

Visualizing Task Breakdown: An Interactive Force-Directed
Graph Approach to Task Management

A Technical Paper submitted to the Department of Computer Science
Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia
In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Computer Science, School of Engineering

By

Lanah Pheng

May 9, 2025

Technical Project Team Members
Yanson Khuu

On my honor as a University student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

ADVISOR
N. Rich Nguyen, Department of Computer Science

CAPSTONE RESEARCH, May 2025, University of Virginia, USA L. Pheng

Visualizing Task Breakdown: An Interactive Force-Directed
Graph Approach to Task Management

TaskGraph

Lanah Pheng
 UI/UX Programmer

 University of Virginia
School of Engineering & Applied Science

 dmt9xb@virginia.edu

ABSTRACT
Being confronted with a large, overwhelming task can be
debilitating for some people. While traditional task management
systems typically rely on linear lists that fail to encapsulate the
complex relationships between interdependent tasks, this paper
presents a novel approach that leverages graph visualization to
enhance task breakdown and management to offer an alternative
for the public who may need additional assistance in organizing
tasks. In this web application, we introduce a system that represents
tasks as interactive nodes through a dynamic network that enables
users to visualize hierarchical relationships while manipulating task
properties in real-time.

Our implementation utilizes React with ForceGraph2D for our
main structure and incorporates a three-state status tracking
mechanism with visual color indicators. 5 individuals participated
in an in-depth user study that accessed the front-end features on
general interface design as well as interactivity evaluation to test
the effectiveness of the application. It revealed mixed results: while
participants generally found the node selection, visual highlighting,
and status color changes intuitive, they encountered challenges
with discoverability of right-click functionality and descriptions
panel toggles. Participants found the graph-based visualization
helpful in conceptually breaking down complex tasks, but they
mentioned that latency during graph recentering had the possibility
of disrupting workflow and could be further improved. The clarity
of the integrated chat interface itself received moderate ratings and
participants had expressed an increase desire for more in-depth
subtask structure once further AI assistance was implemented. Our
findings indicate that force-directed graphs offer a promising
alternative to traditional task management interfaces, particularly
for visualizing task relationships, though refinements in interaction
design and visual feedback are needed to address usability
challenges identified during testing.

1 INTRODUCTION
Many people struggle with effective task management in both
professional and personal contexts. Traditional approaches such as
the creation of linear lists or hierarchical structures fail to capture
the complexities between different relationships between tasks. In
addition to clearer task visualization, the goal is to create an
application that prevents "functional freeze," a term used to
describe executive dysfunction, a common symptom of ADHD. By

breaking down large, complex tasks into smaller, more manageable
chunks, users can easily find which direction to begin a task and
are more likely to finish it [1]. This serves to break down mental
models through digital task representation to prevent the cognitive
burden a generalized task may impose.
To combat this problem, the application TaskGraph was developed.
It is a graph-based visual approach to task management that
includes interactive nodes within a dynamic force-directed network
that portrays tasks in a web-like manner. To use it, users input a
task they would like broken down into a chatbot, which then breaks
it down into structured nodes. These nodes are mapped in a way to
improve spatial understanding and promote intuitive connections
between each task.
There are four main objectives for the usage of TaskGraph:
interactive node-based visualization, intuitive task relationship
representation, real-time editing capabilities, and natural language
chat interface. While the breakdown of tasks serves as a separate
challenge, this study was designed to specifically focus on
investigating the ideal ways users would like to visualize a task
breakdown as well as additional features they would like to
incorporate into a graph-based application.
The first objective of node-based visualization involves how users
would like to envision the tasks as nodes within the graph—
whether that be the direct manipulation paradigm and the shape of
the node, or the visual selection highlighting when focusing on an
individual task node. Another factor of this is the spatial task
environment in which the node exists. It is crucial that the design
invokes simplicity to ensure a clean, usable interface that does not
distract or overwhelm the user. The application must be visually
clear and encourage streamlined interaction with frictionless
manipulation

Figure 1: Force-directed graph layout

L. Pheng CAPSTONE RESEARCH, May 2025, University of Virginia, USA

The second objective of the application is an intuitive task
relationship representation. This is done by incorporating a force-
directed graph layout shown in Figure 1, that connects nodes to
other nodes to represent a meaningful connection between topics.
The directional connections aim to show parent-child relationships
to build contextual awareness and clarity between tasks. These
connections, as well as the automatic proximity positioning of the
nodes, add meaningful organization and organic structure.
Another objective is real-time editing capabilities of the nodes. To
make it a realistic task managing application, TaskGraph
incorporates a three-state tracking system (Not Started, In Progress,
Completed) for users to keep track of their task habits. These
features, as well as the ability to edit, add, and delete current nodes
serves to make the application more visually coherent and usable.
Finally, the fourth objective is to have integration with the natural
language chat interface. While currently the enhancement of the
automatic task breakdown feature is still in development, ideally
there will be task creation through conversational input that would
provide the initial structure generation. The final version aims to
have a hybrid integration model of natural language input and direct
manipulation. This current study explores the direct manipulation
portion.
TaskGraph was created using React and the react-force-graph
library to render dynamic force-directed graphs [2]. The use of the
react-force-graph library's built-in physics simulation allowed us to
create an intuitive, 2D design with an interactive representation of
connections between entities, enhancing user understanding of
complex relationships. It is also highly customizable with varying
node shapes, colors, forces, and link distances. The use of these
technical design choices enables the application to have a
responsive design as well as an adaptable interface.
TaskGraph is a novel approach to task visualization and
management which aims to be a transformative approach in its
unique way of reimagining workflow. The enhanced
comprehension it embodies increases the potential for complex
project management as it can hone in on task-specific
interdependencies which traditional methods may lack. The
purpose of this study is to gather feedback from the conducted
design studies to outline future considerations to improve and
enhance this tool in terms of its features and usability.

2 REVIEW

2.1 Traditional Task Management Approaches
The purpose of TaskGraph is to create a visual application that
differentiates itself from traditional task manager methods and
systems. A popular option for task management that people
gravitate towards are linear list implementations, such as to-do
applications, which simply is an ordered set of tasks to check off.
Another method is kanban methodologies, an AGILE methodology
that visualizes workflow and focuses on continuous improvement.
It is often represented by a Kanban board, where tasks move
through different stages and work is pulled into the process only
when there is capacity. Jira, a software development tool created

by Atlassian, is well-known for this [3]. It is a versatile platform
primarily used for bug tracking, issue tracking, and agile project
management.
While all the listed options are effective when tailored for a users’
specific needs, they demonstrate a form of representation
incongruence when it comes to mapping the complexity of tasks—
where there is a mismatch or inconsistency between thought and
behavior. In this case, traditional task management methods make
it difficult to flexibly showcase the way the brain thinks about large
tasks, creating a significant mental model misalignment [4]. The
increased cognitive load that comes with complex projects cannot
be represented in linear systems, requiring the creation of a new
visualization method that allows for a way to portray tasks
intuitively to allow more support for emergent task structures.

2.2 Emerging Visualization Approaches
There are existing mind mapping tools that incorporate visual
approaches to task management. One of these is MindMeister, a
web-based tool where each topic can have one parent node, limiting
the representation of complex tasks relationships that often have
multiple dependencies or connections [5]. XMind is another
platform that offers slightly more flexibility than traditional mind
mapping through its traditional “relationship” feature, but still
primarily uses a hierarchical organization system [6]. Lastly, Miro
is an infinite canvas board that provides freedom for spatial
organization where users can manually position and rearrangement
of elements as projects evolve [7]. TaskGraph intends to draw on
the most notable features from these applications as well as provide
improvements to create a cohesive design that reflects the task
making process of the mind.
Ahrens [8] demonstrated benefits of explicit relationship
visualization when taking notes, that elevated the use of knowledge
graphs to display information. Roam Research [9], first pioneered
this concept of bidirectional, associative linking for the purpose of
knowledge management. Another app is the widely used Obsidian
[10], that uses a graph view with bidirectional linking to organize
ideas. It maintains a strict separation between its visualization
interface and content editing, requiring users to switch contexts
between viewing relationships and managing contents. TaskGraph
serves to take the structure from these well-known applications of
knowledge graphs and transform it into one that focuses on the
creation of actionable tasks, as well as encourage editing
capabilities with dynamic properties.

2.3 Force Directed Graph Advantages
A force-directed graph is a visual representation of a network where
nodes (points) are arranged based on simulated forces, mimicking
a physical stream. These connected nodes are attracted to one
another, while all nodes repel, resulting in a layout that reveals the
structure and relationships within the network. Di Battista et al. [11]
demonstrated improved comprehension with force-directed
layouts, leading to its incorporation within TaskGraph. The
dynamic node positioning and relationship automate the spatial
organization, reducing the cognitive load on the user. The self-

CAPSTONE RESEARCH, May 2025, University of Virginia, USA L. Pheng

organizing properties minimize the need for manual arrangement
and the visual aesthetics increase engagement and comprehension.
Using this encourages the scalability for more complex task
networks.
Along with the graph force providing further comprehension to the
layout, it also demonstrates superior pattern recognition in network
visualizations according to Ware [12]. Relationship visibility
enhances contextual understanding of the user, while its spatial
memory utilization improves recall. Other components of force
graphs such as the clustering of nodes and the dynamic adjustment
reduce the cognitive load through the externalized relationships.
These effects are reinforced by Gestalt principles—such as
proximity, similarity, and continuity—which guide the user’s
perception of groupings and patterns within the graph.

2.4 AI-Driven Task Breakdown Approaches
The method of task decomposition through natural language

processing techniques to improve usability and user experience is
everchanging. Zhang et al. [13] explores the issue of granularity in
AI task breakdown, highlighting the challenges of generating
subtasks that are neither too broad nor too narrow. During
TaskGraph's development, it was crucial to take note of the
complexities of each task and recognize the structure it may
impose. While further AI support is yet to be implemented, it is
important to take note of the design at this stage to plan on what the
user might want to see once it is further developed. As for
identifying the task itself, semantic parsing has emerged as a
promising approach for identifying meaningful subtasks, though its
integration with visual representation systems remains limited. AI
models have become more advanced, allowing for an adaptive
decomposition strategy that respond to the complexity of a given
task. Additionally, it is important to take into consideration
personalized breakdown styles being developed to suit individual
user preferences.

Figure 2: Goblin Tools interface

The task breakdown aspect of the TaskGraph was inspired by
Goblin Tools [14], an AI-assisted platform designed to help users
manage everyday tasks through adaptive decomposition and
cognitive scaffolding techniques. "Spiciness" level is one of the key
features of the application, that allows users to adjust the
granularity of task breakdowns to suit their preferences. The tool
relies on a text-based interface, seen in Figure 2, which limits its
ability to visually represent task relationships or maintain persistent

spatial organization. Additionally, its contextual understanding
across tasks is limited, affecting the coherence of multi-step
planning. Despite these constraints, Goblin Tools supports flexible
granularity adjustment and empowers users to structure tasks more
manageably.

2.5 TaskGraph’s Unique Positioning
TaskGraph works as a middle ground between traditional task
management methods and powerful AI-driven systems by
combining interactive visualization, dynamic decomposition, and
cognition in a unified framework. Unlike traditional linear to-do
lists or rigid kanban boards, TaskGraph utilizes a force-directed
layout that automatically rearranges and organizes tasks based upon
dependencies. This self-organization capability reduces manual
reordering of tasks and yet maintains context and thus helps users
to easily perceive change in status and the relationships between
tasks. The interface supports immediate user interaction through
tasks that can be easily edited visually while maintaining the
relationships between tasks. TaskGraph alleviates the need to
switch between separate applications or views in displaying the
status, hierarchy, and dependencies simultaneously to simplify the
task management process.
Cognitively, TaskGraph matches the way that individuals mentally
organize complex tasks—highlighting relational rather than
sequential arrangements. The graphical representation intensifies
the perception of relationships and supplies visual cues that support
prioritization of tasks. This capability allows users to maintain
projects according to their inherent cognition processing style,
minimizing the risk of cognitive overload and improving memory
retention via spatial cognition. TaskGraph also supports various
cognitive styles by displaying multiple task decompositions and
different paths to depict task structure. By combining the
technology benefits of scalable graphs with the cognition support
provided by visual representations of tasks, TaskGraph is an
innovative leap in task management technology that addresses
users' changing needs comprehensively.

3 METHODOLOGY

3.1 System Architecture & Implementation

Figure 3. UI of TaskGraph

L. Pheng CAPSTONE RESEARCH, May 2025, University of Virginia, USA

The TaskGraph application was developed using a component-
based architecture centered around interactive visualization of task
relationships. Our implementation leverages React as the primary
framework, providing a modular approach to UI development
through functional components with hooks-based state
management. This architecture facilitates the separation of
concerns between visualization, interaction, and data management
layers. The application structure consists of four primary modules:
the graph visualization engine, chat interface, task data manager,
and state
For the graph visualization engine, we integrated react-force-graph-
2d, which implements a physics-based layout system with
customizable forces and interactive node manipulation. This library
provides essential capabilities including automatic collision
detection, smooth animations, and efficient canvas rendering that
maintains performance even with dozens of interconnected nodes.
The visualization engine was extended with custom node rendering
to support rectangular task representations and status-based color
indicators.
The styling system utilizes Tailwind CSS for consistent design
language across components, with shadcn/UI providing accessible
UI primitives that maintain visual coherence. This combination
enables rapid iteration of the interface while ensuring responsive
behavior across device sizes. State management is implemented
through React's Context API with reducers to maintain application-
wide state consistency. This approach ensures that task
modifications propagate correctly throughout the system while
preserving interaction history for undo/redo capabilities. The state
management system explicitly tracks node positions and
relationships, selection state for focused tasks, edit mode toggles
for different node properties, view state for panels and modality
shifts, and task status transitions across the three-stage workflow.
The architecture follows a decoupled design pattern where the
graph visualization responds to state changes rather than directly
manipulating the underlying data model. This interaction-driven
design ensures state preservation across sessions while allowing for
real-time collaborative extensions in future iterations. Critical to
the system's effectiveness is the coordinate system transformation
that maps abstract task relationships to visual space while
maintaining spatial continuity during interactions. This
transformation ensures tasks maintain meaningful relational
positions even as users manipulate individual nodes or toggle
between expanded and collapsed view states.

3.2 Features & Design Implementations
The final version of TaskGraph uses a force-directed graph
approach to represent tasks and their relationships in a dynamic,
interactive context. Nodes are laid out using a physical simulation
that ensures automatic collision detection and optimum spacing to
enable smooth transition and improve clarity as the task network
evolves. Directed edges are used to graphically display task
dependencies, thus augmenting the topological structure of the
project.

Every task is depicted as a rectangular node with an accompanying
textual label. The spatial layout is fully editable, allowing manual
changes where needed. Zoom and pan controls enable viewport
navigation, and the interface is fully responsive to support a variety
of screen sizes. The visualization framework is based on the
principles of spatial cognition, providing a representation of tasks
that is semantically complete and topologically correct.
TaskGraph supports the representation of hierarchical tasks with
the use of parent-child relationships via directed edges and allows
users to build multi-level hierarchical tasks. The visual hierarchy
mirrors logical groupings that help users organize and monitor
complex workflows effectively. The modification of tasks is
supported via an intuitive and contextual interface. Users have the
capacity to edit task headers directly, include rich text annotations,
and re-order tasks via a drag-and-drop action.

Figure 4. Node context menu

TaskGraph’s interaction model centers on intuitive user
engagement. Clicking a node selects it, automatically adjusting the
zoom and centering the camera for a focused view. When a task is
selected, it is highlighted by a purple border. Clicking on the
background deselects the node, maintaining spatial continuity and
clarity. A right-click on a node opens a context menu, displayed in
Figure 4, that offers four primary choices: Add, Edit, Status
Change, and Delete. The menu is always located relative to the
node, thus enabling consistent and intuitive task management.
Adding a task creates a pop-up with the option to enter a new task
name and optionally enter a description along with it. Edit creates
a similar pop-up to change the task name. When Status is clicked,
the color of the node is changed and conveyed through its color-
coding: white for not yet started, yellow for in progress, and green
for completed. Task deletion will delete a task and warn the user if
it has cascading effects to remove linked subtasks and thus preserve
structure coherence.
Interaction with the chat panel involves enables expansion and
collapse, with smooth transitions. The graphical interface is
collapsable to ensure visibility and centricity with respect to the
changing panels. This is a multi-layered design that follows the
principles of affordances, direct manipulation, and spatial
consistency throughout the interface.

CAPSTONE RESEARCH, May 2025, University of Virginia, USA L. Pheng

3.3 AI Integration Framework
While this study focuses on the front-end portions of the
application, AI still plays a role in understanding the way users
foresee tasks being broken down after having a conversation with
the chatbot. The architecture of integrating with AI is based on a
natural language processing pipeline that transforms user input to
systematically arranged visual representations of tasks. Main input
is from the chat interface where users state tasks in natural
language. User inputs are deciphered by a large language model
(Llama3) that understands task components, their relationships and
relative complexity levels. Within task decomposition, the system
employs a hierarchical analysis to define top-level objectives and
their respective sub-components. The analysis yields an initial
graph structure that defines appropriate parent-child node
relationships. Additionally, the system determines an adequate
degree of granularity with respect to task complexity, thus
providing users with an acceptable cognitive load.
The graph generation algorithm creates a dynamic visualization
using the react-force-graph library with physics-informed node
positioning that successfully communicates relational hierarchies
without compromising on clarity. Every node represents a unique
task with appropriate visual cues to represent status and
importance. The continuous improvement mechanism employs
user feedback and interaction data to improve the task segmentation
process and employs insights from successfully completed tasks
and adapts to user tendencies so that it continuously evolves with
tailored task breakdown templates that mirror users' unique work
patterns and working style preferences.

3.4 User Study Methodology
Assessment of our task graph application was performed with
mixed-methods usability research involving five participants over
a comprehensive protocol with guided tasks and free exploration
that was employed to investigate both guided and spontaneous
interaction behaviors. Quantitative measures of task completion
time, Likert-scale satisfaction ratings from 1 to 5, and qualitative
information collected through think-aloud protocols and open-
ended commentaries were collected in each of the 30- to 40-minute-
long sessions. Following a systematic breakdown of the protocol
into progressive phases of initiating the generation of tasks via the
chat interface, determining node selection and navigation, task info
edit functionality, status change function capability, interaction
with panels, and personal task generation, we measured completion
times per phase with user confusion instances and collected focused
comments on specific interface aspects and interaction modalities.
The information collected using the tools utilized consisted of
standardized measures of task time, records of confusion, feature-
specific satisfaction ratings using 5-point Likert scales, and
standardized interviews after task completion. The analytical
methodological framework focused on the detection of interaction
difficulties, accessibility problems with regards to features, and the
root causes of user satisfaction. Major measures examined included
the time to complete benchmark tasks, feature discoverability
ratings, transition fluency ratings, and thematic analyses of

qualitative feedback to identify trends in participant feedback. This
evaluative approach provided rich insights into usability problems
and successful interaction models.

4 RESULTS

4.1 Participant Overview
Five participants, aged between 18 to 22, took part in the user study,
providing varied perspectives on task management. In general,
everyone reported frequent use of task management tools, with
80% of them reporting weekly or more frequent use. The most
common tools used included traditional methods of paper lists and
planners (100%), calendar programs (80%), and electronic to-do
lists (60%). Participants reported moderate familiarity with visual
task management systems, with a mean rating of 3.2 out of 5;
however, no one reported high levels of experience with graph-
based visualizations in particular.
Four of the participants had previous experience with AI-supported
tools, primarily ChatGPT, that gave them a contextual background
for understanding AI-based task decomposition. Their typical task
management needs covered various areas, including academic
projects (100%), personal projects (100%), work (80%), and daily
chores or tasks (60%). This diverse experience allowed the
participants to evaluate the task graph app from various usage
perspectives.
The user test results revealed significant trends in the users'
interaction with the task graph application. Task time to
completion, usability ratings, and the percentage of successful
completions were collected from the five users under normal use
conditions.

4.2 Task Creation Workflow
Participants required on average 33.7 seconds to discover and use
the chat panel, with significant spread observed between
individuals (ranging from 16.2 to 53 seconds). The main challenge
was caused by the chat panel's location, with one participant stating
that they "wouldn't think that was the first button you'd see" in their
experience with chat facilities as a newcomer. Users gave a clarity
score of 3.8 out of 5 to the process of creating tasks through chat,
reflecting moderate satisfaction but also the possibility of
improvement. Strong conflict was observed between user
expectations and the way the system works. Most participants
expected the chat interface to return a conversational response
rather than display a graph visualization. As described by one
participant: "Wasn't expecting the visual to come along with the
prompt." In addition, participants universally mentioned the lack of
loading indicators during processing time, which was on average
17 seconds long. One participant suggested the use of "3 dots" to
inform users that the system is in a processing state.

4.2 Task Editing and Manipulation
The behavior of right-clicking to open editing options received a
variety of discoverability ratings, averaging 3.4 out of 5. The
interaction pattern showed that most users first tried double-

L. Pheng CAPSTONE RESEARCH, May 2025, University of Virginia, USA

clicking before learning about the right-click menu. One participant
suggested that the editing functionality "should appear when you
hover on it" to make it more discoverable. By contrast, description
editing was highly intuitive when found, with a rating of 4.2 out of
5, and users were pleased with the hover behavior. One participant
said that "hovering was pretty clear," while another characterized
the editing process as "chill." However, some participants expected
the description editing controls to be part of the node context menu,
instead of being placed separately at the bottom of the screen.
The status change functionality showed high comprehension, with
a clarity rating of 4.4 out of 5, but mixed reception to its
implementation. All participants correctly identified that the color
white meant "not started," yellow meant "in progress," and green
meant "completed." However, several participants had accessibility
concerns, with one suggesting, "Need label [and] strikethrough
cross to make it work," to provide better visual distinction,
particularly for color-blind users. Another participant said that
using colors to indicate status could conflict with color-coding for
categorization, commenting, "People could use colors to color code
so using colors to represent status wouldn't be that effective."

4.4 Panel and Layout Interactions
The toggle of the description panel was one of the hardest to find,
with search times ranging from 5.48 seconds to over 50 seconds.
This wide spectrum of search times reflects significant usability
problems pertaining to visibility and position of the feature. In
addition to that, the function of the toggle also scored relatively low
with an average score of 2.5 out of 5. Participants questioned the
need for a dedicated toggle and stated that the same result may be
attained by clicking outside of other regions of the interface:
"Would never be turning off the description from up there, would
be clicking outside the thing instead." One participant stated that
the description panel "doesn't give that much meaning/real estate"
and mentioned that it "doesn't preserve line breaks and things so it
is smooshed in one thing."
Smoothness of transitions between opening and closure of the chat
panel received mixed assessments with a mean score of 3.6/5 based
largely on issues with the observed latency between the panel
closure and the recenter of the graph. A number of participants
called the delay "jarring" or "disorienting." One participant stated,
"The latency in the moving is jarring. It is nice in the way that it
moves but it takes too long." Participants suggested that the graph
should instantly react or move together with the panel: "The graph
should do it as I close it."

4.5 Task Breakdown Structure Analysis
The original structure with a main task and three subtasks was
subject to multiple interpretations. An overwhelming majority of
participants perceived a time-based sequence since three out of five
participants mentioned the same upon being asked explicitly to list
them in sequence with the main task. Participants rated the clarity
of the three-node structure at 3 out of 5 upon being asked to design
their own assignments from scratch. Participants viewed the
subtask structure as largely helpful in general with one participant

noting that it "helped me to split it into pieces, made it less
overwhelming." However, participants had divergent opinions with
regards to the optimal number of subtasks with most arguing that
that should be context-dependent: "Would depend on the task. If it
is autogenerated, then it should know how many subtasks there
are."
Participants identified multiple visualization problems in impeding
their understanding of task relationships. One of these problems
was related to node spacing with one participant insisting that "the
nodes should be more spread out to clarify relationships." Many of
the participants described being unable to separate main tasks from
subtasks in the visual hierarchy. An ongoing technical issue was in
creating multiple subnodes in a task causing node overlap that
created visual ambiguity. One participant stated that "the creation
overlaps a previous node," which shows a lack of space distribution
in the force-directed layout.

Figure 5. Summary of task completion time by feature

Figure 6. Summary of participants’ feature ratings

5 DISCUSSION
The empirical study of the TaskGraph application produced
significant insights in relation to user interaction with systems that
utilize graph-based task visualizations. Participants had the ability
to understand the general concept of representing tasks in the form
of a networked set of nodes where the graphical organization
allowed them to perceive the complex dependencies between tasks.
In the words of one of the participants, the graph visualization
"allowed me to divide it into pieces, made it less overwhelming,"
which indicates the enabling nature of spatialization.
The selection mechanisms used and the highlighting were
positively reviewed since the visual cues of the selected nodes were
perceived to be visible and understandable by the participants.
Animation of the selected nodes was met with high ratings, with a
mean score of 4.6 out of 5 and hence ranked among the most
important traits of the application. These results suggest that
feedback in the form of dynamic visualizations contributes to

CAPSTONE RESEARCH, May 2025, University of Virginia, USA L. Pheng

maintaining user interest and improving spatial perception of the
graph.
However, the study demonstrated substantial differences between
user expectations and the system's operational performance. Most
users had expected the chat interface to communicate in a
conversational style instead of generating a graphical
representation. This discrepancy in expectations identifies the need
for clearer information about the application's functions and better
guidance for novice users.

5.1 System Effectiveness Evaluation
The force-directed graph showed mixed success in its ability to
visualize tasks. While participants appreciated the visualization of
relationships between tasks, they experienced spatial and visual
hierarchy problems. The automatic layout of nodes sometimes was
counterintuitive, as several participants noted that nodes would
overlap when creating several subtasks from one parent task. One
participant remarked particularly that "the nodes should be more
spread out to clarify relationships," which indicated that the current
implementation of the force simulation may require additional
improvement. The color-coding system for task status—where
white is not started, yellow is in progress, and green is complete—
was fully understood but was questioned in terms of its accessibility
and usability. Several participants expressed concerns related to its
suitability for color blindness; one suggested that task status should
be indicated by both "label [and] strikethrough" in addition to the
use of color. In addition, another participant raised a fundamental
issue by noting that "people could use colors to color code so using
colors to represent status wouldn't be that effective," thus
highlighting a potential conflict between the indication of status
and the categorization organization.
The task management and editing features showed varying degrees
of effectiveness. Task action context menu, available via right-
click, had moderate discoverability problems since participants first
resorted to other interaction patterns. Most users tried double-
clicking before recognizing the right-click menu, and it was shown
that the application may be improved with use of multiple
interaction patterns to cater to different expectations from users.
Description edit was positively rated for being intuitive once
discovered, with participants commending the use of hover controls
to edit. However, there was confusion over where to place these
controls since most users expected them placed in the node context
menu and not in a distinct panel at the screen's bottom end. This
difference between where users expect and where the controls were
placed is a significant usability issue. Three-state task status was
understandable to participants, even though it had implementation
problems. While all participants correctly interpreted what was
being represented with changing colors, some complained about
clarity and access to visual presentation of the approach in question.
Status changes were rapidly performed with little time for
interaction to become oriented to them, yet lacked enough visual
differentiation to be immediately identified and understood by all
users.

5.2 System Integration
The integration of the chat interface with the graph visualization
provided many points of improvement opportunity. Participants
took 33.7 seconds on average to find the chat panel, implying poor
visibility or placement. Users talked about uncertainty over the
purpose of the chat in the context of creating tasks since most
expected a conversational response and not automated production
of graphs. Transition from chat entry to graph visualization lacked
adequate feedback. Participants consistently commented on the
lack of loading indicators over the processing time of 17 seconds
on average; one of them suggested the use of "3 dots" to signal that
the system was working. This lack of feedback caused confusion
over the correct operation of the system that could undermine user
confidence. On opening and closing the chat panel, participants
noted significant latency issues with the recentering of the graph.
The duration from the closing of the panel to the adjustment of the
graph that ensued was described by several participants as "jarring"
or "disorienting." One participant explicitly commented that "the
latency in the moving is jarring. It is nice in the way that it moves
but it takes too long," which indicates that the animation design was
appreciated while execution needed to be improved.
The coherence of the user interface overall reflected inconsistencies
between interaction patterns and ease of discovering functions.
Toggling the description panel was problematic in that search times
oscillated between 5.48 seconds and more than 50 seconds. Such
wide variability indicates a salience flaw that interrupted otherwise
smooth interaction with the system. Users gave feedback on
particular component usability of the interface and commented that
the description panel "doesn't give that much meaning/real estate"
and that it "doesn't hold line breaks and things so it is smooshed in
one thing." Such comments reflect the importance of more
advanced text format capabilities to allow more complete task
descriptions.

5.3 Key Challenges and Limitations
The research conducted revealed some serious user experience
challenges. Foremost among the challenges was discoverability of
the node edit option accessible by right-click, which acted as a
barrier to task management effectiveness. Placing of the edit
controls evenly in the context menu and in the description panel
caused confusion and increased the learning curve. In addition to
that, the toggle option of the description panel acted as a significant
usability challenge since many of the participants had problems
finding it and questioned its purpose. One participant stated that
they "would never be turning off the description from up there,
would be clicking outside the thing instead," which shows that the
toggle feature reflected current interaction patterns in a less
intuitive way. Another challenge that arose was in interpreting the
structure of the graph itself. Participants tended to infer a sequential
relationship between the main task and its subtasks from the
visualization itself even though the visualization was intended to
show hierarchical relationships and not to infer a sequence. This
mismatch between the intended meaning and the perceived
interpretation can cause confusion during the planning and
execution of tasks.

L. Pheng CAPSTONE RESEARCH, May 2025, University of Virginia, USA

The technical implementation uncovered many limitations that
substantially affected the general user experience. On some
occasions, the force-directed algorithms produced less than ideal
node arrangements, particularly where many subtasks originated
from a common parent task. This generated visual clutter and
difficulties in comprehending the task relationships. Moreover,
long transition times between panels adversely affected what
otherwise should have been a smooth experience with users
commenting on perceived delays between their actions and
feedback from the system. One user stated that "the graph should
do it as I close it," highlighting the need for instant visual feedback
that was unmet. Users concluded that the text processing
capabilities of the field of description were inadequate since it
"doesn't save line breaks and things so it is smooshed in one thing."
This limitation weakened rich task descriptions and probably
discouraged users from providing additional information.

5.1 Future Development Opportunities
Future versions of TaskGraph can benefit greatly from refinements
in visualization methods. A more sophisticated force simulation
can improve the spacing of nodes, avoid overlaps, and clarify
relationships. As one participant put it, "the nodes need to be more
spaced out to make relationships clear." The status visualization
mechanism can be extended to use a wider range of visual cues
other than color, adding such elements as icons, text labels, or
strikethroughs for completed tasks. Not only would this remedy
accessibility problems, but it would also allow users to reserve
color for other organizational structures. A stronger visual
hierarchy would help users distinguish between primary tasks and
their respective subtasks, and therefore remedy the confusion
experienced by several users. This could include size variations,
border types, or other visual discriminators that emphasize the
parent-child relationships.
The model of interaction has to be scalable to allow multiple routes
to similar functions in order to cater to multiple user expectations.
For example, editability may be supported through double-click
and right-click in a way that increases the system's ease of use to a
large user population. In addition to that, edit controls may be
standardized to avoid confusion so that all task management
functions may be accessed from one context. Such a change will
remove the current dichotomy between edits at the node level and
modifications to the descriptions and create a unified user
experience. Finally, there should be added loading indicators and
transition animations to offer feedback about working procedures
to the user. Having "3 dots" or similar loading indicators during
processing is a good way to meet user feedback about lack of
information during waiting times.
This study focused more on the visualization interface than on
artificial intelligence integration, but participants indicated that
they would prefer a greater variety of functions related to task
decomposition. Future developments may address more adaptive
decomposition methods that can modulate based on both task
complexity and user preferences. In addition, the chat interface can
be developed into a more conversational style, along with more
advanced visual task hierarchies, which will more closely align

with user expectations while still maintaining the strengths of
graph-based visualizations. In-system customization features will
enable the system to learn from user interactions and conform to
personal working styles. Since participants had varying preferences
for task structure and breakdown granularity, an adaptable program
is likely to offer increasingly personalized experiences over time.

5.5 Broader Implications
TaskGraph demonstrates a next-generation task management
methodology that aims to overcome the weakness in traditional
linear lists and hierarchical systems. Portraying tasks as nodes in an
interactive network has the prospective benefits of enabling users
to better understand complex task relationships and dependencies.
Outcomes from this study translate to more than one specific
application. They show that visualizations involving graphs can
improve users' capacity to form mental images of complex tasks
and potentially ease mental load and task accomplishment. One
participant commented that the visualization "allowed me to break
it down into parts, made it less daunting." However, the challenges
discovered—most importantly with regards to interaction patterns,
feature discoverability, and visual clarity—identified that careful
design is required to embrace innovative visualization methods.
Users come with expectations shaped by traditional systems and
deviations from these ingrained patterns require explicit guidance
and feedback to deliver a productive user experience. For users
experiencing executive function challenges, such as individuals
with a diagnosis of ADHD, TaskGraph methodology shows great
value in yielding visual assistance to undertake complex tasks. It
remains to be studied specifically to evaluate its effectiveness in
reducing "functional freeze" and improving task initiation and
accomplishment in such demographics. While task management
moves towards more visual and increasing use of AI-infused
methodologies, TaskGraph demonstrates serious insight into the
prospective benefits and pitfalls in applying graph-based
visualization. By refining its interaction design, visual feedback,
and use of AI, it may be an important step in making complex task
management more intuitive and accessible.

ACKNOWLEDGEMENTS
I would like to thank Yanson Khuu for developing the AI
integration portion of the application and the feedback throughout
the initial design process. Further implementation of TaskGraph
will be incorporated using this study and his expertise.

REFERENCES
[1] R. A. Barkley, Attention-Deficit Hyperactivity Disorder: A Handbook for

Diagnosis and Treatment, 4th ed. New York: Guilford Press, 2015.
[2] R. Vasturiano, "react-force-graph," GitHub repository. [Online]. Available:

https://github.com/vasturiano/react-force-graph.
 [3] Atlassian. 2023. Jira Software: The #1 software development tool used by agile

teams. Atlassian. https://www.atlassian.com/software/jira
[4] Mona Haraty, Joanna McGrenere, and Charlotte Tang. 2016. How personal task

management differs across individuals. International Journal of Human-
Computer Studies 88, 1 (2016), 13-37.

[5] MeisterLabs. 2023. MindMeister: Online Mind Mapping and Brainstorming.
https://www.mindmeister.com/

[6] XMind Ltd. 2023. XMind - Mind Mapping Software. https://www.xmind.net/
[7] Miro. 2023. The Visual Workspace for Innovation. https://miro.com/

CAPSTONE RESEARCH, May 2025, University of Virginia, USA L. Pheng

[8] Sönke Ahrens. 2017. How to Take Smart Notes: One Simple Technique to Boost
Writing, Learning and Thinking. CreateSpace Independent Publishing Platform.

[9] Roam Research. 2023. A note-taking tool for networked thought.
https://roamresearch.com/

[10] Obsidian. 2023. A second brain, for you, forever. https://obsidian.md/
[11] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.

2018. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall.
[12] Colin Ware. 2021. Information Visualization: Perception for Design (4th

Edition). Morgan Kaufmann.
[13] Amy X. Zhang, Michael Muller, and Dakuo Wang. 2022. How AI-based systems

can improve task breakdowns: A study of granularity in task management. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (CHI '22).

[14] Goblin Tools. 2023. Goblin Tools: AI-assisted tools for everyday tasks.
https://goblin.tools/

