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Abstract

In this thesis, we introduce a novel scheme of adiabatic quantum molecular

dynamics (QMD), in which the electron degrees of freedom are integrated out

on the fly by the dynamical mean-field theory (DMFT) calculation. Compared

with the QMD based on the popular density functional theory, our new scheme

is able to describe phenomena due to strong electron correlation, such as Mott

metal-insulator transition (MIT). Moreover, our DMFT-QMD also provides

information on the incoherent non-quasi-particle electronic excitations, thus

significantly generalizing the capability of Gutzwiller/Slave-boson-based QMD

recently developed by our group. We use this new MD method to study the

Mott transition in an atomic liquid of hydrogen-like atoms. We observe a

reentrant phase transition driven by Coulomb repulsion and obtain various

nontrivial atomic and electronic properties of the system.

Additionally, we combine exact diagonalization with molecular dynamics

simulation to study the correlated liquid model in the strong coupling limit,

in which the local moments on atoms dominate. We discover a tendency of

dimer formation in the system and the dimers undergo a dissociation process

driven by Coulomb repulsion.

Our work opens a new avenue for multi-scale dynamical simulations and

modeling of strongly correlated electron systems. Our results provide unique

insights into the dynamics and the electronic properties of the MIT in corre-

lated liquid systems.
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Chapter 1

Introduction

Modern condensed matter physics dedicates to explain all kinds of physical

phenomena in various materials. Over the last 100 years, physicists have de-

veloped many successful theories to predict the properties of simple metals and

some semiconductors and insulators. Typically, effective single-electron pic-

tures, in which electrons are considered to be non-interacting with each other,

are sufficiently accurate for these materials. Among all the properties of ma-

terials, electronic properties are probably one of the most important classes

since they are closely related to the development of novel electronic technolo-

gies. Therefore, numerous theories, including band theories and Fermi liquid

theory, have been developed to extensively investigate the electronic properties

of materials, such as band structure, magnetism, and electronic transporta-

tion [1, 2]. Perhaps, one of the most successful and most widely-used theories

is the density functional theory (DFT) that is based on the Kohn–Sham equa-

tions [3, 4], within which the ground state properties of many simple elements
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and semiconductors, and even of some insulators are accurately described.

With the powers of the local density approximation (LDA) [5], the generalized

gradient approximation (GGA) [6], and the LDA+U method [7], the magnetic

and electron orbital properties and the crystal structures of many materials

have been successfully predicted in the framework of the DFT [8, 9].

Despite the great success of these theories in many materials, the situation

turns out to be complicated when attempting to explain the physics of systems

with strong mutual electron-electron interactions. In this case, the effects of

interacting (correlated) electrons are too conspicuous for them to be treated as

independent particles. Such strong electron correlations can often be identified

in transition metals, such as vanadium, iron, and corresponding oxides. In

these materials, open d and f electron shells exist, and electrons occupy narrow

orbitals. Thus, the electrons experience strong Coulombic repulsion due to the

spatial confinement in those narrow orbitals, triggering a dramatic increase in

the problem’s complexity. For instance, in transition metal oxides, there are

two competing forces acting on the electrons - the Coulombic repulsion that

tends to localize individual electrons at atoms and the hybridization with the

oxygen p electron states that tend to delocalize electrons. Because of this

competition, a rich amount of physics are produced [1]. Additionally, at low

temperatures, the internal degrees of freedom - spin (S = ±1/2), charge (−e),

and orbital moment - of the d and f electrons and their coupled dynamics can

lead to complex phases, such as liquid-like, crystal-like, and liquid-crystal-like

states of electrons, and phenomena, like the electronic phase separation and

the pattern formation [1, 10, 11].
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On the one hand, for weakly correlated materials, such as silicon or alu-

minum, the DFT method and other non-interacting treatments can be a good

starting point to capture the nature of the system using perturbation theo-

ries [12]. On the other hand, those theories, even the powerful DFT, fail to ac-

curately describe the electronic and structural properties of strongly correlated

systems because they miss the strong correlation effects in those systems [1, 9,

12, 13]. Take nickel oxide and manganese oxide as an example. They are insu-

lators with relatively low magnetic-ordering temperatures but large insulating

gaps; nevertheless, the conventional band theory fails to make the correct in-

sulating prediction when the long-range magnetic order is missing [12]. It is

suggested by Nevill Mott that those insulators can be better understood from

a real-space picture by considering the solid as a system consisting of localized

electrons bounded to atoms via open shells. Excitations in this system are

achieved by simply adding and removing electrons from an atom [14, 15]. Fur-

thermore, the modeling of the strongly correlated system is challenging when

the system is away from the two well-understood limits and has electrons that

are neither fully mobile (wave-like) nor fully localized (particle-like). Because

of this dual nature of electrons in the system, it is vital to combine both the

real-space and momentum-space pictures to describe the complete physics of

the system [12].

In particular, one of the simplest models of correlated electronic systems

that can demonstrate such competition is the famous Hubbard Model,

H = −
∑
i,j,σ

hij

(
c†i,σcj,σ + c†j,σci,σ

)
+ U

∑
i

ni,↑ni,↓, (1.1)
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where the matrix element hij describes the hopping of electrons with spin σ

between orbitals at sites i and j; the constant U is the local Coulomb repul-

sion between two electrons on the same site i; ni,σ = c†i,σci,σ is the density

of electrons at site i with spin σ. Although the Hamiltonian has a relatively

simple form, the Hubbard model can lead to profound physics, which makes

it very difficult to solve [16]. In the Hubbard model, the kinetic energy and

the interaction energy are characterized by the hopping term hij and the lo-

cal Coulomb repulsion U , respectively. Hence, the competition between the

inter-orbital electron hopping hij and the intra-orbital Coulomb repulsion U

can be described by this minimal model, which is at the very heart of the elec-

tronic many-body problems. Although a variety of physical properties can be

derived from this simple model, the properties of the system are governed by

some rather fundamental parameters, namely the ratio between the Coulomb

repulsion U and the bandwidth W that is determined by the hopping matrix

hij, the temperature T , and the filling fraction of electrons n.

Moreover, the Hubbard model described in Eq.(1.1) is a single orbital Hub-

bard model, in which the electron hoppings and the local Coulomb interac-

tions are limited to one single orbital on each atom, whereas multi-orbital

hopping and coupling are actually common in real systems, in which interact-

ing electrons can occupy d and f shells that have multiple orbitals and exhibit

complex interactions within these shells. This is the multi-orbital Hubbard

model. For example, if interacting electrons occupy the d-orbitals, namely

dz2 , dx2−y2 , dxy, dyz and dxz orbitals, the Coulomb repulsion will be described

using a 5 by 5 interaction matrix Umn depending on both Coulomb repulsion
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U and Hund’s coupling J [9, 17, 18]. In fact, this interaction matrix could

be simplified to reduce the complexity of problems using various approxima-

tions, like focusing on only the orbitals with dominating influence to obtain a

smaller Umn, or ignoring the off-diagonal terms in the interaction matrix Umn

that might not be significant to the overall physics.

Despite the difficulties encountered when studying even the simplest strongly

correlated system, physicists are constantly interested in investigating a wide

variety of physical properties of these systems. A major topic of strongly cor-

related system physics is the metal-insulator transition (MIT), which could

be one of the oldest, yet one of the fundamentally least understood problems

in condensed matter physics and materials science [12, 14]. As stated above,

the two limits - good insulators and good metals - have been well explained

using simple theories developed long ago, but understanding the intermediate

regime between them remains challenging because it is difficult to reconcile the

wave-particle duality nature of electrons in materials. In a metal, electrons are

well described by Bloch waves, but in an insulator, they are better understood

from a real-space picture as localized particles occupying atomic orbitals [14,

15]. The MIT driven by strong electron correlation are of most importance,

in which itinerant electrons (metallic) become localized (insulating) due to

strong on-site Coulomb repulsion. This phenomenon is also called the Mott

transition [19]. Understanding the nature of MIT and attempting to master

the MIT has become the major driving force behind the discoveries of many

novel phenomena in materials science.

Searching for high-temperature superconductivity plays an important role
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in modern physics researches, and the discovery of cuprates superconductors

with exceptionally high transition temperature [20] revived people’s interest

in strongly correlated systems because they are closely related to the Hubbard

model. Cuprates superconductors are layered, consisting of superconduct-

ing planes of copper oxide separated by intermediate layers of ions. From a

phenomenological angle, it is widely accepted that the ”parent state” in the

cuprates is a quasi-2D antiferromagnetic insulator, and the Hubbard model

on the square lattice is the simplest possible model of a doped antiferromag-

netic state. Further connections between the cuprates and the Hubbard model

were made by the surprisingly good matches between theoretical studies and

experimental results. Many of the properties of the Hubbard model obtained

from theoretical investigations turn out to resemble the characteristic features

of the electronic states of the cuprates [16, 21, 22].

Another widespread interest in copper oxides and other correlated-electron

systems is the colossal magnetoresistance (CMR) phenomenon [23, 24]. Mag-

netoresistance is the phenomenon that the material exhibits a change of resis-

tance in the presence of an applied magnetic field. In contrast, in materials

with colossal magnetoresistance, a small increase in the external magnetic

field will lead to a gigantic decrease in resistivity [1]. The ability to control

MIT in an unconventional way offers hope that correlated-electron systems

may provide a basis for the development of next-generation low-power, high-

speed electronics technology [1]. For instance, researchers are developing the

so-called Mott transistors that utilize the collective response of electrons in

the MIT for switching. The Mott transistors are much faster than the con-
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(a) (b)

Figure 1.1: Schematic current-voltage curve of (a) the MOSFET and (b) the
Mott-transistor. The switching of the Mott-Transistor is through a MIT in-
duced by a gate voltage, which can be much faster than the Boltzmann limit
60mV/decade.

ventional metal-oxide-semiconductor field-effect transistors (MOSFET) with

a switching speed bounded by the Boltzmann limit [29, 30, 31, 32, 33, 34, 35].

Aside from the material with CMR, another promising candidate for Mott

transistors is the vanadium dioxide VO2, which is one of the prototypical corre-

lated materials [36]. The metal-insulator transition temperature of vanadium

dioxide is slightly above the room temperature, and across the MIT, it exhibits

a huge change in resistivity. These properties attracted enormous attention

from both physicists and engineers. Based on the unique properties of VO2,

prototypes of novel electronics has been developed [30, 31, 32, 33, 34, 35]. An

important phenomenon observed during the recent studies of the MIT in the

real correlated compounds such as VO2 and NdNiO3 is the existence of struc-

tural distortions and highly inhomogeneous electronic states during the MIT.

In particular, several near-field spectroscopy and nano-imaging experiments
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Figure 1.2: Mesoscopic textures revealed by the near-field nano-imaging dur-
ing the metal-insulator transition (MIT): (a),(b) temperature-driven MIT in
VO2 [25, 26] without and with external strain, respectively. Panels (c) and
(d) show the nano-scale phase separation at the MIT of another function Mott
material NdNiO3 [27, 28]. The color gradient indicates the local metallicity of
the sample.

have uncovered complex nano-scale textures during the MIT of these strongly

correlated material as shown in Fig. 1.2 [30, 31, 32, 33, 34, 35]. All these

properties of the strongly correlated system make the prospects for developing

applications from correlated-electron materials exciting. However, the richness

of the phenomena, and the sensitivity to microscopic details such as structural

distortions and spatial inhomogeneity, make their experimental and analytical

study more difficult.

In order to study the wide variety of physical properties in strongly corre-

lated systems and understand the MIT, numerous numerical techniques and
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analytical methods have been used. A traditional approach of studying a cor-

related system is to model and solve the corresponding Hamiltonian of the

system; however, in practice, it is a highly complex problem itself to reduce

the fully many-body Hamiltonian to a solvable model that can preserve the

characteristic features and the physics of the original system. Without re-

ducing the degree of freedom, the solution of the original Hamiltonian, whose

Hilbert space grows exponentially, is not feasible. For instance, mean-field

theories (MFT) can be utilized to give an approximate overall description of

the physical properties of many-body models. In a mean-field theory, the fluc-

tuating field created by the many-body interactions in the actual Hamiltonian

is approximated by an averaged effective field, namely the mean-field, such as

the Weiss mean-field approach in the Ising model. Thus, the original many-

body lattice problem reduces (or maps) to a single-site problem with effective

parameters [9].

The well-known Hartree-Fock (HF) mean-field methods can be applied to

the Hubbard model. Adopting the Hartree approximation, correlations can be

eliminated by factorizing the local interaction term ni,↑ni,↓.

U
∑
i

ni,↑ni,↓ ≈ U
∑
i

(ni,↑ 〈ni,↓〉+ 〈ni,↑〉ni,↓ − 〈ni,↑〉 〈ni,↓〉) (1.2)

In this approximation, correlations of the fluctuations are neglected and the

mean field is static, thus it is not accurate enough to described the physical

nature of the strongly correlated systems, especially near the metal-insulator

transition (MIT) driven by the Coulomb repulsion U [14].
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More advanced many-body techniques were later developed to handle the

strong electron correlations in lattice models, such as Quantum Monte Carlo

methods [37, 38] and variational methods [39]. Among all these numerous

methods, the Gutzwiller variational method is perhaps the most efficient ap-

proach that can successfully capture the essential correlation effects. The basic

idea of the Gutzwiller approximation (GA) method is to apply an operator to

a Slater determinant which reduces the probability amplitude of doubly occu-

pied states, and double occupancy probability is optimized variationally [39,

40]. The GA method not only provides us an effective single-particle picture

but also captures the crucial correlation effects of the system, such as band

narrowing and electron localization. Combined with ab initio methods, such

as the LDA, the GA method has proven to be successful in studying real corre-

lated materials [41, 42, 43]. It was recently combined with molecular dynamics

methods to investigate the dynamics and the electronic properties of a strongly

correlated liquid system [44, 45].

Further progress in studying strongly correlated systems was made by the

development of the dynamical mean-field theory [13, 46]. The essence of a

mean-field theory is to map a many-body lattice problem to a single-site

problem with effective parameters. Likewise, in the dynamical mean-field

theory, the many-body lattice problem is simplified by mapping it onto a

single-impurity model embedded in a medium that has to be determined self-

consistently. The impurity model is connected to the original many-body

problem via a set of self-consistent equations. In contrast to Hartree-Fock-

type approximations, the mean-field in the DMFT is dynamical, whereby the
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local quantum fluctuations are fully taken into account. The dynamical mean-

field theory has opened new perspectives for investigating strongly correlated

electron systems and greatly improved our understanding of correlation effects

in models and materials. Furthermore, extensions of DMFT, such as cluster

DMFT, inhomogeneous DMFT, and nonequilibrium DMFT, were developed

to capture more sophisticated interactions and characteristics in the strongly

correlated systems, including short-range quantum fluctuations, spatial inho-

mogeneity, and nonequilibrium dynamics of the electrons [47, 48, 49, 50, 51].

In addition to the methods introduced above, other new techniques have

been developed and been applied to the strongly correlated system, such as

the self-energy functional theory [52, 53], the density matrix renormalization

group (DMRG) [54] and the numerical linked-cluster expansions methods [55,

56, 57, 58, 59]. With the help of all these newly developed theories and

methods, people are getting closer to the great goal of understanding and

mastering the metal-insulator transition.

Nowadays, one major research topic in the field of strong correlation physics

is to combine the ab initio calculations and DMFT methods to predict the

properties of real materials [2]. Another focus of the community is to describe

the quantum fluctuations better using more complex extensions of DMFT

method [47] or calculate more accurate results for challenging models using

better impurity solvers. Unfortunately, there are currently only a limited

amount of studies on the multi-scale modeling of the strongly correlated sys-

tems that can include both the microscopic many-body physics of the strongly

correlated electrons and the macroscopic modeling of complex phase transi-
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tion kinetic. As revealed in the experiments, the spatial inhomogeneity can be

found in the vicinity of the MIT of real materials such as VO2 [34, 35], which is

closely related to the development of correlation-based electronics. However,

it is currently relatively less focused. The formation of these nano-textures

and their dynamical properties remain unanswered, and a comprehensive and

microscopic understanding of MIT dynamics is further required. To summa-

rize, the difficulty of developing such an understanding is partly due to the

multi-scale and multi-faceted nature of the MIT kinetics. On the one hand, ac-

curate modeling of strongly correlated electrons requires advanced many-body

techniques, most of which are computationally too expensive to be directly

combined with large-scale dynamical simulations. On the other hand, the

mesoscale electronic inhomogeneities associated with the MIT are reminiscent

of the complex systems dominated by nonlinear and nonequilibrium processes.

In this thesis, we are interested in bridging this gap. We propose a multi-

scale dynamical simulations scheme and modeling of strongly correlated elec-

tron systems based on the molecular dynamics and the dynamical mean-field

theory. This novel scheme provides information on the incoherent non-quasi-

particle electronic excitations during the molecular dynamics, thus signifi-

cantly generalizing the capability of Gutzwiller/Slave-boson-based QMD re-

cently developed by our group [44, 45]. Moreover, we proposed a second

scheme combining molecular dynamics with the exact diagonalization to dy-

namically simulate correlated systems in the strongly correlated limit where

local magnetic moments dominate and interact via exchange interactions. It

allows us to investigate the interplay between the correlation and the kinetics
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of the local moments, which is also crucial in developing a relatively complete

understanding of MIT [60]. These two methods were applied to a strongly

correlated liquid system to illustrate the physical pictures on both sides of the

Mott transition in a liquid system.
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Chapter 2

Dynamical Mean Field Theory

In this chapter, we give a summary of the dynamical mean-field theory (DMFT)

and related topics. Meanwhile, some basic notations are established for the

succeeding chapters.

The dynamical mean-field theory discussed in this chapter is the conven-

tional homogeneous DMFT (single-site DMFT). Although it is not designed

to capture the spatial inhomogeneity in the Hubbard model that we are most

interested in, it can serve as a good demonstration of the basic ideas of the

DMFT, such as the mapping from the Hubbard model to an effective impurity

problem and the self-consistent loop of DMFT. As the foundation of all other

extensions of DMFT methods, the homogeneous DMFT can help one under-

stand the inhomogeneous DMFT method introduced in the later chapter since

their central ideas are similar. Additionally, basic properties of the Hubbard

model, such as the first-order U driven MIT and the doping δ driven MIT,

are also discussed based on the numerical results obtained from DMFT, such
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as spectral functions and quasi-particle weights. The impurity solvers used in

our simulations are also briefly discussed.

The dynamical mean-field theory is derived for the case of the single-band

Hubbard mode (1.1) in this chapter. It is assumed, for simplicity, that no sym-

metry breaking occurs, which means that we only consider the paramagnetic

phase without any long-range order. Note that, to capture the long-range

order of the Hubbard model, such as the antiferromagnetic state in the Mott

phase, one should apply the extensions of DMFT, like cluster DMFT [47].

The above Hamiltonian made no assumption to the atomic system in which

the Hubbard model resides. Thus, it can be on various systems, from liq-

uid systems without a well-defined lattice to solid systems with translational

invariant crystal structures in d-dimension.

The numerical results displayed in this chapter are obtained by solving a

homogenous Hubbard model on the Bethe lattice using DMFT. The Hubbard

model on the Bethe lattice has been extensively studied using DMFT meth-

ods [13, 61, 62]. Indeed, the simple form of its non-interacting (bare) density

of state (DOS) is convenient for the DMFT calculation, which is given by

ρ0 (ω) =
2

π

√
1−

( ω
D

)2

(2.1)

where D = 2t is the half bandwidth. In this chapter, the energies are in units

of D, and we set D = 1 for clarity.
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2.1 Dynamical Mean Field Theory

As outlined in the introduction, the central idea of a mean-field theory is to re-

duce the full many-body model to an effective single-particle model. Similarly,

in the dynamical mean-field theory framework, a particular site i is chosen and

the degree of freedom of all other sites are integrated out, which results in an

effective local action [9, 13, 63]:

Seff =−
∫ β

0

dτ

∫ β

0

dτ ′
∑
σ

c†0σ (τ)G−1
0 (τ − τ ′)c0σ (τ ′)

+ U

∫ β

0

dτn0↑(τ)n0↓(τ) (2.2)

where the bare Green’s function G0(τ − τ ′) is given by

G−1
0 (iω) = iω + µ−∆(iω) (2.3)

In this expression, the Green’s function is transformed to the Matsubara fre-

quencies iwn domain,

G0(iωn) =

∫ ∞
0

dτG0(τ)eiωnτ , ωn =
(2n+ 1)π

β
(2.4)

where β is the inverse temperature; ∆(iω) is the hybridization function that

describes the coupling of the local site i with the rest of the system. Here

the bare Green’s function G0(τ − τ ′) corresponds to the Weiss effective field in

the conventional mean-field theories in statistical mechanics [13]. The physical

constant of G0(τ − τ ′) is that of an effective amplitude for an electron to be

25



created on the impurity site i at imaginary time τ and being destroyed at time

τ ′, namely, an electron coming from the external bath at τ and going back

to the bath at τ ′. In contrast to the classical mean-field theory, where the

quantum fluctuations are ignored and thus being static, this effective ”Weiss

field” G0 takes full account of the temporal fluctuations. Therefore, the local

temporal fluctuations are fully taken into account in the DMFT, and this is

from where the name ”dynamical” comes. Furthermore, it can be seen that

the effective action in Eq. (2.2) is a purely local problem. Therefore, one

can identify this action Seff as that of a local impurity problem; consequently,

the many-body model is then mapped to an impurity problem which has an

action of the same form of the effective local action Seff. Moreover, this requires

the local Green’s function of the Hubbard model Glocal to coincide with the

impurity Green’s function Gimp

Gimp (iω) = Glocal (iω) (2.5)

The relation between local Green’s function Gimp and the Weiss field G0 can

be expressed in the form of a Dyson’s equation

G−1
imp(iωn) = G−1

0 (iωn)− Σ(iω) (2.6)

= iω + µ−∆(iω)− Σ (iω) , (2.7)

Σ(iωn) is the self-energy of the local impurity problem which is also the self-

energy of the Hubbard model. Then, by assuming this self-energy to be strictly

local [13, 46, 63], i.e. momentum-independent, the system Green’s function of
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the original many-body system is given by,

G−1 (k, iω) = ω + µ− εk − Σnew (iω) , (2.8)

Finally, the local green’s function can be recovered using system Green’s func-

tion G (k, ω) via a Hilbert transformation,

Gimp(iω) = Glocal (iω) =
∑
k

G(k, iω) (2.9)

The above equations form a self-consistent loop that establish the mapping

from the Hubbard model to impurity model. These equations can also be

written on the real-axis, by simply replacing iωn with ω. Once the algorithm

of solving the impurity problem Seff is known, one can solve the correlated

system self-consistently,

Σ→ G→ G0 → Σ (2.10)

Starting from a self-energy Σ, the full Green’s function (Green’s function of

the Hubbard model) G is calculated. Then, the local Green’s function Glocal

and corresponding Weiss field G0 are obtained from G and Σ. Finally, a new

self-energy Σnew can be obtained by solving the impurity problem defined by

G0 and acts as the initial self-energy of the next iteration. The algorithm

converges when the input self-energy and the output self-energy are identical

Σ = Σnew.
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2.2 Impurity solvers

The most complicated step in the DMFT calculation is to solve the impurity

problems defined by the action Seff. In practice, the local Green’s function is

obtained by solving the impurity problem in a Hamiltonian formulation instead

of solving the action Seff directly. For the Hubbard model, the corresponding

impurity model is a single-impurity Anderson model (SIAM) consisting of an

impurity f coupled to a bath of conducting electron ck,σ. The Hamiltonian of

SIAM is given by [13],

HSIAM = εf
∑
σ

f †σfσ +
∑
k,σ

εk,σc
†
k,σck,σ (2.11)

+
∑
k,σ

Vk

(
c†k,σfσf

†
σck,σ

)
+ Uf †↑f↑f

†
↓f↓ (2.12)

In this Hamiltonian, c†k,σ(ck,σ) corresponds to band states in a non-interacting

bath with spin σ and energy εk, and f †σ(fσ) corresponds to impurity states

with energy εf .

Fortunately, Anderson impurity problems have been extensively studied

in the past, and various solvers have been developed. For instance, one of

the most powerful and widely used impurity solvers is the continuous-time

quantum Monte-Carlo algorithm (CTQMC), which in principle can provide

exact results for the impurity problem [13]. Indeed, it is subject to several

drawbacks, such as the famous sign problems and its huge computational

cost. Nevertheless, it has been widely used in the LDA+DMFT calculations

in which the strong correlations during the ab initio calculation are handled
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using DMFT [2, 17].

We developed two impurity solvers during our study: a real-axis iterative

perturbation theory solver and a numerical renormalization group solver. They

will be briefly explained below.

2.2.1 Iterative Perturbation Theory

The Iterative Perturbation Theory (IPT) is an approximation method that

relies on the interpolation from 2nd order perturbation theory for the Anderson

impurity problem. The interpolation preserves the correct high-frequency limit

for the self-energy and is exact in both the non-interacting and the atomic

limits [13, 61, 64].

The self-energy in the IPT is parametrized by,

Σ(ω) ≈ U
n

2
+

AΣ(2)(ω)

1−BΣ(2)(ω)
(2.13)

where,

Σ(2)(ω) = U2

∫ 0

−∞
dε1

∫ ∞
0

dε2dε3
ρ(0)(ε1)ρ(0)(ε2)ρ(0)(ε3)

ω + ε1 − ε2 − ε3 − iη
(2.14)

+ U2

∫ ∞
0

dε1

∫ 0

−∞
dε2dε3

ρ(0)(ε1)ρ(0)(ε2)ρ(0)(ε3)

ω + ε1 − ε2 − ε3 − iη
(2.15)

with ρ(0) = 1
π
ImG0. Here the bare Green’s function is defined by,

G0(ω) =
1

ω + µ0 −∆(ω)
(2.16)
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Note that this bare Green’s function is equivalent to the G0 in the DMFT

formulism. The parameter µ0 is a fictitious chemical potential. In the half-

filling case µ0 = 0, but for the arbitrary filling case, it is yet to be fixed. The

constants A and B are given by,

A =
n(1− n)

n0(1− n0)
, (2.17)

B =
(1− n)U + µ0 − µ
n0(1− n0)U2

(2.18)

Here n0 is a fictitious particles number determined from G0,

n0 = −
∫
dω

1

π
f(ω)ImG0(ω) (2.19)

Here f(ω) is Fermi distribution function. As stated above, for the arbitrary

filling case, the parameter µ0 is yet to be fixed. There exist different ways to

determine it [61, 64]. In our simulation, we compute µ0 by setting the fictitious

particles number to the physical particle number n of the impurity problem,

n = −
∫
dω

1

π
f(ω)ImG(ω) (2.20)

The interacting Green’s function of the impurity problem follows from,

G(ω) =
1

G0(ω)− µ0 + µ− Σ(ω)
(2.21)

Numerically, this can be done via standard root-finding algorithms, such as

Newton’s methods and bisection methods. When incorporating to the DMFT,

30



0

0.1

0.2

0.3

0.4

2 2.25 2.5 2.75 3

Z

U/D

Increasing U

Decreasing U

Figure 2.1: Quasi-particle weight as a function of U/D on a half-filled Bethe
lattice at T = 0.03. D is half bandwidth of the bare density of state. The red
curve is obtained from increasing U simulation and the green curve is from
a decreasing U simulation. The clear hysteresis near the transition suggested
that the U driven metal-insulator transition in Hubbard model is of first-order.
It can be estimated from the plots that Uc1 ∼ 2.6D and Uc2 ∼ 2.8D.

this G(ω) is equivalent to the local Green’s function Gloc(ω), therefore the µ0

can also be fixed using the particle number calculated from Gloc(ω).

One important quantity that can be obtained from the DMFT calculation

is the quasi-particle weight also known as the mass renormalization factor Z,

which is defined as,

Z =
m

m∗
=

(
1− ∂ReΣ(ω)

∂ω

∣∣∣∣
ω→0

)−1

(2.22)

where m is the physical mass of electron and m∗ is the effective mass of elec-

tron. It can act as a criterion for identifying metal-insulator transition. In a

metallic system, there is a finite quasi-particle weight, while Z vanishes when

the system becomes insulating.
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Figure 2.2: The spectral functions of half-filled Hubbard model on Bethe lattice
at various U , at T = 0.01, obtained from a real-axis IPT solver. The unit of
U is D = 1. The panel (b) shows the typical three peaks structure, when the
localization and delocalization effects are comparable. The panel (d) shows a
Mott state where two Hubbard bands can be found at ±U/2.

In Fig. 2.1, the quasi-particle weight is plotted as a function of U/D on a

half-filled Bethe lattice at T = 0.03. D = 1 is the half bandwidth of the bare

density of states. As the U increases (decreases), dramatic changes of Z can

be observed. The critical U for the transition can be estimated from the plots:

Uc1 ∼ 2.6D and Uc2 ∼ 2.8D. An evident hysteresis appears near the transition

suggesting that the U driven metal-insulator transition in the Hubbard model

is first-order.

The spectral function which contains the information of the incoherent non-

quasi-particle electronic excitations of electron, is another quantity of interest

when studying the strongly correlated system. It can be obtained from the
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imaginary part of the Green’s function,

A (ω) = − 1

π
Im (G (ω)) (2.23)

The MIT can be monitored using the features of a spectral function. For

instance, in a metallic phase, a quasi-particle peak appears at the Fermi level

ω = 0 (the Fermi level is usually shifted to 0 during the DMFT calculation);

however, a gap opens at ω = 0, and two Hubbard bands grow out at ±U/2

when the system enters a Mott insulating phase. The spectral functions of

a half-filled Hubbard model on Bethe lattice at various U , at T = 0.01 are

shown in Fig. 2.2.1. It can be seen that as the strength of Coulomb repulsion U

increases, the quasi-particle peak at ω = 0 vanishes when the system enters the

Mott state and the spectral weight of central peak shifts to the two Hubbard

bands at ±U/2. The spectral functions of doped Hubbard models on Bethe

lattice are shown in Fig. 2.2.1. The system is at T = 0.01. The doping factor

is given by δ = 1 − 2n. By observing Fig. 2.2.1(d) and Fig. 2.2.1(b) and

Fig. 2.2.1(c), one can see that at low temperature doping-driven transition

from insulating phase to a metallic phase can occur. The original Mott state

at U = 4 has a gap at the Fermi level, while a small doping δ = 0.04 to

the system results in a metallic state with a clear quasi-particle peak at ω =

0. In a word, the insulting system can transit a metal after doping. The

doping in these simulations is directly controlled using the chemical potential

µ. In experiments, the chemical potential can be controlled by applying a gate

voltage. Such ability to control the doping-driven MIT can help scientists to
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develop Mott transistors [30].

The major advantage of this method is that it has a relatively low com-

putational cost, and the calculation is performed directly on the real-axis (no

analytical continuation is required), which makes it suitable for solving mul-

tiple impurity problems in the real space extension of DMFT. Although IPT

provides an approximate solution to the impurity problem, its results are quali-

tatively accurate and can offer valuable insights into the correlated system [61].

2.2.2 Numerical Renormalization Group

The numerical renormalization group (NRG) solver is a state-of-the-art impu-

rity solver, which is also considered as an exact method [50, 62, 65]. Similar

to the IPT solver, the NRG solver works on the real frequency axis directly.

The central of this method, the anderson impurity problem (2.11) is mapped

to a semi-infinite chain,

H =εf
∑
σ

f †σfσ + Uf †↑f↑f
†
↓f↓ (2.24)

+

√
ξ0

π

∑
σ

(f †σc0σ + c†0σfσ) (2.25)

+
∞∑

σn=0

[εnc
†
nσcnσ + tn(c†nσcn+1σ + c†n+1σcnσ)] (2.26)

This Hamiltonian is then solved by iterative diagonalization technique: the

semi-infinite chain is solved by adding one site to the chain at a time [62, 65].

The spectral functions of the half-filled Hubbard model on Bethe lattice at

various U , at T = 1e−6 are shown in Fig. 2.2.2. Similar to the IPT results, as
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the strength of Coulomb repulsion U changes, the system undergoes a stan-

dard Mott transition. At U = 2.5, both metallic and insulating solutions can

coexist. In the coexistence regime, the final result of a DMFT simulation is

sensitive to the initial condition.

This method can achieve very high accuracy at low energy regime; however,

it suffers from low resolution at high frequency due to logarithmic discretiza-

tion of hybridization function [62].
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Figure 2.3: The spectral functions of various doped Hubbard model on Bethe
lattice at T = 0.01, obtained from a real-axis IPT solver. Finite doping at low
temperature can drive a Mott insulating phase to a metallic phase.
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Figure 2.4: The spectral functions obtained from DMFT+NRG. The cal-
culations are performed on half-filled Hubbard models on Bethe lattice at
T = 1e−6. In penal (b), both metallic and insulating solutions coexist. In the
coexistence regime, the final results is sensitive to the initial condition.
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Chapter 3

Molecular Dynamics with

Dynamical Mean Field Theory

Metal-insulator transition (MIT) continues to be an essential subject in mod-

ern condensed matter physics even after more than sixty years of study [14,

66]. Unlike conventional phase transitions that can be characterized by broken

symmetries, the MIT originates from the different dynamical behaviors, itin-

erancy versus localization, of electrons. There are two basic mechanisms that

cause electron localization. It was shown by Anderson that disorder or strong

spatial fluctuations result in well-localized electron wave function even in the

absence of interactions [67, 68]. On the other hand, in the Mott transition

scenario, localization of electrons is driven by strong short-range Coulomb

repulsion [19, 69]. The interplay of these two scenarios lead to interesting

phenomena such as disordered-induced local moment formation and electronic

Griffiths phase [60, 70, 71, 72, 73, 74, 75].
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While extensive efforts have been devoted to understanding the effects of

quenched disorder on correlated lattice models, much less is known about the

Mott transition in an atomic liquid, which in a sense can be viewed as corre-

lated electrons subject to a dynamical disorder. In fact, fluid systems, such as

liquid mercury and alkali metals, had played a crucial role in our understand-

ing of MIT in disordered medium [76, 77, 78, 79, 80]. Early theoretical models,

however, assumed electron interactions are negligible in atomic liquids and fo-

cused on the disorder effect [77, 81, 82]. Assuming no particular short-range

order of atoms, such theories for MIT in liquid are not much different from

those developed to describe amorphous solids. For example, Mott’s theory

for liquid semiconductors and mercury posited a disorder-induced pseudogap

within which the electron states are localized through the Anderson mecha-

nism [77]. A metal-to-insulator transition occurs when the density of states at

the Fermi level is below a threshold, and the pseudogap opens near the Fermi

energy [83, 84].

Theoretical approaches to liquid-state MIT based on Anderson localization

mechanism often implicitly assume an atomic configuration similar to that of

amorphous solid, an assumption which is not always justified. On the other

hand, models based on percolation theory have been proposed that link the

atomic structure to the MIT in liquid. For example, a lattice gas system

has been used to model the percolation MIT in the super-critical regime of

fluid metals [85, 86, 87]. Percolation scenarios were also obtained from reverse

Monte Carlo modeling on neutron diffraction data of expanded alkali fluid [88].

As the atomic density is decreased, atoms start to fragment into clusters which
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can be associated with a strong tendency to maintain metallic bonding. Close

to the critical point, a conducting network remains where finite clusters are

connected through weak atomic links. The resultant MIT is suggested to be

driven by a process similar to bond percolation [88, 89, 90].

The importance of disorder for the electron localization in liquid metals

does not preclude the correlation effect as a driving force for MIT, especially

for transition-metal or rare-earth compounds. For example, the first-order

phase transition in liquid metallic cerium is mainly driven by the localization

of f electrons [91]. Moreover, in the percolation picture discussed above, finite

metallic droplets stabilized by the binding force from delocalized electrons

could be rather resilient during a density-driven MIT in an atomic liquid.

Electron localization driven by correlation effects thus could be the dominant

mechanism for the break up of atomic clusters in this scenario. Of particular

interest is the MIT in expanded metallic alkali fluids. Early theoretical works

already emphasized the importance of electron correlation for the MIT in such

monovalent liquid systems [92, 93]. Various experimental studies also hinted at

a correlation-driven metal-nonmetal transition in supercritical alkali liquid [94,

95, 96, 97, 98, 99]. In particular, experiments on liquid cesium observed an

enhancement of magnetic susceptibility close to the critical density [97, 98,

99], a telltale sign of Mott-Hubbard type transition.

It is worth noting that discussions of MIT in liquid systems are often based

on the Born-Oppenheimer approximation, which assumes that electron relax-

ation is much faster than atomic motion. Consequently, the problem of elec-

tronic structure and electron transport in an atomic liquid can be treated
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assuming a quasi-static atomic configuration. However, since the structure of

an atomic liquid is determined by the interatomic forces, which in turn depend

on the electronic properties, a consistent approach is required in order to ac-

count for the subtle interrelation between atomic structure and electron wave

function. For example, the formation of metallic atomic clusters embedded

in the expanded fluid, as discussed above, results from the nontrivial inter-

play between atom dynamics and electron delocalization. The appearance of

molecules during MIT is another important and unique aspect of the liquid

system.

The evolution of atomic configuration can be efficiently modeled by the

molecular dynamics (MD) simulation [100, 101, 102], which has a long history

dating back to the famous Fermi-Pasta-Ulam-Tsingou nonlinear chain simula-

tion in 1953 [103]. By providing a general approach to understand and analyze

material functionalities in terms of dynamics at the atomic level, MD essen-

tially plays the role of a computational microscope. Although conceptually,

MD simulation is simply the integration of Newton’s equation of motion for a

large number of atoms, the challenging part is the calculation of interatomic

forces. In the widely used classical MD methods, these interatomic forces are

computed from predetermined empirical potentials or force fields [104]. Since

the evolution of the electronic subsystem is not consistently accounted for, such

classical approaches certainly cannot describe electronic phase transitions such

as MIT.

The scope and predictive power of MD methods are greatly enhanced by

using the quantum approach for force calculation [105, 106, 107, 108, 109, 110].
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In such quantum MD (QMD) schemes, the forces acting on atoms are obtained

by solving the many-electron Schrödinger equation on the fly as the atomic

trajectories are generated. The validity and limitation of a QMD scheme then

depend on the approximations used in solving the many-body problem. For

example, the well-known Hartree-Fock (HF) mean-field methods were used in

the early development of ab initio MD methods [111, 112]. The most popular

QMD methods nowadays are based on density functional theory (DFT) [3, 4,

113, 114], or more specifically, the Kohn-Sham (KS) approach. By recasting

the intractable complexity of the many-electron interactions into the form of

effective one-electron energy that is a unique functional of the electron density,

the KS method achieves a desirable tradeoff between accuracy and efficiency.

Assisted by high-performance computers and advanced algorithms, DFT-MD

is now firmly established as an essential research tool in physics, chemistry,

biology, and materials sciences.

Although DFT is in principle exact, its accuracy in practical implementa-

tion depends on approximations used for the exchange-correlation functional,

whose exact universal expression is not known. The local density approxima-

tion (LDA) and its variants are among the most popular methods [6, 115, 116].

One particular limitation of these approximations is their inability to describe

phenomena that is due to strong electron correlation. While modified methods

such the self-interaction correction or DFT+U have proven useful for some ap-

plications [7, 117, 118, 119], it is still very difficult to capture generic electron

correlation effects and particularly the Mott metal-insulator transition in the

KS approach.
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On the other hand, several many-body techniques have been developed to

handle strong electron correlation in lattice models such as the Hubbard and

Anderson Hamiltonians [16, 120]. Among them, the Gutzwiller variational

method is perhaps the most efficient approach that successfully captures the

essential correlation effects [39, 40, 121]. For example, the Brinkman-Rice

theory [122] of the Hubbard model, which is based on the Gutzwiller method,

had offered important insight on the Mott transition. Contrary to a single

Slater-determinant underlying either the HF or KS methods, the Gutzwiller

wave function is a multi-Slater-determinant that is variationally optimized to

balance the kinetic energy gain due to electron delocalization against the local

Coulomb repulsion when two electrons reside at the same orbital [123].

In an effort to develop MD methods for correlated electron materials, a

new QMD scheme [44, 45, 124] was recently proposed that is based on the

Gutzwiller wave function and the Gutzwiller approximation (GA). Interatomic

forces in such GA-MD simulations are computed from a Gutzwiller wave func-

tion that has to be iteratively optimized at every time step. Crucially, similar

to other self-consistent approaches such as HF or KS methods, the GA also re-

duces the intractable many-body problem into an effective single-electron one

in terms of a renormalized tight-binding Hamiltonian, which is to be solved

self-consistently. Indeed, in its modern formulation in terms of slave bosons,

GA can be viewed as a mean-field theory for the Mott transition with am-

plitudes of slave-bosons serving as the order parameters [125, 126, 127, 128].

Consequently, the computational cost of GA-MD simulation is similar to that

of DFT-MD.
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It is worth noting that MD methods based on a self-consistent independent-

electron approach, including HF, KS, and GA, can only describe the behavior

of quasi-particles of the electronic system. The quasi-particles basically are

solutions of the self-consistent single-electron Schrödinger equation. Impor-

tantly, while the HF or KS quasi-particles are electrons whose single-particle

states have been renormalized by interactions, but whose effective mass and

Fermi distribution remain unchanged with respect to the non-interacting case,

the quasi-particles described by the GA are Landau quasi-particles with an en-

hanced mass m∗ [123]; the divergence of m∗ signals the localization of electrons

and the onset of Mott transition.

The quasi-particle weight in GA is directly related to the renormalization

of inter-site hopping and the electron bandwidth. Although GA provides a

qualitatively, and often quantitatively, correct description for correlated metals

through the concept of renormalized quasi-particles, it fails to account for

the incoherent electronic excitations and the appearance of Hubbard bands.

Moreover, the non-Fermi liquid behavior and electronic Griffiths phase [73, 74,

75] that result from the interplay of disorder and electron correlation are also

beyond the capability of GA-MD methods.

In this chapter, we propose a new quantum MD scheme that goes beyond

self-consistent independent-electron picture for strongly correlated electron

systems. Our approach is based on an efficient integration of the tight-binding

molecular dynamics method with the dynamical mean-field theory (DMFT) [2,

12, 13, 129]. Contrary to most quantum MD methods that rely on solving an

effective single-particle Schrödinger equation, the DMFT-MD scheme is en-
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tirely based on the self-consistent solution for the electron Green’s function,

thus offering the capability of computing the complete spectral function that

includes the quasi-particle peaks and the incoherent excitations represented

by the Hubbard bands. Within DMFT, the Mott transition results from the

transfer of spectral weight from the quasi-particle peak to the Hubbard bands.

The central idea of DMFT is the approximation of a local self-energy,

which, in the case of translation-invariant system, assumes that the electron

self-energy is momentum-independent Σ(ω,k) ≈ Σ(ω). This locality approxi-

mation is shown to be exact in the limit of infinite dimensions d→∞ [46, 130,

131], although DMFT often gives rather accurate results already for d = 3.

Importantly, DMFT can be generalized to inhomogeneous systems by allowing

a site-dependent but still local self-energy. In this approach, often called the

real-space or statistical DMFT [49, 50, 51, 132, 133, 134, 135, 136], the inter-

acting many-body problem is mapped to a set of quantum impurity models,

one for each atom, which is solved self-consistently. The real-space DMFT

methods have been used to study Mott transitions in, e.g., Anderson-Hubbard

model, correlated cold-atom systems, and heterostructures of correlated mate-

rials. Importantly, our new QMD scheme is also built on the real-space DMFT

in order to treat random atom configurations in liquid metals.

We apply the DMFT-MD to simulate the MIT in a model system for

correlated s-band liquid metal. Conceptually, this model is perhaps the most

intuitive generalization of the Hubbard model to an atomic liquid, allowing one

to study the generic interplay of dynamical disorder and electron correlation.

It is worth noting that the Hubbard liquid model also serves as a minimum
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model for MIT in alkali fluids. Our DMFT-MD simulations, on the one hand,

allow us to investigate how electron correlation affects the atom distribution

and transport behaviors, confirming several of the results obtained in previous

GA-MD simulations [44]. On the other hand, by going beyond the GA, we are

able to compute, for the first time, the electron spectral function and examine

the evolution of quasi-particle peak and Hubbard bands in an atomic liquid

that undergoes a Mott transition. Three distinct liquid phases are identified

in this model based on the atomic structure and electronic properties.

3.1 The Hubbard liquid model

The repulsive-interaction Hubbard model is one of the canonical models for

strongly correlated electron systems [16, 39, 137, 138, 139]. It is perhaps the

simplest model that encodes the competition between electron delocalization

and on-site electron correlation. Despite its simplicity, it exhibits a wide range

of correlated electron behavior, including interaction-driven metal-insulator

transitions, superconductivity, and magnetism [140, 141]. Originally proposed

as a model system to describe correlation-driven MIT, a renewed interest in

the 2D Hubbard model was spurred by the discovery of high-temperature

cuprate superconductors [16]. Several recent comparative studies based on a

wide variety of state-of-the-art numerical methods have also been performed

for the two-dimensional Hubbard model [142, 143, 144].

The Hubbard model can be solved exactly only in the one-dimensional case,

although no Mott transition is found in this special limit [145]. On the other
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hand, Mott transition has been demonstrated in the infinite limit of the Hub-

bard model [46, 130, 131], which also inspires the development of the approxi-

mation methods such as GA and DMFT. In particular, the frustrated Hubbard

model at half-filling is the testbed for studying the correlation-induced MIT.

Here we present a natural generalization of the Hubbard model to an atomic

liquid, which is then studied using the DMFT-MD simulations to be discussed

below. The Hubbard liquid model is defined as

H =
∑
i,j

∑
σ

h(|Ri −Rj|) c†i,σcj,σ + U
∑
i

ni,↑ni,↓,

+
1

2

∑
i 6=j

φ(|Ri −Rj|) +
∑
i

P2
i

2M
, (3.1)

where Ri and Pi are the position and momentum vectors, respectively, of

the i-th atom, c†i,σ (ci,σ) creates (annihilates) an electron of spin σ =↑, ↓ at

atom-i, ni,σ = c†i,σci,σ is the electron number operator, hij = h(|Ri − Rj|)

denotes the hopping amplitude between a pair (ij) of atoms, U > 0 is the

Hubbard term due to on-site Coulomb repulsion, and φ(|Ri−Rj|) is a classical

pairwise repulsive potential between atoms. The first two terms in Eq. (3.1)

correspond to a Hubbard model with random hoppings hij that is determined

by the instantaneous atomic configuration {Ri}. The last term describes the

classical kinetic energy of atoms with mass M . For clarity, here, we use the

uppercase letters to denote position, momentum, and mass for nuclei, while

lowercase letters are used for electrons.

To complete the model, one needs to specify the dependence of the hopping

amplitude h(Rij) and pair potential φ(Rij) on the relative distance Rij =
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|Rj −Ri| between two atoms. The fact that these two functions depend only

on the distance Rij is due to the isotropy of the s-orbital. The hopping of

these s-orbitals gives rise to the formation of σ-bonds. In terms of Wannier

functions as the basis for the s-band, the transition amplitude is given by the

integral

hij =

∫
wi(r)

[
−~2∇2

2m
+ Vnuclei(r)

]
wj(r) d3r (3.2)

where wj(r) is the Wannier function centered at atom-i, m is the electron mass,

and Vnuclei(r) is the potential field created by the nuclei and the inert core elec-

trons, which can be implemented using the pseudo-potentials. The challenging

part is the calculation of the basis of Wannier functions. One approach is to

start from atomic-like orbitals obtained by solving the single-atom Schrödinger

equation with appropriate pseudo-potentials to account for the effects of inner

core electrons. The Wannier functions wi(r) are then obtained from proper

orthogonalization of the atomic-orbital functions. Generally speaking, the

Wannier functions are well localized at the individual atoms, which means the

transfer integral hij decays rapidly with increasing separation Rij.

Given the Wannier functions, one can compute the following interaction

parameters

Vijkl =

∫ ∫
e2w∗i (r)w∗j (r)wk(r

′)wl(r
′)

|r− r′| d3r d3r′. (3.3)

The Hubbard parameter, which in general depends on atom index, is given

by Ui = Viiii. It is worth noting that, while the off-site Coulomb interac-
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tions, such as Viijj or Vijij, are not included in the tight-binding (TB) Hub-

bard model Eq. (3.1), they can be included into the effective single-electron

Schrödinger equation, from which the Wannier functions wi(r) are obtained,

through a conventional HF treatment. Finally, the atomic pair potential is

given by the integral

φij =

∫ ∫
e2ρi(r)ρj(r

′)

|r− r′| d3rd3r′, (3.4)

where ρi(r) = δ(r − Ri) − |wi(r)|2 is charge density of the nucleus at the i-

th atom screened by the s-orbital electron. Since the net charge associated

with ρi(r) is zero, the integral φij also decays rapidly with increasing atomic

distance Rij.

Although the approach described above can, in principle, be used to con-

struct the TB-Hubbard model, it is computationally very demanding to be

incorporated into quantum MD simulations, especially since this has to be

done at every MD step. Practically, in order to efficiently carry out the multi-

ple integrals listed above, one usually starts with Gaussian approximations for

the eigenfunctions of the atomic pseudo-potentials. However, even with the

Gaussian functions, the calculation of parameters for the instantaneous TB-

Hubbard model is still very time-consuming. The advantage of this procedure

is that the Hubbard parameter U can be unambiguously obtained from the

first principles. A more efficient procedure is to use the DFT as the starting

point to construct the effective TB-Hubbard model, similar to that used for

the LDA+DMFT method for realistic correlated electron materials. Although
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the Wannier functions can be more efficiently computed in such approaches,

the determination of the Hubbard U is quite tedious. Further approximations,

such as the double-counting method, are often used for practical calculations.

In this work, we do not attempt to obtain the ab initio TB-Hubbard model

for liquid alkali metals. Moreover, for QMD simulations of the Hubbard liq-

uid, the DMFT solver, to be discussed in the next section, already requires

huge computational overhead. Instead, we treat the Hubbard liquid model

Eq. (3.1) as a minimum model system to capture the Mott-Hubbard physics

in an atomic liquid system and investigate the new physics that arise from

the interplay between electron correlation and atomic dynamics. To this end,

further approximations are introduced. First, the Hubbard parameter U is

treated as a model parameter, which is independent of atoms. Explicit cal-

culations in the case of hydrogen liquid show that the variation of U among

atoms is indeed small.Second, as discussed above, the hopping integral is a

strongly decaying function with distance thanks to the well-localized Wannier

functions. For simplicity, we assume an exponential decay function for the

hopping constant

h(R) = h0 exp(−R/ξ), (3.5)

where h0 and ξ are two model parameters characterizing the amplitude and

range of electron hopping. Finally, since the atomic pair potential describing

the Coulomb repulsion between screened nuclei is also short-ranged, we assume
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it also decays exponentially

φ(R) = φ0 exp(−R/`). (3.6)

Here φ0 and R are also parameters of the model system. We emphasize that,

because of these approximations, our results are not expected to quantitatively

describe MIT in realistic alkali fluids or other liquid metals. Instead, similar

to the spirit of the lattice Hubbard model, our goal is to study the behaviors

(e.g., phase diagram, different scenarios of phase transitions) of this model

correlated system with different parameters. We believe the main results of

this model study will not be qualitatively affected by these approximations.

3.2 Molecular dynamics with DMFT

Next, we discuss the formulation of a QMD scheme that employs DMFT to

solve the many-electron problem. QMD or, more specifically, ab initio MD

(AIMD) can be classified into adiabatic or non-adiabatic approaches [109]. The

representative example of adiabatic QMD is the Born-Oppenheimer molecular

dynamics (BOMD) which assumes that electrons adjust instantaneously to the

slower motion of the nuclei so that the motion of the latter is governed by a

single adiabatic potential energy surface (PES). On the other hand, electronic

transitions between multiple PESs are taken into account in non-adiabatic MD

simulations [146]. In this work, we will focus on the adiabatic limit, which is

also the starting point of most DFT-based MD methods.
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3.2.1 Quantum molecular dynamics based on electron

Green’s functions

The governing equations of adiabatic MD are often obtained from certain

ansatz for the total wave function, as detailed in Ref. [109]. Such approaches

have also been the basis of most QMD simulations that are based on the ef-

fective independent-electron methods. Since the DMFT-MD is formulated in

terms of electron Green’s functions, instead of wave functions, we first discuss

such QMD formalism and outline the corresponding adiabatic approximation.

We start with the dynamical equation for the nuclei. In order to properly ob-

tain the electronic force, we consider the Heisenberg equation of motion for the

nuclei position operator dR̂/dt = [R̂,H]/i~. Following standard procedures,

the expectation value of this equation gives the classical Newton equation of

motion

M
d2Ri

dt2
+ γ

dRi

dt
= −

〈
∂H
∂Ri

〉
+ ηi(t), (3.7)

where M is mass of the nuclei, Ri = 〈R̂i〉 is now a classical position vector.

We have included the dissipation force and thermal noise as in the Langevin

dynamics; here γ is a damping coefficient and ηi(t) = (ηxi , η
y
i , η

z
i ) denotes a

vector whose components are normal-distributed random variables with zero

mean:

〈ηαi (t)〉 = 0, (3.8)

〈ηαi (t)ηβj (t)〉 = 2γkBTδαβδijδ(t− t′).
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The standard second-order velocity-Verlet method is used to integrate the

above equation of motion. It is worth noting that the deterministic force, the

first term on the right hand side of Eq. (3.7), is not given by the conservative

form −∂〈H〉/∂Ri. The equivalence of these two expressions is due to the

Hellmann-Feynman theorem under certain approximations. Substituting the

Hamiltonian Eq. (3.1) into the above expression, we obtain two contributions

to the force

Fi = −
〈
∂H
∂Ri

〉
= Fp

i + Fe
i , (3.9)

where the superscript p and e indicates contributions from the pair potential

and the electrons, respectively. The first term, which describes the short-range

repulsion between atoms, is given by

Fp
i = −

∑
j

∂φij
∂Ri

=
∑
j

φ′(Rij) n̂ij, (3.10)

where φ′(R) = dφ(R)/dR and n̂ij is a unit vector pointing in the direction of

vector Rij = Rj −Ri. This classical force is easy to compute for the Hubbard

liquid model. The electron part is

Fe
i = −

∑
j,σ

∂hij
∂Ri

〈(c†iσcjσ + h.c.)〉

= 2
∑
j,σ

h′(Rij) n̂ij Re[ρjσ,iσ]. (3.11)
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The electronic force depends on the single-electron (reduced) density matrix

ρiσ,jσ′(t) = 〈c†jσ′(t)ciσ(t)〉. (3.12)

It is worth noting that both forces as well as the reduced density matrix

vary with time. For effective independent-electron approaches, such as HF or

GA, this density matrix is computed from the eigen-solution of the effective

one-particle Hamitlonian Heff
iσ,jσ′ [{Ri(t)}], which depends on time through the

nuclei coordinates. Specifically, let Um
i,σ be the normalized eigenvector of the

one-electron Hamiltonian with eigenenergy εm, the density matrix is ρiσ,jσ′ =∑
m f(εm)Um ∗

iσ Um
jσ′ , where f(εm) is the Fermi-Dirac function for the occupation

probability of the m-th eigenstate.

As discussed above, contrary to the effective independent-electron QMD

methods, the DMFT-MD is formulated in terms of the electron Green’s func-

tion. Of particular importance is the lesser Green’s function

G<
iσ,jσ′(t1, t2) = i〈c†jσ′(t2)ciσ(t1)〉. (3.13)

The reduced density matrix is given by the equal-time lesser Green’s function:

ρiσ,jσ′(t) = −iG<
iσ,jσ′(t, t). Also important are the retarded Green’s function

defined

GR
iσ,jσ′(t1, t2) = −iθ(t1 − t2)〈{ciσ(t1), c†jσ′(t2)}〉, (3.14)

and the associated advanced Green’s function GA
iσ,jσ′(t1, t2) = [GR

jσ′,iσ(t2, t1)]†.
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In terms of the lesser Green’s function, the electronic force becomes

Fe
i (t) = 2

∑
j,σ

t′(Rij(t)) n̂ij(t) ImG<
jσ,iσ(t, t). (3.15)

Here we have explicitly included all the time dependences. A consistent

dynamical description thus requires the equation of motion for the lesser

Green’s function. This can be achieved by the nonequilibrium Green’s func-

tion (NEGF) theory. For example, a complete dynamical theory can be ob-

tained by combining the Newton equation of motion (3.7) for nuclei with the

Kadanoff-Baym equations for Green’s functions.

[
i
∂

∂t1
+ µ− h(t1)

]
G<(t1, t2) = (3.16)∫

dt3

[
ΣR(t1, t3)G<(t3, t2) + Σ<(t1, t3)GA(t3, t2)

]
,

[
i
∂

∂t1
+ µ− h(t1)

]
GR/A(t1, t2) = δ(t1 − t2) I (3.17)

+

∫
dt3Σ

R/A(t1, t3)GR/A(t3, t2).

Here bold symbols are used to denote matrices in the atom-spin basis, Σ<

and ΣR/A are the lesser, retarded, and advanced self-energies, respectively, µ

is the electron chemical potential, and the time-varying matrix h(t) describes

the electron hopping of the Hamiltonian in Eq. (3.1),

hiσ,jσ′(t) = δσσ′ h(|Ri(t)−Rj(t)|). (3.18)
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For many-body interacting systems, after introducing suitable approximations

such as Born approximation or HF to relate the self-energy Σ to Green’s

functions, the Kadanoff-Baym equation can then be integrated along with the

Newton equation of motion [147, 148, 149, 150]. However, even without the

atom dynamics, numerical integration of the inhomogeneous Kadanoff-Baym

equation is computationally very demanding. So far, its implementation is

restricted to small systems.

The calculation can be much simplified when the nuclei and electrons evolve

on significantly different time scales, allowing the system to split into fast

(electron) and slow (nuclei) degrees of freedom. To this end, we transform the

Kadanoff-Baym equations to the Wigner space where fast and slow time scales

are easily identifiable. We define the average and relative time parameters:

t = (t1 + t2)/2 and τ = t1 − t2, and introduce the Wigner representation of

the Green’s functions,

G(ω, t) =

∫
eiωτG (t1, t2) dτ,

G(t1, t2) =
1

2π

∫
e−iωτG(ω, t) dω. (3.19)

A coupled set of differential equations for the Green’s functions in the Wigner

representation is obtained by applying the same transformation to Eqs. (3.16)

and (3.17). Working in the Wigner space allows one to perform a system-

atic adiabatic expansion by using variation with respect to the central time t

as a small parameter. Similar approaches have recently been extensively in-

vestigated in the context of current-induced forces in quantum transport and
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nonequilibrium BOMD simulations [151, 152, 153, 154, 155]. Formally, we

introduce a adiabaticity parameter ε which is of the order of ε ∼ |dRi/dt|, and

expand the Green’s functions in a power series, G = G(0)+εG(1)+ε2G(2)+· · · .

The Kadanoff-Baym equations can then be solved systematically for each order

of ε.

The adiabatic limit, which is also most relevant to our work, is given by

the zero-th order results. For the retarded/advanced Green’s functions, the

zero-th order solutions are

GR/A(ω, t) =
[
(ω + µ) I− h(t)−ΣR/A(ω, t)

]−1
. (3.20)

Here the self-energies ΣR/A only depend on the zeroth-order Green’s func-

tions through some many-body scheme, which in our case is the DMFT to

be discussed below. This is essentially the “equilibrium” Green’s functions

one would obtain for the Hubbard Hamiltonian defined by the instantaneous

atomic configuration {Ri(t)}. The zeroth-order lesser Green’s function, which

is needed for the force calculation in Eq. (3.15) is given by

G<(ω, t) = GR(ω, t) Σ<(ω, t) GA(ω, t), (3.21)

which is the Keldysh equation for the lesser Green’s function in the steady

state. Higher-order terms in the adiabatic expansion can be found in, e.g.,

Refs. [151, 155]. To summarize, the adiabatic limit of the Green’s functions

in the Wigner representation is equivalent to imbuing a static equilibrium

solution parameterized by the central time t. This result is consistent with the
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intuitive picture of the Born-Oppenheimer approximation, where electrons are

assumed to stay in the equilibrium state of the instantaneous Hamiltonian.

Also importantly, the adiabatic expansion of the Kadanoff-Baym equations

offers a systematic approach to formulate the DMFT-MD and higher-order

corrections.

3.2.2 Real-space dynamical mean-field theory

The adiabatic expansion discussed above shows that at each instance the

electronic system can be treated in quasi-equilibrium. Under this condi-

tion, the various Green’s functions and self-energies are related. For exam-

ple, ΣA = [ΣR]†. We focus on the retarded self-energy Σ ≡ ΣR and drop

the superscripts for convenience. By introducing the non-interacting Green’s

function:

G−1
0 (ω, t) = (ω + µ± i0) I− h(t), (3.22)

where ±i0 is for the retarded and advanced function, respectively, the zeroth-

order solution Eq. (3.20) is equivalent to the Dyson’s equation parametrized

by the central time t:

G−1(ω, t) = G−1
0 (ω, t)−Σ(ω, t). (3.23)

To solve the Green’s functions, one needs to relate the self-energy to both the

bare and full Green’s functions, i.e. Σ = Σ[G], which is often intractable for

general many-body interacting systems.
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As discussed in the introduction, the central idea of DMFT is the local

self-energy approximation, which means that the self-energy matrix Σ in the

Dyson equation (3.23) is diagonal in atom-indices

Σiσ,jσ′(ω, t) = δijδσσ′Σii(ω, t). (3.24)

For simplicity, here we have further assumed non-magnetic solutions, i.e. a

spin-independent self-energy, for MD simulations. The self-energy matrix is

now diagonal in the atom-spin basis. Based on this locality approximation, it

is further assumed that the on-site self-energy Σii is obtained from solution of

an atom-dependent quantum impurity model with the action

S
(i)
eff (t) = U

∫ β

0

n↑(τ)n↓(τ) (3.25)

−
∑
σ

∫ β

0

dτ

∫ β

0

dτ ′c†σ(τ)
[
G(i)

0 (τ − τ ′; t)
]−1

cσ(τ ′),

Here G(i)
0 (ω; t) = ω+µ−∆i(ω; t) is an effective single-electron Green’s function

and ∆i(ω; t) is a time-varying hybridization to a fictitious bath that contains

information about other atoms in the system. The subscript ‘0’ here empha-

sizes that G0 is a “bare” Green’s function in absence of the Hubbard U term.

Notably, G0 plays a role similar to the Weiss field in the conventional “static”

mean-field theory. The full imaginary-time Green’s function of the quantum

impurity model is formally given by the expression

G
(i)
imp(τ, t) =

−1

Z(t)
Tr
[
TτeS

(i)
eff (t)c†σ(τ)cσ(0)

]
, (3.26)
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where Tτ is the time-ordering operator, and Z is the partition function of

the action. The real-frequency retarded Green’s function G
(i)
imp(ω, t) can then

be obtained through analytical continuation of the corresponding Matsubara

Green’s function. The self-energy of this local impurity problem is computed

from the Dyson equation

Σ
(i)
imp(ω, t) = G(i)

0 (ω, t)−1 −G(i)
imp(ω, t)−1. (3.27)

This impurity self-energy is to be identified as the local self-energy given by

the diagonal elements of the atomic self-energy matrix Σ in Eq. (3.24).

Σii(ω, t) = Σ
(i)
imp(ω, t). (3.28)

The self-consistent condition of DMFT requires that the local Green’s function

coincides with the diagonal part of the system Green’s function matrix:

Giσ,iσ′(ω, t) = δσσ′ G
(i)
imp(ω, t). (3.29)

It is worth noting that one can also think of the action in Eq. (3.25) as a single

fermion cσ couples to a bath of free fermions, from which the Weiss field G0

is generated. This is precisely the single-impurity Anderson model (SIAM)

of a magnetic impurity hybridized with a conduction band. The two self-

consistency equations (3.28), (3.29) along with the two Dyson equations (3.23),

(3.27) essentially provide the following functional dependence for the local self-
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energy

Σii(ω, t) = ΣSIAM [Gii(ω, t)] . (3.30)

which is an exact relation in the infinite dimension limit.

In practical implementations of the real-space DFMT, the self-consistency

is achieved through iterations; see Fig. 3.1 for details. One of the challeng-

ing parts is the solution of the Anderson impurity model, formally given by

Eq. (3.26). Several numerical techniques have been developed to solve the

quantum impurity problem. One of the most powerful and widely used im-

purity solvers is the continuous-time quantum Monte-Carlo algorithm, which

in principle can provide numerically exact results for the impurity problem.

Other numerically exact impurity solvers include exact diagonalization, numer-

ical renormalization group, and density matrix renormalization group. Some

of these solvers have been employed in real-space DMFT calculations for in-

homogeneous Hubbard models [49, 50]. However, the huge overhead of these

computationally sophisticated methods renders them difficult for large-scale

dynamical simulations, where the impurity problems have to be solved for

every atom at every time step.

As a proof of principle, as well as to explore qualitatively novel Mott physics

in a liquid system, we adopt a modified version of the iterative perturbation

theory (IPT) [61, 63, 156] as the local impurity solver, which allows for elec-

tron density away from the half-filling. Moreover, the calculation can also

be directly performed on the real-time/frequency axes without the need for
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analytical continuation. Although IPT is an approximate impurity solver, it

often gives qualitatively correct results. As introduced in the previous chapter,

within IPT, the impurity self-energy can be written in closed form [61]

Σ
(i)
imp(ω, t) = Uni(t) +

Ai(t) Σ
(2)
i (ω, t)

1−Bi(t) Σ
(2)
i (ω, t)

(3.31)

where Σ
(2)
i (ω, t) is the second-order perturbation contribution to the self-

energy [131], and the coefficients Ai and Bi are determined in order to re-

produce the correct moments of local density of states and the large-U limit.

Importantly, despite its appearance as a perturbation expansion, the IPT

should be understood as an interpolation scheme as it gives the correct re-

sults both in the itinerant and atomic limit. A detailed description of the IPT

solver can be found in section 2.2.1. It is also worth noting that when being

adopted to the inhomogeneous DMFT scheme, the IPT solver introduced in

the previous chapter requires no extra modifications because the information

of inhomogeneity is encoded in the bare Green’s function G(i)
0 of each impurity.

3.3 Molecular dynamics simulations of Mott

transition

Here we consider MD simulations with constant number of atoms (Na = 40 ∼

100) in a fixed volume (V ). We assume the system is immersed in a thermal

bath of temperature T and adopt the Langevin dynamics to account for the

thermal noise and dissipation.
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The major difficulty of inhomogeneous DMFT implementation is that the

impurity problems on every atom have to be solved individually, and the

matrix Dyson’s equations Eq. (3.23) have to be solved on all frequencies

(Nω ∼ 5000). The computational cost grows extremely fast when the number

of site increase, even with fast impurity solvers, such as IPT. Fortunately, both

steps can be accelerated using parallel computation techniques. The local im-

purity problems can be parallelized over sites and Dyson’s equations can be

parallelized over frequencies.

In particular, the Na impurity problems will be assigned to multiple com-

putational cores, with each core handles a fewer number of impurity problems

so that multiple impurity problems can be solved simultaneously. Likewise,

the tasks of solving Dyson’s equation defined on Nω frequencies will be dis-

tributed to multiple computational cores. This parallelization is valid because

the impurity problems are strictly local, and there is no coupling between

different frequencies. Therefore, within this parallelization framework, the in-

homogeneous DMFT solver integrates out the electronic degrees of freedom in

a time that is adequately short for the molecular dynamics simulation.

Here we explain the overall flow of our DMFT-MD scheme. As stated

above, our scheme is based on the adiabatic QMD, and the Born-Oppenheimer

approximation is adopted, in which the electron degrees of freedom and ion

degrees of freedom are separated so that the electrons can be assumed in

equilibrium at any MD time step. Starting with an atomic configuration of
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the system at time step tn,

C(tn) = {R1,R2, ...,Ri} (3.32)

From the atomic configuration, an unique hopping matrix hij = h (|Ri −Rj|)

is defined. Together with the on-site Coulomb interaction U , we arrive at

a tight-binding Hamiltonian of the inhomogeneous Hubbard model for the

electron degrees of freedom,

H =
∑
i 6=j

∑
σ

hijc
†
i,σcj,σ + U

∑
i

ni,↑ni,↓ (3.33)

This Hamiltonian is then solved using the DMFT solver and the IPT solver

and on-site self-energies ΣΣΣ (ω) = δijΣij (ω) are obtained. The system Green’s

function G (ω) can be then calculated and the spectral function of electrons

on each site is given by:

Ai(ω) = − 1

π
ImGii(ω) (3.34)

Furthermore, the averaged spectral function of the system is

A(ω) =
1

Na

∑
i

Ai(ω) (3.35)

The spectral function contains the information of non-quasi-particle excita-

tions of electrons, which is not obtainable in previous methods.

The total force acting on an atom consists of two components, the con-
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tributions from both correlated electrons Fe
i and classical pairwise potentials

between ions Fp
i .

Fi = Fe
i + Fp

i (3.36)

The contributions of correlated electrons to the inter-atomics forces can be

calculated from the system Green’s function obtained from the DMFT calcu-

lation,

Fe
i = − 1

π

∑
ij,σ

∂hij
∂Ri

∫
dωf (ω) ImGij (ω) (3.37)

The summation over σ is a sum over two spins. In absence of magnetic field,

it is a factor of 2. The classical pairwise potential φ introduces classical forces

between the atoms,

Fp
i = −

∑
j

∂φij
∂Ri

(3.38)

The atomic configuration is updated using Langevin Dynamics with the stan-

dard velocity-Verlet method, and the new atomic configuration is obtained.

In this scheme, solving the Hubbard model with the DMFT solver is the

most time-consuming step; hence the parallelization technique is crucial in

large-scale simulations. Our DMFT solver is parallelized over both sites when

solving impurity problems and frequencies when solving Dyson’s equation.

This allows us to solve a system consisting of 40 atoms in less than a minute.

Indeed, it is slower than previously developed GA-MD scheme [44], but it
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provides access to information of the incoherent non-quasi-particle electronic

excitations, which is previously inaccessible. In addition to that, GA and

DMFT solver can give qualitatively different results on some observables of

the Hubbard model, such as the behaviors of the double occupancy and the

quasi-particle weight near MIT [13].

3.4 Mott transition in correlated liquid

We applied our method to the Hubbard liquid model defined by Eq. (3.1). The

simulation is perform on a system of Na = 40 atoms with constant system size

V that is determined by the average atom distance rs = (3V/4πNa)
1/3 ≈ 1.2.

In the absence of the Coulomb potential U = 0, the average band energy is

W 0 = 4.81, and we shall normalize all the energy scale to this value for clarity.

The temperature is at T ≈ 0.03W0, and the total electron filling is kept at

half-filling Ne = Na by tuning the chemical potential µ. The system is first

allowed to fully relax and converge to equilibrium before the measurement.

We performed a series of simulations at various interaction strengths U . A

previous study of this model indicates a U -driven phase transition [44].

It is important to first look into the energies of the system. Fig. 3.2 shows

several energies of the system versus on-site Coulomb interaction U . The total

kinetic energy of the atoms dependents only on temperature Ekin = 3/2kBT

due to the Langevin dynamics. In fact, Ekin is considered as a criterion to

check if the MD simulation converge to equilibrium The pair-wise potential

energies is given by, Epot =
∑

i 6=j
1
2
φ (|Ri −Rj|).
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Figure 3.1: DMFT-MD Flowchart. Parallelization is implemented in the
DMFT solver on both solving local impurity solver and solver Dyson’s equa-
tion. Due to the lack of symmetry in liquid, every atom have to be solved
individually, this can not be done with proper parallelization.
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Figure 3.2: The averaged energies of the system as a function of on-site
Coulomb interaction U . The energies are normalized by W 0.

The electronic energies Eelec is calculated from the Galitski-Migdal formula;

it includes both the electron kinetic and the electron potential energy. The

electronic energy on atom i is given by,

Epot
i = T

∑
m

e−iωm0+

Σi(iωm)Gi(iωm), (3.39)

where Σi(iωm) and Gi(iωm) are the local self-energy and local Green’s func-

tion on the Matsubara frequencies ωm = (2m + 1)π/β; T is the temperature

and β = 1/T . The Matsubara Green’s functions G(iωm) can be very useful

when calculating various observables, which can be obtained from the spectral

function A(ω),

G(iωm) =

∫
dω

A(ω)

iωm − ω
= − 1

π

∫
dω

ImG(ω)

iωm − ω
(3.40)
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Such relation also holds for self-energies,

Σ(iωm) = − 1

π

∫
dω

Im Σ(ω)

iωm − ω
(3.41)

It is worth mentioning that the inverse process, calculating real axis Green’s

function from Matsubara Green’s function, is much more complicated, where

analytic continuation technique is involved. The choice of specific analytic

continuation method dependents on the characteristics of the input function.

If the input Matsubara Green’s function or self-energy is smooth, simple Padé

algorithm can be used; if the input function has statistical noises, for exam-

ple the Green function obtained from CTQMC, maximum entropy method is

preferred.

The dramatic change of both Eelec and Epot after a critical Uc ≈ 2.1W 0

indicates that at large U the system exhibiting different atomic and electron

properties than that of the small U case. This smooth change of energies sug-

gests a potential crossover driven by U instead of a first-order transition. A

similar result has been reported in the previous GA-MD study [44] where an

abrupt jump in electronic energy Eelec near U ≈ 2.1W 0 is observed instead

of a smooth curve. The energies smoothly varying as a function of U of this

system was later also observed [45], where updated GA solver and machine

learning techniques were used. In the updated GA-MD scheme, electron hys-

teresis is eliminated by reinitializing the Gutzwiller parameters at every time

step, which is more consistent with the assumption that the electrons are in

equilibrium at each time step. In our study, the self-energy in the previous
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Figure 3.3: The averaged double occupancy d/dmax and averaged quasi-particle
weight Z as a function of on-site Coulomb interaction U . dmax = 〈n↑〉 〈n↓〉 =
0.25 is the maximum double-occupancy at half-filling.

time step is used as the initial guess for the next time step to accelerate the

convergence of the DMFT calculation; nevertheless, a similar smooth curve is

obtained even without explicitly eliminated the hysteresis. Hence the DMFT

solver is more robust in this case than the GA solver. Previously, the inho-

mogeneous DMFT method was used mostly in lattice systems with disorders

or in optical traps [49, 50]; however, how a highly disordered atomic config-

uration affects the performance or the convergence of DMFT solver is yet to

be investigated systematically. Indeed, Sachdev’s study of MIT in disordered

metal sheds important insights on the importance of local moments near metal-

insulator transition [60], but how the bond randomness affects the nature of

Mott transition remains unknown.

In order to understand the nature of this change of electronic properties,

it is instructive to study how the double occupancy and quasi-particle weight

70



change as a function of U . The double occupancy on the i-th atom is defined

as di = 〈ni↑ni↓〉, which is the possibility of i-th site been occupied by two

electrons. The local double occupancy is given by,

di =
T

U

∑
m

e−iωm0+

Σi(iωm)Gi(iωm) (3.42)

The averaged double occupancy in a metallic state is expected to be larger

than that in an insulator state since the electrons freely hopping across atoms

indicates a larger possibility of an atom being occupied by two electrons. The

local quasi-particle weight Zi can be obtained from the local self-energy

Z−1
i = 1− ∂ReΣi(ω + i0+)

∂ω

∣∣∣∣
ω=0

(3.43)

It describes the spectral weight of quasi-particles. In the Mott phase, the

quasi-particle weight vanishes, indicating that no quasi-particle excitations

exist.

Fig. 3.3 shows the averaged double occupancy d and averaged quasi-particle

weight Z as function of on-site Coulomb interaction U . The average is per-

formed over both atoms and equilibrium states. As the U increase, the d and

Z decreases and quickly drops to very small values after a critical interaction

strength Uc ≈ 2.1W 0. Unlike previous studies using GA-MD [44] where the

double occupancy goes to zero immediately after Uc, the double occupancy ob-

tained by DMFT remains at a small but non-zero value. This difference is also

observed in the lattice case, and it is suggested that double occupancy cannot

be used as an order parameter for the Mott transition. The order parameter
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for the MIT is quite an ambiguous problem, and there is no well-accepted or-

der parameter for it [13]. The non-zero double occupancy is actually expected

due to the virtual hopping in the insulating state [13]. This virtual hopping is

the source of the exchange interactions between local moments in the large U

limit. The quasi-particle weight is almost zero in the large U regime, indicat-

ing the vanishing of Fermi liquid in that regime. This phenomenon suggests a

transition marked by the electron localization on each atom. In the GA-MD

simulations, the sudden vanishing of double occupancy above Uc can result

in the sudden change of Eelec and lead to a jump of energy in the GA-MD

case [44].

It is known that the Mott transition is a first-order transition on lattice

system even with short-range quantum fluctuations included [47], and hys-

teresis in d and Z can be observed (as shown in the numerical results in the

previous chapter); however, what we see here is rather a smooth change with-

out obvious discontinuity. We shall see later, the nature of this transition is

still first order but, however, not a simple transition from a metallic state to

an insulating one due to the distinct properties of the liquid.

In MD simulations, the properties of the atomic configuration are also of

great significance. The radial pair distribution function g(r) represents the

possibility of finding another atom at the distance r of an certain atom, it is

given by

g (r) =
1

4πr2Nρ

〈
N∑
i=1

N∑
j 6=i

δ (r − rij)
〉

(3.44)
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Figure 3.4: Pair distribution functions g(r) obtained from DMFT-MD for
varying values of U .Here r0 is the equilibrium distance between atoms in a
molecule.

The radial pair distribution function g(r) at various U are shown in Fig. 3.4.

In the absence of the Coulombic repulsion, at U = 0, atoms tend to couple

in pairs forming H2-like molecules, and the equilibrium distance between the

two atoms is r0 ≈ 0.83. The value of the equilibrium distance r0 is determined

by the minimum of the energy curve e(r) = −2t(r) + φ(r). In the small U

regime, a clear peak forms at r0, indicating the presence of atomic dimers.

In this regime, the electrons hop within the pairs and binding them together;

thus, the system is not metallic, and a gap exists at the Fermi level. As the

on-site Coulomb U increases to the strong coupling regime, the dimer peak

vanishes; moreover, a broad peak forms at r ≈ 2.2r0, which suggests that

atoms are separated further apart from each other. This trend is consistent

with the expectation that the formation of covalent bonds is suppressed by the

increasing Coulomb repulsion as electrons become localized. In this regime,

73



the electrons are mostly localized, and thus the inter-atomic force is dominated

by the classical potential φ (r), which is mostly repulsive in this case.

The vanishing of the molecular peak describes the well-known molecular

dissociation phenomenon. It has been reported in the hot dense hydrogen sim-

ulations, which is similar to the system we studied here and has been simulated

using the VMC-MD method and path-integral MC methods [157, 158]. The

dense hydrogen goes through a molecular dissociation as the temperature in-

crease. The system changes from molecular liquid to monoatomic liquid. It is

reported that the molecular peak almost disappears at high temperature with

only a few features left. Similar results have been seen in the original GA-MD

method simulations [44]. Note that the change of peaks is rather smooth, and

no strong hysteresis effect is observed in our simulations, which is similar to

the later simulations of the Hubbard liquid model [45].

One important question is that does the continuous change of energy sug-

gest a continuous Mott transition [159, 160, 161]? The presence of phase

coexistence in later results suggests that this is not a continuous transition.

The coexistence also indicates that it is not a first-order transition rounded

by disorders where the coexistence disappears due to the formation of finite-

size domains that is favored by disorder [162]. The bond randomness indeed

has effects on the first ordered transition, but in 3-dimension, the first-order

transition is suppressed by temperature instead of being eliminated [163, 164].

The hysteresis might be harder to identify in this case but could still survive.

Therefore, ”crossover” at low temperature is merely a kinetic result, and it is

intrinsically a first-order transition.
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Figure 3.5: The probability distribution of quasi-particle weight h(Z) for dif-
ferent U values.

Histogram studies of both local quasi-particle weight h(Z) and local double

occupancy h(d) are performed further to analyze the electronic properties of

the liquid system. Note that h here is the probability distribution. In Figs. 3.6

and 3.5, the clear bimodal distributions of both Z and d indicate that two

types of atoms coexist near Uc: on one type of atoms, electrons behave like

a Fermi liquid with finite quasi-particle weight, and the electrons are allowed

to hopping between them giving finite double occupancy; one the other type

of atoms electrons are highly localized with small Z and d values. This co-

existence of two types of atoms indicates that the nature of this transition is

still first-order. The higher peaks of h(d) and h(Z) are broader than the lower

peaks because of the formation of metallic clusters. In this regime, the atoms

are no longer tightly bonded in pairs but forming clusters. This argument is

supported by the fact that the first peak in g (r) is shifting and broadening

as U increases. The average hopping amplitude within these clusters is large,
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Figure 3.6: The probability distribution of double occupancy h(d) for different
U values.

and the variation is significant due to the broad distribution of interatomic

distances within the clusters. On the other hand, the localized atoms are less

attractive and tend to move away from other atoms making the electron local-

ization robust, which results in the shaper peaks of h(d) and h(Z) on the left.

In the GA-MD simulations, a bimodal distribution of double occupancy is also

observed where the left peak is, however, much broader[44]. This difference

might be because of the artifact of the Gutzwiller solver, where atoms with

small double occupancy are not fully resolved. This coexistence of two types

of atoms might be evidence of a first-order transition.

The spectral function is one of the most important observables in DMFT

simulations. It provides important information about the electronic excitations

in the system. Fig. 3.7 shows the time-averaged total spectral function of the

liquid. A reentrant type transition driven by U can be clearly observed.

It is widely known that in the single-site DMFT calculations, as the U
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increases and in the vicinity of the critical U , two Hubbard bands at±U/2 grow

out of the quasi-particles peak at the Fermi level, while the height of the central

peak remains unchanged. When the system is near the critical Uc, a phase

coexistence regime exists where both metallic solution and insulating solution

are both. The final state in this regime depends on the initial condition. In

this intermediate regime, the metallic solution is a usually bad metal whose

spectral function has two wide Hubbard bands and a very sharp quasi-particle

peak. As the system enters the strong coupling regime, a gap is opened at the

Fermi level, and the system becomes a Mott insulator with only two Hubbard

bands in its spectral function. This picture of Mott transition is clear and

monotonically driven by U . However, in the liquid system, the transition

does not have the luxury of simplicity; it shows an intriguing reentrant type

transition.

As can be seen, at the small U regime, the spectral function has a gap

at the Fermi level; the system is insulating. The gap width is approximately

the binding energy of the molecule. This is as expected since the system

is now a molecular liquid where electron excitations at the Fermi level are

not allowed since they are limited in the covalent bond. Note that in this

regime, both averaged double occupancy and average quasi-particle weight is

finite, which is conventionally a sign of metallic state in lattice systems. In a

molecular liquid, electrons are allowed to hop between the atoms within the

molecule, giving finite double occupancy and quasi-particle weight. However,

they are localized and bounded to their corresponding molecule; thus, they

cannot behave like free electrons in actual metals. Although the formation of
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dimer can be observed from g(r), one has to check the spectral functions A(ω)

of the system to confirm the formation of molecules and covalent bonds.

As the U increase, the spectral functions gain finite spectral weight at the

Fermi level, and the gap is gradually closed. The molecule starts to dissociate,

and atoms form metallic clusters, where electrons can move across the system

and behave like Fermi liquid. Fig. 3.8 shows the local spectral function in a

snapshot during the simulation at U = 2.29W̄0. The spatial inhomogeneity in

the liquid system results in distinctive spectral functions on each site. Both

local metallic solutions and local insulating solutions coexist in the system.

The existence of quasi-particle peaks in the metallic solutions marks the for-

mation of the metallic clusters in which electrons can behave like Fermi liquid.

There are sites with localized electrons with the Hubbard bands at ±U/2 in

their spectral functions.

In the strong coupling regime, the spectral functions reopened a gap at the

Fermi level, and the system becomes a monoatomic liquid that is insulating

again. The spectral function has two clear Hubbard bands at ±U/2. This is

previously unavailable in ab initio MD simulations and GA-MD simulations.

The spectral function behavior acts as proof for the reentrant transition.

For a liquid system, the diffusion coefficient is also important, which de-

scribes how fast particles can diffuse in the liquid. It can be obtained by an

integral of the velocity autocorrelation function,

D =
1

3N

∫ ∞
0

N∑
i=0

〈vi(t0)·vi(t0 + t)〉 dt, (3.45)
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The time correlation function measures the correlation between two time-

dependent quantities,

C (t) = 〈A(t0)B(t0 + t)〉 , (3.46)

where < ... > indicates an averaging over time origins t0 in an equilibrium

ensemble. If A and B are same, then C is an auto-correlation function; oth-

erwise, C is a cross-correlation function. In molecular dynamics simulation,

we are interested in auto-correlation functions which can describe important

dynamics of a system.

In our implementation, a block averaging method is used to compute the
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autocorrelation function,

C (t) = 〈f(t0)f(t0 + t)〉 =
1

k

k−1∑
n=0

Cn (t) , (3.47)

where Cn (t) = f(tn)f(tn + t). After equilibrium is reached, we evaluate Cn (t)

in k time blocks of size t ∈ [0, tmeasure] with various time origins tn and the auto-

correlation function C (t) is obtained by averaging over k blocks. In general,

the separation between time origins should be larger than the measurement

time tmeasure, and the time blocks do not overlap with each other so that the

statistical bias introduced by self-correlation can be minimized. However, such

measurement takes extremely long simulations to obtain good accuracy.

In the MD simulation of liquid, to fast accumulate data, time blocks are al-

lowed to overlap as long as time origins are well separated, such that the molec-

ular configurations at each starting time are independent. This is valid because

the auto-correlation function of the liquid phase quickly vanishes to zero as

time increases; thus, the separation between the starting point of adjoint time

blocks needs to be larger than the correlation time τc = 1/C(0)
∫∞

0
C (t) dt.

This approach, though faster than the original one, yet still requires long sim-

ulations.

The self-diffusion coefficient (diffusion constant) D can be calculated from

the velocity auto-correlation function using the standard Green-Kubo relation,

D =
1

3N

∫ ∞
0

N∑
i=0

〈vi(t0)·vi(t0 + t)〉 dt, (3.48)
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where the velocity auto-correlation function is

Cv (t) =
1

N

N∑
i=0

〈vi(t0)·vi(t0 + t)〉 (3.49)

Since we cannot measure the auto-correlation function for infinite time, thus

it is useful to introduce a time cutoff τ and define the accumulative diffusion

coefficient as,

D(τ) =
1

3N

∫ τ

0

N∑
i=0

〈vi(t0)·vi(t0 + t)〉 dt (3.50)

The accumulative diffusion coefficient converges to the diffusion coefficient in

the infinite time limit, D = limτ→∞D(τ). In the liquid phase, velocity auto-

correlation function converges to zero very fast, the long-time contribution to

velocity auto-correlation function is relatively small. Therefore, it is appropri-

ate to estimate the self-diffusion coefficient using the accumulative diffusion

coefficient at a large enough time cutoff τ = tmeasure. In practice, we should

monitor the convergence of D(τ) to check the quality of final result.

The diffusion coefficient as a function of U is shown in Fig. 3.9. The

diffusion coefficient exhibits a non-monotonic dependence on U , and a peak

near Uc is observed. Such behavior of diffusion coefficient is also reported in

the previous study using GA-MD [44]. Its increase in the small U regime is

due to the dimer dissociation, which decreases the effective mass of atoms,

and the particles are can diffuse in the liquid much easier. In the U > Uc

regime, the interaction between atoms is dominated by the classical pairing

potential, which leads to a larger transport cross-section; thus, the system

83



shows a decrease of diffusion coefficient.

The frequency resolved optical conductivity σαβ(Ω) can be obtained using

the Greenwood-Kubo formula,

σαβ(Ω) = πe2~
∫
dωΓαβ(ω + Ω, ω)

f(ω)− f(ω + Ω)

Ω
, (3.51)

where Γαβ (ω1, ω2) is the transport distribution function, which is given by,

Γαβ (ω1, ω2) =
1

V
Tr (vαA(ω1)vβA (ω2)) . (3.52)

The velocity matrix in α = x, y, z direction is given by,

vαij = − i
~
Hij(R

α
i −Rα

j ) (3.53)

The system Green function G(ω) is obtained from Dyson’s equation and the

spectral function matrix is given by A(ω) = −1/πImG(ω). The kinetic coef-

ficient is defined as,

An,αβ = π~
∫
dω (βω)n f (ω) f (−ω) Γαβ (ω, ω). (3.54)

Finally, conductivity can be written in terms of the kinetic coefficient ,

σαβ = βe2A0,αβ (3.55)

In the numerical simulation, the main task of transport calculation is to

obtain the transport distribution function Γαβ(ω+Ω, ω). Because the spectral
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Figure 3.10: Time averaged optical conductivity for different U values. The
DC conductivity can be obtained from the optical conductivity at Ω = 0 Near
Uc ≈ 2.1W 0, the dc conductivity increases.
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functions are calculated on a discrete frequency grid, we need to be careful

with the frequency grid for Ω > 0. Assuming that the frequency grid of spec-

tral functions is ranged from [−ωmax, ωmax], then the range of Ω should be

[0,Ωmax] with Ωmax < ωmax. The numerical integration window is therefore

[−ωmax, ωmax−Ωmax]. For each Ω, we evaluate the transport distribution func-

tion Γαβ(ω+ Ω, ω) within [−ωmax, ωmax−Ωmax], and perform the integration.

The choice of Ωmax should not be too large; otherwise, the integration for large

Ω can be inaccurate due to truncation of spectral functions.

In the MD case, we only consider the Γ point due to the spatial inhomo-

geneity. The actual transport properties should be averaged over a thermal

equilibrium ensemble, i.e., average over multiple independent molecular con-

figurations, σαβ(Ω) =< σαβ(Ω) >. Additionally, only diagonal terms of the

conductivity tensor is considered (xx,yy,zz), and the overall conductivity is

σ(Ω) = Trσ(Ω) =
∑

α σαα(Ω). Moreover, the complex optical conductivity

can be obtained using KK transformation.

In contrast to the Bethe lattice optical conductivity [13], the sharp Drude

peak the Ω = 0 is absent. It is likely because of lacking a pronounced quasi-

particle peak at the Fermi level. Indeed, the gap in the spectral Functions

being closed near Uc increases the dc conductivity of the system to almost 80

time larger than that of the small U case. The calculation is very computa-

tional demanding; therefore, it is difficult to calculate the optical conductivity

for all U . The current results confirm the reentrant transition, where the dc

conductivity of the system is enhanced near the Uc and decreases backing to

the insulating phase after the transition.
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Figure 3.11: Schematic diagram of atomic configuration of the U -driven reen-
trant transition. (a) In the weak interaction regime, the system is a molecular
fluid consisting of atomic dimers. Electrons are not fully localized on individ-
ual atoms but are still bounded in the bond within the dimers, which opens a
gap at the Fermi level. (b) In the intermediate regime, there are atoms with
localized electrons and atomic clusters with electrons that can hop between
multiple atoms. The formation of atomic clusters closes the gap, making the
system metallic. (c) In the strong interaction regime, the electrons are fully
localized at each atom and forms local moments. The system is insulating,
and the gap is reopened.

3.5 Conclusion

To summarize, we propose a novel MD scheme that uses the DMFT method

to treat the effect of electron correlations exactly. Applying our new method

to the Hubbard liquid model, the picture of this U driven reentrant transition

is unveiled. Of course, there are still some open questions about this model.

For example, exchange interaction is ignored in the Mott phase. In the strong

regime, the spin-exchange interaction h2
ij/U between moments should also be

considered. The physics in this regime will be discussed in the following chap-

ter.

As suggested by Sachdev [60], the effects of local moments play a vital role

in the complete picture of MIT. The interplay between disorders and the first-

order transition is essential to understand the MIT in this system. Disorders
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in the off-diagonal terms of the hopping matrix can create local environments

that favor the formation of local moments, where the local double occupancy

is close to zero. The interaction between local moments might be important

to describe the dynamics of the Hubbard liquid. Our current DMFT solver or

previously developed GA solver does not consider spin-exchange interactions,

thus cannot describe the frustrated state in the Mott phase. It might be

possible to utilize more advanced DMFT methods in our DMFT-MD scheme

to incorporate the effect of both spacial fluctuation and short-range quantum

fluctuation. However, it is beyond the scope of this study.

Another promising direction is to incorporate ab initio calculations at every

time step to update hij and U , which will allow us to simulate real materials

and to connect with experiments such as alkali metal and liquid hydrogen.

However, this will be highly computationally expensive and almost impossible

to simulate large enough systems to provide useful insight. However, machine

learning can be a potential solution to the substantial computational cost,

which could be the key to future QMD simulations. As the machine learning

technique has been more and more utilized by the physics community, it helps

researchers in various areas, such as phase classifications, pattern identifica-

tions. In recent studies, it is proven that the neural network can be a robust

solver to calculate the electron contribution of forces in MD simulations with

strongly correlated electrons and disordered systems [45, 165]. A properly

trained neural network is both fast and accurate and can push the system size

to a much large value.
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Chapter 4

Spin Liquid Molecular

Dynamics

In this chapter, we discuss the Hubbard liquid in the large U limit where the

local moments and their interactions are dominant. We propose a scheme

that combines the molecular dynamics and the exact diagonalization method

to study the Hubbard liquid in this limit.

4.1 Local moments during MIT

It is widely accepted that as the Coulomb repulsion U increases, the electron

double occupied states are further suppressed, and the electrons are strongly

localized on each atom. Remarkably, at half-filling, all atoms are singly occu-

pied in the ground state, and any electron hopping will lead to an energy cost

of order U . In this case, the strongly localized electrons act as spin-1/2 local

magnetic moments located on each atom [66].
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These magnetic moments are created due to electron localization; thus,

their existence is not limited to clean Hubbard systems but can also be found

in highly disordered Hubbard systems. Additionally, they are not even limited

to Mott insulating phase. In fact, the local magnetic moments can have finite

localization length even in metallic states, in which extended single quasi-

particle states can be found near the Fermi level. The formation of local

moments is favored and stabilized by local environments created by hopping

factors with off-diagonal disorders [60]. During the Mott transition, both the

local moments and the itinerant electrons can coexist and form a two-fluid

system [60]. It is suggested that to understand the full picture of metal-

insulator transition, the presence of local moments and their interaction with

itinerant electrons should be carefully considered [60]. Although the mean-field

level analysis was performed to study a fully disordered Hubbard model where

sites are randomly placed in space and have random on-site potentials [60],

there is currently no research on how the presence of local moments and their

interactions affect the dynamics of these sites. To better describe the Mott

transition in the highly inhomogeneous Hubbard liquid system, we should

consider the effect of the local moments. In particular, in the Hubbard liquid

model, the interactions between local moments can be important to describe

the dynamics of the system near the Mott transition regime and in the large

U limit.

It is known that homogenous single-site DMFT solvers cannot take the

short-range quantum fluctuations into account; thus, they fail to reproduce

the antiferromagnetic state in the Mott phase. This phase can be correctly

90



obtained through cluster DMFT methods, in which shot range quantum fluc-

tuations are included to capture the effect of localized spins [47] fully. The

current DMFT-MD algorithm or previously developed GA-MD scheme do not

include the short-range quantum fluctuations, thus cannot describe the frus-

trating states in the disordered Mott insulating phase. To simultaneously

consider the effects of both spacial inhomogeneity and short-range quantum

fluctuation in molecular dynamics, a combination of inhomogeneous DMFT

and cluster DMFT methods might be required. Inhomogeneous cluster DMFT

method for lattice system has been proposed recently [166], but it has not yet

been widely utilized. Moreover, the proposed inhomogeneous cluster DMFT

method is not suitable to study a fully disordered Hubbard model. The clus-

ter DMFT part of this method requires combining well-defined small clusters

to form a super-cluster, which can be systematically performed on a well-

defined lattice system with translational invariant atomic configuration. Un-

fortunately, this can be problematic in the fully disordered Hubbard model

case because it is currently impossible to systematically expand the clusters or

define small clusters for a fully disordered atomic configuration. It might be

possible to treat the entire system as a single super-cluster, but in that case,

the dimension of the multiple-site impurity problem is too large to handle.

Developing a method that can consistently treat both spatial inhomogeneity

and short-range quantum fluctuation on an equal footing could be the next

direction of the development of the DMFT method and can help the commu-

nity to fully understand the dynamics of Mott transition and the effect local

moments during the MIT, yet it is beyond the scope of our current research.
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In this chapter, the Hubbard liquid system in the deep Mott phase is

studied, namely in the strong coupling limit U � Uc. We further limit our

study to the half-filling case, the presence of extended quasi-particle states

in the Mott insulating phase can be neglected, and the system is a liquid

consisting of only spin-1/2 local magnetic moments,

HMott = Hspin +Hion (4.1)

Similarly, the system has two degrees of freedom, Hspin describes the spin-1/2

local moments interacting with each other via short-range quantum fluctua-

tions, and the other one Hion is the ion degree of freedom, governed by classical

repulsive potentials. Because the effect of itinerant electrons and their inter-

action can be ignored in the deep Mott phase, the problem is simplified, and

the spin degree of freedom Hspin can be solved directly.

Studying this system can shed light on the physical picture of MIT in a

fluid system and help us understand the effect of local magnetic moments

interactions on the dynamics of the atoms. Real fluid systems, such as liq-

uid mercury and alkali metals, are very important in the studies of MIT in

disordered medium [76, 77, 78, 80]. Although it is currently not possible to

consistently treat both the local magnetic moments and the itinerant electrons

on the same footing, our results in the deep Mott phase, combined with the

result in the previous chapter, can provide us valuable information on both

sides of the Mott transition in a strongly correlated liquid.
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4.2 Interactions between local moments

Before studying the dynamics of the fluid system, it is crucial first to identify

the interactions between the local moments. There are a few candidates to

consider.

A naive choice of the interaction between two local moments is the magnetic

dipole-dipole interaction,

Hdipolar =
µ0

4πr3

[
m1 ·m2 −

3 (m1 · r) (m2 ·R)

r2

]
, (4.2)

where m1 and m2 are the magnetic moments of the localized spin, µ0 is the

magnetic constant and r is the displacement vector between the two magnetic

moments. However, the dipolar interaction is too weak comparing to other

possible interactions, thus it can hardly have any significant effect on the

dynamics of atoms in the Mott phase.

Another class of interaction between the local moments is the exchange

interaction, which results in an effective Heisenberg model for the local mo-

ments,

H = JŜ1 · Ŝ2, (4.3)
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where J is the exchange constant and Ŝ is the spin operator,

Ŝ =


Ŝx

Ŝy

Ŝz

 (4.4)

The spin components on the same atom followed the standard commutation

relations of angular momentum,

[
Sα, Sβ

]
= i~εαβγSγ, (4.5)

where εαβγ is the Levi-Civita symbol and α, β, γ = x, y, z. In fact, it is well-

known that in the Hubbard model in the strong coupling limit can be mapped

to an effective antiferromagnetic Heisenberg model [167].

There exist several types of exchange interaction with different physical

origins. Among them, the simplest one is the direct exchange interaction.

Through a virtual intermediary double occupied state that does not violate

the Pauli exclusion principle of fermions, the two nearby atoms are coupled.

This intermediary state can be created through the virtual hopping of spins

between two sites with antiparallel spins. The virtual hopping can result in a

non-vanishing double occupancy in the Mott phase, which has been observed

in the Hubbard liquid model. The direct exchange interaction leads to an

antiferromagnetic Heisenberg model for the local moments. By treating the

hopping hij as a perturbation, one can found that the strength of the inter-

action is Jij ∼ h2
ij/U . Because the hopping strength exponentially decays
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with distance, the exchange interaction is stronger than the hopping but has

a shorter range.

Another type of exchange interaction is the super-exchange interaction. In

real materials, magnetic moments in lattices can interact through the magnetic

super-exchange interaction, where next-to-nearest neighbor atoms are coupled

with each other through an intermediary nonmagnetic atoms [168, 169]. This

type of interaction can often be found in the oxides of transition metal, for

example, in MnO crystal, through the nonmagnetic O2− anions between Mn2+

cations, the Mn2+ atoms can interact with each other. Instead of a direct

overlap between the d-orbital wave-functions of two Mn2+ atoms, one p-orbital

electron on the intermediary O2− anions can hop to one of the two cations;

the remaining p electron on the O2− can have a direct exchange with the other

cation, resulting in a coupling between the two cations [169]. Depending on the

orientation of the atoms and the electron configurations, the super-exchange

mechanism can not only leads to antiferromagnetic interaction between the

cations but also can create ferromagnetic couplings [170].

There is also an exchange mechanism called double-exchange, where two

ions of different oxidation states interact through an in-between ion. This type

of interaction looks similar to the super-exchange but can only occur between

atoms when one of the two atoms has more one electron than the other [171].

To summarize, the dipolar interaction is too weak comparing to the ex-

change interactions; thus, its influence is negligible. Moreover, super-exchange

and double-exchange mechanisms are also not possible because there are no

intermediary nonmagnetic atoms. We limit all atoms to be hydrogen-like with
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only s-orbital. Thus there are only one species of atoms in the system. There-

fore, it is reasonable to assume that the dominant interaction between local

moments is the direct exchange, and the Hamiltonian of the local moments is

given by,

Hspin =
∑
〈i,j〉

J (|Ri −Rj|) Ŝi · Ŝj (4.6)

where J (|Ri −Rj|) =
4 [h (|Ri −Rj|)]2

U
=

4h2
0exp(−2r/ξ1)

U
(4.7)

Here h (r) = h0exp(−r/ξ1) is the hopping factor of the original Hubbard model

where h0 and ξ1 are constant. From the above expression, it is easy to see

that the strength of exchange interaction is stronger than the hopping, but

it decays much faster. In applications to real materials, these parameters

can be obtained by fitting to bulk band-structure ab initio calculations or to

experimental results.

Although the direct exchange is dominant here, it might still be possible

to achieve a more complex exchange mechanism in a Mott liquid system. For

example, if another species of a nonmagnetic atom is added and complex

atoms with d-orbitals are considered, super-exchange might be possible. It is

interesting to see how the super-exchange or the double-exchange interaction

can affect the dynamics of the system. Again, this is far beyond the scope

of our work, where we focus on the direct exchange interaction between local

moments.
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4.3 The Mott liquid model

In this system, we consider the half-filling case, which means there are only

one spins on each atoms. The system consists of two degrees of freedom, one

for spin 1/2 local moments with exchange interaction and the other one is the

ion degree of freedom and the Hamiltonian is given by,

HMott =Hspin +Hion (4.8)

Hspin =
∑
〈i,j〉

J (|Ri −Rj|) Ŝi · Ŝj (4.9)

Hion =
1

2

∑
i 6=j

φ (|Ri −Rj|) +
∑
i

|Pi|2
2m

. (4.10)

Here Hspin describes the local spin moments on a disordered Heisenberg model,

where J (|Ri −Rj|) is the distance-dependent exchange constant between two

local moments which also depends on the on-site Coulomb repulsion U . The

operator Ŝi is the spin operator of a localized spin on the i-th atom. Ri is the

position of the i-th atoms. Hion describe the ion degree of freedom, where φ

is the pairwise repulsive inter-atomic potential. The last term is the kinetic

energy of atoms. As discussed in the above sections, the previously developed

inhomogeneous DMFT method does not take into account the spin-exchange

interaction between local moments. Fortunately, the Heisenberg Hamiltonian

can be solved straightforwardly using the exact diagonalization method.

In the numerical simulation, it is crucial to correctly generate the matrix

representation of Hspin, whose size of the Hilbert space grows exponentially,

D = 2Ns , where D is the dimension of the matrix and Ns is a total number of
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atoms. However, in practice, it is difficult to simulate a large system due to

the exponential growing Hilbert space; the technical details will be discussed

in a later section.

For spin 1/2, the components of the spin operators can be written using

Pauli matrices,

Ŝαi =
1

2
σα, where α = x, y, z (4.11)

σα are Pauli matrices,

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 (4.12)

To construct the matrix representation of Hspin, the eigenvectors of Ŝz are

chosen as the basis of the Hamiltonian.

|↑〉 =

1

0

 , |↓〉 =

0

1

 (4.13)

The spin-up state |↓〉 and the spin-down state |↑〉 are eigenvectors of Ŝz, The

eigenvalues of Ŝz are,

Ŝz |↑〉 = +
1

2
|↑〉 , (4.14)

Ŝz |↓〉 = −1

2
|↓〉 (4.15)
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A many-body state of Ns spins in this basis can be easily written as,

|m〉 = |↑↓↑↑↑ · · · 〉︸ ︷︷ ︸
Ns spins

(4.16)

These states forms an orthogonal basis,

〈m|n〉 = δmn (4.17)

Ŝzi is the spin-z operator defined on the site i, and it effects on a many-body

state are given by,

Ŝzi |· · · ↑ · · · 〉
i-th site

= +
1

2
|· · · ↑ · · · 〉

i-th site

, (4.18)

Ŝzi |· · · ↓ · · · 〉
i-th site

= −1

2
|· · · ↓ · · · 〉

i-th site

, (4.19)

Note that, spin operators defined on different sites commutes with each other,

[
Ŝαi , Ŝ

α
j

]
= 0 when i 6= j (4.20)

It is also very helpful to defined the spin ladder operators in this basis,

Ŝ+
i = Ŝxi + iŜyi , (4.21)

Ŝ−i = Ŝxi − iŜyi (4.22)

When acting on a spin state, the spin raising operator Ŝ+ can change a spin-

down state to a spin-up state and the spin lowering operator Ŝ+ can change a
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spin-up state to a spin-down state.

Ŝ+ |↓〉 = |↑〉, Ŝ+ |↑〉 = 0 (4.23)

Ŝ− |↑〉 = |↓〉, Ŝ− |↓〉 = 0 (4.24)

It is easy to identify the following relation,

Ŝxi Ŝ
x
j + Ŝyi Ŝ

y
j =

1

2

(
Ŝ+
i Ŝ
−
j + Ŝ+

j Ŝ
−
i

)
, when i 6= j (4.25)

With this relation, we can rewrite the Hamiltonian using the spin ladder op-

erators,

Hspin =
∑
〈i,j〉

J (|Ri −Rj|) Ŝi · Ŝj (4.26)

=
∑
〈i,j〉

J (|Ri −Rj|)
(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j + Ŝzi Ŝ

z
j

)
(4.27)

=
∑
〈i,j〉

J (|Ri −Rj|)
[

1

2

(
Ŝ+
i Ŝ
−
j + Ŝ+

j Ŝ
−
i

)
+ Ŝzi Ŝ

z
j

]
(4.28)

= Hoff +Hdiag (4.29)

In the final step, we separate the Hamiltonian operator into two terms: the

diagonal term Hdiag and the off-diagonal term Hoff,

Hoff =
∑
〈i,j〉

J (|Ri −Rj|)
1

2

(
Ŝ+
i Ŝ
−
j + Ŝ+

j Ŝ
−
i

)
(4.30)

Hdiag =
∑
〈i,j〉

J (|Ri −Rj|) Ŝzi Ŝzj (4.31)
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It is important to see that, when acting on a state, the diagonal term will

not change the original state, but the off-diagonal will leads to a new state.

The matrix representation of the Hamiltonian will be constructed based on

the above expressions. The matrix element of the Hamiltonian is then given

by,

Hmn = 〈m|Hoff +Hdiag |n〉 (4.32)

where 〈m| and |n〉 are the possible many-body states of the system.

How a matrix element of the Hamiltonian is calculated in practice is briefly

introduced here. Consider a many-body state of Ns spins,

|n〉 = |σ1σ2 · · ·σNs〉 , (4.33)

where σi =↑, ↓ is the spin state on the i-th atom. Due to the presence of off-

diagonal terms in the matrix representation, it is beneficial to have an efficient

indexing system to index all the possible many-body states of the system, so

that we can quickly navigate through these matrix elements. In an other word,

we have to systematically assign an integer n ∈
[
0, 2Ns

]
to all possible states

|n〉.

It turns out that a binary representation of state can be very helpful in

this case. Because there are only two possible states ↑ or ↓ on each atom, we

can consider the following mapping rules,

↑→ 1, ↓→ 0 (4.34)
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Using these rules, any given spin state can be represented using a binary

number,

|σ1σ2 · · · σNs〉 → d1d2 · · · dNs (4.35)

This binary number can be then converted to a decimal number which is the

index of the state,

n = d120 + d221 + d322 + · · · dNs2Ns−1 (4.36)

It is easy to see that the dimension of the matrix representation of operators

in this system is 2Ns , where Ns is total number of spins. Therefore, we have

the one-to-one correspondence between a spin state and an index,

|σ1σ2 · · ·σNs〉� |n〉 , (4.37)

where |n〉 is the state with index n. By applying the spin operators on the

original state, we can quickly identify the new state by manipulating the cor-

responding spins, and the index of the new state can then be obtained using

the above mapping. Note that the matrix representations of useful operators

can also be constructed in this way, each as Ŝzi , Ŝ+
i Ŝ
−
j .

For example, to compute the matrix representation of S+
i , one need to go
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through all possible state |k〉 and find the finite matrix elements.

S+
i |k〉 = S+

i

∣∣∣· · · 0
i-th site

· · ·
〉

(4.38)

= | · · · 1
i-th site

· · · 〉 = |l〉 (4.39)

The matrix element (S+
i )lk is

(S+
i )lk = 〈l|S+

i |k〉 = 1 (4.40)

The major advantage of this indexing system is that, when applying a spin

operator on a state, we avoid going through all possible states to search for

the final state; instead, we can compute its index directly. This can reduce the

complexity of matrix construction from O(22Ns) to O(2Ns ) complexity, which

can leads to a significant performance improvement when the system is large.

4.4 Molecular dynamics with exact diagonal-

ization

In this section, the exact diagonalization MD (ED-MD) scheme is introduced.

We adopt the Born-Oppenheimer approximation, where the electron degrees

of freedom and ion degrees of freedom are well separated so that the electrons

can be assumed in equilibrium at any MD time step.
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Figure 4.1: The flowchart of ED-MD algorithm. The loop will end after certain
numbers of iterations. The measurement should be performed after the system
reaches equilibrium.
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Consider an initial atomic configuration of the system at time step tn,

C(t) = {R1,R2, · · · ,Ri} (4.41)

A hopping matrix can be uniquely defined from the atomic configuration,

hij = h (|Ri −Rj|) (4.42)

Then the exchange constant matrix is calculated,

Jij =
4h2

ij

U
(4.43)

The spin Hamiltonian matrix is then constructed using the exchange constant

matrix Jij,

Hspin =
∑
〈i,j〉

JijŜi · Ŝj (4.44)

This Hamiltonian is solved using exact diagonalization method. Note that,

the Hamiltonian is positive symmetric sparse matrix, and the sparse matrix

diagonalization techniques can be utilized to speed up the calculation.

Similar to the DMFT-MD, the total force on an atom consists of the contri-

butions from both exchange interaction of local moments and classical pairwise

potentials between ions,

Fi = Fspin
i + Fclassical

i (4.45)
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With the information of the eigenstates of the Hamiltonian, we are able to

calculate the contribution of local moments to the interatomic force. This

force can be derived using the Feynman Hellman theorem,

Fspin
i = −∂〈Hspin〉

∂Ri

(4.46)

= −
〈∑

j

∂JijŜi · Ŝj
∂Rj

〉
(4.47)

Therefore, the final expression is given by,

Fspin
i = −

∑
j

∂Jij
∂Rj

〈Ŝi · Ŝj〉 (4.48)

Note that the largest possible value of 〈Ŝi · Ŝj〉 is 1/2(1/2 + 1) = 3/4. The

expectation value of the operator is given by,

〈Ŝi · Ŝj〉 =
∑
m

〈m|Ŝi · Ŝj|m〉e−βEm/Z, (4.49)

where Em are the energy levels and |m〉 are the corresponding eigenvectors; Z

is the total partition function,

Z =
∑
m

e−βEm (4.50)

In practice, the Boltzmann weight e−βEm can be very large in low temperature,

β >> 0, which may even exceed the maximum limit of the computer data type

and cause runtime errors. Thus, it is wise to measure the eigenenergies relative
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to the ground state energy E0,

〈Ŝi · Ŝj〉 =

∑
m〈m|Ŝi · Ŝj|m〉e−β(Em−E0)∑

m e
−β(Em−E0)

(4.51)

In the simulation, we found that the ground state has the largest contribution

to the expectation value calculation, whose weight is several orders of magni-

tude larger than other states. Therefore, it is reasonable to use only a few low

energy states to calculate the expectation values,

〈Ŝi · Ŝj〉 =

∑Nk
m 〈m|Ŝi · Ŝj|m〉e−β(Em−E0)∑Nk

m e−β(Em−E0)
(4.52)

where Nk is the number of lowest energy states kept when solving the Hamilto-

nian. Without any noticeable influence on the full results, this approximation

can dramatically improve the performance of the simulation, since not all -

states are calculated.The classical pairwise potential φ(r) introduces classical

forces between the atoms,

Fclassical
i = −

∑
j

∂φij
∂Ri

(4.53)

The atomic configuration is then updated using Langevin dynamics with the

standard velocity-Verlet method.
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Figure 4.2: Energies as function of U . Simulation is performed at Ns = 12,
rs = 1.2, T = 0.15.

4.5 Dimers in Mott liquid

We applied the ED-MD method to the Mott liquid model defined by Eq. (4.8).

The simulation is perform on systems of Ns = 14 atoms with constant system

size V that is determined by the average atom distance rs = (3V/4πN)1/3.

The system is first allowed to fully relax and converge to equilibrium before

the measurement. One of the criteria for equilibrium is the check the atomic

kinetic energy of the system,

Ekin =
∑
i

1

2
mv2

i (4.54)

Due to the Langevin dynamics, Ekin = 3/2kBT when the system is in equilib-

rium.

Fig. 4.5 shows the three major types of energies of the system as a func-
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tion of on-site Coulomb interaction U . As mentioned above, the total kinetic

energy of the atoms dependents only on temperature Ekin = 3/2kB should be

a constant for fixed temperature simulations. The pairwise potential energies

are given by,

Epot =
∑
i 6=j

1

2
φ (|Ri −Rj|) (4.55)

The electronic energies Eelec is the expectation value of Hspin.

Eelec = 〈E〉 =

∑Nk
m Eme

−β(Em−E0)∑Nk
m e−β(Em−E0)

(4.56)

The magnitude of both Eelec and Epot decrease as U increases. Unlike the

dramatic change of energies in the previous simulation of Hubbard liquid,

this change of energies is very smooth suggesting that the system exhibits a

crossover driven by U . Later one will see that this crossover is related to the

molecular dissociations.

The pair distribution functions g(r) are measured during the simulations

and shown in Fig. 4.5, which gives us information on the atomic configuration

in the system.

When U ∼ Uc, the presence of a dimer peak is observed; in this regime, the

exchange interactions between local moments bind their corresponding atoms

together and form dimers. As U further increases, the exchange interaction is

weaker, and the equilibrium length r0 is of a similar order with the averaged

atomic distance rs, the dimers start to dissociates, and the dimer peak merges

to a broad peak at large r. Note that this does not indicate that there are
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Figure 4.3: Pair distribution function g(r) obtained from ED-MD for varying
values of U . The dimers form in the Mott liquid. As the U increases, the
exchange interaction is weaker and dimers starts to dissociate.

no attractive forces between atoms, but the attractive force due to exchange

interaction is too weak to have significant effects.

The partial pair distribution function gAB(r) is the possibility of finding

another atom of species A at a distance r of atoms of species B. One can see

that even though there are no clear dimer peaks in the g(r), the partial pair

distribution function g↑↓(r), between atoms whose expectation value of
〈
Ŝzi

〉
are different, exhibits a peak. This indicates that the atoms with different

expectation values of
〈
Ŝzi

〉
are still attracting each other, though this effect

cannot be clearly distinguished in the total g(r).

The formation of dimers and the dissociation process are intuitive yet have

never been reported before. Combined with previous results, one may expect

a rich phase diagram for the Hubbard liquid. As U increases from the non-

interacting limit, the molecular dimer starts to dissociate near the transition.

110



0

0.5

1

1.5

0 0.5 1 1.5 2

gαβ (r)

r

g↓↓(r)
g↑↓(r)
g↑↑(r)

Figure 4.4: Partial pair distribution functions. The peak at r ∼ 1.6 indicates
there is an effective attraction between spin up and spin down atoms.

In contrast, after the Mott transition, the presence of local moment and their

exchange interaction binds the atoms again and forms dimers who will even-

tually vanish in the strongly interacting limit. If the box size decreases, one

might expect that the molecular dimer in the small U vanishes far before the

Mott transition. In this case, the dimer will form at the Mott transition and

vanish in the large U limit.

It is well-known that ground state of Heisenberg Model with 2 spins is a

singlet states with total spin S = 0. For a system with Ns atoms, we can

define the total spin operator,

Ŝ =
∑
i

Ŝi (4.57)

We cannot calculate the expectation value of this operator directly, but we

can write the square of the total spin operator, whose expectation can be
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Figure 4.5: Atomic configurations of a snapshot at U = 20. The red dots are
the atoms, the bond between atoms are labeled using a black line.
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computed easily,

Ŝ2 =
∑
i

Ŝi +
∑
i 6=j

Ŝi · Ŝj (4.58)

The total spin S of a state |m〉 is then given by,

S(S + 1) = 〈m| Ŝ2 |m〉 (4.59)

=
∑
i

〈m| Ŝ2
i |m〉+

∑
i 6=j

〈m| Ŝi · Ŝj |m〉 (4.60)

In the simulation, we find that, for systems consisting even number of atoms,

the ground state is almost always a singlet state S = 0 with no degeneracy

when U is relatively small; however, when U is very large, triplet states with

S = 1 might occur due to the spatial inhomogeneity. When molecules dissoci-

ate, atoms can form local clusters consisting odd number of atoms, which can

result in ground states with finite total spin S.

One can estimate the dimer length by examining the binding energy. Con-

sider the binding energy as a function of distance,

Eb = α1 exp(−β1r)− α2 exp(−β2r) (4.61)

An extreme exists at,

rex =
ln α1β1

α2β2

β1 − β2

(4.62)
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Figure 4.6: Averaged total spin Savg of the ground state as a function of U .
As U increases, the Savg increases, indicating the presence of triplet states.

For this extreme to be physical, we require rex > 0,

β1 > β2, and α1β1 > α2β2 (4.63)

β1 < β2, and α1β1 < α2β2 (4.64)

The second derivatives of the binding energy at the extreme rex,

d2

dr2
Eb(rex) = α1β

2
1 exp(−β1rex)− α2β

2
2 exp(−β2rex), (4.65)

= α1β
2
1

(
α1β1

α2β2

)− β1
β1−β2 − α2β

2
2

(
α1β1

α2β2

)− β2
β1−β2

(4.66)

= α1β1 (β1 − β2) (
α2β2

α1β1

)
− β1
β2−β1 (4.67)

The binding energy has a minimum when d2

dr2Eb(rex) > 0 or a maximum when

d2

dr2Eb(rex) < 0. Therefore, to form stable dimers, the binding energy must
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have a minimum and the parameters of the potentials have to satisfy,

β1 > β2, and α1β1 > α2β2 (4.68)

One can define the ratios between the strength and the decay length of the

repulsive and the attractive potential,

α =
α1

α2

, β =
β1

β2

(4.69)

Therefore requirements of forming stable dimers become,

β > 1 and αβ > 1 (4.70)

On the other hand, if the position extrema is negative, rex < 0, the inter-atomic

force is either purely attractive or repulsive. Note that a purely attractive force

case is usually very unstable and have collisions. A purely attractive force case

results in a simple atomic liquid.

The diffusion coefficient as a function of U is shown in Fig. 4.5. The

diffusion coefficient is obtained by using the same method discussed in the

previous chapter. A dramatic increase of diffusion coefficient is observed near

U ∼ 40. This is due to the fact that the effective mass of atoms decreases

when the atomic dimers dissociate.The atoms become more mobile after the

dissociation.
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Figure 4.8: Diffusion constant as function of U .
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Figure 4.9: Velocity autocorrelation functions 〈v(0) · v(t)〉 as a function of
time. These functions are sampled in time windows of 40. During a single
simulation, multiple time windows are sampled and averaged for better data
quality.
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Figure 4.10: Accumulative diffusion coefficients D(t) at various U . They are
calculated by integrating the sampled velocity autocorrelation functions. Note
that we use the large time D(t) to approximate the actual diffusion constant.
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4.6 Simulation details

In this section, some important technical details of ED-MD simulation are

discussed. First, the implementation of the index system is worth mentioning.

A many-body spin state can be stored as a string of 0 or 1. The C++ built-in

class, bitset, can convert the string to an integer and visa-versa. Therefore,

the effect of a spin operator on an Ising state can be achieved by manipulating

the corresponding string, and the index of the new state can be obtained using

the bitset class.

Second, we discuss some methods we adopted in the exact diagonalization

to make the problem feasible. In our study, the simulation is performed on

systems with up to 14 atoms, and the corresponding size of the Hamiltonian

matrix is 16384 × 16384. When solving static systems with exact diagonal-

ization, this size is not large and should not be difficult to solve. However, in

our case, we are studying a dynamic problem, and the Hamiltonian should be

constructed and solved at every time step. In order to have good diffusion or

radial distribution function measurements, enough MD iterations are required.

Therefore, the matrix construction and matrix diagonalization time will be the

major computational bottleneck.

In this study, we implemented several methods to improve the performance

and make the simulation feasible. Firstly, we store the Hamiltonian as a sparse

matrix and use the sparse matrix diagonalization method to extract only the

important eigenvalues instead of all of them. A matrix is considered to be

sparse if most of its elements are zero. We can define the sparsity of a matrix

as the ratio between the number of zero elements and the total number of
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matrix elements s = Nzero/Ntotal. We can see that each off-diagonal terms

1
2

(
Ŝ+
i Ŝ
−
j + Ŝ+

j Ŝ
−
i

)
can lead to 2 × 2Ns−2 nonzero terms, provided that there

are finite interaction between i-th atom and j-th atom. Therefore, the total

number of non-zeros terms for Hamiltonian of Ns atoms, is

Nnonzero = 2× 2Ns−2 × Ns(Ns − 1)

2
+ 2Ns (4.71)

the last term is the number of finite diagonal term. Therefore, the sparsity of

the Hamiltonian is,

s = 1− 2× 2Ns−2 × Ns(Ns−1)
2

+ 2Ns

22Ns
(4.72)

The sparsity of a Hamiltonian in the Mott liquid with Ns = 14 is 0.283% if we

don’t set a cutoff distance rmax for the exchange interaction. The calculated

value agrees with the simulation result. Therefore, sparse matrix treatment

of the Hamiltonian is valid. There exist several advantages when using a

sparse matrix representation. From one aspect, a sparse matrix data type

will occupy only a small amount of computer memory space. If one store the

Hamiltonian with size 16384 × 16384 as dense matrix where all the elements

will be stored, it will takes approximately 2 gigabytes (GB) of memory and this

value will increase exponentially as the number of atoms increases. However,

if this matrix is stored as a sparse matrix data type, it takes only a few

megabytes (MB) of memory, since only the indices and the corresponding
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Figure 4.11: The sparsity of Hspin matrix. The Hamiltonian matrix is ex-
tremely sparse and becomes almost empty as the system size increases.

values of nonzero elements are stored. For example,



0 1 0 0

0 0 0 1

2 0 0 0

0 0 0 1


→

(0, 1, 1)

(1, 3, 1)

(2, 0, 2)

(3, 3, 1)

(4.73)

The sparse matrix is save as a list of tuples where first two numbers are the

indices and the third one is the matrix element. Another advantages is that the

sparsity of the matrix can be utilized during the diagonalization. As discuss

above, the eigenvalues Em and eigenvectors |m〉 of the Hamiltonian are used to

compute the expectation values of various observables and only the first few

low energy states matters at low temperature. In practice, computing only

the first few lowest energy states of a sparse Hamiltonian is much faster than
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diagonalizing the same Hamiltonian using dense matrix eigen decomposition

routines with a computational complexity of O(N3). In our code, we use

Armadillo package to handle all the matrix operations [172, 173]. Note that

one may encounter convergence issue inside the diagonalization routines and

it is advised to increase the value of Nk of the algorithm [172, 173]. In our

code, a runtime error handling routine is designed to avoid potential errors

caused by this decomposition failure.

The other useful method to improve the computational efficiency is to

construct and save the matrix representations of all frequently used operators

at the beginning of the simulation. In a system with a fixed number of atoms,

the spin Hamiltonian Hspin at different time steps differs from each other.

However, the matrix representation of operator Ŝi · Ŝj remains unchanged; the

only thing that changes is the exchange constant matrix Jij. Thus, one can

construct and save the matrix of Ŝi · Ŝj first to avoid reconstructing them at

every time step. In our code, the matrices
(
Ŝi · Ŝj

)
mn

and their indices (i, j)

are saved in a map data type for quick access. At each time step, the code

sums over all the stored matrices, with their corresponding exchange constants,

multiplied to construct the Hamiltonian. These matrices are also needed when

calculating the inter-atomic forces. This approach can significantly improve

the efficiency of large-scale simulations.
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4.7 Conclusion

To summarize, we propose an ED-MD scheme to study the dynamics of the

Mott liquid model, i.e., the Hubbard liquid model in the Mott phase. A unique

dimer formation and a molecular dissociation, driven by U , are observed. If

both spatial inhomogeneity and short-range quantum fluctuation are included,

it is possible to have a coexistence of two types of dimers. In one type of dimers,

atoms are bounded by electron hopping, while in the other type of dimers,

atoms are bounded by exchange interactions. These novel results suggest rich

physics and complex dynamics in correlated liquid systems in the Mott phase.

Moreover, our study might be closely related to real liquid systems such as Cs

and Rb, in which spin paired dimers are reported [174].
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Chapter 5

Conclusion

This thesis proposes a novel MD scheme that uses the DMFT method to treat

electron correlations exactly. Applying our new method to the Hubbard liquid

model, the picture of this U driven reentrant transition is unveiled. Addition-

ally, the effects of exchange interaction at the large U limit are also studied

with the new ED-MD scheme simulating the Mott liquid model. The forma-

tion of dimers in this limit reveals new phenomena previously never studied

in a strongly correlated liquid system. Together, the two sets of simulations

can give us a general picture during the correlation-driven transition in liquid

by providing us the information of both the kinetics of atoms and the proper-

ties of electrons on both sides of the Mott transition. It is believed that such

correlation-driven transitions can occur in alkali liquid metals, in which dimers

can be observed in the Mott phase [94, 95]. The application of these methods

is not limited to the liquid system. However, it can also be extended to solid

systems in which kinetic are very important during the MIT transition, such
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as Plutonium and Cerium exhibiting the volume collapse transitions [175]. In-

deed, before being applied to a solid, further performance improvements are

mandatory. A system with 40 atoms is adequate for studying the dynamics of

a liquid system; however, 40 atoms are too few to construct enough unit cells

to study the dynamics of solid systems.

Another promising direction is to use ab initio calculations, such as LDA, at

every time step to update the hopping matrix tij and the Coulomb interaction

U . This combination allows us to simulate real materials and make direct

connections with experiments. From this multi-scale modeling, we can gain

a better understanding of the phenomenon observed in actual experiments.

However, this process itself will be extremely computationally expensive, let

alone being combined with DMFT calculation, because the Wannierization of

atomic orbitals on all atoms must be performed at each time step.

To overcome these computational bottlenecks, besides developing a heavily

parallelized solver, the technique of machine learning can be a potential solu-

tion. It was proven to be a robust solver to calculate the electron contribution

of forces in MD simulations with strongly correlated electrons and disordered

systems [45, 165]. With a properly designed descriptor that helps to encode

the symmetries and other physical characteristics of the system, the trained

neural network can generate the total force (with both electron contribution

and classical potential contribution) acting on each atom based on the atomic

configuration [45, 165]. This method turns out to be fast and adequately ac-

curate, and more importantly, with its help, one can push the system size of

the MD simulation to a much large value.
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In the candidates of Mott transistors, such as VO2, heterostructures are

playing a vital role during the MIT. Our methods can provide a further under-

standing of the interplay between the formation of electronic heterostructures

and the dynamics of the atoms. Understanding this phenomenon might help

the experimentalists improve the Mott transistors’ performance and design

more complex electronics based on strongly correlated materials.
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[41] Nicola Lanatà et al. “Phase Diagram and Electronic Structure of Praseodymium

and Plutonium”. In: Phys. Rev. X 5 (1 Jan. 2015), p. 011008. doi:

10.1103/PhysRevX.5.011008. url: https://link.aps.org/doi/10.

1103/PhysRevX.5.011008.

[42] K. M. Ho, J. Schmalian, and C. Z. Wang. “Gutzwiller density functional

theory for correlated electron systems”. In: Phys. Rev. B 77 (7 Feb.

2008), p. 073101. doi: 10.1103/PhysRevB.77.073101. url: https:

//link.aps.org/doi/10.1103/PhysRevB.77.073101.

[43] J.-P. JULIEN and J. BOUCHET. “AB-INITIO GUTZWILLER METHOD:

FIRST APPLICATION TO PLUTONIUM”. In: Recent Advances in

the Theory of Chemical and Physical Systems. Ed. by JEAN-PIERRE

JULIEN et al. Dordrecht: Springer Netherlands, 2006, pp. 509–534.

isbn: 978-1-4020-4528-8.

[44] Gia-Wei Chern et al. “Mott Transition in a Metallic Liquid: Gutzwiller

Molecular Dynamics Simulations”. In: Phys. Rev. Lett. 118 (22 June

2017), p. 226401. doi: 10 . 1103 / PhysRevLett . 118 . 226401. url:

https://link.aps.org/doi/10.1103/PhysRevLett.118.226401.

133

https://doi.org/10.1103/PhysRevLett.10.159
https://link.aps.org/doi/10.1103/PhysRevLett.10.159
https://link.aps.org/doi/10.1103/PhysRevLett.10.159
https://doi.org/10.1103/PhysRev.137.A1726
https://doi.org/10.1103/PhysRev.137.A1726
https://link.aps.org/doi/10.1103/PhysRev.137.A1726
https://link.aps.org/doi/10.1103/PhysRev.137.A1726
https://doi.org/10.1103/PhysRevX.5.011008
https://link.aps.org/doi/10.1103/PhysRevX.5.011008
https://link.aps.org/doi/10.1103/PhysRevX.5.011008
https://doi.org/10.1103/PhysRevB.77.073101
https://link.aps.org/doi/10.1103/PhysRevB.77.073101
https://link.aps.org/doi/10.1103/PhysRevB.77.073101
https://doi.org/10.1103/PhysRevLett.118.226401
https://link.aps.org/doi/10.1103/PhysRevLett.118.226401


[45] Hidemaro Suwa et al. “Machine learning for molecular dynamics with

strongly correlated electrons”. In: Phys. Rev. B 99 (16 Apr. 2019),

p. 161107. doi: 10.1103/PhysRevB.99.161107. url: https://link.

aps.org/doi/10.1103/PhysRevB.99.161107.

[46] Walter Metzner and Dieter Vollhardt. “Correlated Lattice Fermions in

d =∞ Dimensions”. In: Phys. Rev. Lett. 62 (3 Jan. 1989), pp. 324–327.

doi: 10.1103/PhysRevLett.62.324. url: https://link.aps.org/

doi/10.1103/PhysRevLett.62.324.

[47] H. Park, K. Haule, and G. Kotliar. “Cluster Dynamical Mean Field

Theory of the Mott Transition”. In: Physical Review Letters 101.18

(Oct. 2008). issn: 1079-7114. doi: 10.1103/physrevlett.101.186403.

url: http://dx.doi.org/10.1103/PhysRevLett.101.186403.

[48] Minh-Tien Tran. “Inhomogeneous phases in the Falicov-Kimball model:

Dynamical mean-field approximation”. In: Phys. Rev. B 73 (20 May

2006), p. 205110. doi: 10.1103/PhysRevB.73.205110. url: https:

//link.aps.org/doi/10.1103/PhysRevB.73.205110.

[49] M Snoek et al. “Antiferromagnetic order of strongly interacting fermions

in a trap: real-space dynamical mean-field analysis”. In: New Journal of

Physics 10.9 (Sept. 2008), p. 093008. issn: 1367-2630. doi: 10.1088/

1367-2630/10/9/093008. url: http://dx.doi.org/10.1088/1367-

2630/10/9/093008.

[50] R. W. Helmes, T. A. Costi, and A. Rosch. “Mott Transition of Fermionic

Atoms in a Three-Dimensional Optical Trap”. In: Physical Review Let-

134

https://doi.org/10.1103/PhysRevB.99.161107
https://link.aps.org/doi/10.1103/PhysRevB.99.161107
https://link.aps.org/doi/10.1103/PhysRevB.99.161107
https://doi.org/10.1103/PhysRevLett.62.324
https://link.aps.org/doi/10.1103/PhysRevLett.62.324
https://link.aps.org/doi/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/physrevlett.101.186403
http://dx.doi.org/10.1103/PhysRevLett.101.186403
https://doi.org/10.1103/PhysRevB.73.205110
https://link.aps.org/doi/10.1103/PhysRevB.73.205110
https://link.aps.org/doi/10.1103/PhysRevB.73.205110
https://doi.org/10.1088/1367-2630/10/9/093008
https://doi.org/10.1088/1367-2630/10/9/093008
http://dx.doi.org/10.1088/1367-2630/10/9/093008
http://dx.doi.org/10.1088/1367-2630/10/9/093008


ters 100.5 (Feb. 2008). issn: 1079-7114. doi: 10.1103/physrevlett.

100.056403. url: http://dx.doi.org/10.1103/PhysRevLett.100.

056403.

[51] Minh-Tien Tran. “Statistics of local density of states in the Falicov-

Kimball model with local disorder”. In: Phys. Rev. B 76 (24 Dec. 2007),

p. 245122. doi: 10.1103/PhysRevB.76.245122. url: https://link.

aps.org/doi/10.1103/PhysRevB.76.245122.

[52] Michael Potthoff and Matthias Balzer. “Self-energy-functional theory

for systems of interacting electrons with disorder”. In: Physical Review

B 75.12 (Mar. 2007). issn: 1550-235X. doi: 10.1103/physrevb.75.

125112. url: http://dx.doi.org/10.1103/PhysRevB.75.125112.

[53] “Strongly Correlated Systems”. In: Springer Series in Solid-State Sci-

ences (2012). issn: 0171-1873. doi: 10.1007/978-3-642-21831-6.

url: http://dx.doi.org/10.1007/978-3-642-21831-6.

[54] G. Ehlers, S. R. White, and R. M. Noack. “Hybrid-space density matrix

renormalization group study of the doped two-dimensional Hubbard

model”. In: Physical Review B 95.12 (Mar. 2017). issn: 2469-9969. doi:

10.1103/physrevb.95.125125. url: http://dx.doi.org/10.1103/

PhysRevB.95.125125.

[55] Baoming Tang, Deepak Iyer, and Marcos Rigol. “Thermodynamics of

two-dimensional spin models with bimodal random-bond disorder”. In:

Physical Review B 91.17 (May 2015). issn: 1550-235X. doi: 10.1103/

135

https://doi.org/10.1103/physrevlett.100.056403
https://doi.org/10.1103/physrevlett.100.056403
http://dx.doi.org/10.1103/PhysRevLett.100.056403
http://dx.doi.org/10.1103/PhysRevLett.100.056403
https://doi.org/10.1103/PhysRevB.76.245122
https://link.aps.org/doi/10.1103/PhysRevB.76.245122
https://link.aps.org/doi/10.1103/PhysRevB.76.245122
https://doi.org/10.1103/physrevb.75.125112
https://doi.org/10.1103/physrevb.75.125112
http://dx.doi.org/10.1103/PhysRevB.75.125112
https://doi.org/10.1007/978-3-642-21831-6
http://dx.doi.org/10.1007/978-3-642-21831-6
https://doi.org/10.1103/physrevb.95.125125
http://dx.doi.org/10.1103/PhysRevB.95.125125
http://dx.doi.org/10.1103/PhysRevB.95.125125
https://doi.org/10.1103/physrevb.91.174413
https://doi.org/10.1103/physrevb.91.174413


physrevb.91.174413. url: http://dx.doi.org/10.1103/PhysRevB.

91.174413.

[56] Marcos Rigol, Tyler Bryant, and Rajiv R. P. Singh. “Numerical Linked-

Cluster Approach to Quantum Lattice Models”. In: Phys. Rev. Lett. 97

(18 Nov. 2006), p. 187202. doi: 10.1103/PhysRevLett.97.187202.

url: https : / / link . aps . org / doi / 10 . 1103 / PhysRevLett . 97 .

187202.

[57] M. D. Mulanix, Demetrius Almada, and Ehsan Khatami. “Numerical

linked-cluster expansions for disordered lattice models”. In: Physical

Review B 99.20 (May 2019). issn: 2469-9969. doi: 10.1103/physrevb.

99.205113. url: http://dx.doi.org/10.1103/PhysRevB.99.

205113.

[58] Baoming Tang, Ehsan Khatami, and Marcos Rigol. “A short intro-

duction to numerical linked-cluster expansions”. In: Computer Physics

Communications 184.3 (Mar. 2013), pp. 557–564. issn: 0010-4655. doi:

10.1016/j.cpc.2012.10.008. url: http://dx.doi.org/10.1016/

j.cpc.2012.10.008.

[59] Ehsan Khatami. “Three-dimensional Hubbard model in the thermody-

namic limit”. In: Physical Review B 94.12 (Sept. 2016). issn: 2469-9969.

doi: 10.1103/physrevb.94.125114. url: http://dx.doi.org/10.

1103/PhysRevB.94.125114.
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[72] V. Dobrosavljevi ć and G. Kotliar. “Mean Field Theory of the Mott-

Anderson Transition”. In: Phys. Rev. Lett. 78 (20 May 1997), pp. 3943–

3946. doi: 10.1103/PhysRevLett.78.3943. url: https://link.aps.

org/doi/10.1103/PhysRevLett.78.3943.

[73] E. Miranda and V. Dobrosavljevi ć. “Localization-Induced Griffiths
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