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Abstract 

Trillions of bacteria colonize the digestive tracts of animals and form complex 

communities known as gut microbiota. Gut microbiota play important roles in diverse 

aspects of host biology, including nutrition, immune system development and behavior. 

Changes in gut microbial composition have been linked to a plethora of health and 

disease states. Previous studies on human and laboratory animals have shown that host 

diet, age, sex, genetics, environmental exposure all drive normal gut microbial variation. 

However, the ecological forces that shape gut microbial community structure in wild 

animal populations remain largely unknown. Studying gut microbiota in host’s natural 

environment is crucial because it is where the actual actions of microbes-host coevolution 

take place. In this dissertation, I investigated the ecological forces shaping gut microbial 

communities in three wild animal populations, with each tackling the problem from a 

different angle. First, I conducted a longitudinal and cross-sectional study of gut 

microbiota in a well-studied population of wild baboons. Baboon gut microbiota were 

typical of omnivorous primates, and host age and diet had strong effects on gut microbial 

composition. Strikingly, baboon gut microbiota appeared to be highly dynamic such that 

samples collected from the same individual only a few days apart were as different from 

each other as samples collected over 10 years apart. Next, I conducted a comprehensive 

study of the temporal and spatial dynamics of gut microbiota of a well-studied red 

squirrel population. Red squirrels represent a very attractive system for studying gut 

microbial biogeography because they are territorial and experience strong seasonal 

fluctuations in their environment. This study revealed significant spatial patterns and 
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seasonal rhythm of gut microbiota within a host population. Beyond the environmental 

effects, I also found evidences for individuality and maternal effect in red squirrel gut 

microbiota. Lastly, to test whether and how host adaptive radiations structure the 

composition of microbial communities, I investigated the gut microbiota of seven species 

of Anolis lizards belonging to three “ecomorphs” on Puerto Rico and Florida. Our results 

indicate that gut microbial communities are only weakly shaped by the diversification of 

their lizard hosts due to the strikingly high levels of microbial variation observed within 

Anolis species. In summary, I have characterized the temporal, spatial and phylogenetic 

patterns of gut microbiota in three different wild animal hosts, and identified various 

environmental and host factors underlying these patterns. These findings may contribute 

towards a better understanding of how ecological processes govern the gut microbial 

diversity in natural environment.  
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Gut Microbiota: A brief History  

Ever since Robert Koch proved “germ theory”, the view of host-associated microbes had 

been dominated by its role in causing infectious disease. However, a new view that most 

interactions between the host and microbes are not pathogenic but mutually beneficial emerged 

at the end of 19th century. As Theodore Escherich observed that “the apparently randomly 

appearing bacteria in normal feces and the intestinal tract” could interact and influence 

physiological properties of their host (Escherich, 1885), research on the gut microbiota (formerly 

‘the normal flora’) was initiated. Before effective methods were developed for culturing 

anaerobic bacteria, researches were mainly focused on aerobic bacteria, which led many 

scientists to regard the Escherichia coli, a facultative bacterium named after Escherich, to be 

predominant in human gut (Savage, 2001). Development of anaerobic culture technology 

facilitated some important understandings of gut microbiota in mid 20th century, such as the 

discovery of dominant strict anaerobic species and early succession of gut microbial species in 

newborns (Schaedler et al., 1965; Drasar, 1967). One major drawback of these early studies is 

that the vast majority of microbes are uncultivable, and therefore our understanding of the 

composition of gut microbiota is rudimentary and biased.  

In the past decade, advancement of DNA sequencing technology has revolutionized the 

field of microbial ecology. The culture independent sequencing of the bacterial 16S rRNA (or 

small subunit ribosomal RNA) gene as a phylogenetic marker enabled characterization of 

microbial communities on an unprecedented scale. Indeed, in-depth survey of thousands of 

samples directly from environment has becomes a routine due to the continuous decrease in the 

cost of next generation sequencing technologies. As a result, study of gut microbiota has shifted 

from studying bacteria in isolation to studying bacteria in the context of the entire community. 

Researchers have discovered extraordinary level of gut microbial diversity and important roles 
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gut microbiota play in host health and disease (Cho and Blaser, 2012). Although many studies of 

gut microbiota are descriptive and exploratory, there are great opportunities and a growing 

interest to apply and test ecological principles in the field to understand the underlying processes 

that generate and maintain gut microbial diversity, and how emergent properties of the 

community influence host and respond to changes in environment (Christian et al., 2015).  

 

Gut microbiota: who are there and what do they do?  

Despite the tremendous microbial diversity on our planet, animal intestinal tracts are 

dominated by only a few bacterial phyla (Firmicutes, Bacteroidetes, Actinobacteria and 

Proteobacteria). However, there is substantial diversity at lower taxonomic level (e.g. species) 

within these major divisions (Ley et al., 2006). For example, it was estimated that each human 

harbors more than 1,000 “species-like” phylotypes (Claesson et al., 2009). This fan-like 

phylogenetic architecture or microdiversity could result from recurring selective sweeps 

followed by genetic drifts (Bäckhed et al., 2005; Ley et al., 2006; Koeppel et al., 2008; Bik et 

al., 2010). Although the membership of main bacterial groups is relatively stable, their relative 

abundances vary remarkably both between individuals and within the same individual over time 

(Lozupone et al., 2012).  

  Considered as an indispensable “organ”, gut microbial community provides important 

ecosystem services to the host. Gut microbiota assist in the fermentation of indigestible dietary 

substrates and the synthesis of essential nutrients such as Vitamin A and D (Ley et al., 2008; Qin 

et al., 2010). Beyond their nutritional role, gut microbiota protect host by excluding pathogens 

(Hooper et al., 2012) and contribute to the development of host immune system (Sommer and 

Bäckhed, 2013).  
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As reminiscent of the famous line “All happy families are alike; each unhappy family is 

unhappy in its own way”, a growing body of evidence shows that many diseases are associated 

with imbalance of the gut microbial composition (known as “dysbiosis”) and function. For 

instance, disrupted human microbiota have been linked to obesity (Ley et al., 2005; Turnbaugh 

et al., 2009), diabetes (Qin et al., 2010; Vrieze et al., 2012; Graessler et al., 2013), 

cardiovascular disease (Wang et al., 2011), inflammatory bowel disease (Frank et al., 2007; 

Morgan et al., 2012) and depression (Naseribafrouei et al., 2014). Medical community has now 

recognized the potential to use gut microbiota as diagnostic and therapeutic targets (Hollister et 

al., 2014).  

 

Processes structuring gut microbial community  

Understanding ecological processes that establish and maintain gut microbial diversity is 

an essential first step to understand how the “host-microbe ecosystem” functions. Two types of 

processes, deterministic and stochastic, influence the assembly of gut microbial community. 

Deterministic processes include environmental selection (abiotic factors, such as diet and host 

genotype) and microbial species interactions (biotic factors, such as competition and mutualism). 

In contrast, stochastic processes include dispersal and ecological drift (random fluctuations in 

species relative abundances). Microbial community assembly has been mainly studied from a 

deterministic perspective, where findings have shown clear impacts of environmental and host 

factors on gut microbial composition. Until recently, stochastic processes received relatively 

little attention, and few studies examined the relative importance of each type of processes. Next 

I will review our current understanding of important factors in shaping gut microbiota, and 

discuss them in the context of ecological processes described above.  
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Diet  

Diet is one of the most important deterministic factors shaping gut microbiota structure. 

In mammals, diet appears to be a major driving force, as convergent evolutions of gut microbiota 

were found in mammals of the same dietary classification (carnivores, omnivores and 

herbivores) (Ley et al., 2008; Muegge et al., 2011; Delsuc et al., 2014). Likewise, gut microbiota 

of fruit-feeding Drosophila species differ from those of flower-feeding species (Chandler et al., 

2011). Similar patterns were observed within the same host species. For example in human, 

distinct differences in gut microbiota were found in populations on “modern western” and 

“rural” diet. 

The composition of human gut microbiota is thought to be relatively stable during 

adulthood. One possible explanation for this stability might be the relatively stable long-term 

dietary behavior. Studies have showed that specific dominant bacterial taxa are associated with 

macronutrients in the diet, particularly protein, animal fat and plant carbohydrates (David et al., 

2015). Diet can rapidly and reproducibly alter gut microbial community structure within a single 

day (David et al., 2015). It still remains unclear that how the short-term diet shift influence gut 

microbiota in the long run due to the lack of long term record of host dietary items. One recent 

study have followed two human subjects for 1 year, and showed that host gut microbiota are 

relatively stable with minor changes induced by altered diet (David et al., 2014). 

 

Host gut physiology 

 Host gut physiology is another important driver of gut microbial composition. Physical 

conditions (such as temperature, morphology, gut peristalsis and so on) obviously have the 

potential to affect gut microbial composition. For example, microbes with an optimum growth 

temperature of about 37°C are favored in mammalian gut. Gut morphology is often related to 
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dietary preferences, while carnivores have simple guts, herbivores evolved complex gut 

structures suitable for digestion of complex plant polysaccharides by specialized microbes (Ley 

et al., 2008). Gut morphology can have a large impact on gut microbes. As in the case of giant 

pandas, despite living on bamboo-based diet, they have simple guts and harbor Carnivore-like 

gut microbiota similar to their bear relatives. Besides the physical conditions, host-derived 

substances can also affect gut microbiota. For example, mucin in the intestinal mucus layers can 

be utilized by some bacteria in the shortage of nutrient sources. Gut immune system, by releasing 

antimicrobial peptides and antibody IgA into the lumen, can regulate the composition of gut 

microbial community as well (Brown et al., 2013). Many factors (e.g. host genotype, age, 

gender) can influence the gut physiology and through which act on the gut microbial 

communities. 

 

Host genotype  

Evidences of host genetic effect on gut microbiota come from the influence of specific 

genes on gut microbial composition, and the correlation between the overall genetic relatedness 

of the hosts and microbiota similarity. In mice and human, studies have linked multiple genetic 

loci including those involved in immune system with shifts in microbial composition 

(Khachatryan et al., 2008; Salzman et al., 2010; Benson et al., 2010; Rausch et al., 2011; 

McKnite et al., 2012), providing clear evidence of host genetic control of gut microbes. To date 

the most comprehensive study in human was conducted on 416 pairs of twins to investigate the 

correlation between host genetics and gut microbiota (Goodrich et al., 2014). Gut microbiota 

were more similar between twins than between unrelated individuals, and also more similar 

between monozygotic twins than between dizygotic twins. This study also found that a few 

families within phylum Firmicutes were highly heritable.  
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Dispersal  

Dispersal is the process of the movement of an individual (and the taxon it represents) 

from one location to another. Dispersal tends to homogenize local communities and erase 

biogeographic patterns created by selection and ecological drift. Bacteria, being small and 

abundant, have the potential to disperse to great distance, as recapitulated by the hypothesis that 

“everything is everywhere, but the environment selects” (Becking, 1934). Accordingly, many 

free-living bacteria are found to be globally distributed, indicating high dispersal rate (Martiny et 

al., 2011).  

Unlike free-living bacteria, members of gut microbiota do not appear to grow outside 

their host and are most likely transmitted through close host-host interactions. It follows that the 

dispersal of gut microbiota is rate limited. Each host can be viewed as an island-like patch of 

habitat occupied by microbial colonists, and the host population as a metacommunity linked 

through the dispersal of gut microbiota among hosts (Leibold et al., 2004; Vellend, 2010; 

Costello et al., 2012; Mihaljevic, 2012; Martínez et al., 2015; Christian et al., 2015). With 

limited dispersal, we would predict a distance-decay relationship where hosts farther apart from 

each other should exhibit more distinct communities of gut microbes.  

Accordingly, recent studies have found higher degree of microbiota similarity among 

family members than between unrelated individuals (Turnbaugh et al., 2009; Lee et al., 2011; 

Yatsunenko et al., 2012; Tims et al., 2013). Similarly, comparing gut microbiota among different 

host populations have revealed interesting biogeographic patterns (Yatsunenko et al., 2012; 

Linnenbrink et al., 2013; Maurice et al., 2015). However, these results do not necessarily 

demonstrate dispersal limitation because familial similarities or biogeographic patterns can be 

caused by closer genetic relationship, shared diet or common environment as well. A study 

designed to investigate the effect of dispersal limitation should minimize environmental and host 
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variation among samples (and therefore selection). Adding additional layers of the complexity, 

dispersal is affected by host lifestyle, social interaction, population density and migration.  

 Of particular relevance to the study of gut microbiota dispersal is the maternal effect. 

Traditionally, it is believed that infants are born sterile. However, recent studies show that 

infant’s meconium is non-sterile (Jiménez et al., 2008; Gosalbes et al., 2013), suggesting internal 

maternal transmission of the initial inoculum. After birth, the guts of newborns were rapidly 

colonized by maternal microbes from birth canal, breast milk and skin and by microbes in the 

early environment (O’Toole and Claesson, 2010). A more direct mode of transmission used by 

many animals is feeding feces from the adult to the baby (coprophagy), thus ensuring the 

appropriate gut microorganisms colonization. For example, newly hatched termites consume the 

feces of the adults (Zilber-Rosenberg and Rosenberg, 2008). In the case of koala, the mother 

feeds the baby at the weaning stage “fecal pap”, which contains the bacteria necessary to digest 

leaves (Osawa et al., 1993). By transmitting gut microbiota to offspring, mother has the potential 

to influence the phenotype and fitness of offspring in addition to her direct genomic contribution 

(thereby exerting a maternal effect). Therefore, mother-offspring transmission can contribute to 

phenotypic plasticity in adaptive evolution and promote co-evolution of the gut microbial 

community with host species. 

 

Temporal and spatial dynamics of gut microbiota    

One major goal of microbial ecology is to understand the how ecological processes 

generate and maintain diversity across time and space. Here I reviewed current understanding of 

temporal and spatial dynamics of the gut microbiota in the context of deterministic and stochastic 

processes that could give rise to such patterns.  

Stochastic event such as early colonization play an important role in shaping gut 
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microbial diversity. Mother makes a large contribution to the initial species pools for 

colonization (see above). The early colonizers play important role in the proper maturation and 

development of host immune system and gastrointestinal tract (Mackie et al., 1999; Collado et 

al., 2012). Inadequate or disrupted postnatal acquisition of infant gut microbiota is associated 

with an increased risk of immune-mediated diseases, such as allergic rhinitis, asthma, celiac 

disease, type1 diabetes, and inflammatory bowel disease (Murgas Torrazza and Neu, 2011; 

Funkhouser and Bordenstein, 2013).  

After initial colonization, gut microbiota undergo consecutive ecological successions 

(Koenig et al., 2011; Lozupone et al., 2012) driven mainly by deterministic factors. With the 

introduction of solid food and weaning, early colonizers (aerobes and facultative anaerobes) are 

taken over by strict anaerobes, and infant gut microbiota start to converge towards an adult-like 

structure (Palmer et al., 2007). It remains unclear whether the “maternal signature” persists to 

adulthood, and how early colonizer impact later colonization (e.g. prepare the ground for later 

colonizer or “educate” the immune system to help retain particular microbes). Host undergoes 

several life stages, during which the diversity (richness) and stability of gut microbiota changes 

(O’Toole and Claesson, 2010). In human, adult gut microbiota appear to be stable in the absence 

of disturbance, while combination of deterministic and stochastic events such as disease onset, 

antibiotic treatment, changes in diet, exposure to new species pool can cause either reversible or 

irreversible disruptions of gut microbial community (Lozupone et al., 2012; Ursell et al., 2012; 

Faith et al., 2013; David et al., 2014). Alteration of gut microbiota has been found in elderly 

people, with decrease in species diversity and Bifidobacteria (Biagi et al., 2010; Claesson et al., 

2011). This shift has been associated with changes in host physiology during aging, such as 

reduction of gut motility and alteration of diet due to reduced dentition (Claesson et al., 2011; 

2012).  
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Besides the general trend described above in the lifetime of the host, gut microbiota can 

also show temporal patterns on a shorter timescale. Seasonal variation has been observed in gut 

microbiota of human and wild animals such as wild mice, black howler monkeys, giant pandas, 

ground squirrels and brown bears (Carey et al., 2013; Davenport et al., 2014; Maurice et al., 

2015; Amato et al., 2015; Xue et al., 2015; Sommer et al., 2016). In most cases, it has been 

suggested that the seasonal variation is likely driven by seasonal variation in diet availability. 

The latter two hosts represent more extreme cases where hosts undergo hibernation, and gut 

microbiota differ because of different host physiology between the torpor bout and active phases. 

To date, most studies of seasonal variation were performed within a year, leaving the question 

open whether the observed patterns are recurring.  

Spatial variation in microbial communities can be driven by environmental factors that 

vary across space when dispersal is limited. Yatsunenko et al. (2012) found that humans 

occupying different geographic locations have distinct gut microbial community composition. 

This biogeographic pattern could suggest limited dispersal, but also could be explained by 

variations in diet and host genetics. A few recent studies tried to tease apart the effects of 

environmental selection and dispersal limitation. For example, a recent study found evidences 

suggesting that dispersal limitation likely contribute to the geographic variation in wild mice 

populations (Linnenbrink et al., 2013). Martínez et al. (2015) quantified various ecological 

processes affecting community assembly and found that dispersal was the dominant process 

shaping the gut microbiota structure in Papua New Guinea but not in United States. To date, the 

relative contribution of each process to the spatial variation in microbial community remains 

largely unknown. 
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Gut microbiota of wild animal populations 

Studying gut microbiota in host’s natural environment is important because it is where 

the actual actions of microbes-host coevolution take place. To date, most gut microbiota studies 

were performed either solely on human populations or on captive animals in controlled 

laboratory settings. The ecological forces that shape gut microbial community structure in wild 

animal populations remain largely unknown. While laboratory animals have been invaluable in 

dissecting the effect of environmental and host factors on gut microbiota, the settings are 

unnatural, highly simplified and the gut microbiota of captive animals are often not 

representative of those in their wild counterparts (Nelson et al., 2013; Amato et al., 2013). It is 

unclear to what extent findings discovered in laboratory settings can be generalized to gut 

microbiota of hosts living in natural habitats.  

Unlike in controlled settings, wild animals experience temporal and spatial variations in 

their environment such as climate, habitat, diet availability, population density and social 

interactions, and their gut microbiota may exhibit temporal and spatial patterns that are not 

observed in laboratory. Therefore, natural environment provides a rich ecological context to 

study the underpinning ecological processes and their interactions. For example, black howler 

monkey species varies their diet based on seasonal and spatial food availability, and exhibit 

distinct gut microbial communities across seasons and habitats (Amato et al., 2013; 2015). Social 

interactions can impact the dispersal pattern of gut microbiota among wild animals. Social 

interactions might vary in response to abiotic factors such as temperature and weather, as well as 

population density and resource availability. Recent studies on baboons and plateau pikas 

showed that gut microbiota diversity was correlated with social interaction and population 

density, and could be explained by dispersal variations across populations (Tung et al., 2015; Li 

et al., 2016).  
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 Studies of gut microbiota in wild animal populations face a variety of challenges. First of 

all, we need to find a good system where wild animals live with minimal human contact and 

intervention, and utilize only natural resources. Researcher can perform non-invasive sample 

collection on identified host individuals. Secondly, the host population should be well monitored 

and host ecology and biology are well characterized. As there are literally an unlimited number 

of measurable variables, it is important for studies to be hypothesis-driven so they can be more 

focused and productive. Thirdly, it is worth pointing out that wild animal studies offer limited 

control over the subject and potential confounding factors, and can never achieve the same level 

of control offered in a laboratory setting. Therefore, it is prudent to have a good study design and 

obtain sufficient data in order to achieve meaningful findings.  

 

Synopsis of chapters 

In this dissertation, I investigated the ecological forces shaping gut microbial 

communities in three wild animal populations: a baboon population in Africa, a red squirrel 

population in Canada and Anolis lizard species in Puerto Rico, with each tackling the problem 

from a different angle. 

Chapter 2 describes a longitudinal and cross-sectional study of gut microbiota in a well-

studied population of wild baboons. The most unique feature of this study is the analysis of 

longitudinal fecal samples collected over 13 years with detailed metadata of host diet, gender, 

age, reproductive status and social ranks. We found that baboon gut microbiota were typical of 

omnivorous primates, and host age and diet had strong effects on gut microbial composition. The 

most striking finding from this study is that baboon gut microbiota appeared to be highly 

dynamic such that samples collected from the same individual only a few days apart were as 

different from each other as samples collected over 10 years apart. Understanding these forces in 
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wild baboon in their natural habitat provided a valuable comparative context that enriches 

scientific perspectives on the evolution of human gut microbiota. 

In Chapter 3, I conducted a comprehensive study of gut microbiota of a well-studied red 

squirrel population. Red squirrels defend their exclusive territories over lifetime and thus spend 

most time in solitude. Therefore red squirrels represent a very attractive system to study the 

effect of dispersal on gut microbial diversity because unlike human and other wild animals 

studied so far, red squirrels generally do not move around within the population. For the first 

time, this study revealed significant spatial patterns of gut microbiota within a host population, 

suggesting limited dispersal could play a role in shaping and maintaining the structure of gut 

microbial communities. I found a remarkable seasonal rhythm in red squirrel’s gut microbial 

composition that was clearly driven by seasonal variation in diet availability. Despite the 

environmental effects, we found evidences for individuality and maternal effect in red squirrel 

gut microbiota. However, host genetics do not seem to be a significant driver. 

Adaptive radiations provide unique opportunities to test whether and how recent 

ecological and evolutionary diversification of host species structures the composition of 

microbial communities. In Chapter 4, I examined differences in the gut microbiota of six species 

of Puerto Rican Anolis lizards characterized by the evolution of distinct “ecomorphs” (trunk-

crown, trunk-ground, grass-bush), as well as other two species in Florida. Substantial variations 

in gut microbiota composition were observed within each species and ecomorph. Host phylogeny 

is weakly correlated with gut microbial composition. Geographic effect was also observed in 

allopatric conspecifics. Collectively, our results indicate that gut microbial communities are only 

weakly shaped by the diversification of their lizard hosts due to the strikingly high levels of 

microbial variation observed within Anolis species. 
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In summary, I have characterized the temporal, spatial and phylogenetic patterns of gut 

microbiota in three different wild animal hosts, and identified various ecological factors 

underlying these patterns. One common conclusion emerged from these studies is that gut 

microbial diversity in natural environment is strongly associated with diet. Hosts in 

homogeneous environment harbor stable gut microbiota, while hosts exposed to highly variable 

environment have highly dynamic gut microbial profiles. These findings may contribute towards 

a better understanding of how ecological processes govern the gut microbial diversity in natural 

environment. 

 

References 

Amato, K.R., Leigh, S.R., Kent, A., Mackie, R.I., Yeoman, C.J., Stumpf, R.M., et al. (2015) The 

Gut Microbiota Appears to Compensate for Seasonal Diet Variation in the Wild Black 

Howler Monkey (Alouatta pigra). Microb Ecol 69: 434–443. 

Amato, K.R., Yeoman, C.J., Kent, A., Righini, N., Carbonero, F., Estrada, A., et al. (2013) 

Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal 

microbiomes. The ISME Journal 7: 1344–1353. 

Bäckhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A., and Gordon, J.I. (2005) Host-Bacterial 

Mutualism in the Human Intestine. Science 307: 1915–1920. 

Becking, L.B. (1934) Geobiologie of Inleiding Tot de Milieukunde [Geobiology or Introduction 

to the Science of the Environment]. 

Benson, A.K., Kelly, S.A., Legge, R., Ma, F., Low, S.J., Kim, J., et al. (2010) Individuality in 

gut microbiota composition is a complex polygenic trait shaped by multiple environmental 

and host genetic factors. Proc. Natl. Acad. Sci. U.S.A. 107: 18933–18938. 



	 	 	
	
	
	

15	

Biagi, E., Nylund, L., Candela, M., Ostan, R., Bucci, L., Pini, E., et al. (2010) Through ageing, 

and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 

5: e10667. 

Bik, E.M., Long, C.D., Armitage, G.C., Loomer, P., Emerson, J., Mongodin, E.F., et al. (2010) 

Bacterial diversity in the oral cavity of 10 healthy individuals. The ISME Journal 4: 962–

974. 

Brown, E.M., Sadarangani, M., and Finlay, B.B. (2013) The role of the immune system in 

governing host-microbe interactions in the intestine. Nat. Immunol. 14: 660–667. 

Carey, H.V., Walters, W.A., and Knight, R. (2013) Seasonal restructuring of the ground squirrel 

gut microbiota over the annual hibernation cycle. Am. J. Physiol. Regul. Integr. Comp. 

Physiol. 304: R33–42. 

Chandler, J.A., Lang, J.M., Bhatnagar, S., Eisen, J.A., and Kopp, A. (2011) Bacterial 

Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model 

System. PLOS Genet 7: e1002272. 

Cho, I. and Blaser, M.J. (2012) The human microbiome: at the interface of health and disease. 

Nat. Rev. Genet. 13: 260–270. 

Christian, N., Whitaker, B.K., and Clay, K. (2015) Microbiomes: unifying animal and plant 

systems through the lens of community ecology theory. Front Microbiol 6: 869. 

Claesson, M.J., Cusack, S., O’Sullivan, O., Greene-Diniz, R., de Weerd, H., Flannery, E., et al. 

(2011) Composition, variability, and temporal stability of the intestinal microbiota of the 

elderly. Proc. Natl. Acad. Sci. U.S.A. 108 Suppl 1: 4586–4591. 

Claesson, M.J., Jeffery, I.B., Conde, S., Power, S.E., O’Connor, E.M., Cusack, S., et al. (2012) 

Gut microbiota composition correlates with diet and health in the elderly. Nature 488: 178–

184. 



	 	 	
	
	
	

16	

Claesson, M.J., O’Sullivan, O., Wang, Q., Nikkilä, J., Marchesi, J.R., Smidt, H., et al. (2009) 

Comparative Analysis of Pyrosequencing and a Phylogenetic Microarray for Exploring 

Microbial Community Structures in the Human Distal Intestine. PLoS ONE 4: e6669. 

Collado, M.C., Cernada, M., Baüerl, C., Vento, M., and Pérez-Martínez, G. (2012) Microbial 

ecology and host-microbiota interactions during early life stages. Gut Microbes 3: 352–365. 

Costello, E.K., Stagaman, K., Dethlefsen, L., Bohannan, B.J.M., and Relman, D.A. (2012) The 

application of ecological theory toward an understanding of the human microbiome. Science 

336: 1255–1262. 

Davenport, E.R., Mizrahi-Man, O., Michelini, K., Barreiro, L.B., Ober, C., and Gilad, Y. (2014) 

Seasonal variation in human gut microbiome composition. PLoS ONE 9: e90731. 

David, L.A., Materna, A.C., Friedman, J., Campos-Baptista, M.I., Blackburn, M.C., Perrotta, A., 

et al. (2014) Host lifestyle affects human microbiota on daily timescales. Genome Biology 

15: R89. 

David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., et al. 

(2015) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505: 559–

563. 

Delsuc, F., Metcalf, J.L., Wegener Parfrey, L., Song, S.J., Gonzalez, A., and Knight, R. (2014) 

Convergence of gut microbiomes in myrmecophagous mammals. Mol. Ecol. 23: 1301–1317. 

Drasar, B.S. (1967) Cultivation of anaerobic intestinal bacteria. The Journal of Pathology and 

Bacteriology 94: 417–427. 

Escherich, T. (1885) Die Darmbacterien des Neugeborenen und Säuglings. 

Faith, J.J., Guruge, J.L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman, A.L., et al. 

(2013) The long-term stability of the human gut microbiota. Science 341: 1237439. 

Frank, D.N., St Amand, A.L., Feldman, R.A., Boedeker, E.C., Harpaz, N., and Pace, N.R. (2007) 



	 	 	
	
	
	

17	

Molecular-phylogenetic characterization of microbial community imbalances in human 

inflammatory bowel diseases. Proc. Natl. Acad. Sci. U.S.A. 104: 13780–13785. 

Funkhouser, L.J. and Bordenstein, S.R. (2013) Mom Knows Best: The Universality of Maternal 

Microbial Transmission. PLoS Biol 11: e1001631–9. 

Goodrich, J.K., Waters, J.L., Poole, A.C., Sutter, J.L., Koren, O., Blekhman, R., et al. (2014) 

Human Genetics Shape the Gut Microbiome. Cell 159: 789–799. 

Gosalbes, M.J., Llop, S., Vallès, Y., Moya, A., Ballester, F., and Francino, M.P. (2013) 

Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially 

associated with maternal eczema and respiratory problems in infants. Clin. Exp. Allergy 43: 

198–211. 

Graessler, J., Qin, Y., Zhong, H., Zhang, J., Licinio, J., Wong, M.-L., et al. (2013) Metagenomic 

sequencing of the human gut microbiome before and after bariatric surgery in obese patients 

with type 2 diabetes: correlation with inflammatory and metabolic parameters. 

Pharmacogenomics J. 13: 514–522. 

Hollister, E.B., Gao, C., and Versalovic, J. (2014) Compositional and functional features of the 

gastrointestinal microbiome and their effects on human health. Gastroenterology 146: 1449–

1458. 

Hooper, L.V., Littman, D.R., and Macpherson, A.J. (2012) Interactions between the microbiota 

and the immune system. Science 336: 1268–1273. 

Jiménez, E., Marín, M.L., Martín, R., Odriozola, J.M., Olivares, M., Xaus, J., et al. (2008) Is 

meconium from healthy newborns actually sterile? Res. Microbiol. 159: 187–193. 

Khachatryan, Z.A., Ktsoyan, Z.A., Manukyan, G.P., Kelly, D., Ghazaryan, K.A., and Aminov, 

R.I. (2008) Predominant role of host genetics in controlling the composition of gut 

microbiota. PLoS ONE 3: e3064. 



	 	 	
	
	
	

18	

Koenig, J.E., Spor, A., Scalfone, N., Fricker, A.D., Stombaugh, J.I., Knight, R., et al. (2011) 

Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. 

Acad. Sci. U.S.A. 108 Suppl 1: 4578–4585. 

Koeppel, A., Perry, E.B., Sikorski, J., Krizanc, D., Warner, A., Ward, D.M., et al. (2008) 

Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate 

ecology into bacterial systematics. Proc. Natl. Acad. Sci. U.S.A. 105: 2504–2509. 

Lee, S., Sung, J., Lee, J., and Ko, G. (2011) Comparison of the gut microbiotas of healthy adult 

twins living in South Korea and the United States. Appl. Environ. Microbiol. 77: 7433–7437. 

Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., et al. 

(2004) The metacommunity concept: a framework for multi‐scale community ecology. 

Ecology Letters 7: 601–613. 

Ley, R.E., Bäckhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D., and Gordon, J.I. (2005) 

Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U.S.A. 102: 11070–11075. 

Ley, R.E., Lozupone, C.A., Hamady, M., Knight, R., and Gordon, J.I. (2008) Worlds within 

worlds: evolution of the vertebrate gut microbiota. Nature Reviews Microbiology 6: 776–

788. 

Ley, R.E., Peterson, D.A., and Gordon, J.I. (2006) Ecological and Evolutionary Forces Shaping 

Microbial Diversity in the Human Intestine. Cell 124: 837–848. 

Li, H., Qu, J., Li, T., Li, J., Lin, Q., and Li, X. (2016) Pika Population Density Is Associated with 

the Composition and Diversity of Gut Microbiota. Front Microbiol 7: 425. 

Linnenbrink, M., Wang, J., Hardouin, E.A., Künzel, S., Metzler, D., and Baines, J.F. (2013) The 

role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol. 

Ecol. 22: 1904–1916. 

Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K., and Knight, R. (2012) Diversity, 



	 	 	
	
	
	

19	

stability and resilience of the human gut microbiota. Nature 489: 220–230. 

Mackie, R.I., Sghir, A., and Gaskins, H.R. (1999) Developmental microbial ecology of the 

neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69: 1035S–1045S. 

Martiny, J.B.H., Eisen, J.A., Penn, K., Allison, S.D., and Horner-Devine, M.C. (2011) Drivers of 

bacterial beta-diversity depend on spatial scale. Proc. Natl. Acad. Sci. U.S.A. 108: 7850–

7854. 

Martínez, I., Stegen, J.C., Maldonado-Gómez, M.X., Eren, A.M., Siba, P.M., Greenhill, A.R., 

and Walter, J. (2015) The Gut Microbiota of Rural Papua New Guineans: Composition, 

Diversity Patterns, and Ecological Processes. Cell Rep 11: 527–538. 

Maurice, C.F., Knowles, S.C.L., Ladau, J., Pollard, K.S., Fenton, A., Pedersen, A.B., and 

Turnbaugh, P.J. (2015) Marked seasonal variation in the wild mouse gut microbiota. The 

ISME Journal 9: 2423–2434. 

McKnite, A.M., Perez-Munoz, M.E., Lu, L., Williams, E.G., Brewer, S., Andreux, P.A., et al. 

(2012) Murine gut microbiota is defined by host genetics and modulates variation of 

metabolic traits. PLoS ONE 7: e39191. 

Mihaljevic, J.R. (2012) Linking metacommunity theory and symbiont evolutionary ecology. 

Trends Ecol. Evol. (Amst.) 27: 323–329. 

Morgan, X.C., Tickle, T.L., Sokol, H., Gevers, D., Devaney, K.L., Ward, D.V., et al. (2012) 

Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. 

Genome Biology 13: R79. 

Muegge, B.D., Kuczynski, J., Knights, D., Clemente, J.C., Gonzalez, A., Fontana, L., et al. 

(2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny 

and within humans. Science 332: 970–974. 

Murgas Torrazza, R. and Neu, J. (2011) The developing intestinal microbiome and its 



	 	 	
	
	
	

20	

relationship to health and disease in the neonate. J Perinatol 31 Suppl 1: S29–34. 

Naseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linløkken, A., Wilson, R., and Rudi, 

K. (2014) Correlation between the human fecal microbiota and depression. 

Neurogastroenterol. Motil. 26: 1155–1162. 

Nelson, T.M., Rogers, T.L., Carlini, A.R., and Brown, M.V. (2013) Diet and phylogeny shape 

the gut microbiota of Antarctic seals: a comparison of wild and captive animals. Environ 

Microbiol 15: 1132–1145. 

Osawa, R., Blanshard, W.H., and Ocallaghan, P.G. (1993) Microbiological Studies of the 

Intestinal Microflora of the Koala, Phascolarctos-Cinereus .2. Pap, a Special Maternal Feces 

Consumed by Juvenile Koalas. Australian Journal of Zoology 41: 611–620. 

O’Toole, P.W. and Claesson, M.J. (2010) Gut microbiota: Changes throughout the lifespan from 

infancy to elderly. International Dairy Journal 20: 281–291. 

Palmer, C., Bik, E.M., DiGiulio, D.B., Relman, D.A., and Brown, P.O. (2007) Development of 

the Human Infant Intestinal Microbiota. PLoS Biol 5: e177. 

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., et al. (2010) A human 

gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65. 

Rausch, P., Rehman, A., Künzel, S., Häsler, R., Ott, S.J., Schreiber, S., et al. (2011) Colonic 

mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 

(Secretor) genotype. Proc. Natl. Acad. Sci. U.S.A. 108: 19030–19035. 

Salzman, N.H., Hung, K., Haribhai, D., Chu, H., Karlsson-Sjöberg, J., Amir, E., et al. (2010) 

Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 11: 

76–83. 

Savage, D.C. (2001) Microbial Biota of the Human Intestine: A Tribute to Some Pioneering 

Scientists. Curr. Issues Intest. Microbiol 2: 1–15. 



	 	 	
	
	
	

21	

Schaedler, R.W., Dubos, R., and Costello, R. (1965) The Development of the Bacterial Flora in 

the Gastrointestinal Tract of Mice. J Exp Med 122: 59–66. 

Sommer, F. and Bäckhed, F. (2013) The gut microbiota-masters of host development and 

physiology. Nature Reviews Microbiology 11: 227–238. 

Sommer, F., Ståhlman, M., Ilkayeva, O., Arnemo, J.M., Kindberg, J., Josefsson, J., et al. (2016) 

The Gut Microbiota Modulates Energy Metabolism in the Hibernating Brown Bear Ursus 

arctos. Cell Rep 14: 1655–1661. 

Tims, S., Derom, C., Jonkers, D.M., Vlietinck, R., Saris, W.H., Kleerebezem, M., et al. (2013) 

Microbiota conservation and BMI signatures in adult monozygotic twins. The ISME Journal 

7: 707–717. 

Tung, J., Barreiro, L.B., Burns, M.B., Grenier, J.-C., Lynch, J., Grieneisen, L.E., et al. (2015) 

Social networks predict gut microbiome composition in wild baboons. eLife Sciences 4: 

e1002358. 

Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., et al. 

(2009) A core gut microbiome in obese and lean twins. Nature 457: 480–484. 

Ursell, L.K., Metcalf, J.L., Parfrey, L.W., and Knight, R. (2012) Defining the human 

microbiome. Nutrition Reviews 70: S38–S44. 

Vellend, M. (2010) Conceptual Synthesis in Community Ecology. The Quarterly Review of 

Biology 85: 183–206. 

Vrieze, A., Van Nood, E., Holleman, F., Salojärvi, J., Kootte, R.S., Bartelsman, J.F.W.M., et al. 

(2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in 

individuals with metabolic syndrome. Gastroenterology 143: 913–6.e7. 

Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levison, B.S., Dugar, B., et al. (2011) Gut flora 

metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472: 57–63. 



	 	 	
	
	
	

22	

Xue, Z., Zhang, W., Wang, L., Hou, R., Zhang, M., Fei, L., et al. (2015) The bamboo-eating 

giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. 

mBio 6: e00022–15. 

Yatsunenko, T., Rey, F.E., Manary, M.J., Trehan, I., Dominguez-Bello, M.G., Contreras, M., et 

al. (2012) Human gut microbiome viewed across age and geography. Nature 486: 222–227. 

Zilber-Rosenberg, I. and Rosenberg, E. (2008) Role of microorganisms in the evolution of 

animals and plants: the hologenome theory of evolution. FEMS Microbiology Reviews 32: 

723–735. 

 



	 	 	
	
	
	

23	

Chapter 2. Development, diet and dynamism: longitudinal and cross-sectional predictors of 

gut microbial communities in wild baboons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formatted as a co-authored manuscript and published as: 

Ren T, Grieneisen LE, Alberts SC, Archie EA, Wu M. (2015) Development, diet and dynamism: 

longitudinal and cross-sectional predictors of gut microbial communities in wild baboons. 

Environmental Microbiology, 18(5): 1312–1325.  

DOI: 10.1111/1462-2920.12852	



	 	 	
	
	
	

24	

Abstract 

Gut bacterial communities play essential roles in host biology, but to date we lack information on 

the forces that shape gut microbiota between hosts and over time in natural populations. 

Understanding these forces in wild primates provides a valuable comparative context that 

enriches scientific perspectives on human gut microbiota. To this end, we tested predictors of gut 

microbial composition in a well-studied population of wild baboons. Using cross-sectional and 

longitudinal samples collected over 13 years, we found that baboons harbor gut microbiota 

typical of other omnivorous primates, albeit with an especially high abundance of 

Bifidobacterium. Similar to previous work in humans and other primates, we found strong effects 

of both developmental transitions and diet on gut microbial composition. Strikingly, baboon gut 

microbiota appeared to be highly dynamic such that samples collected from the same individual 

only a few days apart were as different from each other as samples collected over 10 years apart. 

Despite the dynamic nature of baboon gut microbiota, we identified a set of core taxa that is 

common among primates, supporting the hypothesis that microbiota codiversify with their host 

species. Our analysis identified two tentative enterotypes in adult baboons that differ from those 

of humans and chimpanzees.  
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Introduction 

 Vertebrate gut microbiota play important roles in host biology, including immune 

regulation, energy acquisition, vitamin synthesis, and disease risk (Turnbaugh et al., 2006; 

Hooper et al., 2012; Bengmark, 2013; Morgan et al., 2013). There is mounting evidence that 

variation in the functions of gut microbiota are mediated by variation in gut microbial 

composition both within and between hosts (Turnbaugh et al., 2009; Greenblum et al., 2011; 

Hooper et al., 2012; Bengmark, 2013; Iida et al., 2013; Karlsson et al., 2013; Koeth et al., 2013; 

Markle et al., 2013; Viaud et al., 2013). However to date, most such evidence comes from 

research on humans and captive animal models, leaving large gaps in our understanding of the 

forces that shape gut microbial composition in wild vertebrates, both between individuals and 

within the same individual over time. Filling these gaps is especially important for wild primates, 

in part because such information helps reveal which of the forces that shape human gut 

microbiota are common across primates, and which are unique to humans and perhaps a 

consequence of modern human lifestyles (Yildirim et al., 2010; Degnan et al., 2012; Amato, 

2013; Moeller et al., 2014).  

To help address these gaps, we used cross-sectional and longitudinal sampling to 

characterize distal gut bacterial communities over an unusually long, 13-year time span in a well-

studied population of wild baboons. Baboons provide an especially relevant comparative system 

for understanding variation in human gut microbiota because of their relatively close 

evolutionary relationship to humans, and because baboons lead a terrestrial, savannah-dwelling 

lifestyle that is thought to resemble the ecology of early humans (DeVore and Washburn, 1963; 

Codron et al., 2008; Sponheimer et al., 2013). Specifically, we worked with the Amboseli 

Baboon Research Project in Kenya (Alberts and Altmann, 2012), where longitudinal, individual-
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based research on demography, developmental milestones, social relationships, diet, and climate 

provided an especially rich context within which to understand individual-level variation in the 

structure of gut microbial communities. Our main objectives were to: (i) characterize the basic 

structure of gut microbiota in wild baboons, (ii) gain a multivariate understanding of the relative 

importance of development, social relationships, diet, and climate in predicting gut microbial 

community structure, (iii) understand patterns of longitudinal change in baboon gut microbial 

communities, and (iv) test whether gut microbiota in wild baboons contain a core set of 

microbial taxa and enterotypes. Throughout, we discuss our results in the context of what is 

known about human and other primate gut microbiota. 

Results and discussion 

General patterns in the baboon gut microbial profile 

We analyzed distal gut microbial composition using 107 fecal samples from 24 baboons 

collected between 1994 and 2009 (Table 1). For 13 baboons, we analyzed multiple samples 

(range = 3 to 10 samples per baboon; time span between longitudinal samples ranged from 2 

days to 13 years). From these 107 samples, we generated 358,428 high-quality 16S rRNA reads, 

yielding an average 3,350 reads per sample and 7,201 total OTUs using a 97% identity cutoff.  

This dataset was rarefied to 1,500 (n = 107 samples from 24 baboons; Table 1) and 3,000 reads 

per sample (n = 54 samples from 17 baboons; Table S1). The 1,500- and 3,000-read datasets 

were highly similar in microbial composition at the OTU level (Pearson correlation coefficient = 

0.983, P = 0.001). Furthermore, Mantel tests correlating compositional dissimilarity in samples 

rarefied to 1,500 versus 3,000 reads revealed a high level of congruence between these datasets 

(Mantel tests for Bray-Curtis dissimilarities: r = 0.996, P = 0.001; unweighted UniFrac: r = 

0.978, P = 0.001; weighted UniFrac: r = 0.996, P = 0.001). As a result, the results we present in 
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the main text rely on the 1,500-read dataset; where appropriate, we repeat analyses using the 

3,000-read dataset and present them as Supplementary Information. 

Taxonomic assignment revealed representatives from 11 bacterial phyla and 90 bacterial 

genera. Similar to other mammalian gut microbial communities, the four most common phyla 

included Firmicutes (48.8% of reads), Actinobacteria (17.2%), Bacteroidetes (7.2%), and 

Proteobacteria (4.1%). However, compared to humans and other primates (Ley et al., 2008; 

Yildirim et al., 2010), samples from wild baboons harbored a much higher percentage of 

Actinobacteria, of which 97.8% were assigned to the genus Bifidobacterium, and a relatively 

smaller proportion of Bacterioidetes (Figure 1). Bifidobacterium is dominant in the gut flora of 

breastfed human infants (Turroni et al., 2012), where it is thought to play a role in the digestion 

of the complex carbohydrates in human milk. Accordingly, in humans, the percentage of 

Bifidobacterium decreases dramatically with age and it comprises only 3-6% of the adult gut 

flora. In baboons, grasses and other fiber-rich foods were common in the diet, and 

Bifidobacterium spp. may be important in digesting the high fiber content of these foods. 

Notably, nearly one fifth (20.8%) of reads were unclassified and potentially novel at the 

phylum level. These unclassified OTUs were unlikely to be sequencing artifacts because the vast 

majority (86.1%) appeared in more than one sample, and their distribution among samples was 

indistinguishable from that of classified OTUs (Figure S1). Moreover, 54.0% of these 

unclassified OTUs were ≥ 90% identical to OTUs found in other mammalian fecal samples (Ley 

et al., 2008).  

  Previous studies have found that mammalian gut microbial composition is strongly 

associated with host diet and phylogeny (Ley et al., 2008; Yildirim et al., 2010; Hong et al., 

2011; Degnan et al., 2012; Bolnick et al., 2014; Delsuc et al., 2014). Therefore, we compared the 

gut microbiota of our baboon samples to those of other mammals. As expected, the 13 of 14 
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fecal samples (one from each adult baboon) from our study clustered with other primates, 

especially those with omnivorous diets (Figure 2). Samples from within the same order or diet 

group were significantly more similar than samples from different orders or diet groups (Table 

S2). Hence, host phylogeny and diet both seem to play dominant roles in determining variation 

in gut microbial composition between host species. We note that these patterns were based on the 

most abundant bacteria in each sample because of the small number of reads in the mammal 

dataset (Ley et al., 2008). 

 

Juvenile baboons exhibited lower bacterial alpha diversity, but higher variance than than 

adults 

Alpha diversity is an important component of microbial diversity in the gut, especially in 

the context of microbiota development and pathogen resistance (Dillon et al., 2005; McKenna et 

al., 2008; Degnan et al., 2012; Flores et al., 2012; Yatsunenko et al., 2012; Ahn et al., 2013). 

Furthermore, given that some of our samples were collected more than 15 years prior to analysis 

(Table 1), we were concerned that DNA degradation might affect microbial alpha diversity in 

our samples, and hence our ability to characterize gut microbial composition. However, we 

found no evidence that older samples exhibited lower alpha diversity than younger samples 

(linear mixed models with sample age in years as a fixed effect and host identity as a random 

effect: species richness: β = -1.37, P = 0.76; Shannon’s H: β = 0.004, P = 0.89; Chao1: β = -

4.14, P = 0.63; Faith’s phylogenetic diversity: β = -0.19, P = 0.28). 

In addition to sample age, we tested several other predictors of gut microbial alpha 

diversity, including host age, sex, rainfall in the 30 days prior to sample collection, current social 

group, natal social group, current social group size, host diet composition, host diet alpha 

diversity, adult social rank, and for adult females only, reproductive state (as pregnant, lactating, 
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or ovarian cycling). Because host identity significantly predicted variation in alpha diversity for 

2 of the 4 measures (ANOVA; species richness: F(12,83) = 2.03, P = 0.031; Shannon’s H: F(12,83) = 

2.78, P = 0.003; Chao1: F(12,83) = 1.39, P = 0.187; Faith’s phylogenetic diversity: F(12,83) = 1.72, 

P = 0.078), individual identity was included as a random effect in all linear mixed models. In 

prior studies on humans and chimpanzees, age was a primary predictor of gut microbial alpha 

diversity (Degnan et al., 2012; Yatsunenko et al., 2012). However, in our data set, neither age 

nor any other fixed effects predicted any of the four measures of alpha diversity in linear mixed 

models. However, when we divided samples into juveniles and adults rather than testing age as a 

continuous variable, we found that adults had greater species richness (Wilcoxon rank-sum test; 

W = 1723.5, P = 0.049) and Shannon’s H (Wilcoxon rank-sum test; W = 1783, P = 0.019) than 

juveniles. Additionally, similar to one prior study in humans (Yatsunenko et al., 2012), we found 

that infants and juveniles exhibited significantly higher variance in Shannon’s H than adult 

baboons (Figure 3; Brown-Forsyth test F(1, 104.876) = 6.988, P = 0.009). Taken together, these 

results indicate that gut microbiota may be less diverse and less stable in young baboons as 

compared to adults, suggesting that the transition to adulthood marks a developmental milestone 

in the microbiota.  

 

Variation in microbial composition was best explained by host age, diet, and rainfall 

We tested whether several host traits and environmental factors were associated with 

variation in baboon gut microbial composition, including host identity, host age, host sex, 

rainfall in the 30 days prior to sample collection, current social group, natal social group, and 

group size. To test these factors, we first performed an exploratory principal coordinates analysis 

(PCoA) on weighted UniFrac dissimilarities. Overall, 37.5% of the global variation was 

explained by the first three principal coordinates (PC1 = 21%, PC2 = 9.3%, PC3 = 7.2%). Visual 
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inspection revealed no obvious clustering patterns by any of our predictor variables (Figure S2 

A-E). 

To further test which factors best explained variation in baboon gut microbial 

composition, we carried out canonical correspondence analysis (CCA) (Palmer, 1993) at the 

phylum, genus, and OTU levels (Table 2). For the main dataset (n = 107 samples), we again 

tested the effects of host identity, host age, sex, rainfall, and aspects of social group membership. 

Interestingly, no factors explained significant variation at the OTU level, perhaps because closely 

related species are often ecologically interchangeable (Harvey and Pagel, 1991), and ecological 

patterns in bacterial communities may be more apparent at higher taxonomic levels. In support, 

some recent studies have found ecological coherence among higher bacterial taxonomic ranks 

(Fierer et al., 2007; Lozupone and Knight, 2007; von Mering et al., 2007; Fulthorpe et al., 2008; 

Pointing et al., 2009; Philippot et al., 2010; Koeppel and Wu, 2012). Indeed, we were able to 

explain significant shifts in high-level taxa associated with changes in environment. Specifically, 

rainfall and age predicted significant variation at both the phylum level (Table 2: rainfall, P = 

0.02; age, P = 0.02) and the genus level (rainfall, P = 0.01; age, P = 0.02). Interestingly, while 

age predicted beta diversity, when baboon infants, juveniles, and adults were considered 

separately, age was no longer significant, suggesting that either the subsets of samples do not 

have enough statistical power or developmental transitions are more important than age per se 

(Table 2).  Host sex was significant when we considered infants alone, perhaps due to 

differences in maternal care as a function of infant sex (Nguyen et al. 2012). These sex-

differences seem to disappear in adulthood, however.  

While some prior studies have found evidence for social group membership on gut 

microbial composition (Degnan et al., 2012; Yatsunenko et al., 2012), including in our own 

population (Tung et al. in press), the wide temporal distribution of samples in our data set 
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probably made it difficult to detect such effects. We found no other physiological or social 

effects on gut microbial composition, including female reproductive state, social group size, or 

male or female dominance rank. 

The effects of rainfall on microbiota may be linked to seasonal changes in either diet or 

drinking water availability. To test the specific effects of diet, we conducted a second CCA using 

only the subset of 76 individuals (excluding infants) for which we had data on the time spent 

foraging on different food types. In this new model, we found several effects of diet (Table 2; 

Table S4). First, diet alpha diversity (Shannon’s H for diet components) explained significant 

variation at both the phylum (P =0.02) and genus levels (P =0.05), while diet richness (the 

number of distinct food types; Table S3) did not, suggesting that dietary evenness rather than a 

high number of dietary components is important to the gut microbial composition. This pattern 

runs counter to that seen in (Bolnick et al., 2014), which found that dietary richness rather than 

evenness predicted gut microbial diversity in fish. Second, the dietary tradeoff between the 

proportion of time spent consuming grass versus fruit in the diet (diet PC1; see Experimental 

Procedures; Figures S3) was significantly associated with microbial composition at both phylum 

level (P =0.02) and genus level (P =0.02). .   

To assess the influence of sequencing depth on our results, we repeated the CCA using 

the smaller dataset rarified to 3,000 reads (n = 54 samples; diet information on n = 38 samples). 

We obtained best models similar to those of 1,500-read dataset, although none of the factors 

were significant, probably as a result of a loss of statistical power (Table S4).  

Finally, to identify which of the four most common bacterial phyla were associated with 

differences in host age, rainfall, and diet, we performed generalized linear mixed models with a 

Poisson-link and host identity as a random effect. We found that samples collected in rainier 

periods harbored a higher proportion of Firmicutes, but less Actinobacteria than samples from 
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drier months (Table 3). In terms of host age (measured as a continuous variable), younger 

animals harbored relatively more Actinobacteria, Bacteroidetes, and Proteobacteria but less 

Firmicutes than older animals, perhaps due to differences in milk consumption or disease 

susceptibility in animals of different ages. For the subset of samples with diet information, gut 

microbiota from groups that consumed relatively more fruit and less grass harbored higher levels 

of Actinobacteria and Proteobacteria and lower levels of Firmicutes and Bacteroidetes than 

groups consuming low fruit (diet PC1, Table S5). Furthermore, the addition of rainfall 

significantly improved models with diet factors, indicating that the effects of rainfall are not 

solely driven by seasonal changes in diet. During the dry season, the baboons drink from small, 

highly concentrated and qualitatively dirty water holes whereas during rainy months they obtain 

most of their water from seemingly cleaner, transient rain puddles, which may have 

consequences for gut microbiota.   

 

Longitudinal sampling reveals that baboon gut microbiota are highly dynamic 

Prior research on humans and chimpanzees has found that individuals contain distinct gut 

microbiota, and that samples from the same individual, even those collected over a year apart, 

are more similar to each other than they are to samples collected from different hosts over the 

same time period (Turnbaugh et al., 2009; Caporaso et al., 2011; Degnan et al., 2012; David et 

al., 2014). However, we found no evidence for such effects in our study subjects. For instance, in 

the CCA analyses described above, we never observed a significant effect of individual identity 

at any taxonomic level. Similarly, samples from the same individual were as different from each 

other as they were from samples collected from different individuals in the same developmental 

stage (mean ± SE weighted UniFrac dissimilarity: between samples from the same individual = 

0.342 ± 0.008; between samples from different individuals at the same stage = 0.345 ± 0.002, P 
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= 0.35). However, we note the sequence depth in our study is lower than those of the previous 

studies.  

This high degree of dynamism in baboon gut microbiota can be visualized by plotting 

pairwise weighted UniFrac dissimilarities between samples of the same individual as a function 

of time between sampling points (Figure 4). Microbial communities sampled from the same 

individual a few days apart were almost as different from each other as samples collected several 

years apart. Only one of 13 individuals with >3 samples displayed a significant relationship 

between sampling time interval and microbiota dissimilarity (Table S6). It is unclear why baboon 

gut microbiota appeared to be so dynamic. One possible explanation is that seasonal variation in 

the baboons' diets selects for different gut microbial compositions at different times of year, as 

the availability of fruits, seeds, and vegetation fluctuates with seasonal patterns in plant 

reproduction. However, such seasonal variation is unlikely to explain turnover on the scale of 

days or weeks during which baboon diets are more consistent. Another explanation is that wild 

baboons live in microbially heterogeneous environments, regularly walking through fecal 

deposits of other species, drinking from waterholes that contain fecal material from livestock and 

wild mammals, and pulling plants from the ground with their mouths. This could lead to higher 

turnover in gut microbial species. 

 

Core gut microbiota  

The high degree of inter- and intra-individual variation in baboon microbiota raises the 

question of whether baboon gut microbiota contain a set of core microbial taxa, as is observed in 

humans (Tap et al., 2009; Martínez et al., 2013). We defined core taxa as taxa present in more 

than 90% of our 107 samples, assigned at the lowest possible taxonomic level. Despite the 

dynamic nature of baboon gut microbiota, we found evidence for some core taxa: three at the 
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family level (Lachnospiraceae, Peptostreptococcaceae, and Veillonellaceae) and four at the 

genus level (Faecalibacterium, Prevotella, Bifidobacterium, and Oscillibacter).  

To investigate how core microbiota have changed with host phylogeny, we attempted to 

identify core gut microbial members of the 57 mammalian species (89 individuals) used in (Ley 

et al., 2008). Given the large variation in mammalian genomes, diets, and lifestyles, it is not 

surprising that we did not find any core taxon below the phylum-level that are shared by all 

mammals. However, when we limited our scope to primates alone, we found two family-level 

(Ruminococcaceae and Lachnospiraceae) and one genus-level (Prevotella) core taxa.  Since 

these taxa are present in most primates surveyed, these core taxa were most likely present in the 

last common ancestor of primates, suggesting they might be important in the codiversification of 

the gut microbiota and the primate hosts. 

 

Enterotypes in baboons  

Previous studies reported that humans and chimpanzees harbor compositionally similar 

gut enterotypes (Arumugam et al., 2011; Moeller et al., 2012). To test for the presence of 

enterotypes in our subjects, we clustered gut microbiota for the 47 (of 107) samples collected 

from sexually mature, adult baboons by applying the partitioning around means (PAM) 

clustering method on the Bray-Curtis dissimilarities calculated using genus level abundances 

(Arumugam et al., 2011). Our analysis revealed an optimum of two clusters (Figure 5. CH index: 

39; average silhouette coefficient 0.265; prediction strength: 0.79). Although the silhouette 

coefficient is comparable to those reported in earlier enterotype studies (Arumugam et al., 2011; 

Moeller et al., 2012), it would be considered low according to the thresholds proposed more 

recently (Koren et al., 2013). Therefore, the enterotypes identified in this study are tentative. The 

genera contributed most significantly to each cluster were Bifidobacterium, Butyrivibrio, 
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Megasphaera, and Olsenella in enterotype 1 (n=9) and Oscillibacter and Ruminococcus in 

enterotype 2 (n=38). The relative abundances of genera in the adult samples are listed in Table 

S7. These two enterotypes differ from those of humans and chimpanzees. One parsimonious 

explanation is that enterotypes in humans and chimpanzees may have evolved since the split 

between apes and old world monkeys ~30 million years ago. 

Previous studies found that enterotypes can be replaced within one year in chimpanzees 

(Moeller et al., 2012) and within one week in wild mice housed in captivity  (Wang et al., 2014). 

We observed enterotype replacements for most baboons when we assessed the samples of the 

same individual at multiple time points (Figure 6). Enterotypes changed rapidly in baboons, 

sometimes switching in as little as 45 days. Past studies have suggested that proportion of protein 

versus carbohydrates in host diet is linked to the host’s enterotype (Wu et al., 2011; Wang et al., 

2014). However, the baboon enterotypes we found were not significantly associated with any 

factors tested, including diet diversity (richness, Shannon’s H and PCoA axis), age, rainfall, host 

identity, season, sex or social group (Wilcoxon rank sum test or Fisher's Exact Test). Consistent 

with the finding of (Wang et al., 2014), we found no enterotypes at the OTU level. 

Experimental Procedures   

Study subjects and predictors of microbiota structure 

Study subjects were wild baboons living in the Amboseli Ecosystem in Kenya, a semi-

arid savannah located northeast of Mt. Kilimanjaro (2°40′S, 37°15′E, 1100 m altitude). Since 

1971, the baboons in this area have been studied by the Amboseli Baboon Research Project 

(ABRP) (Alberts and Altmann, 2012). Several types of data are collected throughout the year on 

known individuals by full-time, experienced observers, 2-3 times per week per group. Here we 

describe data collection on the specific predictor variables we tested; sample sizes vary 
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somewhat for each predictor variable because some data were only available for or relevant to 

some individuals and samples. 

Sex, age, and developmental stage. Baboons are sexually dimorphic, and sex is known 

from conspicuous external genital morphology. Ages were known to within a few days for 20 of 

24 animals in our main dataset (n = 107). The remaining 4 individuals immigrated into the 

population after birth and their ages were estimated using well-defined metrics and comparison 

to known-age animals (Alberts and Altmann, 1995). These 4 animals had birth dates estimated to 

be accurate within one year (n = 1), two years (n = 2), or three years (n = 1). As baboons mature, 

they pass through several developmental stages that may also influence the gut microbiota, 

including: (i) infancy, during which diet includes both milk and foods from the environment 

(birth to 1.5 years; n = 22 fecal samples from 9 individuals); (ii) the juvenile period, which 

begins post weaning (~1.5 years) and ends at sexual maturity (~4.5 years for females; ~5.4 years 

for males; 38 samples from 10 individuals (Onyango et al., 2013)), and (iii) adulthood, defined 

by the onset of sexual maturity (n = 47 samples from 14 individuals).  

Diet. In addition to the dietary changes associated with the transition from the infant to 

the juvenile stage, we tested the effect of diet composition on gut microbiota. Specifically, for a 

subset of subjects (n = 76 fecal samples from 10 juveniles and 14 adults), we estimated diet 

composition using behavioral sampling on all the juvenile and adult female members of the 

social group in the 30 days prior to sample collection. Social group members consume similar 

foods in roughly similar proportions; hence group-level diets provide suitable estimates of the 

composition of individual diets. The baboons' diets included 11 food categories: (1) grass, 

including corms, blades, and grass seed heads, (2) gum from the bark of Acacia xanthophloea, 

(3) leaves from herbaceous plants or trees, (4) fruits, (5) blossoms, (6) bark from A. 

xanthophloea, (7) fresh, green seed pods from Acacia spp., (8) dried seeds from Acacia spp., (9) 
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invertebrates, (10) liquid from or items in or under dung, and (11) unknown unidentifiable items 

(Table S3). 

We used these data to characterize diet alpha and beta diversity, noting that time spent 

feeding is not always proportional to the amount of food ingested. Diet alpha diversity was 

measured as both the total number of foods (diet richness) and dietary Shannon’s H using the 

vegan package in R (Oksanen et al., 2012). Diet beta diversity was estimated via PCoA on a 

Bray-Curtis dissimilarity matrix of diet composition using vegan. The first three axes of the 

PCoA explained 80% of the variation in diet (PC1 = 46%, PC2 = 23%, PC3 = 11%); PC1 was 

associated with a tradeoff in relative proportions of grass (-) versus fruit (+); PC2 was associated 

with the proportion of invertebrates (-) versus fruit (+); and PC3 was associated with the 

proportion of the diet attributed to the 'unknown' category (-) (Figures S3-5).  

Rainfall. Semi-arid savannah ecosystems are characterized by highly seasonal patterns of 

rain that may affect diet as well as bacterial exposures through sources of drinking water. Each 

year, Amboseli experiences a five-month dry season (June – October) during which no rain falls. 

In the remaining seven months (November - May), the ecosystem receives highly variable 

amounts of rain (yearly average = 350 mm; range = 141-757 mm) (Alberts et al., 2005). The 

effects of rainfall were assessed by summing the total amount of rain that fell in the 30 days prior 

to sample collection. 

Social relationships. One prior study has linked aspects of primate social group 

membership to microbial composition (Degnan et al., 2012). We tested three aspects of social 

group: (i) the identity of the animal's social group on the day of sample collection; (ii) the size of 

the animal's social group on the day of sample collection, as the number of members, and (iii) the 

identity of the animal's natal social group, if known (in baboons, males are the dispersing sex and 

the current group of an adult male invariably differs from his natal group).   
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In addition, in baboons, dominance rank has been linked to physiology and health 

(Sapolsky and Altmann, 1991; Alberts et al., 1992; Gesquiere et al., 2011); hence we also tested 

for associations between microbial composition and dominance rank. Rank was assigned 

monthly by observing dyadic agonistic interactions and assigning winners and losers based on 

the outcome. These wins and losses were used to construct dominance matrices, resulting in an 

ordinal rank for each member of the group (Hausfater, 1975).  

Adult female reproductive status. Prior research has shown that reproductive cycle 

changes in human women can influence gut microbial composition (Koren et al., 2012). To test 

this idea, samples from adult females (24 samples from 9 individuals) were assigned to one of 

three reproductive states: ovarian cycling, pregnant, or lactating, using previously published and 

well-defined criteria (Altmann, 1973; Wildt et al., 1977; Shaikh et al., 1982; Beehner et al., 

2006; Gesquiere et al., 2007).  

 

Sample collection, DNA extraction, and 16S rRNA sequencing 

Gut microbiota were characterized from fecal samples. Samples for this analysis spanned 

1994 to 2009 and included 144 samples from 32 individuals. Samples were chosen to provide 

both cross-sectional and longitudinal information, including multiple samples from a subset of 

13 individuals. All fecal samples were collected within a few minutes of defecation, after which 

the sample was mixed and preserved in 95% ethanol. Samples were stored in an evaporative 

cooling structure (approximate daily maximum temperature of 25°C) until shipment to the US, 

where they were stored at -80°C. DNA was extracted from each sample by bead beating and 

phenol-chloroform extraction. For each DNA extract, the V1-V3 hypervariable regions of the 

16S rRNA gene were PCR amplified and pyrosequenced as described previously (Ren et al., 
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2013) on a 454 Life Science Genome Sequencer FLX platform (University of Virginia 

Department of Biology Genome Core Facility).  

 

Sequence processing, quality control, and OTU classification 

Sequencing reads were processed using the QIIME pipeline (Caporaso et al., 2010). Each 

read was assigned to a sample by barcode and then filtered to remove reads with: (i) lengths less 

than 200 base pairs or greater than 550 base pairs, (ii) average Phred equivalent quality scores 

less than 25, (iii) improper primer or barcode sequences, or (iv) the presence of ambiguous base 

calls. Eukaryotic, mitochondrial sequences were removed by BLAST search against the SILVA 

database (Quast et al., 2013). Chloroplast sequences were removed using the Ribosomal 

Database Project (RDP) classifier (Wang et al., 2007). Chimeric sequences were identified using 

UCHIME with the de novo detection algorithm and default parameters (Edgar et al., 2011). Read 

filtering removed 17.8% of the total reads, with the majority removed as chimeras. The 

remaining reads were clustered to 97% operational taxonomic units (OTUs) by cdhit (Fu et al., 

2012). To further remove potential sequencing artifacts, we excluded any OTU with ≤ five reads 

across all samples. The most abundant sequence of each OTU was chosen as the representative 

sequence and classified using the RDP classifier. 

 

Statistical analyses 

 Of our initial set of 144 samples, three were excluded as outliers at two or more of four 

measures of OTU alpha diversity (these outliers had alpha diversity values more than three times 

the interquartile range below the lower 25% percentile). Three additional samples were removed 

as outliers during initial beta diversity analyses. During rarefaction, 31 samples and 84 samples 

were removed due to insufficient reads, leaving 107 samples (Table 1) and 54 samples (Table 
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S1) for 1,500- and 3,000-read datasets respectively. 1,500-read and 3,000-read datasets were 

compared using the Pearson correlation coefficient and Mantel tests implemented in QIIME 

pipeline. The two datasets were found to be highly similar (see Results and Discussion); hence in 

the main text we present the results of the 1,500-read dataset.  

Comparison to other mammals. To understand how gut microbiota from the Amboseli 

baboons compared to other primates and mammals, we conducted PCoA on unweighted Unifrac 

matrix to compare one randomly selected sample from each adult baboon (n = 14) to 89 

individual mammals of 57 species surveyed by (Ley et al., 2008). Only the V1-V3 regions of the 

16S rRNA gene were compared. Samples were rarified to 140 reads due to the small number of 

reads in the mammal dataset (Ley et al., 2008).  

Testing predictors of gut microbial alpha diversity. To test which factors best predicted 

microbial alpha diversity, we constructed linear mixed models of four measures of OTU alpha 

diversity: OTU richness (i.e. the number of distinct OTUs in a sample), Shannon’s H, chao1 (log 

transformed), and Faith’s phylogenetic diversity. All models included host identity as a random 

factor; the best-fitting models were identified using the log likelihood criterion. 

Testing predictors of gut microbial beta diversity. To investigate predictors of gut 

microbial composition, we first performed exploratory PCoA, followed by hypothesis testing via 

Canonical Correspondence Analysis (Palmer, 1993). PCoA was performed on unweighted and 

weighted UniFrac dissimilarities calculated from the relative abundance of OTUs in each sample 

(Lozupone and Knight, 2005). CCA was performed on the relative abundance of taxa at the 

phylum, genus, and OTU level and host associated metadata using the vegan package in R 

(Table 2 and S4). For each test, the best model was selected using the log likelihood criterion, 

and the significance of each predictor was assessed by permutation tests. We did not correct for 

multiple comparisons in our CCAs because of the nested nature of these analyses. It would be 
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overly conservative to account for multiple comparisons because tests of many of the factors 

(e.g., age, rainfall) are not independent across models. To test which factors predicted the 

relative abundance of the four most common bacteria phyla, we constructed generalized linear 

mixed models with host identity as a random factor, and a Poisson-distributed error structure. 

The best-fitting models were chosen using the log likelihood criterion. 

Core microbiota. Since closely related bacterial taxa are sometimes ecologically 

interchangeable (Harvey and Pagel, 1991), it may be useful to consider phylogenetic 

relationships when identifying core taxa. Core OTUs were identified using a tree-based 

algorithm and were defined as those OTUs that belonged to the same lineage and occurred in 

more than 90% of samples. We identified core OTUs in both baboon and other mammalian (Ley 

et al., 2008) gut microbiota. 

Enterotype analyses. We performed enterotype analysis of the adult baboon gut 

microbiota as described in (Arumugam et al., 2011), which use Calinski-Harabasz index as an 

indicator of optimal clustering. In addition, we calculated silhouette coefficient and prediction 

strength using methods suggested by (Koren et al., 2013) in R (packages: cluster, clusterSim, 

fpc). Genera that mainly contribute to each enterotype were identified with Randomforest 

implemented in QIIME. We consider a genus as a main contributor if its removal increase >15% 

overall estimated generalization error (an estimate of how much error the classifier would have 

on a novel dataset). Associations between enterotype and age, rainfall, or diet PC axis were 

tested with Wilcoxon rank sum test. Association between enterotype and host identity, season, 

sex or social group were tested with Fisher's Exact Test. 
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Tables and figures 

Table 1. Sample size information, including the number of individuals and fecal samples used in 
analyses of the dataset rarefied to 1,500 reads. 
 

Individual Sex 
Number of 

fecal 
samples 

Range of years samples 
were collected 

Age range or age at time of 
sample collection  

(years) 
BEAM M 10 1994 - 2001 5.95 - 13.16 

DUNLIN F 10 1996 - 1999 0.72 - 3.69 
OKOT M 10 1996 - 1998 1.32 - 2.81 

LEBANON M 8 1997 - 2009 0.17 - 12.16 
OCEAN M 8 1997 - 2000 0.6 - 3.78 
VIXEN F 8 1994 - 1998 17.06 - 20.84 

DRONGO F 7 1996 - 2009 6.99 - 19.88 
ECHO F 7 1995 - 2001 3.43 - 9.39 

VANGA M 7 1995 - 2001 2.54 - 9.31 
GOLON M 6 1996 - 1999 17.76 - 20.63 

LAWYER M 6 2001 - 2001 1.12 - 1.98 
OXYGEN F 6 2000 - 2001 1.05 - 2.43 
HONEY F 3 1999 - 2000 1.85 - 3.13 
AMIGO M 1 1998 15.07 

CABANA F 1 1999 0.53 
CEDAR M 1 1998 2.86 

DYNAMO M 1 1998 0.94 
HEKO F 1 1997 14.27 

LADHA F 1 1998 4.57 
LARK F 1 1997 9.71 
LAZA F 1 1998 6.9 

PLATO M 1 1998 8.6 
VOGUE F 1 1998 1.08 

VORTEX F 1 1997 10.32 
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Table 2. CCA analysis of environment and host traits that predicted variation in gut microbial 

community composition rarefied to a level of 1,500 reads.  

 
	

          Dataset Num of 
samples 

Factors included in the 
model 

Significant factors at  
phylum level genus level OTU level 

Main dataset 107 

age, rainfall, sex, 
individual ID, social 
group, natal social 
group, group size 

rainfall (P=0.02),  
age (P=0.01) 

rainfall (P=0.02), 
age (P=0.02) None 

Subset with 
diet 
information 

76 

age, rainfall, sex, diet 
diverisity (richness, 
Shannon’s H or PCoA 
axis), individual ID 

rainfall (P=0.02),  
age (P=0.04),  

diet Shannon’s H 
(P=0.05) or 

diet PC1 (P=0.02) 

rainfall (P=0.03), 
age (P=0.05),  

diet Shannon’s H 
(P=0.02) or 

diet PC1 (P=0.02) 

None 

Infant 22 age, rainfall, sex, 
individual ID sex (P=0.04) sex (P=0.03) None 

Juvenile 38 age, rainfall, sex, 
individual ID None None None 

Infant / 
juvenile 60 age, rainfall, sex, suckle 

status, individual ID None None None 

Adult male 
with rank 
information 

21 
age, rainfall, adult male 
rank, natal social group, 
individual ID 

rainfall (P=0.05) rainfall (P=0.03) None 

Adult female 
with rank 
information 

24 

age, rainfall, adult 
female rank, 
reproductive status, 
individual ID 

rainfall (P=0.14) rainfall (P=0.02) None 
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Table 3. Best-supported generalized linear mixed models (Poisson-link) explaining variation in 
abundance of the four most common bacteria phyla for the main dataset (n = 107 samples). Host 
identity is modeled as a random effect. 
 

Bacteria 
phylum 

Fixed 
effects Estimate SE Z P -value 

Actinobacteria age -0.024 0.004 -6.599 <0.001* 
rainfall -0.003 0.0001 -17.897 <0.001* 

Bacteroidetes age -0.027 0.005 -4.918 <0.001* 

Firmicutes age 0.008 0.002 4.44 <0.001* 
rainfall 0.003 <0.0001 37.21 <0.001* 

Proteobacteria age -0.0299 0.008 -3.69 <0.001* 
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Figure 1. Phylum level bacterial composition across 107 samples from 24 individual baboons. 

Each column represents one fecal sample. Y-axis values represent the relative abundance of each 

phylum classified by RDP classifier. Samples are sorted by the relative abundance of 

Actinobacteria in the sample. 
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Figure 2. PCoA analysis of the weighted UniFrac dissimilarities comparing gut microbiota of 

baboons to other mammals. Each point corresponds to a sample colored by (A) host taxonomy 

and (B) host diet type. Baboon samples are circled in red; the 14 baboons samples were drawn at 

random representing one each from the 14 adult individuals (AMIGO, BEAM, DRONGO, 

ECHO, GOLON, HEKO, LADHA, LAZA, LARK, LEBANON, PLATO, VANGA, VIXEN, 

VORTEX) included in our dataset. The percentage of the variation explained by the plotted 

principal coordinates is indicated on the axes. 
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Figure 3. The relationship between baboon age (in years) and gut microbiota alpha diversity as 

measured by OTU Shannon's H. Infant and juvenile baboons had higher variance in Shannon’s H 

than adults (Brown-Forsyth test F (1, 104.876) = 6.988, P = 0.009)  
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Figure 4. A time-decay plot of gut microbiota dissimilarity. Each dot represents a comparison 

between two samples of the same baboon collected at different time points, with different marker 

colors representing different baboons. X-axis represents the time span (in days) between the 

sample collection times. Y-axis represents the weighted UniFrac dissimilarity. (A) 5000 days. 

(B) 365 days. Correlation between sampling time span and microbiota weighted Unifrac 

dissimilarity for each individual is summarized in Table S6. 
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Figure 5. PCoA visualization of baboon enterotypes (ellipses) identified by PAM clustering. 

Black dots represent abundance distributions of bacterial genera from an individual host and 

numbered white rectangles mark the center of each enterotype. Bacterial genera that mainly 

contribute to each enterotype are listed. 
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Figure 6. Baboon enterotypes switched over time. Samples were collected from 1994 to 1999, 

and in 2001 and 2009. 8 (of 14) adults only had one sample and therefore were not shown here. 

Filled rectangles: enterotype 1; unfilled rectangles: enterotype 2; rectangles with dashed line: 

sample missing. When an individual switched enterotypes during the middle of the year, it is 

represented by a hybrid rectangle (half filled and half unfilled).  
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Supplementary information 

 

Supplementary tables 
 
Table S1. Sample size information, including the number of individuals and fecal samples used 

in analyses of the dataset rarefied to 3,000 reads. 

 

Individual Sex Number 
of samples 

Range of years 
samples were 

collected 

Age range or age at time 
of sample collection 

(years) 
BEAM M 9 1994 - 2001 5.95 - 13.16 

DUNLIN F 8 1996 - 1997 0.72 - 1.56 
OCEAN M 5 1997 - 2000 0.6 - 3.78 
OKOT M 5 1996 - 1998 1.32 - 2.81 

VANGA M 5 1995 - 1998 3.05 - 6.05 
DRONGO F 3 1996 - 1997 6.99 - 8.09 
GOLON M 3 1997 - 1999 19.19 - 20.63 

LAWYER M 3 2001 - 2001 1.19 - 1.98 
HONEY F 2 1999 - 2000 1.85 - 2.75 

LEBANON M 2 1998 - 2000 1.57 - 3.21 
OXYGEN F 2 2001 - 2001 1.62 - 2.16 

VIXEN F 2 1994 - 1997 17.06 - 19.97 
DYNAMO M 1 1998 0.94 

ECHO F 1 1997 5.88 
HEKO F 1 1997 14.27 
LARK F 1 1997 9.71 

VOGUE F 1 1998 1.08 
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Table S2. Unweighted UniFrac dissimilarity comparison within and between mammalian orders 

or diet types.  

	
	

Group Average within group 
dissimilarity 

Average between 
group dissimilarity 

P value (Wilcoxon rank sum 
test) 

Order 0.80 0.86 2E-16 
Diet type 0.82 0.87 2E-16 
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Table S3. Diet items included in each diet category. 
 

Diet category Diet item 
Grass Grass corms (all species) 

Grass leaves (all species) 
Grass blade bases (all species) 
Grass seed head (all species) 

Gum Gum from Acacia xanthophloea 
Leaves Lyceum sp. leaves 

Azima tetracantha leaves 
Acacia xanthophloea leaves 
Salvadora persica leaves 
Suaeda monoica leaves 
Tribulus terrestris leaves 

Fruits Trianthema ceratosepala fruits 
Azima tetracantha fruits 
Abutelon sp. fruits 
Lyceum sp. fruits 
Ramphicarpa montana fruits 
Salvadora persica fruits 
Solanum dubium fruits 
Tribulus terrestris fruits 
Withania sp. fruits 

Blossoms Acacia xanthophloea blossoms 
Ramphicarpa montana blossoms 
Acacia tortilis blossoms 

Bark Bark from Acacia xanthophloea 
Pods Fresh, green seed pods of Acacia 

spp. 
Seeds Dried seeds of Acacia spp. 
Invertebrates Invertebrates of unknown species 
Dung Liquid from or items in elephant 

dung 
Unknown Unknown diet items (i.e. those 

that could not be seen by 
observers) 
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Table S4. CCA analysis of environment and host factors for the 3,000 read dataset.  
	

Dataset Number of 
samples Factors tested Best model at  

phylum level genus level OTU level 

Full dataset 54 

age, rainfall, sex, 
individual ID, social 
group, natal social 
group, group size 

rainfall (P=0.12), 
age (P=0.13) rainfall (P=0.09) None 

Subset with 
diet diversity 
info 

38 

age, rainfall, sex, diet 
diverisity (richness, 
Shannon’s H or PCoA 
axis), individual ID 

None rainfall (P=0.08), 
diet PC1 (P=0.05) None 
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Table S5. Best-supported generalized linear mixed model (Poisson-link) explaining variation in 

abundance of the four most common bacteria phyla for the subset of 76 samples with diet data. 

Individual identity is a random effect in all models. 

 
Bacteria 
phylum Fixed effect estimate S.E. Z p-value 

Actinobacteria 

rainfall -0.005 0.000 -15.126 <0.001* 
diet PC1 0.248 0.041 6.086 <0.001* 
diet PC2 1.858 0.113 16.403 <0.001* 
diet PC3 1.981 0.097 20.365 <0.001* 

Bacteroidetes 

rainfall -0.002 0.000 -5.101 <0.001* 
diet PC1 -0.849 0.073 -11.70 <0.001* 
diet PC2 -0.537 0.106 -5.048 <0.001* 
diet PC3 1.044 0.161 6.471 <0.001* 

Firmicutes 

age -0.006 0.002 -2.68 0.007* 
rainfall 0.001 0.000 13.53 <0.001* 

diet PC1 -0.578 0.026 -22.60 <0.001* 
diet PC2 -0.770 0.034 -22.57 <0.001* 
diet PC3 -0.549 0.056 -9.78 <0.001* 

Proteobacteria 
age 0.041 0.011 3.91 <0.001* 

diet PC1 3.270 0.071 46.00 <0.001* 
diet PC2 -0.706 0.089 -7.96 <0.001* 
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Table S6. Mantel test of correlation between sampling time interval and microbiota weighted 

Unifrac dissimilarity between samples that were collected from the same individual. 

 

Individual Number  
of samples 

Mantel r 
statistic P value  

BEAM 10 -0.04 0.882 
DUNLIN 10 -0.03 0.899 
OKOT 10 0.40 0.095 
OCEAN 8 -0.27 0.263 
VIXEN 8 0.11 0.696 
DRONGO 7 0.23 0.452 
ECHO 7 -0.41 0.180 
VANGA 7 0.61 0.038* 
GOLON 6 -0.17 0.692 
LAWYER 6 0.25 0.365 
OXYGEN 6 0.10 0.792 
HONEY 3 -0.64 0.481 
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Supplementary Figures 

Figure S1. The distribution patterns of the unclassified and classified OTU at the phylum level 

across the samples. OTUs have been sorted into bins based on their prevalence in the samples 

(X-axis). Y-axis is the count of OTUs in each bin.  
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Figure S2. PCoA analysis of the weighted UniFrac dissimilarities comparing baboon gut 

microbiota. Each point corresponds to a sample colored by (A) individual identity, (B) sex, (C) 

ageclass and (D) season, (E) diet group. Baboons with diet composition information (n = 76) 

were divided into 3 diet groups by the relative abundance of grass, fruit and invertebrate in their 

diet guided by the PCoA plot of diet Bray-Curtis dissimilarity: 1. Fruit, if fruit percentage is 

>=20%; 2. Invertebrate, if there is invertebrate in diet; 3. Grass, if grass percentage is >=70%. 

 
 
 
Figure S2 is available at:  

http://onlinelibrary.wiley.com/wol1/doi/10.1111/1462-2920.12852/suppinfo
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Figure S3. The first principal coordinate of variation in diet composition (diet PC1) as a function 

of the 11 primary diet components (Table S3). Blue lines represent lowess regression fits. PC1 

explained 46% of the variation in diet composition and is associated with a tradeoff in the 

proportion of grass (-) versus fruit (+) in the baboons' diets. 
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 Figure S4. The second principal coordinate of variation in diet composition (diet PC2) as a 

function of the 11 primary diet components (Table S3). Blue lines represent lowess regression 

fits. PC1 explained 23% of the variation in diet composition and is associated with a tradeoff in 

proportion of insects (-) versus fruit (+) in the baboons' diets. 
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Figure S5. The third principal coordinate of variation in diet composition (diet PC3) as a 

function of the 11 primary diet components (Table S1). Blue lines represent lowess regression 

fits. PC1 explained 11% of the variation in diet composition and is associated with the proportion 

of the diet attributed to 'unknown' categories (-).    
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Chapter 3. Remarkable seasonal oscillations in red squirrel gut microbiota  
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Abstract 

Gut micorbiota contribute significantly to host biology and health. At present, our understanding 

of gut microbiota has been limited primarily to findings from human and laboratory animals, and 

what ecological factors shape the gut microbiota structure in hosts’ natural environment remains 

largely unexplored. To fill this gap, we conducted a comprehensive study of gut microbiota of a 

well-studied red squirrel population. Red squirrels are territorial, solitary and lived in a highly 

seasonal environment, and therefore represent a very attractive system to study the temporal and 

spatial dynamics of gut microbiota. For the first time, this study revealed significant spatial 

patterns of gut microbiota within a host population, suggesting limited dispersal could play a role 

in shaping and maintaining the structure of gut microbial communities. We also found a 

remarkable seasonal rhythm in red squirrel’s gut microbial composition manifested by a tradeoff 

between relative abundance of genera Oscillospira and Corpococcus, and clearly associated with 

seasonal variation in diet availability. Despite strong environmental effects, we found evidences 

of individuality and maternal effect, but host genetics does not seem to be a significant driver. 
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Introduction 

Mammalian guts harbor trillions of microbes of thousands of species, which play 

important roles in diverse aspects of host biology, including nutrition, immune system 

development and behavior. Changes in gut microbial composition have been linked to a plethora 

of health and diseases (Qin et al., 2012; Morgan et al., 2012; Hooper et al., 2012; Markle et al., 

2013). Previous studies have shown that host diet, age, sex, genetics, environmental exposure all 

drive normal gut microbial variation (Yatsunenko et al., 2012; Claesson et al., 2012; Markle et 

al., 2013; Goodrich et al., 2014; Lee et al., 2014; Ren et al., 2015; David et al., 2015; Martínez 

et al., 2015; Amato et al., 2016). However, to date, most studies have been focused on human 

population and laboratory animals in controlled settings and much remains to be elucidated about 

the ecological forces shaping gut microbial diversity and their relative strengths in nature. 

Studies of wild animal populations can provide important insights into how complex 

environment, host biology and their interactions affect gut microbiota in hosts’ natural habitats 

where hosts and microbes have coevolved. 

Diet is believed to be a key selective factor in shaping gut microbiota in wild animals on 

the evolutionary scale. For example, large differences in gut microbial communities have been 

found among carnivorous, herbivorous and omnivorous mammals (Ley et al., 2008; Delsuc et 

al., 2014). Different fruit fly species feeding on distinct diets (fruits vs flowers) differ in their gut 

microbiota (Chandler et al., 2011). On a shorter ecological timescale, wild animals often face 

temporal variation in food availability and shift their diet accordingly. However, little is known 

about how much this variation influences gut microbiota. It has been suggested that seasonal 

variations in gut microbial composition found in wild mice (Maurice et al., 2015), ground 

squirrel (Carey et al., 2013) and giant panda (Xue et al., 2015) are largely driven by the seasonal 
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shifts in diet composition. Nonetheless, these studies either lacked detailed dietary information in 

the wild or were performed on wild animals in captivity. Further research is necessary to test if 

and the extent to which seasonal dietary shift shapes gut microbiota in wild animals.  

Host genetics can also play a role in controlling gut microbial community structure. 

Accumulating evidence has linked specific host genetic loci to gut microbial variation in human 

and mice (Khachatryan et al., 2008; Benson et al., 2010; Rausch et al., 2011; Frank et al., 2011; 

Rehman et al., 2011; Wacklin et al., 2011; McKnite et al., 2012). Although early studies 

suggested otherwise (Turnbaugh et al., 2009; Yatsunenko et al., 2012), a recent large-scale study 

comparing human monozygotic and dizygotic twins revealed significant host genetic effect on 

gut microbial diversity (Goodrich et al., 2014). In contrast, little is known about the contribution 

of host genetics in shaping gut microbiota in wild animals, as this type of study depends on 

knowledge of genetic relatedness within a host population.  

While many studies focused on important deterministic factors, little attention has been 

paid to the role of stochastic processes such as dispersal on structuring gut microbiota. With 

limited dispersal in	homogenous	environment, we would predict that hosts living together 

should exhibit more similar communities of gut microbes than those living further apart. 

Geographical variations of gut microbiota have been observed in humans. For instance, family 

members have higher degree of gut microbiota similarity than unrelated individuals, and distinct 

gut microbial communities were found in populations living on different continents (Turnbaugh 

et al., 2009; Lee et al., 2011; Yatsunenko et al., 2012; Tims et al., 2013). Likewise, a recent 

study found biogeographic variation in wild mice populations (Linnenbrink et al., 2013). 

However, these patterns do not necessarily indicate dispersal limitation because they can be 

attributed to closer genetic relatedness or shared common environment factors as well. 
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Furthermore, most studies focused on comparisons between populations separated on large 

distance scales, but few have investigated the role of dispersal limitation within a host 

population, where environment is expected to be more homogeneous and less of a concern as a 

confounding factor. 

One particular important mechanism of gut microbiota dispersal is through mother-

offspring transmission. Mother can provide the initial inoculum for the gut microbiota in 

mammalian newborns. For example, mother koalas produce “fecal paps”, which contains the 

bacteria necessary to digest gut leaves, and feed them to the young (Osawa et al., 1993). 

Accordingly, strong kinship effects were found in several studies (Ley et al., 2005; Lucas and 

Heeb, 2005; C. Palmer et al., 2007; Perez et al., 2007) where the gut microbiota of offspring 

were more similar to their mother’s than those of unrelated individuals. However, it is not clear 

how much of the similarity was due to genetics and how much was due to maternal effect.  

We performed a large-scale study on a well-characterized wild North American red 

squirrel (Tamiasciurus hudsonicus) population to assess the relative contribution of 

environmental factors, host genetics, maternal effect and geography to the diversity of gut 

microbiota. As part of the Kluane Red Squirrel Project, every red squirrel in the population has 

been continuously monitored year around since 1987 and multiple environmental and host 

factors were recorded, including age, sex, territory membership, dietary composition and 

pedigree. Red squirrels live in a strongly seasonal environment and as a result experience 

recurrent seasonal fluctuations in their diet. Red squirrels defend their exclusive territories over 

lifetime and thus spend most time in solitude. As such, red squirrels represent a very unique and 

attractive system to study the effect of dispersal on gut microbial diversity because unlike human 

and other wild animals studied so far, red squirrels generally do not move around within the 
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population. In addition, mother raises young in the absence of father, making it possible to 

dissect host genetics and maternal effects on gut microbiota. We hypothesize that red squirrel gut 

microbiota are strongly influenced by seasonal diet variation. In addition, we hypothesize that 

both host genetics and limited dispersal affect gut microbial diversity therefore we expect 

individuals that are genetically related or live in close proximity will have similar gut microbial 

profiles.  

Results 

 Red squirrel gut microbiota profile  

We analyzed the gut microbial communities of North American red squirrels using 905 

fecal samples collected from 363 red squirrels Samples varied in both time (multiple years and 

seasons) and space (from 6 study grids that were geographically separated from each other), and 

were from hosts of both sexes, different ages and relatedness. The metadata associated with 

individuals in the main study grid KL (n=549 samples) were listed in Table 1. After rarefaction 

to 4000 reads/sample, we sorted high-quality reads into 12,833 operational taxonomic units 

(OTUs) using a sequence identity cutoff of 97%. On average we detected 575 ± 139 OTUs per 

sample.  

Taxonomic assignment revealed a fairly typical rodent profile (Figure 1A): the dominant 

phyla were Firmicutes (88.6% of total reads), Bacteroidetes (9.0%), and Proteobacteria (1.7%), 

with a tail of 10 rare phyla that together accounted for the remaining 0.7% of the reads. The 

prevalence-abundance distribution of genera showed a “L” shape with a heavy long tail toward 

the left (Figure 2), indicating that the most abundant taxa were present in almost all samples, 

while rare taxa accounted for most of the membership difference in gut microbiota of red squirrel 

population. Specifically, the 10 most abundant genera (5% of the total detected genera) were 
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each present in more than 97% of the samples and together made up 41.5% of the total reads: 

Coprococcus (abundance: 12.3%, prevalence: 100%), Blautia (7.3%, 100%), Oscillospira (6.2%, 

99.6%), Clostridium (3.2%, 98.8%), Ruminococcus (2.7%, 99.9%), Prevotella (2.6%, 99.9%), 

Dorea (2.0%, 100%), Anaerostipes (1.92%, 97.4%), Bacteroides (1.87%, 99.4%) and 

Faecalibacterium (1.4%, 99.7%) (Figure 1B). As such, they constituted the “core microbiota” of 

red squirrel gut microbial community. On the other hand, rare taxa appear to be more sample 

specific. Among the 189 genera detected, 167 (88.4%) were present in less than 50% of samples. 

Similarly, 11,618 OTUs (90.5% of total OTUs) appeared in less than 10% of samples. On 

average, only 56% of genera and 20% of OTUs were shared among samples (average Jaccard 

distance = 0.44 at the genus level, 0.80 at the OTU level).  

 

Remarkable seasonal variation in gut microbiota diversity and composition 

We found remarkable seasonal variation in the gut microbiota composition at the genus 

level that clearly delineated samples collected in spring (February through April), early summer 

(May and June) and late summer (July and August) (Figure 1B). Consistently, principle 

coordinate analysis (PCoA) revealed a clear seasonal pattern in which samples were largely 

partitioned by season (Figure 3). Canonical correspondence analysis (CCA) confirmed that 

season explained significant variation of gut microbial composition (P < 0.001, Table 2). The 

seasonal variation was not simply due to the turn over of the host population because 

longitudinal data collected from the same individual also displayed a seasonal pattern. (Within 

season Jaccard distance 0.75 < Between season Jaccard distance 0.79, Wilcoxon rank sum test, P 

<2E-16, Figure 4).  

In order to identify key genera that were strongly associated with season, we performed 

random forest tests. Using genus composition, random forest models were able to differentiate 
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seasons with an overall accuracy of 83% (Table 3). We identified 6 abundant and 3 rare genera 

with strong discriminative power. Interestingly, the top discriminatory genera Oscillospira, 

Coprococcus and Clostridium all belonged to “core” taxa. 

 Using JTK_cycle, a nonparametric algorithm for detecting rhythmic elements in 

circadian clock studies, we confirmed that seasonal fluctuations in the abundance of these key 

genera were repeatable across years (Figure 5). In total, we found 15 genera showing a strong 

seasonal periodicity of 11-12 months (P < 0.001), including all highly discriminatory genera 

except unclassified Coriobacteriaceae. Many of the 15 genera were also core genera. Among 

them, Coprococcus and Oscillospira exhibited the largest periodic fluctuation in relative 

abundance (amplitude). As shown in Figure 6, there was a clear tradeoff of “core” genera 

Oscillospira and Coprococcus, which peaked in early summer and late summer respectively.  

The seasonal changes in gut microbiota occurred in parallel with the shift in red squirrel’s 

dietary composition (Figure 7). In spring, red squirrel mainly live on hoarded cones and 

mushrooms. In early summer, red squirrels add significant amount of fresh spruce buds and 

needles to their diet. In late summer, red squirrels gradually switch from hoarded cones in their 

diet to newly available cones. Mantel test showed that diet and gut microbiota compositions were 

significantly correlated (Bray-Curtis distance, r = 0.44, P=0.003). To further explore what 

specific components of the diet correlated with the changes to gut microbial community 

structure, we analyzed the association of food items with the seasonal rhythmic genera. The 

elevated level of Oscillospira correlated with increased buds intake in the early summer (R2 = 

0.36, P = 0.007). In contrast, the relative abundance of Coprococcus was positively associated 

with new cones and snow, and negatively associated with buds (R2 = 0.92, P = 4.8E-6). 

Percentage of truffle mushroom best predicted the levels of Clostridium in red squirrel gut 

microbiota (R2 =0.25, P = 0.03).  
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Alpha diversity (measured by Chao1) also displayed a distinct cyclical pattern 

(JTK_cycle: adjusted P value 4.5E-11, period 12 months, amplitude 101.0). Within each year, 

species richness reached minima in the early summer and maxima in the late summer (Figure 8). 

Interestingly, the overall microbial species richness decreased from 2008 to 2010, which 

coincided with the natural decrease in red squirrel population density over these years (2008: 

1.46 squirrels/ha; 2009: 1.15 squirrels/ha; 2010: 0.93 squirrels/ha).  

 

Seasonal OTU co-occurrence network 

To investigate how species interactions and the structure of red squirrel gut microbial 

community changed over time, we reconstructed OTU co-ocurrence network in each season. 

Analyses of OTU network revealed scale-free network structures in all three seasons (power law, 

R2 > 0.6). Despite the overall similarity in network structure (Supplementary table 1), the key 

hub species (species with most connections to other species) varied from season to season, 

indicating distinct species-species interactions in each season (Figure 9). In spring, a 

Coprococcus species (OTU 21475) was the most dominant hub in the network. In early summer, 

it faded out of the network and an Oscillospira species (OTU 54301) became the most dominant 

hub. Nevertheless, there was still notable continuity in the network transitions. For example, 

spring and early summer both had OTU 47644 (Unclassified Ruminococcaceae) as a prominent 

hub. Early summer and late summer had more hubs in common: OTU 67162 (Dorea), OTU 

100783 (Clostridium) and OTU 32425 (Unclassified Ruminococcaceae). Late summer and 

spring both had OTU 21475 as their most dominant hub. Interestingly but not surprisingly, most 

of the hub species belong to the core genera. 

Effect of food supplement on red squirrel gut microbiota 

In 3 out of the 6 study grids, peanut butter were supplied from October to May in order to 
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increase the over winter survival rate. The average population density in the grids with food 

supplement had a two-fold increase compared to the other three grids without supplement (With 

supplement: 3.13 squirrels/ha; Without: 1.58 squirrels/ha). To assess the effect of food 

supplement on gut microbiota, we performed PCoA analysis of 225 samples collected in May 

2008 from female squirrels in all 6 grids. Samples displayed clear separation by food supplement 

group (Figure 10A). Grids with food supplement had more Sutterlla and Ruminococcus, and less 

Coprobacillus, Clostridium and Anaerostipes (Wilcoxon rank sum test, FDR adjusted P<0.05).  

Biogeography of red squirrel gut microbiota 

To investigate whether red squirrel gut microbiota had any biogeographic structure, we 

carried out analyses on the same set of samples (n=225) described above. To control for potential 

confounding effects of food supplement and host relatedness (red squirrels disperse on average 

96 m from their mother’s territory), we only compare samples within the same food group and 

from unrelated individuals. Only one sample from each red squirrel was included to avoid 

artifacts caused by within individual comparison. 

In PCoA analysis, samples clustered by grid within each food group (Figure 10B). CCA 

analyses performed on grids within each food group separately confirmed that grid was a 

significant predictor of microbiota beta diversity (Table 2). Consistently, between-grid distances 

were significantly higher than with-grid distances (Jaccard distance: within-grid 0.75, between-

grid 0.77, P < 0.0001, Wilcoxon rank sum test). 

Next we investigated the effect of geographic distance on microbial diversity. Linear 

regression analysis revealed significant similarity-distance decays for both within and across 

grids (Figure 11). Every 1km increment in geographic distance resulted in 1.4 % increase in 

Jaccard distance within grids (P < 0.001) and only 0.2% increase between the grids (P < 0.001). 
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Individuality and maternal effect of gut microbiota   

Previous studies have shown that family members tend to have more similar gut 

microbiota than unrelated individuals and increased levels of host relatedness are associated with 

greater similarity in gut microbial communities.(Lee et al., 2011; Yatsunenko et al., 2012; Tims 

et al., 2013; Goodrich et al., 2014). We tested the effect of kinship and genetic relatedness on 

microbial diversity, taking advantage of the comprehensive pedigree information available for 

the red squirrel population in our study. To eliminate the seasonal and spatial effect, all 

comparisons were between samples within the same year, season and grid. We analyzed a total 

of 121 self pairs (relatedness coefficient r = 1, different sampling time), 59 mother–offspring 

pairs (r = 0.5), 35 father-offspring pairs (r = 0.5), 13 full sibling pairs (r = 0.5), 77 pairs of half-

siblings (r = 0.25, maternal: 37, paternal: 40) and 1293 pairs of unrelated individuals (r ~ 0).  

We found evidence of individual gut microbiota signatures. For 21 red squirrels, we 

analyzed multiple samples (range = 9 to 26 samples per individual; time span ranged from 83 

days to 828 days).  Samples collected from the same individual at different time points were 

more similar to each other than to other individuals (Figure 12, Wilcoxon rank sum test, FDR 

adjusted P = 2.5E-18). To further study how each individual’s microbiota changed over time, we 

carried out a time-decay analysis of microbial similarity. Samples from the same individual 

showed a rapid decrease in similarity within two weeks, and reached plateau after a few months 

(Figure 4), following a power law function (Jaccard distance = 0.69*Day^(0.023), R2 = 0.3, P < 

2E-16) similar to what has been observed in a previous study in human (Faith et al., 2013). 

Interestingly, except for the mother-offspring pair, microbial similarities of all other 

related pairs (i.e., father-offspring, half siblings and full siblings) were not significantly different 

from unrelated pairs (mother-offspring, FDR adjusted P =0.01; other related pairs, FDR adjusted 

P > 0.1, Figure 12), indicating that genetic relatedness of the host did not affect the gut microbial 
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composition. Consistently, Mantel test did not find any significant correlation between host 

relatedness and microbial similarity. On the other hand, mother-offspring pairs had significantly 

higher microbial similarity compared to all other pairs including the father-offspring pairs 

(Wilcoxon rank sum test, FDR adjusted P = 0.03) (Figure 12).  

 

Relative contribution of environmental and host factors  

We next performed PERMANOVA (“adonis”) on beta diversity matrices to assess the 

relative contribution of environmental factors (e.g. year and season) and host factors (e.g sex and 

age) simultaneously. Overall the results revealed that in wild red squirrel population, 

environmental factors explained 5~20 times more variations in gut microbial community 

structure than host factors (Table 4). When bacterial relative abundance was taken into 

consideration, season and year had more explanatory power (Jaccard: 4.1% by season and 2.6% 

by year; Bray-Curtis: 10% by season and 5% by year). This is consistent with our observation 

that the relative abundance of “core microbiota” fluctuated with season and year, but the 

membership was more stable. While explained additional variations in gut microbiota diversity, 

the contributions of host factors (sex and age) were relatively small. There remained a high 

percentage of variations that cannot be captured by our measurements (Jaccard: 92.4%; Bray-

Curtis: 83.8%). 

Discussion 

In this study, we focused on a well-characterized red squirrel population to assess the 

contribution of environmental and host factors in shaping gut microbiota structure. At the 

phylum level, red squirrel gut microbiota composition is broadly similar to those of other 

mammalian gut microbiota (Ley et al., 2008; Muegge et al., 2011; Delsuc et al., 2014), with 
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Firmicutes (88.6 %) and Bacteroidetes (9.0 %) being the two major phyla. This result is 

consistent with our present understanding that mammalian gut harbor a highly constrained set of 

bacterial phyla adapted to the gastrointestinal tract condition (Ley et al., 2008). Unlike wild mice 

dominated by genus Lactobacillus (Carey et al., 2013; Maurice et al., 2015), red squirrels have 

high level of genera Coprococcus (12.3%) and Oscillospira (6.2%), but very low level of 

Lactobacillus (0.88%). This might be due to their dietary preference, since red squirrels are 

herbivorous (more specifically granivorous) and primarily feed on seeds, young leaves and 

mushrooms, whereas wild mice are omnivorous.  

Notably, red squirrels have remarkably low variation in gut bacterial phyla and shared a 

core set of genera across time (year, season, host ages), space (grid) and family (Figure 2). Such 

a core set is rarely found in wild animal populations that usually experience large variation in 

their natural environmental conditions. A likely explanation for this observation is that red 

squirrels live in the boreal forest region with relatively low biological diversity (Pastor et al., 

1996), thus low diversity in their diet.  

We found a remarkable seasonal rhythm in red squirrel gut microbial composition, 

manifested by a tradeoff of the relative abundance of two core genera, Oscillospira and 

Coprococcus in early and late summers (Figure 6). Consistently, the network analyses revealed 

shifts in key hubs in early summer from Coprococcus to Oscillospira, and a swap in late summer 

(Figure 9). The seasonal rhythm in gut microbial structure is clearly associated with seasonal 

dietary changes. The shift in microbiota composition coincides with emergence of fresh spruce 

buds in early summer and fresh spruce cones in late summer (Figure 7). Accordingly, we found 

that the level of Oscillospira was positively correlated with buds, whereas the level of 

Coprococcus was positively correlated with new cones and snow, and negatively correlated with 

buds. Oscillospira are frequently found in cattle and sheep rumen and increase significantly in 
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relative abundance when hosts are feeding on fresh forage diet (Mackie et al., 2003), which is 

consistent with our findings. Species of Coprococcus genera are carbohydrates fermenters and 

producers of butyric and acetic acids (Holdeman and Moore, 1974).  

That fact that Oscillospira and Coprococcus are present in virtually all the samples we 

surveyed suggests that they were long-term gut residents and not foodborne. Supporting this, the 

same study found no evidence of Oscillospira on fresh forage (pasture grass) fed to cattle or in 

soil (Mackie et al., 2003). Our result suggests that red squirrel gut microbiota switch between 

alternative stable states in response to recurring seasonal dietary changes. This may resulted from 

continuous selective pressure on gut microbial community during host-microbiota coevolution. 

Gut microbiota adapted to seasonal dietary shift can rapidly shift their metabolic activity, provide 

the host dietary flexibility, maximize energy extraction and likely increase the fitness of the host-

microbe ecosystem.  

 Biogeographic patterns have been observed in human and house mice populations 

(Yatsunenko et al., 2012; Linnenbrink et al., 2013; Maurice et al., 2015; Zhang et al., 2015). All 

patterns were detected between populations living in different countries or continents. We found 

evidences for a weak but significant spatial structure at a much smaller local scale. Microbial 

composition varies across six study grids within a few kilometers. Moreover, a similarity-

distance decay relationship was found within a population. Distance-decay patterns in microbial 

communities can be driven by environmental factors that vary across space, as recapitulated by 

the hypothesis that “everything is everywhere, but the environment selects” (Becking, 1934). 

Alternatively, the spatial patterns can be due to dispersal limitation, as it allows historical effect 

to influence contemporary community structure. We have controlled for potential confounding 

environmental factors in our analysis (we only included samples from a single year, season and 

sex). Thus we think the most likely explanation for this biogeographic pattern is dispersal 
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limitation of gut microbes, although we cannot rule out unmeasured spatially structured 

environmental factors. Red squirrels defend territories vigorously with territorial calls, and have 

relatively limited direct interactions (Smith 1986) compared to animals in the other studies 

described above. Thus, it is not surprising that red squirrel gut microbiota might be constrained 

by stronger dispersal limitation, which could result in spatial structures at a small local scale.  

Island biogeography theory (MacArthur and Wilson, 1967) can be useful for 

understanding the microbial diversity if we view each individual gut as an island. Island theory 

posits that early colonizers could strongly influence the future community composition. Mother 

can make a large contribution to the species pool that first colonizes offspring. It has been 

recently proposed that maternal transmission of gut microbiota is universal in animals 

(Funkhouser and Bordenstein, 2013) and the effects of maternal transmission can be manifested 

over several generations (Ley et al., 2005). In our study, we found that gut microbiota of red 

squirrels were significantly more similar to those of their mother than to those of their father and 

unrelated individuals. This finding indicates not only that gut microbiota in red squirrel can be 

maternally transmitted, but also that the maternal effect persists to adulthood. This observation is 

consistent with the fact that female red squirrels raise offspring without any help from males. 

In contrast to findings in human populations (Goodrich et al., 2014), we found no 

evidence indicating host genetics influence gut microbiota diversity in red squirrels. Since 

mother and father were equally related to offspring, the genetic relatedness cannot explain higher 

microbial similarity observed in mother-offspring pairs. In addition, gut microbiota were not 

significantly different between father-offspring, full sibling, half sibling, and unrelated individual 

pairs.  
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Conclusion 

In summary, we performed a comprehensive survey of gut microbiota of a well-studied 

wild red squirrels population. Red squirrels harbor a typical rodent gut microbiota with a stable 

set of core genera. We discovered a remarkably strong seasonal rhythm in the gut microbial 

structure mainly associated with seasonal dietary changes, and a subtle but significant 

biogeographic pattern at a fine local scale indicative of limited gut microbial dispersal. Despite 

the dominant effect of environmental factors, we found clear signatures of individuality and 

maternal effect in red squirrel gut microbial communities. However, host genetics does not seem 

to be a significant driver. Taken together, this study contributes towards a better understanding of 

the various ecological forces underlying the temporal and spatial patterns of gut microbiota in 

natural environment. 

Findings from free-ranging wild animals could guide our future research focus. Follow 

up studies using red squirrels in captivity with well-controlled dietary intake, calorie content, and 

closlely monitored host physiology are necessary to understand the following questions. 1) Is 

diet driving the observed seasonal cycles in red squirrel gut microbiota? 2) Are compositional 

changes in gut microbiota causing differences in energy harvesting efficiency and host fitness? 

Answering these questions could provide insights towards a better understanding of how gut 

microbiota co-evolve with red squirrels in natural environment.  

 

 

Material and Methods 

Sample collection 

Subject description. Study subject were natural population of North American red squirrels in the 
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southwest Yukon (61° N 138° W) near Kluane National Park. Red squirrels in this area have 

been continuously monitored by the Kluane Red Squirrel Project since 1987 using a combination 

of live-trapping and behavioral observations. All squirrels were permanently marked with small 

metal ear tags and regularly monitored from March to September of each year. Several types of 

data including identity, sex, body mass, reproductive status, territory ownership and dietary 

information were collected. In this study, we collected 1,000 fecal samples from 363 individuals 

that span 3 years and 240 hectares. Samples used in our study were described below. A detailed 

description of the population can be found in (McAdam et al., 2007). 

Study grids. The study area consists of six 40 hectare grids (AG, KL, SU, CH, JO, LL) that are 

0.2~7.3 km apart from each other (Figure 13). Samples were collected mainly from two grids 

(KL: n=618; AG: n=232). Samples collected from the other four grids were used to study the 

biogeographic structure of microbiota between grids (JO: n=25, SU=25, CH=50, LL=50). In 

grids AG, LL and JO, peanut butter was provided as food supplement from October to May to 

experimentally increase the population density (Dantzer et al., 2013). The main study grid (KL) 

was not manipulated and therefore represents the natural environment for red squirrels.  

Sampling years and seasons. The seed of White spruce cones (Picea glauca) is the major food 

resource for red squirrels. White spruce is a masting tree species that produces a super-

abundance of cones in some years (mast years) and fewer to no cones in other years. Previous 

studies have shown that yearly variation in the spruce cone production has large ecological and 

evolutionary impacts on red squirrels (Boutin et al., 2006; Fletcher et al., 2013; Dantzer et al., 

2013). Our samples span from year 2008 to 2010, with 2010 being a mast year. Within each 

year, samples were collected in three seasons: spring (February through April), early summer 

(May and June) and late summer (July and August). 
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Diet information. The study area is located in a boreal forest dominated by white spruce (Picea 

glauca) and willows (Salix spp.). Red squirrels feed on the seeds in fresh white spruce cones in 

the fall and hoard them for consumption over winter (red squirrels do not hibernate) and in the 

next spring. Squirrels also feed on mushrooms, spruce buds, truffles, berries and a variety of 

items depending on their seasonal availability (Fletcher et al., 2013). Food items in feeding 

events were visually identified and recorded each year. Since individuals consume similar foods 

in roughly similar proportions, all feeding events from 2008 to 2010 were aggregated by months 

in our study to provide suitable estimates of the composition of diet. Red squirrels' diet includes 

14 food categories: (1) seeds of hoarded white spruce cones, (2) seeds of fresh white spruce 

cones, (3) hypogeous fungi (truffles), (4) spruce buds, (5) spruce needles, (6) spruce bark, (7) 

willow leaves, (8) willow buds, (9) Aspen leaves, (10) bearberry flowers, (11) white spruce 

witches broom rust caused by the fungus Chrysomyxa arctostaphyli, (12) animal material, (13) 

snow, and (14) unidentifiable items (Figure 7).  

Territory. Adult red squirrels defend exclusive territories around a central larder hoard 

(“midden”) containing cached white spruce cones for over winter survival. A juvenile failing to 

acquire a territory before its first winter will not survive. On average only 26% of offspring 

survive to 1 year of age. The location of each animal’s midden was recorded and used to estimate 

the geographic distance between individuals.  

Age. The average wild red squirrel lifespan is 5 years (maximal: 10 years). Juveniles usually 

leave the natal area 70 days after birth, and the mean dispersal distance is 96 ± 94 m from the 

natal area (Berteaux and Boutin, 2000). Red squirrels reach sexual and reproductive maturity at 1 

year old. In this study, we collected samples from individuals 0-6 years of age. The age 

estimation was accurate to within days. 
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Sex and reproductive status. Red squirrels are sexually monomorphic in adult body mass, and 

there is no sex-bias in natal dispersal. During breeding season (March to May), males invade the 

territories of females and chase them. Females raise young without any help from males. During 

each capture event, the reproductive status of adult females was determined using nipple status 

and recorded as non-breeding, pregnant (fetus palpable in abdomen), lactating or weaning.  

Pedigree. 

Pedigree in grid KL from 2008 to 2010 includes 124 individuals, with 78 known maternal links 

and 83 known paternal links. Maternity was determined by behavior observation before the 

emergence of juvenile squirrels from their natal areas. Paternity was assigned based on 16 

microsatellite loci using CERVUS 3.0 with >= 95% confidence (detailed in Lane et al., 2008) 

 

Fecal sample collection, DNA extraction and 16S rRNA sequencing 

Fecal samples collected from underneath live traps were placed into 1.5 mL vials 

individually using forceps. Fecal samples collected in the colder months (January-April) were 

generally frozen upon collection. In the warmer months (May-September), the vials were kept on 

ice and then transferred to a -20 C freezer within 5 h of collection.  

We extracted DNA from fecal samples in a 96-well format using the ZR-96 Fecal DNA 

Kits (Zymo Research, Orange, CA) following the manufacturer’s protocol.  The V1-V3 

hypervariable regions of the 16S rRNA gene were amplified using two universal primers 27F 

(5’-AGRGTTTGATCMTGGCTCAG-3’) and 534R (5’-TTACCGCGGCTGCTGGCAC-3’). We 

added a unique 8bp barcode to each primer to tag the samples and used a 50 uL reaction for each 

PCR amplification by QIAGEN Taq polymerase (Qiagen Inc, CA). PCR conditions consisted of 

94°C for 3 min, followed by 25 cycles of 94°C for 30 s, 57°C for 30 s, and 72°C for 60 s, with a 

final extension of 5 min at 72°C. 16S rRNA amplicons from different samples were pooled in 
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equal molar ratios, then gel purified and sequenced on an Illumina MiSeq platform using the 

300bp paired-end (PE) protocol. All liquid transfer steps were performed on a Biomek NXp 

liquid handling station (Beckman-Coulter Inc., Fullerton, USA). 

 

Sequence processing, quality control, and OTU classification 

We filtered sequence reads by base quality using TRIMMOMATIC 0.32 with settings of 

LEADING = 3, SLIDINGWINDOW = 10:20, and MINLEN = 50 (Bolger et al., 2014). Paired-

end reads passing the quality filter were merged using FLASH (-r 301 -f 447 -s 45 -x 0.05) 

(Magoč and Salzberg, 2011). The successfully merged reads were assigned to samples by 

barcodes and processed using the QIIME pipeline (Caporaso et al., 2010). We identified 

chimeric sequences using usearch (Edgar et al., 2011) implemented in QIIME with both de novo 

and reference-based detection algorithms. Only those sequences that were flagged as non-

chimeras with both detection methods were retained. We then removed non-16S rRNA 

sequences using hmmsearch (Eddy, 1998) against a custom-made 16S rRNA gene model. The 

remaining reads were clustered to operational taxonomic units (OTUs) by UCLUST (Edgar, 

2010) using an identity threshold of 97%. The most abundant sequence of each OTU was 

selected as the representative sequence, which was then classified using the RDP classifier 

(Wang et al., 2007). OTUs belonging to mitochondrion or chloroplast were removed. To remove 

sequencing effort heterogeneity, samples were rarefied to 4,000 reads per sample. Of our initial 

set of 1000 samples, three were excluded as outliers because the average distance of each of 

these three samples from other samples were more than 1.5 times the interquartile range above 

the higher 75% percentile. During rarefaction, 92 samples were removed due to insufficient 

number of reads, leaving a final dataset of 905 samples.  
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Effect of environmental/host factors on gut microbial diversity 

We measured alpha diversity by Chao1 index. The Chao1 index estimates species 

richness based on the number of observed OTUs in each sample using the formula:  

𝑆!!!"! = 𝑆!"# +
𝑛!(𝑛! − 1)
2(𝑛! + 1)

 

where S!"#$% is the estimated richness, S!"# is the observed number of species, n! is the number 

of singleton taxa (taxa represented by a single read in that community), and n! is the number of 

doubleton taxa. If a sample contains many singletons, it is likely that more undetected OTUs 

exist, and the Chao 1 index will estimate greater species richness than it would for a sample 

without rare OTUs. To compare beta diversity among samples, we first excluded any OTUs with 

less than 5 sequence reads. We then constructed beta diversity matrices from OTU table using 

four distance metrics: Jaccard, Bray-Curtis, unweighted Unifrac and weighted Unifrac distance 

(Lozupone and Knight, 2005).  

To test the predictors of gut microbial composition, we first performed exploratory 

Principle Coordinate Analysis (PCoA), followed by hypothesis testing via Canonical 

Correspondence Analysis (CCA) (M. W. Palmer, 1993). PCoA was performed on all beta 

diversity matrices in QIIME. CCA was performed on the relative abundance of bacterial taxa in 

each sample and host associated metadata using the vegan package in R. We carried out CCA 

analysis at bacterial phylum, genus, and OTU levels. For each test, the best model was selected 

using the log likelihood criterion, and the significance of each predictor was assessed by 999 

permutation tests.  

To assess the relative contribution of environmental and host factors to the variation of 

microbial community, we performed PERMANOVA on Jaccard and Bray Curtis distance 

matrices using the “adonis” function of the vegan package implemented in R (Oksanen et al., 
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2007).The percentage of variation explained by each factor was measured using R2, and the 

significance (P value) of each factor was obtained by 999 permutation tests.   

 

Identifying bacterial taxa with seasonal rhythms 

We used supervised random forest model implemented in QIIME 

(supervised_learning.py) to identify signature genera in each of the three seasons: spring, early 

summer and late summer. Random forest model classified each fecal sample into one of three 

seasons using models built on the relative abundance of each genus. Model accuracy was 

calculated using the 10-fold cross validation error estimate, which was an approximation of how 

frequently a sample was misclassified. The discriminatory power of each genus was assessed by 

comparing the classification accuracy with and without including the genus in the model. Genera 

that led to more loss of classification accuracy were considered to be more discriminatory.  

To test whether bacterial genera identified above had seasonal rhythms, we used a 

nonparametric test JTK_CYCLE (Hughes et al., 2010). JTK_CYCLE has been used in detecting 

rhythmic elements in circadian clock studies (Thaiss et al., 2014). We tested seasonal periodicity 

using a window of 11-12 months. Benjamini-Hochberg procedure was used to control the false 

discovery rate.  

 

Correlation between microbial composition and diet  

To test possible associations between dietary items and rhythmic genera identified above, 

we constructed linear models on each genus. We began with the full model including all dietary 

items as the explanatory variables and genus relative abundance as the response variable. Non-

significant predictor variables were excluded stepwise from the saturated model using the ‘step’ 

command, and the best model with the lowest AIC score was selected. We checked model 
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assumptions by examining the distribution of residuals and plotting fitted values against 

residuals. We also performed Mantel tests to evaluate the correlation between the distance 

matrices built based on dietary item variation and bacterial beta diversity distances. The 

significance of Mantel’s r was assessed with 999 permutations. 

 

Spatial structure of microbial communities 

As red squirrel are territorial and have home ranges smaller than study grids, spatial 

variation in environment within/across grids could affect gut microbial ecology. To study the 

biogeographic structure of the gut microbial communities, we examined the correlation between 

host territory geographic distance and gut microbiota distance matrices with Mantel test, with the 

significance of Mantel’s r assessed with 999 permutations. To control for temporal variation, we 

restricted our analysis to samples collected within the same year and season. Only one sample 

from each red squirrel was included to avoid artifacts caused by within individual comparison. 

The decay of bacterial community similarity with respect to geographic distance was plotted 

within and between grids. The rate of distance-decay of the bacterial communities was calculated 

as the slope of the linear regression of the beta diversity similarity over the geographic distance. 

 

Effect of Kinship on gut microbiota 

 To assess the effects of genetic relatedness, we calculated pairwise relatedness from the 

extensive pedigree data available for red squirrel in Grid KL using the R package pedantics. We 

then performed Mantel tests to evaluate the correlation between the relatedness matrix and beta 

diversity distance matrices. To further assess the effect of kinship, we divided pairs into six 

groups: mother-offspring (relatedness coefficient r = 0.5, n = 59), father-offspring (r = 0.5, n = 

35), full siblings (r = 0.5, n = 13), half siblings (r = 0.25, n = 77) and unrelated (r ~ 0, n = 1293). 
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Jaccard distances of each group were compared with non-parametric Kruskal-Wallis tests with 

post hoc comparisons, and corrected using Benjamini-Hochberg false discovery rate (FDR). To 

control for temporal variation, we restricted all the above analyses to samples collected within 

the same year and season. 

 

OTU co-occurrence network  

Microbial network of significant co-occurrence and co-exclusion interactions was built 

using the CoNet 1.1.0 plugin (Faust et al., 2012) in Cytoscape (Smoot et al., 2011). Networks 

were built for each season separately, and only abundant OTUs (average relative abundance > 

0.1%) were used. The analyses were carried out with the following parameters: 1,000 initial top 

and bottom edges; five similarity measures (Spearman, Pearson, Mutual information; 

Kullbackleibler, and Bray Curtis); null distribution generated by 1,000 permutations with 

renormalization; 1,000 iterations for bootstraps. Networks built with different similarity 

measures were merged using the Simes method (Sarkar and Chang, 2012) and a Benjamini-

Hochberg false discovery rate (FDR) cutoff of 0.05. NetworkAnalyzer was used to analyze the 

topological parameters of the resulting networks (Assenov et al., 2008). 
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Tables and figures 

Table 1. Characteristics of red squirrel in main study grid KL (n= 549).  

 

Characteristics Number of samples 
Sex   

Male 220 
Female 329 

Year  
2008 240 
2009 120 
2010 189 

Season  
Spring 233 

Early summer 204 
Late summer 112 

Age  
0 15 
1 166 
2 110 
3 162 
4 57 
5 37 
6 2 

Pedigree information  
Both dam and sire known 248 

Dam or Sire known 116 
Unknown 185 
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Table 2. CCA analysis of environment and host traits that predicted variation in gut microbial 

community composition.  

 

Dataset Number of samples Factors tested Significant factors  

Grid KL 549 
age, season, sex, 

year  

season (P<0.001), 

year (P<0.001), 

sex (P<0.001) 

Grid KL (female with 

reproductive status) 
284 

age, season, year, 

reproductive status 

season (P<0.001), 

year (P<0.001) 

Grid with food 

supplement  

(AG, LL, JO; 2008, 

female, early summer) 

112 age, grid grid (P<0.001) 

Grid without food 

supplement  

(KL, SU, CH; 2008, 

female, early summer) 

113 age, grid grid (P<0.003) 
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Table 3. Highly discriminative genera for predicting seasons by random forest test. 

 

Genera 
Mean % increase in error 

on removal (± SD) 

Relative abundance in 

Spring/Early Summer/Late Summer 

Oscillospira 21.88 (± 1.22) 2.6%/15.4%/1.4% 

Butyricicoccus 11.97 (± 1.33) 0.12%/0.29%/0.03% 

Coprococcus 11.92 (± 1.04) 13.0%/6.3%/22.8% 

Unclassified 

Ruminococcaceae 
10.40 (± 0.81) 10.3%/9.2%/7.5% 

Clostridium 10.26 (± 1.22) 1.9%/5.4%/4.0% 

Unclassified 

Coriobacteriaceae 
5.1 (± 0.76) 0.015%/0.05%/0.004% 

Faecalibacterium 4.89 (± 0.45) 1.1%/2.0%/1.0% 

Ruminococcus 4.44 (± 0.54) 0.7%/1.3%/0.6% 

Parabacteroides 4.02 (± 0.49) 0.18%/0.05%/0.14% 
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Table 4. Percentage variation in beta diversity explained by environmental and host factors for 

the KL dataset (n = 549 samples). Jaccard distance was calculated based on OTU membership, 

and Bray-Curtis distance was calculated based on OTU relative abundance. 

 

Beta diversity Factors % Variance explained P value 

Jaccard Year 2.6  0.001 

Season 4.1  0.001 

Age 0.3  0.001 

Sex 0.4  0.001 

Bray-Curtis Year 5  0.001 

Season 10  0.001 

Age 0.3  0.003 

Sex 0.9  0.001 
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Figure 1. Bacterial composition of 553 red squirrel fecal samples from grid KL that span year 

2008 to 2010. Each column represents one sample. Y-axis values represent the relative 

abundance of each bacterial taxon. Samples are sorted by the sampling time. (A) Phylum level 

(B) Genus level. 
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Figure 2. Relative abundance and prevalence of bacterial genera in red squirrel microbiota. The 

top ten most abundant genera are labeled with their genus names. 
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Figure 3. Principal coordinate analyses (PCoA) of red squirrel gut microbial communities in grid 

KL based on Bray-Curtis distance. Samples are colored by sampling season. The percentage of 

the variation explained by the first three coordinates are indicated on the axes.  
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Figure 4. Time-decay of the red squirrel gut microbial communities. Each dot represents a 

comparison between two samples of the same individual collected at different time points. The 

colors of dots represent the combination of seasons when the two samples were collected. Y-axis 

represents the microbiota similarity. The similarity decay as a function of time best fits a power 

law (blue line). The shade shows the 95% confidence bounds.  
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Figure 5. Bacterial genera showing strong seasonal rhythms. X-axis indicates the fluctuation 

amplitudes and Y-axis indicates the statistical significance of the rhythm. The size of dot 

represents the average relative abundance of each genus. 
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Figure 6. Oscillation of two core genera Coprococcus and Oscillospira over time.  
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Figure 7. The composition of red squirrel diet across three years aggregated by month. Each 

color represents a dietary item.  
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Figure 8. Seasonal rhythm in the alpha diversity of red squirrel gut microbiota. Species richness 

is estimated by Chao1 index.  
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Figure 9. Key hub species in OTU co-occurrence network vary by season. The co-occurrence 

network is displayed using Cytoscape with the Prefuse Force Directed (edge betweenness) 

layout. Negative correlations are represented by red edges and positive correlations by green. 

Each node represents an OTU with >0.1% relative abundance and is colored by bacterial family 

to which it belongs. Key hub OTUs are labeled with their IDs, genus names and the numbers of 

positive and negative edges.  
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Figure 10. Principal coordinate analyses (PCoA) of red squirrel gut microbial communities 

across 6 grids based on Jaccard distance. Samples are colored by (A) food supplement status (B) 

grids. The percentage of the variation explained by the first three coordinates are indicated on the 

axes. 
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Figure 11. Distance-decay of the red squirrel gut microbial communities within and between 

grids. Each dot represents a comparison between samples collected at different geographic 

locations. Y-axis represents the microbiota similarity. The lines denote the linear regressions of 

microbial similarity over the geographic distance. 
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Figure 12. Red squirrel gut microbiota exhibits individuality and maternal effect. Box-and-

whisker plots show pairwise Jaccard distances within each relationship groups. Significance 

values are from non-parametric Kruskal-Wallis tests (FDR adjusted). * P<0.05, ** P<0.01, *** 

P<0.001.  
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Figure 13. Locations of study grids along the Alaska Highway in Southwest Yukon (61° N 138° 

W) near Kluane National Park. (Adopted from Villette, 2013) Each grid is labeled with the 

number of samples collected and the food supplement status.  
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Supplementary information 

Supplementary Table S1. Properties of OTU networks in three seasons. 

 

Network properties Spring Early summer Late summer 

Clustering coefficient 0.354 0.355 0.446 

Number of nodes 189 188 162 

Number of edges 

(positive/negative) 

1385 (785/600) 1716 (966/750) 1283 (805/478) 

Network density 0.078 0.098 0.098 

Network heterogeneity 0.967 0.889 0.975 

Network diameter 5 4 5 

Network radius 3 3 3 

Network centralization 0.41 0.361 0.353 

Characteristic path length 2.316 2.257 2.297 

Average number of neighbors 14.656 18.255 15.84 

Shortest paths 35532 (100%) 35156 (100%) 26082 (100%) 
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Chapter 4.  Does adaptive radiation of a host lineage promote ecological diversity of its 

bacterial communities? A test using gut microbiota of Anolis lizards 
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Abstract 

Adaptive radiations provide unique opportunities to test whether and how recent ecological and 

evolutionary diversification of host species structures the composition of entire bacterial 

communities. We used 16S rRNA gene sequencing of fecal samples to test for differences in the 

gut microbiota of six species of Puerto Rican Anolis lizards characterized by the evolution of 

distinct “ecomorphs” related to differences in habitat use. We found substantial variation in the 

composition of the microbiota within each species and ecomorph (trunk-crown, trunk-ground, 

grass-bush), but no differences in bacterial alpha diversity among species or ecomorphs. Beta 

diversity analyses revealed subtle but significant differences in bacterial composition related to 

host phylogeny and species, but these differences were not consistently associated with Anolis 

ecomorph. Comparison of a trunk-ground species from this clade (A. cristatellus) with a distantly 

related member of the same ecomorph class (A. sagrei) where the two species have been 

introduced and are now sympatric in Florida revealed pronounced differences in the alpha and 

beta diversity of their microbiota despite their ecological similarity. Comparisons of these 

populations with allopatric conspecifics also revealed geographic differences in bacterial alpha 

and beta diversity within each species. Finally, we observed high intra-individual variation over 

time and strong effects of a simplified laboratory diet on the microbiota of A. sagrei. Collectively, 

our results indicate that bacterial communities are only weakly shaped by the diversification of 

their lizard hosts due to the strikingly high levels of bacterial diversity and variation observed 

within Anolis species. 
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Introduction 

 Gut microbiota are essential to the health and development of their hosts (Turnbaugh et 

al. 2006; Qin et al. 2010; Hooper et al. 2012), yet we know relatively little about the ecological 

and evolutionary processes that structure these important bacterial communities. Recent 

comparative studies show that the similarity of gut microbiota among host species often mirrors 

the host phylogeny, suggesting that hosts and their microbiota coevolve together (Ley et al. 

2008; Degnan et al. 2012; Amato 2013; Sanders et al. 2014). This association between host 

phylogeny and microbiota could be due to vertical transmission of bacteria, as observed in the 

case of co-diversification of Helicobacter pylori with humans (Falush et al. 2003), as well as 

phylogenetic conservatism in factors such as diet and habitat, which can strongly influence gut 

microbial communities (Degnan et al. 2012; Sanders et al. 2014). Adaptive radiations may 

provide an informative framework in which to simultaneously explore the ecological and 

evolutionary factors that shape bacterial communities because they are comprised of closely 

related host species that have diverged to fill different ecological niches.   

Lizards in the genus Anolis represent a classic example of adaptive radiation, having 

diversified into nearly 400 morphologically and ecologically diverse species that occur 

throughout Central and South America and islands of the Caribbean (Losos 2009). On the four 

major islands of the Greater Antilles (Cuba, Jamaica, Hispaniola, and Puerto Rico), a key feature 

of this radiation is the convergent evolution of the same ‘ecomorphs’ (morphologically and 

behaviorally similar species that share similar ecological niches, but are not necessarily close 

phyletically; Williams 1972; 1983) across different islands (Losos et al. 1998; Losos 2009). 

These ecomorphs are classified according to their partitioning of the spatial habitat, and each of 

the four Greater Antillean islands contains independently derived representatives from most of 
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the six major ecomorph classes: crown-giant, trunk-crown, trunk, trunk-ground, twig, and grass-

bush (Fig. 1A). Although most anoles are insectivorous dietary generalists, ecomorphs may 

differ in foraging mode (Losos 2009), and partitioning of trophic resources has been observed 

both within and among sympatric Anolis species (Schoener 1967; 1968; Stamps et al. 1997). 

This, along with the fundamental differences in habitat use that characterize ecomorphs, suggests 

that anoles may provide an intriguing test of the extent to which the evolutionary and ecological 

diversification of a host lineage structures the biodiversity of entire bacterial communities. 

 To explore this idea, we sequenced bacterial 16S rRNA genes from anole fecal samples 

to compare microbiota across six sympatric Anolis species on Puerto Rico. These species are 

members of a single clade that radiated on Puerto Rico and consist of two sister species classified 

as trunk-crown ecomorphs (A. evermanni, A. stratulus), two sister species classified as grass-

bush ecomorphs (A. krugi, A. pulchellus), and two species classified as trunk-ground ecomorphs 

(A. cristatellus, A. gundlachi, Fig. 1B). Hence, we predicted that bacterial communities would be 

more similar within than among these three ecomorph pairs, a difference that could reflect the 

phylogenetic affinity and/or ecological similarity of each pair. Next, to test whether 

phylogenetically distant but ecologically similar species differ in their microbiota when 

compared in sympatry, we capitalized on the invasion of southern Florida by two trunk-ground 

ecomorphs from different sources in the Greater Antilles: A. sagrei, which has been repeatedly 

introduced to southern Florida from Cuba beginning about 75 years ago (Lee 1985; Kolbe et al. 

2004), and A. cristatellus, which was introduced from Puerto Rico about 40 years ago (Kolbe et 

al. 2012). We also tested for effects of local environment by comparing these two southern 

Florida populations with allopatric conspecifics in northern Florida (A. sagrei) and Puerto Rico 

(A. cristatellus). Finally, to assess possible sources of intraspecific variation in microbiota, we 

conducted two further studies on A. sagrei. First, we tested for temporal variation in bacterial 
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communities of free-living individuals by sampling, releasing, and resampling the same animals 

within a week of initial capture. Second, we compared the microbiota of free-living A. sagrei to 

those of individuals that we maintained in captivity for over a year on a simplified diet of 

domestic crickets. This allowed us to assess both overall dietary effects on the microbiota and the 

extent of variation among individuals when controlling for any differences in diet.  

	

Results 

General patterns in Anolis microbiota 

We analyzed bacterial composition in 121 anole fecal samples (Table 1). From these 

samples, we generated a total of 2,662,283 high-quality reads, yielding a median of 15,157 reads 

per sample. Bacterial communities of anoles were complex, averaging 105 unique 97% OTUs 

per 1,000 sequences. Species richness estimated by Chao1 varied substantially among samples 

from 22 to 1,106 (mean = 209, SD = 137), and the Shannon index also varied substantially from 

0.14 to 6.57 (mean = 3.63, SD = 1.60). We also observed considerable variation in bacterial 

composition, such that only 8 OTUs were shared by greater than 50% of wild anole samples (3 

Bacteroides spp., 1 Citrobacter sp., Clostridium perfringens, Eubacterium dolichum, and 2 

unclassified taxa in Peptostreptococcaceae and Lachnospiraceae). The average Jaccard distance 

between pairs of samples collected in the wild was 0.93, which means that, on average, any two 

samples only shared 7% of their bacterial OTUs. Exclusion of the rarest 5% of OTUs lowered 

the average Jaccard distance to 0.91. Taxonomic assignment revealed representatives from 22 

bacterial phyla and 251 genera (Fig. 2; Appendix S2). The vast majority of sequences (95%) 

belonged to the bacterial phyla Firmicutes (61.1% of reads), Proteobacteria (19.1%), and 

Bacteroidetes (14.8%). Of the 251 genera identified, the most abundant were: Bacteroides 
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(10.1%), Citrobacter (9.6%), Clostridium (8.8%), Lactococcus (4.6%), Parabacteroides (3.0%), 

Eubacterium (2.5%), Enterococcus (2.3%), Bacillus (2.2%), Dorea (2.1%), Blautia (2.0%), 

Staphylococcus (1.7%) and Enterobacter (1.6%).  

 

Comparison of ecomorphs on Puerto Rico 

	 Microbiota were highly variable both within and among Puerto Rican species and 

ecomorphs when compared at the level of bacterial phylum, family, and genus (Fig. 2A). We 

found no differences in alpha diversity among ecomorphs or species (nested within ecomorph) 

when assessed using either the Chao1 index (ecomorph: F2,75 = 0.64; P = 0.53; species: F3,75 = 

0.26, P = 0.85; Fig. 3A) or the Shannon index (ecomorph: F2,75 = 0.15, P = 0.86; species: F3,75 = 

0.26; P = 0.85; Fig. 3B). Moreover, visual inspection of PCoA plots revealed no obvious 

clustering of bacterial beta diversity by ecomorph or species (Fig. 3C-D). When comparing 

within- and between-group Jaccard and UniFrac distances, we found slightly but significantly 

lower distances within species than between species (Fig. 3E-F), though distances within 

ecomorphs were equivalent to distances between ecomorphs (after removing all within-species 

comparisons; Fig. S3). These results were consistent irrespective of whether we included or 

excluded two species (A. gundlachi and A. pulchellus; Fig. S3) exhibiting high within-species 

distances that also gave rise to high between-species distances (Fig. S4). Accounting for OTU 

abundance using weighted UniFrac distances tended to homogenize within-species distances 

across species and reduce the difference in within- versus between-species distances (Fig. 3F), 

indicating that rare OTUs were driving differences in microbiota among species. Removal of the 

rarest 5% of bacterial OTUs had a similar effect in reducing the difference in within- versus 

between-species distances (Fig. S5), but all other patterns in beta diversity remained essentially 

unchanged when excluding rare OTUs (Fig. S5) Mantel tests revealed a weak but significant 
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association between genetic distances calculated from the Anolis phylogeny and both Jaccard (r 

= 0.1299; P < 0.001; excluding rare OTUs: r = 0.1291; P < 0.001) and unweighted Unifrac 

distances (r = 0.1135; P < 0.001; excluding rare OTUs: r = 0.1068; P < 0.001), indicating a weak 

effect of host phylogeny on composition of the microbiota.  

 

Comparison of convergent ecomorphs in sympatry and allopatry 

	 Comparison of two distantly related trunk-ground ecomorphs (A. cristatellus and A. 

sagrei) in sympatry and allopatry revealed pronounced effects of species and location on alpha 

and beta diversity of their bacterial communities. In southern Florida, where both species are 

sympatric, A. cristatellus exhibited a higher Chao1 index (F1,20 = 6.92; P = 0.016; Fig. 4B), but 

the two species did not differ in Shannon indices (F1,20 = 0.14; P = 0.710; Fig. 4C). PCoA plots 

for these sympatric populations revealed distinct clustering of beta diversity by species (Fig. 4D). 

Within-species distances for A. cristatellus were significantly lower than those for A. sagrei 

when measured as Jaccard distances (Fig. 4G) and as unweighted Unifrac distances (P < 0.0001; 

data not shown), but not as weighted Unifrac distances (Fig. 4G), indicating that species 

differences were driven in part less abundant bacterial OTUs. Nonetheless, these patterns 

persisted even after exclusion of the rarest 5% of OTUs. Comparison of within- and between-

species distances revealed that A. cristatellus individuals were more similar to one another than 

to heterospecific A. sagrei individuals (Fig. 4G). 

In allopatric comparisons, the population of A. cristatellus from southern Florida 

exhibited a higher Chao1 index (F1,27 = 10.97; P = 0.002; Fig. 4B) and Shannon index (F1,27 = 

13.14; P = 0.001; Fig. 4C) than the population from Puerto Rico. Likewise, the population of A. 

sagrei from southern Florida exhibited a marginally higher Chao1 index (F1,22 = 4.33; P = 0.049; 

Fig. 4B) and Shannon index (F1,22 = 3.44, P = 0.077; Fig. 4C) than the population from northern 
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Florida, though these minor population differences in A. sagrei were not significant following 

correction for multiple comparisons (Fig. 4B-C). PCoA plots revealed pronounced clustering by 

geographic location in A. cristatellus (Fig. 4F), but not in A. sagrei (Fig. 4E). Regardless of the 

measure of beta diversity, A. sagrei individuals from northern Florida were more similar to one 

another than to individuals from southern Florida, whereas A. sagrei individuals from southern 

Florida were no more similar to one another than to conspecifics from northern Florida (Fig. 

4H). Likewise, A. cristatellus individuals from southern Florida were more similar to one another 

than to individuals from Puerto Rico, whereas individuals from Puerto Rico were no more 

similar to one another than to conspecifics from southern Florida when using Jaccard distances 

(Fig. 4I). Only when using weighted UniFrac distances in A. cristatellus (Fig. 4I) did we observe 

a consistent tendency for conspecifics within each population to resemble one another more 

strongly than they resembled conspecifics from another population. Patterns in beta diversity for 

allopatric comparisons remained essentially unchanged when excluding the rarest 5% of OTUs. 

  

Temporal variation in individual gut microbiota  

Resampling of five A. sagrei individuals from northern Florida within a week of their 

initial capture revealed pronounced intra-individual variation in bacterial composition at the 

phylum and genus levels (Fig. S6). Analyses of beta diversity revealed that within-individual 

differences in bacterial OTUs were consistently lower than between-individual differences for 

Jaccard (mean within = 0.59, mean between = 0.88), unweighted UniFrac (0.46, 0.65), and 

weighted UniFrac distances (0.31, 0.48). Nonetheless, on average, only 72% of the same 

bacterial phyla and 53% of the same bacterial genera were present at both time points in any 

individual anole (average Jaccard distance = 0.28 at phylum level, 0.47 at genus level; Fig. S6). 

 



	 	 	
	
	
	

130	

Comparison of wild and captive anoles 

Comparison of microbiota between wild A. sagrei and captive A. sagrei maintained in the 

laboratory on a simplified diet of domestic crickets revealed higher Shannon indices in wild 

anoles (F1,23 = 8.82, P = 0.007), but no difference in Chao1 indices (F1,23 = 2.186, P = 0.153). 

Individuals maintained in the laboratory also exhibited less variance in bacterial diversity relative 

to free-living A. sagrei (Brown-Forsythe test for unequal variances in Shannon indices: F1,22 = 

5.79: P = 0.025). PCoA analysis revealed a clear separation of lab and free-living A. sagrei along 

PC1, though captive anoles still harbored microbiota that were distinct from their cricket diet 

(Fig. 5A). Within-group distances were lower in the lab than in free-living anoles, irrespective of 

whether they were calculated as Jaccard or UniFrac distances, and within-group distances were 

lower than between-group distances using Jaccard and unweighted UniFrac metrics (Fig. 5B). 

Discussion 

 We examined 121 anoles representing 7 species from Puerto Rico and Florida to test 

whether and how the ecological and evolutionary diversification of a host lineage influences the 

composition of its bacterial communities. We found that populations and species differed subtly 

in both alpha and beta diversity of their microbiota, and that species differences in beta diversity 

were associated with genetic distances estimated from the host phylogeny, as observed in other 

taxa (Yildirim et al. 2010; Degnan et al. 2012; Sanders et al. 2014). Nonetheless, the major 

finding to emerge from our study is that bacterial diversity and intraspecific variation in 

community composition are strikingly high for the microbiota of Anolis lizards. On average, any 

two conspecific anoles from Puerto Rico shared only 10% of their bacterial OTUs, and less than 

1% of OTUs appeared in greater than 50% of all individual samples. Moreover, differences in 

bacterial composition between conspecific individuals were generally comparable to those 
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between heterospecific individuals. In comparison, nestmates of turtle ants (genus Cephalotes) 

shared an average of 34% of their bacterial OTUs and this consistency in gut microbiota 

extended from the colony to the genus level of the host (Sanders et al. 2014). Accordingly, in 

turtle ants, there was a strong correlation between gut microbiota and the host phylogeny (Mantel 

test r ≈ 0.5) (Sanders et al. 2014). In contrast, we found that the association between bacterial 

composition and host phylogeny was much weaker in a clade of Anolis lizards from Puerto Rico 

(Mantel test r ≈ 0.1), presumably due to high bacterial variation within each species, rather than 

low variation across species (e.g., Fig 2; Appendix S2).  

In other host species, changes in habitat, such as those induced by deforestation, can 

significantly alter gut microbiota on relatively short ecological timescales (Amato et al. 2013). 

Over longer evolutionary timescales, broad convergence in gut microbiota has been documented 

in association with the evolution of myrmecophagy across several mammalian lineages (Delsuc 

et al. 2014), and other broad dietary classifications (e.g., carnivory, herbivory, omnivory) also 

explain significant variation in mammalian gut microbiota (Ley et al. 2008; Muegge et al. 2011; 

Delsuc et al. 2014). Likewise, gut microbiota of fruit-feeding Drosophila species differ from 

those of flower-feeding species (Chandler et al. 2011). These examples of habitat and diet 

shaping gut microbiota on ecological and evolutionary timescales stand in contrast to our finding 

that microbiota of Anolis lizards did not differ in any obvious fashion with respect to host 

ecomorph. Moreover, sympatric members of the same ecomorph class often differed in bacterial 

beta diversity, despite their presumed similarity in habitat use (Fig. 3; Fig. 4D,G). Major 

divergences in the evolution of this Anolis clade on Puerto Rico likely date back millions to tens 

of millions of years (Brandley & de Queiroz 2004; Losos 2009). Therefore, the lack of obvious 

separation of Anolis microbiota by ecomorph is unlikely to be the result of an insufficient 

evolutionary timescale for divergence.  
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We suggest that the lack of clear separation of microbiota by ecomorph is most likely due 

to high intraspecific variation in bacterial gut communities, which may in turn be due to a 

tendency for Anolis species to function as dietary generalists, despite their spatial segregation 

with respect to habitat niches (Losos 2009). Detailed analyses of stomach contents from Puerto 

Rican anoles reveal that most species eat a wide variety of arthropod taxa and other food items 

(e.g., snails, seeds), often with no particular prey item consistently dominating the diet (Wolcott 

1923; Lister 1981; Losos 2009). More recently, sequencing of arthropod 16S DNA from fecal 

samples, which is analogous to our approach for bacterial 16S DNA, was used to characterize the 

diet of Anolis sagrei (Kartzinel & Pringle 2015). This approach revealed a diverse diet 

containing at least 217 molecular OTUs from nine arthropod orders, but only three of these 

OTUs were frequent enough to occur in >50% of the individuals sampled, whereas 180 were 

found in <5% of the individuals sampled (Kartzinel & Pringle 2015). This is analogous to our 

observation that only 19 of 2722 (0.7%) bacterial OTUs occurred in >50% of the individuals we 

sampled on Puerto Rico, whereas 2092 (77%) OTUs were found in <5% of individual anoles. If 

representative of other Anolis species, this high degree of variation in diet (Kartzinel & Pringle 

2015) may help explain why fecal microbiota appear so variable among individual anoles.  

Our comparison of two convergent trunk-ground anoles (A. cristatellus and A. sagrei) 

that are recently sympatric (i.e., within about 40 generations, Kolbe et al. 2012) in southern 

Florida illustrates that even ecologically similar species that share the same environment can 

differ substantially in their microbiota. Despite the broad ecological convergence between these 

two species, their lineages likely diverged over ten million years ago (Brantley and de Queiroz 

2004; Losos 2009). This suggests that, over longer evolutionary timescales, Anolis evolution 

could more strongly impact the diversification of their microbiota, potentially via genetic 

divergence in host digestive and immune physiology. However, we cannot exclude the 
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possibility that differences in contemporary microbiota between these two invasive species could 

simply reflect the persistence (over roughly 40-80 generations) of distinct bacterial communities 

from the different source islands (Puerto Rico and Cuba) on which these two species evolved and 

from which they invaded southern Florida. However, in the absence of a clear mechanism for 

vertical transmission of microbiota from mother to offspring, this seems unlikely. We also found 

that geographic location had a significant effect on microbiota when comparing conspecific 

populations of these same two species in allopatry (Fig. 4). This may be due to the availability of 

different food sources across different local environments, as well as geographic variation in 

numerous other environmental factors, such as biotic habitat, rainfall and microclimate.  

Although we cannot directly assess the role of diet in structuring geographic variation in 

Anolis microbiota, we did observe considerable temporal variation when re-sampling the same 

free-living individuals within a few days of initial capture (Fig. S5). In similar fashion, 

pronounced temporal variation in the microbiota of individuals was also observed in fecal 

samples from wild baboons (Ren et al. 2015). In Burmese pythons, bacterial diversity and 

community composition in the gut changed rapidly and dramatically within hours to days of 

feeding, and these changes were primarily due to shifts in the abundance of endogenous gut 

bacteria, rather than the introduction of new bacteria from the rodent meal (Costello et al. 2010). 

This agrees with our observation that captive anoles maintained on a simplified diet of domestic 

crickets retained microbiota that were distinct from the bacterial composition of their prey. We 

also found that these same captive A. sagrei had higher alpha diversity and lower variance in 

alpha and beta diversity of their bacterial communities, relative to wild conspecifics. This is 

similar to differences observed between laboratory and wild populations of fruit flies (Chandler 

et al. 2011). Nonetheless, we cannot definitively attribute these differences between captive and 



	 	 	
	
	
	

134	

wild anoles to diet per se, as they could reflect numerous other differences between the 

laboratory and natural environments.  

Our analysis of 121 individuals representing 7 Anolis species provides the most 

comprehensive study to date of fecal or gut bacterial diversity in any reptile lineage (Costello et 

al. 2010; Hong et al. 2011; Lankau et al. 2012; Colston et al. 2015; McLaughlin et al. 2015). 

Anolis microbiota were dominated by the phyla Firmicutes (61.1% of reads), Proteobacteria 

(19.1%), and Bacteroidetes (14.8%), which collectively accounted for 95% of the reads we 

detected (Fig 2A; Appendix S2). This is broadly similar to patterns in mammals (Ley et al. 

2008), and with the exception of alligators (Keenan et al. 2013), the gut microbiota of other 

reptiles also appear to be consistently dominated by Firmicutes and Bacteriodetes (Colston et al. 

2015; Wehrle 2013; Costello et al. 2010; Hong et al. 2011;Yuan et al. 2015), although 

Proteobacteria range from the dominant microbial taxon in some studies (McLaughlin et al. 

2015; Martin et al. 2010) to minor components of the reptile gut in others (Costello et al. 2010; 

Hong et al. 2011; Yuan et al. 2015). It will be illuminating to see whether future studies of 

reptiles and other ectothermic vertebrates reveal comparably high levels of intraspecific variation 

in gut microbiota. Despite this variation, we found a significant correlation between bacterial 

diversity and Anolis phylogeny, suggesting that the recent adaptive radiation of this host lineage 

on Puerto Rico has weakly influenced the diversification of their microbiota. Nonetheless, the 

variation that we observed within species was comparable to that observed between species, and 

we found no tendency for the microbiota to vary predictably as a function of ecomorph, 

potentially because most Anolis species function as dietary generalists. 
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Material and Methods 

Sample collection 

	 Dates, locations and sample sizes for individuals of each species are reported in Table 1. 

Only samples from adult male anoles were included in our study. We captured wild anoles by 

hand or noose and immediately placed each individual into an unused plastic sandwich bag, 

where it was held overnight at ambient temperature. The following day, we transferred a fecal 

pellet from the bag of each individual into a microcentrifuge tube, immediately froze each pellet 

at −20°C, and kept samples on ice (during transportation) or at −20°C until DNA extraction. 

Because we did not collect fecal pellets immediately upon defecation, it is possible that bacterial 

composition may have changed prior to preservation, and that variation among samples (but not 

among species or populations, which were sampled in identical fashion) may reflect unmeasured 

variation in the time between defecation and preservation. Bacterial communities sampled from 

feces are often qualitatively similar to those sampled directly from the gut or cloaca, though they 

may differ quantitatively (Colston et al. 2015; Stanley et al. 2015), so we use fecal samples as a 

proxy for gut microbiota while acknowledging these caveats. 

For A. sagrei individuals that we recaptured to assess individual repeatability of the 

microbiota, we used toe clips to identify each individual between captures. For A. sagrei 

individuals that we maintained on a controlled diet in captivity, we initially collected wild adults 

from Great Exuma, Bahamas (23°29’N, 75°45’W) and transported them to the University of 

Virginia. We maintained these anoles individually in small, plastic terraria (40 x 23 x 32 cm; 

Lee’s Kritter Keeper, San Marcos, CA) containing a potted plant, carpet substrate, and PVC tube 

for perching and hiding. We maintained constant 29°C diurnal temperature and 65% relative 

humidity, 13L:11D (breeding season) or 12L:12D (non-breeding season) photoperiod, and 

placed each cage under two ReptiSun 10.0 UVB bulbs (ZooMed, San Luis Obispo, CA) that 
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were illuminated during the light phase. Three times per week, we offered captive anoles 5-7 

crickets (Gryllodes sigillatus; Ghann’s Cricket Farm, Augusta, GA), dusted weekly with Fluker’s 

Reptile Vitamin and Calcium supplements (Fluker’s Cricket Farms, Port Allen, LA) and 

maintained on a diet of carrots, kale, sweet potatoes, and apples. We maintained these wild-

caught anoles in captivity on this diet for over a year before collecting fecal samples. To assess 

the bacterial communities associated with crickets as a food source, we froze and homogenized 

15 whole crickets, then extracted DNA from this homogenate.  

 

DNA extraction and 16S rRNA gene sequencing 

We extracted DNA in a 96-well format using ZR-96 Fecal DNA Kits (Zymo Research, 

Orange, CA) following the manufacturer’s protocol, then amplified the V1-V3 hypervariable 

regions of the 16S rRNA gene using two primers containing the universal sequences 27F (5’-

AGRGTTTGATCMTGGCTCAG-3’) and 534R (5’-TTACCGCGGCTGCTGGCAC-3’). We 

added a unique 8bp barcode to each primer to tag the samples and used a 50 uL reaction for each 

PCR amplification by QIAGEN Taq polymerase (Qiagen Inc, CA). PCR conditions consisted of 

94°C for 3 min, followed by 25 cycles of 94°C for 30 s, 57°C for 30 s, and 72°C for 60 s, with a 

final extension of 5 min at 72°C. We quantified 16S rRNA amplicons from different samples, 

pooled them in equal molar ratios, then gel purified and sequenced them on an Illumina MiSeq 

platform using the 300bp paired-end (PE) protocol. We performed all liquid transfer steps on a 

Biomek NXp liquid handling station (Beckman-Coulter Inc., Fullerton, USA). 

 

Sequence processing, quality control, and OTU classification 

We filtered the resulting sequences according to base quality using TRIMMOMATIC 

0.32 with settings of LEADING = 3, SLIDINGWINDOW = 10:20, and MINLEN = 50 (Bolger 
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et al. 2014). Paired-end reads passing the quality filter were merged using FLASH (-r 301 -f 447 

-s 45 -x 0.05)(Magoč & Salzberg 2011). The successfully merged reads were assigned to 

samples by barcodes and processed using the QIIME pipeline (Caporaso et al. 2010). We 

identified chimeric sequences using usearch (Edgar et al. 2011) implemented in QIIME with 

both de novo and reference-based detection algorithms, retaining only those sequences that were 

flagged as non-chimeras with both detection methods. We removed non-16S rRNA sequences 

using hmmsearch (Eddy 1998) against a custom-made 16S rRNA gene model and removed 

mitochondrial and chloroplast sequences using the Ribosomal Database Project (RDP) classifier 

(Wang et al. 2007). We clustered the remaining reads to operational taxonomic units (OTUs) 

using the centroid-based UCLUST algorithm (Edgar 2010) with a 97% identity threshold, then 

selected the most abundant sequence of each OTU as the representative sequence using the RDP 

classifier. 

 

Analysis of microbiota  

To remove heterogeneity due to sequencing effort, we rarefied samples to 3,000 reads. 

This resulted in the removal of 15 samples and produced a final dataset of 121 samples (Table 1). 

Rarefaction curves for each species or population are presented in Figure S1. Good’s coverage 

estimates averaged 0.97 ± 0.02 (range 0.84-0.99) for all samples (species means ranged from 

0.96-0.98) following rarefaction to 3,000 reads, indicating that the majority of the bacterial 

community was captured at this level of rarefaction. We rarefied the Florida subset (A. 

cristatellus and A. sagrei from northern and southern Florida) to 1,000 reads to increase the 

number of samples in the analysis, which added 7 samples that were excluded from the 3,000-

read dataset (mean Good’s coverage estimate = 0.94 ± 0.03). A Mantel test correlating distance 

matrices for the 1,000 and 3,000-read datasets revealed a high level of congruence (Jaccard 
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distance: r = 0.90, P = 0.001; unweighted UniFrac: r = 0.85, P = 0.001). We calculated 

descriptive and comparative statistics for microbiota using QIIME 1.9.1, unless otherwise 

specified.  

We calculated two measures of alpha diversity (Chao1 and Shannon indices) for each 

sample using rarefied OTU tables. The Chao1 index estimates species richness based on the 

number of observed OTUs in each sample using the formula:  

𝑆!!!"! = 𝑆!"# +
𝑛!(𝑛! − 1)
2(𝑛! + 1)

 

where S!"#$% is the estimated richness, S!"# is the observed number of species, n! is the number 

of singleton taxa (taxa represented by a single read in that community), and n! is the number of 

doubleton taxa. If a sample contains many singletons, it is likely that more undetected OTUs 

exist, and the Chao 1 index will estimate greater species richness than it would for a sample 

without rare OTUs. The Shannon index combines species richness (number of OTUs) and 

evenness (relative abundance of different OTUs) to produce a summary measure of species 

diversity. We tested for differences in Chao1 and Shannon indices among Puerto Rican anoles 

using two-way ANOVA with the measure of alpha diversity as the dependent variable and 

ecomorph and species (nested within ecomorph) as independent variables. Depending on the 

distribution of data, we used both ANOVA and non-parametric Kruskal-Wallis tests with post 

hoc comparisons to assess differences in alpha diversity among sympatric and allopatric 

populations of A. cristatellus and A. sagrei. We used t-tests to assess differences in mean alpha 

diversity and Brown-Forsythe tests to compare variance in alpha diversity between A. sagrei 

maintained in captivity on a controlled diet versus those from wild populations. 

To compare beta diversity among samples, we first excluded any OTUs that were only 

represented by a single sequence read. We then performed Principal Coordinate Analysis 

(PCoA) on Jaccard, unweighted UniFrac, and weighted UniFrac distances (Lozupone & Knight 
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2005) calculated using 97%-similarity OTUs. Jaccard distance measures the dissimilarity of two 

communities based on bivariate classifications of the presence or absence of microbial OTUs. 

UniFrac distance takes phylogenetic relationships among OTUs into account, and weighted 

UniFrac distance further considers the relative abundances of OTUs. For each of these metrics, 

we calculated pairwise distances between all individual samples and then classified each 

pairwise distance as occurring within a given group (species, ecomorph, population) or between 

two groups. We then (1) tested for differences in within-group distances among different groups, 

(2) tested for differences in between-group distances among different pairwise combinations, and 

(3) compared within- and between-group distance to one another using non-parametric Mann-

Whitney tests or Kruskal-Wallis tests with post hoc Dunn’s multiple comparisons tests. To test 

whether the host phylogeny explained variation in microbiota, we used Mantel tests implemented 

in QIIME to assess congruence between bacterial community dissimilarities and host genetic 

distances, which we calculated from branch lengths in the Anolis phylogeny of Rabosky and 

Glor (2010). Rare OTUs can confound detection of meaningful patterns in bacterial diversity 

(e.g., Colston et al. 2015), so in addition to using measures of community dissimilarity weighted 

by OTU abundance (e.g., weighted UniFrac distance), we repeated the analyses described above 

with a dataset in which we excluded the rarest 5% of OTUs from each sample.   
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Tables and Figures 

Table 1. Collection dates and localities for wild anoles from Puerto Rico and Florida. Sample 

sizes are reported for the total number of fecal samples before and after rarefaction to exclude 

samples with low sequencing coverage (i.e. < 3000 reads per sample). 

Location Species 
Number of 

samples 
Number after  

rarefaction 
Collection date Comparison 

Puerto Rico A. stratulus 17 17 June 2014 ecomorph  
Puerto Rico A. evermani 15 15 June 2014 ecomorph  
Puerto Rico A. krugi 12 12 June 2014 ecomorph  
Puerto Rico A. pulchellus 10 9 June 2014 ecomorph  
Puerto Rico A. gundlachi 13 13 June 2014 ecomorph  

Puerto Rico A. cristatellus 16 15 June 2014 
 ecomorph,  
allopatry 

Miami, FL 
(southern FL) 

A. cristatellus 13 8 May 2014 sympatry, allopatry 

Miami, FL 
(southern FL)  

A. sagrei 11 8 May 2014 
sympatry, allopatry,  

captive/wild 
Palm Coast, FL 
(northern FL) 

A. sagrei 17 12 July 2015 
allopatry, repeatability,  

captive/wild 
Lab A. sagrei 12 12  captive/wild 
Lab Cricket  1 1  captive/wild 



	 	 	
	
	
	

146	

Figure 1. (A) Illustration of the six Anolis ecomorphs, depicting habitat partitioning and major 

morphological differences (modified from Williams 1983; Losos 2009). (B) Phylogenetic 

relationships and ecomorph classifications for the seven Anolis species sampled in this study, 

including the “outgroup” A. sagrei (native to Cuba and the Bahamas) and six species from a 

clade that evolved on Puerto Rico (phylogeny based on Rabosky & Glor 2010). Asterisks 

indicate the two trunk-ground ecomorphs that have invaded southern Florida from Cuba (A. 

sagrei) and Puerto Rico (A. cristatellus).  
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Figure 2. Diversity of Anolis gut microbiota as a function of host phylogeny. Each thin 

horizontal bar represents an individual lizard, with bacterial diversity (proportion of reads) coded 

at phylum, family, and genus (see Appendix S2 for key to microbial taxa).  
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Figure 3. (A-B) Box-and-whisker plots illustrating medians, interquartiles, and ranges of 

bacterial alpha diversity expressed using (A) Chao1, and (B) Shannon indices for each host 

species, with bacterial OTUs assigned at 97% sequence similarity. (C-D) Distribution of gut 

microbiota across individual lizards, coded by species and ecomorph, as a function of the first 

three principle coordinate axes based on Jaccard distances. (E-F) Box-and-whisker plots 

(medians, interquartiles, and 10-90% percentiles) for within-species (E) Jaccard, and (F) 

weighted UniFrac distances (colored boxes) alongside comparisons of all within-species (W) to 

all between-species (B) distances (gray boxes). Letters denote statistical separation based on post 

hoc Dunn’s multiple comparison tests. Asterisks indicate statistical significance at P < 0.0001 

(***) and P < 0.05 (*). 
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Figure 4. (A) Locations of sympatric and allopatric populations of A. cristatellus and A. sagrei. 

(B-C) Box-and-whisker plots (medians, interquartiles, 10-90% percentiles) for two measures of 

alpha diversity within each population: (B) Chao1 index, and (C) Shannon index. (D-F) Principal 

coordinate analyses for (D) sympatric populations of both species, (E) allopatric populations of 

A. sagrei, and (F) allopatric populations of A. cristatellus. (G-H) Box-and-whisker plots 

(medians, interquartiles, 10-90% percentiles) for within- (solid boxes) and between-population 

(lined boxes) pairwise comparisons using Jaccard distance (left panels) and weighted UniFrac 

distance (right panels). Significance values are from non-parametric Kruskal-Wallis tests and 

lowercase letters indicate post hoc separation based on Dunn’s multiple comparison tests. 
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Figure 5. (A) Principal coordinate analyses comparing gut microbiota of wild A. sagrei 

individuals to captive A. sagrei individuals maintained on a controlled diet of domestic crickets, 

alongside the bacterial community of a homogenate prepared from this food source. (B) Box-

and-whisker plots (medians, interquartiles, 10-90% percentiles) for pairwise distances (Jaccard, 

unweighted UniFrac, and weighted UniFrac) calculated between individual lizards and binned 

into within- and between-group comparisons. Significance values are from Kruskal-Wallis tests 

and lowercase letters denote post hoc separation based on Dunn’s multiple comparison tests. 
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Supplementary information 

Figure S1. Rarefaction curves illustrating the increase in number of unique bacterial OTUs (97% 
sequence similarity) as a function of number of reads used for rarefaction. Each colored line is a 
sample from an individual and the symbols and black lines illustrate species or population 
means. 
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Appendix S2. Key to the colors for microbial taxa in Figs. 2A and S5. Numbers report 
frequency of reads for common taxa across samples from Puerto Rico. Numbers in parentheses 
report frequencies across the entire dataset (Puerto Rico and Florida).	
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Figure S3. Comparison of within-group to between-group distances (median, interquartiles, 10-
90% percentiles) with groups defined as species (left) or ecomorphs (right), using Jaccard, 
unweighted UniFrac, and weighted (by abundance) UniFrac distances between individual anoles. 
Results are broadly similar whether including all species or excluding two species (A. gundlachi 
and A. pulchellus) characterized by high within- and between-species distances (see Fig. S3). 
Statistics are from Mann-Whitney U tests. Ecomorph comparisons exclude distances between 
individuals of the same species. 
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Figure S4. Box-and whisker plots (median, interquartile, 10-90% percentile) illustrating 
pairwise between-species measures of Jaccard, unweighted UniFrac, and weighted UniFrac 
distances. Colored boxes present within-species distances for comparison. 
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Figure S5. Comparison of results using all bacterial OTUs (full dataset reported in the main text) 
to those in which the rarest 5% of OTUs were removed from each sample (i.e., assigned a value 
of zero) prior to calculation of Jaccard distances. Exclusion of rare OTUs eliminated the trend for 
between-species Jaccard distances to exceed within-species Jaccard distances (compare A to B), 
similar to results obtained with UniFrac distances weighted by species abundance (compare to 
Fig. 3D). Otherwise, results were highly congruent between datasets and the removal of rare 
OTUs typically only decreased Jaccard distances (i.e., increased similarity between samples) by 
1-2%. Likewise, PCoA plots, Mantel tests for phylogenetic similarity of bacterial communities, 
and comparisons of sympatric and allopatric populations of A. sagrei and A. cristatellus (Fig. 4) 
remained essentially unchanged when excluding rare OTUs (data not shown). Panel A is 
presented in the main text as Fig. 3E and panel C is presented in Fig. S3 – they are reproduced 
here for comparison between datasets. 
	



	 	 	
	
	
	

158	

Figure S6. Representative examples of short-term changes in the gut microbiota of five free-
living Anolis sagrei individuals (numbered 1-5) captured and sampled (A), then released, re-
captured, and re-sampled within a week of initial capture (B), as assessed at the level of 
microbial phylum and genus. See Appendix S1 for key to microbial taxa.	
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Appendix 1. 16S rRNA survey revealed complex bacterial communities and evidence of 

bacterial interference on human adenoids 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Formatted as a co-authored manuscript and published as: 

Ren T, Glatt DU, Nguyen TN, Allen EK, Early SV, Sale M, Winther B, and Wu M. (2013) 16S 

rRNA survey revealed complex bacterial communities and evidence of bacterial interference on 

human adenoids. Environmental Microbiology, 15(2): 535-547. 

DOI: 10.1111/1462-2920.12000 



	 	 	
	
	
	

160	

Abstract 

Adenoid microbiota plays an important role in the development of various infectious and 

noninfectious diseases of the upper airways, such as otitis media, adenotonsillitis, rhinosinusitis, 

and adenoid hypertrophy. Studies have suggested that adenoids could act as a potential reservoir 

of opportunistic pathogens. However, previous bacterial surveys of adenoids were mainly culture 

based and therefore might only provide an incomplete and potentially biased assessment of the 

microbial diversity. To develop an in-depth and comprehensive understanding of the adenoid 

microbial communities and test the “pathogen reservoir hypothesis”, we carried out a 16S rRNA 

based, culture-independent survey of bacterial communities on 67 human adenoids removed by 

surgery. Our survey revealed highly diverse adenoid bacterial communities distinct from those of 

other body habitats. Despite large interpersonal variations, adenoid microbiota shared a core set 

of taxa and can be classified into at least five major types based on its bacterial species 

composition. Our results support the “pathogen reservoir hypothesis” as we found common 

pathogens of otitis media to be both prevalent and abundant. Co-occurrence analyses revealed 

evidence consistent with the bacterial interference theory in that multiple common pathogens 

showed “non-coexistence” relationships with non-pathogenic members of the commensal 

microflora. 
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Introduction 

There is a growing recognition that microbes living on and inside our body (collectively called 

human microbiota) play important roles in human health and disease (Turnbaugh et al., 2007). 

For example, gut microbiota has been shown to aid in the metabolism of nutrient (Wostmann et 

al., 1983; Turnbaugh et al., 2006), outcompete the pathogenic bacteria and modulate the 

development of host immune system (Mazmanian et al., 2005). Recent culture-independent 

molecular surveys based on 16S rRNA pyrosequencing have revealed immense microbial 

diversity and detailed patterns of population variations that exist on our skin, inside our oral 

cavities and gastrointestinal and urogenital tracts (Eckburg et al., 2005; Costello et al., 2009; 

Grice et al., 2009; Ravel et al., 2011). These surveys showed that bacterial communities vary 

greatly between body sites and from individual to individual. Association studies have shown, 

however, that shifts in the microbial community structure can be associated with important 

human health conditions, including diabetes (Giongo et al., 2011), obesity (Ley et al., 2005; Ley 

et al., 2006; Cani et al., 2007), cancer (Turnbaugh et al., 2007), and cardiovascular disease 

(Ordovas and Mooser, 2006).  

 

The nasopharyngeal tonsil, adenoid, is a lymphoid tissue located in the upper respiratory tract at 

the junction of nose and throat.  The surface of the adenoids are extensive due to the folds and 

crypts (Winther and Innes, 1994), which are colonized by commensal microflora (Winther et al., 

2009). As part of the immune system, adenoid plays a major role in body’s immune response to 

infectious organisms that are introduced through the upper airways (Perry and Whyte, 1998). 

Macrophages and other white blood cells concentrate by the crypts in response to the 

microorganisms trapped there. Therefore, adenoid may serve the roles of both scout and sentry 
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for the immune system, by providing early exposure of immune system to pathogens. Because 

adenoid lies adjacently to the orifice of the Eustachian tube, the passage between the back of the 

nose and the inside of the ear, adenoid has long been recognized as an important factor in the 

pathogenesis of middle ear infection (also known as otitis media) by serving as a potential 

reservoir of opportunistic pathogens (Tomonaga et al., 1989; Faden et al., 1991; Bernstein et al., 

1993; Faden et al., 1997; Bernstein, 1999; Dhooge et al., 1999; Brook et al., 2000; Karlidag et 

al., 2002; Marchisio et al., 2003; Nistico et al., 2011). Bacteria are postulated to spread via the 

short Eustachian tube to the middle ear where they cause acute, recurrent or chronic infections 

(Bluestone, 1999). Significant adenoid enlargement due to recurrent infections can also cause 

nasal obstruction, leading to breathing, swallowing, and sleep problems. If the condition does not 

improve with antibiotic therapy, surgical removal of adenoid is often recommended.  

 

Despite its important roles in the etiology of otitis media, and in modulating the systematic and 

mucosal immunity, our knowledge of the adenoid microbiota is limited. Previous studies were 

either culture or PCR based surveys targeted to a few bacterial groups, and therefore only 

provided incomplete and potentially biased assessment of the microbial diversity (Brook et al., 

2000; Fekete-Szabo et al., 2010; Khoramrooz et al., 2012). One recent study surveyed microbiota 

of middle ear, adenoid and tonsil of one individual using 16S rRNA pyrosequencing (Liu et al., 

2011). It revealed a highly diverse adenoid microbial community that encompassed bacteria 

found in both the tonsil and the middle ear, supporting the hypothesis that adenoid may serve as 

a bacterial reservoir for both middle ear and tonsillar diseases. However, since only one patient 

was surveyed in that study, it is unclear whether conclusion from that study can be generalized. 
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It has been well documented that the indigenous bacterial flora of nasopharynx can inhibit the 

colonization of pathogens such as Staphylococcus aureus, Streptococcus pneumonia and 

Haemophilus influenzae, a phenomenon known as bacterial interference (Brook, 1999, 2005; 

Benninger et al., 2011). Culture-based quantitative studies have shown an inverse relationship 

between the abundance of viridans streptococci (non-pathogenic) and pathogens on adenoids 

(Bernstein, Sagahtaheri-Altaie et al. 1994). The inhibitory effect of viridans streptococci has also 

been demonstrated directly by in vitro assays when pathogens were grown in the presence of 

viridans streptococci or their culture filtrates (Bernstein et al., 1994; Tano et al., 1999; Bernstein 

et al., 2002; Tano et al., 2002; Bernstein et al., 2006).  

 

In this study, we sought to develop an in-depth and comprehensive understanding of the adenoid 

microbial communities using a culture-independent molecular approach. Specifically, we 

employed 16S rRNA pyrosequencing to survey the diversity of adenoid microbiota, sampled 

from 67 individuals who underwent adenoidectomy for various reasons. We compared bacterial 

community structures between individuals to look for patterns that were common to adenoid 

microbiota and tested the pathogen reservoir and bacterial interference hypotheses. 

 

Results 

Bacterial species richness 

To characterize the bacterial diversity present on the human adenoids, we surveyed the 16S 

rRNA V1-V2 hypervariable regions by multiplex pyrosequencing. We successfully PCR 

amplified and sequenced the 16S rRNA gene from 68 out of the 98 patients. One patient was 

removed from further analyses because of its relatively low sequence coverage. For patient 84, 
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the superior and inferior surfaces of adenoid were sampled independently and were treated as 

two separate samples. After filtering out the low quality reads and chimeric reads (see methods), 

the final data set contained 450,465 high-quality reads from 68 samples of 67 patients, with a 

median of 4,105 reads per sample.  

 

To compare the bacterial species richness between samples, we carried out rarefaction analysis 

by plotting the number of species observed (as approximated using Operational Taxonomic Units 

(OTUs) at 97% identity cutoff) against the sequencing effort (Figure 1). For most samples, the 

curves start to level off, indicating that they have been well sampled with the sequencing effort. 

For some samples, the upward phase is still ongoing, indicating relatively higher species 

diversities in these samples. Consistent with this, Good’s estimator shows relatively good 

coverage ranging from 80.8% to 99.3% (average 94.8%). This suggests that on average, five new 

species would be expected in every 100 additional 16S rRNA reads and that we have covered the 

vast majority of bacterial diversity on the 67 adenoids.  

 

The species richness on adenoids was considerably high. In total, 3,121 distinct OTUs were 

observed. There were also extensive interpersonal disparities in bacterial richness. The number 

of observed bacterial species present in each patient varied substantially from 52 to 405 (median: 

205). Accordingly, the overall bacterial diversity as measured by the Shannon index varied 

substantially from 0.79 to 6.60. 

 

Most of the adenoid bacterial diversity existed below the species (97% OTU) level. This was 

revealed by plotting the number of OTUs against the identity cutoff values that were used to 

define OTUs (Supplementary Figure 1). The number of OTUs shows a dramatic flare-up around 
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the 99% identity cutoff. The presence of such a “hockey stick” figure has been previously 

observed in bacterial populations of the natural environment (Acinas et al., 2004; Brown and 

Fuhrman, 2005) and is also considered typical of human microbiota (Backhed et al., 2005; Bik et 

al., 2010). 

 

Bacterial composition 

The sequence reads were classified by the RDP classifier into 14 phyla (Figure 2) and 94 genera. 

The vast majority of sequences (96.8%) belonged to one of the nine phyla: Firmicutes, 

Proteobacteria, Fusobacteria, Actinobacteria, Bacteroidetes, Spirochaetes, Tenericutes, candidate 

division TM7 and SR1. Of the nine phyla, Firmicutes (45.4%), Proteobacteria (28.6%) and 

Fusobacteria (11.1%) were the most abundant. 3.2% of sequences were unclassified and 

therefore might represent novel lineages. Of the 94 genera identified, the most abundant genera 

were: Streptococcus (18.0%), Staphylococcus (14.7%), Haemophilus (11.2%), Fusobacterium 

(10.4%), Moraxella (5.7%), Prevotella (4.1%), Gemella (2.8%), Neisseria (2.7%), 

Corynebacterium (2.3%), Granulicatella (1.4%) and Pseudomonas (1.3%).  

 

Similar to the findings of previous human microbiota studies (Eckburg et al., 2005; Costello et 

al., 2009; Grice et al., 2009; Yatsunenko et al., 2012), bacterial composition was highly variable 

between patients. To quantify the beta-diversity of the adenoid microbiota, we calculated the 

pairwise Chao-Jaccard abundance-based similarity index between samples. Chao-Jaccard 

similarity is based on the probability that two randomly chosen species, one from each of two 

samples, are shared by both samples. Chao-Jaccard similarity score also corrects for the 

undersampling bias and thus is especially useful for comparing rich and incompletely sampled 

communities. The average pairwise Chao-Jaccard similarity score between all adenoid samples 
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was 0.26 (range 0.00-1.00, SD 0.26), indicating substantial compositional differences or beta-

diversity between samples. 

 

UniFrac analyses provided further evidence that there were large interpersonal variations in 

bacterial composition. Based on the weighted UniFrac distances that account for the abundance 

of taxa, the adenoid samples can be divided into at least five distinct groups, with each group 

having its unique bacterial composition. For example, group 1 was dominated by Proteobacteria, 

while group 2 and 3 were dominated by Firmicutes and Fusobacteria respectively (Figure 2).  

 

For patient 84, we swapped the superior and inferior surfaces of adenoid independently and 

treated them as two separate samples through the entire data collection and analysis pipeline. In 

Figure 2, the superior and inferior samples of patient 84 are clustered together, indicating that the 

microbial communities that inhabited the superior and inferior surfaces of the adenoid were very 

similar. The fact that these two independently processed samples from one patient showed 

almost identical bacterial composition indicates that our data collection pipeline consisting of the 

genomic DNA extraction, 16S rRNA PCR amplification and 454 pyrosequencing was fairly 

robust.  

 

Opportunistic pathogens 

Because many of the abundant genera were known to contain potential pathogenic species, we 

further classified OTUs within these abundant genera. Using the software MEGAN and 

searching against the RDP database, we were able to identify many of the common upper 

respiratory infection pathogens including Streptococcus pneumoniae, Streptococcus pyogenes, 

Staphylococcus aureus, Haemophilus influenzae, Moraxella catarrhalis and Neisseria 
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meningitidis (Table 1). The most prevalent pathogen was H. influenzae. It was found in 70.6% of 

the samples and made up 10.5% of the total sequence reads. The next most prevalent pathogen 

was S. aureus, with a prevalence of 54.4% and an average relative abundance of 13.0%. This 

was followed by S. pneumoniae, N. meningitidis and M. catarrhalis with each having a 

prevalence of around 40%. However, they were much less abundant than H. influenzae and S. 

aureus. They only made up 0.2%, 0.4% and 2.3% of the total reads respectively. In some 

patients, the adenoid microflora was predominated by one single pathogenic species. For 

example, S. aureus constituted more than 90.0% of the reads in patient 59, 61, 90 and 95 while S. 

pyogenes made up more than 95.0% of the bacterial population in patient 96. 

 

Core adenoid microbiota 

We next investigated whether there was a core set of bacterial taxa shared between individuals. 

Only Streptococcus (genus) of Firmicutes (phylum) was ubiquitously present in all 67 

individuals. When we relaxed the criterion and defined the core taxa as taxa that appeared in at 

least 80% of all individuals, we found three additional core phyla: Proteobacteria (95.6%), 

Fusobacteria (82.4%) and Actinobacteria (80.8%). We also found three additional core genera: 

Gemella (89.7%), Haemophilus (80.9%) and Fusobacterium (80.9%).  At the 97% OTU level, 

only OTU 2242 (Streptococcus mitis, 83.8%) fit this criterion. The core taxa were also highly 

abundant, representing 89.4% and 42.4% of total sequences at the phylum and genus level 

respectively. 

 

Co-occurrence of taxa 

To investigate whether taxa were randomly distributed among individuals, we carried out co-

occurrence analyses. We calculated the C-scores (observed) as described in (Stone and Roberts, 
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1990) and compared them to the C-scores of simulated bacterial communities (expected) using 

the software EcoSim. Significant difference between the observed C-score and the expected C-

score would indicate that the taxon distribution pattern is not random. 

 

When all taxa were compared, at the phylum level, the observed C-score was not significantly 

different from the random distribution (the null hypothesis). At the genus level, however, the 

observed C-score was significantly larger than the expected C-score (p < 0.001), suggesting 

possible segregation or competition among genera. Because of the large number of species 

present in our data, at the species level, we analyzed the distribution patterns only within a given 

genus. For the eleven most abundant genera, species within seven of them (Streptococcus, 

Fusobacterium, Haemophilus, Neisseria, Gemella, Moraxella and Prevotella) showed significant 

segregation or competition (p < 0.05). 

 

We then carried out MINE analysis to search for individual OTU pairs that showed significant 

relationships. MINE is a powerful statistic tool for identifying and characterizing dependent 

relationships among hundreds of thousands of variable pairs. Our MINE analysis identified 3436 

significant relationships (out of 117,370 pairs) between 485 OTUs that had at least 10 reads 

(FDR adjusted p value <0.05). When examining the 1,976 top scoring non-linear relationships 

(MIC-ρ2 > 0.2, Supplementary Table 1), we observed a common segregation pattern in which a 

pair of OTUs tended not to coexist. For example, OTU 2242, classified as non-pathogenic S. 

mitis and one of the most abundant OTUs, showed “non-coexistence” relationship with several 

pathogens including S. aureus (Figure 3A), H. influenza, and M. catarrhalis. Similar “non-

coexistence” relationship was also observed between other non-pathogenic Streptococcus species 

and pathogens, for example, between Streptococcus intermedius and S. aureus (Figure 3B), and 
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between Streptococcus salivarius and S. pyogenes (Figure 3C). Although much less frequently, 

we did observe linear relationship between OTUs, for example, between two S. aureus 

subspecies (Figure 3D), indicating that they might prefer to live in similar environment.  

 

Adenoid microbiota is distinct from those of other human body sites 

A previous study has shown that various human body sites harbor very different microbial 

communities (Costello et al., 2009). Therefore, we compared the overall bacterial composition of 

adenoid with those of other body sites and asked whether these adenoids harbored their own 

unique microbiota. We note, however, the adenoids we sampled here were removed by surgery 

and might contain bacterial populations different from those of healthy adenoids. We 

downloaded the 16S rRNA pyrosequences from the Costello et al. study that surveyed human 

microbiota across multiple body sites (skin, gut, hair, oral cavity, nostril and external auditory 

canal etc). Because slightly different regions of the 16S rRNA were sequenced in the Costello et 

al. study, we only used the overlapped region (~200bp) for comparison. Principal coordinate 

analysis and Unweighted Pair Group Method with Arithmetic mean (UPGMA) clustering based 

on UniFrac distances show distinct clustering by body habitats (Figure 4 and Supplementary 

Figure 3). Adenoid microbiota is overall mostly similar to oral microbiota, although some 

samples show similarity to the microfloras of nostril, skin and the external auditory canal.  

 

On average, an adenoid was estimated to contain 355 bacterial species (Chao1 estimate based on 

97% OTU). In terms of bacterial species richness, adenoid was on the same level as nostril and 

tongue but was less diverse than the gut (Supplementary Figure 2).  

 

Discussion 
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With an average Good’s estimator of 94.8%, we expect to have covered the vast majority of 

bacterial diversity on the 67 adenoids. The depth of sequencing coverage (4,105 reads/sample) 

should allow us to identify rare organisms that constitute ~ 0.05% of the community (0.05% x 

4105 = 2 reads since we required at least 2 reads to identify a taxon). Mindful of potential 

inflated diversity estimates from short reads (Quince et al., 2009; Kunin et al., 2010), we 

employed a set of stringent criteria to remove low quality and artificial reads. Our 16S rRNA 

based survey revealed surprisingly large bacterial diversity on human adenoids. We identified a 

total of 3,121 species (97% OTUs) from 67 individuals.  

 

With an extensive system of crypts and located at the junction of nose and throat, adenoids trap 

bacteria that pass through the upper airways. Therefore, many of these rare bacterial species we 

observed might simply be transient passengers. The high bacterial diversity is also consistent 

with the notion that adenoid plays a surveillance role for the immune system by providing early 

exposure of immune system to pathogens. Although we observed significantly reduced diversity 

in some adenoid samples, the overall alpha diversity of adenoid microbiota was surprisingly high 

and was comparable to those of nostril and oral microbiota of healthy individuals. This is 

remarkable considering that inflammatory diseases such as Crohn’s disease and ulcerative colitis 

are typically associated with markedly reduced microbial diversity (Manichanh et al., 2006). It 

has also been shown that the diversity of nasopharyngeal microbiota was reduced in children 

with acute otitis media (Hilty et al., 2012). 

 

The three most abundant phyla in the adenoid microbiota are Firmicutes, Proteobacteria and 

Fusobacteria. A previous study also found that these three phyla dominate in the adenoid of one 

patient (Liu et al., 2011), indicating this might represent a general pattern. Although the top five 
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most abundant phyla are identical to those of neighboring microbiota, their relative abundance 

are fairly different. Nasopharyngeal microbiota are dominated by Proteobacteria followed by 

Firmicutes and Bacteroidetes (Bogaert et al., 2011), while in oral cavity the three predominant 

phyla are Firmicutes, Proteobacteria and Bacteroidetes (Costello, Lauber et al. 2009). Brook et al 

cultured bacteria from adenoid tissues of 60 children and they found that the predominant 

aerobes were Streptococcus, Haemophilus, Staphylococcus and Moraxella, and the most 

abundant anaerobes were Peptostreptococcus, Prevotella and Fusobacterium (Brook et al., 2000). 

At the genus level, our survey showed a profile very similar to Brook et al.’s culture-based 

survey but distinct from those of nasopharynx (most abundant: Moraxella, Haemophilus and 

Streptococcus) and oral cavity (most abundant: Streptococcus, Veillonella and Prevotella). 

Accordingly, comparison at the species level (97% OTU) showed that adenoid microbiota is 

distinct from those of other body sites (Figure 4), supporting the idea that microbiota 

composition is mainly determined by the body habitats (Costello et al., 2009). 

 

Like the microbiota of the other body sites, adenoid microbiota exhibited high level of 

interpersonal variability (beta-diversity). For example, at the phylum level, the percentage of 

Firmicutes varied from 1.2% to 99.9%. Based on the OTU composition, we observed at least five 

distinct types of adenoid microbiota, suggesting that there was no one single signature microflora 

that can be associated with adenoid inflammation. The underlying causes of the interpersonal 

variations (e.g. environmental factors, historical exposures or human genotypes) have been 

documented in other body sites (Alm et al., 1999; Zoetendal, 2001; Stewart et al., 2005; Ley et 

al., 2006; Khachatryan et al., 2008; Turnbaugh et al., 2009). Because we did not have the 

information on individual patients (e.g., age, gender, reason of surgery), we could not speculate 

on what was causing the interpersonal variations in adenoid microbiota and what was shaping the 
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different types of adenoid microbial communities. Recent surveys of nasopharyngeal microbiota 

in infants and children, however, indicated that season was associated with shifts in the bacterial 

community structure while other factors such as age, sex, day care use were not (Bogaert et al., 

2011; Hilty et al., 2012). 

 

Previous studies have suggested that there is an association between otitis media and chronic 

adenoidal infection. Our study supports the hypothesis that adenoid may serve as the potential 

bacterial source for middle ear infections. We found the common pathogens of otitis media 

(Haemophilus, Streptococcus, Moraxella, Staphylococcus) and/or their close relatives to be both 

prevalent and abundant in the adenoids we surveyed. This is consistent with the result of the 

previous culture-based survey of 60 diseased and healthy adenoids (Brook et al., 2000). 

Although potentially pathogenic bacteria are often isolated from the nasopharynx of healthy 

children, they are either transient or only constitute a minor part of the nasopharyngeal flora 

(Swidsinski et al., 2007). Our result is consistent with the idea that under certain conditions, the 

opportunistic pathogens in the normal nasopharyngeal microflora can grow to dominance and 

cause infectious diseases.  

 

Our survey showed that although diseased adenoids were mostly dominated by one pathogen, 

adenoidal infections could be polymicrobial in nature. We detected the coexistence of multiple 

pathogens, all at significant levels, in several adenoid samples. One possible mechanism of the 

multiple overlapping infections was revealed by a spatial survey of adenoid microbiota using 

fluorescence in situ hybridization (FISH). It showed that different pathogens could coexist by 

occupying different locations of the adenoids (Swidsinski et al., 2007).  For example, H. 
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influenzae was mainly found in the lymphoid tissue while Streptococcus was typically found in 

fissures.  

 

One goal of human microbiome studies is to determine, for a given body site, whether there 

exists a core set of microbial species (Turnbaugh et al., 2007; Turnbaugh et al., 2009). It has 

been proposed that such core microbiota might be pivotal in maintaining the homeostasis and 

health (Sekelja et al., 2011). Recently, the existence of core gut microbiota has been confirmed 

(Rajilic-Stojanovic et al., 2009; Turnbaugh et al., 2010; Sekelja et al., 2011). Despite the large 

interpersonal variations, we were able to identify one core genus Streptococcus, which was 

present in all the adenoid samples and was also the most abundant genus overall.  

 

It has been postulated that commensal bacteria can interfere with bacterial pathogens by 

competing for resources (e.g., nutrients and attachment sites) or producing bacteriocins that kill 

pathogens (Brook, 1999). Non-pathogenic alpha-hemolytic Streptococcus, Prevotella and 

Peptostreptococci have been show to be effective at interfering with pathogens that infect the 

upper respiratory tracts (Bernstein et al., 1993; Fujimori et al., 1996; Brook and Gober, 2000; 

Tano et al., 2000; Brook, 2003; Walls et al., 2003; Brook, 2005). Previous culture-based studies 

have demonstrated that viridans streptococci (in particular, Streptococci mitis, salivarius and 

sanguis) can prevent the colonization of a variety of pathogens including H. influenza, S. 

pneumoniae and S. aureus (Brook, 1999, 2005; Benninger et al., 2011). Results of our co-

occurrence analysis are consistent with the bacterial interference hypothesis. Our MINE analysis 

showed that for example, S. mitis, one of the most abundant species in our survey, displayed 

statistically significant inverse relationships in the relative abundance with pathogens such as H. 

influenza, S. aureus and M. catarrhalis. Although habitat filtering (segregation due to differences 
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in the habitat, e.g., different human genotypes) and neutral processes (e.g., different historic 

exposures) can not be eliminated as the possible explanations of the observed segregation 

patterns, based on the results of previous studies, we think bacterial interference is the most 

plausible interpretation. 

 

In conclusion, this study shows that human adenoid encompasses complex, diverse and highly 

variable bacterial communities. The open, non-targeted 16S rRNA survey has revealed patterns 

consistent with the bacterial interference and pathogen reservoir hypotheses, and will enhance 

our understanding of the relationship between adenoid microbiota and upper airway infections.  

 

Experimental Procedures 

Sample collection 

Discarded adenoids were collected after surgery from 98 children undergoing adenoidectomy for 

diseases including hyperthrophic adenoids, chronic adenoiditis, chronic otitis media and 

obstructive sleep apnea.  The adenoids were transported in sterile container on ice to the 

laboratory. The first 55 adenoids obtained were frozen at -20°C and thawed prior to sampling. 

The rest of the adenoids were sampled fresh. A sterile cotton swab was used to collect the sample 

from the surface of each adenoid. The swab was moved over the entire surface of the adenoid in 

order to obtain a representative sample. In order to explore local differences in bacterial flora, we 

obtained additional swab samples from the superior and inferior area separately from one 

adenoid (patient 84).  The swabs were stored in a 1.5 ml centrifuge tubes at -20°C before DNA 

extraction. 
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DNA extraction 

DNA was extracted from the swabs by bead-beating and phenol-chloroform extraction. Briefly, 

the cotton tip of each swab was cut off and placed into a 2 ml bead tube. 500 µL of buffer (10 

mM Tris-HCl pH 7.5, 5 mM EDTA, 100 mM NaCl), 500 µL of phenol:chloroform:isoamyl 

alcohol (25:24:1), 200 µL of 10% SDS and 400 µL of 0.1 mm zirconia/silica beads were added 

to the tube. The tube was then homogenized on a Biospec mini beadbeater for 3 min. After the 

bead beating, the tube was centrifuged for 10 min at 15,000 g. The top aqueous layer was 

transferred to a new tube, extracted once with an equal volume of chloroform:isoamyl alcohol 

(24:1) and then ethanol precipitated. The DNA pellet was resuspended in 50 µL of 10 mM Tris-

HCl pH 8.0. DNA samples were stored at −20 °C until needed.  

 

Tag-PCR amplification of the V1-V2 regions of the bacterial 16S rRNA gene 

The V1-V2 hypervariable regions of the 16S rRNA gene were PCR amplified from extracted 

DNA samples using two primers containing the universal sequences 27F (5’-

AGRGTTTGATCMTGGCTCAG-3’) and 534R (5’-TTACCGCGGCTGCTGGCAC-3’) 

respectively. A unique 10-bp barcode was added to the 5’ of the forward primer sequence to tag 

the samples. The PCR conditions used were 94°C for 3 min, followed by 30 cycles of 94 °C for 

30 sec, 57°C for 45 sec and 72°C for 60 sec, with a final extension of 5 min at 72°C. 

 

Pyrosequencing 

16S rRNA amplicons from different samples were pooled in equal molar ratios, gel purified and 

then sequenced with Titanium chemistry on a 454 Life Science Genome Sequencer FLX 

platform at University of Virginia Department of Biology Genome Core Facility according to the 
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standard 454 protocol. The sequences have been deposited in the MG-RAST server 

(http://metagenomics.anl.gov/). 

 

Sequence processing and OTU classification 

Sequence reads were processed using the QIIME pipeline (Caporaso et al., 2010b). After sorted 

by barcodes into separate samples, reads were filtered using a set of stringent criteria to remove 

low quality reads. Reads were removed if they were shorter than 200 bp or longer than 550 bp, 

had an average Phred equivalent quality score less than 25, did not contain proper 

primer/barcode sequences, or had an ambiguous base call (N) in the sequences. Chimeric 

sequences were identified using two methods implemented in QIIME, Chimera Slayer (Haas et 

al., 2011) and BLAST (Altschul et al., 1990). Chimeric reads detected by both methods were 

removed. To further clean up the data from potential sequencing artifacts, we excluded OTUs 

that only contained a single sequence read (singletons). 

 

OTUs at 97% identity cutoff were identified by Uclust (Edgar, 2010). The most abundant 

sequence of each OUT was chosen as the representative sequence, assigned a taxonomy using 

the Ribosomal Database Project (RDP) classifier (Wang et al., 2007) and aligned with each other 

using Pynast (Caporaso et al., 2010a). Alignment was then filtered to remove columns comprised 

of only gaps and known to be excessively variable using the mask file from Greengenes 

(DeSantis et al., 2006). The filtered alignment was then used to build a phylogenetic tree using 

FastTree (Price et al., 2010). 

 

For genera that contained potential pathogens of upper respiratory infections, we further 

classified the OTUs within these genera using the phylotyping algorithm of MEGAN (Mitra et 
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al., 2011). For each genus, we downloaded high quality 16S rRNA sequences of cultured isolates 

of the genus from the RDP database and used them as the reference sequences. We then 

BLASTN searched the representative OTU sequences against the reference sequences and 

assigned OTU the species name of its top matches in the reference if their sequences were 

greater than 97% identical. 

 

The human microbiota sequences from Costello et al. study (Costello et al., 2009) were 

downloaded from European Nucleotide Archive. They were processed and analyzed using the 

same protocol as described above. 

 

Bacterial diversity estimation and community comparisons 

We used Good’s nonparametric coverage estimator (Good, 1953) to evaluate our sequencing 

effort. Coverage (C) of a sample size n was estimated by the formula, C=1-N1/n, where N1 

denotes the number of classes observed exactly once (singletons). 

 

Chao1 and Shannon index were calculated using QIIME. While Chao1 estimates the number of 

OTUs in each sample, Shannon diversity index measures both species richness (the number of 

different taxa) and evenness (the relative abundance of each taxon). For all the beta diversity 

related analyses, the sequence reads were rarefied to remove the sequencing effort heterogeneity. 

UniFrac distances based on the abundance of 97% OTUs were calculated and used for 

Unweighted Pair Group Method with Arithmetic mean (UPGMA) clustering and Principal 

Coordinate Analysis (PCoA). To measure the similarity between any two samples, the pairwise 

Chao-Jaccard estimator was calculated for all possible pairs using EstimateS (Colwell, 2009). 
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Co-occurrence analysis 

We tested for nonrandom taxon co-occurrence patterns using Ecosim’s co-occurrence module 

(Gotelli, 2000). The data set was organized in a matrix of presence and absence, in which each 

row represented a taxon and each column represented a patient. We calculated the C-score (the 

average of checkboard units for all pairs of taxa) and compared it to the C-scores simulated using 

null random matrices. If the observed C-score is significantly larger than the expected C-score, it 

indicates possible segregation of taxa. Conversely, if the observed C-score is significantly 

smaller than the expected C-score, it suggests possible aggregation or cooperative interactions. 

 

To identify pairs of taxa that might be in involved in competition or cooperation, we carried out 

the Maximal Information-based Nonparametric Exploration (MINE) analysis (Reshef et al., 

2011). The dependence of two OTUs was measured by the maximal information coefficient 

(MIC) calculated using the pair’s relative abundance in all samples. To lower the computational 

cost, we limited the MINE analysis to OTUs with at least 10 sequence reads, effectively reducing 

the number of OTUs to 485. OTU pairs were first sorted by their MIC scores. Their false 

discovery rate (FDR) adjusted p-values were then computed using the method described in 

(Benjamini and Hochberg, 1995). A relationship was considered significant if the adjusted p-

value was less than 0.05. Linear relationships were identified using ρ, the Pearson product-

moment correlation coefficient. Non-linear relationships were uncovered using the non-linearity 

score MIC-ρ2 as described in (Reshef et al., 2011). 
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Tables and Figures 

Table 1. The prevalence and relative abundance of common pathogens that cause upper airway 

infections 

Pathogens Prevalence (%) Relative Abundance (%) 
Average Maximum 

Haemophilus influenzae 70.6 10.5 74.7 
Staphylococcus aureus 54.4 13.0 93.5 
Moraxella catarrhalis 44.1 2.3 42.7 
Neisseria meningitidis 41.2 0.4 8.1 

Streptococcus pneumoniae 41.2 0.2 5.1 
Streptococcus pyogenes 29.4 3.9 94.9 
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Figure 1. The bacterial species richness varied greatly between adenoid samples. The 

rarefaction analysis was performed by plotting the number of observed OTUs in each adenoid 

sample against the sequencing effort. Each line represents one of 68 adenoid samples. OTUs 

were defined using 97% similarity cutoff. 
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Figure 2. Adenoid microbiota composition varied greatly between adenoid samples. 

Taxonomic composition was broken down at the phylum level using Ribosomal Database Project 

classifier. Y-axis values represent the relative abundance of each phylum. Adenoid samples were 

clustered into five major groups with UPGMA of weighted UniFrac distances, with each group 

having a unique bacterial composition. 
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Figure 3. Coexistence and non-coexistence relationships between OTUs in the adenoid 

microbiota. Several non-pathogenic Streptococcus species display inverse relationships with 

common pathogens of upper airway infections in their relative abundance. A. between S. mitis 

(OTU 2242), one of the most abundant members of adenoid microbiota and S. aureus (OTU 

4730),  B. between Streptococcus intermedius (OTU 3426) and S. aureus (OTU 902), C. 

between Streptococcus salivarius (OTU 5198) and Streptococcus pyogenes (OTU 225). D. 

shows a linear relationship between two subspecies of S. aureus OTU 902 and OTU 5151. Each 

dot represents one adenoid sample. The x and y axes represent the relative abundance of the each 

OTU. 
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Figure 4. Adenoid microbiota is distinct from the microbiota of other human body sites. 

Principal coordinate analysis (PCoA) was performed based on the weighted UniFrac distance 

matrix. Each point represents a sample, colored by body site. The percentage of variation 

explained by each principal coordinate is indicated in parentheses. 
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Supplementary information 

Supplementary Figure 1.  Number of OTUs as a function of sequence identity cutoff. A 

flare-up at 99% cutoff indicates that most of the bacterial diversity exists below the 97% identity 

cutoff that is used to approximate species.  
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Supplementary Figure 2. Bacterial species richness of adenoid and other human body sites. 

The average number of OTUs for each body site was estimated by Chao1. Error bars represent 

+/- one standard deviation. 
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Supplementary Figure 3. Adenoid microbiota is distinct from the microbiota of other 

human body sites. UPGMA clustering was performed based on the weighted UniFrac distance 

matrix.  

Supplementary Table 1. Pairs of OTUs that show significant non-linear relationships by the 

MINE analysis. The table was sorted by the non-linear score from the highest to the lowest. 

 

Supplementary Figure 3 (5.8 MB) and Supplementary Table 1 (.xlsx) are available at: 

http://onlinelibrary.wiley.com/wol1/doi/10.1111/1462-2920.12000/suppinfo 
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Appendix 2. PhyloCore: a phylogenetic approach to identifying core taxa in microbial 

communities 
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Abstract 

Background 

Identifying core microbiota is an important step for understanding the key components of 

microbial communities. Traditional approach that identifies core taxa at the OTU level ignores 

potential ecological coherence of higher rank taxa. There is a need to develop software that can 

systematically identify core taxa at and above the species level.  

Results 

Here we developed PhyloCore, an application that uses a phylogeny-based algorithm to identify 

core taxa at the proper taxonomic levels. It incorporates a number of features that users can set 

according to their needs. Using multiple gut microbiota as test cases, we demonstrate that 

PhyloCore is more powerful and flexible than OTU-based approaches. 

Conclusions 

PhyloCore is a flexible and fast application that identifies core taxa at proper taxonomic levels, 

making it useful to sequence-based microbial ecology studies. The software is freely available at 

http://wolbachia.biology.virginia.edu/WuLab/Software.html 

Keywords: Core taxa, microbiota, OTU  
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Introduction 

Core microbiota are defined as members shared by most microbial assemblages from similar 

habitats.  It has been suggested that core taxa may play important roles in the function of the 

community (Shade and Handelsman, 2011). Thus, identifying core is a very useful step in 

microbial ecology studies. It provides valuable insights into what ‘healthy’ microbiota look like 

for a particular habitat and may also help in identifying keystone species in the community. The 

traditional approach used to identify core taxa is to find OTUs (operational taxonomic units) that 

are present in a large proportion of samples (Caporaso et al., 2011; Huse et al., 2012; Martínez et 

al., 2013). However, this method can only identify core taxa at the OTU level and ignores 

potential phylogenetic redundancy in microbial communities where multiple closely related 

OTUs are present.  

Since closely related bacterial taxa can be ecologically interchangeable (Harvey and Pagel, 1991), 

it may be useful to consider phylogenetic relationships when identifying core taxa. Recent 

studies suggest that there is ecological coherence (members of a taxonomic group share common 

ecological traits that distinguish them from members of other taxonomic groups) among bacterial 

taxonomic ranks higher than the species (OTU) level (Lozupone and Knight, 2007; 2005; 

Philippot et al., 2010; 2009). These findings suggest that microbial cores might exist at 

taxonomic levels higher than species. Therefore, it is not surprising that traditional core 

identification method often fails to detect core OTUs. Higher taxonomic level cores have been 

identified in previous studies (Benson et al., 2010; Zhang et al., 2015). However, the cores were 

identified either manually or using in-house scripts that are not available to the public. There is a 

need to develop software that can systematically identify core taxa at and above the species level. 
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Here we present PhyloCore, an application that uses a phylogeny-based algorithm to identify 

core taxa at the proper taxonomic levels. 

Material and methods 

Algorithm 

PhyloCore takes an OTU table that describes the presence/absence of each OTU in all samples 

and their taxonomic assignments, and optionally a phylogenetic tree of all OTUs. When a 

phylogenetic tree of all OTUs is provided, PhyloCore will use it to infer relationships between 

OTUs. In the absence of an OTU tree, PhyloCore will construct a tree using taxonomic 

information in the OTU table. OTU table and tree can be generated from 16S rRNA (or SSU 

rRNA) sequence data using a microbial ecology analysis software such as QIIME (Caporaso et 

al., 2010). To identify the core taxa, PhyloCore starts at the root node and traverses the whole 

tree in breadth-first order. For each internal node, PhyloCore calculates a prevalence value, 

defined as the cumulative presence of all its descendant OTUs. For example, in Figure 1 the 

prevalence of the internal node B is 2/3, because its two descendant OTUs (OTU 1 and OTU 2) 

appear in 2 out of 3 samples. For each leaf node or OTU, (e.g., OTU 4 in Fig. 1), PhyloCore 

calculates its prevalence value in all samples.  

 

PhyloCore initially stores any node i that has a prevalence value greater than a user supplied 

threshold as a core taxon. However, if PhyloCore finds a descendant of node i (e.g., node j) that 

also passes the threshold, then node i is replaced by node j in the stored core node list. For 

example, using a 0.5 threshold, node A is initially defined as a core node. However, when 

PhyloCore moves down the lineage and finds that node B also qualifies, node A is replaced by 

node B in the core node list. This will guarantee that for a particular lineage only the core at the 
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lowest possible taxonomic level is identified, assuming that cores at lower taxonomic levels are 

more informative than those at higher levels in revealing the functions of the core that are 

important for the community.  

 

Once a list of core nodes is identified, PhyloCore assigns taxonomy to each core node. If the core 

is an OTU, its taxonomy is used directly. For an internal core node, it is done by finding the 

lowest common taxonomy of all its descendant OTUs. Take node B for example, the lowest 

common taxonomy of OTU 1 and OTU 2 is family Lachnospiraceae. Therefore, 

Lachnospiraceae is assigned to node B. 

 

Dataset can be imbalanced when sampling among groups is uneven. For example, in Figure 1 

group I has two samples while group II has only one sample. This will result in a bias towards 

group I if all samples are treated equally. In this case, weighted core taxa can be identified. The 

prevalence of each node Pweighted will be calculated based on the formula below, giving each 

group (but not each sample) the same weight: 

𝑷𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅 =
1
𝑁 𝑃!

𝑵

𝒊!𝟏
 

where Pi is the prevalence in i’th group, and N is the total number of groups. 

	
 

Features 

PhyloCore is coded in Perl and allows user to specify:  

a)  A prevalence threshold. A node is considered a core node if its prevalence is above the 

threshold. 
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b)  An abundance threshold. OTUs with abundances lower than the threshold in a sample will 

be considered absent. 

c)  A sample ID list (with or without group information). Only samples in the list will be used 

in core identification. The group information, if provided, will be used to identify the 

weighted core nodes. This feature enables users to identify cores in a subset of the 

population (e.g., a specific group). 

Results and Discussion 

To demonstrate the use of PhyloCore, we first identified the core gut microbiota in mammals. 

The dataset contains 16S rRNA gene sequenced from 85 individuals belonging to 6 mammalian 

orders (Ley et al., 2008). Using QIIME, a 16S rRNA tree and an OTU table were generated and 

used as input files to PhyloCore. Prevalence threshold was set at 0.8 and samples were weighted. 

PhyloCore identified many core gut microbiota among different mammalian lineages (Figure 2). 

In comparison, traditional OTU-based core identification (as implemented in QIIME package) 

found only one OTU-level core (OTU 2209: family RFP12) in Perissodactyla, which was 

identified by PhyloCore as well. We found one order-level (Bacteroidales) and two family-level 

(Ruminococcaceae and Lachnospiraceae) core taxa that are shared among the mammals studied, 

suggesting that these taxa were likely present in the last common ancestor of mammals and are 

important in the codiversification of the gut microbiota and the mammalian hosts. As expected, 

the core hierarchy generally parallels the hierarchy of the host species phylogeny. In other words, 

if a microbial taxon a is a core of a host taxon b, then descendants of a are also cores of the 

descendants of b. For example, Order Bacteroidales is a core for Euarchontoglires. Genera 

YRC22 and Prevotella within Bacteroidales are cores of Rodentia and Primates, respectively 

(Figure 2). The parallelism in hierarchy should be perfect when the core is defined as being 
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present in all samples (i.e., using a prevalence threshold of 1.0). Because a prevalence threshold 

of 0.8 was used here, the core hierarchy breaks down in some lineages. For example, Family 

Ruminococcaceae was identified as a core for Placentalia, but neither Ruminococcaceae nor its 

descendants were cores for Carnivora (Figure 2). 

 

We also tested PhyloCore on 16S rRNA sequences from two human microbiome studies 

(Caporaso et al., 2011; Yatsunenko et al., 2012). The Yatsunenko et al. dataset contained 528 

samples collected from healthy children and adults from Amazonas of Venezuela, rural Malawi 

and US metropolitan areas. The Caporaso et al. dataset encompassed 467 samples collected from 

two individual over 1 year period. 16S rRNA trees and OTU tables generated by QIIME were 

used as input files to PhyloCore. Yatsunenko et al. dataset contained 45,595 OTUs, and it took 

PhyloCore (Python version) 4 minutes to run on a Macbook (1.6 GHz Intel Core i5 processor 

and 8 GB of memory). At the 0.9 prevalence cutoff, QIIME found two OTU-level core taxa 

(OTU 1: Dorea and OTU 5: Blautia). Besides these two OTUs, PhyloCore identified additional 

core gut microbiota at higher taxonomic levels: one order (Bacteroidales), two families 

(Coriobacteriaceae and Veillonellaceae) and two genera (Faecalibacterium and Streptococcus). 

Caporaso et al. dataset contained 4,926 OTUs, and it took PhyloCore 25 seconds to run on the 

same computer. At the 0.9 prevalence cutoff, QIIME found 15 OTU-level core taxa (12 

Bacteroides, 1 Roseburia, 1 Phascolarctobacterium and 1 unclassified Ruminococcaceae). In 

comparison, PhyloCore identified two more genus-level (Faecalibacterium and Blautia) core taxa 

in addition to the 15 core OTUs. 

 

The confidence of core identification depends on the sample size. For example, using the same 

prevalence threshold, we would place more confidence in core taxa that are identified from 1,000 
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samples than those identified from 10 samples. It is therefore important that sufficient number of 

samples are included in the study. As a general guideline, the smaller the number of samples 

used in a study, the more stringent prevalence threshold should be applied. Ultimately, the users 

should decide what is a proper prevalence threshold for a given sample size. At the minimum, 

the users should report the sample size and the prevalence threshold used in the core analysis. 

 

Based on the premise that ecological coherence can exist at higher taxonomic levels, we think it 

is useful to identify core microbiota at and above the species level. However, it is worth pointing 

out that by no means it implies that members of core taxa identified by PhyloCore all have the 

same functions, as many studies have demonstrated that closely related bacterial species do not 

have completely overlapping functions (Cordero et al., 2012; Youngblut et al., 2013). Instead, it 

suggests that functions shared by core taxa might be important for the function of the community. 

Although the correlation between 16S rRNA tree and ecological functions is not perfect, many 

studies have demonstrated an overall strong correlation that should be useful in predicting 

species function from phylogeny (Langille et al., 2013; Snel et al., 1999; Zaneveld et al., 2010).  

Conclusion 

We have developed PhyloCore, an application that uses phylogeny to identify core taxa in 

microbial communities. It has been suggested that core microbiota exist at the functional rather 

than the taxonomic level (Consortium, 2013; Turnbaugh et al., 2009). However, these two 

alternative hypotheses are not mutually exclusive. It is conceivable that core functions are shared 

by the phylogenetic core taxa and therefore they represent the two aspects of the same 

microbiota core. Having PhyloCore will help us further test this theory.  
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Availability and requirements 

Project name: PhyloCore 

Project home page: http://wolbachia.biology.virginia.edu/WuLab/Software.html  

Operating system(s): Unix/Linux (Perl and Python versions); Mac OS (Python version) 

Programming language: Perl or Python 2 

Other requirements: Bioperl 1.5.2 or later, or Biopython and Numpy 

License: GNU GPL 

Any restrictions to use by non-academics: None 
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Figures 

Figure 1. A diagram illustrating the criteria of core node identification. A phylogenetic tree of 

all OTUs and an OTU table describing the presence/absence each OTU are required as input. 

Samples 1-3 represent microbial communities (e.g. gut microbiota of different hosts). Group I 

and II represent categories of microbial community (e.g. from male or female hosts). Using a 

prevalence threshold of 0.5, internal node B and OTU 4 are identified as core nodes. 

 

Group I Group II Taxonomy

Sample1 Sample2 Sample3

OTU 1 1 0 0 Clostridiales; Lachnospiraceae; Blautia 

OTU 2 0 1 0 Clostridiales; Lachnospiraceae; Dorea 

Clostridiales; Ruminococcaceae; Ruminococcus OTU 3 1 0 0

OTU 4 1 0 1 Clostridiales; Ruminococcaceae; Oscillospira 

Prevalence threshold: 0.5 : Core node 1: present 0: absent 

A

B
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Figure 2. Core microbial taxa identified in different mammalian lineages using a prevalence 

cutoff of 0.8. P: phylum, O: order, F: family, G: genus. The mammalian tree topology was 

derived from (Reis et al., 2012). A 16S rRNA tree and an OTU table made with QIIME were 

used as input files to PhyloCore. 
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