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Abstract

Thirty years after the ”Spin Crisis” began, there is still uncertainty surrounding

the spin structure of the nucleon. SpinQuest Experiment E1039 at FermiLab will

attempt to probe the internal transverse dynamics of the nucleon via Drell-Yan

scattering of a 120 GeV proton beam from a polarized proton target to determine

if the orbital angular momentum of the sea-quarks contributes to the overall spin

of the nucleon.

In order to understand a leading contribution to the overall systematic uncertainty

in this experiment, a study was performed to calculate and evaluate the uncertainty

in the dilution factor of the experimental target. This thesis catalogs that effort,

highlights where it overlaps with other sources of systematic error, and suggests

future work aimed at reducing the overall systematic error of the experiment.
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Chapter 1

Introduction

Humans have been pondering the nature of matter for millennia. Although Dem-

ocritus came surprisingly close to the truth 2500 years ago with his atomic theory,

until relatively recently the prevailing belief was in the continuity of matter. Be-

fore the scientific revolution, most western thinkers still adhered to the Aristotelian

model of five elements (water, wind, fire, air, and aether), which combined in dif-

ferent ratios and ways to make everything in the universe.

In the last century, we have greatly advanced our understanding of the composition

of matter. J.J. Thomson’s discovery of the electron in 1897 began a cascade of

discoveries, leading to the model we have today. In the current model, known as

the Standard Model, there are seventeen types of particles which interact through

three forces. Five of the particles are bosons which mediate the electroweak and

strong forces between the other particles (gravity has no known mediator, although

the existence of a graviton boson has been posited). The other twelve are fermions,

split into three generations: ordinary, exotic and very exotic.

The ordinary generation fermions include the up quark (u), down quark (d), elec-

tron (e), and electron neutrino (γe). These each also have anti-particles associated

with them, which have equal mass and opposite electric charge. Those particles

are denoted by a bar over their symbol (i.e. ū). The up quarks and down quarks

combine to form long-living hadrons, which make up most of the matter in the

universe. Studying the way they combine is now one of the main goals of physics

research into matter.

1



Introduction 2

Much of this research is into the way that the interactions of the quarks give rise

to the properties of the protons and neutrons they are contained within. These

properties include the mass, the magnetic moment, charge density, and the spin of

the nucleon, as well as the interactions between nucleons when they collide with

other particles.

The best way to probe these particles is through particle scattering. By acceler-

ating particles and colliding them, we can analyze observables such as the cross-

section of the particles, which is a measure of the likelihood of a certain process

occurring during a collision. By measuring these observable quantities, we can

infer the structure and dynamical properties that affect that process.

It has become clear over the past fifty years that the interactions of the particles

within the nucleon contribute just as much, if not more, to the nucleon properties

as the properties of the individual constituent particles. The mass of the proton,

for instance is approximately one-hundred times greater than that of the three

quarks that it contains.

Another mystery is the composition of the spin of the nucleon. Known as the spin

crisis, for thirty years physicists have known that a large amount of the spin of

the proton is unaccounted for based on our current knowledge of the dynamics

of the interior of the proton. Using Drell-Yan scattering, SpinQuest will measure

the correlation between the angular distribution of the resulting dimuons and

the polarized spin of the proton. It will measure the so-called Sivers function

asymmetry of ū and d̄ antiquarks within the nucleon. If this asymmetry is non-

zero, then the antiquarks must have a non-zero orbital angular momentum (OAM).

A non-zero OAM of these charged particles would contribute to the overall spin

of the nucleon.

Other experiments, such as those by HERMES[6], COMPASS[7] and JLab [8]

have suggested such an asymmetry exists for the valence quarks of the nucleon,

but there has not been a high-precision measurement of the asymmetry for sea

quarks. The asymmetry is thought to be very small, requiring a very precise

measurement. Hence, reducing sources of uncertainty is critical.

By using the Drell-Yan process rather than Semi-Inclusive Deep Inelastic Scatter-

ing, it is possible to isolate the sea quarks of the target nucleus. Drell-Yan also

has the added benefit that the resulting particles do not fragment, which simplifies

signal processing and makes it the cleanest way to probe the Sivers function.
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For the experiment, a polarized target of either NH3 or ND3 ammonia will be

bombarded by 120 GeV protons from the main injector particle accelerator at

Fermilab. By using a polarized target, we are able to directly probe the spin

degrees of freedom of the target nucleons. In the analysis of these experiments, it

is important not only to know the degree of polarization, but also what portion of

the target consists of polarizable nucleons.

The portion of the target that can be polarized is known as the dilution factor.

The dilution factor appears as a critical part of the analysis, and knowing it with

good precision reduces the experiment’s ultimate error. The calculation of the

dilution factor is, however, non-trivial, as the specific dynamics of the experiment

affect its value. This thesis will aim to calculate the dilution factor for the target

used in E1039, to reduce the uncertainty in that value, and to create a process

that will allow for its simple and accurate calculation in future experiments.



Chapter 2

Background and Motivation

2.1 Nucleon Structure

Since their discoveries, our understanding of the nature of protons and neutrons

has not stopped evolving. Once thought to be fundamental particles, we now

know that they are composite particles. There is still uncertainty surrounding

their internal dynamics, which has attracted a great deal of research.

2.1.1 Parton Theory

In the 1960s, Murray Gell-Man and George Zweig independendly postulated the

existence of so-called quarks, which combined in various ways to form hadrons[9][10].

About five years later, Richard Feynman proposed a model of partons to de-

scribe hadron collisions, which later proved to overlap with Gell-Man and Zweig’s

theories[11].

The parton model describes the interior dynamics of hadrons using point-like

quarks and gluons as constituent particles. Quarks and antiquarks can combine

either into triplets, called baryons, or pairs, called mesons. Each quark has a

”color” charge, which can be red, blue, or green. Antiquarks also carry a color

charge, which is denoted by anti-red, anti-blue, or anti-green. Any composite par-

ticle must be ”colorless”. This means that when forming a baryon there must be

one quark of each color, and when forming a meson there must be a quark and

anti-quark of the same color.

4



Background and Motivation 5

According to the parton model, there are two flavors of quarks that make up the

vast majority of matter: up quarks and down quarks. An up quark has a charge of

+2/3 and a down quark has a charge of −1/3, and both are spin 1/2. The proton

is made of two up quarks and one down quark, and the neutron is made of two

down quarks and one up quark. The spin of two quarks is aligned with the spin of

the nucleon, and one is anti-aligned. For instance, the wave function of a spin-up

neutron is given by:

∣∣n↑〉 =
1

6
(2
∣∣d↑d↓u↑〉− ∣∣d↑d↑u↓〉− ∣∣d↓d↑u↑〉) (2.1)

This theory has been refined in the past fifty years, and the current theory includes

the mediation of the forces between the quarks by gluons, and the existence of

virtual quark-antiquark pairs. These pairs pop in and out of existence due to the

high energy density in the interior of the nucleon. The pairs are referred to as

sea quarks, to distinguish them from the three valence quarks. The gluons are

bosons that mediate the strong interaction similarly to the photon mediating the

electroweak force. The gluon also carries color charge and has an intrinsic spin of

1, which makes quantum chromodynamics (QCD) more complex to analyze than

quantum electrodynamics (QED)[12].

2.1.2 The Spin Crisis

In the original parton model, the spin of the nuceleon was carried entirely by

the valence quarks. The stability of nucleon’s measured spin seemed to confirm

this, as chaotic internal dynamics would seem to add a degree of randomness in

the observable. Problems began to arise in the late 1980s, when the European

Muon Collaboration measured the valence quark contribution to the spin of the

proton. They found that the intrinsic spin of the valence quarks contributed a

very small amount to the entire spin. Their analysis found that the spin of the

quarks contributed (14 ± 9 ± 21)% of the spin of the proton, which is consistent

with zero[13].

More recent studies have found that although the spin of the valence quarks does

contribute to the overall spin of the nucleon, the intrinsic spin of the constituent

quarks and gluons are not sufficient to account for the entire spin. For that

reason, it is now believed that the orbital angular momentum of the partons also
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contributes to the spin of the nucleon. Recent studies using lattice quantum

chromodynamics (LQCD), a non-perurbative method to solve QCD, estimate that

60% of the spin comes from the intrinsic spins of quarks and gluons, and the

remaining 40% comes from the orbital angular momentum of the quarks, as shown

in Figure 2.1.

LQCD evaluates QCD by dividing space-time into discrete points, with connecting

links between neighboring points. The fermion fields are defined at each point

of the lattice, and the gauge fields are defined on the links between the points.

This allows QCD to be solved without any assumptions, letting theorists calculate

observables from first principles. As the spacing between the points approches

zero, the limit of continuous QCD is recovered.

Figure 2.1: Spin breakdown of a proton (Wieste et al.)[1]. Approximately 80%
of the spin is contributed by the quarks, of which half is from orbital angular

momentum of the quarks.

According to a recent calculation by Wieste et al.[1], the majority of the contribu-

tion from orbital angular momentum comes from the antiquarks in the nucleon sea,

with the valence quarks accounting for a fairly small portion of the spin. In order

to test this theory, it is therefore desirable to make a measurement confirming the

orbital angular momentum of the sea quarks and that it is indeed non-zero.

2.2 Scattering

When two particles pass close to each other, there is a chance that they will

interact and either create new particles or simply alter their paths. By studying

these interactions, it is possible to study the particles that participate in those

scattering process.
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2.2.1 Scattering Cross-Sections

The probability of a specific process occurring when two particles interact is called

its cross-section. If it is the probability of the interaction happening with some

specified result, it is referred to as the differential cross-section, and if it is inte-

grated over all possible results it is referred to as the total cross-section. Cross-

sections are derived from the forces between the two particles. For most processes

of interest, this is either the electroweak force using quantum electrodynamics

(QED) or the strong force using quantum chromodynamics (QCD).

Composite particles such as nucleons, can act either as a single particle or a col-

lection of particles depending on the context and nature of the interaction. For

instance, when a low energy electron scatters off of a proton, it ”sees” the proton as

a point-like particle. However, if the electron is of sufficiently high energy, it is able

to resolve the individual quarks within the proton and probe their distribution.

Precise predictions of the distribution of quarks within composite particles are

not obtainable from QCD with current computational methods[14]. For this rea-

son, cross-sections involving nucleons have some uncertainty attached to them

due to the uncertainty in quark distributions. By performing experiments involv-

ing nucleons and analyzing their results, it is possible to reconstruct these quark

distributions, and make better predictions of other cross-sections[15].

2.2.2 Drell-Yan Scattering

When two hadrons collide, it is possible for a quark from one and an antiquark

from the other to annihilate, creating a virtual photon which then decays into

a dilepton pair. This is known as the Drell-Yan process. Figure 2.2 shows the

first-order Feynman diagram for this process[16].

Using the formalism in reference [17], we define the following quantities:

q = (q0, qT , qL) Q2 = M2 = (−q)2 y =
1

2
ln
q0 + qL
q0 − qL

(2.2)

xF =
2qL√
s

= x1 − x2 s = (E1 + E2)2 sx1x2 = M (2.3)

Here q is the four-momentum, q0 is the rest mass, and qT and qL are the transverse

and longitudinal momenta of the virtual photon in the Drell-Yan process. The
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Figure 2.2: The first-order Feynman diagram for the Drell-Yan process.

square of the invariant mass of the resultant leptons is equal to Q2, and s is the

square of the center-of-mass energy of the collision. xF is referred to as the Fermi-

x, and x1 and x2 are the Bjorken-x for the beam and target, respectively. These

can be calculated from the xF , s and M via

x1,2 =
1

2
(

√
x2
F +

4M2

s
∓ xF ). (2.4)

To first order, the cross-section is dependent only on the quark and antiquark

distributions (q and q̄) inside the proton as a function of x1, x2 and the Q2 of the

collision. The x differential cross-section is given by

dσ

dx1dx2

=
4πα2

9sx1x2

∑
i

e2
i (q

B
i (x1, Q

2)q̄Ti (x2, Q
2) + q̄Bi (x1, Q

2)qTi (x2, Q
2)), (2.5)

where ei is the charge of the specified quark flavor and α is the fine structure

constant. Since the cross-section is inversely proportional to s, the Drell-Yan

cross section falls off as the energy of the collision increases.

As seen in Figure 2.3, quarks are distributed heavily at larger x values, while

antiquarks are distributed at small x values. This means that if we select events

that have large x1 values and small x2 values, then the quarks from the beam

protons and the antiquarks from the target proton are selected. The x-differential

cross-section is given by

dσ

dx1dx2

≈ 4πα2

9sx1x2

∑
i

e2
i q
B
i (x1, Q

2)q̄Ti (x2, Q
2). (2.6)
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Due to the charges of up and down quarks (+2/3 and -1/3), this process is domi-

nated by the up quarks in proton-proton collisions and is mixed in proton-neutron

collisions. Therefore it is necessary to do proton-proton collisions to probe the

distribution of up quarks, and then using that information, it is possible to ex-

tract information about the distribution of down quarks from proton-deuteron

scattering[18].

2.3 Parton Distributions

Current theory says that the state of each quark can be defined as a probability

density in 3-position and 3-momentum space[19]. These distributions are not ob-

servable, so instead we must rely on other characterizations for our understanding

of the internal dynamics and composition of the nucleon.

2.3.1 Parton Distribution Functions

PDFs characterize the probability density that a particle with a certain longitudi-

nal momentum fraction, x, is found at a specific resolution scale Q2[20]. Although

it is theoretically possible to calculate the PDFs directly using lattice QCD, current

computational power is not sufficient[14]. It is therefore necessary to analyze the

differential cross-sections of various scattering processes derived from experiment

to extract the PDFs.

One method to probe the parton is through deep inelastic scattering of leptons

(DIS). Indeed, the first evidence of a substructure of the nucleon was from a DIS

experiment in 1968[21][22]. In DIS experiments, a high-energy lepton (electron,

muon or neutrino) is scattered off of a hadron and deposits some energy into the

hadron (hence inelastic).

By measuring the dynamics of the scattering, the internal dynamics of the hadron

can be reconstructed. There are different collaborations who use experimental

results to create PDFs, which are then published in packages. This is done by

global analysis of hard-scattering data within the framework of perturbative QCD.

For one collaboration, the MMHT Collaboration, this is done using data from the

Fermilab Tevatron and the CERN Large Hadron Collider.[2] These distributions
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can then be sampled using Monte Carlo simulations to predict behaviors and

observables of nucleons. [20]

This distribution is typically reported as fp,ni (x,Q2), where Q2 = (−q)2 and x is

the Bjorken-x, which represents the fraction of the hadron momentum that the

parton contributes, i indicates the flavor of the quark, and p or n indicates the

nucleon in question. At lower Q2, the valence quarks dominate in the parton, and

as Q2 increases the number of quark-antiquark pairs increases, which increases the

amount of momentum carried by the antiquarks. An example from the MMHT

Collaboration [2] is shown in 2.3.

Figure 2.3: The leading order MMHT 2014 PDFs for all flavors of quarks at
Q2 = 10GeV. Curves are derived by fitting QCD to global hard-scattering data.

Uncertainties shown are one standard deviation[2].

2.3.2 Flavor Asymmetry of the Nucleon Sea

Theory does not explicitly predict an equal number of ū and d̄ antiquarks in the

nucleon sea, there was no known reason for an asymmetry. Since the quark-

antiquark pairs in the sea are created by the energy of the field, and the energy is

much higher than the mass of either ū or d̄, it should be expected that they are

created at equal rates.

Experiments have shown that there is in fact an asymmetry in the prevalence

of the pairs[23]. The NuSea collaboration at Fermilab probed this asymmetry
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by measuring the ratio of the Drell-Yan cross-section of proton-deuteron scatter-

ing compared to proton-proton scattering. One can relate this ratio to the d̄/ū

asymmetry with the expression

σpd
2σpp
|x1�x2 ≈

1

2

(1 + 1
4
d1
u1

)

(1 + 1
4
d1
u1

d̄2
ū2

)
(1 +

d̄2

ū2

) (2.7)

where subscripts of 1 refer to the beam protons and subscripts of 2 refer to target

protons or neutrons [24].

The NuSea analysis found a large asymmetry in the x2 < 0.35 range, as shown

in figure 2.4. This asymmetry, and more generally the non-unity ratio of the

deuteron-proton cross section ratio will be important effects in analysis of E1039.

Figure 2.4: d̄/ū asymmetry extracted from deuteron-proton cross section ratio
by Fermilab E866. Errors shown are statistical only. A result from NA51 [3]
is also shown, as is a prediction of the asymmetry from the CTEQ4M parton

distribution function.

2.3.3 Nuclear Modifications of Nucleons

Measurements using DIS show that nuclei do not have the same scattering cross

sections when they are in nuclei as when they are free. This is known as the EMC

effect.[25] This discovery was surprising, due to the difference in energy scales

between DIS energy transfers (GeV scale) and the binding energies of nucleons

(MeV scale).
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There are many theories that explain this effect, which can broadly be separated

into two categories, either using traditional nuclear effects, or using more exotic

effects. Tradition effects include binding effects, parton momentum distributions,

and pion exchanges. More exotic effects include rescaling of the parton distribu-

tions, bag models, or internal structure modification[26][27]. Although not identi-

cal, this effect has also been observed in Drell-Yan scattering[28].

Research is ongoing as to the correct explanation of the EMC effect, but while

the cause is unknown, the effect is well characterized. It is therefore possible to

calculate an effective correction to the PDF of a proton within a nucleus. These

corrections depend on both the Bjorken-x and Q2 of the collisions[29].

In order to make these corrections, a nuclear correction factor is applied to free nu-

cleon PDFs. These corrections can be either be measured using data from both nu-

cleon experiments and nuclear experiments, or be calculated using nucleon PDFs.

As an example, the following, from Reference [30] shows the process to calculate

the nuclear corrections. At Q = 1.3GeV , the nuclear PDFs are parameterized by

xfk(x,Q
2) = cox

c1(1− x)c2ec3x(1 + ec4x)c5 (2.8)

d̄(x,Q2)/u(x,Q2) = c0x
c1(1− x)c2 + (1 + c3x)(1− x)c4 , (2.9)

where fk is a stand-in for the PDF of all the varieties of partons present in the

nucleon, and the cn are each specific to the flavor. A correction is made to the cn

for a specific atomic weight A

cn −→ cn(A) ≡ cn,0 + cn,1(1− Acn,2). (2.10)

Applying these corrections gives a corrected PDF given by f
p/A
i (x,Q2). The neu-

tron PDF, f
n/A
i (x,Q2)m can be related to that of the proton via isospin symmetry.

These are then used to make the per-nucleon PDFs for the nucleus, where Z is the

atomic number.

f
(A,Z)
i (x,Q2) =

Z

A
f
p/A
i (x,Q2) +

(A− Z)

A
f
n/A
i (x,Q2). (2.11)

By applying these corrections, it is possible to make more accurate predictions of

cross-sections and therefore yields of hadron scattering experiments[31].
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2.3.4 TMDs and the Sivers Function

The Transverse Momentum Distributions (TMDs) describe the correlation of the

transverse momenta of quarks and the transverse spin of the nucleon. Like PDFs,

they are measures of the distribution of quarks within the nucleon. Asymmetries

in parton distributions are encoded in the TMDs, which allows them to give insight

into internal dynamics of the nucleon. Additionally, current computational power

is capable of calculating predictions of the TMDs.

The TMDs are derived using the quark-quark correlation function, which can be

found in Reference [4]. There are eight leading TMDs, as shown in Figure 2.5.

Figure 2.5: The quark TMDs, taken from reference[4].

Of particular interest to us is the Sivers function, which represents the relationship

between the transverse momentum of an unpolarized parton with the spin of a

transversely polarized nucleon. Originally suggested by Dennis Sivers in 1989

to explain asymmetries seen in hadron-hadron collision experiments, a non-zero

Sivers asymmetry suggests orbital motion of the partons within the nucleon. This

asymmetry is believed to be very small, which has meant that its measurement

requires very high-precision and low-error experiments.[32]
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2.3.5 Dilution Factor

To extract the Sivers function asymmetry (AT ) from the Drell-Yan scattering in

E1039, we use the equation

AT =
2

f |ST |

∫
dφSdφ

dN(xB ,xT ,φ,φS)
dφSdφ

sin(φS)

N(xb, xT )
(2.12)

where φS is the azimuthal angle of the transverse spin orientation of the target,

φ is the azimuthal angle of the dimuon pair in the Collins-Soper frame (as seen

in Figure 2.6), ST is the transverse component polarization of the target rela-

tive to the virtual photon direction, N is the number of events detected in each

(xB, xT , φ, φT ) bin, and f is the dilution factor of the target.

Figure 2.6: The Drell-Yan process in the Collins-Soper frame.

The dilution factor is defined as the ratio of polarizable nucleons to total nucleons

in a target. For ammonia, this is given by the ratio of the number of hydrogen

nucleons to the total number of nucleons. Naively, this is

f =
NH

NH +NN

=
3

3 + 14
≈ 0.176 (2.13)

Where NH is the number of protons, and NN is the number of nucleons in nitrogen.

However, the picture is more complicated for dynamic systems. A more accurate

equation for the dilution factor would be given by

f =
3σH

3σH + σN
(2.14)

where σH and σN are the Drell-Yan cross-sections of hydrogen and nitrogen, re-

spectively.
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There are more materials in the experimental beam path than just ammonia, which

means the amounts and cross-sections of those materials must also be accounted

for when calculating the dynamic dilution factor. Due to this, the dilution factor

of the target will actually be given by the equation

f =
3σH∑
ANAσA

(2.15)

Where A is a stand-in for each nuclei in the beam path. The dilution factor can

also be defined for a given kinematic value by substituting the total cross-sections

with the differential cross-sections of each nuclei. This would then be given by

f =
3d4σH(xB, xT , φ, φT )∑
ANAd4σA(xB, xT , φ, φT )

. (2.16)

Using numerical integration of the Drell-Yan cross-sections, this will be calculated

in Chapter 4 of this thesis.



Chapter 3

Tests of Monte-Carlo Femptobarn

3.1 Monte Carlo Femptobarn

When faced with probabilistic processes or non-analytically solvable integrals, it

is often useful to turn to Monte Carlo simulations. In this case, we are in fact

faced with both: the cross-sections are dependent on the probabilistic PDFs, and

are given by complex-valued, non-analytical integrals.

Monte Carlo simulations sample probability distribution functions in order to cre-

ate a large sample of events which can then be used to give numerical results.

This allows predictions to be made using theories that are too complex for direct

analysis. This is the process we will use to calculate differential cross-sections for

Drell-Yan scattering.

The program used in these analyses is Monte Carlo for FeMtobarn Processes

(MCFM). It is a parton level Monte Carlo program that samples parton distri-

bution functions to calculate cross-sections for hundreds of processes in hadron

colliders. These calculations can be done at leading order (no loops in Feynman

diagrams), next-to-leading order (one loop corrections), or in some cases next-to-

next-to leading order (two loop corrections) in QCD. Higher order calculations are

more accurate, but require significantly longer computer time to achieve the same

precision as leading-order calculations.

16
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3.1.1 MCFM Cross-Section Calculation

MCFM uses a subtraction method that allows for numerical NLO calculations of

QCD while avoiding the singularities that are generally encountered when using

one-loop corrections[33]. The NLO cross-section is given by

σ = σLO + σNLO. (3.1)

The LO contribution to the cross-section can be calculated using the Born approx-

imation,

σLO ≡
∫
m

dσLO =

∫
m

dσB, (3.2)

where m is the number of partons in the final state, and the integral is evaluated

in 4 − ε dimensions. This integrand is entirely real, allowing this integral to be

calculated numerically. The NLO part of the cross section can be split into two

parts,

σNLO ≡
∫
dσNLO =

∫
m+1

dσR +

∫
m

dσV , (3.3)

where dσR is the real exclusive cross-section with m+ 1 partons in the final state

and dσV is the virtual one-loop correction to the process with m partons in the

final state. These both diverge when evaluated in d = 4, but their divergences

cancel. Computational integration of each is not directly possible, so the integrals

need to be redefined in order to calculate them. This can be done by using the

subtraction method, which involves the identity

dσNLO = [dσR − dσA] + dσA + dσV , (3.4)

where dσA is an approximation of dσR that, in d dimensions, has the same point-

wise singular behavior as dσR. This allows it to behave as a counterterm, cancelling

the singularity. Thus,

σNLO =

∫
m+1

[dσR − dσA] +

∫
m+1

dσA +

∫
m

dσV . (3.5)

The first term is can now be numerically integrated in four dimensions. The second

and third terms can then be combined by analytically integrating the last term,

which can then be used to cancel the singularity in the second-to-last term. This
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means that the calculation can be written

σNLO =

∫
m+1

[(dσR)ε=0 − (dσA)ε=0] +

∫
m

[dσA +

∫
1

dσV ]ε=0. (3.6)

These can then be numerically integrated by sampling partonic events[34].

MCFM does this by sampling a user-specified PDF, using the VEGAS algorithm

which allows events to be sampled at a higher rate in areas of interest. To do this,

the program runs several iterations of the simulation to condition the algorithm

and identify the part of parameter-space that contributes the most to the integral,

and then runs through more iterations where more events are sampled in that

area. The events are then weighted, giving a higher precision integral with fewer

events[33][35].

Users input the energy, QCD scale, and particles involved in the collision (pre-

programmed are protons, anti-protons and nuclei, other hadrons may be added by

the user). Additionally, the user may specify dynamics cuts, which specify which

events are used in final calculations. For instance, for the Drell-Yan process it is

required that the resulting particles have an invariant mass greater than zero to

prevent the virtual photon from becoming physical.

3.1.2 Data Output

Results from MCFM can be outputted into ROOT, gnuplot or Topdrawer scripts,

or simply written to a .dat file. For each process, there are a number of pre-

programmed differential cross-section histograms outputted. These include mass,

momentum, and angle of scattering differential cross-sections.

Errors for these values are also reported by MCFM, which include simple statistical

error and PDF error. The simple statistical error has a 1√
N

dependence, and the

PDF error is propogated from errors reported by the PDF collaborations.

It is also possible to create user-generated histograms using the four-momenta of

each event output. For Drell-Yan, it was necessary to create a user-generated

output to calculate the x values for each event, as shown below.
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τ =
m2
µ+µ−

s
(3.7)

pL,max =

√
s(1− τ)

2
(3.8)

xF =
pµ

+

L + pµ
−

L

pL,max
(3.9)

xB =
1

2
(
√
x2
F + 4τ + xF ) (3.10)

xT =
1

2
(
√
x2
F − 4τ + xF ) (3.11)

Here, mµ+µ− is the invariant mass of the dilepton pair, s is the square of the center-

of-mass energy of the scattering, pL,max is the maximum possible longitudinal

momentum of the dilepton pair, xf is the Fermi-x, and xB (xT ) is the beam

(target) Bjorken-x.

At this point, it was then possible to calculate the x- and mass-dependent Drell-

Yan differential cross-sections, and from them calculate the dynamic dilution factor

for E1039. For more complete directions on the use of MCFM, refer to Appendix

A of this thesis.

3.2 Systematic Error

In order to determine the accuracy of MCFM and to establish a systematic uncer-

tainty associated with its calculations, it was necessary to perform several tests of

the system by comparing simulated data to real data. By doing this, calculations

done using the produced cross-sections can account for the error that arises from

the simulations.

A number of tests, ranging in energy scale and target material, were performed.

By analyzing these and comparing to published data it was possible to estimate

the systematic error associated with the cross-section calculations done by MCFM.

Four tests were done: two qualitative and two quantitative. The two qualitative

tests were comparisons to cross-section data from experiments at different center-

of-mass energies. These were done as a quick check of the viability of MCFM

as it pertains to Drell-Yan cross-sections. Since the dilution factor is a ratio of
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cross-sections, the value of the cross-sections are not as important as the shape of

the curve of the differential cross-sections, or the ratio between cross-sections for

different targets.

The two quantitative tests done were comparisons to cross-section ratios. These

were chosen to check how MCFM handles the two most pertinent effects for nuclear

cross-sections, those being the d̄/ū asymmetry and the EMC effect. Cross-sections

were reproduced using MCFM and then the ratios of those cross-sections were

compared to experimentally reported ratios.

The discrepancy between these values was calculated and then averaged over val-

ues in each experimental xT bin. The deviation from unity was taken to be the

systematic error arising from the MCFM calculations for that process.

3.2.1 CMS Cross-Section

The first comparison was to a recent mass differential cross-section measurement

by the CMS collaboration at CERN[5]. The data was collected using a 13 TeV

center-of-mass energy, over a dilepton mass range from 15 GeV to 4000 GeV. In

order to narrow the scope, cross-sections were compared in the 15 GeV to 150 GeV

range. The most important part of this test was determining if the simulation was

able to replicate the Z-boson peak, which corresponds to the production of the

Z-boson and its subsequent decay. This peak occurs at the Z-boson mass and can

be used to probe the coupling of the Z-boson to quarks.

MCFM generated twenty million events (fifty iterations of four-hundred thousand

each) by sampling the CT14 PDFs[36]. Ten iterations were used to condition the

VEGAS grid, and forty were used to calculate cross-sections. MCFM averages

over those forty iterations to reduce statistical error of the reported differential

cross-sections.

Although the CMS comparison provided confidence that MCFM was a viable

framework for the calculation of Drell-Yan cross-sections, it is at a vastly different

energy scale than E1039. While CMS had a center-of-mass energy of 13 TeV,

E1039 will have a center-of-mass energy of only 15 GeV, three orders of magnitude

lower.
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Figure 3.1: MCFM comparison to CMS Drell-Yan cross-section. Errors shown
are statistical only for CMS data and are outputted errors for MCFM. Data is

taken from reference [5].

3.2.2 Low-Energy Cross-Section

In order to test MCFM at lower energy, it was compared to data from an older

experiment, E772 at Fermilab. The experiment used a 800 GeV beam, which

corresponds to a 38 GeV center-of-mass energy. This is on the same order of

magnitude as E1039, and the experiments were done with a similar detector. In

fact, many of the parts from that detector have been re-purposed for the E1039

detector[37].

The Drell-Yan range of study for lower energies is typically confined to 4 GeV<

Ml−l+ < 9 GeV due to J/Ψ production around 3 GeV and the Υ process around

10 GeV. Therefore, this was the range in the data used compare to MCFM. The

experiment used a liquid 2H target was used, so the cross sections were calculated

with a deuteron target and proton beam. The Monte Carlo simulation was done

using the same program settings as the CMS analysis.

There appears to be some non-random behavior in the comparison, namely the

ratio is higher in the middle of this mass range than on either the high or low

end. When re-binned into 1 GeV width bins, there is good agreement between
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experiment and simulation for 3-4 GeV and 7-8 GeV. The 5-6 GeV and 6-7 GeV

bins, however, are approximately 7% and 4% higher in MCFM than those from

the experiment. See Figures 3.2 and 3.3.

Figure 3.2: MCFM and E772 calculated mass differential cross-sections for
proton-deuteron Drell-Yan scattering. Errors shown are MCFM error and ex-

perimental statistical error.

This effect is likely due to the cuts made in the experiment. The analysis used mass

cuts, which allow for events from other processes to leak into the data analyzed.

The reported data from E772 did not include a systematic error of 2%, which would

extend the . Since the J/Ψ and Υ processes produce events on the outer edges

of this range, it is expected that the experimentally reported cross-sections will

be higher in those ranges. Considering this, the agreement between the generated

and measured cross-sections are encouraging.

Taking that into account, it seems that MCFM reports approximately a 5% higher

cross-section in regions where we can directly compare. This may be pertinent

for yield predictions, but since the dilution factor is a ratio of differential cross-

sections, this error would cancel itself, as it appears in both the numerator and

denominator of the ratio.
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Figure 3.3: Ratio of Monte Carlo to experimental cross sections. Values
reported are MCFM cross-section divided by the E866 cross-section data. Errors
shown are propagated from MCFM error and experimental statistical error.

Only five of the twenty bins are more than 1σ from unity.

3.2.3 Proton-Deuteron Cross Section Ratio

Important in this analysis is the difference in cross-sections between protons and

neutrons. In order to differentiate between the cross-sections of nuclei and the

proton, MCFM needs to be consistent with published data for this effect.

The main source of difference between proton and deuteron differential cross-

sections at these kinematics is the d̄/ū asymmetry in the nucleon sea, as studied

by E866 at Fermilab. This again was done using an 800 GeV beam, 38 GeV

center-of-mass energy, and a similar detector apparatus.

This comparison involved two MCFM calculations using the same settings as the

other analysis, one for the proton differential cross-section and one for the deuteron

differential cross-section. See Figure 3.4.

Comparing these results, we find excellent agreement between experimental and

calculated ratios, especially for xt > 0.1, which is the kinematic range of interest

in E1039. For each experimental data point, a ratio of the experimental value and

the MCFM calculated value was found, as shown in Figure 3.5.
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Figure 3.4: Ratio of per-nucleon xt-differential cross-sections of proton-
deuteron and proton-proton Drell-Yan scattering. Purple data points are from
MCFM simulations, while green data points are from FermiLab experiment
E866. Errors shown are purely statistical for E806 and MCFM reported error.

Figure 3.5: Ratios of MCFM calculated ratio and experimental ratio of
per-nucleon xt-differential cross-sections of proton-deuteron and proton-proton
Drell-Yan scattering. Errors shown are propogated from error of both MCFM

and experimental data.
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The ratios were grouped into the E1039 bins and each bin had its cross-section

and error weighted average calculated, using the equation

Rj =

∑
iR(xi)σ(xi)/δi∑

i σ(xi)/δi
(3.12)

where R is the ratio of MCFM to experimental values, δi is the error in the ratio,

j refers to the bin number, and i refers to the discrete xt values. These are then

compared to unity, as listed in Table 3.1.

Bin Deviation (%)
0.10-0.16 0.5
0.16-0.20 1.0
0.20-0.24 1.5
0.24-0.6 2.0

Table 3.1: Deviation of MCFM values from experimental values due to pro-
ton/deuteron ratio in xt for E1039

This source of error will only be pertinent for NH3, since the issue at hand is the

difference between free protons and neutrons. The effect contributes a very small

amount of systematic uncertainty for small xt, and increases with xt.

Since NH3 has both free protons and nuclei with neutrons, this will be a source

of error. For ND3 this source of error will be zero, since there are no free protons

and all target materials are nuclei.

3.2.4 Nuclear Dependence

Of equal importance to the analysis is the effect of high atomic masses on the

Drell-Yan cross-section. This effect is mainly due to the EMC effect, which MCFM

accounts for by applying a mean-field correction to the parton PDFs. Since recent

studies suggest that short-range correlation theories are more accurate[38], it is

important to check that the predictions are accurate.

E772 at Fermilab again provides good data to check the Monte Carlo. Using 2H,

C, Ca, Fe, and Z targets, the experiment looked at the ratio of heavy nucleus

cross-sections to deuteron cross sections. Using MCFM with the same settings as

prior tests, these cross-section ratios were reproduced, as shown in Figures 3.6 to

3.9.
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Figure 3.6: Ratio of Carbon to deuteron differential cross-section. Errors
shown are MCFM reported and statistical for experimental value.

Figure 3.7: Ratio of Calcium to deuteron differential cross-section. Errors
shown are MCFM reported and statistical for experimental value.
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Figure 3.8: Ratio of Iron to deuteron differential cross-section. Errors shown
are MCFM reported and statistical for experimental value.

Figure 3.9: Ratio of Tungsten to deuteron differential cross-section. Errors
shown are MCFM reported and statistical for experimental value.
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Like with the E866 comparison, these calculated ratios were compared to the

experimentally reported ratios, as shown in Figure 3.10. Those ratios were then

used in the same was as before to establish the error and cross-section weighted

average for each E1039 bin.

These averages were then compared to unity to establish the deviations shown in

Table 3.2. There was agreement between the calculated values and the measured

values in all bins, with a higher level of agreement in the lower x-value bins.

Figure 3.10: Ratio of MCFM predicted heavy nucleon ratios to E772 heavy
nucleon ratios. Errors shown are propagated from errors from MCFM and

experimental data.

Bin Deviation (%)
0.10-0.16 0.5
0.16-0.20 0.5
0.20-0.24 0.5
0.24-0.6 1.5

Table 3.2: Deviation of MCFM values from experimental values due to the
EMC effect for the xt bins for E1039.

As with the uncertainty arising from the d̄/ū asymmetry, the larger value x bins

have a larger degree of uncertainty. It seems likely that this is mostly due to the

smaller values of the differential cross-section at higher x values, which increases

the statistical uncertainty, both in the experiment and in the Monte-Carlo.
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3.3 Statistical Error

As a Monte-Carlo simulation, MCFM is able to achieve arbitrarily high precision

for cross-section calculations. It would be expected that the statistical uncertainty

would therefore be inversely proportional to the square root of the number of

Monte Carlo sampling events.

To confirm this, a quick check was done by calculating the overall cross-section of

Drell-Yan proton-proton scattering with different numbers of events, starting at

800 and increasing by factors of two. The reported statistical error was plotted

against the number of events, as seen in figure 3.11. Plotted alongside is a fit given

by

δ =
A√
n

(3.13)

Where A is an arbitrary constant and n is the number of events per iteration.

Noteworthy from this analysis is that for runs with fewer than about ten thousand

events per iteration the error is greater than what would be expected based on

the statistical analysis. This may be due to the fact that the VEGAS grid is not

as well conditioned, and the program accounts for that in its uncertainty output.

Since cross-sections will be split into four bins, the statistical error for each bin

will be approximately twice the magnitude of the total cross-section. Using that

data, to achieve precision of 0.1%, approximately 400,000 events per iteration will

be required.

3.4 Conclusions

By combining the deviations found due to the d̄/ū asymmetry and the EMC effect,

it is possible to estimate the total systematic uncertainty that will be associated

with MCFM predictions of the dilution factor. Since the dilution factor is calcu-

lated via a ratio of cross-sections, the error in the absolute cross-section will not

contribute to the overall systematic error. These errors are due exclusively to the

calculation, assuming perfect accuracy in the measurement of the composition of

the target. These total errors are reflected in Table 3.3.
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Figure 3.11: Reported error of MCFM Drell-Yan proton-proton cross-section
calculation vs sampling events.

Bin (xT ) d̄/ū (%) EMC (%) NH3 Error (%) ND3 Error (%)
0.10-0.16 0.5 0.5 0.7 0.5
0.16-0.20 1.0 0.5 1.1 0.5
0.20-0.24 1.5 0.5 1.6 0.5
0.24-0.6 2.0 1.5 2.5 1.5

Table 3.3: Summary of systematic error arising from MCFM by bin. Error
for NH3 is the pythagorean sum of d̄/ū and EMC deviations, while ND3 error
is entirely from the EMC effect. There may be a degree of double-counting in
NH3 error, since the d̄/ū asymmetry will also affect the cross-sections of heavy

nuclei.

These calculations were made assuming there was not any systematic error in

the experiments that would shift the ratios in one direction. This assumption is

justified by the similarity of the detector to be used in E1039 to those used in

E772 and E806.

Statistical errors from MCFM can be made arbitrarily small. An arbitrary sub-

0.1% statistical error in per-bin cross-section can be achieved by running ten con-

ditioning iterations and forty statistical iterations using 400,000 iterations per

iteration.



Chapter 4

Results and Future Work

4.1 Dilution Factor Calculations

In order to lower the systematic error associated with SpinQuest E1039, it is

desirable to know the dilution factor of the target to high precision and accuracy.

To that end, MCFM was used to calculate the dynamics-dependent dilution factors

for both ammonia (NH3) and deuterated ammonia (ND3).

4.1.1 xT -Dependent Dilution Factor

By calculating the xT -differential cross-sections for the elements in the target, it

is possible to calculate an xT -dependent dilution factor. This calculation is fairly

simple, for NH3 the dilution factor is given by

f(xT ) =
3 dσp
dxT

3 dσp
dxT

+ dσN
dxT

(4.1)

Differential cross-sections were generated using MCFM, using the CT14 parton

distribution functions, sampling 400,000 events per iteration and averaging over

40 iterations after using 10 iterations to conditon the VEGAS integration grid.

The events were cut if the dimuon mass was below 4 GeV or if xF was negative.

These events were grouped into x-bins with width 0.01 in the range 0.1 ≤ xT ≤ 0.6.

31
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These cross-sections were then put into a spreadsheet which calculates the xT -

dependent cross-sections of ammonia and uses that to calculate the dilution factor.

This is done by dividing the cross-section of three hydrogen atoms by the cross-

section of the ammonia. Error in the ammonia cross-section was propagated from

the error in nitrogen and hydrogen cross-sections, and the statistical error in the

dilution factor rose from that error.

These xT -dependent dilution factors were then re-binned into the E1039 experi-

mental xT bins. This re-binning was done with a cross-section weighted average, so

that in each bin the lower values of xT , which have higher cross-sections, influenced

the dilution factor of the bin more than the higher values of xT .

The ammonia dilution factors for the E1039 xT -bins are shown in Figures 4.1 and

4.2. This dilution factor does not account for any other materials in the target.

The values are also listed in Table 4.1.

Figure 4.1: NH3 dilution factor for E1039 xT -bins. Also plotted is the static
dilution factor of 3

17 ≈ 0.176. Errors shown are both statistical and systematic.
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Figure 4.2: ND3 dilution factor for E1039 xT -bins. Also plotted is the static
dilution factor of 6

20 = 0.3. Errors shown are both statistical and systematic.

xT NH3 ND3

0.10-0.16 0.160 ± 0.001 0.301 ± 0.001
0.16-0.20 0.165 ± 0.002 0.3019 ± 0.0015
0.20-0.24 0.171 ± 0.003 0.3027 ± 0.0015
0.24-0.60 0.180 ± 0.004 0.304 ± 0.005

Table 4.1: xT -dependent dilution factors for pure ammonia in the E1039
experiment. Errors are both statistical and systematic.

When dynamics are taken into consideration, the dilution factor for NH3 is lower

for the bins where xT < 0.24 than the naive static dilution factor of 0.176. For ND3

the dilution factor is higher across the range than the naive static dilution factor of

0.3. This seems to be due to two effects with opposite effects. The d̄/ū asymmetry

makes the proton differential cross-section relatively lower at low x values, and

nuclear per-nucleon cross-sections decrease as the atomic mass increases.

For both NH3 and ND3, the dynamic dilution factor is statistically different from

the static dilution factor. For NH3, there is a statistically significant trend increas-

ing over the range, but for ND3 the errors overlap for all four bins. Although the

magnitude of the ND3 uncertainty is smaller than the uncertainty for NH3, the

value of the dilution changes far less over the range. The difference between the
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dilution factors for the largest and smallest bin is approximately ten times greater

in NH3 as compared to ND3 (11% versus 1.3%).

4.1.2 Mass-Dependent Dilution Factor

As discussed in Chapter 2, Drell-Yan scattering cross-sections are also dependent

on Q2, which in Drell-Yan is equivalent to the square of the mass of the virtual

photon that decays into the dilepton pair. Since Q2 is equivalent to M2
ll, a mass-

dependent dilution factor is equivalent to a Q2-dependent dilution factor.

By calculating the dimuon mass differential cross-sections of the nuclei, it is there-

fore possible to calculate the mass-dependent dilution factor in the exact same way

as was done for the xT -dependent dilution factor. Ammonia cross-sections were

calculated, used to calculate the dilution factor, and had their errors propagated

to the error in the dilution factor.

This was done with similar simulations as the xT -dependent dilution factor, but

did not have the 4 GeV mass cut. Figures 4.3 and 4.4 show the mass-dependent

dilution factors for NH3 and ND3 over the dimuon mass range 3 GeV to 9 GeV,

grouped into bins with width 1 GeV. These values are also shown in Table 4.2.

Figure 4.3: NH3 dilution factor for Drell-Yan mass range. Also plotted is the
static dilution factor of 3

17 ≈ 0.176. Errors shown are entirely statistical.
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Figure 4.4: ND3 dilution factor for Drell-Yan mass range. Also plotted is the
static dilution factor of 6

20 = 0.3. Errors shown are entirely staistical.

M (GeV) NH3 ND3

3-4 0.1666 ± 0.0001 0.3002 ± 0.0001
4-5 0.1693 ± 0.0001 0.3020 ± 0.0002
5-6 0.1729 ± 0.0004 0.3035 ± 0.0006
6-7 0.1790 ± 0.0010 0.3045 ± 0.0015
7-8 0.181 ± 0.001 0.307 ± 0.002
8-9 0.189 ± 0.002 0.313 ± 0.002

Table 4.2: Mass-dependent dilution factors for pure ammonia in the E1039
experiment. Errors are purely statistical.

Since the error in this analysis is only statistical, there is higher precision in the

reported values. Similarly to the xT dependent cross-section, the dilution factor

changes more over the range for NH3 than ND3. Again, this is due to the difference

in behavior of the differential cross-section of protons and heavy nuclei and the

relative similarity of the behavior of the deuteron when compared to the same.

This suggests that since the dilution factor is dependent on the mass of the dilepton

pair, the masses of the leptons included in the xT analysis could affect the values

reported. Since the dilution factor is lower for lower masses, higher lepton masses

could increase the dilution factor, especially since xT increases as mass increases.
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4.2 Impacts on the Dilution Factor

In the experiment, there will be various factors that influence the exact value of

the dilution factor. Some of these are due to decisions that will be made, while

others will be random. In order to anticipate these factors, and thereby lower the

systematic uncertainty of the experiment, a couple of factors that will affect the

dilution factor of the target were explored.

4.2.1 Effect of mass-cuts on Dilution Factor

In Drell-Yan experiments, data to be analyzed is usually restricted by using mass-

cuts, where dimuons that fall within certain mass ranges are not used, due to

the J/Ψ and Υ processes which also results in dimuons. The J/Ψ cut is generally

placed around 4 Gev, and the Υ cut generally excludes masses between 9 GeV and

11 Gev. There is a trade-off with the placement of the mass cut, since a lower cut

will greatly increase the number of events (the integrated cross-section for Mll > 3

GeV is around an order of magnitude larger than that for Mll > 4 GeV), but will

decrease the signal to noise ratio due to the J/Ψ process.

Because of the relationship between the dimuon invariant mass and xT , the place-

ment of the mass cut also affects the lowest possible value of xT . This limit is

given by

xT ≥
1

2
(

√
4
M2

ll

s
− 1) (4.2)

Where
√
s is the center-of-mass energy of the collision. For a lower mass cut of 4

GeV and a center-of-mass energy of 15.06 GeV (the energy for E1039), this gives

a lower-limit of xT = 0.066. The effect of the cuts will be seen over the entire xT

range, however, since it is also possible for low-mass dileptons to have higher xT

values.

In order to determine the effect of the mass-cuts on the dilution factor for each bin,

MCFM simulations were run to determine the x-dependent cross-sections using a

lower bound mass-cut at 3 GeV and a lower bound mass-cut at 4 GeV, as seen

in figures. The Υ mass-cut was not included in this analysis, since the Drell-Yan

cross-section in this range is 5 orders of magnitude lower than in the J/Ψ range.
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These cross-sections were then used to calculate the dilution factors in each bin,

and they were compared to each other by dividing the dilutions factor found from

the 4 GeV mass-cut data by the dilution factors found from the 3 GeV mass-cut

data. These ratios are shown in Figure 4.5 and in Table 4.3.

Figure 4.5: Ratio of dilution factors using 4 GeV and 3 GeV mass cuts in the
E1039 xT bins for NH3 and ND3. Errors shown are propagated reported from

MCFM.

Bin NH3 ND3

1 0.979 1.003
2 0.964 1.003
3 0.973 1.003
4 0.998 1.001

Table 4.3: Ratio of dilution factors using 4 GeV and 3 GeV mass cuts. All
values have an associated error of ±0.001.

It is clear from these simulations that the mass-cuts do indeed have an effect on

the dilution factor for each of the bins. Interestingly, it seems to have opposite

effects on NH3 and ND3.

The effect seems to be larger for NH3 than for ND3, which we would expect, as

other parts of this analysis have suggested a lower degree of variability of the

dilution factor of ND3. For ND3 this difference is small enough that it would not

be noticed next to systematic uncertainties. For NH3, however, the difference is
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enough to merit a recalculation of these dilution factors once a mass-cut is chosen

for the E1039 data.

4.2.2 Target Composition Dependence

Thus far, all of the dilution factors shown have been that of pure ammonia. In

the actual experiment the other materials in the beam path will also influence the

dilution factor. Although the experiment is designed to minimize the contributions

of these materials, there will be some scattering from them that must be accounted

for.

The largest influence and the greatest uncertainty will come from the ratio of

helium and ammonia in the target cup. Due to the contraction of solid ammonia

and the method used to fill the cup, there may be a relevant uncertainty in the

ratio of the two materials.

Since this directly impacts the dilution factor, the dilution factor was calculated

for a target containing different ratios of ammonia and helium. This was done by

modifying the spreadsheet used to calculate the xT -dependent dilution factor to

include the unpolarizable helium in the denominator of the dilution factor. The

ratio was defined as the percent of molecules that were ammonia, or

%NH3 =
N(NH3)

N(NH3) +N(He)
(4.3)

This calculation was done using the same cross-section data as for the x-dependent

dilution factor, and the bins were the same as those for E1039. The results are

shown in Figure 4.6.

As expected, the ratio of ammonia to helium has a large impact on the dilution

factor, increasing by 24% and 20% over the range for NH3 and ND3 respectively.

This difference is due to deuterium having a larger cross-section than hydrogen,

and thus ND3 having a larger cross-section than NH3.

By calculating the rate of change of these plots, it is possible to determine an

estimated uncertainty introduced into the dilution factor value dependent on the

uncertainty in the packing fraction. Since the relationship is not linear, the range

was divided into five sections, and the uncertainty in the dilution factor based
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Figure 4.6: Dilution factor for mixtures of ammonia and helium for different
ratios of ammonia.

on uncertainties in the packing fraction of 1%-5% was estimated for each section.

These values can be seen in Tables 4.4 and 4.5.

%NH3/PF Error 1% 2% 3% 4% 5%
0.5-0.6 0.7% 1.4% 2.0% 2.7% 3.4%
0.6-0.7 0.5% 1.1% 1.6% 2.2% 2.8%
0.7-0.8 0.4% 0.8% 1.2% 1.7% 2.1%
0.8-0.9 0.3% 0.7% 1.0% 1.4% 1.7%
0.9-1.0 0.3% 0.5% 0.8% 1.1% 1.4%

Table 4.4: Error introduced to the dilution factor by uncertainties in the
packing fraction for NH3.

%ND3/PF Error 1% 2% 3% 4% 5%
0.5-0.6 0.6% 1.2% 1.8% 2.3% 2.9%
0.6-0.7 0.4% 0.9% 1.4% 1.9% 2.4%
0.7-0.8 0.3% 0.7% 1.1% 1.4% 1.8%
0.8-0.9 0.3% 0.6% 0.8% 1.1% 1.4%
0.9-1.0 0.2% 0.5% 0.5% 0.9% 1.2%

Table 4.5: Error introduced to the dilution factor by uncertainties in the
packing fraction for ND3.

These numbers are very encouraging for the overall systematic uncertainty of the

experiment as a whole. Prior to this analysis the assumed uncertainty in the

packing fraction of 2% contributed directly to the uncertainty. However, according

to this analysis an uncertainty of 2% in the packing fraction would contribute less

than 1% uncertainty to the analysis as a whole.
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4.3 Target Composition Measurement

This analysis has exampined the dilution factor of an idealized target, either con-

sisting entirely of ammonia or a precise mixture of ammonia and helium. The real

target will contain other materials than these, and the amounts of each material

and their contributions will not be perfectly known. There will be five materials

in the target that can contribute to the detected events:

• Ammonia (NH3 or ND3)

• Helium

• Aluminum

• Kel-F (Polychlorotrifluoroethylene: F3C2Cl)

• Cupronickel (70% Cu, 30% Ni)

By determining the number of molecules of each of these in the target, as well as

the average luminosity delivered to each material, it will be possible to accurately

calculate the dilution factor for the physical target when used in conjuncture with

their Drell-Yan cross-sections. This will allow us to reduce the total systematic

uncertainty of the experiment by having a more accurately calculated dilution

factor.

4.3.1 Packing Fraction

Due to radiation damage, the ammonia becomes less polarizeable as it is spends

time in the beam, and must be replaced regularly. This refilling process adds

uncertainty to the exact amount of ammonia and by extension the amount of

helium in the target. The Kel-F, aluminum and cupronickel are the plastic of the

target cup, the target windows, and the NMR coils, respectively. These do not

have to be replaced during the experiment, so their amounts can be known more

exactly.

Ammonia is stored in liquid nitrogen before it is used in the experiment, and put

into the target cups at this temperature (77K). It will contract when submerged

in liquid helium, and uncertainty in its density at 1K adds an uncertainty to the
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Figure 4.7: Cross-sectional image of the interior of a target cup using Bruker
Trimodal PET/SPECT/CT Imager. Image is of polyethylene beads in a Kel-F

target cup.

ratio of ammonia to helium. This uncertainty could be reduced in a couple of

ways.

One possibility is to make a precise measurement of the density of solid ammo-

nia. This would be done at liquid ammonia temperatures in order to narrow the

prediction from lattice constants of the density at liquid helium temperatures. A

plan has been made to use evaporation rate of liquid nitrogen to infer a volume

measurement for a Archimedes’ method measurement of the density of ammonia.

Another possibility is using micro CT scanning technology to image the target

while submerged in liquid nitrogen. This will theoretically allow us to know the

portion of the target filled by ammonia. The downside to this method is the

potential cost of using the machine, and uncertainty in its ability to resolve the

barrier between the cryogenic fluid and the solid ammonia. A recent test using

polyethylene beads showed that the technology is able to resolve the inside of the

cup with high precision, as seen in Figure 4.7
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4.3.2 Luminosity Analysis

In order to predict the number of events contributed from each material, it is

important to know the relative luminosity of the beam on each material. It may

be assumed that, due to its location on the outer edge of the target, the Kel-F

will not receive as high a luminosity as the aluminum, ammonia or helium, due to

their location directly in the path of the beam.

To do this, once the composition of the target has been determined, a three-

dimension model of the target should be constructed, and used in conjuncture

with a model of the beam distribution to determine the average intensity delivered

to each material.

By combining this average intensity value with the cross-section data for each of

the materials, it will then be possible to make a properly weighted dilution factor

calculation. A similar analysis to that found in section 4.4 of this thesis should

then be done to determine the uncertainty arising from this analysis.



Chapter 5

Summary and Conclusions

By using Monte Carlo methods, it was possible to lower the uncertainty in the

dilution factor, which contributes a significant amount of systematic error to the

experiment as a whole. It was also possible to use that analysis to better un-

derstand how other systematic error sources contribute to the error as a whole.

Namely, uncertainty in the packing fraction is now able to be tied directly to the

uncertainty in the target’s dilution factor.

It would be useful to compare MCFM data with cross-section data using the

detector for E1039. By doing so, it would be possible to better tune the process

to the specific kinematics of the experiment. This would lower the systematic

uncertainties in the cross-sections generated by the program, which would in turn

lower the systematic uncertainty of the calculated dilution factor.

Monte Carlo simulations can only go so far in reducing the systematic error since

there are effects that do not have to do with the scattering, but instead involve

uncertainties in physical quantities. These can be lowered by careful measurements

or by improving equipment and procedures, but not as easily by analysis. MCFM

then, is useful for calculating the contributions to the total dilution factor from

each material, but is silent on the size of their contributions.

In order to reduce systematic uncertainty more, the work in an accurate packing

fraction measurement should continue, as should the measurement of the density of

solid ammonia. Not covered in this thesis are the contributions to the systematic

error from the polarization and polarization measurements of the target, which

also should be studied in order to lower their contributions.

43
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Since the Sivers function asymmetry for sea quarks is thought to be very small, it is

very important that sources of error be minimized for the experiment. Since a non-

zero measured value suggests a non-zero orbital angular momentum, the value has

importance to our understanding of the spin structure of the nucleon. Reducing

uncertainty in the measured value would therefore give us more confidence in this

understanding.
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MCFM Dilution Factor

Instructions

This analysis was done with MCFM version 8.3, but during the work an updated

version was released. Using the most recent version is preferred, as newer versions

include more recent PDFs, which increase the accuracy of the predictions. All

nessesary files can be found at mcfm.fnal.gov.

After downloading the zip file, extract the files into the desired directory and

follow the installation instructions. It is possible that you may need to update

compilers, and there may be other errors that need to be corrected. The make file

and installation provide feedback if it is unable to compile on your machine.

Once installed, you need to edit the file src/User/userplotter.f to include the Fermi-

x and Bjorken-x cross sections of the process that you are analyzing. Chosen cuts

for this process should also be done in this section. For instance, E1039 only

considers events with xf > 0, so an if statement checking the value of xf was

added, making negative xf value events not contribute to calculated cross-sections.

Next, the input file (input.DAT), located in the Bin directory needs to be edited.

There are many parameters in this that can be edited, such as the order of the

perturbation theory used in the calculation (next-to leading order is default), the

process to be analyzed (a table is located in Doc/mcfm.pdf), the QCD scale, the

masses of various particles used in the simulation, and cuts that can be used to

isolate a certain range of the dynamics of the scattering.

Also in this file are the ability to select the particles being scattered (proton

signified by +1, antiproton by -1, and nuclear particles by the number 1000Z +

A, where Z is the atomic number and A is the atomic mass of the nucleus.)
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Additionally, you can set the number of events per iteration of the simulation, as

well as the number of iterations that the program will average over.

A good strategy is to create a directory within the Bin directory that contains

multiple input files that can be used for various target particles. The program

needs to be directed to these input files, by using the command ”./mcfm omp

Path/To/file.DAT” to run the program. If the program is run without a specified

input file, it will default to a file called ”input.DAT” in the current directory. If

there is no such file, the program will not run.

Once the input files are correct, as well as the output histograms tuned to the

desired range and precision, you can run the program. It is suggested to use

different runstrings (specified in the input file) to prevent overwriting prior runs.

If you are using the program for a process other than Drell-Yan, you should find

published cross-section data from a few experiments to compare MCFM to real

data. By doing so, you can establish systematic uncertainty for the process you

are using.

To do this, you should compare the experimental data to the simulated cross-

sections. The deviation of the MCFM calculated values from the experimental

values can be used as an estimate of the systematic error. If possible, as much

data as possible should be compared, and their deviations averaged to estimate

the systematic error.

Once you have the differential cross-sections for all of the necessary nuclei, you can

calculate the dynamic-dependent dilution factor. It is easiest to use a spreadsheet

to do this, such as the one found at twist.phys.virginia.edu/(enter address). If

you are calculating for specific bins, it is important to weight the average dilution

factor over this range by the cross-section of the target. Also important is the

correct propagation of error.
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