

pointwise and depth wise convolutions in the 

aforementioned manner, features are extracted from every 

aspect of a given slice. Global average pooling, batch 

normalization, and dropout layers were added after the 

Xception network architecture. Binary SoftMax 

classification was performed. An Adam optimizer and 

sparse categorical cross entropy loss function were used. 

The MRI slices were preprocessed such that each slice has 

a zero mean and unit variance. The slices were then center 

cropped to be 112⨉112 (width ⨉ height). Since Xception 

requires a 3-channel RGB input, each slice was replicated 

three times such that the dimension of each slice was 

112⨉112⨉3 (width ⨉ height ⨉ channel). The model was 

trained for 45 epochs with a batch size of 64. In addition, 

the dataset was shuffled before and during training. 

Validation accuracy and loss were also monitored during 

training. The aforementioned parameters were found 

through a grid search algorithm which systematically found 

the best model optimizers, learning rates, and batch sizes.  

Due to the limited datasets, image augmentation is 

implemented to address different imaging modalities and 

populations by generating more training images. The MRI 

images come from a variety of imaging systems, resulting 

in MRI images of varying resolutions. To mitigate the 

impact of the aforementioned variances on the model, 

gaussian noise from the batchgenerators Python package 

was added to help the network ignore differences in 

resolution and other variances in the different patient 

populations [13]. For each slice, batchgenerators created 4 

new slice images by randomly applying gaussian noise with 

a variance ranging from 0 to 0.5. To further increase the 

generalizability of the model, ImageDataGenerator API in 

Keras was used to apply random affine transformations, 

including 180-degree rotations, horizontal and vertical flips, 

20% width shifts, 10% shear, and 20% zoom. Combining 

both gaussian noise and affine transformations, we 

expanded the size of the pre-existing dataset by a factor of 

48. All experiments were performed using NVIDIA GPUs 

on the Carina Medical UNIX Server. Deep learning models 

were constructed using TensorFlow 2.4. 

GradCAM (Interoperability Model) 

Once the Xception model was trained, validated, and tested 

on the appropriate datasets, we used an interpretability 

model to confirm the classifier’s robustness. A major 

question in using classification algorithms is whether the 

algorithm is actually looking at targeted ROI. Often the 

classifier could potentially be guessing whether there is 

scar, which is especially true for binary classification. To 

better understand the classifier, we explored the use of 

interpretability models, specifically the Gradient Class 

Activation Map (GradCAM) algorithm. GradCAM is an 

algorithm used to help quantitatively analyze where a 

convolutional neural network is looking. GradCAM works 

by finding the final layer in the network and then examining 

the gradient information flowing into that layer. GradCAM 

focuses on the final layer of the CNN to understand each 

neuron for a decision of interest since those final neurons 

are of paramount importance in determining the 

classification label for a given MRI slice. The output of 

GradCAM is a heatmap for a given class label. In our case, 

the only class labels are “scar present” and “no scar 

present.” Figure 2 showcases an output of GradCAM. 

Higher ROIs, regions in yellow, are areas that the 

classification model considers with a higher weight in 

comparison to the medium ROIs in blue. GradCAM 

heatmaps are produced for each MRI slice passed into the 

classifier to visually verify the focus of the CNN on the 

image. In addition, GradCAM heatmaps are overlaid with 

the ground truth segmentation maps to quantify if the 

classifier is looking at the scar. 

 

Fig. 2. Depicted is the output of GradCAM for an AMI patient 

(Patient P096). Within the GradCAM output, we can see the 

heatmap is focused on the myocardium. In addition, the 

GradCAM output contains 2 primary colors: yellow and blue. 

The yellow showcases regions of the heat map that are higher 

regions of interest (ROI), while the blue showcases regions of 

the heat map that are medium ROI.  
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Results 

GradCAM Results 

Using GradCAM we were able to visually observe the focus 

of the classifier. Figure 3 suggests that the heatmap is 

focused on the LV myocardium, which verifies that the 

model is looking at scarring. 88% of the slices had the 

GradCAM heatmap focused on the myocardium. To test 

whether the classification algorithm is looking at scar, we 

decided to overlay the GradCAM higher ROIs with the 

ground truth segmentations of myocardial scarring as 

shown in column three of Figure 3. If the higher regions of 

interest on the heatmap encompass the ground truth values 

of the myocardial scarring, then it suggests that our 

classification algorithm is deciphering between scar or no 

scar. Out of all the slices, on average the GradCAM higher 

ROI encompasses about 43 ± 37% of the scar. This means 

that given for a slice, 43 ± 37% of the scar will be 

considered or “looked at'' by the classification algorithm. 

When we encompass both the higher and medium regions, 

then on average the heatmap encompasses about 83 ± 30 % 

of the scar. The GradCAM results suggest that our 

classification algorithm is looking at scar. In fact, our 

GradCAM results showcase a higher-than-average value for 

heatmap encompassing important biomarkers. For example, 

in overlaying GradCAM heatmaps to find pneumothorax (a 

collapsed lung) within thoracic cavity images, a previous 

study found that the GradCAM heatmap only encompasses 

around 33% of pneumothorax [14]. 

Classifier and Segmentation Results 

Once we identified that the classification model is looking 

at the scar, we calculated the accuracy of the classifier. In 

addition, we calculated the FP and FN rates of the classifier. 

The classifier accuracy came out to be 76%; the FP rate was 

9.7% and the FN rate was 14.3%. The classification model 

training accuracy and loss are in Supplementary Figure 1. 

The Carina Medical LV segmentation model has a scar 

identification accuracy of 76%, a FP rate of 19%, and a FN 

rate of 5%. The results are visualized in Figure 4. The 

segmentation and classification models have similar 

accuracies, FP rates, and FN rates.  

Coupled Pipeline Results 

Figure 4 shows the increase in accuracy of the 

segmentation model and classifier coupled pipeline and the 

change in FPs and FNs. The coupled model has an accuracy 

of 88.1%. Slices are FPs when both the classifier and 

 

Fig. 3. Depicted is the ground truth segmentation, the classifier GradCAM heatmap results, and the overlay between the classifier’s 

GradCAM high ROI with ground truth scar segmentation for three different patients. The first column showcases the ground truth 

segmentation, which is treated as the true location, size, and shape of the LV wall, LV cavity, and scar. The second column contains the 

GradCAM output. The third column displays the higher ROI from the GradCAM output overlaid with the ground truth scaring. Within 

the third column, the blue color represents the GradCAM higher ROI only, the yellow color represents the ground truth scar labels 

only, and the green color represents the overlap between the ground truth scar and higher ROI. The first row showcases a patient slice 

without scar, the second row and the third row both showcase patient slices with scar from AMI and HCM, respectively. Quantifying 

the overlap between the ground truth scar and GradCAM’s high ROI for every slice classified to have scar, we see that 43 ± 37% of 

the scar will be considered. 
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segmentation model individually output FPs. The same goes 

for FNs. For the coupled pipeline, the FP rate is 6.4% and  

the FN rate is 5.5%. The coupled pipeline also identifies 

warning slices when the segmentation model and the 

classifier disagree. A disagreement means that the pipeline 

is not confident about the presence of the scar. The pipeline 

suggests that warning slices be manually evaluated by the 

cardiologist. The cardiologist does not have to manually 

evaluate cases where the segmentation model and classier 

agree. 31.6% of the slices are warning slices. Table 1 shows 

on how many slices the classifier and segmentation model 

agreed upon. The warning slices are not included in the 

pipeline accuracy since the pipeline is not confident in the 

output. Example slices of FPs and FNs identified by the 

pipeline are depicted in Figure 5. 

Discussion 

The results shown in Figure 4 and Table 1 suggest that the 

coupled pipeline reduces FP identification of normal 

myocardial scar, but there is no reduction in FN 

identification of normal myocardial scar.  There is a cost-

benefit analysis to the coupled pipeline. Although the 

pipeline produces several warning slices, the pipeline has a 

higher accuracy when considering the cases that the pipeline 

is confident in. When only the segmentation model is used, 

no warning slices are produced because the segmentation  

 

Table. 1. The table shows how many MRI slices were accurately 

classified and inaccurately classified by the classifier, 

segmentation model, and coupled pipeline on the testing dataset. 

Green shading means that the classifier and segmentation model 

agree, and the models correctly classified scar. Red shading 

means that the classifier and segmentation model agree; 

however, both models incorrectly classified scar. Yellow 

shading indicates that the classifier and segmentation model 

disagree; thus, the slices are considered warning slices. 

  

 
Fig. 4. The bar graph depicts the accuracies, FPs, and FNs of the testing set for the segmentation model, classifier, and coupled 

pipeline. Warning slices are instances where the segmentation model and classifier disagreed. The accuracy of the coupled pipeline 

was computed as (# of Slices Segmentation Model and Classifier agree on) / (Total MRI Slices - Warning Slices).  
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model is confident in all the segmentations; however, the 

model is only 76% accurate. When prioritizing patient 

outcomes, the pipeline poses a better error rate of 11.9% 

compared to the using only the segmentation model. In 

addition, when compared to the traditional scenario when 

no deep learning algorithm is used, the pipeline reduces 

cardiologist workload by 68.4%. The absence of a deep 

learning algorithm means that the cardiologist must 

manually segment 100% of the slices. The pipeline 

produces 31.6% warning slices; thus, the cardiologist only 

has to manually segment 31.6% of the slices. When using 

only the segmentation model, the cardiologist workload is 

decreased by 100%; however, the lower accuracy of the 

segmentation model leads to poorer patient outcomes. 

The coupled pipeline reduces the FP rates from 19% to 

6.4% when compared to the segmentation model. The 

pipeline has a FN rate of 5.5% while the segmentation 

model has a FN rate of 5%; thus, the pipeline is not able to 

decrease the number of FNs. In addition, the pipeline was 

trained on a diverse patient population. By training the 

algorithms on AMI and HCM patients, the pipeline is more 

generalizable. The experiments suggest that the coupled 

pipeline is an improvement over the current segmentation 

model in terms of overall accuracy and reduction in FPs.  

Figure 5 highlights representative slices of FPs and FNs 

produced by the coupled pipeline. For the pathological FN 

slice, the segmentation model may have had trouble 

identifying the location of scar since the scar is relatively 

small compared to scar in the accurate slice. The small scar 

regions present in the FN slices provides a possible 

explanation as to why the segmentation model and classifier 

were not able to identify any scarring. Further fine tuning of 

the models and image augmentation process may help the 

models identify small regions of scarring. The thickening of 

the LV wall in the FN slice also likely made it difficult for 

the classifier to focus in one region. For the non-

pathological FP case, the classifier had identified scarring 

even though there was no scar present, and the segmentation 

model falsely segmented a small region of scar only. For the 

accurate slice, the figure suggests that the classifier was 

looking at scar the same place the segmentation model 

segmented scar. The ground truth for the accurate slice 

suggests that the pipeline was looking at the correct place. 

Limitations 

A major limitation of our coupled pipeline is that the 

accuracy of the pipeline is limited by how well the 

segmentation model performs. Even if the classifier had 

100% accuracy, the combined pipeline’s ability to reduce 

cardiologist workload is limited by the segmentation 

model’s ability to segment scars. Therefore, improving the 

scar segmentation model is important because the 

cardiologist primarily desires scar segmentation maps. In 

addition, the true accuracy of the segmentation model is also 

limited by cardiologists’ ability to create accurate ground 

truth segmentation maps that are used to train the 

segmentation model. Any biases or incorrect segmentations 

produced by cardiologists will propagate to the deep 

learning pipeline. 

A key ethical limitation surrounds the question of liability 

in the event of the segmentation model and classifier both 

outputting a FP or FN result. Slices where the segmentation 

model and classifier agree ideally should not have to be 

reviewed by a cardiologist to truly reduce cardiologist 

workload. A FP that successfully passes through the 

pipeline would create alarm fatigue for the cardiologist by 

marking a slice with scar where no scar exists. However, a 

FN that successfully passes through the pipeline would 

result in missing a slice with scar which is potentially 

detrimental to patient outcomes. For our novel pipeline, 

while the number of FPs decreases to improve the pipeline 

accuracy over the segmentation model alone, the number of 

FNs remains approximately constant. Therefore, reducing 

FNs and further reducing FPs remain a central goal. 

 

 

Fig. 5. Depicted are examples of FPs and FNs identified by the 

coupled pipeline. For each patient, ground truth segmentations, 

segmentation model results, and classifier GradCAM results are 

depicted. For the segmentations, the LV wall is shown in red, the 

LV blood cavity is shown in green, and normal myocardial scar 

is shown in cyan. The color coding of the GradCAM results 

matches that of Figure 2.   
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Future Work 

Further improvements can be made to the deep learning 

classifier to help further reduce FNs and FPs. Fine tuning of 

the classification architecture and training set can be 

completed to amplify regions of small scarring so that fewer 

slices are FNs. In addition, the classification architecture 

can be iteratively improved in attempt to improve the 

accuracy of the classifier. As stated in the limitations, 

further improvements to the segmentation architecture need 

to be made to improve overall accuracy of the coupled 

pipeline.  

To improve usability and encourage integration into a 

clinical workflow, our novel deep learning pipeline can be 

integrated into a user-friendly software package. When 

implementing new software in a clinical setting, 

cardiologists and other medical professionals must be 

comfortable with the newly implemented technologies to 

fully adopt them into their workflow [15]. A user-friendly 

interface is important because it discourages a negative 

impression of the software, ultimately increasing the 

software’s perceived value. Additional software features 

can be developed to maximize the potential of the pipeline 

in the clinical setting. For example, MRI slices designated 

as containing scar by both the segmentation and 

classification models can be prioritized within the user 

interface and trigger a prominent notification to alert the 

cardiologist. The warning slices would be a secondary 

priority for the cardiologist to look at. In addition, further 

improvements on the interpretability model can help 

provide the cardiologist deeper insight into where the 

pipeline is looking to identify scar, ultimately increasing 

confidence and understanding of deep learning-based 

technologies for diagnosis. 

Although the pipeline was trained on a diverse patient 

population, additional future work includes further 

increasing the diversity training set to remove algorithmic 

biases and improving model generalizability [16]. If any 

bias existed when patients were chosen to participate in the 

studies creating the MRI datasets, the deep learning 

pipeline’s outcome could potentially reflect the bias when 

attempting to make a prediction from new patient data. 

Generalizability is critical to ensuring that the pipeline can 

be used on patients of all backgrounds and health states. 
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Supplemental Figures 

Supplemental Figure 1: Depicted above on the left are the training and validation accuracies of the classifier. The model was run for 

45 epochs and the best model was saved at the highest validation accuracy of 81%. Depicted above on the right are the training and 

validation losses of the classifier. A sparse categorical cross entropy loss function was used with an Adam optimizer. 


