
Amazon.com Delivery Options: Repaving the Last Mile

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Jaden Kyler-Wank

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Briana Morrison, Department of Computer Science

Technical Report

Amazon.com Delivery Options: Repaving the Last Mile

CS4991 Capstone Report, 2022

Jaden Kyler-Wank

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

jmk7jw@virginia.edu

Abstract
The Amazon.com checkout page is built on

antiquated architecture due to the inefficient and

illegible nature of the old codebase. Rebuilding

the workflow architecture for the way in which

delivery options were retrieved and rendered for

the customer through various remote-render

proprietary systems provided promising results.

By compartmentalizing several operations into

two distinct backend components of the new

codebase, the process of generating eligible

delivery options followed by retrieving the front-

end structure for said delivery options was greatly

simplified. To accompany the separation of

operations, it was imperative that new

architecture was written in a malleable fashion,

such that the code could easily be modified in the

future. The project proved to be a success, as the

old delivery option widget was switched with the

newly remote-rendered widget without any

difference to the end consumer. As the old

architecture is phased out, the newly completed

codebase can be further expanded upon by other

Amazon teams.

1. Introduction
What happens behind the scenes when the

checkout page of Amazon.com is loaded?

Amazon’s proprietary codebase is

(understandably) strictly confidential. Prior to my

start date, I had no idea what to expect as an

intern, except that I would be on a team that deals

with the checkout page of the retail site. My team

was a small part of the category known as the

“Last Mile” at Amazon—encapsulating any team

working on the processes that must occur after a

customer has added the desired items to their cart.

To my surprise, I was tasked with taking the lead

on an effort that had been abandoned the summer

prior due to time constraints. From day one it was

clear that I was an intern, though I was not doing

intern work. I was not only told that my project

would eventually be on the live website, but also

that I was the first person on the team to approach

the problem in over a year.

The problem was: How can we fundamentally

change the architecture from which delivery

options are retrieved and rendered such that it

makes the old architecture obsolete? Even

further, the nature of the problem required that the

newly implemented workflow of rendering

delivery options be completely seamless from the

eyes of the customer. That is, the only thing the

end-user should notice would be a decrease in

page loading time. The opportunity to build the

new workflow from the ground up for a part of

the site that millions of people use every day was

both a dream come true and a nightmare. The

project was as interesting as it was intricate, but

from the beginning it was clear that I would need

to approach this task with three tenets in mind—

operational speed, adaptability, and logical flow.

Amazon teams own certain services that make up

the larger retail site, with my team owning what

we will call the “Checkout Webapp.” To further

break down my eventual solution, the workflow

of my project can be classified into three parts:

retrieval of the proper delivery options,

processing delivery option data, and rendering

delivery options. Prior to the completion of my

project, the retrieval and processing portions of

the workflow were done on Amazon’s old

architecture, known as Gurupa. My solution

mailto:jmk7jw@virginia.edu

began with handling delivery option retrieval in

the Checkout Webapp, which required significant

design considerations and retooling. The data

processing aspect of the project was by far the

most complex, involving the integration of an

entirely different service. Finally, the processed

data was rendered from another service outside of

Gurupa and Checkout Webapp such that my team

had complete control over what the end user saw.

2. Related Works

In the same vein of the deprecation of the Gurupa

architecture, Amazon has made numerous

architectural migrations in the past. Prior to

Gurupa, Amazon used a platform known as

Obidos, which was built in such a way that

everything is funneled into one location [1].

Hundreds of engineers working on a single

behemoth code base becomes a huge bottleneck

for efficiency. The problem of ownership also

factored into my project’s goal since my team did

not actually “own” the code that was eventually

rendered for the end user on Gurupa. According

to Amazon (2016), the newer architecture

migration is an evolution of the motivation

behind Gurupa, which was to have an

infrastructure in which independently developed

modular services can be deployed and managed

independently [1].

Quiambao (2021) makes the point that innovation

with speed is key at Amazon, along with the

ability to grow, two ideals which were hindered

by the Odibos architecture [2]. While the

migration of Odibos to Gurupa ended around

2007 [1], the elevated focus of modularity and

independent ownership of code as well as ease of

deployment all factored into my contribution

towards the new migration to another

architecture.

3. Project Design

In order to comprehensively explain my design

approach from start to finish, I have included a

greatly simplified diagram of the relevant

architecture in Figure 1. From the understanding

gained via Figure 1, I will be able to dive deep

into each individual section and the design

philosophy I had for each one. However, the

nature of this paper and my professional

relationship to Amazon will prevent me from

describing many of the complexities of the

project.

3.1 Review of Relevant Architecture

Figure 1: Diagram of Relevant Architecture

Gurupa is synonymous with the final webpage

the end user can interact with. Upon the checkout

page being loaded, Gurupa will send a request to

the Checkout Webapp for several delivery

options for the item(s), defined by Amazon’s

internal algorithm. At this point in the process,

the Webapp sends each of the delivery options as

information along to the Data Processing Service

(DPS). The functionality of the DPS was to

essentially convert and bundle the raw delivery

option data into a format that would be legible for

the External Renderer (ER). The DPS is an

essential step due to the necessary types of data

needed by the ER, which are different from those

sent from the Webapp to the DPS.

Once the processed data reaches the ER, a block

of page data recognizable by Gurupa is generated

for the delivery option. This data propagates back

to the Webapp, which assembles the full page

from each block of page data the ER had

constructed. The process just described is the

final version of the workflow I came up with,

which went through many changes during the

internship. Prior to my project, the workflow for

rendering delivery options only involved Gurupa

and the Webapp with different functionalities.

3.2 Checkout Webapp Redesign

The Checkout Webapp is tied to several teams at

Amazon and manages the requests of the

Checkout page. The purpose of the Webapp itself

is to serve as an abstraction layer for Gurupa with

the idea of being more modular. However, when

I was brought onto the project, there was an

absence of integration from the Webapp with the

DPS or ER. While the ER technology existed on

its own for a few years, it needed to be connected

to the Webapp. To achieve this connection, I had

to create a mechanism that could convert

sent/received data into a format readable by both

the Webapp and the ER.

Additionally, a large amount of setup and

initialization were required for the Webapp to

even integrate the ER. For these reasons, I

implemented a multitude of functions within the

Webapp to account for these necessities. The

redesign process entailed re-routing much of the

existing workflow within the Webapp to work

with the new initialization and preparation done

for the purpose of communicating with the ER.

Following the completion of re-routing the

workflow, I was ready to solidify how I

implemented the DPS to convert the needed data.

3.3 Data Processing Service (DPS)

The best way to describe the DPS would be as an

intermediary between the Webapp and the ER.

The Webapp passes along the delivery option

data to the DPS that formulates the desired

request to the ER, and the DPS just makes that

desired request into a format the ER can

understand. More specifically, the DPS reads the

Webapp’s request and inserts the proper

parameters that the ER accepts to know exactly

what it is rendering. Regarding the DPS’s

purpose on the opposite flow from the ER to

Webapp, it is similar in that the returned data is

formatted for the Webapp. The biggest difference

between the two directions is that the DPS must

convert the response from the ER as a data type

that can be stored as render-friendly page data.

Once the processed data gets back to the Webapp,

most of the complex operations have been

performed.

3.4 Linking the External Renderer (ER)

Contrary to most of the other systems present in

this project, the ER was designed to have

functionality appended to it. Thus, the only

design choices I needed to make were strictly on

how the delivery options should be rendered.

Luckily, the answer to the question of display was

quite simple. One of the end goals of the project

was for the end user to not notice any visible

difference in their checkout experience. This

provided me with the ability to simply recreate

the HTML page data that had existed already in

Webapp into the ER. Then all that needs to be

returned to the DPS (and finally the Webapp) is

this built page data chunk to be bundled and

converted. Additionally, all the page data is

owned directly by my team, giving us the ability

to change what is displayed at any time without

having to go through a lengthy pipeline.

4. Results

The most significant outcome of this project is the

creation of new mechanisms that enable people to

replicate my project in the future. As the

internship was ending, my manager made sure

that precedent and modularity were at the

forefront of my design process. In terms of setting

a streamlined procedure for implementing

different checkout widgets into these new

systems, I would say the project was successful.

While I unfortunately never got to personally

move my project into production, through all the

testing and feedback I received, the new

workflow was working properly. Without a

doubt, my project will save my team a vast

amount of development time when there is a need

to update the end-user’s view. Previously

whenever a change to the HTML displayed was

made, my team needed to go through numerous

meetings and synchronizations before the

changes ever became exposed. Now the proper

team simply owns it.

5. Conclusion

My summer project was not at all what I expected

but I loved constructing it anyway. Although I am

biased, this project was a success in my team’s

eyes as well as mine. The system has a lot of

potential to be improved upon, which can be

worked on in a shorter period than previously.

The design experience I gained was invaluable,

and I genuinely believe I significantly helped my

team.

6. Future Work

There is certainly room for improvement on my

implemented solution, specifically with how the

DPS processes more complex data. The top

priority for my team in the future is to incorporate

further logic into the new system such that it can

cover all use cases. Furthermore, other teams

within the larger checkout page organization can

adopt the rendering technology to decentralize

from Gurupa even more so.

7. Acknowledgments

I would like to thank my manager and mentor,

Atul Singh, and Yousef Mahmoud, respectively,

for their continued support throughout the

summer.

References

[1] Aaren Quiambao. Blog | Ex-Amazon IT

manager shares how they migrated from a

monolith to SOA - Toro Cloud. Toro Cloud.

Retrieved October 30, 2022 from

https://www.torocloud.com/blog/amazon-

monolith-to-soa-migration

[2] 2016. Why Amazon Retail Went to a Service

Oriented Architecture - High Scalability -. High

Scalability. Retrieved October 30, 2022 from

http://highscalability.com/blog/2016/7/13/why-

amazon-retail-went-to-a-service-oriented-

architecture.html

https://www.torocloud.com/blog/amazon-monolith-to-soa-migration
https://www.torocloud.com/blog/amazon-monolith-to-soa-migration
http://highscalability.com/blog/2016/7/13/why-amazon-retail-went-to-a-service-oriented-architecture.html
http://highscalability.com/blog/2016/7/13/why-amazon-retail-went-to-a-service-oriented-architecture.html
http://highscalability.com/blog/2016/7/13/why-amazon-retail-went-to-a-service-oriented-architecture.html

