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I. Abstract 

Social media websites have accelerated the formation of online communities and 

increased the velocity of information exchange. A key driver of activity on these 

communities is popularity of content as well as the perceived or real benefit to producing 

popular content. Analysis of content popularity and the factors that influence it could help 

provide insight into the evolutionary dynamics of online communities. This research attempts 

to investigate content popularity and content popularity factors, specifically on Reddit, using 

data analysis and machine learning. The end products are two multiclass decision tree 

classifiers that predict Reddit comment popularity, using devised comment popularity 

categorization criteria, consistently with 80-85% accuracy. 

II. Introduction 

To better understand the dynamics of online community interactions, researchers have 

created a variety of models, ranging from identification of social roles using graphs and 

decision trees [1], and observing network exchange patterns in online communities via 

exponential random graph models [2]. However, not many sophisticated methods exist yet 

for predicting a provided comment’s popularity. This study has two major components: the 

data analysis and processing phase, where the collection and enrichment steps happen, and 

the model prediction phase, where different machine learning models are trained to predict 

comment popularity. 

Founded in 2005 by UVA students Steve Huffman and Alexis Ohanian, Reddit focuses 

interactions around user-created message boards, called subreddits, with a wide range of 

topics. Content on these subreddits such as links, text, or video can be shared through two 

means: the creation of an individual discussion space for the content (“thread”), or a reply to 



some existing content (“comment”). Users are heavily encouraged not only to interact with 

content via creation, but also through voting: indicating their responses to posted content 

(both threads and comments) simply by clicking an up-arrow (indicating a positive response) 

or down-arrow (negative response) available on all content. Reddit displays the cumulative 

value of all upvotes and downvotes as a score on every piece of content; it also presents 

various methods for the user to peruse content based on time and score (top scored posts over 

the past day/week/month, rising content, new content). By default, Reddit presents threads 

and comments with higher scores first on subreddit and thread views. With these basic rules 

in place, Reddit has cultivated many different online communities hosted on widely-varying 

subreddits, with some subreddits seeing tens of thousands of new comments and posts 

combined daily [3]. 

III. Data Collection and Feature Analysis 

With the sheer volume of historical and newly created content available on Reddit, it was 

important to asses a scope for data collection. Each piece of content, whether a post or a 

comment, has a great number of associated attributes but the number of attributes is 

significantly higher for a post. As such only comment data was collected for this study and in 

addition to this limitation: comment data was collected with no association to the post that 

the comment tree belongs to, only an association to a comment’s own comment tree. This 

was done for two main reasons: comment data is rich with data, and determining a contextual 

relationship between a post and comment is rather difficult compared to how much it would 

contribute to the model. Historically there have been other attempts at predicting comment 

popularity on Reddit with attempts done on towardsdatascience.com [4] and by Stanford 

students in a short paper [5] both featuring a collection and enrichment step: taking the time 



to add and derive more features for later training. This study takes a similar approach towards 

data collection. 

An original, extensible data collection tool was built around the Python Reddit API 

Wrapper, or PRAW [7]. The aforementioned previous research conducted by Lamberson et. 

al. at Stanford does not make use of PRAW, and instead an already-existing dataset from the 

Stanford Large Network Dataset Collection, or SNAP [6]. The tool was used to scrape 

hundreds of thousands of comments from a wide variety of subreddit as well as format and 

store the data for later use. To ensure a holistic set of data, comments were scraped from the 

top 100 most upvoted posts in varying timeframes, namely in month, year, and all-time. 

Furthermore, data was sourced from a pool of subreddits with a diverse range of topics and 

political leanings.  

The data collection tool utilizes PRAW functions are used to fetch Reddit posts and 

comments in large batches. As batches of comments are fetched (done in batches as PRAW 

is rate-limited on its requests), the tool formats the comment data and appends it to a list. 

After all batches are fetched, and the list is populated, it is then converted into a JSON file. 

This JSON file is then stored for later, and may be loaded for preprocessing, feature 

extraction, and model training. Provided that posts are not used in training, and thus not 

saved, only comment level features need to be considered. Although comments on reddit are 

by nature in a tree-like structure, where each comment may be a parent to any number of 

comments, comments are instead stored in a “flat” list. This means that with n comments 

stored, each with m features, the resultant dataframe from loading the JSON is simply n x m. 

To conserve information about the original tree-structure, every comment stores an ID along 

with its parent ID.  



More specifically, each comment has a total of m features, some being native attributes 

and some being derived. The attributes, before any preprocessing is done, include: 

1. ID 
2. Parent ID 
3. Depth within comment tree 
4. Datetime of creation 
5. Time delta of its parent’s datetime and its own 
6. Text body  
7. Score (net number of upvotes) 
8. Number of gilds (a type of recognition given to a comment/post by another user 

that requires payment to award) 
9. Whether or not the author has a distinguished role within the subreddit 
10. AFINN sentiment value 
11. Word count 
12. Character count 

13. Score category 
	

The AFINN sentiment value and score category are two examples of features that are 

added during enrichment right before the preprocessing phase. The AFINN sentiment score 

is determined by a lexicon of English terms with manually-rated integer sentiment values. 

The AFINN lexicon was created and tested by Finn Årup Nielsen, an associate professor 

from the Technical University of Denmark [8]. It should be noted that an AFINN sentiment 

score is by no means the most accurate or holistic way of determining a statement’s true 

sentiment, as it does not consider context.  

The final model aims to predict the score range of comments. The two most significant 

reasons for doing so include that making n-classification problem would result in extremely 

high penalties for arguably insignificant errors (e.g., predicting a score of 100 instead of 110) 

and, as later discussed, the data’s distribution and behavior follows no consistent pattern, 

making it a herculean task to create a decent regression model.  



Before making any decisions regarding which models to use and which features to use, a 

better understanding of the data itself is necessary. For example, the expected range of values 

being predicted should be known along with its distribution (if applicable). Provided that 

comment popularity categories determined by score are chosen for prediction, a reliable 

criterion needs to be made before training any models. There is more to consider such as: 

“can every subreddit be expected to have the same score distribution?”; “is it reasonable to 

assign the same score category criteria to different subreddits?”; and “does having 1000 

upvotes on one subreddit equal the same ‘significance’ on another subreddit?”.  

 

 

 

 

 

 

 

 

 

 
Figure 1: Raw distribution of comment upvotes from the top 100 posts of the month from the politics subreddit (fetched 
on 2020-14-04 21:39:00) and the log-transformed of the same distribution with its bottom 90th percentile truncate 



Two distributions are visible in Figure 1: the raw score distribution on the left. It is 

immediately noticeable that the vast majority of scores are close to zero. The median score in 

the left distribution is four, with a mean of 62.7, and a max value of 20068.0, indicating a 

heavy skew. Interestingly, after performing the truncation and log-transform, the data begins 

to follow a more legible pattern. Observing a consistent behavior like this is important in the 

search of a reliable categorization criteria. The Stanford study by Lamberson et. al takes a 

classification approach for predicting comment score. However, they vastly simplify the 

problem and reduce it to a binary classification between two simple categories: popular or 

unpopular [5]. Furthermore, no specific comment score threshold between the two categories 

was provided, adding ambiguity as to how their process works. Because Lamberson et al.’s 

problem was reduced to binary classification, Naive Bayes (NB) classifiers and Support 

Vector Machines (SVM) were primarily used for their predictions. However, as seen by the 

wide and skewed distribution of comments, simply having two categories may oversimplify 

the problem too much. Having a binary classification and an unspecified categorization 

threshold adds a lot of ambiguity.  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

The figure above illustrates that every subreddit has a different distribution in values. 

Each subreddit’s distribution, likely based on popularity, average comment depth, etc., 

generally differs slightly in shape and more greatly in range of values. By taking advantage 

of the roughly-similar shapes in all currently observed score distributions, a consistent 

categorical separation criterion emerges. 

Five comment popularity categories were chosen and labeled INSIGNIFICANT, 

NOTABLE, SIGNIFICANT, POPULAR, and VERY POPULAR. These five categories were 

chosen based on fitting relatively evenly-spaced splits between chosen percentiles on the 

transformed distributions in Figure 2. One may notice that there is a percentile split at zero; 

having a split at zero seems rather obsolete, but it serves as a reminder that there exists the 

rest of the dataset that is the 90% not shown after truncation. More specifically, the 90th 

Figure 2:  Truncated and log-transformed score distributions on top 100 posts of this month 
(fetched at the same time as data in Figure 1) with lines indicating different percentiles 



percentile of the original distribution is equivalent to the zero percentile of the transformed 

distribution.  

Let Pn(s) be a function that returns the nth percentile of an input set s, and let d be the set 

that represents the set of all comment upvotes. Let D be the natural log of the set d for all 

positive values and those above P90(d). Categories can be defined as:  

 

 

 

There are two things that should be noted: P90(d) is equivalent to P0(D), as mentioned 

earlier when discussing Figure 2, and eD is equivalent to all values of d greater than zero. 

Now that a concrete categorization criterion has been determined, applying it over a set of 

comments is rather simple. Before planning or creating any models, however, a further 

investigation of the dataset is necessary to expose any possible feature 

correlations/relationships. 

A k-means classifier works as a useful tool in this scenario to help understand the given 

dataset better, even though it is not used to “classify” anything in this study. Namely, the k-

means algorithm works to divide the samples into a number of disjoint clusters based on the 

parameter number of centroids. Each cluster is primarily described by its mean, or 

equivalently, its centroid. Given an n-feature data point, it may be represented, from the 

perspective of the k-means classifier, as an n-dimensional coordinate. The classifier aims to 

fit each disjoint cluster such that a global criterion, commonly referred to as inertia, is 



minimized. For this investigation, scikit-learn’s implementation of k-means was used, which 

minimizes inertia by minimizing the sum-of-squares within each cluster [9]. 

Because k-means classification, after fitting to a provided dataset, essentially outputs an 

assignment of clusters to different domains within the coordinate space of the input dataset, it 

is useful in uncovering any insights on how different features might be related to each other. 

For example, in a perfect world, fitting a k-means classifier on a set of Reddit comments 

would result in clusters that roughly correspond to each comment popularity category. 

However, as this is not the case and there may exist many reasons as to why this isn’t 

observed: the feature selection may be sub-optimal, the classification criterion may be wrong, 

or the data may simply be inseparable in such a simple fashion. 

 

Figure 3:  Result of the k-means clustering of the comments from the same dataset in Figure 1 with k = 5 and seven features, 
compared with the true clustering defined by the categorization criteria described earlier 



Without much explanation, it can be seen that the k-means clustering using scikit-learn’s 

implementation failed to find decent feature separation. Because the dataset has 7-

dimensional points, however, this visual is limited to a 3-dimensional “slice”’. Even looking 

at the actual clustering on the right in Figure 3, there does not exist any elegant nor obvious 

boundaries between the categories. Interestingly, there is a very subtle gradient in popularity 

with an increasing number of awarded gilds, though it would not be a reliable metric, as 

many more comments are buried with the insignificant comments below. With the primary 

end goal of a multiclass classifier in mind, the number of choices is slightly limited. Decision 

tree classifiers showed immediate promise for this problem, especially with its inherent 

transparency and multiple optimization options. 

IV. Model 

Before defining any models, a significant amount of enrichment and preprocessing is 

necessary. This is especially true for this dataset, containing many flags and heavy text. 

There also exist a number of useful features that are not present but may be derived. The 

most significant derived features added during the enrichment phase (before pipelining) are: 

comment tree depth, time difference, sentiment, and word count. Many features needed to be 

dropped before the pipelining phase, as many were insignificant. The main modelling phase 

includes two models: one benchmark decision tree classifier trained on comment body text, 

and another trained only on comment metadata.  

The baseline classifier trained on comment data only keeps its text body, with everything 

else dropped. Instead of going through a normal pipeline, a term frequency-inverse document 

frequency (tf-idf) vector is fitted using scikit-learn’s tf-idf vectorizer. This determines the 

overall significance of each word within a collection of text or document through the product 



of two terms: term frequency TF(t) and inverse document frequency IDF(t) [10]. After each 

significance weight is determined, one may compute an overall document significance by 

summing each of its term’s tf-idf weight. Instead of pipelining, the comment body is 

transformed into a document-term matrix with each term’s tf-idf weight assigned. With both 

training and testing data split and transformed, the comment text classifier is ready to be 

fitted. 

To prepare the data for metadata classification, all non-numeric features must be 

transformed through preprocessing. The only non-numeric feature left after dropping 

unnecessary features is a flag on whether the comment poster is distinguished. The 

enrichment phase for the metadata classifier is very important; a number of new metadata 

features are added in this phase. Comment tree depth is added during the fetch phase, simply 

incrementing for every parent above it (beginning with top-level comments). Time difference 

is simply the UTC time difference between the parent and child comment. Sentiment score is 

added using the AFINN lexicon discussed in the first section. All numeric values are scaled 

using scikit-learn’s standard scalar, and non-numeric features are encoded with ‘one hot 

encoding’. After splitting training and testing data, the metadata classifier is also ready to be 

fitted. 

V. Results 

Both models performed rather well, especially considering the high potential for high 

bias towards defaulting to the INSIGNIFICANT category, as 90% of comments are labeled 

that way by definition. The comment text classifier, acting as the baseline model, takes a 

significant longer time to create overall, including preprocessing and training time. This is 

mainly because tf-idf vectorization is a costly task, requiring the storage and cross-reference 



of every unique word used. However, creating the metadata classifier is a quick task, as its 

features are all numeric and quick to transform. 

 

 

 

 

 

 

 

 

 

As seen in Figure 4, the decision tree classifier trained off of comment data performs 

marginally better than the metadata classifier. However, it appears to have higher bias. Their 

similar performance is rather surprising, as the comment text classifier has a lot more 

‘content’ to train off of. Similarity in performance between comment text classifiers and 

metadata classifiers is still observed even using different subreddits and timeframes. 

 

 

 

 

 

Figure 4: Table with the two classifiers and their respective accuracies, precisions, recalls, and F1 score after 
predicting 19713 comments from the test set, and a table comparing the resultant distribution of 
categorizations. 

Figure 5:  Feature importance, calculated by a normalized total reduction of criteria by feature, or equivalently the 
Gini Importance [9], of each feature used in the metadata classifier 



Provided the relatively high accuracy from singular decision tree models, various 

boosting (ensemble) methods were attempted. Interestingly, both adaptive boosting and 

gradient boosting led to significantly higher accuracies, but deceivingly through high bias, a 

concern discussed earlier. More specifically, adaptive boost and gradient boost classifiers 

‘cheated’ by listing nearly every comment as INSIGNIFICANT. The random forest 

classifier, an ensemble of multiple decision trees, performed marginally worse than the 

standalone decision tree classifiers. Furthermore, a grid-search was performed in an attempt 

to find optimal hyperparameters for the decision tree. The main hyperparameters in question 

include the maximum depth and the impurity index used. However, the grid search, using 

sctkit-learn’s implementation (see [9]), also had a strong tendency to prefer high bias in the 

resultant decision tree. After taking a closer look, this seems to be a result of the grid search 

strictly preferring the lowest max depth possible, often oversimplifying comment 

classification. 

Although current optimization methods show an increase in bias, the two decision tree 

models perform comparatively well, especially considering the increased complexity of a 5-

class classification problem. Lamberson et al.’s study used binary classifiers throughout their 

work, consisting of standalone NB and SVM classifiers, and a combination of the two. 

Despite simplifying the problem immensely through binary classification, their best 

prediction accuracy, for just two categories, barely broke 60% [5]. 

VI. Conclusion and Future Work 

The use of decision trees and relatively good performance uncovers interesting insight. 

Most interestingly, the metadata classifier’s performance is very close to the baseline 

(comment text) classifier’s performance. This was very surprising, provided that the general 



assumption would be that a comment’s popularity should be based on the content itself. The 

metadata classifier turns this idea around, showing that sufficient performance may be 

attained using only comment metadata. In other words, one could reasonably predict a 

comment’s popularity without ever needing to read the comment itself; instead, only basic 

information like team posted, overall sentiment, comment depth, etc. is sufficient. More 

specifically, according to the calculated feature importance for the metadata classifier in 

Figure 5, the time delta between the parent and child comment has the highest importance. 

This means that the time difference feature, overall, allows for the highest decrease in 

impurity within the tree. This could be further interpreted as one being able to gain the most 

net information splitting by the time difference as opposed to any other feature overall during 

categorization.  

Despite performing well in the performed tests and relative to previous comment upvote 

predictors in literature, there is a lot more that can be done. Future work could include: 

adding further constraints on data to prevent high bias seen earlier with adaptive boosting and 

gradient boosting; using models to further understanding of individual subreddits; testing 

models on data from different subreddits to see if accurate predictions correspond with 

expected subreddit “similarity”; and devising and testing different popularity categorization 

criteria. 
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