

Predicting Comment Popularity within Reddit Communities through Text and Metadata
based Multiclass Classification Models

A Technical Report Submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia – Charlottesville, Virginia

In the Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Siddharth Nanda

Fall, 2020

Technical Project Team Members

Cory Kim

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Signature __ Date: _______________

Siddharth Nanda

Approved ___ Date: _______________

Rich Nguyen, Department of Computer Science

Siddharth Nanda
12/02/2020

I. Abstract

Social media websites have accelerated the formation of online communities and

increased the velocity of information exchange. A key driver of activity on these

communities is popularity of content as well as the perceived or real benefit to producing

popular content. Analysis of content popularity and the factors that influence it could help

provide insight into the evolutionary dynamics of online communities. This research attempts

to investigate content popularity and content popularity factors, specifically on Reddit, using

data analysis and machine learning. The end products are two multiclass decision tree

classifiers that predict Reddit comment popularity, using devised comment popularity

categorization criteria, consistently with 80-85% accuracy.

II. Introduction

To better understand the dynamics of online community interactions, researchers have

created a variety of models, ranging from identification of social roles using graphs and

decision trees [1], and observing network exchange patterns in online communities via

exponential random graph models [2]. However, not many sophisticated methods exist yet

for predicting a provided comment’s popularity. This study has two major components: the

data analysis and processing phase, where the collection and enrichment steps happen, and

the model prediction phase, where different machine learning models are trained to predict

comment popularity.

Founded in 2005 by UVA students Steve Huffman and Alexis Ohanian, Reddit focuses

interactions around user-created message boards, called subreddits, with a wide range of

topics. Content on these subreddits such as links, text, or video can be shared through two

means: the creation of an individual discussion space for the content (“thread”), or a reply to

some existing content (“comment”). Users are heavily encouraged not only to interact with

content via creation, but also through voting: indicating their responses to posted content

(both threads and comments) simply by clicking an up-arrow (indicating a positive response)

or down-arrow (negative response) available on all content. Reddit displays the cumulative

value of all upvotes and downvotes as a score on every piece of content; it also presents

various methods for the user to peruse content based on time and score (top scored posts over

the past day/week/month, rising content, new content). By default, Reddit presents threads

and comments with higher scores first on subreddit and thread views. With these basic rules

in place, Reddit has cultivated many different online communities hosted on widely-varying

subreddits, with some subreddits seeing tens of thousands of new comments and posts

combined daily [3].

III. Data Collection and Feature Analysis

With the sheer volume of historical and newly created content available on Reddit, it was

important to asses a scope for data collection. Each piece of content, whether a post or a

comment, has a great number of associated attributes but the number of attributes is

significantly higher for a post. As such only comment data was collected for this study and in

addition to this limitation: comment data was collected with no association to the post that

the comment tree belongs to, only an association to a comment’s own comment tree. This

was done for two main reasons: comment data is rich with data, and determining a contextual

relationship between a post and comment is rather difficult compared to how much it would

contribute to the model. Historically there have been other attempts at predicting comment

popularity on Reddit with attempts done on towardsdatascience.com [4] and by Stanford

students in a short paper [5] both featuring a collection and enrichment step: taking the time

to add and derive more features for later training. This study takes a similar approach towards

data collection.

An original, extensible data collection tool was built around the Python Reddit API

Wrapper, or PRAW [7]. The aforementioned previous research conducted by Lamberson et.

al. at Stanford does not make use of PRAW, and instead an already-existing dataset from the

Stanford Large Network Dataset Collection, or SNAP [6]. The tool was used to scrape

hundreds of thousands of comments from a wide variety of subreddit as well as format and

store the data for later use. To ensure a holistic set of data, comments were scraped from the

top 100 most upvoted posts in varying timeframes, namely in month, year, and all-time.

Furthermore, data was sourced from a pool of subreddits with a diverse range of topics and

political leanings.

The data collection tool utilizes PRAW functions are used to fetch Reddit posts and

comments in large batches. As batches of comments are fetched (done in batches as PRAW

is rate-limited on its requests), the tool formats the comment data and appends it to a list.

After all batches are fetched, and the list is populated, it is then converted into a JSON file.

This JSON file is then stored for later, and may be loaded for preprocessing, feature

extraction, and model training. Provided that posts are not used in training, and thus not

saved, only comment level features need to be considered. Although comments on reddit are

by nature in a tree-like structure, where each comment may be a parent to any number of

comments, comments are instead stored in a “flat” list. This means that with n comments

stored, each with m features, the resultant dataframe from loading the JSON is simply n x m.

To conserve information about the original tree-structure, every comment stores an ID along

with its parent ID.

More specifically, each comment has a total of m features, some being native attributes

and some being derived. The attributes, before any preprocessing is done, include:

1. ID
2. Parent ID
3. Depth within comment tree
4. Datetime of creation
5. Time delta of its parent’s datetime and its own
6. Text body
7. Score (net number of upvotes)
8. Number of gilds (a type of recognition given to a comment/post by another user

that requires payment to award)
9. Whether or not the author has a distinguished role within the subreddit
10. AFINN sentiment value
11. Word count
12. Character count

13. Score category
	

The AFINN sentiment value and score category are two examples of features that are

added during enrichment right before the preprocessing phase. The AFINN sentiment score

is determined by a lexicon of English terms with manually-rated integer sentiment values.

The AFINN lexicon was created and tested by Finn Årup Nielsen, an associate professor

from the Technical University of Denmark [8]. It should be noted that an AFINN sentiment

score is by no means the most accurate or holistic way of determining a statement’s true

sentiment, as it does not consider context.

The final model aims to predict the score range of comments. The two most significant

reasons for doing so include that making n-classification problem would result in extremely

high penalties for arguably insignificant errors (e.g., predicting a score of 100 instead of 110)

and, as later discussed, the data’s distribution and behavior follows no consistent pattern,

making it a herculean task to create a decent regression model.

Before making any decisions regarding which models to use and which features to use, a

better understanding of the data itself is necessary. For example, the expected range of values

being predicted should be known along with its distribution (if applicable). Provided that

comment popularity categories determined by score are chosen for prediction, a reliable

criterion needs to be made before training any models. There is more to consider such as:

“can every subreddit be expected to have the same score distribution?”; “is it reasonable to

assign the same score category criteria to different subreddits?”; and “does having 1000

upvotes on one subreddit equal the same ‘significance’ on another subreddit?”.

Figure 1: Raw distribution of comment upvotes from the top 100 posts of the month from the politics subreddit (fetched
on 2020-14-04 21:39:00) and the log-transformed of the same distribution with its bottom 90th percentile truncate

Two distributions are visible in Figure 1: the raw score distribution on the left. It is

immediately noticeable that the vast majority of scores are close to zero. The median score in

the left distribution is four, with a mean of 62.7, and a max value of 20068.0, indicating a

heavy skew. Interestingly, after performing the truncation and log-transform, the data begins

to follow a more legible pattern. Observing a consistent behavior like this is important in the

search of a reliable categorization criteria. The Stanford study by Lamberson et. al takes a

classification approach for predicting comment score. However, they vastly simplify the

problem and reduce it to a binary classification between two simple categories: popular or

unpopular [5]. Furthermore, no specific comment score threshold between the two categories

was provided, adding ambiguity as to how their process works. Because Lamberson et al.’s

problem was reduced to binary classification, Naive Bayes (NB) classifiers and Support

Vector Machines (SVM) were primarily used for their predictions. However, as seen by the

wide and skewed distribution of comments, simply having two categories may oversimplify

the problem too much. Having a binary classification and an unspecified categorization

threshold adds a lot of ambiguity.

The figure above illustrates that every subreddit has a different distribution in values.

Each subreddit’s distribution, likely based on popularity, average comment depth, etc.,

generally differs slightly in shape and more greatly in range of values. By taking advantage

of the roughly-similar shapes in all currently observed score distributions, a consistent

categorical separation criterion emerges.

Five comment popularity categories were chosen and labeled INSIGNIFICANT,

NOTABLE, SIGNIFICANT, POPULAR, and VERY POPULAR. These five categories were

chosen based on fitting relatively evenly-spaced splits between chosen percentiles on the

transformed distributions in Figure 2. One may notice that there is a percentile split at zero;

having a split at zero seems rather obsolete, but it serves as a reminder that there exists the

rest of the dataset that is the 90% not shown after truncation. More specifically, the 90th

Figure 2: Truncated and log-transformed score distributions on top 100 posts of this month
(fetched at the same time as data in Figure 1) with lines indicating different percentiles

percentile of the original distribution is equivalent to the zero percentile of the transformed

distribution.

Let Pn(s) be a function that returns the nth percentile of an input set s, and let d be the set

that represents the set of all comment upvotes. Let D be the natural log of the set d for all

positive values and those above P90(d). Categories can be defined as:

There are two things that should be noted: P90(d) is equivalent to P0(D), as mentioned

earlier when discussing Figure 2, and eD is equivalent to all values of d greater than zero.

Now that a concrete categorization criterion has been determined, applying it over a set of

comments is rather simple. Before planning or creating any models, however, a further

investigation of the dataset is necessary to expose any possible feature

correlations/relationships.

A k-means classifier works as a useful tool in this scenario to help understand the given

dataset better, even though it is not used to “classify” anything in this study. Namely, the k-

means algorithm works to divide the samples into a number of disjoint clusters based on the

parameter number of centroids. Each cluster is primarily described by its mean, or

equivalently, its centroid. Given an n-feature data point, it may be represented, from the

perspective of the k-means classifier, as an n-dimensional coordinate. The classifier aims to

fit each disjoint cluster such that a global criterion, commonly referred to as inertia, is

minimized. For this investigation, scikit-learn’s implementation of k-means was used, which

minimizes inertia by minimizing the sum-of-squares within each cluster [9].

Because k-means classification, after fitting to a provided dataset, essentially outputs an

assignment of clusters to different domains within the coordinate space of the input dataset, it

is useful in uncovering any insights on how different features might be related to each other.

For example, in a perfect world, fitting a k-means classifier on a set of Reddit comments

would result in clusters that roughly correspond to each comment popularity category.

However, as this is not the case and there may exist many reasons as to why this isn’t

observed: the feature selection may be sub-optimal, the classification criterion may be wrong,

or the data may simply be inseparable in such a simple fashion.

Figure 3: Result of the k-means clustering of the comments from the same dataset in Figure 1 with k = 5 and seven features,
compared with the true clustering defined by the categorization criteria described earlier

Without much explanation, it can be seen that the k-means clustering using scikit-learn’s

implementation failed to find decent feature separation. Because the dataset has 7-

dimensional points, however, this visual is limited to a 3-dimensional “slice”’. Even looking

at the actual clustering on the right in Figure 3, there does not exist any elegant nor obvious

boundaries between the categories. Interestingly, there is a very subtle gradient in popularity

with an increasing number of awarded gilds, though it would not be a reliable metric, as

many more comments are buried with the insignificant comments below. With the primary

end goal of a multiclass classifier in mind, the number of choices is slightly limited. Decision

tree classifiers showed immediate promise for this problem, especially with its inherent

transparency and multiple optimization options.

IV. Model

Before defining any models, a significant amount of enrichment and preprocessing is

necessary. This is especially true for this dataset, containing many flags and heavy text.

There also exist a number of useful features that are not present but may be derived. The

most significant derived features added during the enrichment phase (before pipelining) are:

comment tree depth, time difference, sentiment, and word count. Many features needed to be

dropped before the pipelining phase, as many were insignificant. The main modelling phase

includes two models: one benchmark decision tree classifier trained on comment body text,

and another trained only on comment metadata.

The baseline classifier trained on comment data only keeps its text body, with everything

else dropped. Instead of going through a normal pipeline, a term frequency-inverse document

frequency (tf-idf) vector is fitted using scikit-learn’s tf-idf vectorizer. This determines the

overall significance of each word within a collection of text or document through the product

of two terms: term frequency TF(t) and inverse document frequency IDF(t) [10]. After each

significance weight is determined, one may compute an overall document significance by

summing each of its term’s tf-idf weight. Instead of pipelining, the comment body is

transformed into a document-term matrix with each term’s tf-idf weight assigned. With both

training and testing data split and transformed, the comment text classifier is ready to be

fitted.

To prepare the data for metadata classification, all non-numeric features must be

transformed through preprocessing. The only non-numeric feature left after dropping

unnecessary features is a flag on whether the comment poster is distinguished. The

enrichment phase for the metadata classifier is very important; a number of new metadata

features are added in this phase. Comment tree depth is added during the fetch phase, simply

incrementing for every parent above it (beginning with top-level comments). Time difference

is simply the UTC time difference between the parent and child comment. Sentiment score is

added using the AFINN lexicon discussed in the first section. All numeric values are scaled

using scikit-learn’s standard scalar, and non-numeric features are encoded with ‘one hot

encoding’. After splitting training and testing data, the metadata classifier is also ready to be

fitted.

V. Results

Both models performed rather well, especially considering the high potential for high

bias towards defaulting to the INSIGNIFICANT category, as 90% of comments are labeled

that way by definition. The comment text classifier, acting as the baseline model, takes a

significant longer time to create overall, including preprocessing and training time. This is

mainly because tf-idf vectorization is a costly task, requiring the storage and cross-reference

of every unique word used. However, creating the metadata classifier is a quick task, as its

features are all numeric and quick to transform.

As seen in Figure 4, the decision tree classifier trained off of comment data performs

marginally better than the metadata classifier. However, it appears to have higher bias. Their

similar performance is rather surprising, as the comment text classifier has a lot more

‘content’ to train off of. Similarity in performance between comment text classifiers and

metadata classifiers is still observed even using different subreddits and timeframes.

Figure 4: Table with the two classifiers and their respective accuracies, precisions, recalls, and F1 score after
predicting 19713 comments from the test set, and a table comparing the resultant distribution of
categorizations.

Figure 5: Feature importance, calculated by a normalized total reduction of criteria by feature, or equivalently the
Gini Importance [9], of each feature used in the metadata classifier

Provided the relatively high accuracy from singular decision tree models, various

boosting (ensemble) methods were attempted. Interestingly, both adaptive boosting and

gradient boosting led to significantly higher accuracies, but deceivingly through high bias, a

concern discussed earlier. More specifically, adaptive boost and gradient boost classifiers

‘cheated’ by listing nearly every comment as INSIGNIFICANT. The random forest

classifier, an ensemble of multiple decision trees, performed marginally worse than the

standalone decision tree classifiers. Furthermore, a grid-search was performed in an attempt

to find optimal hyperparameters for the decision tree. The main hyperparameters in question

include the maximum depth and the impurity index used. However, the grid search, using

sctkit-learn’s implementation (see [9]), also had a strong tendency to prefer high bias in the

resultant decision tree. After taking a closer look, this seems to be a result of the grid search

strictly preferring the lowest max depth possible, often oversimplifying comment

classification.

Although current optimization methods show an increase in bias, the two decision tree

models perform comparatively well, especially considering the increased complexity of a 5-

class classification problem. Lamberson et al.’s study used binary classifiers throughout their

work, consisting of standalone NB and SVM classifiers, and a combination of the two.

Despite simplifying the problem immensely through binary classification, their best

prediction accuracy, for just two categories, barely broke 60% [5].

VI. Conclusion and Future Work

The use of decision trees and relatively good performance uncovers interesting insight.

Most interestingly, the metadata classifier’s performance is very close to the baseline

(comment text) classifier’s performance. This was very surprising, provided that the general

assumption would be that a comment’s popularity should be based on the content itself. The

metadata classifier turns this idea around, showing that sufficient performance may be

attained using only comment metadata. In other words, one could reasonably predict a

comment’s popularity without ever needing to read the comment itself; instead, only basic

information like team posted, overall sentiment, comment depth, etc. is sufficient. More

specifically, according to the calculated feature importance for the metadata classifier in

Figure 5, the time delta between the parent and child comment has the highest importance.

This means that the time difference feature, overall, allows for the highest decrease in

impurity within the tree. This could be further interpreted as one being able to gain the most

net information splitting by the time difference as opposed to any other feature overall during

categorization.

Despite performing well in the performed tests and relative to previous comment upvote

predictors in literature, there is a lot more that can be done. Future work could include:

adding further constraints on data to prevent high bias seen earlier with adaptive boosting and

gradient boosting; using models to further understanding of individual subreddits; testing

models on data from different subreddits to see if accurate predictions correspond with

expected subreddit “similarity”; and devising and testing different popularity categorization

criteria.

VII. References

[1] C. Buntain, J.Golbeck. Identifying social roles in reddit using network structure.

WWW ’14 Companion. 2014. doi:10.1145/2567948.2579231

[2] S. Faraj, S. Johnson. Network Exchange Patterns in Online Communities. Organization

Science. 2010, Dec. 29. doi:10.1287/orsc.1100.0600

[3] C. Nguyen. (2018, May 30). Reddit beats out Facebook to become the third-most-popular

site on the web. [Online]. Available:

www.digitaltrends.com/computing/reddit-more-popular-than-facebook-in-2018/

[4] A. Reevesman. (2018, Dec. 31). Predicting Reddit Comment Upvotes with Machine

Learning. [Online]. Available:

towardsdatascience.com/predicting-reddit-comment-karma-a8f570b544fc

[5] D. Lamberson, L. Martel, S. Zheng. 2014. Hacking the Hivemind: Predicting Comment

Karma on Internet Forums.

[6] J. Leskovec, A. Krevl. (2014, June). SNAP Dataset: (Stanford) Large Network Dataset

Collection. [Online]. Available: http://snap.stanford.edu/data

[7] B. Boe. PRAW: The Python Reddit API Wrapper. (2012). [Online]. Available:

https://github.com/praw-dev/praw/

[8] F. A. Nielsen. (2011, May). A new ANEW: Evaluation of a word list for sentiment

analysis in microblogs. Proceedings of the ESW2011 Workshop on ‘Making Sense of

Microposts’: Big things come in small packages. vol. 718, pp. 93-98.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, E. Duchesnay. (2011). Scikit-learn: Machine Learning in Python.

Journal of Machine Learning Research. vol. 12, pp. 2825-2830.

[10] C. D. Manning, P. Raghavan, H. Schütze. “Scoring, term weighting and the vector

 space model”, in Introduction to Information Retrieval. Cambridge, United Kingdom:

 Cambridge University Press. 2018, ch. 6, pp. 109-13

