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Abstract

Safe operation is crucial to safety-critical systems, such as fly-by-wire flight-control sys-

tems in aircraft. Software in these systems has to be correct, or, more precisely, the risk of 

being incorrect has to be reduced to an acceptable level. Ensuring the absence of imple-

mentation flaws by testing only is inadequate because it is infeasible to conduct the num-

ber of test cases required to establish a very high level of confidence. Thus formal 

specification and formally verified implementation are desirable.

Current approaches to formal verification are powerful but not sufficiently practi-

cal. Verification techniques are difficult and time-consuming to apply, tools are of limited 

capabilities and cannot be integrated, and the process requires high levels of expertise. 

Current approaches also impose limitations on developers that make it difficult to fit for-

mal verification into the existing development cycle. 

To address these problems, I develop a practical and effective approach to formal 

verification of the functional correctness of computer software. My approach, named 

Echo, relies upon and incorporates a number of powerful existing notations, tools and 

techniques, and distributes the verification burden over separate levels. At the core of the 

approach is a process called reverse synthesis in which a high-level abstract specification 

is extracted from the source code coupled with a low-level, detailed specification of a soft-

ware system. Formal verification then involves two proofs each of which is either gener-

ated automatically or mechanically checked. These proofs are: (1) a proof that the 

software source code implements the low-level specification correctly; and (2) a proof that 

the extracted specification implies the original software system specification. The two 

proofs can be tackled with separate specialized techniques.
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In order to facilitate both proofs, a variety of semantics-preserving transformations 

are used to refactor the implementation. These refactorings reduce the complexity of veri-

fication caused by program refinements and optimizations that occur in practice. They are 

either effected or checked mechanically. Refactoring transformations are used to simplify 

both of the proofs, in some cases making proofs feasible that otherwise would not be. 

The introduction of a low-level specification as an intermediate point and the 

application of semantics-preserving refactorings allow the approach to dovetail with stan-

dard development processes more easily than existing approaches to formal verification. 

In effect, verification in Echo proceeds in a direction opposite to that of traditional verifi-

cation approaches, exploiting automated reasoning and program transformation to dramat-

ically increase the practicality of verification. Relatively few limitations are imposed on 

developers and many existing software engineering development methods can continue to 

be used, yet formal verification and all of its benefits can be applied. The proof structure 

introduced in Echo is designed to scale for large software systems.

In addition, when combined with other types of analysis such as run-time checks, 

Echo increases the expressive power of formal verification, allowing whole-system assur-

ance arguments to be constructed for richer properties.
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Chapter 1.  Introduction

The ideal situation with verification of any particular system is the development of a com-

plete formal proof that the implementation implies the specification. This has always been 

the case with verification since the original concepts were introduced [36]. Recently, it has 

become the core of a “grand challenge” posed to the computer science community [80]. 

The Echo approach I introduce in this thesis is a comprehensive approach to formal verifi-

cation of functional correctness of software with the goal of making such verification 

readily available, applicable, practical, and useful to the community that needs it.

1.1.  Software Verification

In general, verification is the process of showing that one representation of a software arti-

fact is equivalent to another. The most common instance of this is showing that an imple-

mentation in a high-level language matches its specification. Clearly, this is important 

because, in principle, verification provides confidence that mistakes in software develop-

ment have been avoided or eliminated. There are five types of verification that can be 

applied to different levels: code inspection, testing, static analysis, dynamic analysis, and 

formal verification. In many cases, verification is undertaken by testing the developed 

software artifact. Various testing techniques such as 100% statement coverage and modi-

fied condition/decision coverage [33] are used, but while these ameliorate the problem, no 

algorithm for test selection other than exhaustive testing can guarantee the absence of 

errors [40]. Exhaustive testing, however, is not feasible for most large systems, hence test-

ing is not adequate for high levels of assurance [15]. Static analysis analyzes a program 
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before it runs and dynamic analysis checks a program at run-time, both of which have 

yielded excellent results. However, they are both limited to establishing certain properties 

of the program rather than equivalence to a specification. Under such circumstances, for-

mal verification, i.e., verification based on mathematics, becomes an attractive alternative 

[15], especially for safety-critical systems. In some cases, formal verification is required, 

such as at Evaluation Assurance Level 7 (EAL 7) of the Common Criteria [55]. 

Nevertheless, although it is desirable, formal verification is not commonly used in 

practice. Many valid reasons have been put forward to explain this [44]. One important 

problem is the difficulty of applying current verification techniques and their fragmented 

nature. Verification approaches are difficult and time consuming to apply; current tech-

niques and tools are limited in their capabilities; high levels of experience are required 

from the engineers involved; and often rigid, prescribed and unfamiliar processes must be 

followed. The problems with formal verification have to be solved—many critical systems 

are being built and assurance of their correct operation is becoming increasingly impor-

tant.

Various attempts have been made to address the practicality of formal verification. 

Model checking [37], for example, provides automatic analysis on top of system models. 

It has been adopted in practice and proven cost-effective, especially at verifying hardware 

and temporal properties. Such techniques, however, usually do not target full functional 

correctness for software systems and can not produce a full assurance argument.

1.2.  The Echo Approach to Formal Verification

In order to make formal verification more practical, I have developed a comprehensive 

approach to formal verification, that allows developers the maximum freedom possible in 
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building a system, yet requires minimal human intervention possible to apply the verifica-

tion. This contrasts with current formal verification techniques that require developers to 

change their familiar practices and adopt new processes, or require significant efforts and 

skills to be accomplished.

The approach, named Echo, relies upon and integrates a number of powerful exist-

ing notations, tools and processes. It also introduces a new approach to analysis in which 

semantic-preserving transformations are applied on the software implementation to reduce 

the verification complexity, and in which a high-level, abstract specification (referred to as 

the extracted specification) is synthesized mechanically from a combination of the soft-

ware source code and a low-level, detailed specification of the software to support the ver-

ification. This new approach to analysis is referred to as reverse synthesis, and it fills in a 

major gap in existing verification techniques. It alleviates the difficulty by separating the 

verification proofs, and it enables developers to continue to use existing software develop-

ment methods, i.e., they are not limited solely to tools and processes that support verifica-

tion, yet formal verification and all its benefits can be applied. 

The Echo approach involves two verification proofs: (1) the implementation proof, 

a proof that the source code implements the low-level specification correctly; and (2) the 

implication proof, a proof that the extracted specification implies the original system spec-

ification from which the software was built. It introduces a scalable proof structure named 

proof by parts to facilitate the verification of large systems. The major implication proof is 

carried out by matching static operational structure of the extracted specification to that of 

the original specification, and organizing the proof as the conjunction of a series of lem-

mas about the specification structure. By setting up a different lemma for each distinct ele-
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ment and proving each lemma independently, benefit is obtained that the proof scales for 

large systems. 

The basic Echo approach imposes no restrictions on how software is built except 

that development has to start with a formal system specification, and developers have to 

create the low-level specification documenting the source code. The current instantiation 

of Echo uses: (1) PVS [57] to document the system specification and the extracted specifi-

cation; (2) the SPARK subset of Ada [7] for the source program; and (3) the SPARK Ada 

annotation language to document the low-level specification. The implementation proof is 

discharged using the SPARK Ada tools, and the implication is constructed and proved 

using the PVS theorem prover.

1.3.  Thesis Statement

The fundamental theme of this thesis is practicality. More precisely:

THESIS: The Echo approach will make formal verification of functional 

correctness a practical yet comprehensive technique for real software sys-

tems of at least moderate length.

By formal verification of functional correctness, I refer to verification of the func-

tionality of the software in the sense of Floyd and Hoare [28]. In addition, this thesis 

focuses on verification of source programs against formal specifications, admitting but not 

considering here the additional problems that arise in translation to and extra detail in 

machine code.

By real software systems, I refer to software systems that are useful and realistic, 

that can benefit from formal verification, and that are built entirely by others without the 

application of the Echo verification approach in mind.
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By moderate length, I refer to software systems that are at least several thousand 

source lines long, and expect that the approach scales for systems that are even larger.

1.4.  Evaluation of the Echo Approach

To assess and evaluate the thesis statement, I have conducted case studies on three sepa-

rate specimen systems.

The Advanced Encryption Standard is a symmetric, iterated block cipher. The 

algorithm is specified in the Federal Information Processing Standards Publication 

197 [26]. I translated necessary artifacts involved to the notations adopted by Echo and 

applied the Echo approach to verify an optimized reference implementation against the 

official specification that are both publicly available. A further case study was also con-

ducted on the same implementation to assess Echo’s defect detection capability by ran-

domly seeding defects into the source code.

The Tokeneer enclave protection system is a hypothetical system that was defined 

by the National Security Agency (NSA) to act as a challenge problem for security 

researchers [8]. The system consists of a secure enclave containing a number of worksta-

tions having access to files with various restrictions. The challenge to researchers is to 

construct implementations with appropriate security properties. Altran Praxis (formerly 

Praxis High Integrity Systems) implemented the Tokeneer ID station software using 

SPARK Ada and a process designed to comply with the Common Criteria’s EAL5 security 

assurance requirements [17]. I conducted the case study to verify Praxis’s implementation 

using the Echo approach and assessed the scalability of the approach. 

The University of Virginia LifeFlow Left Ventricular Assist Device [75] is a pro-

totype artificial heart pump that utilizes active magnetic bearings and a carefully designed 
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flow path to reduce damage to blood cells. Using the Echo approach, I conducted the last 

case study to verify an implementation of the pump’s magnetic bearing control software 

that was developed by a colleague.

1.5.  Thesis Roadmap

This thesis is organized as follows:

Formal verification

• Chapter 2 describes the need and the background of formal verification, as well as tra-

ditional and complementary formal verification techniques.

The Echo approach to formal verification

• Chapter 3 outlines the overall concept and structure of the Echo approach to formal 

verification.

• Chapter 4 presents the details of the proof by parts structure that is used in the major 

implication proof in Echo for it to scale.

• Chapter 5 illustrates the way that the extracted specification is synthesized from the 

implementation and low-level specification in Echo.

• Chapter 6 describes the verification refactoring process and how it facilitates both 

proofs in Echo.

• Chapter 8 discusses and justifies the soundness of the Echo approach.

Extended usage of the Echo approach

• Chapter 7 explains the concept of synergistic analysis and how Echo is extended and 

integrated into it to provide the static part of the assurance argument.



7

• Chapter 14 demonstrates the extended usage of Echo in verifying synthesized code 

from Model-based development.

Evaluating the Echo approach

• Chapter 9 overviews the evaluation process and three specimen systems upon which 

evaluation case studies are built.

• Chapter 10 presents the case study of applying the Echo approach to verify an imple-

mentation of Advanced Encryption Standard.

• Chapter 11 describes another case study on AES by randomly seeding defects into the 

source implementation.

• Chapter 12 presents Tokeneer ID Station verification case study.

• Chapter 13 describes a case study of verifying the magnetic bearing control software 

for a prototype artificial heart pump.

Finally, I discuss related work in Chapter 15 and conclude in Chapter 16.
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Chapter 2.  Formal Verification

In this chapter, I begin by reviewing safety and security critical systems, the use of soft-

ware in these systems, and the need of formal verification for them. I then review formal 

methods, traditional formal verification techniques, some of the current approaches to ver-

ification, and their limitations.

2.1.  Safety and Security Critical Systems

Safety-critical systems are those systems whose failure will result in catastrophic conse-

quences on the users or the environment [69]. There are many well-known examples in 

application domains such as medical devices and flight control systems in aircraft. Fail-

ures in these systems will lead to loss of human life, significant property damage, and so 

on. The risk of unsafe operation of these systems must not exceed acceptable levels. Secu-

rity has also become a crucial issue for systems such as cryptography and authorization in 

which protection of information and property from unauthorized activities is a major con-

cern. Security vulnerabilities in these systems may lead to loss or untrustworthy use of 

critical data, computer programs, and other computer system assets. Hence high levels of 

confidence should be assured for systems in which safety and security are critical con-

cerns.

There has been increasing use of software in safety- and security-critical systems 

because of the added functionality and flexibility that they can bring. However, because of 

its complexity, software is the least well understood technology involved. Myers estimates 

that there are approximately 3.3 software errors per thousand lines of code in large soft-
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ware systems [54]. Software is quickly becoming a major cause of critical system failures 

and security vulnerabilities.

From the software perspective, assuring high levels of confidence requires signifi-

cant advances in areas such as specification, architecture, verification, process, etc. Verifi-

cation addresses software correctness issues, and it will be considered in the remainder of 

this thesis. By correctness here, I mean that the software’s implementation adheres to its 

specification. Software verification is crucial to safety- and security-critical systems and is 

one of the most significant elements of risk reduction. If it is not completed, it will leave a 

notable point of weakness in software assurance arguments. In many cases, verification is 

undertaken by testing the developed software artifact against its specification. Testing, 

however, is not adequate for high levels of assurance [15]. Formal verification is an attrac-

tive alternative under such circumstances. It provides confidence with mathematical rigor 

that many classes of defects introduced in software development that manifest themselves 

as security vulnerabilities or safety hazards have been avoided or eliminated. In some 

cases—such as at Evaluation Assurance Level 7 of the Common Criteria [55]—it is 

required. 

2.2.  Formal Methods

Formal methods are mathematically rigorous techniques for system description and devel-

opment. They grew out of program proving techniques, early examples of which are Eds-

ger Dijkstra’s predicate transformers [23] and Harlan Mills’ function approach [49]. The 

mathematical background is a mixture of mathematical logic and set theory.

Formal methods emphasize formal specifications [59], which are mathematically 

based notations used to precisely describe a system. With formal specifications, formal 
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methods may be used at various levels and can provide different levels of assurance for the 

software developed by such methods [12]. It can be merely the formal specification, 

which provides a mathematical model of a system and allows reasoning about the model. 

The Z notation [68] has been widely used in this manner, and has been proved to be bene-

ficial. It can also be formal verification, which is applied in the development of a system 

and involves the use of refinement techniques and proofs of correctness at each stage to 

insure that the current specification or implementation completely and correctly complies 

with the previous specification. For example, the B method [2] is specifically designed for 

this purpose, as opposed to being just a specification language. The process of formal ver-

ification can be undertaken manually or with mechanical tool support. Formal methods 

can also be used to ensure that unsafe or insecure states cannot arise in any system satisfy-

ing a formal specification. 

Formal methods have been used in a wide variety of application domains, espe-

cially the safety-critical and security-critical domains, and have been demonstrated to 

reduce defects if used appropriately [1]. However, they are still not commonly adopted in 

industry due to their difficulty, and this is likely to take a while to change.

2.3.  Traditional Formal Verification 

In a general sense, traditional proof-based formal verification takes one of the two 

approaches shown in Figure 1: correctness proof and refinement.

2.3.1.  Correctness Proof

In the correctness proof approach, a formal specification and the implementation devel-

oped from it are combined to form a correctness theorem. The basic form of a correctness 

theorem for a program is a Hoare triple, {P} S {Q}, in which the specification for the soft-
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ware, S, is the predicate P  Q, with P and Q stand for the precondition and the postcondi-

tion of the software respectively. The general approach to establishing this theorem is to 

determine the verification conditions, derive the weakest precondition (WP) from S and 

Q, and show that P  WP.

This approach, often referred to as Floyd-Hoare verification after the originators of 

the technique [28, 36], requires generation and proof of many detailed lemmas and theo-

rems. The main difficulty that arises with it is the complexity of the verification conditions 

and of the final implication. Although machine assistance has been developed, the details 

can easily overwhelm whatever machine resources are available, even for relatively small 

programs. The issue is not just the cumulative detail for the program, but also the com-

plexity of individual predicates associated with elaborate or intricate source statements.

Figure 1 Traditional formal verification

2.3.2.  Refinement

In response to practical difficulties with correctness proofs, researchers have created 

approaches in which formal verification is tied closely to software development using a 

technique called refinement. Software development by refinement involves the transfor-

mation of an abstract specification to a concrete implementation by a series of refinement 

transformations. Each refinement adds details working towards an executable implemen-
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tation. For each refinement, a proof that the refinement preserves application properties is 

established. This process of refinement continues until an implementation is reached that 

can be executed. The sequence of proofs constitutes the verification argument.

The best known and most comprehensive instantiation of refinement is the B 

Method [2]. The B Method is an extensive collection of techniques and notations that, 

taken together, provide a complete infrastructure for specifying, designing and implement-

ing programs, including large ones, using refinement.

Creating a proof along with the program to which it applies is a laudable goal, but 

it leads to the following three significant limitations:

• Software development decisions often hinge upon a process of exploration, and many 

alternatives might be considered. Weaving the developments of the software and the 

proof limits this exploration.

• Many existing software development techniques cannot be used because software 

development is constrained by the simultaneous proof development.

• If changes to an existing program are required to meet performance goals, those 

changes invalidate the verification proof chain and require the whole refinement path 

to be revisited so that the proof can be updated.

These limitations essentially make refinement, including the B Method, either 

impractical or undesirable for the vast majority of software developments. 

2.4.  Complementary Verification Techniques

In addition to correctness proof and refinement, various attempts have been made to facil-

itate mechanical verification and to make formal verification more practical. Such verifi-
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cation techniques include static analysis, theorem proving, model checking, and the use of 

annotations in code.

2.4.1.  Static Analysis

Static analysis is the mechanical checking of software performed without actually running 

it. In most cases the analysis is performed on the source code and in the other cases the 

object code. A set of automated tools and techniques have been created for this purpose. 

Typical forms of static analysis include syntax checking and type checking. More 

advanced static analysis tools such as Splint [25] use lightweight formal methods to check 

certain properties of a program, sometimes with more user efforts in the coding process. 

However, although these tools have yielded excellent results, they are limited to establish-

ing properties of a program rather than equivalence to its specification. Thus, for example, 

static analysis tools can be used to prove that a program will not access an uninitialized 

variable but not that the program computes the desired value with its initialized variables.

2.4.2.  Theorem Proving

Properties, also known as putative theorems, can be stated and proved for a high-level 

specification. Despite some theoretical limits, practical theorem provers can solve many 

hard problems using the underlying logics, mechanically or interactively. For instance, 

PVS [57] is a higher-order logic specification language with an associated theorem prover. 

Proofs over the specification can be constructed using a collection of primitive inference 

procedures and more complex deductive strategies that can be applied interactively. Theo-

rem provers have been used for specification analysis in several critical system domains. 

However, their application on hard problems usually requires a proficient user. Moreover, 
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although this technique is valuable for establishing confidence in the specification, it does 

not contribute to the goal of ensuring the accuracy of the implementation.

2.4.3.  Model Checking

Model checking is an automated technique that, given a logical property and a model of a 

system, systematically checks whether this property holds for that model. Thus, when the 

system itself cannot be verified exhaustively, the user can build a simplified model of the 

system that preserves its underlying design characteristics but at the same time avoids 

known sources of complexity. The model can then be verified using model checking tech-

niques. Model checkers such as SPIN [37] and Bogor [62] are becoming increasingly 

prominent in industrial practice. They provide very effective mechanisms for establishing 

various properties, usually temporal, of a program. Nevertheless, this technique, again, 

does not contribute to assurance that the program implementation’s total compliance with 

its specification.

2.4.4.  Annotations & Code-level Verification

Some languages are introducing annotations or “formal comments” to capture the code 

designer’s intentions. These annotations are usually added to code in the form of com-

ments, and can express declarative properties such as preconditions, postconditions, and 

invariants, thus can be used as a low-level specification to specify the desired behaviors or 

properties of the subprograms in the code. Following the idea of Design by Contract [53], 

these annotations are trying to provide rigorous formal semantics while still being accessi-

ble to ordinary programmer. Various code-level tools in the form of static checker and 

prover are developed to verify that a program is consistent with the design information 

included in its annotations. The code-level verification usually follows Floyd-Hoare style 
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in proof obligation generation and is largely automated, although a certain degree of 

human intervention is still needed. Typical examples are the SPARK Ada language with 

its annotations and toolset [7], and the Java language with JML annotations [47] and static 

checker such as ESC/Java [64] (and more recently ESC/Java2). The use of annotations 

and code-level tools makes verification at the low level straightforward. However, high-

level specification languages are still preferred since they are more expressive, flexible, 

and amenable to more powerful analysis. The problem of verification of program imple-

mentations’ compliance with high-level specifications still exists.

While all of these techniques are different from the core of my work, they are sub-

set or complementary to it. As will be described in the following chapters, part of my work 

is to adopt, adapt, and integrate the different forms of analysis so that each can be used to 

best advantage in establishing software assurance.



16

Chapter 3.  The Echo Approach to 
Formal Verification

In this chapter I introduce the concept of the Echo verification approach. I begin with the 

motivation and requirement for my work. I then go over the basic elements involved in the 

Echo verification process and the present language and tool instantiation of the process. 

Some extended usages of the approach are also be briefly discussed at the end of this 

chapter.

3.1.  Motivation

In the development of a more practical approach to formal verification, I seek to address 

three goals:

• The first goal is to create a controlled process for formal verification that is reasonably 

practical to be adopted in industrial applications. This goal comes from the observa-

tion that the lack of application of formal verification in industry is due to the lack of a 

well-controlled process, the fragmented nature of current techniques, and the signifi-

cant time and skill involved in the compliance proof. I aim to produce such a process 

and necessary tool infrastructure, which can be easily integrated into current software 

development practice, and with which the proof difficulty is mitigated and the verifi-

cation is automated to the extent possible.

• The second goal is to allow developers the maximum freedom possible in building a 

software system. Showing compliance of an implementation with a specification 

should not necessitate a specific way for constructing the implementation. It does not 
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mean that formal verification should be open routinely to software that is written in a 

completely ad-hoc manner, with no attention to structure and with no attention to the 

need for verification. Rather, it means that development should be restricted as little as 

possible by the goal of verification. This is not the case currently with approaches such 

as the B method.

• The third goal is to use existing technology as much as possible to form a comprehen-

sive verification approach. Many powerful notations and tools are available for 

mechanical analysis of software. Exploiting these notations and tools offers the oppor-

tunity to make progress more quickly. Moreover, existing notations and tools have 

taken a long time to develop and have solved very difficult problems. Thus, they both 

solve part of the problem and point in a positive technical direction.

3.2.  Concept and Requirement

To address the above goals, I developed the Echo approach. At the heart of Echo verifica-

tion is a process that I refer to as reverse synthesis in which a high-level, abstract specifi-

cation (that I refer to as the extracted specification) is synthesized from a low-level, 

detailed specification of a system. Verification then involves two proofs: (1) the imple-

mentation proof, a proof that the source code implements the low-level specification cor-

rectly; and (2) the implication proof, a proof that the extracted specification implies the 

original system specification from which the software was built. Each of these proofs is 

either generated automatically or mechanically checked, and each can be tackled with sep-

arate specialized techniques and notations.

In principle, verification need not be undertaken with two proofs. The reason for 

the separation is to allow the mechanics of verification to be tailored to the underlying ver-
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ification requirements and to take advantage of existing tools. The introduction of the low-

level specification as an intermediate representation helps to bridge the gap between the 

semantic levels of the different representations, and thereby facilitates both proofs. It also 

allows the Echo approach to dovetail with standard software development tools and tech-

niques more easily than existing approaches to formal verification. 

The low-level specification is a crucial element of Echo verification. One of the 

requirements for the Echo approach to apply is that the developers create them together 

with the source code. The level that I define for this is an annotated implementation, i.e., 

an implementation supplemented with declarative property annotations such as precondi-

tions, postconditions, and invariants. These annotations can be defined and inserted into 

the source code by the developers or partially generated directly from the code, to describe 

the desired behaviour of subprograms in the code. One might wonder whether developers 

would be prepared to annotate software that they create. If they are not, then the use of the 

Echo approach becomes problematic. Fortunately, the use of annotations in routine devel-

opment is being pursued by industry. Praxis High Integrity Systems, the developers of 

SPARK Ada, have created a process called Correctness by Construction [32] that requires 

fully annotated source code development throughout. Their results with this process when 

applied to safety-critical applications have shown large reductions in average rates of 

defects per line of code. Microsoft also adopts the concept of annotations in the develop-

ment of their latest products. Precondition and postcondition documentation using the 

SAL notation have been included in both the Vista operating system and the Office 12 tool 

suite [21]. Vista, for example, includes more than 500,000 function-level specifications 
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(annotations), and Microsoft researchers report that this technology has revealed more 

than 100,000 software defects in Vista. 

Another requirement for the Echo approach to apply is the existence of a proper 

formal specification. It is required that (1) the system to be verified has a formal specifica-

tion, and (2) the semantics contained in the formal specification has been restricted to 

those that can be implemented. This is important because formal specifications often 

abstract away detail, such as bounds of arithmetic operations, that in practice forms part of 

a program’s semantics. If those semantics are not present in the specification, an imple-

mentation that truly complies with the specification cannot be built. This activity must be 

either performed or checked by a human. A simple way is to ask domain experts to supple-

ment domain specific restrictions into the specification, such as type constraints, predi-

cates, and axioms. However, it can also be put into a formal framework, which is referred 

to in the literature as retrenchment and has been studied in some depth [6].

3.3.  Overall Process

Assume that the original specification from which the software was developed is complete 

and its semantics have been restricted to those that can be implemented, and assume a rea-

sonable development practice has been followed to create an executable implementation 

together with proper annotations. Then the Echo verification approach, shown in Figure 2, 

consists of the following steps:

1. Implementation Proof: A mechanical proof (with certain human assistance) of the 

implementation against the declarative property annotations. It usually follows the 

Floyd-Hoare style and can be achieved using existing tools such as static code ana-



Figure 2. The Echo verification approach
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lyzer and prover associated with the language. By exploiting the capability of existing 

mechanical tools, this step is largely automated. As described earlier, this is an estab-

lished technique. Notions for annotations have been developed along with proof sys-

tems to provide comprehensive support for this type of proof. I just adopt them as part 

of Echo.

2. Verification Refactoring: A series of human-guided, mechanical, semantics-preserv-

ing transformations on the implementation to reduce the complexity of its verification. 

Software implementations are often optimized for various reasons such as efficiency 

of time and space. This often adds considerable complexity to the verification. Refac-

toring the program by removing the optimizations while keeping the semantics 

unchanged can, however, help reduce the complexity of verification. This process 

involves selecting and applying a number of helpful transformations that are proved to 

be semantics-preserving, and using the transformed program for subsequent verifica-

tion. Commonly used transformations can be captured in a library and thus their proofs 
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can be reused. I refer to the final transformed program as the refactored implementa-

tion. 

3. Specification Extraction: An automatic or semi-automatic but mechanical checkable 

extraction of an abstract specification from the refactored implementation along with 

the declarative property annotations. The extraction process expresses the semantics of 

the implementation and declarative property annotations in a high-level specification 

language, which is amenable to more powerful analysis. Certain human guidance may 

apply to produce a desirable specification. I refer to the produced abstract specification 

as the extracted specification. This step, together with the previous verification refac-

toring step, is referred to as reverse synthesis, which is the core component of Echo 

verification argument.

4. Implication Proof: A human-guided proof that the properties of the extracted specifi-

cation imply the properties of the original specification. This is a major proof in Echo. 

For it to be scalable thus amenable for larger systems, I developed proof by parts, in 

which the proof is carried out by matching static operational structure of the extracted 

specification to that of the original specification, and is organized as a series of lem-

mas about the specification structure. This step can be set up and accomplished using a 

mechanical prover or proof checker associated with the specification language with 

human intervention. It checks proofs—whether they are constructed manually or auto-

matically—ensuring the soundness of the proof.

Provided (1) that the implementation can be shown to implement the annotations; 

(2) that the verification refactoring and the specification extraction is either automated or 
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mechanically checked to preserve semantics; and (3) that the implication proof can be 

constructed and proved, we have a complete argument that the implementation behaves 

according to its specification. 

3.4.  Current Instantiation

Figure 3. Tool configuration for Echo instantiation

The Echo approach imposes no restrictions on how software is built except that develop-

ment has to start with an implementable formal system specification, and developers have 

to create the low-level specification documenting the source code. There are no limitations 

on design or implementation techniques nor on notations that can be used. The present 

instantiation of Echo uses: (1) PVS [57] to document the system specification and the 

extracted specification; (2) the SPARK subset of Ada [7] for the source program; and (3) 

the SPARK Ada annotation language to document the low-level specification. In the cur-

rent instantiation, the proof that the extracted specification implies the system original 

specification is created using the PVS theorem prover, and the proof that the low-level 

specification is implemented by the source code is created by the SPARK Ada tools, 

including the Examiner, the Simplifier, and the Proof Checker [7]. Verification refactoring 

is also proved to preserve semantics in PVS theorem prover and is mechanically carried 

out in Stratego/XT toolset [13]. Specification extraction is created and performed by cus-
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tom tools. The language and tool configuration of present instantiation of Echo is shown 

in Table 1 and the whole Echo process with the instantiated tool configuration is shown in 

Figure 3.

Table 1: Present instantiation of Echo

Echo verification elements Present instantiation
Implementation language SPARK Ada
Low-level specification language SPARK annotations
High-level specification language PVS
Implementation proof system SPARK Examiner, Simplifier, and Proof Checker
Implication proof system PVS theorem prover
Verification refactoring Stratego/XT toolset
Refactoring proof system PVS theorem prover
Specification extraction Custom developed tools

3.5.  Practicality

The Echo approach makes verification more practical. It does this in part by combining 

existing powerful techniques, and in part by introducing reverse synthesis and proof by 

parts.

By exploiting existing notations and tools, the approach offers the opportunity to 

make progress more quickly. Annotations are tightly coupled with the source code, thus 

are suitable to prove low-level functional correctness. High-level specification languages 

are more expressive and are better at reasoning about high-level properties. Reverse syn-

thesis provides a mechanical link between annotations and high-level specification proofs 

thereby filling in the gaps left by tools already available.

With reverse synthesis, Echo allows an engineer to work with an existing imple-

mentation rather than requiring that an implementation be designed to show compliance. 

This gives developers as much freedom as possible to develop an implementation. Show-
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ing compliance of an implementation with a specification in Echo does not necessitate a 

specific method for constructing the implementation: development decisions is minimally 

restricted by the goal of verification. With proof by parts, Echo breaks the major proof into 

a series of lemmas about the specification structure, making the whole proof structure 

scalable and amenable for large software systems.

3.6.  Complex Properties and Challenges

As stated earlier, Echo focuses on verification of functional correctness only. For complex 

systems, as long as the properties to be verified can be specified functionally, Echo will be 

able to be applied. For instance, complex user interfaces (such as those that involve dia-

logues) can be specified functionally in a high-level specification language such as Z [68]. 

Verification of such specified user interfaces hence can be achieved by functional verifi-

cation using Echo. However, for complex systems involving non-functional requirements 

such as real-time constraints and floating-point accuracy, Echo can only tackle with limi-

tations or with support from other approaches. Properties involving concurrency, on the 

other hand, are not addressed in Echo. Such properties is well handled by model checking 

as the current state of art.

3.6.1.  Real-time Constraints

Echo focuses only on functional correctness, but it can be integrated with dynamic check-

ing in the synergistic assurance technique as will be discussed below. Real-time con-

straints will thus be checked at run-time in this framework. Presumably, if the processor/

compiler selected for the system to be verified supports instruction cycle counts, real-time 

properties such as WCET may also be stated and verified statically in the Echo approach.
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3.6.2.  Floating-point Arithmetic

Floating-point arithmetic is known to be inaccurate. However, given a preset boundary 

and precision, some verification of properties involving floating-point types can still be 

achieved. The current instantiation of Echo uses the SPARK Ada language. Echo uses 

SPARK Ada’s approximation of floating-point arithmetic and I verify functionalities of 

floating point types building on the SPARK Ada semantics. 

3.7.  Extended Usages

Echo is originally developed to be purely an approach for formal functional verification of 

an implementation against its formal specification. Nevertheless, during the development 

of Echo, it has shown more capabilities and extended usages.

3.7.1.  Synergistic Assurance

My research on Echo and that of a colleague, Ben Taitelbaum, has led to the development 

of a new technique that integrates static verification using Echo with dynamic checking. 

This new technique provides a synergistic assurance argument in an approach called syn-

ergistic analysis. Dynamically checked properties are introduced as lemmas in the verifi-

cation argument and the checking functions are statically verified.

The major benefit that synergistic analysis provides is that those properties not ver-

ified in Echo, such as some real-time properties and some floating-point arithmetics, can 

be checked dynamically and included in the final assurance argument. I will present the 

details of synergistic analysis in Chapter 7.
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3.7.2.  Model-Based Development

The creation of software by a synthesis tool uses a mechanical process to construct soft-

ware from a formal specification. The output of synthesis is software in a traditional form, 

usually a high-level programming language. The most common usage of such code syn-

thesis process is Model-based development (MBD), which is a software engineering 

methodology that producing source programs by first creating domain-specific models 

and then synthesizing code automatically from the models. The synthesis process relies 

upon the correctness of the synthesis tool to achieve the necessary quality in the resulting 

software. Examples of such synthesis tools in MBD are the SCADE Suite [65] and Simu-

link [66].

Echo permits formal verification of software built using a synthesis tool. Echo 

does not depend on actions taken during development, and so it can be applied immedi-

ately to synthesized software. The same tools and techniques that are used for software 

created by hand apply to synthesized software. In application domains for which the con-

sequences of software failure are high, such as safety-critical applications, there is consid-

erable concern about the possibility of the synthesis tool being defective. Traditional 

methods of avoiding or eliminating faults that are used when software is built manually, 

including existing methods of formal verification, cannot be applied because the action of 

the synthesis system is not subject to inspection or modification. Echo presents a compre-

hensive alternative.

My colleague, Ren Xu’s research has extended the usage of Echo to MBD, and 

showed the feasibility of applying it to Simulink models and synthesized code. I will pres-

ent some of the details in Chapter 14.
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3.7.3.  Property Proof

One of the requirements that Echo needs is the existence of a formal specification when a 

system is developed. However, many systems, especially legacy systems, may not have 

formal specifications when developed, yet certain level of assurance is still highly desired. 

This is usually not something about complete functional correctness. People may just want 

to reason about properties of the system, for example, whether a certain security property 

holds for the system. Echo is still applicable in such cases. With reverse synthesis, Echo 

starts from the implementation (augmented with low-level annotations if needed), and can 

still refactor the code and extract a high-level abstract specification from the code. Then 

instead of proving the extracted specification implies the original specification, engineers 

can state the security property in the specification language and try to prove it within the 

extracted specification. Since high-level specification languages are more abstract and 

amenable to more powerful analysis, this can usually be achieved with much less effort. 

Reverse synthesis preserves semantics, so if the security holds for the extracted specifica-

tion, it holds for the original system.

Such property proof usage is also adopted in both of the above two extended appli-

cation of Echo: synergistic analysis and model-based development, as will be illustrated in 

later Chapters.
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Chapter 4.  Proof by Parts

The implication proof that the extracted specification implies the original specification is 

the major proof in Echo. For Echo to be practical and amenable for large software sys-

tems, the proof structure involved must be scalable. I developed proof by parts, in which 

the implication proof is carried out by matching static operational structure of the 

extracted specification to that of the original specification, and organizing the proof as the 

conjunction of a series of lemmas about the specification structure. By setting up a differ-

ent lemma for each distinct element and proving each lemma independently, it obtains the 

important benefit that the proof scales easily for large systems. 

4.1.  Structural Matching Hypothesis

The heart of proof by parts is the structural matching hypothesis. I hypothesize that many 

systems of interest have the property that the high-level structure of a specification is 

retained, at least partially, in the implementation. Ideally, a specification should be as free 

as possible of implementation detail. However, the more precise a specification becomes, 

the more design information it tends to include, especially structural design information. 

While an implementation need not mimic the specification structure, in practice an imple-

mentation will often be similar in structure to the specification from which it was built 

because: (a) repeating the structural design effort is a waste of resources; and (b) the 

implementation is more maintainable if it reflects the structure of the specification.

The hypothesis tends to hold for model-based specifications that specify desired 

system operations using pre- and post-conditions on a defined state. The operations reflect 
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what the customer wants and the implementation structure would mostly retain those 

operations explicitly. As an example, consider the following specification of a simple 

function that defines a foo operation over a type state:

state: TYPE = [# a: int, b: int #]
foo(st: state) : state

An intuitive implementation would almost certainly retain the state type as a data 

structure and the foo operation as a subprogram, such as:

type state is
record

a: Integer;
b: Integer;

end record;

procedure foo(st: in out state);
--# derives st from st;

The structural matching hypothesis is also implicitly assumed in the well-known 

Floyd-Hoare approach to verification, which requires a stepwise proof that a function 

implementation complies with its specification. This implicitly requires a mapping from 

functions and variables in the specification to those in the implementation. Thus, I have 

not added assumptions, only evaluated existing ones in more detail.

4.2.  The Proof Structure

Figure 4. Proof structure

The proof of interest is the implication proof. Given implementation I and specification S, 

this proof has to establish the implication I  S. Specifically, let OPI and OPS denote the 
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valid state transitions, and I() and S() retrieve the state representation in the implementa-

tion and specification respectively, we prove that all valid state transitions in the imple-

mentation should also be valid in the specification, and any meaningful state (that can 

validly transits to other states) defined by the specification should also be meaningful in 

the implementation:
st st: I st  I st   OPI  S st  S st   OPS,

st: st: I st  I st   OPI   st: S st  S st   OPS 

Alternatively, let pre and post denote the sets of pre- and post-conditions, it can be 

also shown as:
I S      pre S  pre I   post I  post S 

The implementation is said to imply the specification if and only if it weakens the 

pre-condition and decreases the non-determinism.

In Echo, the implication proof is not carried out directly between the implementa-

tion and the specification. Rather, an extracted specification is first produced by the 

reverse synthesis process. It is guaranteed that the extracted specification preserves the 

structure and the semantics of the implementation. The implication proof is then to prove 

the extracted specification implies the original specification in the same way as the above 

theory. Since the extracted specification will usually be more abstract than the implemen-

tation and will be in the same specification language as the original specification, it is usu-

ally easier to establish the implication proof this way.

In order to establish this proof for large software systems, the proof structure 

involved must be scalable. Proof by parts relies upon the structural matching hypothesis, 

and matches the static operational structure of the extracted specification created by 
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reverse synthesis to the original specification. The proof is then organized as a series of 

lemmas about the specification structure, i.e., proof by parts.

Each lemma is set up for declarative properties over a single distinctive element, 

e.g. type or operation, and is independently proved. The conjunction of all the lemmas 

then forms the whole implication theorem that the extracted specification implies the orig-

inal specification. Since each lemma is over a different elements of the system and is 

proved independently without reference to the whole system, the proof easily scales for 

large software systems.

Clearly, the construction of a proof in this way is only possible for a system for 

which the structural matching hypothesis holds for the entire implementation. Inevitably, 

this will rarely if ever be the case for real software systems. For systems in which the two 

structures do not match, I employ a certain type of code transformation, within the verifi-

cation refactoring technique in Echo, to restructure the implementation to match the spec-

ification structure.

4.3.  Restructuring Transformation

There are many reasons why the structural matching hypothesis will only apply partially 

to a particular system. For example, software implementations are often heavily optimized 

to achieve efficiency in time and/or space, and optimization inevitably affects the structure 

of the implementation. To facilitate proof by parts under such circumstances, I use verifi-

cation refactoring to restructure the implementation.

By verification refactoring I mean the transformation of a program in a way that 

preserves the functional semantics of the program and facilitates verification. Verification 

refactoring consists of selecting transformations, proving they are semantics preserving, 
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and applying them to the program before specification extraction. Transforming a program 

does change the program’s execution time. However, by proving that each transformation 

which is applied preserves the functional behavior (input/output), the functional correct-

ness which is my verification focus is not affected. 

Echo’s verification refactoring mechanism provides a set of semantics-preserving 

transformations that can be applied to an implementation to facilitate verification in vari-

ous ways. A certain set of transformations restructures a program to align the structure of 

the extracted specification with the structure of the original specification, i.e., to make the 

matching hypothesis apply to more of the program. This set includes transformation to 

modify data structures to eliminate complexities related to efficiency, to reverse inlined 

functions, to split or merge procedures, etc. 

Details of verification refactoring, and the restructuring transformations are dis-

cussed in Chapter 6.

4.4.  Matching Metric

Proof by parts tries to match the static operational structure of the extracted specification 

to the original specification, organize the proof as a series of lemmas that sets of declara-

tive properties over types and operations combine to imply the specification’s properties. 

The structures of the two specifications do not have to be identical, but the closer the two 

specifications are in structure, the easier matching the elements between the two becomes 

and hence the easier the proof becomes.

This raises the question: “How close is close enough?” I have defined a matching 

metric to summarize the similarity of the structures of the original and the extracted speci-

fications that indicates the feasibility of proof by parts. In Echo, this is done by comparing 
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the two through visual inspection and evaluation of a match ratio. The match ratio is 

defined as the percentage of key structural elements—data types, system states, tables, 

operations—in the original specification that have direct counterparts in the extracted 

specification. The match ratio does not necessarily imply the final difficulty of the proof, 

but the match ratio does provide an initial impression of the likelihood of successfully 

establishing the proof.

Establishing the match ratio is fairly straightforward in many cases. Some of the 

matching can be determined from the symbols used, because the names used in the origi-

nal specification are often carried through to the implementation and hence to the 

extracted specification. Although it is currently evaluated mainly by visually inspection in 

Echo, significant tool support would be simple to implement.

More details of the matching metric, and other code metrics that evaluate different 

aspects of the proof difficulties, are discussed in Chapter 6. 

4.5.  Approach to Proof

The property that needs to be shown in the implication proof is implication not equiva-

lence, hence the name. By showing that the extracted specification implies the original 

specification, but not the converse, I allow the original specification to be nondeterminis-

tic and allow more behaviors in the original specification than the implementation. The 

basic definition of implication I use for this is that set out by Liskov and Wing known as 

behavioral subtyping [50]. Behavioral subtyping was studied in the context of languages 

that permit inheritance in order to define what it meant for a subtype to comply with the 

type constraints of a supertype. Intuitively, the requirement is similar in verification: we 

want to ensure that the function implementation complies with the constraints defined in 
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its specification. While my instantiation is more general, not making assumptions on what 

is or is not required of a type system, the principles are the same. Then, by implication, I 

mean that the functions in the extracted specification are subtypes of the matching func-

tions in the original specification.

The goal with proof by parts is to make formal verification relatively routine. 

Structural matching between the implementation and the specification, achieved with or 

without verification refactoring, provides the basis of the implication proof.

The way in which the extracted specification is created influences the difficulty of 

the later proof. In the case where the implementation retains the structural information 

from the original specification, a simple way to begin proof by parts is to also retain the 

structure by directly translate elements of the implementation language, such as packages, 

data types, state/operation representations, pre-conditions, post-conditions, and invariants, 

into corresponding elements in the specification language. The extracted specification will 

thus be structurally similar to the original specification. Such a strategy is straightforward, 

but it does have considerable potential.

The static operational structure of the extracted specification is matched to that of 

the original specification. For each pair of matching elements, I establish an implication 

lemma that the element in the extracted specification implies the matching element from 

the original specification. The final proof is organized as the conjunction of a series of 

such lemmas. There are three types of implication lemmas as shown in Figure 5.

4.5.1.  Type Lemmas

Most of the data types in the specification extracted from the implementation are either 

equivalent to or refinements of their counterparts in the original specification. Although 
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this is not necessarily the case and proving these relationships is not necessary before 

tackling the proofs of functions, setting up and proving the relations between the types to 

the extent possible facilitates the proof of later lemmas.

Figure 5. Proof by parts

For each pair of matching types, I define a retrieval function from the extracted 

type to the original type. When trying to prove the relation between each pair, two possi-

bilities arise:

• Surjective Retrieval Function. If the retrieval function can be proved to be surjec-

tive, the extracted type is a refinement of the original type, i.e., all properties contained 

in the types in the original specification are preserved. If the retrieval function can be 

proved to be a bijection, the two types are equivalent.

• Non-surjective Retrieval Function. If the retrieval function is not surjective, then 

either: (a) there is a defect if the two types are intended to be matched; (b) certain val-

ues in the original specification can never arise; or (c) a design decision has been made 

to further limit the type in the implementation, i.e., to make the post-condition stron-

ger. Upon review, if the user does not confirm that there is a defect or does not further 
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refine the specification, I postpone the proof by transforming the types into subtype 

predicates on the same base type (e.g. integer). These extra predicates are added as 

conjuncts in function pre-conditions or post-conditions depending on where they 

appear, and they are checked when the later lemmas regarding those functions are 

established.

4.5.2.  State Lemmas

State is the set of system variables used to monitor or control the system. State is defined 

over types, thus earlier proved type lemmas can be used to facilitate proofs of state lem-

mas. As with type lemmas, I set up a retrieval function from the extracted state to the orig-

inal state. For each pair, I prove the following two lemmas:

• State Match. As with the type lemmas, I prove that the retrieval function is surjective 

to show refinement (or equivalence in the bijection case). If it cannot be proved, indi-

cating certain values of the original state cannot be expressed by the extracted state, I 

again present it for user review. It is either a defect or, by definition, certain values of 

original state cannot arise.

• State Initialization. For states that require initialization, the extracted specification 

will contain an initialization function. I prove that whenever a state is initialized in the 

extracted specification, the corresponding retrieved original state also satisfies the ini-

tialization constraints in the original specification. Given R as the retrieval function, st

as the state, ext and org as extracted and original specification respectively, I prove:

FORALL st:
Init_ext(st) => Init_org(R(st))
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4.5.3.  Operation Lemmas

System operations are usually defined as functions or procedures over the system state. 

Previously proved state and type lemmas can be used to facilitate the proof. When match-

ing pairs of operations in the extracted specification and the original specification, I set up 

an implication lemma for each pair according to the concept of behavior subtyping. The 

operation extracted from the implementation should have weaker pre-condition and stron-

ger post-condition than the operation defined in the original specification. Specifically, I 

prove:

• Applicability. The extracted operation has a weaker pre-condition than the original 

operation. In other words, the extracted operation is applicable whenever the original 

operation is. For any state st upon which the operation operates, given R as the 

retrieval function for st, I prove:

FORALL st:
Pre_org(R(st)) => Pre_ext(st)

• Correctness. The extracted operation has a stronger post-condition than the original 

operation if applicable. In other words, whenever an extracted operation is executed 

when the matching original operation is also applicable, the output must also be an 

allowed output of the original operation. Given any st1 and st2 as input and output 

for an operation f, R as the retrieval function for state, I prove:

FORALL st1, st2 | st2 = f(st1):
Post_ext(st2) AND pre_org(R(st1)) => post_org(R(st2))

By reasoning over predicates such as the pre-conditions and post-conditions in the 

low-level specification, implementation details are avoided as much as possible when 

proving these implication lemmas.
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4.5.4.  Implication Theorem

The conjunction of all the lemmas forms the implication theorem. All the resulting proof 

obligations need to be discharged automatically or interactively in a mechanical proof sys-

tem. Since the extracted specification is expected to have a structure similar to the original 

specification, the proof usually does not require a great deal of human effort. Also, by set-

ting up the lemmas operation by operation rather than property by property and proving 

each operation independently, the proof structure easily scales. Defects can also be easily 

located if any of the lemmas fails to be proved, because it must be inside the correspond-

ing structure or element.

4.6.  Proof Process

Our process for applying the proof in practice is shown in Figure 6. 

Figure 6. The proof process

In most situations, I 

choose to proceed with verification refactoring first to increase the match-ratio metric 

until it becomes stabilized through transformations. There are other types of refactoring 

and corresponding metrics I evaluate to facilitate the proof process, e.g., to reduce the size 

of proof obligations generated. Details of this verification refactoring and metric analysis 

process and the benefits it brings to the proof are discussed in Chapter 6.
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After applying verification refactoring, we have a version of the implementation 

from which a specification can be extracted that shows structural similarity to the original 

specification. I then: (a) update and complete the low-level specification (documented as 

annotations) that might have become erroneous during the refactoring process (e.g. by 

splitting a procedure); and (b) prove that the code conforms to the low-level specification, 

i.e., create the implementation proof. Recall that the implementation proof is completed 

mechanically with minimal human intervention. This technology is well established, and I 

do not discuss it further here.

From the refactored code and the associated low-level specification, I extract a 

high-level specification, i.e., the extracted specification, using custom tools. I then estab-

lish the three types of implication lemma and the implication theorem following the 

approach discussed earlier. Finally, I prove that the extracted specification implies the 

original specification by discharging all the implication lemmas in the theorem prover.
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Chapter 5.  Specification Extraction

The specification extraction fills the gap between the implementation proof at the code 

level and the implication proof at the specification level. To flesh out the implementation 

details that are already proved in the implementation proof and that are irrelevant to the 

verification, the specification extraction step extracts an abstract specification from the 

annotated implementation to be used in the proof of implication with the original specifi-

cation. In this chapter I demonstrate how the extracted specification is synthesized from 

the implementation. 

5.1.  Specification Extraction Requirement

The specification extraction is the key to the automation of the whole Echo process. The 

way in which the extracted specification is created influences the difficulty of the implica-

tion proof.

The specification extraction seeks a mapping from the implementation to a specifi-

cation. Since the specification language usually is more expressive than the implementa-

tion language, the structure and modularity of the implementation can often be easily 

maintained through the specification extraction. Given the structural matching between 

the implementation and the original specification, achieved with or without verification 

refactoring, the extracted specification can be similar in structure to the original specifica-

tion so that the implication proof can be facilitated.
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5.2.  Structural and Direct Mapping

The specification extraction tries to retain the structural information of the implementation 

in the extracted specification. A simple method for automating the process is to write 

straightforward rules for translation of elements of the annotated implementation lan-

guage, such as data types, state/operation representations, preconditions, postconditions, 

and invariants to corresponding elements in the specification language. Such a strategy, 

which I call structural and direct mapping, is not always applicable, but it does have con-

siderable potential in the Echo process and thus is intensively used.

In the PVS-SPARK instantiation of the Echo verification process, I implemented 

an extraction tool that extracts a PVS representation from given SPARK Ada code. I based 

the extraction on the extended BNF grammar of the SPARK language, developed a parser 

in Java, and designed a set of extraction rules on top of it to emit corresponding PVS struc-

tures when SPARK declarations, definitions, and annotations are parsed. An example of a 

portion of the BNF is shown in Figure

Figure 7. Sample of SPARK BNF

<subprogram_declaration> ->
<procedure_specification> ; 
<procedure_annotation> |
<function_specification> ; <function_annotation>

<procedure_specification> ->
procedure <defining_identifier> <parameter_profile>

<parameter_profile> -> [<formal_part>]

<formal_part> ->
( <parameter_specification> 

{ ; <parameter_specification> } )

<parameter_specification> ->
<defining_identifier_list> : <mode> <subtype_mark>

<mode> -> [ in ] | in out | out

 7.
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5.2.1.  General extraction rules

Structuring the extraction so that the extracted PVS specification reflects the structure and 

modularity of the implementation in SPARK Ada is essential for practicality of the impli-

cation proof. General extraction rules from SPARK to PVS are categorized as below:

• Software structure. I identify packages in SPARK Ada and create a PVS theory for 

each package in SPARK. Relations among SPARK Ada packages, such as inheritance 

and compilation order, are extracted into importing relations among PVS theories. 

Scoping and visibility can also be maintained in the PVS theory structure. The follow-

ing is a sample of the structure extraction, where theory_A and theory_B are the cor-

responding theories of package_A and package_B, respectively.

     SPARK                               PVS
with package_A;                     theory_B: THEORY
--# inherit package_A;              BEGIN
package package_B                   IMPORTING theory_A
...                                 ...
end package_B;                      END theory_B

• Non-function type definitions. Basic types such as integers, real numbers, enumera-

tion types, record types, and also their subtypes can be directly extracted into carefully 

selected corresponding type representations in PVS.

• Variable and constant declarations. Variable and constant declarations can also be 

extracted directly into appropriate forms, usually system state representations in PVS. 

Variables that are local to subprograms are usually not extracted, since they will be 

masked by the introduction of pre- and post-condition annotations.

• Function / procedure declarations and definitions. SPARK Ada functions or proce-

dures are extracted into PVS functions. Not only the direct input / output variables, but 

also the global variables accessed by that function / procedure will be extracted into 
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the input / output of the corresponding PVS function. Pre- and post-condition annota-

tions, if available, are extracted into appropriate predicates or type restrictions over the 

input / output. Detailed implementation of the function / procedure is usually left out if 

pre- and post-condition annotations exist to provide a level abstraction.

Different extraction types and examples are discussed below.

5.3.  Extraction Types

5.3.1.  Extraction from Annotation

For functions that are annotated with proved pre- and post-condition annotations, the 

annotations provide a level of abstraction. This is helpful for programs that contain a lot of 

computation. For instance, when one specifies a function, the property that one cares 

about would be correctness of the output. The actual algorithm used is not important. If 

the function is annotated and the annotation is proved using code-level tools, I extract the 

specification from the annotations and leave out the unrelated implementation details. The 

proof of the annotations by the code-level tools can be introduced as a lemma that is 

proved outside the specification proof system. As an example consider the following code 

fragment that is written in SPARK Ada:

type state is 
record 

a: Integer; 
b: Integer; 

end record;

procedure foo(st: in out state) 
--# derives st from st; 
--# pre st.a = 0; 
--# post st = st~[a => 1]; 
is 
begin 

  -- procedure body 
  …

end foo;
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Leaving out the details in the procedure body but introducing an additional lemma, 

the extracted specification in PVS will be:

state: TYPE = [# a: int, b: int #]
 

foo_pre(st: state): bool = (st`a = 0) 
foo_post(st_, st: state): bool = (st = st_ WITH [`a := 1]) 
foo(st: state): state 
foo: LEMMA FORALL (st: state):

foo_pre(st) => foo_post(st, foo(st))

The additional lemma indicates that the postcondition will be met if the precondi-

tion is met. The lemma is marked as proved outside and can be used directly in subsequent 

proofs.

5.3.2.  Direct Extraction from Code

The expressive power of the SPARK Ada annotations with which the low-level specifica-

tion is documented is limited. Certain properties either: (a) cannot be expressed by the 

annotation language; (b) are expressible but not in a straightforward way; or (c) are 

expressible but are not helpful in abstracting out implementation details. In such situations 

I extract the specification directly from the source code. This usually happens in control 

systems where system state updates, the order of events (function calls) are mostly coded, 

but not a lot of computation involved. Consider the following example again in SPARK 

Ada:

procedure foo(st: in out state) 
is 
begin 

foo1(st); 
st.a = 1; 
foo2(st);

end foo;

This procedure will be extracted directly to:

foo(st: state): state = 
LET st1 = foo1(st) IN 
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LET st2 = st1 WITH [`a := 1] IN 
LET st3 = foo2(st2) IN

st3

Extracting directly from source code means that a lot of implementation detail 

need to be managed. As of now in the SPARK-PVS instantiation of Echo, direct extraction 

from source code is used in limited circumstances, i.e. when there is no iterative control 

flow. I rely for the most part on annotations to provide an extra level of abstraction to 

divide the verification burden between the implication proof and the implementation 

proof.

5.3.3.  Skeleton Extraction

A lightweight version of specification extraction is used to facilitate verification refactor-

ing and estimate the likely difficulty of the implication proof. When verification refactor-

ing is applied, I extract a skeleton specification from the transformed code. I refer to this 

specification as a skeleton because it is obtained using solely the type and function decla-

rations and contains none of the detail from the annotations or the function definitions. 

The skeleton specification, however, does reflect the structure of the extracted specifica-

tion. I can then compare the structure of the skeleton extracted specification with that of 

the original specification and evaluate the match ratio as defined in section 4.4 to deter-

mine whether further refactoring is needed. Details on the usage of such match ratio as a 

metric to guide the verification refactoring process is discuss in Chapter 6.

5.4.  Other Extraction Techniques

5.4.1.   Component Reuse

Software reuse of both specification and code components is a common and growing prac-

tice. If a source-code component from a library is reused in a system to be verified and that 
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component has a suitable formal specification, then that specification can be included eas-

ily in the extracted specification.

5.4.2.  Model Synthesis

In some cases, specification extraction may fail for part of a system because the difference 

in abstraction used there between the high-level specification and the implementation is 

too large. In such circumstances, I use a process called model synthesis in which the 

human creates a high-level model of the portion of the implementation causing the diffi-

culty. The model is verified by conventional means and then included in the extracted 

specification.

All extraction techniques described above combine and contribute to the goal of 

effective specification extraction. 
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Chapter 6.  Verification Refactoring

Informally, by verification refactoring, I mean the transformation of a program in such a 

way that the functional semantics of the program (but not necessarily the temporal seman-

tics) are preserved and verification is facilitated. The reverse synthesis process in Echo 

makes extensive use of verification refactoring, and it is a critical part of the way in which 

Echo is made more broadly applicable. In this chapter, I discuss the motivation for verifi-

cation refactoring in terms of the difficulties that it helps to circumvent in the two Echo 

proofs, the process of the refactoring, semantics-preserving proof and code metrics to 

facilitate refactoring.

6.1.  Motivation for Verification Refactoring

A lot of effort in software development goes to making sure that the software is adequately 

efficient. The result of this effort is careful treatment of special cases, compact data struc-

tures and efficient algorithms, with the inevitable introduction of complexity into the con-

trol- and data-flow graphs. Much of the difficulty that arises in formal verification results 

from the complexity of the source program. One of the reasons for the use of verification 

refactoring is to reduce this complexity.

A second reason for the use of verification refactoring is to align the structure of 

the extracted specification with the structure of the system specification. This alignment 

permits the implication proof to be structured as a series of lemmas and allows an efficient 

overall proof structure.
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The transformations used and the mechanism of their selection is different for the 

two proofs in Echo, and so each is discussed separately in this section.

6.1.1.  Support for the Implication Proof

The implication proof is the proof that the extracted specification implies the original 

specification from which the program was written. In principle, if the software is indeed a 

correct implementation of the specification, then it is always possible to construct such a 

proof. The challenge in Echo, however, is to make the construction of the proof relatively 

routine.

The feasibility of this proof rests in large measure on the form, content and struc-

ture of the extracted specification. Echo uses several techniques to synthesize this specifi-

cation, but the key in Echo to making the proof practical lies in the structural and direct 

mapping technique as discussed in previous chapters. This technique rests on the hypothe-

sis that the high-level structural information in a specification is frequently retained in the 

implementation. There is no experimental evidence to support this hypothesis, but my 

rationale for believing it is discussed earlier.

Structural and direct mapping provides the basis of the implication proof. The 

structure of the proof is based on the structure of the specification. The basic approach that 

I use is to try to match the static function structure of the extracted specification to the 

original specification, and to organize the proof as a series of lemmas about the specifica-

tion architecture.

With this approach to proof, the closer the extracted specification’s structure 

comes to that of the original specification, the higher the chance of the proof being com-

pleted successfully and in a reasonable time. The transformations that are selected to apply 
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to the source program are those which will align the extracted specification’s structure 

more closely with that of the original specification.

6.1.2.  Support for the Implementation Proof

The implementation proof is the proof that the implementation implies the low-level spec-

ification. In the current instantiation of the Echo system, the implementation proof is car-

ried out using the SPARK Ada toolset. The preferred approach to developing SPARK Ada 

software is to use correctness by construction [32]. In correctness by construction, the 

SPARK Ada tools are often able to complete proofs with either no or minimal human 

intervention. The proof process is repeated as the software is constructed thereby ensuring 

that each refinement leaves the software amenable to proof.

By contrast in Echo, since there are no restrictions on development techniques, the 

SPARK Ada tools frequently fail when they are applied to software after development is 

complete. The low-level design of software that is not developed using correctness by 

construction is unlikely to be in a form suitable for proof. The reasons are many but, as 

with the implication proof, they typically fall under the heading of complexity introduced 

to achieve some specific design or performance goals.

The difficulties with the SPARK proof system take one of three forms: (1) the 

required annotations for function pre- and post-conditions can be many dozens of lines 

long, lengths that are impractically complex for humans to write; (2) the implementation 

proof exhausts available resources, usually memory, even though the SPARK tools are 

quite efficient and typically adequate for proofs that are needed for correctness by con-

struction; and (3) the verification conditions sometimes are sufficiently complex that they 

cannot be discharged automatically, and human guidance becomes necessary.
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Verification refactoring addresses all three of these difficulties without limiting the 

development process. Because verification refactoring does not need to maintain any 

aspect of efficiency, any transformation that addresses the three types of difficulty can be 

used.

6.2.  Definition of Refactoring

The Echo verification argument relies upon refactoring, and so it is essential that there be 

a precise definition of refactoring and a mechanism for ensuring that refactoring complies 

with this definition in practice. Since Echo is verifying functional behavior, I make the fol-

lowing two simplifying assumptions: (1) refactoring does not preserve the execution time 

of the program; and (2) refactoring need not preserve the exact sequence of intermediate 

program states as long as the initial state and final state are unchanged. It is only focused 

on the initial and final states. The transformation from program P to program P’ is seman-

tics preserving if, given the same initial state, both P and P’ will generate the same final 

state when they halt.

In order to prove that any given transformation is semantics-preserving, I define 

the semantics of the elements of the programming language that are needed in PVS and 

use the PVS theorem prover to discharge the following theorem:

init_state(P) = init_state(P’)
=>  final_state(P) = final_state(P’)

To make the proofs reusable, I have identified some common refactoring transfor-

mations, characterized them into templates, and developed a preliminary library for which 

the necessary properties have been proved. Similar libraries of semantics preserving trans-

formations exist in the domains of compilation, software maintenance, and reverse engi-

neering. I have included some common transformations in the library, but few existing 
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transformations can be adapted because they have different goals. Compilation transfor-

mations, for example, are usually targeted at performance improvement. Transformations 

in verification refactoring are designed to reduce the complexity and size of verification 

conditions, and so frequently reduce software’s efficiency.

Verification refactoring involves both computation and storage. Programs can be 

made more amenable to verification by adding redundant computation or storage, by add-

ing intermediate computation or storage, or by restructuring the program. Here I itemize 

some of the refactorings that I have developed for the prototype library and discuss how 

each affects the goal of verification:

• Splitting procedures. Long procedures usually result in verbose and complex verifi-

cation conditions. By splitting a procedure into a set of smaller sub-procedures, the 

verification conditions become vastly simpler and easier to manage.

• Moving statements into or out of conditionals. This type of transformations moves 

statement blocks into or out of conditional statements provided no side effects will 

result. This transformation can help to simplify execution paths and to reveal certain 

properties.

• Adjusting loop forms. Loops are frequently defined to promote efficiency and ease of 

use. Adjustment of the loop parameters can facilitate verification by, for example, per-

mitting loop invariants to be inserted more easily thereby allowing verification condi-

tions to be simplified.

• Reversing inlined functions or cloned code. Reversing inlined functions involves 

identifying cloned code fragments and replacing them with function definitions and 



52

calls. Function definitions can be provided by the user or be derived from the code. 

This transformation aligns the code structures with the specification and removes rep-

licated or similar verification conditions so as to facilitate proof. Furthermore, by 

reversing the inlining of functions, if an error is identified in a particular inlined func-

tion, only that function needs to be re-verified rather than all of the inlined instances.

• Rerolling loops. Rerolling loops allows generated verification conditions to be simpli-

fied by recovering the loop structure and permitting the introduction of loop invari-

ants.

• Separating loops. Loops that combine operations can be split so as to simplify the 

associated loop invariants.

• Modifying redundant or intermediate computations or storage. These transforma-

tions modify the program by adding or removing redundant or intermediate storage or 

computation. This can facilitate proof by: (a) storing extra but useful information; (b) 

shortening the verification condition by removing redundant or intermediate variables; 

or (c) merely tidying the code so as to facilitate understanding and annotation of the 

code.

With these transformation, refactoring is based on the following four stages: (1) 

identify candidate refactoring transformations—since refactoring might address certain 

optimizations and refinements introduced during development, this usually needs guid-

ance from developers to identify the occurrences of optimizations, although some can be 

found mechanically; (2) determine the order to apply the transformations—the order mat-

ters if there are dependencies among the transformations; (3) prove the transformations 

are semantics-preserving if they are not selected from the proved library—all transforma-
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tions should be proved to preserve the semantics and should not require the user to dis-

charge complex proof obligations; and (4) apply the transformations to the code—all of 

the transformations should be applied mechanically to avoid introducing errors.

6.3.  

Figure 8. The verification refactoring process

The Refactoring Process

The process for applying verification refactoring in practice is shown in Figure 8. A 

semantics-preserving transformation from the library is selected by the user (or suggested 

automatically), and the transformer then checks the applicability of the selected transfor-

mation mechanically and applies it mechanically if it is applicable. When all of the 

selected transformations have been applied, a metrics analyzer collects and analyzes the 

code properties of the transformed code, and presents the complexity metrics to the user. If 

the metric results are not acceptable, or if they are acceptable but later verification proofs 

cannot be established, the process goes back to refactoring and more transformation are 

performed.

The role of the source-code metrics is to give the user insight into the likely suc-

cess of the two Echo proofs. I hypothesize that the metrics I use are an indication of rela-
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tive complexity and therefore of likely verification difficulty, and I present some support 

for this hypothesis in a later case study chapter.

Verification refactoring cannot be fully automatic in the general case, because rec-

ognizing effective transformations requires human insight except in some special cases. 

Furthermore, some software, especially domain specific applications might require trans-

formations that do not exist in the library. In such circumstance, the user can specify and 

prove a new semantics-preserving transformation using the provided proof template and 

add it to the library.

To facilitate exploration with transformations, if the user has confidence in a new 

transformation, the semantics-preserving proof can be postponed until the transformation 

has been shown to be useful or even until the remainder of the verification is complete.

In most cases, the order in which transformations are applied does not matter. 

Clearly, however, when two transformations are interdependent, they have to be applied in 

order. A general heuristic is that those transformations that change the program structure 

and those that can vastly reduce the code size should be applied earlier.

I are not aware of any transformations or circumstances of their application in 

which a transformation would have to be removed, and I make no explicit provision for 

removal in the current tools and process. In the event that it becomes necessary, removing 

a transformation is achieved easily by recording the software’s state prior to the applica-

tion of each transform.

All the user activities, especially the design and selection of transformations, have 

to be mechanically checked, and these two activities need to supported by automation to 

the extent possible. The transformer is implemented using the Stratego/XT toolset [13]. 
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Stratego checks the applicability of the selected transformation, and carries it out mechan-

ically using term rewriting. I use the PVS theorem prover as the transformation proof 

checker and provide a proof template. When the user specifies a new transformation, an 

equivalence theorem will be generated automatically, and the user can discharge it interac-

tively in the theorem prover.

6.4.  Code Metrics

To my knowledge, there is no verification complexity metric available that could guide the 

user in selection of transformations, and so I present a hybrid of metrics to the user for 

review using a commercial metric tool [24], the SPARK Examiner, and my own analyzer. 

The metrics include:

• Element metrics. Lines of code, number of declarations, statements, and subpro-

grams, average size of subprograms, logical SLOC, unit nesting level, and construct 

nesting level.

• Complexity metrics. McCabe cyclomatic complexity, essential complexity, statement 

complexity, short-circuit complexity, and loop nesting level.

• Verification condition metrics. The number and size of verification conditions, max-

imum length of verification conditions, and the time that the SPARK tools take to ana-

lyze the verification conditions.

• Specification structure metrics. The user is presented with a summary of the struc-

ture of the original and the extracted specifications. A match ratio as defined in section 
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4.4 can be evaluated. This allows comparison so as to get an idea of the difficulty of 

implication proof.

All the metrics are subjective, and I do not have specific values that would give 

confidence in the ability of the PVS theorem prover to complete the implication proof.

I developed the following heuristics to both select transformations and determine 

the order of application: (1) dependent transformations are applied in order; (2) transfor-

mations that impact the major sources of difficulty, such as code and verification condition 

size, are applied first; (3) transformations that affect global structure are applied earlier 

and those that affect local structure are applied later; (4) refactoring proceeds until all 

proofs are possible; and (5) refactoring proceeds until all subprograms can easily anno-

tated, and the program structure “matches” the specification’s.

In practice, if specification extraction or either of the proofs fails to complete, or if 

either proof is unreasonably difficult, the user returns to refactoring and applies additional 

transformations.
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Chapter 7.  Synergistic Analysis

The Echo approach focuses solely on static formal verification of source programs against 

formal specifications. With the static proof capability of Echo, my colleague, Benjamin 

Taitelbaum, introduced a comprehensive approach named synergistic analysis in which 

software confidence is obtained by a hybrid use of static and dynamic analysis. In general 

with this technique, for each desired property of the software, a static and a dynamic 

method are combined such that the combination ensures that the desired property is 

achieved. In this chapter I briefly explain the concept of synergistic assurance and how 

Echo is integrated into it to provide the static part of the assurance argument.

7.1.  Synergistic Assurance

The ideal situation for verification of any system is the development of a complete static 

formal proof that the implementation implies the requirements. However establishing a 

complete proof for a given program within a single formal framework is difficult. Some 

functional properties might be established by proof, but temporal properties are often 

more easily established by model checking and some other properties by testing.

The fundamental goal of synergistic assurance is to facilitate the static proof of a 

program’s properties by making some proof obligations into runtime checks. The obliga-

tions that are moved are those which make the proof either infeasible or impractical in 

some way. By making an obligation into a runtime check, the static proof can treat the 

obligation as a proved lemma, and the remainder of the proof can then be completed. The 

obligations treated this way are referred to as dynamic obligations. The synergistic 
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approach to proof is shown in Figure 9. 

Figure 9. Synergistic assurance

In synergistic assurance, the theorem that needs to 

be proved is a formal statement of Safe Programming [4] behavior, which includes the 

notion of a program either working correctly or halting. The assurance theorem for a par-

ticular system states that the implementation either implies the system’s requirements or 

halts, specifically:

I R1 R2 R3  Rn     Halt

This is carried through to the dynamic obligations, each of which has the following 

form and becomes a new derived requirement that the program being verified has to meet:

Predicate Halt

Since the static proof treats the dynamic obligations as lemmas upon which it can 

rely, additional checks must be performed to ensure correct implementations have to be 

developed, and there has to be assurance that they will be invoked correctly during execu-

tion.

7.2.  Proofs in Synergistic Assurance

The assurance theorem is formalized and partitioned into a set of smaller proof obliga-

tions, to be either statically proved or dynamically checked. These obligations might be 

partitioned into even smaller obligations during the proof following the divide and con-
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quer approach. The partition must be justified to produce a sound argument that the assur-

ance theorem holds for the system. To do the justification, all the obligations are 

introduced as lemmas into a theorem prover, and are then used to statically prove that the 

conjunction of them implies the assurance theorem using conventional proof of correct-

ness approaches. This can either be done directly after the partition or be postponed until 

the obligations are statically proved or dynamically checked.

The general approach to construction and proof of the synergistic assurance theo-

rem for a given system is shown in Figure 10, where black arrows denote the development 

process and white arrows show the proof involved. The whole approach contains a 

sequence of seven steps:

Figure 10. Proof process of synergistic assurance

1. The assurance theorem is examined and obligations required for the proof are parti-

tioned between static obligations and dynamic obligations.
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2. The static obligations are statically verified against the implementation as shown by 

proof 1 using formal verification mechanisms.

3. The dynamic obligations are restated as derived requirements for the program being 

verified, and are documented in the form of dynamic annotations.

4. Additional software which carries out the dynamic checks is implemented to meet the 

additional requirements. These dynamic checks will be compiled into the implementa-

tion to generate a guarded executable program.

5. The dynamic checker functions are verified against the derived requirements using 

formal verification mechanisms as shown by proof 2.

6. The program being verified is analyzed statically to ensure that the newly imple-

mented checks will actually be made whenever there is any prospect of the associated 

requirement being violated. This is shown by proof 3.

7. Finally, to justify the partition of static and dynamic obligations and prove the assur-

ance theorem, all the obligations are used as proved lemmas to construct a proof that 

the conjunction of these obligations implies the original assurance theorem. It is 

proved statically just as with a conventional proof of correctness as shown by proof 4.

Given proof 1, we have all static obligations verified. Given proof 2 and proof 3, 

we have all dynamic obligations ensured. And then given proof 4, we establish the assur-

ance theorem for the system developed.
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7.3.  Integration with the Echo approach

The Echo approach allows verification proofs to be established statically. Hence it can be 

perfectly integrated into the synergistic assurance proof process to provide the static veri-

fication support. It can be adopted in proof 1: verifying the static obligations and proof 2: 

verifying the dynamic checker functions as in Figure 10 during the whole proof process of 

the assurance theorem. 

7.3.1.  Verifying the Static Obligations

For each of the static obligations partitioned from the assurance theorem, we formalize it 

as a theorem to be proved and then use Echo to formally verify it. To do this, we mechani-

cally extract an abstract specification from the implementation (which is annotated) using 

Echo. This extracted specification represents the behaviors of the implementation. If there 

exists a formal specification for the system, we first prove that all the static obligations are 

satisfied by the original specification and then prove that the extracted specification 

implies the original one. Otherwise, we try to prove the static obligations directly over the 

extracted specification as the extended usage of Echo for property proof in Chapter 3 sec-

tion 3.7.2. All the proofs are constructed and proved in a theorem prover (PVS as in the 

current Echo instantiation). Given the Echo approach all the proofs involved are static 

constructed and proved, we can statically establish that the obligations hold for the imple-

mentation.

7.3.2.  Verifying the Dynamic Checker Functions

By definition, the runtime checks that are required during execution for the proof of the 

dynamic obligations have to be added to the source program. This means that dynamic 

checker functions have to be implemented and inserted into the source program, their 
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implementations verified, and the implementations tied into the overall proof argument. 

All the checker functions must be verified, otherwise the runtime checking process is not 

sound and risks can still be introduced. The verification of the checker functions is also a 

static proof that can adopt the Echo approach.

In the prototype runtime assurance support mechanism in synergistic analysis, we 

formalize all the dynamic obligations and use declarative annotations to document the 

desired behaviors of the dynamic checker functions. To integrate it together with the static 

support in Echo, SPARK annotations are used to match the current instantiation of Echo. 

SPARK proof functions are also used as a special kind of annotation to represent dynamic 

obligations and annotate the relevant source code.

The desired dynamic obligations are essentially the postconditions for the check-

ers. These obligations could be hard to check with the original code, but since the checker 

functions just check against these obligations directly, they can be easily verified statically 

and straightforwardly by applying the Echo verification approach.

In addition, there has to be a high level of assurance that the checker functions will 

always be invoked correctly when needed during execution. This is done through flow 

analysis and proof but is outside the Echo scope. Therefore I skip the details here.

7.4.  Complementary to Echo

If the assurance goals of a system can be stated formally in the style of Safe Programming, 

synergistic assurance and analysis can distribute the burden of establishing properties of 

software between static proof and dynamic checking. By combining both static and 

dynamic techniques, it is able to exploit the benefits of each in a complementary manner.
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The Echo verification approach focuses solely on static proof. When integrated 

with synergistic analysis, it allows Echo to be applied as appropriate to the assurance 

proof but without having to force everything into the Echo proof. In addition, a single 

complex obligation can be broken down into parts and those parts that are not suited for 

the Echo approach can be allocated to dynamic checking.

Clearly, even with dynamic analysis available, a static verification proof is always 

preferable if it can be achieved. The practical success of synergistic analysis can depend 

on identification of dynamic obligations that facilitate the desired static proof substantially 

and that can be implemented correctly. We can always begin by attempting to complete a 

static proof using the Echo approach. Difficulties with completing the proof thus suggest 

candidate dynamic obligations. For example, proving numeric bounds of floating-point 

arithmetic, and proving real-time constraints are not fully supported in Echo, yet can eas-

ily be checked during execution. In this way, synergistic analysis greatly extends the appli-

cation domain of the Echo verification approach.
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Chapter 8.  Verification Argument

With all the major pieces in the Echo process presented in detail in previous chapters, I 

justify the soundness of the whole approach in this chapter. I also discuss the soundness 

argument when complex properties such as real-time and floating point properties are 

involved.

8.1.  Soundness Justification

The verification argument in Echo, including the use of proof by parts for the implication 

theorem, is as follows:

1. The implementation proof establishes that the code implements the low-level specifi-

cation (the annotations).

2. The transformations involved in verification refactoring are applied mechanically and 

proved to preserve semantics.

3. The specification extraction is automated or mechanically checked.

4. The implication theorem is constructed and proved.

5. The combination of (1) through (4) provides a complete argument that the implemen-

tation behaves according to its specification.

The verification argument is sound and will not generate false-positives. All 

defects in the code will be exposed in either the implementation proof or the implication 

proof. Any inconsistency between the code and the annotations will be detected by the 
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code-level tools in the implementation proof. An inconsistency could arise because of a 

defect in either or both. If both are defective but the annotations match the defective code, 

it will not be detected by the implementation proof. However in that case the annotations 

will not be consistent with the high-level specification, and so will be caught in the impli-

cation proof. The use of annotations does introduce an extra source of defects, however 

the use of them in routine development is being pursued by industry and is demonstrated 

to be beneficial.

8.2.  Soundness Involving Complex Properties

8.2.1.  Real-time Properties

Echo focuses only on functional correctness. If the processor selected on the target plat-

form for the system to be verified support instruction cycle counts, some real-time proper-

ties such as WCET can be stated and annotated statically. They can thus be verified using 

the Echo approach. The soundness argument above still applies.

However, in most situations real-time properties cannot be stated like that and thus 

cannot be handled directly by the Echo approach. Such properties will be checked com-

pletely or partly at run-time in the synergistic assurance framework presented in Chapter 

7. Details of the soundness for synergistic analysis is discussed elsewhere but in short, 

provided that: 

1. The run-time checker is verified to be correctly implemented (using Echo);

2. The run-time checker is proved to be correctly invoked whenever necessary; and

3. The conjunction of the obligations that are run-time checked and the obligations that 

are statically proved (using Echo) is proved to imply the original property,
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we can justify the property to be checked will be ensured.

8.2.2.  Floating-point

Functionality correctness for software is often conceived of in terms of real-valued or inte-

ger-valued arithmetic, but digital computers can only implement arithmetic on finite types.

In the case of integer arithmetic, the practical distinction is well understood by pro-

grammers, who take care to allocate enough storage to handle the largest and smallest val-

ues a given variable might take on. Potential problems such as overflows can be precisely 

checked by current tools. In the Echo approach, such checks are done in implementation 

proof using the SPARK Examiner. It checks errors including array index out of range, type 

range violation, division by zero, and numerical overflow. All these ensure the implemen-

tation proof is sound.

On the other hand, the distinction between real-valued arithmetic and a floating-

point approximation is less well understood. Even if each step is required to conform to 

the IEEE-754 standard, the floating-point semantics (rounding and exceptions) might still 

make the source programs’ behavior difficult to foresee and analyze. The Echo approach 

treats floating-point arithmetic as if it were real-valued arithmetic with a bounded range. 

The soundness with regard to real-valued arithmetic is the same as the above argument. It 

checks for instance that the implementation does not use one variable when another was 

meant or multiplication where addition was meant. It cannot, however, tell whether the 

adopted floating-point arithmetic is adequately precise for the target software. By adopt-

ing SPARK Ada as the implementation language in the present instantiation of Echo, it 

adopts and accepts SPARK Ada approximation.



67

Verifying floating-point computation to adequately substitute for real-valued arith-

metic is quite complicated. Formal methods have been successfully used both for hard-

ware-level and high-level floating-point arithmetic. If the rounding and approximation 

semantics are built into verification condition generation for the source code adopted by 

Echo, one might be able to reason about not only properties about the actual floating-point 

values but also about the ideal real number values, for instance the bound of the difference 

of the actual output to the exact output without rounding. Such a technique does exist [11] 

and has been demonstrated to be useful.
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Chapter 9.  Evaluation Overview

In this chapter I summarize the evaluation of the Echo approach to formal verification. I 

then briefly introduce the three specimen systems that I selected to conduct case studies, 

and describe how each fits into the overall evaluation. Details of the case studies and eval-

uation are in the next several chapters.

9.1.  Research Approach

After the initial proof-of-concept stage, my research on the Echo approach was based on 

incrementally prototyping and assessment using specimen systems. I used specimen sys-

tems to help define the details of the approach and to evaluate concepts and techniques as 

they were developed (see Figure 11). For each specimen system, I built the necessary arti-

facts and applied formal verification using Echo. I used the experience to continuously 

refine and assess all aspects of the Echo approach. Following this approach, I conducted 

several case studies aiming to ensure that the technical concepts developed were based on 

practical considerations and to ensure that the resulting techniques were suitable for prac-

tical use.

Figure 11. Overall approach to experimentation
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9.2.  Evaluation overview

The approach to evaluation that I followed was to conduct case studies using the specimen 

systems available at the time to answer a range of questions pertaining to the research 

goals [82]. Recall that my thesis statement for the Echo approach is:

THESIS: The Echo approach will make formal verification of functional 

correctness a practical yet comprehensive technique for real software sys-

tems of at least moderate length.

And one of the goals for the Echo approach is to allow developers the maximum 

freedom possible in building a system in order to make the verification process practical. I 

sought a way to assess the success in meeting the goals as well as the utility of the overall 

technique by applying the technique to important yet publicly-available system written 

entirely by others. Clearly, the system’s development would not be constrained by the ver-

ification requirements of Echo. To assess my thesis statement, evaluation was conducted 

towards the end of the verification cycle of each specimen system with a view to deter-

mining the following criteria:

(1) Applicability

(2) Scalability

(3) Efficacy

(4) Efficiency

I evaluated the Echo approach by conducting case studies on three separate speci-

men systems. In the next section, I introduce the three specimen systems and describe how 

each fits into the overall process of evaluation.
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9.3.  Specimen Systems

I selected the following three specimen systems for assessment and evaluation of the Echo 

approach and its constituent parts. They were chosen to provide challenges that are both 

realistic and diverse. 

Advanced Encryption Standard: The Advanced Encryption Standard (AES) is a sym-

metric, iterated block cipher that can process data blocks of 128 bits, using cipher keys 

with lengths of 128, 192, and 256 bits. The AES algorithm is specified in the Federal 

Information Processing Standards Publication 197 [26]. A reference ANSI C implementa-

tion of AES was developed by Rijmen et al. [20] which is publicly available. The imple-

mentation is 1258 lines of code excluding all the APIs and contains several documented 

optimizations to enhance performance.

I translated necessary artifacts involved and applied the Echo verification to deter-

mine the various aspects of the approach and provide some fundamental assessment of the 

efficacy and utility, with major focus on the reverse synthesis process, which is the core 

process of the Echo approach. This case study is presented in Chapter 10.

A second case study was also conducted on AES, which evaluated the defect 

detection and localization effectiveness by randomly seeding defects into the implementa-

tion. This is presented in Chapter 11.

Tokeneer ID Station: The next specimen system is known as Tokeneer Enclave Protec-

tion system[8], and it was developed under the direction of the National Security Agency 

(NSA). Tokeneer is an authentication system for a secure enclave that contains secure 

workstations. Users have security tokens that are used to gain access to the enclave and to 

the workstations. Different users have different privileges. The subject Tokeneer ID Sta-
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tion (TIS) is a stand-alone entity responsible for performing biometric verification of the 

user and controlling human access to the enclave. A formal specification of TIS has been 

developed in Z and an implementation has been developed in SPARK Ada by Altran 

Praxis. The implementation is 30,278 lines of annotated, commented source code.

My colleagues and I were offered technical support by NSA and Altran Praxis in 

working with the existing Tokeneer artifacts when the case study to verify the TIS imple-

mentation was conducted. At the time of this thesis is written though, all Tokeneer arti-

facts (documents, specifications, implementations, etc.) have been made publicly 

available. 

With this case study, I mainly aimed to evaluate the practicality and scalability to 

apply the Echo approach to large software systems, details of which is presented in Chap-

ter 12.

LifeFlow Magnetic Bearing Control Software:  The University of Virginia’s LifeFlow 

Left Ventricular Assist Device (LVAD) [72, 73, 75] is a prototype artificial heart pump 

designed for the treatment of Congestive Heart Failure (CHF). The UVa LVAD is an 

axial-flow design that uses magnetic rather than mechanical bearings to avoid damaging 

blood cells, thus reducing both the potential for the formation of a fatal blood clot and the 

need to take blood thinning medications. The device operates with several control loops, 

including the control of the magnetic bearings. Control of the magnetic suspension bear-

ings is provided, in part, by a digital control algorithm running on a microcontroller.

The team developing the UVa LVAD project supplied full system details and 

access to domain experts. My colleague, Patrick Graydon, developed an implementation 

of the LifeFlow Magnetic Bearing Control Software (MBCS) in SPARK Ada during his 
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research on Assurance Based Development [30, 31]. As part of the project, I applied the 

Echo approach to verify the functional correctness of the control loop in the MBCS digital 

implementation. The involved code is not large (around 800 lines of annotated code 

excluding hardware interface and logging) but contains the usage of floating point calcula-

tions. With this case study, I once again aimed to evaluate Echo’s applicability and effi-

cacy, but also focused on assessing the impact of floating-point properties.
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Chapter 10.  Case Study: Verification 
of AES

In this chapter I present the first case study of applying the Echo approach to a small but 

non-trivial specimen system. This case study illustrates the various aspects of the 

approach and provides some fundamental assessment of Echo’s feasibility and the effi-

cacy and utility of the reverse synthesis process, which is the core process of the Echo 

approach. 

10.1.  Efficacy and Utility Assessment

The issues that affect the efficacy and utility of reverse synthesis include: (1) the ease with 

which developers can select verification refactorings; (2) the ease with which developers 

can add domain specific refactorings and prove them to be semantics preserving; (3) 

whether selected refactorings do facilitate the specification extraction and necessary 

proofs; and (4) whether reverse synthesis impedes development in some way.

Issues 1, 2, and 3 are tied closely to the use of code metrics in the verification 

refactoring process, since I anticipate the values of metrics being the basis for developers’ 

decisions. I sought to determine: (1) the impact on code metrics of individual types of 

refactoring and of series of refactorings; and (2) the values of the metrics for software that 

was amenable to proof and refactorings that were suggested by the values of metrics. This 

chapter focuses on the experience with reverse synthesis in application of the Echo 

approach to verify of the subject application and provides information about the first three 

issues. The fourth issue will be addressed in Chapter 11.
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10.2.  The Advanced Encryption Standard

The subject of study was the Advanced Encryption Standard. I used artifacts from the 

National Institute of Standards and Technology (NIST) and applied the Echo approach to 

verify the functional correctness of the complete AES implementation.

The Federal Information Processing Standards Publication 197 [26] specifies the 

AES algorithm. It is a symmetric, iterated block cipher that can process data blocks of 128 

bits, using cipher keys with lengths of 128, 192, and 256 bits. The number of rounds 

employed is a function of the key lengths. Each encryption round is composed of four crit-

ical subroutines: SubBytes, ShiftRows, MixColumns, and AddRoundKey. Each decryp-

tion round is composed of the reverse of these steps. AES also specifies what is referred to 

as a key expansion routine that is used to generate a series of different keys, one for each 

round, from the cipher key. The basic unit used in the specification is a byte (8 bits).

The AES artifacts that I employed were:

FIPS 197 specification. The specification is 26 pages long and describes the AES algo-

rithm, mostly in natural language with mathematical statements and pseudo code for some 

algorithmic elements [26].

ANSI C implementation. Developed by Rijmen et al. [20], this optimized implementa-

tion is written in ANSI C. It is 1258 lines of code excluding all the APIs and contains sev-

eral optimizations to enhance its performance.

Both the specification and the implementation were written entirely by others, and 

so there were no constraints on the development process imposed by the subsequent appli-

cation of Echo. I assume that these artifacts were created by a traditional software devel-



75

opment process, and that the developers took no actions that would make formal 

verification infeasible or very difficult. 

10.3.  AES Verification

I supplemented these artifacts as necessary to apply the Echo approach by translating the 

notations into the ones used in the current Echo instantiation. I developed a formal version 

of the FIPS 197 specification in PVS by formalizing all the behaviors and constraints 

described in the FIPS specification and including them in a formal PVS specification. I 

also translated the ANSI C implementation into SPARK Ada by translating each C state-

ment into corresponding Ada statement. The PVS specification is 811 lines long, exclud-

ing boilerplate constant definitions. The SPARK Ada implementation is 1365 lines 

without annotations and excluding all the APIs. In practice, such formal specification and 

annotated implementation might be produced by developers, making this type of transla-

tion unnecessary.

The verification of AES employed the complete Echo process:

1. A series of refactoring transformations were applied;

2. The final refactored version was documented using the SPARK Ada annotation lan-

guage;

3. The code was shown to be compliant with the annotations;

4. A high-level specification was extracted from the refactored, annotated code; and

5. The extracted specification was shown to imply the original specification.
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10.4.  Verification Refactoring

According to the original AES documentation [20], the AES implementation employs var-

ious optimizations, including:

1. Implementing functions using table lookups;

2. Fully or partially unrolling loops;

3. Packing four 8-bit bytes into a 32-bit word; and

4. Inlining functions.

These optimizations improved performance but also created difficulties for verifi-

cation. For instance, the SPARK tools ran out of resources on the original program 

because the unrolled loops created verification conditions that were too large.

I applied a total of 50 verification refactoring transformations in eight categories. 

Of those 50, the following 38 transformations from six categories were selected from the 

prototype Echo refactoring library (the number after the category name is the number of 

transformations applied in that category):

• Rerolling loops (5);

• Reversing inlined functions or cloned code (11);

• Splitting procedures (2);

• Moving statements into or out of conditionals (3);

• Adjusting loop forms (4);
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• Modifying redundant or intermediate computations (2); and

• Modifying redundant or intermediate storage (11).

Each transformation was proved to be semantics-preserving using PVS and was 

applied mechanically using Stratego. The goal was to reverse the optimizations that were 

causing difficulties for verification as well as to help match the code structure to the spec-

ification. The detailed rationale and use of these transformations are discussed in the next 

section. Among them rerolling loops and reversing inlined functions were aimed directly 

to reverse the documented optimizations:

• Rerolling loops (5). Rerolling loops involved locating the repeated code, redefining it 

as a for-loop, and changing literal references to use the new loop induction variable. 

This transformation introduced two new loop induction variables and dramatically 

shrank the code size as will be shown in next section since vast amount of repeated 

code were removed. After the transformation, loop invariants could be annotated to 

facilitate the verification. This transformation assisted the implementation proof, 

because by introducing new loop invariants and removing replicated loop bodies, it 

substantially reduced the states involved in the proof. 

• Reversing inlined functions (11). In the AES implementation, inlined functions 

obscured events that are explicitly required by the specification. Reversing such inlin-

ing aided both the implementation proof and the implication proof. By finding cloned 

code fragments, it removed replicated or similar proof obligations in the implementa-

tion proof. By reversing the inlining, it aligned the code structure with the specifica-

tion structure so that the implication proof was easier to be constructed. After undoing 
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inlining, source code size might actually increase due to the addition of verbose func-

tion definitions, but the conceptual complexity was reduced.

In addition to the transformations above, I also added two new categories of trans-

formations specifically for AES:

• Adjusting data structures (2). 32-bit words were replaced by arrays of four bytes, 

and sets of four words were packed into blocks or states as defined by the specifica-

tion. Constants and operators on those types were also redefined accordingly to reflect 

the transformations. This type of transformation was targeted to undo the word-pack-

ing representation optimization. The AES standard describes encryption in terms of 

bytes, but the original implementation packs the bytes into 32-bit words to utilize effi-

cient word-level operations. The AES implementation includes utility functions to 

split and combine 32-bit words; the bytes inside a word are referenced by bit shifting. 

After transformation by references to 32-bit words were replaced by arrays of four 

bytes. Thus splitting, combining, and references to bytes used native array operations. 

Specialized procedures for manipulating packed data were removed, but every line of 

code that referenced packed data had to be updated to use the new representation. This 

type of transformation assisted the implication proof since the code and the specifica-

tion used the same basic type to refer to data after it and were thus easier to verify. 

• Reversing table lookups (10). Ten table lookups were replaced with explicit compu-

tations based on the original documentation and the precomputed tables removed. The 

AES implementation combined different cryptographic transformations into a single 

set of table lookups. The tables contain pre-computed outputs and thus reduce the run-

time computation. The properties of those tables have been documented [20], hence 
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the AES implementation maintains the invariant Table[i] = computation(i). After 

this transformation, references to these tables in the form of Table[i] were replaced 

with inlined instances of the appropriate computations computation(i). As a result, all 

tables were removed causing a dramatic code-size reduction as is shown in next sec-

tion. It also made the implication proof easier since the specification was phrased in 

terms of the computations, not the tables.

Both of these two added transformation types were driven by the goal of reversing 

documented optimizations and matching the extracted specification to the original specifi-

cation. Reversing table lookups and reversing function inlining were dependent though 

since the table entries encoded part of the defined functions, so reversing table lookups 

happened before reversing function inlining.

The final refactored AES program contained 25 functions and was 506 lines long.

10.5.  Complexity Metrics Analysis

Using the heuristics mentioned earlier in Chapter 6, I selected and ordered transformations 

to use with AES. Rather than examining the effects of each transformation separately, I 

grouped the transformations into the following 14 blocks:

1. Loop rerolling for major loops in the encryption and decryption functions;

2. Reversal of word packing to use four-byte arrays;

3. Reversal of table lookups;

4. Packing four words into a state/block;

5. Reversal of inlined subroutines for major the encryption and decryption functions;
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6. Reversal of inlined functions for key expansion subprograms;

7. Moving statements into conditionals to reveal three distinct execution paths followed 

by procedure splitting;

8. Adjustment of loop forms;

9. Reversal of additional inlined functions;

10. Loop rerolling for sequential state updates;

11. Procedure splitting;

12. Adjustment of intermediate variables;

13. Adjustment of loop forms; and

14. Additional procedure splitting.

Blocks 7-11 were for the subprogram that set up the key schedule for encryption, 

and blocks 12-14 were for the subprogram that modified the key schedule for decryption. 

As well as the main transformations, each block of transformations involved smaller trans-

formations that modified redundant or intermediate computations and storage.

As part of determining whether further refactoring was required, I periodically 

attempted the proofs and determined the source-code metrics. Some of the results of the 

effect of applying the transformations on the values of the metrics are shown in Figure 12. 

The histograms show the values of different metrics after the application of the 14 blocks 

of transformations where block 0 is the original code. 



Figure 12. Metric analysis with AES verification refactorings
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As the transformations were applied, the primary element metric, code size, 

dropped. The non-comment, non-annotation lines dropped from over 1365 to 412 mainly 

because loops were rerolled and precomputed tables were removed. The other transforma-

tions had little additional effect on length. I hypothesize that fewer source code lines will 

usually result in shorter annotations and verification conditions.

The average McCabe cyclomatic complexity also declined as transformations were 

applied, dropping from 2.4 to 1.48. Statement complexity, essential complexity, etc. also 

declined. There is no evidence that these complexity metrics are related to the difficulty of 
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verification, but their reduction suggests that the refactored program might be easier to 

analyze.

Since in the Echo approach I would not undertake full annotation until refactoring 

was complete, I had no way to assess the feasibility of the proofs. To gain some insight, I 

set the postconditions for all subprograms to true for each version of the refactored code, 

generated verification conditions (VCs) using the SPARK examiner, and simplified the 

generated VCs using the SPARK simplifier. I then measured the number of VCs, the size 

of VCs, the maximum length of VCs, and the time that the SPARK tools took to analyze 

the code. These data did not necessarily represent the actual proof effort needed for the 

implementation proof, but they were an indication.

The times required for analysis with the SPARK tools after the various refactorings 

are shown as Figure 12(c). Some blocks are shown with no value because the VCs were 

too complicated to be handled by the SPARK tools. After the first loop rerolling at block 

1, the tools completed the analysis but took 7 hours and 23 minutes on a 2.0 GHz machine. 

At block 2 with word packing reversed, the analysis again became infeasible. It was not 

until block 8, when the loop forms in the key schedule setup function had been adjusted 

that analysis by the SPARK tools became feasible again. The required analysis time grad-

ually decreased and reached 1 minute 42 seconds for the final refactored program (a 

reduction of more than 99%).

The size of VCs showed the same declining trend. In block 1, 51.16 MB VCs were 

generated and 2.59 MB VCs were left after simplification. For the final refactored code, 

1.90 MB VCs were generated and 86 KB were left after simplification (Figures 12(d) and 

12(e)).



83

The simplified VCs were those that needed human intervention to prove. After 

block 1, the maximum VC length was over 10,000 lines, far beyond what a human could 

manage. In the final refactored code, the maximum was 68 lines. When the implementa-

tion annotation was complete, the maximum length of VCs needing human intervention 

was only 126 lines.

I extracted a skeleton specification from the code after applying each block of 

transformations. These specifications were skeletons because they were obtained before 

the code had been annotated and so contained none of the detail from the annotations. I 

compared the structure of the skeleton extracted specification with that of the original 

specification by visually inspection and evaluated the match-ratio metric, which is the per-

centage of key structural elements—data types, operators, functions and tables—in the 

original specification that had direct counterparts in the extracted specification as defined 

in Chapter 4. This measure may indicate the likelihood of successfully establishing the 

implication proof.

The values of the match ratio are shown in Figure 12(f). The ratio increased gradu-

ally from 25.9% to 96.3% as the transformation blocks were applied. There is only a small 

increase in its value after the block 8 transformations were applied, and the implication 

proof could have been attempted at that point. However, although some metrics had stabi-

lized after the block 8 transformations, the time required for the SPARK analysis was still 

declining, and so I chose to continue refactoring until that metric stabilized also.

10.6.  Implementation Proof

After refactoring, the code was examined and annotated manually. The actual numbers of 

annotations are shown in Table 2:



Table 2: Annotations in implementation proof

Type Lines
Pre-conditions 8
Post-conditions 123
Loop Invariants & Assertions 54
Proof Functions, Proof Rules, & Other 32
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The implementation proof was carried out using the SPARK Ada toolset. The 

SPARK examiner generated 306 verification conditions for all 25 functions, of which 265 

verification conditions (86.6%) were discharged automatically by the SPARK simplifier in 

145 seconds on a 2.0 GHz machine. All of the verification conditions for 15 of the 25 

functions were discharged automatically.

The remaining verification conditions required manual intervention using the 

SPARK proof checker. The manual intervention was quite straightforward, usually involv-

ing either the application of pre-conditions or induction on loop invariants. The interactive 

proof process for each remaining verification condition was finished within a few minutes 

by a single individual who has a good level of SPARK Ada experience.

Table 3: AES implementation proof summary

Total VCs by type: ---------- Proved By Or Using ----------

Total SPARK 
Examiner

SPARK 
Simplifier

Proof 
Checker Review

Assert or Post: 82 0 54 28 0

Precondition check: 5 0 2 3 0

Check statement: 0 0 0 0 0

Runtime check: 219 0 209 10 0

Refinement VCs: 0 0 0 0 0

Inheritance VCs: 0 0 0 0 0

Totals: 306 0 265 41 0

% Totals: 0% 87% 13% 0%
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A summary of how all the VCs are discharged are listed in Table 3. Throughout 

the implementation proof process, the length of the verification conditions remained com-

pletely manageable. No difficulties were encountered in reading or understanding them, or 

in manipulation of them with the SPARK tools.

10.7.  Implication Proof

The extracted specification (in PVS) produced by the Echo specification extraction tool 

was 1685 lines long. It was much larger than the original specification because the imple-

mentation contained two tables for computing multiplication in the GF(28) field which 

were not present in the original specification.

When typechecking the extracted specification, the PVS theorem prover generated 

147 Type Correctness Conditions (TCCs), of which 79 were discharged automatically by 

the theorem prover in 23.5 seconds on a dual 1.0 GHz machine and the remaining 68 were 

all subsumed by the proved ones.

As a result of verification refactoring, the architecture of the extracted specifica-

tion was sufficiently similar to the architecture of the original specification that I was able 

to identify the matching elements easily. To prove the extracted specification implied the 

original one, I created an implication theorem using the proof by parts process in Echo as 

explained in Chapter 4.

There were 32 major lemmas in the implication theorem. Type checking of the 

implication theorem resulted in 54 TCCs, 29 of which were discharged automatically in 

4.2 seconds on a dual 1.0 GHz machine and 25 were subsumed by the proved ones.

In most cases, the PVS theorem prover could not prove the lemmas completely 

automatically. However, the human guidance required was short and straightforward, typ-
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ically including expansion of function definitions, introduction of predicates over types, or 

application of extensionality. In some cases, introducing other previously proved support-

ing lemmas and structuring the proof as cases was required. Each lemmas was established 

and proved interactively in a few minutes (thus the implication theorem discharged). 

10.8.  Summary

The AES implementation chosen for this case study is moderate-sized program written by 

others and not designed for formal verification. The off-the-shelf SPARK toolset could not 

even analyze it and generate verification conditions. Instead it quickly exhausted heap 

space and stopped, presumably because the generated proof obligations were too large. 

By applying the Echo approach to verify the AES implementation, it showed that 

Echo is feasible to be applied on real systems. In particular, it overcomes the problem of 

unworkably large verification conditions and does not require the developers to follow a 

rigid development process necessary for refinement.

 Efficacy and utility of the Echo approach, especially that of the reverse synthesis 

process have been demonstrated in this case study. The verification refactoring process 

was guided by a set of complexity metrics that helped both select transformations and 

determine when the refactored program was likely to be amenable to proof. Off-the-shelf 

verification was impossible using conventional tools, but the addition of refactoring made 

the task both feasible and straightforward as shown in sections 10.4 and 10.5.

Identification of refactoring transformations in this case study was done with man-

ual guidance. The process is straightforward. With certain level of verification knowledge, 

one could identify common transformations that could make proof obligation simpler, e.g. 

loop rerolling, reversing function inlining, procedure splitting, etc. Domain specific trans-
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formation was easily identified in this case as the specific optimizations were documented. 

In the general case, one might need some domain knowledge of the subject system to be 

able to accurately identify these. However, many could be deduced from specification, i.e. 

reversing the word packing to match specification. And I also expect the conventional 

software development artifacts may well record why and where domain specific optimiza-

tions were applied. With further tool support, identifying many of the transformations can 

be done automatically [45, 48, 63]. Such support will be pursued in future work. On the 

other hand, selecting the transformation spots, performing the transformation, and proving 

the preservation of the semantics were all machine checked using Stratego and PVS.

After reverse synthesis, both implementation and implication proof were com-

pletely manageable by a single individual. Many proof obligations were discharged auto-

matically and the remaining ones only required straightforward human intervention as 

shown in sections 10.6 and 10.7. It did require the person carrying out the verification to 

have knowledge of various analytic tools including the SPARK tools and the PVS theorem 

prover, and a good level of skill on performing the proofs.
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Chapter 11.  Case Study: Defect 
Detection in AES Verification

In this chapter I continue to use the previous verification of the AES specimen system for 

another case study for the Echo approach. This case study evaluates how effective defects 

can be detected and located during the Echo approach by randomly seeding defects into 

the AES implementation.

11.1.  Reverse Synthesis and Defect Detection

When using formal verification, defects in the subject programs are revealed by a failure 

to complete the proof. Proof failures always present the dilemma that either the program 

or the proof could be wrong. But this dilemma is present with any verification method, 

including testing.

The reverse synthesis process especially the verification refactoring in the Echo 

approach, might make the dilemma worse or introduce other forms of difficulty in identi-

fying defects. In order to investigate this issue, I seeded defects into the original AES 

implementation and then determined the effect of each defect on verification. I present the 

results of that case study in this chapter.

11.2.  The Seeding Process

The seeding process was done by randomly choosing a line number and making a change 

in the code. Each defect in the program was a change in either:

1. A numeric value;
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2. An array index;

3. An operator (for computation or predicate);

4. A variable or table reference; or

5. A statement or function call.

These types of defect are not equivalent to those introduced by programmers. 

However, they do reflect common errors that might be introduced when coding the AES 

implementation, and there is some evidence that simple seeded defects share important 

properties with actual defects [43].

Code and therefore the defects are closely tied into the annotations that document 

the low-level specification. The defective code could be annotated so as to either describe 

its desired behavior rather than its actual behavior, or vice versa. I used both scenarios in 

this experiment and evaluated them separately.

11.3.  Defect Location

There are three stages in the proof process that could expose defects in the code:

• Verification refactoring. Technically the refactoring process is not supposedly to be a 

place that defects would be exposed. However, if the refactoring transformation is 

derived from a documented optimization, a defect could change the code such that it 

did not match a particular transformation template and the transformation could not be 
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applied. For example, a defect in only one iteration of an unrolled loop rather than in 

all interactions would make loop rerolling inapplicable. 

• Implementation proof. Any inconsistency between the code and the annotations 

would be detected by the SPARK Ada tools. An inconsistency could arise because of a 

defect in either or both. If both were defective but consistent with each other, then the 

combined defect would not be detected by the SPARK Ada tools. In that case, the 

annotations would not be consistent with the high-level specification, and so the 

defects would be caught in the implication proof.

• Implication proof. Defects in the code or post-condition annotations that are too weak 

in the program used to create the extracted specification would cause the implication 

theorems to be unprovable and so would be detected by the implication proof.

11.4.  Case Study Results

I seeded 15 defects, three defects of each basic type as described in section 11.2, one at a 

time into the AES implementation, and then I ran the Echo verification process twice for 

each defect.

In the first (setup 1), I assumed that the defects were caused by misunderstandings 

of the specification when implementing the code, and thus annotated the code so that the 

annotations corresponded to the functional behavior of the code.

In the second (setup 2), I assumed that the defects were introduced by implementa-

tion errors, and annotated the code so that the annotations corresponded to the high-level 

specification. The results are shown in Table 4 and Table 5.
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11.4.1.  Defect Detection

Table 4: Defect detection for setup 1

Verification Stage Defects Caught Defects Left
Initial state 15
Verification refactoring 4 11
Implementation proof in SPARK 2 9
Implication proof in PVS 8 1

For setup 1, most defects were caught during the implication proof since the anno-

tation matched the code. Four defects that were caught in the verification refactoring 

because they made reversing documented optimization not applicable, i.e. loop rerolling 

or reversing table lookups. The two defects that were caught in the implementation proof 

were found during the proof of exception freedom because they caused possible out-of-

bound array references. The remaining defect that was not caught at any stage was benign. 

It will be discussed later.

Table 5: Defect detection for setup 2

Verification Stage Defects Caught Defects Left
Initial state 15
Verification refactoring 4 11
Implementation proof in SPARK 10 1
Implication proof in PVS 0 1

For setup 2, most defects were caught during the implementation proof since the 

annotation did not match defective code. The four defects caught during verification refac-

toring were the same ones as caught in setup 1. The remaining defect was the same benign 

defect.

In both setups, verification caught the same 14 seeded defects. The remaining 

(benign) defect changed the key schedule, the array of keys used in AES sequential 

rounds. The length of the array had been set to accommodate the maximum number of 

rounds in the case of a 256-bit key length. However for key lengths of 128 bits or 192 bits, 
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the last several entries in the array were not used in the computation. This was purely an 

implementation decision, and the specification did not impose any restrictions. Thus, for 

shorter key lengths these entries could be allowed to have arbitrary values without affect-

ing functional correctness.

11.4.2.  Defect localization

Echo does require that the developer annotate the code, and, whenever there is an unprov-

able proof obligation, the user has to determine whether it is the result of a defect in the 

code or the annotations. However, the use of architectural and direct mapping in the cre-

ation of the extracted specification means that the location of defects can be restricted to 

the function that cannot be proved.

In the AES case study, architectural and direct mapping were strictly followed. 

Functions in the specification and functions in the refactored code had direct counter parts 

with each other. Whenever an unproved obligation arose in the implication proof of an 

implication lemma, it was very easy to go back and revisit the corresponding code frag-

ment in the implementation. For all the defects detected in the Echo verification, I located 

the defects by manually inspecting the corresponding code and unproved proof obligation. 

With the verification refactoring applied in the Echo verification of AES, each function 

was quite small and manageable, making defect location quite simple.

11.5.  Summary

By randomly seeding defects into the AES implementation to be verified, this case study 

demonstrated that the Echo approach is capable of detecting defects in different stages 

effectively. No false-negative was reported and benign defects were left undetected.
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Verification refactoring in Echo did not create extra difficulties for the defect 

detection and localization. On the contrary, it helped break down the proof into smaller 

isolated pieces so that it was easier to locate a defect once detected.

Annotation did introduce another source of defects. However in the AES study it 

did not give much trouble on identifying the defects, presumably because the annotation 

size was much less than the code itself. In verification, the benefits overweigh the efforts 

added to locate the defects.
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Chapter 12.  Case Study: Verification 
of Tokeneer

In this chapter I present the case study of applying the Echo verification approach to a 

larger specimen system. It demonstrates how the Echo approach scales with the proof by 

parts infrastructure, and its applicability and practicality to be applied to real software sys-

tems of at least similar size.

12.1.  The Tokeneer system

The second specimen system for which I conducted a case study of applying the Echo 

approach is a hypothetical system called Tokeneer that was defined by the National Secu-

rity Agency (NSA) to act as a challenge problem for security researchers. The system con-

sists of a secure enclave containing a number of workstations having access to files with 

various restrictions. The challenge to researchers is to construct implementations with 

appropriate security properties.

Tokeneer is a large system that provides protection to secure information held on a 

network of workstations situated in a physically secure enclave. The system has many 

components including an enrolment station, an authorization station, security resources 

such as certificate and authentication authorities, an administration console, and an ID sta-

tion. I used the core part of the Tokeneer ID Station (TIS) in this research. TIS is a stand-

alone entity responsible for performing biometric verification of the user and controlling 

human access to the enclave. To perform this task, the TIS asks the individual desiring 

access to the enclave to present an electronic token in the form of a card to a reader. The 
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TIS then examines the biometric information contained in the user’s token and a finger-

print scan read from the user. If a successful identification is made and the user has suffi-

cient clearance, the TIS writes an authorization onto the user’s token and releases the lock 

on the enclave door to allow the user access to the enclave. The overall organization of the 

Tokeneer ID Station is shown in Figure 13.

Figure 13. The Tokeneer ID Station

Much of the complexity of the TIS derives from dealing with all eventualities. A 

wide variety of failures are possible that must be handled properly. Since Tokeneer is a 

security-critical system, key security properties such as unlocking only with a valid token 

and within an allowed time, and keeping consistent audit records need to be assured with 

high level of confidence.

A fairly complete implementation of major parts of the TIS has been built by 

Altran Praxis (formerly Praxis High Integrity Systems). The Praxis implementation 

includes a requirements analysis document, a formal specification written in Z, a detailed 

design, a source program written in SPARK Ada, and associated proofs. The complete Z 

specification is 117 pages long. The SPARK Ada implementation contains 9939 lines of 
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non-comment, non-annotation code. I was fortunate to be able to use these artifacts as the 

subject of study for this case study. Since the tools used in the current Echo approach oper-

ate with PVS, I translated the Z specification of the TIS into PVS. The final specification 

in PVS is 2336 lines long.

12.2.  Echo Proof of Tokeneer

The Praxis implementation of Tokeneer was developed using Correctness by 

Construction [19] with the goal of demonstrating rigorous and cost effective development. 

High-level security properties were established by documenting the properties using 

SPARK Ada annotations, including them in the code, and then proving them using the 

SPARK Ada tools. By contrast, the Echo proof is of the full functionality of the implemen-

tation as defined by the original, high-level specification. Given the Echo proof of func-

tionality, high-level security properties can be established by stating the properties as 

theorems and proving them against the high-level specification.

Turning now to the proof itself, upon review, I found that the TIS source program 

structure resembled the specification structure very closely, i.e., the architectural matching 

hypothesis was true. Almost all states and operations in the specification have direct coun-

terparts in the source program. For example, for the UnlockDoor operation defined for 

system internal operations in the specification:

UnlockDoor(dla_i, dla_o: DoorLatchAlarm, c: Config): bool =

  dla_o`latchTimeout = dla_i`currentTime + c`latchUnlockDuration AND

  dla_o`alarmTimeout = dla_i`currentTime

                         + c`latchUnlockDuration + c`alarmSilentDuration AND

  dla_o`currentTime = dla_i`currentTime AND

  dla_o`currentDoor = dla_i`currentDoor
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A corresponding procedure with the same name in the Door package could be eas-

ily identified in the source program:

procedure UnlockDoor

is

   LatchTimeout : Clock.TimeT;

begin

   LatchTimeout := Clock.AddDuration(

                      TheTime     => Clock.TheCurrentTime,

                      TheDuration => ConfigData.TheLatchUnlockDuration);

   Latch.SetTimeout(Time => LatchTimeout);

   AlarmTimeout := Clock.AddDuration(

                         TheTime     => LatchTimeout,

                         TheDuration => ConfigData.TheAlarmSilentDuration);

   Latch.UpdateInternalLatch;

   UpdateDoorAlarm;

end UnlockDoor;

If one examine the code in more depth, one could also find that there was also 

close correlation between statements in the specification and the code as shown above.

I excluded the peripheral interface functions in the Echo verification and per-

formed a skeleton extraction. I found the match ratio to be 74.7%. The match ratio is not 

100% (or at least close to it) because refinements carried out during the development 

added operations that were not defined in the specification. I concluded that the architec-

tures of the specification and the source program were sufficiently similar that the neces-

sary specification could be extracted effectively and easily without performing 

verification refactoring. The final extracted PVS specification is 5622 lines long. As an 
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example, the extracted specification using direct extraction from code for the above 

UnlockDoor procedure is:

UnlockDoor(st: State): State =

  LET LatchTimeout = Clock.AddDuration(TheCurrentTime(st),

                                       TheLatchUnlockDuration(st)) IN

  LET st1 = SetTimeout(LatchTimeout, st) IN

  LET st2 = st1 WITH [`AlarmTimeout := Clock.AddDuration(LatchTimeout,

                                         TheAlarmSilentDuration(st))] IN

  LET st3 = UpdateInternalLatch(st2) IN

  UpdateDoorAlarm(st3)

Following extraction of the specification, I performed both the implementation 

proof and the implication proof.

The implementation proof was carried out using the SPARK Ada toolset to prove 

functional behaviors of those subprograms that had been documented with pre- and post- 

condition annotations. The SPARK Examiner generates verification conditions (VCs) that

Table 6: TIS implementation proof summary

Total VCs by type: ---------- Proved By Or Using ----------

Total SPARK 
Examiner

SPARK 
Simplifier

Proof 
Checker Review

Assert or Post: 1006 561 376 29 40

Precondition check: 67 0 60 3 4

Check statement: 1 0 1 0 0

Runtime check: 1337 0 1331 2 4

Refinement VCs: 212 182 2 9 19

Inheritance VCs: 0 0 0 0 0

Totals: 2623 743 1770 43 67

% Totals: 28% 67% 2% 3%
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must be proved true to demonstrate that the code does indeed meet its specified postcondi-

tions, within the context of its preconditions. It also generates VCs that must be satisfied 

to ensure freedom of run-time exceptions. Altogether there were over 2600 VCs gener-

ated, among which 95% were automatically discharged by the toolset itself. The remain-

ing 5% required human intervention, and were covered in the documents from Praxis’ 

proof. A summary of how all the VCs are discharged are listed in Table 6.

The implication proof was established by matching the components of the 

extracted specification with those of the original specification. Identifying the matching in 

the case study was straightforward, and in most situations could be suggested automati-

cally by pairing up types / functions with the same name as showed by the above example. 

For each matching pair, I created an implication lemma and altogether there were just over 

300 implication lemmas. Typechecking of the implication theorem resulted in 250 Type 

Correctness Conditions (TCCs) in the PVS theorem prover, a majority of which were dis-

charged automatically by the theorem prover itself. In 90% of the time, the PVS theorem 

prover could not prove the implication lemmas completely automatically. However, the 

human guidance required was straightforward due to the tight correlation between the 

original specification and source code, typically including expansion of function defini-

tions, introduction of type predicates, or application of extensionality. Each lemma that 

was not automatically discharged was interactively proved in the PVS theorem prover by a 

single person with moderate knowledge about PVS (thus the implication theorem dis-

charged). The total typechecking and proof scripts running is less than 30 minutes.
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12.3.  Scalability Evaluation

By successfully applying proof by parts to the functional verification of Tokeneer, I con-

clude that the Echo approach is both applicable and scalable on systems at least of similar 

size. Due to architectural similarity between the specification and the source program for 

the Tokeneer case, it worked very smooth and no major difficulties were met. In cases 

where the architectural matching hypothesis does not hold, verification refactoring can be 

applied to restructure the program and facilitate proof by parts. It is not demonstrated by 

the Tokeneer case study, however the previous case study in Chapter 10 has shown its fea-

sibility. During the proof of Tokeneer, each implication lemma was individually proved, 

without interfering with other lemmas. Interactive proofs for many lemmas were similar in 

terms of proof strategy and commands. This also showed that the proof structure may 

scale for even larger systems without the need for extensive training of relevant knowl-

edge.

By following proof by part, it also made defect localization easier since it must be 

inside the component whose corresponding lemma fail to be proved. During the proof of 

Tokeneer, I did find several mismatches between the source program and the specification 

but later found that they were documented changes. An example is the validity period in 

certificates. It is defined in the specification as a set of time which does not need to be con-

tiguous. In the source code, however, it is defined as a pair of start and end time, which 

manifests as a contiguous period. The corresponding lemma could not be discharged since 

it was not a valid refinement. I later found that it was constrained to contiguous in design 

to reflect the nature of X509 certificates and was documented in the design document. As 
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future work, I plan to seed defects into the Tokeneer source program and then determine 

the effect on the proof to further evaluate its efficacy and utility.
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Chapter 13.  Case Study: Verification 
of MBCS

In this chapter I present another case study of applying the Echo verification approach 

during the development of the control software of a prototype artificial heart pump. This 

case study assesses the impact of floating-point calculations on the functional verification 

in Echo in addition to evaluation of Echo’s applicability and efficacy.

13.1.  MBCS System Description

The University of Virginia’s LifeFlow Left Ventricular Assist Device (LVAD) [72, 73, 

75] is a prototype artificial heart pump designed for the long-term treatment of Congestive 

Heart Failure (CHF). LifeFlow has a continuous, axial-flow design that uses magnetic 

rather than mechanical bearings to avoid damaging blood cells, thus reducing both the 

potential for the formation of a fatal blood clot and the need to take blood thinning medi-

cations. Magnetic bearings and a brushless DC motor keep the pump’s impeller centered 

in the pump housing and turning without the need for mechanical bearings or shaft seals. 

The elimination of pinch points, coupled with careful design of the pump cavity, impeller, 

and blades, aided by computational fluid-dynamics simulations, minimizes the damage 

done to blood cells.

The device operates with several control loops, including the control of the mag-

netic suspension bearings. Control of the magnetic suspension bearings is provided, in 

part, by a digital control algorithm running on a microcontroller. In hard real-time, the 

controller must sample the position of the rotor as reported by a self-sensing circuit, com-
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pute the coil currents necessary to keep the rotor adequately centered, and direct the coil 

driver to achieve those currents. Both individual magnetic coils and the wires connecting 

them to the control circuits can fail. Since such failures are anticipated to be more likely 

than is acceptable, the control software is also required to be capable of reconfiguring to a 

variety of backup modes in which rotor levitation is accomplished with only two of three 

coil pairs. Figure 14 shows the placement of the pump, the batteries and the controller, a 

cross-section of the pump, and the overall structure of the controller.

Table 7 briefly summarizes the requirements for the LifeFlow Magnetic Bearing 

Control Software (MBCS). 

Figure 14. LifeFlow structure [30]

My colleague, Patrick Graydon, developed an implementation 



Table 7: Magnetic bearing control software requirements [30]

Functionality

1. Trigger and read ADCs to obtain impeller position vector u

2. Determine whether reconfiguration is necessary. If so, select appropri-
ate gain matrices A, B, D, and E

3. Compute target coil current vector y  and next controller state vector x

    yk D xk E uk+=

    xk 1+ A xk B uk+=

4. Update DACs to output y  to coil controller

Timing This functionality must be provided in hard-real-time with a frame rate of 
5 kHz

Reliability No more than 10 9–  failures per hour of operation
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of the Magnetic Bearing Control Software in SPARK Ada as a case study for his research 

on Assurance Based Development [30, 31], which is a synergistic process for construction 

of both the critical software system and its assurance argument that demonstrates its fit-

ness for use in given operating contexts. As part of the process, the Echo verification 

approach was chosen to provide evidence that the functionality requirement was enforced. 

I therefore applied the Echo approach to verify the functional correctness of the control 

calculation and the main cyclic execution structure in the MBCS digital implementation 

source code as indicated in the above table, and used it as a self-contained case study to 

get more assessment on Echo. Real-time requirement and reliability requirement in the 

table were determined by other approaches such as machine analysis of Worst-Case Exe-

cution Time (WCET). Correct compilation of the source code, correct execution of the 

binary on the target microcontroller, and correct usage of hardware interface were also out 

of the scope of Echo verification.
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Complexity of functional correctness verification of the control software source 

code lies in the accuracy and correctness of control calculation. Since MBCS is a safety-

critical system designed for long-term usage, the control calculation has to be correct, and 

any imprecision has to be limited to an acceptable level.

13.2.  MBCS Verification

13.2.1.  The Artifacts Employed

During the early stage of the project, an informal specification in natural language was 

developed by my colleague for the MBCS functionality. The specification refined the 

MBCS requirements and included control calculation functions, hardware interfaces, sig-

nal sampling, etc. For the Echo approach to be applied, I translated the portion to be veri-

fied into formal specification in PVS. The formal portion consisted of 226 non-comment 

lines, which specified control constants, needed types and arithmetic theorems, input and 

output conversion, control calculation, and the real-time frame synchronization mecha-

nism. Hardware related interfaces were not formalized, but I translated bogus interfaces 

for them in the PVS specification and used them only to simulate the event sequence in the 

control frame.

An implementation of MBCS was also developed by the same colleague. The part 

to be verified by the Echo approach was completely done in SPARK Ada. The SPARK 

Ada portion of source code contained 2510 lines of annotated commented code, of which 

579 lines implemented the control calculation, and 114 lines for the main cyclic execution 

program. These were the parts that were subjected to Echo verification. The rest of the 

lines were for hardware interfaces, logging, etc. and were minimally annotated and 

checked by means other than Echo.
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13.2.2.  Reverse Synthesis

Upon review, I found that the part of MBCS source code subject to verification had a 

structure resembled the specification structure closely and followed the architectural 

matching hypothesis completely. Presumably it was because the specification and imple-

mentation were both originated from the same person and the structural design was 

reused. All types, states, and operations in the specification had direct counterparts found 

in the implementation. I performed skeleton specification extraction from the SPARK Ada 

source code, compared the outcome with the original PVS specification, and found the 

match ratio to be exactly 100% if I excluded the helper arithmetic functions in the original 

specification. Also the involved SPARK Ada source code was already properly annotated 

during the development process and the verification conditions generated by the SPARK 

tools were of manageable size and complexity. I concluded that the verification refactor-

ing might not be necessary for both implementation and implication proofs to proceed. I 

therefore directly applied specification extraction on top of the original code. Hardware 

interface and logging source code packages were not the subject of the Echo verification 

and were not fully annotated. Thus only skeleton extraction was performed on those pack-

ages and pre- and post- condition informations were not extracted. The final extracted 

PVS specification was 586 lines long in total.

13.2.3.  Implementation Proof

The implementation proof was carried out using the SPARK Ada toolset, aiming to prove 

the functional behaviors of the subprograms conformed with their specified pre- and post- 

condition annotations, and also to prove the code was free of run-time exceptions. The 
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SPARK examiner generated 167 verification conditions (VCs) for all 17 subprograms 

involved. The ways to discharge these VCs are listed in Table 8:

Table 8: MBCS implementation proof summary

Total VCs by type: ---------- Proved By Or Using ----------

Total SPARK 
Examiner

SPARK 
Simplifier

Proof 
Checker Review

Assert or Post: 54 12 13 13 16

Precondition check: 0 0 0 0 0

Check statement: 0 0 0 0 0

Runtime check: 93 0 92 0 1

Refinement VCs: 20 19 0 0 1

Inheritance VCs: 0 0 0 0 0

Totals: 167 31 105 13 18

% Totals: 19% 63% 8% 11%

136 of the 167 VCs (82%) were discharged completely automatically by the 

SPARK examiner and simplifier.

Among the left 31 VCs that required human intervention, I proved 13 of them 

interactively inside SPARK proof checker. The proofs for these VCs were accomplished 

straightforwardly, each required less than 10 proof commands and many follows similar 

patterns due to the nature of matrix calculation in the source code. Corresponding proof 

script was saved so that it could be automatically invoked by the SPARK tools. The total 

length of the script was 196 lines.

The last 18 VCs could not be proved directly. However, upon review, 17 of them 

were generated from the hardware interface package which was not subject to Echo verifi-

cation. 16 VCs were to check that the value in a control register conformed to the type of 
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the variable bound to that register, and the other one VC was to check that a hardware 

input routine was equivalent to the artificial proof function created to represent it. Since 

these were tightly coupled with the microcontroller hardware, and would be checked by 

other means, I asked my colleague to review them carefully and marked them as proved 

by review.

Besides the above VCs, there was one last VC that needed to be discharged but 

could not be proved directly. It originated from the subprogram that converted the control 

calculation results to update the DAC output. A simplified version of the VC (simplified 

by the SPARK simplifier) is:

H4:    (element(c, [loop__1__i]) + 2) * 1024 <= 4095 .

H5:    0 <= (element(c, [loop__1__i]) + 2) * 1024 .

C1:    round__((element(c, [loop__1__i]) + 2) * 1024) >= 0 .

C2:    round__((element(c, [loop__1__i]) + 2) * 1024) <= 4095 .

To prove this required knowledge of the hardware floating-point–to–integer con-

version semantics. I had to assume that the hardware would follow the SPARK Ada’s def-

inition of the round operation. With that, it could immediately be deduced that C1

followed from H5, and C2 followed from H4, hence the VC could be discharged.

With all the proof script and proof review files, the SPARK tools generated, pro-

cessed, and discharged all 167 VCs in 86 seconds on a 2.0 GHz machine.

13.2.4.  Implication Proof

With the original PVS specification and extracted PVS specification, the Echo implication 

proof was carried out and checked by the PVS theorem prover to show that the low-level 

specification embodied in the SPARK annotations complies with the original PVS specifi-

cation. The PVS implication theorem was constructed by importing both the original and 
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extracted PVS specifications, and setting up implication lemmas for each matching type, 

state, and operation. Excluding the hardware interfaces, the completed PVS theory file 

was 422 lines long, including 37 implication lemmas and a final implication theorem that 

was the conjunction of all the implication lemmas.

Type-checking and attempting to prove the implication theorem through the PVS 

theorem prover resulted in 55 formulas to be proved: 17 type correctness conditions 

(TCCs), 37 lemmas, and 1 theorem (which is the conjunction of the 37 lemmas). 46 of 

these formulas were successfully proved either automatically or by a single (grind)

command in the PVS theorem prover in 210 seconds on a dual 1 GHz machine. 5 of them 

were proved interactively inside the theorem prover with human guidance. The remaining 

4 formulas could not be proved and included 2 TCCs and 2 implication lemmas.

One TCC was related to the value type of the cells in the controller input, state, and 

output vectors. These were represented as single-precision floating-point variables in the 

SPARK Ada implementation but as real numbers in the PVS specification. The specifica-

tion extracted the definition of single-precision floating-point type from SPARK Ada’s 

target configuration file. This definition was an approximation of real numbers and had a 

bounded range. Obviously it could not be proved to precisely represent the unbounded real 

number as defined in the original specification. This unproved formula was presented but 

was discharged by review since the LifeFlow LVAD control engineers asserted that they 

could prove that these values would not exceed the limits of single-precision floating-

point storage.

The other TCC and two implication lemmas were related to the time type. Time 

values derived from the MPC5554’s 64-bit time base were represented in the SPARK Ada 
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implementation using a mod 2 ** 64 type, which was a bounded integer type. How-

ever in the specification time type was specified as an unbounded integer to model infinite 

time base. Obviously the implementation time type could not cover all possible values in 

the specification and hence caused failure of the TCC’s proof. Also, with a bounded time 

type implementation with 64-bit storage, it could overflow and “wrap around” when the 

time base advanced to a large enough number. Such overflow wouldn’t occur with the 

specification’s unbounded time type. The difference caused implication lemmas for two 

functions regarding the control frame failed to be proved since the “wrap around” seman-

tics were not defined in the specification. The unproved formulas were presented and 

reviewed. Although valid, the difference for time type would not cause actual problem 

since the device was intended for 10-20 years of operation but 64-bit representation of the 

time base would not overflow and “wrap around” in centuries of operation.

13.3.  Summary and Evaluation

Successful application of the Echo approach to the verification of MBCS functional cor-

rectness gives additional evidence of the Echo approach’s applicability and practicality on 

real systems developed by others. Due to architectural similarity between the specification 

and the source program for the MBCS, it worked smoothly and efficiently. Two mismatch 

between the source code and the specification were identified indicating potential defects, 

although both were discharged upon review for domain specific reasons.

However, not all aspects of MBCS could be verified under the Echo approach, 

especially for the hardware interface routines. Echo could not be applied, for example, to 

prove that a loop waiting on a hardware flag indicating the completion of analog-to-digital 

conversion would terminate in bounded time. Such a proof would require knowledge that 
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the writes to memory-mapped variables that preceded the blocking loop would cause the 

hardware to set the flag in question in bounded time. Such information is available as nat-

ural-language text in the microcontroller manual, but not in any formal language that can 

be utilized by Echo. If formal models of the computing hardware behavior exist, the Echo 

approach can then be extended to related hardware verification.

Floating-point arithmetic also has an impact on the Echo approach and may limit 

its applicability. Requirement and specifications are often conceived of in terms of real-

valued arithmetic, just as the MBCS specification did. However the source program on 

any target hardware has to use floating-point approximation as no hardware can imple-

ment infinite types. In the MBCS case, single-precision floating-point types and arithme-

tic were used. The Echo approach treats floating-point arithmetic as if it were real-valued 

arithmetic with a bounded range. For instance, as in the MBCS case study, the single-pre-

cision floating-point type in SPARK Ada was extracted from the target configuration file 

as in PVS:

Float: TYPE = {r: real | r >= -3.40282*10^38 AND r <= 3.40282*10^38}

This extraction ignored precision by accepting SPARK Ada’s approximation and extracted 

the floating-point type as a bounded real number in PVS. This way it can easily verify the 

arithmetic calculations at a high level, for instance, whether one variable was used when 

another was meant or multiplication where addition was meant. It cannot, however, tell 

whether the adopted floating-point arithmetic is adequately precise for the target software. 

It has to assume that it is acceptable to adopt the rounding and approximation semantics of 

the implementation language. By choosing SPARK Ada as the implementation language 

in the present instantiation of Echo, it adopts and accepts the SPARK Ada’s approximation 
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just as in the MBCS case study. If the assumption is not true, there will be a hole in the 

verification argument and the Echo approach cannot be applied.
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Chapter 14.  Application in MBD

My colleagues and I have extend the usage of the Echo approach to verify synthesized 

software in Model-based development. In this chapter, I briefly present the motivation and 

basic flow of how Echo is applied in MBD. My colleague, Ren Xu, has demonstrated the 

feasibility by using Echo to verify synthesized code generated from Simulink models.

14.1.  Model-Based Development

Model-based development (MBD) is gaining increasing prominence, especially in 

domains such as control systems, including aerospace and automotive. In MBD, the cre-

ation of software consists of two steps. First, a platform-independent system model is cre-

ated using a domain-specific modeling language, by which domain experts can design and 

reason about the system regardless of extraneous target platform and implementation 

details. Next, code and other target platform artifacts are generated from the model by 

automatic interpretation and transformation from the model using code synthesis tools. 

Code synthesis tools are designed to ensure the consistency between the models and the 

generated implementations. Well-known examples of such synthesis tools in MBD are the 

SCADE Suite [65] and Simulink [66]. 

Figure 15. MBD process

The overall approach is illustrated in Figure 15.
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With MBD, the usage of system models allows developers to analyze and design a 

system at the domain model level, leaving all implementation details to be addressed by 

the code synthesis tools automatically. At any point in the modeling process, the system 

model can be transformed into certain intermediate programs for direct simulation and 

testing using automatic tools. Furthermore, various verification techniques can be applied 

to the system model to ensure it satisfies the requirement, including static analysis and 

model checking.

14.2.  Motivation for Echo Verification in MBD

Despite the advantages of MBD, it also introduces challenges when used in application 

domains for which the consequences of software failure are high, such as safety-critical 

applications. In such application domains, there is considerable concern about the possi-

bility of the synthesis tool being defective. Traditional methods of avoiding or eliminating 

faults that are used when software is built manually, including existing methods of formal 

verification, cannot be applied because the action of the synthesis system is not subject to 

inspection or modification.

To ensure the correctness of the resulting software in MBD, one need to: 1) ensure 

the correctness of the system model, and 2) ensure the correctness of the code synthesis. 

Many approaches have been developed to certify the system models in MBD including 

simulation, abstract interpretation, static analysis, model checking, and theorem proving. 

However, little has been done on the code synthesis process to provide assurance on the 

synthesized code. The synthesis process relies upon the correctness of the synthesis tool to 

achieve the necessary quality in the resulting software. However, the state of the art is not 

sufficient to produce a fully verified code synthesis tool without significant research.
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Given that the system model can be checked, but the code synthesis tool cannot, in 

order to have confidence on the software produced by MBD, one can choose to formally 

verify the synthesized code against the system model. As traditional formal approaches, 

such verification can be difficult and tedious to establish. The Echo approach presents a 

comprehensive alternative. Echo permits formal verification of software built using a syn-

thesis tool. Echo does not depend on actions taken during development, and so it can be 

applied immediately to synthesized software. The same tools and techniques that are used 

for software created by hand apply to synthesized software.

14.3.  Application of Echo in MBD

Although the same techniques in the Echo approach can be applied directly to verify syn-

thesized software in MBD, it must be expanded to accommodate the languages and nota-

tions used by the system model and the code synthesis tool.

The output of synthesis is software in a traditional form, usually a high-level pro-

gramming language. The Echo approach applies as long as the output code can be anno-

tated (either manually or mechanically), and the annotations can be proved at the code 

level.

Models in MBD are typically presented in block-based graphical modeling nota-

tions. The semantics of graphical notations, albeit formal, cannot be used directly for 

proof without expressing them in some suitable languages for the proof tools, e.g. theorem 

prover. In order for Echo to apply, the semantics of the graphical notations must be cap-

tured or translated to a specification language such as PVS. Thus the synthesized code can 

be verified using Echo against the translated specification rather than the model directly. 

Such translations do exist, e.g. Bensalem et al. defined such a translation structure [10] 
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which has been adopted by Rockwell Collins Inc. to translate Simulink models into PVS. 

One might argue defects can also be introduced in such a translation, which is the case. 

However, since the semantics are on an abstract level, and usually there are only limited 

number of graphical notations that can be used to construct the model, checking the trans-

lations can be done with reasonable time and effort. Once checked, mechanical process 

can be adopted to automatically derive the specification from the model using the checked 

translation rules.

Figure 16. Application of Echo in MBD

Sometimes complete functional correctness verification of the synthesized soft-

ware is not required, and only certain safety/security properties need to be ensured. In 

such cases, translating the system model is not required. The subject properties can be 

defined in a suitable formal language (e.g. PVS), and then be established on the extracted 

specification when applying the Echo approach on the synthesized software. 

Since the modeling notations in MBD are usually block-based and code synthesis 

tools usually generate code based on those blocks, it is highly likely that the synthesized 
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code will exhibit similar structure with the model, which satisfies the structural matching 

hypothesis in Echo. If the synthesized code contains or has been augmented with optimi-

zations (e.g. for efficiency) that cause complexities for verification, verification refactor-

ing in Echo can also be applied before annotations are augmented to the synthesized code.

The expanded flow to apply the Echo approach for verification of synthesized soft-

ware in MBD is shown in Figure 16.

14.4.  Simulink Case Study

Following the general approach outlined in section 14.3, one of my colleagues, Ren Xu, 

developed necessary tools and techniques, and performed a case study for application of 

the Echo approach to verify synthesized code from Simulink [81]. Here I briefly present 

the case study as a demonstration of the feasibility for applying Echo to MBD. More 

details are discussed in Ren’s work [81].

In Simulink, models are described as graphical block diagrams. Real-Time Work-

shop (RTW) from MathWorks, Inc. [51] can automatically synthesize C source code for a 

system described by a given Simulink model. A demo application from MathWorks’ offi-

cial help documentation was picked for Ren’s case study. The chosen application, albeit 

small, makes use of various Simulink blocks, feedback controls, and a subsystem. The 

Simulink model for this demo application is shown in Figure 17. “An 8-bit counter feeds a 

triggered subsystem parameterized by constants INC, LIMIT, and RESET. The I/O for the 

model is Input and Output. The Amplifier subsystem amplifies the input signal by 

gain factor K, which is updated whenever signal equal_to_count is true” [52].

An executable C program was generated from this model by the Real-Time Work-

shop code synthesizer. The generated C program contained 11535 non-comment, non-
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blank links of code. The part of code that was related with the specific model was 847 

lines long and was the subject of Ren’s case study. The Echo approach was applied to ver-

ify full functional correctness of the C program against the original model with the follow-

ing two augments:

Figure 17. Case study Simulink model

• Code Translation. The C program was translated to SPARK Ada and annotated with 

SPARK annotations, for which the current instantiation of Echo could use. This was 

done partly by tools and partly by manual intervention. Although this translation was 

inconvenient, it did not detract from the major goal for this case study, preliminary 

assessment of feasibility and utility. Direct Ada code synthesis tool for Simulink was 

also present but we didn’t have access when the case study was conducted.

• Specification Derivation. A prototype tool that automatically derives PVS specifica-

tion from Simulink models was developed by Ren. The derived PVS specification for 
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the case study model was 59 lines long and was used as the original specification in 

the Echo verification process.

With the derived PVS specification and translated SPARK Ada code, the Echo 

approach was applied and verified the code implements the specification.

An example property of the model, “the amplifier is triggered for every LIMIT 

number of execution iterations”, was also defined and stated in PVS, and subsequently 

proved directly over the Echo extracted PVS specification without invoking the implica-

tion proof for full functional correctness verification.

For both the full functional verification and the property proof during the case 

study, all proofs remained manageable and were completed by a single person in a short 

amount of time. This showed feasibility of applying Echo to verification of synthesized 

code in MBD. Again, as stated for Echo’s general applicability, it can verify the functional 

correctness of the synthesized software. Aspects such as concurrency and real-time attri-

butes are not included.
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Chapter 15.  Related Work

There is an extensive amount of research on formal verification in the literature. I summa-

rize the most relevant work to the Echo approach in this chapter.

15.1.  General Verification Approaches

Light-weight program analyses [22] are often used to find bugs in or gain confidence 

about programs. Compared to more complete formal verification, their expressive power 

is limited and no formal proof of compliance is produced. Heavier-weight techniques like 

the B method [2] are more suited to full formal verification, but they intertwine code pro-

duction and verification. Using the B method requires a B specification and then enforces 

a lock-step code production approach on developers.

A more general technique is traditional Floyd-Hoare verification [28]. Unfortu-

nately, it requires generation and proof of many detailed lemmas and theorems. It is very 

hard to automate and requires significant time and skill to complete. Annotations and ver-

ification condition generation, such as that employed by the SPARK Ada toolset [7], is 

used in practice. However, the annotations used by SPARK Ada (and other similar tech-

niques) are generally too close to the abstraction level of the program to encode higher-

level specification properties. Thus, the Echo approach uses verification condition genera-

tion as an intermediate step.

Other techniques are available for the properties that I do not address with the 

Echo approach. Model checking techniques [37], for example, have been quite successful 

at verifying hardware, protocols and temporal properties; they complement the Echo 
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approach in such areas. While model checking can generate proofs that the software 

model adheres to the specification, it does not prove that the software model is faithful to 

the original program. More recent model extraction [37], aims to address this problem and 

mechanically extracts a system model from the source code so that model checking can be 

applied. However, model extraction does not produce a full assurance argument since 

model checking is not targeted at full functional correctness.

15.2.  More Related Approaches

Tudor et al. have developed a largely automatic verification process called witnessing 

analysis for code automatically generated from Simulink [74]. Simulink is a tool used to 

specify control laws that can automatically generate Ada source code that implements the 

control law specification. The Ada code generator for Simulink is not trusted to ultra-

dependable levels, however, and so verification of the Ada code is necessary in critical 

systems. Tudor et al. used a toolset with manual assistance to produce a formal specifica-

tion in Z from Simulink, compared it with a Z specification extracted from the Ada code 

generated by Simulink, and then produced and proved verification conditions for the com-

pliance argument between the two. The Echo approach is similar to theirs, but it looks at 

verification in a more general way. I characterize classes of languages to which Echo can 

apply, and define a verification process that is otherwise language-independent. Further-

more, by incorporating the annotations, some of the implementation details can be 

abstracted away so that the specification extraction process can more easily capture only 

the properties that are relevant to the verification. Also, the reverse synthesis technique 

can help reduce the verification complexity introduced by program optimizations.
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Andronick et al. developed an approach to verification of various security proper-

ties of imperative source code embedded on smart cards [5]. Similar to reverse synthesis, 

they proved a C source program against supplementary annotations and generated a high-

level formal model of the annotated C program that was used to verify certain global secu-

rity properties. The proof of the annotated C program and the validation of the model gen-

eration were done formally using the Caduceus tool. Other than the language difference, 

their approach focuses on proving the security properties on top of the generated model, 

while the Echo approach allows showing not only properties on the source program as one 

of its extended usage, but also broad compliance with the original specification from 

which the system was built by introducing the implication proof. Also the reverse synthe-

sis process in Echo incorporates verification refactoring to reduce the complexity of proof 

involved. Their approach, however, shows the potential to expand the applicability of the 

Echo approach to more languages as long as proper tools are available.

Heitmeyer et al. also developed a similar approach for verifying a system’s high-

level security properties [34]. They partition the code and construct a compact security 

model from the code containing only information needed to reason about the security 

properties of interest. The security properties are then represented and proved formally in 

terms of the model. The approach was developed to support a common criteria evaluation 

of the separation kernel of an embedded software system. Again, their approach is focused 

on verifying security properties only, whereas the Echo approach incorporates annotation 

and refactoring to increase abstraction and reduce complexity, and is aimed at general 

functionality of the target software.
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15.3.  Hardware Verification

Engineers developing digital circuits face the verification challenge also. Digital circuits 

that are relatively simple are verified by testing. Increasingly, however, circuits have 

become so complex that testing is extremely time consuming and relatively ineffective, 

and so formal verification has been pursued.

Various techniques have been developed for the verification of digital hardware, 

up to and including complete microprocessors. The FM9001, for example, was specified 

and its gate-level implementation verified using a variety of formal techniques [41]. Espe-

cially relevant to the proposed research is the work of Hoskote and Abraham [38, 39]. In 

this work, formal verification is applied in a comprehensive and practical way to digital 

circuits. Of particular interest is the use of an automatic extraction process in which a low-

level specification of a circuit is examined and a high-level specification created. This is 

done primarily by developing an abstract model of the low-level specification doing so by 

exploiting various characteristics of digital circuits. The process is human guided, in part, 

because a key aspect of the approach is to eliminate data registers from consideration. 

Another relevant research is Kuehlmann and Baumgartner’s transformation-based verifi-

cation [9, 46] for sequential verification of circuit-based designs. Their work uses struc-

tural transformation that relocates registers in a circuit-based design representation 

without changing its actual input-output behavior, to increase the capacity of symbolic 

state traversal, and thus improve reachability analysis and the verification of temporal 

properties. These techniques are restricted forms of the reverse synthesis technique in the 

Echo approach, which adopts similar idea to transform the target being verified, but for 

software.
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15.4.  Reverse Engineering

Ward et al. have developed a method called inverse engineering and an associated tool for 

reverse engineering, by which a high-level specification can be retrieved from low-level 

source code of a program by a process of semantic-preserving program transformations 

[76, 78]. In their approach, they translated a program into their internal WSL language, 

applied a series of program transformations to it under user guidance, until it was suffi-

ciently abstract that it could be translated it back in to a specification. Each transformation 

was proved to produce a semantically equivalent result based on a theory of program 

refinement and transformation [77]. Similar approaches are also adopted by many others 

in the reverse engineering domain. Chung et al., for example, also retrieved high-level 

specifications from the source code by abstractions [16].

These approaches are very similar to the reverse synthesis process in Echo. How-

ever, the criteria are not the same. Their goal is to support software maintenance, to make 

the unstructured or poorly engineered source code amenable to further analysis. Thus they 

don’t have a specific target form to transform it into. The reverse synthesis process in 

Echo aims to aid verification, specifically to reverse the complexities caused by program 

optimization and to match the structure of the original specification so that the implication 

theorem can be proved. Moreover, by incorporating the intermediate annotations, the Echo 

approach can more easily capture the properties relevant to verification while still 

abstracting implementation details. These techniques do, however, show the feasibility of 

approaches similar to reverse synthesis.
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15.5.  Automatic Code Generation

Automated translation, or code generation [79], of a formal specification to an implemen-

tation provides an alternative to verification. This approach constructs an implementation 

automatically from the specification using formal translation rules. Compliance of the 

implementation with its specification is implied by the translation rules, as long as the 

rules preserve specification semantics. If the translation rules are correct and the translator 

implements them correctly, it guarantees that the behavior of the implementation is consis-

tent with the formal specification.

Automatic code generation is gaining increasing prominence under the name 

model-based development. Tools are built such as Simulink [66] and the SCADE Suite 

[65]. However, its success at present is primarily confined to narrow domains such as con-

trol systems. For most safety-critical systems, it is very difficult to automatically generate 

a well-structured implementation from a formal specification. Furthermore, automatic 

code generation sometimes yields an implementation lacking properties, such as effi-

ciency. This lack leads to the same problem as verification based on refinement, any 

change to the generated code (e.g. to improve efficiency) invalidates the verification argu-

ment. Finally, even if automatic code generation is possible, the generator itself needs to 

be verified, and the state of the art is not sufficient to produce a verified code generator 

without significant research.

15.6.  Other Related Work

Paul et al. [58] are developing an approach to the determination of how refactorings affect 

the verifiability of a program. Their focus is object-oriented design, and the goal is to see 

whether a syntactic change can make more properties amenable to analysis.
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Smith et al. [67] have developed an infrastructure for verifying block ciphers, 

including AES, and they have verified AES implementations in Java byte code. They 

noted different representations between the specification and the implementation, and pro-

vided transformation functions between the two. Their work, however, takes advantage of 

many properties of block ciphers and is tied specifically to such verification. 

Klein et al. demonstrated that full functional formal verification is practical for 

large systems by verifying the seL4 microkernel from an abstract specification down to its 

8700 lines C implementation [42]. With proof by parts, the Echo approach is more widely 

applicable and does not impose restrictions on the development process.
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Chapter 16.  Conclusion

In this chapter, I conclude the work and summarize the contributions, limitations, and 

future work on the Echo approach.

16.1.  Conclusion

In this thesis, I have defined the Echo approach, a verification technique based upon the 

use of an intermediate point of abstraction between a high-level formal specification and 

its concrete implementation. This intermediate point is a low-level specification docu-

mented by annotated source code. The verification approach shows that the source code 

correctly implements the annotations and that the annotated source code implies the high-

level specification.

I have introduced the new technique of reverse synthesis that mechanically creates 

a high-level specification from the source program documented with the low-level specifi-

cation. A crucial component of reverse synthesis is the application of semantics-preserv-

ing refactoring transformations to reduce verification complexity.

I have also introduced a proof structure in which the major proof is carried out by 

matching static specification structures, and organizing the proof as the conjunction of a 

series of lemmas about the specification structure, in order for the proof to scale.

Human insight guides much of the process in Echo, but the analysis and thus the 

verification is either automatic or machine-checkable. In effect, the verification proceeds 

in a direction opposite to that of traditional verification approaches, exploiting automated 

reasoning and program transformation to increase the practicality of verification. It dove-
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tails directly with traditional development processes and artifacts. Many existing develop-

ment methods can continue to be used, yet formal verification and all its benefits can be 

applied. 

My goals with Echo are to give developers greater freedom to use existing soft-

ware development methods in creating software systems, and to exploit available verifica-

tion tools and techniques to create a practical and well-controlled verification process. I 

claim that the Echo approach is a practical yet comprehensive approach to formal verifica-

tion of functional correctness, and makes such verification readily available, applicable, 

cost effective, and useful to the community that needs it.

16.2.  Contributions

The claim made in the preceding section are supported by the following specific contribu-

tions:

• A new approach to verification in which analysis is partitioned by adopting a low-

level specification as an intermediate point. Each partitioned proof operates on differ-

ent abstraction level and can be tackled with separate specialized techniques to allevi-

ate the proof difficulty. The major proof step is pushed to the abstract level to reduce 

the verification effort.

• A new technique, reverse synthesis, and effective reverse synthesis algorithms by 

which semantic-preserving transformations are performed to reduce verification com-

plexity, and high-level specifications are extracted from low-level specifications and 

implementations mechanically to support the verification. Reverse synthesis bridges 

the gap between the partitioned proofs and enables developers to continue to use exist-



129

ing software development methods, i.e., they are not limited solely to tools and pro-

cesses that support verification.

• A crucial component of reverse synthesis, verification refactoring, by which complex-

ity-reducing but semantics-preserving refactoring transformations are applied to the 

source program to facilitate both proofs. In general, it is easier to transform the pro-

gram than to transform the proof. Thus, transformations facilitate verification by 

reducing the complexity of the source program and thereby the proof obligation. Veri-

fication refactoring deals with many of the issues that limit the applicability of formal 

verification. In particular, it overcomes the problem of unworkably large verification 

conditions and frees developers from the rigid development process necessary for 

refinement.

• Heuristics, templates, and complexity metrics to guide the selection and application of 

transformations in the verification refactoring process, so that one can determine 

which transformations can be selected to reduce complexity and when the refactored 

program is likely to be amenable to proof.

• A scalable proof structure, proof by parts, in which the major proof is carried out by 

matching static specification and implementation structures. The proof can then be 

organize as the conjunction of a series of lemmas about the matched structure. By set-

ting up a different lemma for each distinct element and proving each lemma indepen-

dently, it facilitates the proof to scale for verification of large systems.

• A controlled verification process that integrates a number of powerful existing nota-

tions, tools and processes to exploit existing verification capabilities, that links the gap 
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of existing techniques by author developed tools and processes, that automates the 

process to the extent possible.

• Extended usages that combines with other types of analysis such as run-time checks in 

the synergistic analysis framework to allow richer properties to be constructed in 

whole-system assurance arguments, that can benefit verification of synthesized code 

in model-based development, and that allows safety/security properties be established 

without carrying out full functional verification.

• Case studies that assessed and evaluated applicability and practicability of Echo by 

verifying three specimen systems in the safety and security domain.

16.3.  Limitations

Although the Echo approach provides certain benefits over existing techniques, it is in no 

way a verification “silver bullet”. As with any formal verification technique, it requires 

the use of formal languages, various analytic tools including a theorem-proving system, 

and considerable skill on the part of the developer. One specific additional responsibility 

placed on the developer is to annotate the source code with pre- and post-condition docu-

mentation.

Also the use of annotations, though not uncommon in modern software develop-

ment, introduces a source of defects over and above those that might be present in the pro-

gram.

The Echo approach only targets functional correctness verification. Real-time 

properties are not included. Especially when applying verification refactoring, the subject 

program is changed and no verification of real-time properties is possible.
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When floating-point arithmetic is present in the subject program, the Echo 

approach can check the functionality as if it is real-valued arithmetic. However it cannot 

check whether the adopted floating-point arithmetic is adequately precise or not. It has to 

accept the implementation language’s approximation on the target platform.

Finally, the successful use of the Echo approach relies upon the use of notations 

with formal semantic definitions and suitable verification tools. Defects in the tools used, 

can also break the verification argument.

16.4.  Future Work

The time and resources available in a single doctoral program is limited. More enhance-

ment of the Echo approach is left to future work, which contains but is not limited to:

• Expand the languages and notations supported by Echo;

• Introduce and prove more transformations that facilitates verification refactoring;

• Add machine support to automatically generate annotations to the extent possible;

• Add machine support to automatically infer applicable verification refactoring trans-

formations and locate the spot to apply them;

• Certify the specification extraction process and tool;

• Encapsulate all tools and processes involved in a single console that checks and con-

trols the verification steps in Echo to provide ease of use;

• Integrate with techniques that check other types of properties, such as model checking, 

to provide more comprehensive assurance argument.



132

The main thesis of the work concerns the feasibility and practicality of the Echo 

approach, which was evaluated through a number of case studies for verification of three 

selected specimen systems. The case studies were conducted by the author of the Echo 

approach, and were restricted by time and resource constraints to a single developer. More 

evaluations of the Echo approach, e.g. efficacy and utility comparison with other verifica-

tion techniques, application by different developers or to different systems and domains, 

are left for future work.



133

Bibliography

[1] Abrial, J. R., Formal methods in industry: achievements, problems, future, Pro-
ceedings of the 28th International Conference on Software Engineering, Shanghai, 
China, pp. 761-768, 2006.

[2] Abrial, J. R., The B-Book: Assigning Programs to Meanings, Cambridge Univer-
sity Press, 1996.

[3] Adacore, GNAT Metric Tool, http://www.adacore.com.

[4] Anderson, T., and R. W. Witty, Safe Programming, BIT Vol.18, 1978, pp. 1-8.

[5] Andronick, J., B. Chetali, and C. Paulin-Mohring, Formal Verification of Security 
Properties of Smart Card Embedded Source Code, In: Fitzgerald, J., Hayes, I. J., 
Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 302-317. Springer-Verlag, 
2005.

[6] Banach, R. and M. Poppleton, Retrenchment: An Engineering Variation on Refine-
ment, Proceedings of B-98, Bert (ed.), LNCS 1393, 129-147, Springer, 1998.

[7] Barnes, J., High Integrity Software: The SPARK Approach to Safety and Security, 
Addison-Wesley, 2003.

[8] Barnes, J. and R. Chapman, Engineering the Tokeneer Enclave Protection Soft-
ware, International Symposium on Secure Software Engineering (ISSSE'06), 
IEEE, 2006.

[9] Baumgartner, J., A. Kuehlmann, and J. Abraham, Property checking via structural 
analysis, Computer-Aided Verification, July 2002.

[10] Bensalem, S., P. Caspi, C. P. Vigouroux, and C. D. Canovas, A methodology for 
proving control systems with Lustre and PVS, Seventh Working Conference on 
Dependable Computing for Critical Applications (DCCA7), San Jose, January 
1999.

[11] Boldo, S. and J. Filliatre, Formal Verification of Floating-Point Programs,  Pro-
ceedings of the 18th IEEE Symposium on Computer Arithmetic (ARITH '07), 
IEEE, Washington, DC, USA, 2007.

[12] Bowen, J. P. and V. Stavridou, Safety-Critical Systems, Formal Methods and Stan-
dards, IEE/BCS Software Engineering Journal, 8(4):189-209, July 1993.

[13] Bravenboer, M., K. T. Kalleberg, R. Vermaas, and E. Visser, Stratego/XT 0.16. A 
Language and Toolset for Program Transformation, Science of Computer Pro-
gramming, 2007.



134

[14] Burdy, L., Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. 
Leino, E. Poll, An overview of JML tools and applications, International Journal 
on Software Tools for Technology Transfer, 7(3):212-232 (2005).

[15] Butler, R and G. Finnelli, The Infeasibility of Quantifying the Reliability of Life-
Critical Real-Time Software, IEEE Transactions on Software Engineering, Vol. 19, 
No 1, January 1993.

[16] Chung, B. and G. C. Gannod, Abstraction of Formal Specifications from Program 
Code, In: IEEE 3rd International Conference on Tools for Artificial Intelligience, 
pp. 125-128 (1991).

[17] Cooper, D., and J. Barnes, Tokeneer ID station: EAL5 demonstrator: Summary 
report, August 2008.

[18] Cousot, P. and R. Cousot, Comparing the Galois Connection and Widening/Nar-
rowing Approaches to Abstract Interpretation, Proceedings of the Fourth Interna-
tional Symposium on Programming Language Implementation and Logic 
Programming, pp. 269-295 (1992).

[19] Croxford, M. and R. Chapman, Correctness by construction: A manifesto for high-
integrity software, CrossTalk, The Journal of Defense Software Engineering, 2005, 
pp. 5-8.

[20] Daemen, J. and V. Rijmen, AES Proposal: Rijndael. AES Algorithm Submission, 
1999.

[21] Das, M., Formal Specifications on Industrial Strength Code: From Myth to Real-
ity, Computer-Aided Verification 2006, Seattle WA (August 2006).

[22] Das, M., S. Lerner, and M. Seigle, ESP: path-sensitive program verification in 
polynomial time, Programming Languages, Design and Implementation, pp. 57-68 
(2002).

[23] Dijkstra, E. W., Guarded commands, nondeterminacy and formal derivation of 
programs, Communications of the ACM, 18(8):453–457, August 1975.

[24] Elder, M. C., Specification of User Interfaces for Safety-Critical Systems, M.S. 
Thesis, Department of Computer Science, University of Virginia, August 1995.

[25] Evans, D. and D. Larochelle, Improving Security Using Extensible Lightweight 
Static Analysis, IEEE Software, Jan/Feb 2002.

[26] FIPS PUB 197, Advanced Encryption Standard (AES), National Institute of Stan-
dards and Technology, November 2001.

[27] Flanagan, C. and K. Lieno, Houdini, an annotation assistant for ESC/Java, Formal 
Methods Europe, Berlin, Germany (2001).



135

[28] Floyd, R. W., Assigning meanings to programs, in Schwartz, J.T. (ed.), Mathemat-
ical Aspects of Computer Science, Proceedings of Symposia in Applied Mathe-
matics 19 (American Mathematical Society), Providence, pp. 19-32, 1967.

[29] Gagnon, E. M. and L. J. Hendren, SableCC, an Object-Oriented Compiler Frame-
work, TOOLS (26), pp. 140-154, IEEE Computer Society, 1998.

[30] Graydon P., and J. Knight, Software Process Synthesis in Assurance Based Devel-
opment of Dependable Systems, Proceedings of the 8th European Dependable 
Computing Conference (EDCC), Valencia, Spain, 2010.

[31] Graydon, P., J. Knight, and X. Yin, Practical Limits on Software Dependability: A 
Case Study, Proceedings of the 15th International Conference on Reliable Software 
Technologies (Ada-Europe), Valencia, Spain, 2010.

[32] Hall, A. and R. Chapman, Correctness by Construction: Developing a Commercial 
Secure System, IEEE Software, 19(1), pp. 18-25, 2002.

[33] Hayhurst, K. J., D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson, A Practical 
Tutorial on Modified Condition/Decision Coverage, NASA/TM-2001-210876, 
NASA Langley Research Center, Hampton, Virginia, May 2001. 

[34] Heitmeyer, C., M. Archer, E. Leonard, and J. McLean, Applying Formal Methods 
to a Certifiably Secure Software System, IEEE Transaction on Software Engineer-
ing, Vol.34, No.1, 2008.

[35] Henzinger, T., R. Jhala, R. Majumdar, G. Necula, G. Sutre, and W. Weimer, Tempo-
ral-Safety Proofs for Systems Code, Lecture Notes in Computer Science, Volume 
2404, Jan 2002, Pages 526 - 538.

[36] Hoare, C. A. R., An axiomatic basis for computer programming, Communications 
of the ACM, 12(10):576–585, October 1969.

[37] Holzmann, G. J., The SPIN Model Checker: Primer and Reference Manual, Addi-
son-Wesley, 2004.

[38] Hoskote, Y., Formal Techniques for Verification of Synchronous Sequential Cir-
cuits, Ph.D. Dissertation, The University of Texas at Austin, December 1995.

[39] Hoskote, Y., J. Abraham, D. Fussell and J. Moondanos, Automatic Verification of 
Implementations of Large Circuits Against HDL Specifications, IEEE Transactions 
on Computer-Aided Design of Integrated Circuits and Systems, vol. 16, March 
1997, pp. 217-228.

[40] Howden, W. E., Reliability of the Path Analysis Testing Strategy, IEEE Transac-
tions on Software Engineering 2(3):208-215, 1976.



136

[41] Hunt, W. and B. Brock, A Formal HDL and Its Use in the FM9001 Verification, in 
“Mechanized Reasoning and Hardware Design”, C. Hoare and M. Gordon, eds., 
Prentice Hall, 35-47, 1992. First published in “Philosophical Transactions of the 
Royal Society of London”, Series A, Vol. 339, 1992.

[42] Klein, G., K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. 
Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. 
Winwood, seL4: formal verification of an OS kernel, Proceedings of the ACM 
SIGOPS 22nd symposium on Operating systems principles, Big Sky, Montana, 
USA, October, 2009.

[43] Knight, J. C., and P. E. Ammann, An Experimental Evaluation of Simple Methods 
For Seeding Program Errors, ICSE-8: Eighth International Conference on Soft-
ware Engineering, London, UK, 1985.

[44] Knight, J. C., C. L. DeJong, M. S. Gibble, and L. G. Nakano, Why Are Formal 
Methods Not Used More Widely?, Fourth NASA Langley Formal Methods Work-
shop, Hampton, VA, September 1997.

[45] Kataoka, Y., M. Ernst, W. Griswold, and D. Notkin, Automated support for pro-
gram refac-toring using invariants, International Conference on Software Mainte-
nance, pp. 736-743 (2001).

[46] Kuehlmann, A. and J. Baumgartner, Transformation-based Verification using gen-
eralized retiming, Computer-Aided Verification, July 2001.

[47] Leavens, G. T. and Y. Cheon, Design by Contract with JML (Draft), http://jml-
specs.org, 2006. 

[48] Lerner, S., T. Millstein, E. Rice and C. Chambers, Automated soundness proofs for 
dataflow analyses and transformations via local rules, Principles of Programming 
Languages, pp. 364-377 (2005).

[49] Linger, R. C., H. D. Mills, and B. I. Witt, Structured Programming: Theory and 
Practice, Addison-Wesley, 1979.

[50] Liskov, B. and J. Wing, A Behavioral Notion of Subtyping, ACM Transactions on 
Programming Languages and Systems, 16(6):1811--1841, November 1994.

[51] MathWorks Inc., Real-Time Workshop, http://www.mathworks.com/products/rtw/.

[52] MathWorks Inc., Generating code using the Real-Time Workshop product, Real-
Time Workshop Demos, Published with MATLAB 7.8, 2009.

[53] Meyer B., Applying "Design by Contract", IEEE Computer, 25(10), pp. 40-51, 
1992.



137

[54] Myers, W., Can software for the strategic defense initiative ever be error-free?, 
IEEE Computer, November 1986, 19, (11).

[55] National Institute of Standards Technology, The Common Criteria Evaluation and 
Validation Scheme, http://niap.nist.gov/cc-scheme/index.html.

[56] National Institute of Standards Technology, Cryptographic Toolkit, http://
csrc.nist.gov/CryptoToolkit/.

[57] Owre, S., N. Shankar, and J. M. Rushby, PVS: A Prototype Verification System, 
CADE 11, Saratoga Springs, NY, June 1992.

[58] Paul, J., N. Kuzmina, R. Gamboa, and J. Caldwell, Toward a Formal Evaluation of 
Refactorings, Proceedings of The Sixth NASA Langley Formal Methods Work-
shop, 2008.

[59] Potter, B., J. Sinclair, and D. Till, An Introduction to Formal Specification and Z, 
Prentice Hall: London, 1996.

[60] Praxis, The SPARK Ravenscar Profile, http://praxis-his.com, 2006.

[61] Rahul, S. and G. Necula, Proof Optimization Using Lemma Extraction, Technical 
Report UCB/CSD-01-1143, University of California, Berkeley, May 2001.

[62] Robby, M., B. Dwyer, and J. Hatcliff, Bogor: An extensible and highly-modular 
model checking framework, Proceedings of the 9th European Software Engineer-
ing Conference held jointly with the 11th ACM SIGSOFT Symposium on the 
Foundations of Software Engineering, pages 267–276, 2003.

[63] Runeson, J., S. Nystrom, and J. Sjodin, Optimizing code size through procedural 
abstraction, Languages, Compilers and Tools for Embedded Systems, pp. 204-215 
(2000).

[64] Rustan, K., M. Leino, G. Nelson, and J. B. Saxe, ESC/Java User’s Manual, Techni-
cal Note 2000-002, Compaq Systems Research Center, Palo Alto, CA, October 
2000.

[65] SCADE Suite, Esterel Technologies, http://www.esterel-technologies.com/.

[66] Simulink - Simulation and Model-Based Design, http://www.mathworks.com/
products/simulink/.

[67] Smith, E. and D. Dill, Formal Verification of Block Ciphers, A Case Study: The 
Advanced Encryption Standard (AES), Stanford University.

[68] Spivey, J. M., The Z Notation: A Reference Manual, Prentice-Hall, 1992.

[69] Storey, N., Safety Critical Computer Systems, Addison-Wesley, 1996.



138

[70] Strunk, E. A., J. C. Knight, and M. A. Aiello, Assured Reconfiguration of Fail-Stop 
Systems, The International Conference on Dependable Systems and Networks, 
Yokohama, Japan, June 2005.

[71] Strunk, E. A., X. Yin, and J. C. Knight, Echo: A Practical Approach to Formal 
Verification, Tenth International Workshop on Formal Methods for Industrial Crit-
ical Systems, co-located with ESEC/FSE '05, Lisbon, Portugal, September 2005.

[72] Throckmorton, A., A. Untaroiu, P. Allaire, H. Wood, D. Lim, M. McCulloch, and 
D. Olsen, Numerical design and experimental hydraulic testing of an axial flow 
ventricular assist device for infants and children, American Society for Artificial 
Internal Organs (ASAIO) Journal, 53(6):754–761, November–December 2007.

[73] Throckmorton, A. L., A. Untaroiu, D. S. Lim, H. G. Wood, and P. E. Allaire, Fluid 
force predictions and experimental measurements for a magnetically levitated 
pediatric ventricular assist device, Journal of Artificial Organs, 31(5):359–368, 
2007.

[74] Tudor, N., M. Adams, P. Clayton, and C. O'Halloran, Auto-Coding/Auto-Proving 
Flight Control Software, 23rd Digital Avionics Systems Conference, October 
2004.

[75] Untaroiu, A., H. Wood, and P. Allaire, Implantable axial-flow blood pump for left 
ventricular support, Proceedings of the 45th International ISA Biomedical Sci-
ences Instrumentation Symposium, Copper Mountain, CO, April 2008.

[76] Ward, M., Abstracting a Specification from Code, Journal of Software Mainte-
nance: Research and Practice, Vol 5, pp. 101-122, 1993.

[77] Ward, M., Proving Program Refinements and Transformations, DPhil Thesis, 
Oxford University, 1989.

[78] Ward, M., Reverse Engineering through Formal Transformation, The Computer 
Journal, Vol 37, No 9, pp. 795-813, 1994.

[79] Whalen, M. and M. Heimdahl, An Approach to Automatic Code Generation for 
Safety-Critical Systems, Proceedings of the 14th IEEE International Conference on 
Automated Software Engineering, October 1999.

[80] Woodcock, J. and R. Banach, The Verification Grand Challenge, Journal of Uni-
versal Computer Science, Vol. 13, No. 5, 2007, pp. 661-668.

[81] Xu, R., Using Echo to Verify Implementation in Model-Driven Development, Mas-
ter’s Thesis, University of Virginia, May 2010.

[82] Yin, R., Case Study Research: Design and Methods, SAGE Publications: Thou-
sand Oaks, 2003.



139

[83] Yin, X., J. C. Knight, E. A. Nguyen, and W. Weimer, Formal Verification By 
Reverse Synthesis, SAFECOMP 2008: The 27th International Conference on 
Computer Safety, Reliability and Security Newcastle, UK, September 2008.

[84] Yin, X., J. C. Knight, and W. Weimer, Exploiting Refactoring in Formal Verifica-
tion, DSN 2009: The International Symposium on Dependable Systems and Net-
works Lisbon, Portugal, June 2009.

[85] Yin, X. and J. C. Knight, Formal Verification of Large Software Systems, NFM 
2010: Second NASA Formal Methods Symposium, Washington DC, April 2010.



Appendix A:  Example Specification 
Extraction and Implication Theorem
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A.1 Original Specification of MBCS

%%==============================================================%%
%%                     Target Configuration                     %%
%%==============================================================%%

vad_cntrl_conf: THEORY
BEGIN

value_type: TYPE = real

dac_value_type: TYPE = {i: int | i >= 0 AND i < 4096} CONTAINING 0
adc_value_type: TYPE = {i: int | i >= 0 AND i < 4096} CONTAINING 0

input_size:  posnat =  4
output_size: posnat =  6
state_size:  posnat = 16

time_type: TYPE = nat
coil_failure_type: TYPE = {f: int | f = 0 OR f = 1} CONTAINING 0
input_vector_type: TYPE = [below(input_size) -> adc_value_type]
output_vector_type: TYPE = [below(output_size) -> dac_value_type]

END vad_cntrl_conf

%%========================================================%%
%%                     Math Utilities                     %%
%%========================================================%%

vad_cntrl_vector[N: posnat]: THEORY
BEGIN
IMPORTING vad_cntrl_conf

vector: TYPE = [below(N) -> value_type];

+(a, b: vector): vector = LAMBDA (i: below(N)): a(i) + b(i)

% Sigma f(i), i from low to high
sigma(low, high: below(N), f: vector): RECURSIVE value_type =
  IF low > high THEN 0
  ELSIF low = high THEN f(low)
  ELSE f(low) + sigma(low+1, high, f)
  ENDIF
  MEASURE abs(high-low)

END vad_cntrl_vector

vad_cntrl_matrix[M: posnat, N:posnat]: THEORY
BEGIN
IMPORTING vad_cntrl_vector

matrix: TYPE = [below(M), below(N) -> value_type];
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*(m: matrix, v: vector[N]): vector[M] =
  LAMBDA (i: below(M)): sigma(0, N-1, LAMBDA (j: below(N)): m(i,j)*v(j))

END vad_cntrl_matrix

%%==========================================================%%
%%                     Control Software                     %%
%%==========================================================%%

vad_cntrl_sw: THEORY
BEGIN
IMPORTING vad_cntrl_matrix

%%-------------------- Types & Constants --------------------%%

u_vector_type: TYPE = vector[input_size]
c_vector_type: TYPE = vector[output_size]
x_vector_type: TYPE = vector[state_size]

hws_val_type: TYPE = {Op, NotOp}
hw_status_type: TYPE = [below(6) -> hws_val_type]
hws_AllOp: hw_status_type = LAMBDA (i: below(6)): Op

%% cv_value_type: TYPE = {
%%    cv_normal, cv_1u, cv_1v, cv_1w, cv_2u, cv_2v, cv_2w, cv_uu,
%%    cv_uv,cv_uw, cv_vu, cv_vv, cv_vw, cv_wu, cv_wv, cv_ww}

%% for prototype only:
cv_value_type: TYPE = {cv_normal, cv_1u}

cvf(hws: hw_status_type): cv_value_type =
  CASES hws(0) OF
    Op:    cv_normal,
    NotOp: cv_1u
  ENDCASES

A(cv: cv_value_type): matrix[state_size, state_size] =
  LAMBDA (i: below(state_size), j: below(state_size)): 0

B(cv: cv_value_type): matrix[state_size, input_size] =
  CASES cv OF
    cv_normal: LAMBDA (i: below(state_size), j: below(input_size)):
                 IF i = j THEN 1
                 ELSE 0
                 ENDIF,
    cv_1u:     LAMBDA (i: below(state_size), j: below(input_size)): 0
  ENDCASES

D(cv: cv_value_type): matrix[output_size, state_size] =
  CASES cv OF
    cv_normal: LAMBDA (i: below(output_size), j: below(state_size)):
                 COND
                   i = 0 AND j = 0 -> 12,
                   i = 1 AND j = 0 -> -6,
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                   i = 1 AND j = 1 -> 12,
                   i = 2 AND j = 0 -> -6,
                   i = 2 AND j = 1 -> -12,
                   i = 3 AND j = 2 -> 12,
                   i = 4 AND j = 2 -> -6,
                   i = 4 AND j = 3 -> 12,
                   i = 5 AND j = 2 -> -6,
                   i = 5 AND j = 3 -> -12,
                   ELSE            -> 0
                 ENDCOND,
    cv_1u:     LAMBDA (i: below(output_size), j: below(state_size)): 0
  ENDCASES

E(cv: cv_value_type): matrix[output_size, input_size] =
  CASES cv OF
    cv_normal: LAMBDA (i: below(output_size), j: below(input_size)):
                 COND
                   i = 0 AND j = 0 -> 16,
                   i = 1 AND j = 0 -> -8,
                   i = 1 AND j = 1 -> 16,
                   i = 2 AND j = 0 -> -8,
                   i = 2 AND j = 1 -> -16,
                   i = 3 AND j = 2 -> 16,
                   i = 4 AND j = 2 -> -8,
                   i = 4 AND j = 3 -> 16,
                   i = 5 AND j = 2 -> -8,
                   i = 5 AND j = 3 -> -16,
                   ELSE            -> 0
                 ENDCOND,
    cv_1u:     LAMBDA (i: below(output_size), j: below(input_size)): 0
  ENDCASES

frame_period: time_type = 25600

%%-------------------- System State --------------------%%

hardware_type: TYPE =
  [# time_base:    time_type,
     coil_failure: coil_failure_type
     % QADC
     % DAC
     % ...
  #]

internal_state_type: TYPE =
  [# input:        input_vector_type,
     output:       output_vector_type,
     last_frame:   time_type,
     next_frame:   time_type,
     hw_status:    hw_status_type,
     last_hws:     hw_status_type,
     cv:           cv_value_type,
     u:            u_vector_type,
     c:            c_vector_type,
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     x:            x_vector_type #]

system_status_type: TYPE =
  [# hw: hardware_type,
     st: internal_state_type #]

%%-------------------- Control Calculation --------------------%%

adc_scale:  value_type = 0.000625
adc_offset: value_type = -1
input_to_u(input: input_vector_type): u_vector_type =
  LAMBDA (i: below(input_size)):
    (input(i) * adc_scale) + adc_offset

dac_scale:  value_type = 1024
dac_offset: value_type = 2
c_to_output(c: c_vector_type): output_vector_type = 
  LAMBDA (i: below(output_size)):
    LET output_i = (c(i) + dac_offset) * dac_scale IN
    COND
      output_i > 4095                    -> 4095,
      output_i >= 0 AND output_i <= 4095 -> floor(output_i + 0.5),
      output_i < 0                       -> 0
    ENDCOND

init(st: internal_state_type): internal_state_type =
  st WITH [`hw_status := hws_AllOp,
           `last_hws := hws_AllOp,
           `cv := cvf(hws_AllOp),
           `u := LAMBDA (i: below(input_size)): 0,
           `c := LAMBDA (i: below(output_size)): 0,
           `x := LAMBDA (i: below(state_size)): 0]

convert_input(st: internal_state_type): internal_state_type =
  st WITH [`u := input_to_u(st`input)]

compute_output(st: internal_state_type): internal_state_type =
  st WITH [`c := D(st`cv) * st`x + E(st`cv) * st`u]

compute_new_state(st: internal_state_type): internal_state_type =
  st WITH [`x := A(st`cv) * st`x + B(st`cv) * st`u]

convert_output(st: internal_state_type): internal_state_type =
  st WITH [`output := c_to_output(st`c)]

calculate_control(st: internal_state_type): internal_state_type =
  IF st`hw_status = st`last_hws THEN
    convert_output(compute_new_state(compute_output(convert_input(st))))
  ELSE
    st WITH [`last_hws := st`hw_status,
             `cv := cvf(st`hw_status),
             `c := LAMBDA (i: below(output_size)): 0,
             `x := LAMBDA (i: below(state_size)): 0,
             `output := c_to_output(LAMBDA (i: below(output_size)): 0)]
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  ENDIF

%%-------------------- Hardware Interface --------------------%%

%% Hardware interface is not modeled here.

%% Assume hardware is correctly configured,
%% st`time_base, st`coil_failure, st`input are correctly read,
%% and st`output is correctly wrote.

%% Bogus interfaces only
%% to simulate the event sequence in the control frame

read_QADC(s: system_status_type): system_status_type
update_DAC(s: system_status_type): system_status_type

convert_status_post(s_, s: system_status_type): bool =
  IF s`hw`coil_failure = 0 THEN
    s`st = s_`st WITH [`hw_status := hws_AllOp WITH [(0) := NotOp]]
  ELSE
    s`st = s_`st WITH [`hw_status := hws_AllOp]
  ENDIF

convert_status(s_: system_status_type): system_status_type =
  choose({s: system_status_type | convert_status_post(s_, s)})

%%-------------------- Cyclic Executive --------------------%%

frame_init_post(s_, s: system_status_type): bool =
  s`st = s_`st WITH [`last_frame := s`hw`time_base,
                     `next_frame := s`hw`time_base + frame_period]

frame_init(s_: system_status_type): system_status_type =
  choose({s: system_status_type | frame_init_post(s_, s)})

frame_sync_post(s_, s: system_status_type): bool =
%% block until next frame
  s`hw`time_base >= s_`st`next_frame AND
  s`st = s_`st WITH [`last_frame := s_`st`next_frame,
                     `next_frame := s_`st`next_frame + frame_period]

frame_sync(s_: system_status_type): system_status_type =
  choose({s: system_status_type | frame_sync_post(s_, s)})

calculate_control_post(s_, s: system_status_type): bool =
  s`st = calculate_control(s_`st)

calculate_control(s_: system_status_type): system_status_type =
  choose({s: system_status_type | calculate_control_post(s_, s)})

control_frame(s: system_status_type): system_status_type =
  
update_DAC(calculate_control(convert_status(read_QADC(frame_sync(s)))))
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%% Main loop for control frame is not modeled here.

END vad_cntrl_sw
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A.2 Extracted Specification of MBCS

Standard: THEORY
BEGIN

Integer: TYPE = {n: int | n >= -2147483648 AND n <= 2147483647}
Float: TYPE = {r: real | r >= -3.40282*10^38 AND r <= 3.40282*10^38}

END Standard

HW_Bit_Types: THEORY
BEGIN

IMPORTING Standard

HW_1Bit: TYPE = mod(2^1)
HW_2Bits: TYPE = mod(2^2)
HW_3Bits: TYPE = mod(2^3)
HW_4Bits: TYPE = mod(2^4)
HW_5Bits: TYPE = mod(2^5)
HW_6Bits: TYPE = mod(2^6)
HW_7Bits: TYPE = mod(2^7)
HW_8Bits: TYPE = mod(2^8)
HW_9Bits: TYPE = mod(2^9)
HW_10Bits: TYPE = mod(2^10)
HW_11Bits: TYPE = mod(2^11)
HW_12Bits: TYPE = mod(2^12)
HW_13Bits: TYPE = mod(2^13)
HW_14Bits: TYPE = mod(2^14)
HW_15Bits: TYPE = mod(2^15)
HW_16Bits: TYPE = mod(2^16)
HW_17Bits: TYPE = mod(2^17)
HW_18Bits: TYPE = mod(2^18)
HW_19Bits: TYPE = mod(2^19)
HW_20Bits: TYPE = mod(2^20)
HW_21Bits: TYPE = mod(2^21)
HW_22Bits: TYPE = mod(2^22)
HW_23Bits: TYPE = mod(2^23)
HW_24Bits: TYPE = mod(2^24)
HW_25Bits: TYPE = mod(2^25)
HW_26Bits: TYPE = mod(2^26)
HW_27Bits: TYPE = mod(2^27)
HW_28Bits: TYPE = mod(2^28)
HW_29Bits: TYPE = mod(2^29)
HW_30Bits: TYPE = mod(2^30)
HW_31Bits: TYPE = mod(2^31)
HW_32Bits: TYPE = mod(2^32)

END HW_Bit_Types
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Control_Calculation: THEORY
BEGIN

IMPORTING Standard
IMPORTING HW_Bit_Types

Value_Type: TYPE = Float

HW_Status_Type: TYPE = HW_6Bits
ADC_Value_Type: TYPE = HW_12Bits
DAC_Value_Type: TYPE = HW_12Bits

Input_Index: TYPE = {n: int | n >= 0 AND n <= 3}
Output_Index: TYPE = {n: int | n >= 0 AND n <= 5}
State_Index: TYPE = {n: int | n >= 0 AND n <= 15}

Input_Vector_Type: TYPE = ARRAY [Input_Index -> ADC_Value_Type]
Output_Vector_Type: TYPE = ARRAY [Output_Index -> DAC_Value_Type]
State_Vector_Type: TYPE = ARRAY [State_Index -> Value_Type]

CV_Index: TYPE = {CV_Normal, CV_1U}
CVF_Type: TYPE = ARRAY [HW_Status_Type -> CV_Index]

Matrix_A_Row: TYPE = ARRAY [State_Index -> Value_Type]
Matrix_B_Row: TYPE = ARRAY [Input_Index -> Value_Type]
Matrix_D_Row: TYPE = ARRAY [State_Index -> Value_Type]
Matrix_E_Row: TYPE = ARRAY [Input_Index -> Value_Type]

Matrix_A: TYPE = ARRAY [State_Index -> Matrix_A_Row]
Matrix_B: TYPE = ARRAY [State_Index -> Matrix_B_Row]
Matrix_D: TYPE = ARRAY [Output_Index -> Matrix_D_Row]
Matrix_E: TYPE = ARRAY [Output_Index -> Matrix_E_Row]

A_Variants_Type: TYPE = ARRAY [CV_Index -> Matrix_A]
B_Variants_Type: TYPE = ARRAY [CV_Index -> Matrix_B]
D_Variants_Type: TYPE = ARRAY [CV_Index -> Matrix_D]
E_Variants_Type: TYPE = ARRAY [CV_Index -> Matrix_E]

U_Vector_Type: TYPE = ARRAY [Input_Index -> Value_Type]
C_Vector_Type: TYPE = ARRAY [Output_Index -> Value_Type]

A: A_Variants_Type = LAMBDA (i: CV_Index):
  CASES i OF
    CV_Normal: LAMBDA (j: State_Index):
                 LAMBDA (k: State_Index): 0.0,
    CV_1U:     LAMBDA (j: State_Index):
                 LAMBDA (k: State_Index): 0.0
  ENDCASES

B: B_Variants_Type = LAMBDA (i: CV_Index):
  CASES i OF
    CV_Normal: LAMBDA (j: State_Index):
                 COND
                   j = 0 -> LAMBDA (k: Input_Index):
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                              COND
                                k = 0 -> 1.0,
                                ELSE  -> 0.0
                              ENDCOND,
                   j = 1 -> LAMBDA (k: Input_Index):
                              COND
                                k = 1 -> 1.0,
                                ELSE  -> 0.0
                              ENDCOND,
                   j = 2 -> LAMBDA (k: Input_Index):
                              COND
                                k = 2 -> 1.0,
                                ELSE  -> 0.0
                              ENDCOND,
                   j = 3 -> LAMBDA (k: Input_Index):
                              COND
                                k = 3 -> 1.0,
                                ELSE  -> 0.0
                              ENDCOND,
                   ELSE  -> LAMBDA (k: Input_Index): 0.0
                 ENDCOND,
    CV_1U:     LAMBDA (j: State_Index):
                 LAMBDA (k: Input_Index): 0.0
  ENDCASES

D: D_Variants_Type = LAMBDA (i: CV_Index):
  CASES i OF
    CV_Normal: LAMBDA (j: Output_Index):
                 COND
                   j = 0 -> LAMBDA (k: State_Index):
                              COND
                                k = 0 -> 12.0,
                                ELSE  -> 0.0
                              ENDCOND,
                   j = 1 -> LAMBDA (k: State_Index):
                              COND
                                k = 0 -> -6.0,
                                k = 1 -> 12.0,
                                ELSE  -> 0.0
                              ENDCOND,
                   j = 2 -> LAMBDA (k: State_Index):
                              COND
                                k = 0 -> -6.0,
                                k = 1 -> -12.0,
                                ELSE  -> 0.0
                              ENDCOND,
                   j = 3 -> LAMBDA (k: State_Index):
                              COND
                                k = 2 -> 12.0,
                                ELSE  -> 0.0
                              ENDCOND,
                   j = 4 -> LAMBDA (k: State_Index):
                              COND
                                k = 2 -> -6.0,
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                                k = 3 -> 12.0,
                                ELSE  -> 0.0
                              ENDCOND,
                   j = 5 -> LAMBDA (k: State_Index):
                              COND
                                k = 2 -> -6.0,
                                k = 3 -> -12.0,
                                ELSE  -> 0.0
                              ENDCOND
                 ENDCOND,
    CV_1U:     LAMBDA (j: Output_Index):
                 LAMBDA (k: State_Index): 0.0
  ENDCASES

E: E_Variants_Type = LAMBDA (i: CV_Index):
  CASES i OF
    CV_Normal: LAMBDA (j: Output_Index):
                 COND
                   j = 0 -> LAMBDA (k: Input_Index):
                              COND
                                k = 0 -> 16.0000,
                                ELSE  -> 0.0000
                              ENDCOND,
                   j = 1 -> LAMBDA (k: Input_Index):
                              COND
                                k = 0 -> -8.0000,
                                k = 1 -> 16.0000,
                                ELSE  -> 0.0000
                              ENDCOND,
                   j = 2 -> LAMBDA (k: Input_Index):
                              COND
                                k = 0 -> -8.0000,
                                k = 1 -> -16.0000,
                                ELSE  -> 0.0000
                              ENDCOND,
                   j = 3 -> LAMBDA (k: Input_Index):
                              COND
                                k = 2 -> 16.0000,
                                ELSE  -> 0.0000
                              ENDCOND,
                   j = 4 -> LAMBDA (k: Input_Index):
                              COND
                                k = 2 -> -8.0000,
                                k = 3 -> 16.0000,
                                ELSE  -> 0.0000
                              ENDCOND,
                   j = 5 -> LAMBDA (k: Input_Index):
                              COND
                                k = 2 -> -8.0000,
                                k = 3 -> -16.0000,
                                ELSE  -> 0.0000
                              ENDCOND
                 ENDCOND,
    CV_1U:     LAMBDA (j: Output_Index):
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                 LAMBDA (k: Input_Index): 0.0
  ENDCASES

CVF: CVF_Type = LAMBDA (i: HW_Status_Type): 
                  COND
                    i =  0 -> CV_Normal,
                    i =  1 -> CV_Normal,
                    i =  2 -> CV_Normal,
                    i =  3 -> CV_Normal,
                    i =  4 -> CV_Normal,
                    i =  5 -> CV_Normal,
                    i =  6 -> CV_Normal,
                    i =  7 -> CV_Normal,
                    i =  8 -> CV_Normal,
                    i =  9 -> CV_Normal,
                    i = 10 -> CV_Normal,
                    i = 11 -> CV_Normal,
                    i = 12 -> CV_Normal,
                    i = 13 -> CV_Normal,
                    i = 14 -> CV_Normal,
                    i = 15 -> CV_Normal,
                    i = 16 -> CV_Normal,
                    i = 17 -> CV_Normal,
                    i = 18 -> CV_Normal,
                    i = 19 -> CV_Normal,
                    i = 20 -> CV_Normal,
                    i = 21 -> CV_Normal,
                    i = 22 -> CV_Normal,
                    i = 23 -> CV_Normal,
                    i = 24 -> CV_Normal,
                    i = 25 -> CV_Normal,
                    i = 26 -> CV_Normal,
                    i = 27 -> CV_Normal,
                    i = 28 -> CV_Normal,
                    i = 29 -> CV_Normal,
                    i = 30 -> CV_Normal,
                    i = 31 -> CV_Normal,
                    i = 32 -> CV_1U,
                    i = 33 -> CV_1U,
                    i = 34 -> CV_1U,
                    i = 35 -> CV_1U,
                    i = 36 -> CV_1U,
                    i = 37 -> CV_1U,
                    i = 38 -> CV_1U,
                    i = 39 -> CV_1U,
                    i = 40 -> CV_1U,
                    i = 41 -> CV_1U,
                    i = 42 -> CV_1U,
                    i = 43 -> CV_1U,
                    i = 44 -> CV_1U,
                    i = 45 -> CV_1U,
                    i = 46 -> CV_1U,
                    i = 47 -> CV_1U,
                    i = 48 -> CV_1U,
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                    i = 49 -> CV_1U,
                    i = 50 -> CV_1U,
                    i = 51 -> CV_1U,
                    i = 52 -> CV_1U,
                    i = 53 -> CV_1U,
                    i = 54 -> CV_1U,
                    i = 55 -> CV_1U,
                    i = 56 -> CV_1U,
                    i = 57 -> CV_1U,
                    i = 58 -> CV_1U,
                    i = 59 -> CV_1U,
                    i = 60 -> CV_1U,
                    i = 61 -> CV_1U,
                    i = 62 -> CV_1U,
                    i = 63 -> CV_1U
                  ENDCOND

Default_HWS: HW_Status_Type = 0
DAC_Scale: Value_Type = 1024.0
DAC_Offset: Value_Type = 2.0
ADC_Scale: Value_Type = 0.000625
ADC_Offset: Value_Type = -1.0

State: TYPE = [# C         : C_Vector_Type,
                 CV        : CV_Index,
                 Last_HWS  : HW_Status_Type,
                 U         : U_Vector_Type,
                 Input     : Input_Vector_Type,
                 HW_Status : HW_Status_Type,
                 Output    : Output_Vector_Type,
                 X         : State_Vector_Type #]

Init(st: State): State =
  st WITH [ `X := LAMBDA (i: State_Index): 0.0,
            `C := LAMBDA (i: Output_Index): 0.0,
            `CV := CVF(Default_HWS),
            `HW_Status := 0,
            `Last_HWS := Default_HWS,
            `U := LAMBDA (i: Input_Index): 0.0 ]

Convert_Input_pre(st: State): bool = TRUE
Convert_Input_post(st_: State, st: State): bool =
  st`C = st_`C AND
  st`CV = st_`CV AND
  st`Last_HWS = st_`Last_HWS AND
  st`Input = st_`Input AND
  st`HW_Status = st_`HW_Status AND
  st`Output = st_`Output AND
  st`X = st_`X AND
  FORALL (i: Input_Index):
    st`U(i) = st_`Input(i) * ADC_Scale + ADC_Offset
Convert_Input: FUNCTION [State -> State]
Convert_Input: LEMMA
  FORALL (st: State):
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    Convert_Input_pre(st) => Convert_Input_post(st, Convert_Input(st))

Compute_Output_pre(st: State): bool = TRUE
Compute_Output_post(st_: State, st: State): bool =
  st`CV = st_`CV AND
  st`Last_HWS = st_`Last_HWS AND
  st`U = st_`U AND
  st`Input = st_`Input AND
  st`HW_Status = st_`HW_Status AND
  st`Output = st_`Output AND
  st`X = st_`X AND
  FORALL (i: Output_Index): st`C(i) = D(st_`CV)(i)(0) * st_`X(0) +
                                      D(st_`CV)(i)(1) * st_`X(1) +
                                      D(st_`CV)(i)(2) * st_`X(2) +
                                      D(st_`CV)(i)(3) * st_`X(3) +
                                      D(st_`CV)(i)(4) * st_`X(4) +
                                      D(st_`CV)(i)(5) * st_`X(5) +
                                      D(st_`CV)(i)(6) * st_`X(6) +
                                      D(st_`CV)(i)(7) * st_`X(7) +
                                      D(st_`CV)(i)(8) * st_`X(8) +
                                      D(st_`CV)(i)(9) * st_`X(9) +
                                      D(st_`CV)(i)(10) * st_`X(10) +
                                      D(st_`CV)(i)(11) * st_`X(11) +
                                      D(st_`CV)(i)(12) * st_`X(12) +
                                      D(st_`CV)(i)(13) * st_`X(13) +
                                      D(st_`CV)(i)(14) * st_`X(14) +
                                      D(st_`CV)(i)(15) * st_`X(15) +
                                      E(st_`CV)(i)(0) * st_`U(0) +
                                      E(st_`CV)(i)(1) * st_`U(1) +
                                      E(st_`CV)(i)(2) * st_`U(2) +
                                      E(st_`CV)(i)(3) * st_`U(3)
Compute_Output: FUNCTION [State -> State]
Compute_Output: LEMMA
  FORALL (st: State):
    Compute_Output_pre(st) =>
      Compute_Output_post(st, Compute_Output(st))

Compute_New_State_pre(st: State): bool = TRUE
Compute_New_State_post(st_: State, st: State): bool =
  st`C = st_`C AND
  st`CV = st_`CV AND
  st`Last_HWS = st_`Last_HWS AND
  st`U = st_`U AND
  st`Input = st_`Input AND
  st`HW_Status = st_`HW_Status AND
  st`Output = st_`Output AND
  FORALL (i: State_Index): st`X(i) = A(st_`CV)(i)(0) * st_`X(0) +
                                     A(st_`CV)(i)(1) * st_`X(1) +
                                     A(st_`CV)(i)(2) * st_`X(2) +
                                     A(st_`CV)(i)(3) * st_`X(3) +
                                     A(st_`CV)(i)(4) * st_`X(4) +
                                     A(st_`CV)(i)(5) * st_`X(5) +
                                     A(st_`CV)(i)(6) * st_`X(6) +
                                     A(st_`CV)(i)(7) * st_`X(7) +
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                                     A(st_`CV)(i)(8) * st_`X(8) +
                                     A(st_`CV)(i)(9) * st_`X(9) +
                                     A(st_`CV)(i)(10) * st_`X(10) +
                                     A(st_`CV)(i)(11) * st_`X(11) +
                                     A(st_`CV)(i)(12) * st_`X(12) +
                                     A(st_`CV)(i)(13) * st_`X(13) +
                                     A(st_`CV)(i)(14) * st_`X(14) +
                                     A(st_`CV)(i)(15) * st_`X(15) +
                                     B(st_`CV)(i)(0) * st_`U(0) +
                                     B(st_`CV)(i)(1) * st_`U(1) +
                                     B(st_`CV)(i)(2) * st_`U(2) +
                                     B(st_`CV)(i)(3) * st_`U(3)
Compute_New_State: FUNCTION [State -> State]
Compute_New_State: LEMMA
  FORALL (st: State):
    Compute_New_State_pre(st) =>
      Compute_New_State_post(st, Compute_New_State(st))

Convert_Output_pre(st: State): bool = TRUE
Convert_Output_post(st_: State, st: State): bool =
  st`C = st_`C AND
  st`CV = st_`CV AND
  st`Last_HWS = st_`Last_HWS AND
  st`U = st_`U AND
  st`Input = st_`Input AND
  st`HW_Status = st_`HW_Status AND
  st`X = st_`X AND
  FORALL (i: Output_Index):
    ((st_`C(i) + DAC_Offset) * DAC_Scale > 4095 AND st`Output(i) = 4095)
        OR
    ((st_`C(i) + DAC_Offset) * DAC_Scale < 0 AND st`Output(i) = 0)
        OR
    ((st_`C(i) + DAC_Offset) * DAC_Scale <= 4095 AND
     (st_`C(i) + DAC_Offset) * DAC_Scale >= 0 AND
     st`Output(i) = floor((st_`C(i) + DAC_Offset) * DAC_Scale) + 0.5)
Convert_Output: FUNCTION [State -> State]
Convert_Output: LEMMA
  FORALL (st: State):
    Convert_Output_pre(st) =>
      Convert_Output_post(st, Convert_Output(st))

Calculate_Control(st: State): State =
  LET st1 = IF st`HW_Status = st`Last_HWS THEN
              Compute_New_State(Compute_Output(Convert_Input(st)))
            ELSE
              st WITH [ `C := LAMBDA (i: Output_Index): 0.0,
                        `CV := CVF(st`HW_Status),
                        `Last_HWS := st`HW_Status,
                        `U := LAMBDA (i: Input_Index): 0.0,
                        `X := LAMBDA (i: State_Index): 0.0 ]
            ENDIF IN
  Convert_Output(st1)

END Control_Calculation
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Hardware_Interface: THEORY
BEGIN

IMPORTING Standard
IMPORTING HW_Bit_Types
IMPORTING Control_Calculation

Time_Type: TYPE = mod(2^64)
Ticks_Per_uSec: Time_Type = 128
Ticks_Per_mSec: Time_Type = 1000 * Ticks_Per_uSec
Ticks_Per_Sec: Time_Type = 1000 * Ticks_Per_mSec

State: TYPE+

Get_Time_Base(st: State): Time_Type
Get_Coil_Failure(st: State): HW_1Bit

Configure_System_Clock(st: State): State

Configure_Balls(st: State): State

Configure_DSPI_Inputs(st: State): State

Configure_DSPI_C(st: State): State

Configure_DAC(st: State): State

Configure_QADC(st: State): State

Configure_Time_Base(st: State): State

Get_Time_pre(st: State): bool = TRUE
Get_Time_post(st_: State, Time: Time_Type, st: State): bool =
  Time = Get_Time_Base(st)
Get_Time(st: State): [# Time: Time_Type, st: State #]
Get_Time: LEMMA
  FORALL (st: State):
    Get_Time_pre(st) =>
      Get_Time_post(st, Get_Time(st)`Time, Get_Time(st)`st)
    
Trigger_And_Read_QADC(st: State): [# st: State,
                                     Input: Input_Vector_Type #]

Update_DAC_Outputs(Output: Output_Vector_Type, st: State): State

Get_HW_Status_pre(st: State): bool = TRUE
Get_HW_Status_post(st_: State,
                   st: State,
                   HW_Status: HW_Status_Type): bool =
  (Get_Coil_Failure(st) = 0 AND HW_Status = 32) OR
  (Get_Coil_Failure(st) = 1 AND HW_Status = 0)
Get_HW_Status(st: State): [# st: State, HW_Status: HW_Status_Type #]
Get_HW_Status: LEMMA
  FORALL (st: State):
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    Get_HW_Status_pre(st) =>
      Get_HW_Status_post(st,
                         Get_HW_Status(st)`st,
                         Get_HW_Status(st)`HW_Status)

END Hardware_Interface

Logging: THEORY
BEGIN

IMPORTING Standard
IMPORTING Control_Calculation

State: TYPE+

Log_Control_Frame(HW_Status: HW_Status_Type,
                  Input: Input_Vector_Type,
                  Output: Output_Vector_Type,
                  X: State_Vector_Type,
                  st: State): State

END Logging

main_program: THEORY
BEGIN

IMPORTING Standard
IMPORTING Control_Calculation
IMPORTING Hardware_Interface
IMPORTING HW_Bit_Types
IMPORTING Logging

Frame_Period: Time_Type = 200 * Ticks_Per_uSec

State: TYPE = [# st_c:       Control_Calculation.State,
                 st_h:       Hardware_Interface.State,
                 st_l:       Logging.State,
                 Next_Frame: Time_Type,
                 Last_Frame: Time_Type #]

Initialize_Frame_pre(st: State): bool = TRUE
Initialize_Frame_post(st_: State, st: State): bool =
  st`st_c = st_`st_c AND
  st`st_l = st_`st_l AND
  st`Last_Frame = Get_Time_Base(st`st_h) AND
  st`Next_Frame = rem(2^64)(st`Last_Frame + Frame_Period)
Initialize_Frame: FUNCTION [State -> State]
Initialize_Frame: LEMMA
  FORALL (st: State):
    Initialize_Frame_pre(st) =>
      Initialize_Frame_post(st, Initialize_Frame(st))
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Block_Until_Next_Frame_pre(st: State): bool = TRUE
Block_Until_Next_Frame_post(st_: State, st: State): bool =
  st`st_c = st_`st_c AND
  st`st_l = st_`st_l AND
  Get_Time_Base(st`st_h) >= st_`Next_Frame AND
  st`Last_Frame = st_`Next_Frame AND
  st`Next_Frame = rem(2^64)(st`Last_Frame + Frame_Period)
Block_Until_Next_Frame: FUNCTION [State -> State]
Block_Until_Next_Frame: LEMMA
  FORALL (st: State):
    Block_Until_Next_Frame_pre(st) =>
      Block_Until_Next_Frame_post(st, Block_Until_Next_Frame(st))

%% manually modeled infinite loop in Cyclic_Executive

Trigger_And_Read_QADC(st: State): State =
  st WITH [ `st_h := Trigger_And_Read_QADC(st`st_h)`st,
            `st_c`Input := Trigger_And_Read_QADC(st`st_h)`Input ]

Get_HW_Status(st: State): State =
  st WITH [ `st_h := Get_HW_Status(st`st_h)`st,
            `st_c`HW_Status := Get_HW_Status(st`st_h)`HW_Status ]

Calculate_Control(st: State): State =
  st WITH [ `st_c := Calculate_Control(st`st_c) ]

Log_Control_Frame(st: State): State =
  st WITH [ `st_l := Log_Control_Frame(st`st_c`HW_Status, st`st_c`Input,
                                       st`st_c`Output, st`st_c`X, st`st_l) ]

Update_DAC_Outputs(st: State): State =
  st WITH [ `st_h := Update_DAC_Outputs(st`st_c`Output, st`st_h) ]

%% splitted from Cyclic_Executive
Configure(st: State): State =
  st WITH [ `st_h := Configure_Time_Base(
                       Configure_QADC(
                         Configure_DAC(
                           Configure_DSPI_C(
                             Configure_DSPI_Inputs(
                               Configure_Balls(
                                 Configure_System_Clock(st`st_h))))))) ]

%% splitted from Cyclic_Executive
Frame(st: State): State =
  Update_DAC_Outputs(
    Log_Control_Frame(
      Calculate_Control(
        Get_HW_Status(
          Trigger_And_Read_QADC(st)))))

Cyclic_Executive_Loop(st: State, i: nat): RECURSIVE State =
  IF i = 0 THEN
    st
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  ELSE
    LET st1 = Frame(Block_Until_Next_Frame(st)) IN
    Cyclic_Executive_Loop(st1, i-1)
  ENDIF
MEASURE i

%% execute for n cycles
Cyclic_Executive(st: State, n: nat): State =
  LET st1 = Initialize_Frame(Configure(st)) IN
  Cyclic_Executive_Loop(st1, n)

END main_program
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A.3 Implication Theorem of MBCS

vad_cntrl_proof: THEORY
BEGIN
IMPORTING org@vad_cntrl_sw
IMPORTING ext@main_program

%% ========== types ========== %%

%% value_type

value_type_ret(v: Value_Type): value_type = v

value_type_ret_inv(v: value_type): Value_Type = v

value_type_equiv: LEMMA
  left_inverse?(value_type_ret_inv, value_type_ret) AND
  right_inverse?(value_type_ret_inv, value_type_ret)

%% dac_value_type

dac_value_type_ret(d: DAC_Value_Type): dac_value_type = d

dac_value_type_ret_inv(d: dac_value_type): DAC_Value_Type = d

dac_value_type_equiv: LEMMA
  left_inverse?(dac_value_type_ret_inv, dac_value_type_ret) AND
  right_inverse?(dac_value_type_ret_inv, dac_value_type_ret)

%% adc_value_type

adc_value_type_ret(a: ADC_Value_Type): adc_value_type = a

adc_value_type_ret_inv(a: adc_value_type): ADC_Value_Type = a

adc_value_type_equiv: LEMMA
  left_inverse?(adc_value_type_ret_inv, adc_value_type_ret) AND
  right_inverse?(adc_value_type_ret_inv, adc_value_type_ret)

%% input_index

input_index_ret(i: Input_Index): below(input_size) = i

input_index_ret_inv(i: below(input_size)): Input_Index = i

input_index_equiv: LEMMA
  left_inverse?(input_index_ret_inv, input_index_ret) AND
  right_inverse?(input_index_ret_inv, input_index_ret)

%% output_index

output_index_ret(o: Output_Index): below(output_size) = o
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output_index_ret_inv(o: below(output_size)): Output_Index = o

output_index_equiv: LEMMA
  left_inverse?(output_index_ret_inv, output_index_ret) AND
  right_inverse?(output_index_ret_inv, output_index_ret)

%% state_index

state_index_ret(s: State_Index): below(state_size) = s

state_index_ret_inv(s: below(state_size)): State_Index = s

state_index_equiv: LEMMA
  left_inverse?(state_index_ret_inv, state_index_ret) AND
  right_inverse?(state_index_ret_inv, state_index_ret)

%% time_type

time_type_ret(t: Time_Type): time_type = t

time_type_ret_inv(t: time_type): Time_Type = t

time_type_equiv: LEMMA
  left_inverse?(time_type_ret_inv, time_type_ret) AND
  right_inverse?(time_type_ret_inv, time_type_ret)

%% coil_failure_type

coil_failure_type_ret(c: HW_1Bit): coil_failure_type = c

coil_failure_type_ret_inv(c: coil_failure_type): HW_1Bit = c

coil_failure_type_equiv: LEMMA
  left_inverse?(coil_failure_type_ret_inv, coil_failure_type_ret) AND
  right_inverse?(coil_failure_type_ret_inv, coil_failure_type_ret)

%% input_vector_type

input_vector_type_ret(i: Input_Vector_Type): input_vector_type =
  LAMBDA (p: below(input_size)): adc_value_type_ret(i(p))

input_vector_type_ret_inv(i: input_vector_type): Input_Vector_Type =
  LAMBDA (p: Input_Index): adc_value_type_ret_inv(i(p))

input_vector_type_equiv: LEMMA
  left_inverse?(input_vector_type_ret_inv, input_vector_type_ret) AND
  right_inverse?(input_vector_type_ret_inv, input_vector_type_ret)

%% output_vector_type

output_vector_type_ret(o: Output_Vector_Type): output_vector_type =
  LAMBDA (i: below(output_size)): dac_value_type_ret(o(i))

output_vector_type_ret_inv(o: output_vector_type): Output_Vector_Type =
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  LAMBDA (i: Output_Index): dac_value_type_ret_inv(o(i))

output_vector_type_equiv: LEMMA
  left_inverse?(output_vector_type_ret_inv, output_vector_type_ret) AND
  right_inverse?(output_vector_type_ret_inv, output_vector_type_ret)

%% u_vector_type

u_vector_type_ret(u: U_Vector_Type): u_vector_type =
  LAMBDA (i: below(input_size)): value_type_ret(u(i))

u_vector_type_ret_inv(u: u_vector_type): U_Vector_Type =
  LAMBDA (i: Input_Index): value_type_ret_inv(u(i))

u_vector_type_equiv: LEMMA
  left_inverse?(u_vector_type_ret_inv, u_vector_type_ret) AND
  right_inverse?(u_vector_type_ret_inv, u_vector_type_ret)

%% c_vector_type

c_vector_type_ret(c: C_Vector_Type): c_vector_type =
  LAMBDA (i: below(output_size)): value_type_ret(c(i))

c_vector_type_ret_inv(c: c_vector_type): C_Vector_Type =
  LAMBDA (i: Output_Index): value_type_ret_inv(c(i))

c_vector_type_equiv: LEMMA
  left_inverse?(c_vector_type_ret_inv, c_vector_type_ret) AND
  right_inverse?(c_vector_type_ret_inv, c_vector_type_ret)

%% x_vector_type

x_vector_type_ret(x: State_Vector_Type): x_vector_type =
  LAMBDA (i: below(state_size)): value_type_ret(x(i))

x_vector_type_ret_inv(x: x_vector_type): State_Vector_Type =
  LAMBDA (i: State_Index): value_type_ret_inv(x(i))

x_vector_type_equiv: LEMMA
  left_inverse?(x_vector_type_ret_inv, x_vector_type_ret) AND
  right_inverse?(x_vector_type_ret_inv, x_vector_type_ret)

%% hws_val_type

hws_val_type_ret(b: bit): hws_val_type = IF b THEN NotOp ELSE Op ENDIF 

hws_val_type_ret_inv(h: hws_val_type): bit =
  CASES h OF
    Op:    FALSE,
    NotOp: TRUE
  ENDCASES

hws_val_type_equiv: LEMMA
  left_inverse?(hws_val_type_ret_inv, hws_val_type_ret) AND
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  right_inverse?(hws_val_type_ret_inv, hws_val_type_ret)

%% hw_status_type

hw_status_type_ret(h: HW_Status_Type): hw_status_type =
  LET bv: bvec[6] = nat2bv(h) IN
  LAMBDA (i: below(6)): hws_val_type_ret(bv(5-i))

hw_status_type_ret_inv(h: hw_status_type): HW_Status_Type =
  LET bv: bvec[6] = LAMBDA (i: below(6)): hws_val_type_ret_inv(h(5-i)) IN
  bv2nat(bv)

hw_status_type_equiv: LEMMA
  left_inverse?(hw_status_type_ret_inv, hw_status_type_ret) AND
  right_inverse?(hw_status_type_ret_inv, hw_status_type_ret)

%% cv_value_type

cv_value_type_ret(c: CV_Index): cv_value_type =
  CASES c OF
    CV_Normal: cv_normal,
    CV_1U:     cv_1u
  ENDCASES

cv_value_type_ret_inv(c: cv_value_type): CV_Index =
  CASES c OF
    cv_normal: CV_Normal,
    cv_1u:     CV_1U
  ENDCASES

cv_value_type_equiv: LEMMA
  left_inverse?(cv_value_type_ret_inv, cv_value_type_ret) AND
  right_inverse?(cv_value_type_ret_inv, cv_value_type_ret)

%% ========== constants ========== %%

%% default_hws

default_hws_equiv: LEMMA
  hw_status_type_ret_inv(hws_AllOp) = Default_HWS

%% cvf

cvf_equiv: LEMMA
  FORALL (h: hw_status_type):
    cv_value_type_ret(CVF(hw_status_type_ret_inv(h))) = cvf(h)

%% A

A_equiv: LEMMA
  FORALL (c: CV_Index, i: State_Index, j: State_Index):
    ext@Control_Calculation.A(c)(i)(j) =
    org@vad_cntrl_sw.A(cv_value_type_ret(c))(i, j)
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%% B

B_equiv: LEMMA
  FORALL (c: CV_Index, i: State_Index, j: Input_Index):
    ext@Control_Calculation.B(c)(i)(j) =
    org@vad_cntrl_sw.B(cv_value_type_ret(c))(i, j)

%% D

D_equiv: LEMMA
  FORALL (c: CV_Index, i: Output_Index, j: State_Index):
    ext@Control_Calculation.D(c)(i)(j) =
    org@vad_cntrl_sw.D(cv_value_type_ret(c))(i, j)

%% E

E_equiv: LEMMA
  FORALL (c: CV_Index, i: Output_Index, j: Input_Index):
    ext@Control_Calculation.E(c)(i)(j) =
    org@vad_cntrl_sw.E(cv_value_type_ret(c))(i, j)

%% frame_period

frame_period_equiv: LEMMA
  time_type_ret(Frame_Period) = frame_period

%% adc_scale

adc_scale_equiv: LEMMA
  value_type_ret(ADC_Scale) = adc_scale

%% adc_offset

adc_offset_equiv: LEMMA
  value_type_ret(ADC_Offset) = adc_offset

%% dac_scale

dac_scale_equiv: LEMMA
  value_type_ret(DAC_Scale) = dac_scale

%% dac_offset

dac_offset_equiv: LEMMA
  value_type_ret(DAC_Offset) = dac_offset

%% ========== state ========== %%

system_status_ret(s: main_program.State): system_status_type =
  (# `hw := (# `time_base := time_type_ret(Get_Time_Base(s`st_h)),
               `coil_failure := 
coil_failure_type_ret(Get_Coil_Failure(s`st_h))
            #),
     `st := (# `input := input_vector_type_ret(s`st_c`Input),
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               `output := output_vector_type_ret(s`st_c`Output),
               `last_frame := time_type_ret(s`Last_Frame),
               `next_frame := time_type_ret(s`Next_Frame),
               `hw_status := hw_status_type_ret(s`st_c`HW_Status),
               `last_hws := hw_status_type_ret(s`st_c`Last_HWS),
               `cv := cv_value_type_ret(s`st_c`CV),
               `u := u_vector_type_ret(s`st_c`U),
               `c := c_vector_type_ret(s`st_c`C),
               `x := x_vector_type_ret(s`st_c`X)
            #)
  #)

system_status_impl: LEMMA surjective?(system_status_ret)

%% ========== operations ========== %%

%% init

init_impl: LEMMA
  FORALL (s_, s: main_program.State):
    s`st_c = Init(s_`st_c) AND
    s`st_l = s_`st_l AND
    s`Last_Frame = s_`Last_Frame AND
    s`Next_Frame = s_`Next_Frame
      =>
    system_status_ret(s)`st = init(system_status_ret(s_)`st)

%% convert_input

convert_input_impl: LEMMA
  FORALL (s_, s: main_program.State):
    Convert_Input_post(s_`st_c, s`st_c) AND
    s`st_l = s_`st_l AND
    s`Last_Frame = s_`Last_Frame AND
    s`Next_Frame = s_`Next_Frame
      =>
    system_status_ret(s)`st = convert_input(system_status_ret(s_)`st)

%% compute_output

compute_output_impl: LEMMA
  FORALL (s_, s: main_program.State):
    Compute_Output_post(s_`st_c, s`st_c) AND
    s`st_l = s_`st_l AND
    s`Last_Frame = s_`Last_Frame AND
    s`Next_Frame = s_`Next_Frame
      =>
    system_status_ret(s)`st = compute_output(system_status_ret(s_)`st)

%% compute_new_state

compute_new_state_impl: LEMMA
  FORALL (s_, s: main_program.State):
    Compute_New_State_post(s_`st_c, s`st_c) AND
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    s`st_l = s_`st_l AND
    s`Last_Frame = s_`Last_Frame AND
    s`Next_Frame = s_`Next_Frame
      =>
    system_status_ret(s)`st = 
compute_new_state(system_status_ret(s_)`st)

%% convert_output

convert_output_impl: LEMMA
  FORALL (s_, s: main_program.State):
    Convert_Output_post(s_`st_c, s`st_c) AND
    s`st_l = s_`st_l AND
    s`Last_Frame = s_`Last_Frame AND
    s`Next_Frame = s_`Next_Frame
      =>
    system_status_ret(s)`st = convert_output(system_status_ret(s_)`st)

%% calculate_control

calculate_control_impl: LEMMA
  FORALL (s_, s: main_program.State):
    s`st_c = Calculate_Control(s_`st_c) AND
    s`st_l = s_`st_l AND
    s`Last_Frame = s_`Last_Frame AND
    s`Next_Frame = s_`Next_Frame
      =>
    system_status_ret(s)`st = 
calculate_control(system_status_ret(s_)`st)

%% convert_status

convert_status_impl: LEMMA
  FORALL (s_, s: main_program.State):
    Get_HW_Status_post(s_`st_h, s`st_h, s`st_c`HW_Status) AND
    s`st_c`C = s_`st_c`C AND
    s`st_c`CV = s_`st_c`CV AND
    s`st_c`Last_HWS = s_`st_c`Last_HWS AND
    s`st_c`U = s_`st_c`U AND
    s`st_c`Input = s_`st_c`Input AND
    s`st_c`Output = s_`st_c`Output AND
    s`st_c`X = s_`st_c`X AND
    s`st_l = s_`st_l AND
    s`Last_Frame = s_`Last_Frame AND
    s`Next_Frame = s_`Next_Frame
      =>
    convert_status_post(system_status_ret(s_), system_status_ret(s))

%% frame_init

frame_init_impl: LEMMA
  FORALL (s_, s: main_program.State):
    Initialize_Frame_post(s_, s)
      =>
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    frame_init_post(system_status_ret(s_), system_status_ret(s))

%% frame_sync

frame_sync_impl: LEMMA
  FORALL (s_, s: main_program.State):
    Block_Until_Next_Frame_post(s_, s)
      =>
    frame_sync_post(system_status_ret(s_), system_status_ret(s))

END vad_cntrl_proof



Appendix B:  Example Verification 
Refactoring
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B.1 PVS Theorems for Example Transformations

B.1.1 Loop Rerolling

Following is the PVS theorem that is used for proving the semantics-preserving nature of 

loop rerolling transformation. 

% loop_body(1)
% loop_body(2)              for i from 1 to n
% .                         loop
% .                --->       loop_body(i)
% .                         end loop
% loop_body(n)

loop_rerolling[n: posint] : THEORY
BEGIN

  id: NONEMPTY_TYPE
  val: TYPE = int
  state: TYPE = [id -> val]

  % statement: TYPE = [state -> state]
  % seq_of_statements: TYPE = {s: finseq[statement]  | length(s) > 0}
  seq_of_statements: TYPE = [state -> state]
  predicate: TYPE = pred[state]

  loop_index: TYPE = {i: posint | i <= n}
  loop_body: [loop_index -> seq_of_statements]
  loop_body_pre: [loop_index -> predicate]
  loop_body_post: [loop_index -> predicate]

  pre: predicate
  post: predicate

  % {pre(i)} loop_body(i) {post(i)}
  % pre = pre(1), post(i) = pre(i+1), post(n) = post 

  unrolled_body: AXIOM
    FORALL(i: loop_index, st: state):
      loop_body_pre(i)(st) => loop_body_post(i)(loop_body(i)(st))

  unrolled_pred_1: AXIOM
    pre = loop_body_pre(1)

  unrolled_pred_i: AXIOM
    FORALL (i: {j: loop_index | j <= n-1}):
      loop_body_post(i) = loop_body_pre(i+1)

  unrolled_pred_n: AXIOM
    loop_body_post(n) = post

  forloop(i: loop_index, st: state): RECURSIVE state =



169

    IF i >= n THEN loop_body(n)(st) 
    ELSE forloop(i+1, loop_body(i)(st))
    ENDIF
  MEASURE n-i;

  forloop_pred_i: LEMMA
    FORALL(i: loop_index, st: state):
      loop_body_pre(i)(st) => loop_body_post(n)(forloop(i, st))

  rerolled_loop: seq_of_statements =
    LAMBDA (st: state): forloop(1, st)

  rerolled_equiv: THEOREM
    FORALL(st: state):
      pre(st) => post(rerolled_loop(st))

END loop_rerolling

B.1.2 Lift-if

Following is another example PVS theorem that is used for proving the semantics-pre-

serving nature of lift-if transformation. Informally, given condition c and statement 

sequences s0, s1, s2 and s3, the two transformations in the commented PVS below pre-

serve the semantics provided that the statement sequence s0 has no side effect on condi-

tion c. Such transformation moves statement blocks into conditional statements and can 

help to simplify execution paths and to reveal certain properties. Note the reverse (that 

moves statement blocks out of conditional statements) is also a valid semantics-preserving 

transformation that may help verification under certain circumstances.

% provided s0 has no side effect on c

% s0                          
% if (c) then                   if (c) then
%   s1                            s0; s1
% else                --->      else
%   s2                            s0; s2
% endif                         endif

% if (c) then                   if (c) then
%   s1                            s1; s3
% else                --->      else
%   s2                            s2; s3
% endif                         endif
% s3
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lift_if : THEORY
BEGIN

  id: NONEMPTY_TYPE
  val: TYPE = int
  state: TYPE = [id -> val]

  % statement: TYPE = [state -> state]
  % seq_of_statements: TYPE = {s: finseq[statement]  | length(s) > 0}
  seq_of_statements: TYPE = [state -> state]
  predicate: TYPE = pred[state]

  s0, s1, s2, s3: seq_of_statements
  condition: predicate

  s0_condition: AXIOM
    FORALL(st: state):
      condition(st) = condition(s0(st))

  lift_if_equiv1: THEOREM
    FORALL(st: state):
      LET st1: state = s0(st) IN
      IF condition(st1) THEN
        s1(st1)
      ELSE
        s2(st1)
      ENDIF
        =
      IF condition(st) THEN
        s1(s0(st))
      ELSE
        s2(s0(st))
      ENDIF

  lift_if_equiv2: THEOREM
    FORALL(st: state):
      s3(IF condition(st) THEN
           s1(st)
         ELSE
           s2(st)
         ENDIF)
        =
      IF condition(st) THEN
        s3(s1(st))
      ELSE
        s3(s2(st))
      ENDIF

END lift_if
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B.2 Example Transformation of AES

I only use the encrypt function in AES source program, and only present some of the inter-

mediate versions, as a demonstration of how verification refactoring affects the code.

B.2.1 Original AES Encrypt Function

Following is the original AES encrypt function as it was translated from the ANSI C 

implementation:

procedure aesEncrypt(rk: in key_schedule; Nr: in Integer; pt: in block; 
ct: out block)
is
  s0, s1, s2, s3, t0, t1, t2, t3: word;
  b0, b1, b2, b3: byte;
begin
  s0 := CombineWord(pt( 0), pt( 1), pt( 2), pt( 3)) xor rk(0);
  s1 := CombineWord(pt( 4), pt( 5), pt( 6), pt( 7)) xor rk(1);
  s2 := CombineWord(pt( 8), pt( 9), pt(10), pt(11)) xor rk(2);
  s3 := CombineWord(pt(12), pt(13), pt(14), pt(15)) xor rk(3);

  t0 := Te0(byte(Shift_Right(s0, 24))) xor Te1(byte(Shift_Right(s1, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s2, 8) and 16#ff#)) xor 
Te3(byte(s3 and 16#ff#)) xor rk( 4);
  t1 := Te0(byte(Shift_Right(s1, 24))) xor Te1(byte(Shift_Right(s2, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s3, 8) and 16#ff#)) xor 
Te3(byte(s0 and 16#ff#)) xor rk( 5);
  t2 := Te0(byte(Shift_Right(s2, 24))) xor Te1(byte(Shift_Right(s3, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s0, 8) and 16#ff#)) xor 
Te3(byte(s1 and 16#ff#)) xor rk( 6);
  t3 := Te0(byte(Shift_Right(s3, 24))) xor Te1(byte(Shift_Right(s0, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s1, 8) and 16#ff#)) xor 
Te3(byte(s2 and 16#ff#)) xor rk( 7);

  s0 := Te0(byte(Shift_Right(t0, 24))) xor Te1(byte(Shift_Right(t1, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t2, 8) and 16#ff#)) xor 
Te3(byte(t3 and 16#ff#)) xor rk( 8);
  s1 := Te0(byte(Shift_Right(t1, 24))) xor Te1(byte(Shift_Right(t2, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t3, 8) and 16#ff#)) xor 
Te3(byte(t0 and 16#ff#)) xor rk( 9);
  s2 := Te0(byte(Shift_Right(t2, 24))) xor Te1(byte(Shift_Right(t3, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t0, 8) and 16#ff#)) xor 
Te3(byte(t1 and 16#ff#)) xor rk(10);
  s3 := Te0(byte(Shift_Right(t3, 24))) xor Te1(byte(Shift_Right(t0, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t1, 8) and 16#ff#)) xor 
Te3(byte(t2 and 16#ff#)) xor rk(11);
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  t0 := Te0(byte(Shift_Right(s0, 24))) xor Te1(byte(Shift_Right(s1, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s2, 8) and 16#ff#)) xor 
Te3(byte(s3 and 16#ff#)) xor rk(12);
  t1 := Te0(byte(Shift_Right(s1, 24))) xor Te1(byte(Shift_Right(s2, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s3, 8) and 16#ff#)) xor 
Te3(byte(s0 and 16#ff#)) xor rk(13);
  t2 := Te0(byte(Shift_Right(s2, 24))) xor Te1(byte(Shift_Right(s3, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s0, 8) and 16#ff#)) xor 
Te3(byte(s1 and 16#ff#)) xor rk(14);
  t3 := Te0(byte(Shift_Right(s3, 24))) xor Te1(byte(Shift_Right(s0, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s1, 8) and 16#ff#)) xor 
Te3(byte(s2 and 16#ff#)) xor rk(15);

  s0 := Te0(byte(Shift_Right(t0, 24))) xor Te1(byte(Shift_Right(t1, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t2, 8) and 16#ff#)) xor 
Te3(byte(t3 and 16#ff#)) xor rk(16);
  s1 := Te0(byte(Shift_Right(t1, 24))) xor Te1(byte(Shift_Right(t2, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t3, 8) and 16#ff#)) xor 
Te3(byte(t0 and 16#ff#)) xor rk(17);
  s2 := Te0(byte(Shift_Right(t2, 24))) xor Te1(byte(Shift_Right(t3, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t0, 8) and 16#ff#)) xor 
Te3(byte(t1 and 16#ff#)) xor rk(18);
  s3 := Te0(byte(Shift_Right(t3, 24))) xor Te1(byte(Shift_Right(t0, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t1, 8) and 16#ff#)) xor 
Te3(byte(t2 and 16#ff#)) xor rk(19);

  t0 := Te0(byte(Shift_Right(s0, 24))) xor Te1(byte(Shift_Right(s1, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s2, 8) and 16#ff#)) xor 
Te3(byte(s3 and 16#ff#)) xor rk(20);
  t1 := Te0(byte(Shift_Right(s1, 24))) xor Te1(byte(Shift_Right(s2, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s3, 8) and 16#ff#)) xor 
Te3(byte(s0 and 16#ff#)) xor rk(21);
  t2 := Te0(byte(Shift_Right(s2, 24))) xor Te1(byte(Shift_Right(s3, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s0, 8) and 16#ff#)) xor 
Te3(byte(s1 and 16#ff#)) xor rk(22);
  t3 := Te0(byte(Shift_Right(s3, 24))) xor Te1(byte(Shift_Right(s0, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s1, 8) and 16#ff#)) xor 
Te3(byte(s2 and 16#ff#)) xor rk(23);

  s0 := Te0(byte(Shift_Right(t0, 24))) xor Te1(byte(Shift_Right(t1, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t2, 8) and 16#ff#)) xor 
Te3(byte(t3 and 16#ff#)) xor rk(24);
  s1 := Te0(byte(Shift_Right(t1, 24))) xor Te1(byte(Shift_Right(t2, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t3, 8) and 16#ff#)) xor 
Te3(byte(t0 and 16#ff#)) xor rk(25);
  s2 := Te0(byte(Shift_Right(t2, 24))) xor Te1(byte(Shift_Right(t3, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t0, 8) and 16#ff#)) xor 
Te3(byte(t1 and 16#ff#)) xor rk(26);
  s3 := Te0(byte(Shift_Right(t3, 24))) xor Te1(byte(Shift_Right(t0, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t1, 8) and 16#ff#)) xor 
Te3(byte(t2 and 16#ff#)) xor rk(27);
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  t0 := Te0(byte(Shift_Right(s0, 24))) xor Te1(byte(Shift_Right(s1, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s2, 8) and 16#ff#)) xor 
Te3(byte(s3 and 16#ff#)) xor rk(28);
  t1 := Te0(byte(Shift_Right(s1, 24))) xor Te1(byte(Shift_Right(s2, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s3, 8) and 16#ff#)) xor 
Te3(byte(s0 and 16#ff#)) xor rk(29);
  t2 := Te0(byte(Shift_Right(s2, 24))) xor Te1(byte(Shift_Right(s3, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s0, 8) and 16#ff#)) xor 
Te3(byte(s1 and 16#ff#)) xor rk(30);
  t3 := Te0(byte(Shift_Right(s3, 24))) xor Te1(byte(Shift_Right(s0, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s1, 8) and 16#ff#)) xor 
Te3(byte(s2 and 16#ff#)) xor rk(31);

  s0 := Te0(byte(Shift_Right(t0, 24))) xor Te1(byte(Shift_Right(t1, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t2, 8) and 16#ff#)) xor 
Te3(byte(t3 and 16#ff#)) xor rk(32);
  s1 := Te0(byte(Shift_Right(t1, 24))) xor Te1(byte(Shift_Right(t2, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t3, 8) and 16#ff#)) xor 
Te3(byte(t0 and 16#ff#)) xor rk(33);
  s2 := Te0(byte(Shift_Right(t2, 24))) xor Te1(byte(Shift_Right(t3, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t0, 8) and 16#ff#)) xor 
Te3(byte(t1 and 16#ff#)) xor rk(34);
  s3 := Te0(byte(Shift_Right(t3, 24))) xor Te1(byte(Shift_Right(t0, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t1, 8) and 16#ff#)) xor 
Te3(byte(t2 and 16#ff#)) xor rk(35);

  t0 := Te0(byte(Shift_Right(s0, 24))) xor Te1(byte(Shift_Right(s1, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s2, 8) and 16#ff#)) xor 
Te3(byte(s3 and 16#ff#)) xor rk(36);
  t1 := Te0(byte(Shift_Right(s1, 24))) xor Te1(byte(Shift_Right(s2, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s3, 8) and 16#ff#)) xor 
Te3(byte(s0 and 16#ff#)) xor rk(37);
  t2 := Te0(byte(Shift_Right(s2, 24))) xor Te1(byte(Shift_Right(s3, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s0, 8) and 16#ff#)) xor 
Te3(byte(s1 and 16#ff#)) xor rk(38);
  t3 := Te0(byte(Shift_Right(s3, 24))) xor Te1(byte(Shift_Right(s0, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s1, 8) and 16#ff#)) xor 
Te3(byte(s2 and 16#ff#)) xor rk(39);

  if (Nr > 10) then
    s0 := Te0(byte(Shift_Right(t0, 24))) xor Te1(byte(Shift_Right(t1, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t2, 8) and 16#ff#)) xor 
Te3(byte(t3 and 16#ff#)) xor rk(40);
    s1 := Te0(byte(Shift_Right(t1, 24))) xor Te1(byte(Shift_Right(t2, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t3, 8) and 16#ff#)) xor 
Te3(byte(t0 and 16#ff#)) xor rk(41);
    s2 := Te0(byte(Shift_Right(t2, 24))) xor Te1(byte(Shift_Right(t3, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t0, 8) and 16#ff#)) xor 
Te3(byte(t1 and 16#ff#)) xor rk(42);
    s3 := Te0(byte(Shift_Right(t3, 24))) xor Te1(byte(Shift_Right(t0, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(t1, 8) and 16#ff#)) xor 
Te3(byte(t2 and 16#ff#)) xor rk(43);
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    t0 := Te0(byte(Shift_Right(s0, 24))) xor Te1(byte(Shift_Right(s1, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s2, 8) and 16#ff#)) xor 
Te3(byte(s3 and 16#ff#)) xor rk(44);
    t1 := Te0(byte(Shift_Right(s1, 24))) xor Te1(byte(Shift_Right(s2, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s3, 8) and 16#ff#)) xor 
Te3(byte(s0 and 16#ff#)) xor rk(45);
    t2 := Te0(byte(Shift_Right(s2, 24))) xor Te1(byte(Shift_Right(s3, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s0, 8) and 16#ff#)) xor 
Te3(byte(s1 and 16#ff#)) xor rk(46);
    t3 := Te0(byte(Shift_Right(s3, 24))) xor Te1(byte(Shift_Right(s0, 16) 
and 16#ff#)) xor Te2(byte(Shift_Right(s1, 8) and 16#ff#)) xor 
Te3(byte(s2 and 16#ff#)) xor rk(47);

    if (Nr > 12) then
      s0 := Te0(byte(Shift_Right(t0, 24))) xor Te1(byte(Shift_Right(t1, 
16) and 16#ff#)) xor Te2(byte(Shift_Right(t2, 8) and 16#ff#)) xor 
Te3(byte(t3 and 16#ff#)) xor rk(48);
      s1 := Te0(byte(Shift_Right(t1, 24))) xor Te1(byte(Shift_Right(t2, 
16) and 16#ff#)) xor Te2(byte(Shift_Right(t3, 8) and 16#ff#)) xor 
Te3(byte(t0 and 16#ff#)) xor rk(49);
      s2 := Te0(byte(Shift_Right(t2, 24))) xor Te1(byte(Shift_Right(t3, 
16) and 16#ff#)) xor Te2(byte(Shift_Right(t0, 8) and 16#ff#)) xor 
Te3(byte(t1 and 16#ff#)) xor rk(50);
      s3 := Te0(byte(Shift_Right(t3, 24))) xor Te1(byte(Shift_Right(t0, 
16) and 16#ff#)) xor Te2(byte(Shift_Right(t1, 8) and 16#ff#)) xor 
Te3(byte(t2 and 16#ff#)) xor rk(51);

      t0 := Te0(byte(Shift_Right(s0, 24))) xor Te1(byte(Shift_Right(s1, 
16) and 16#ff#)) xor Te2(byte(Shift_Right(s2, 8) and 16#ff#)) xor 
Te3(byte(s3 and 16#ff#)) xor rk(52);
      t1 := Te0(byte(Shift_Right(s1, 24))) xor Te1(byte(Shift_Right(s2, 
16) and 16#ff#)) xor Te2(byte(Shift_Right(s3, 8) and 16#ff#)) xor 
Te3(byte(s0 and 16#ff#)) xor rk(53);
      t2 := Te0(byte(Shift_Right(s2, 24))) xor Te1(byte(Shift_Right(s3, 
16) and 16#ff#)) xor Te2(byte(Shift_Right(s0, 8) and 16#ff#)) xor 
Te3(byte(s1 and 16#ff#)) xor rk(54);
      t3 := Te0(byte(Shift_Right(s3, 24))) xor Te1(byte(Shift_Right(s0, 
16) and 16#ff#)) xor Te2(byte(Shift_Right(s1, 8) and 16#ff#)) xor 
Te3(byte(s2 and 16#ff#)) xor rk(55);
    end if;
  end if;

  s0 := (Te4(byte(Shift_Right(t0,24)           )) and 16#ff000000#) xor
        (Te4(byte(Shift_Right(t1,16) and 16#ff#)) and 16#00ff0000#) xor
        (Te4(byte(Shift_Right(t2, 8) and 16#ff#)) and 16#0000ff00#) xor
        (Te4(byte(            t3     and 16#ff#)) and 16#000000ff#) xor
        rk(4*Nr  );
  s1 := (Te4(byte(Shift_Right(t1,24)           )) and 16#ff000000#) xor
        (Te4(byte(Shift_Right(t2,16) and 16#ff#)) and 16#00ff0000#) xor
        (Te4(byte(Shift_Right(t3, 8) and 16#ff#)) and 16#0000ff00#) xor
        (Te4(byte(            t0     and 16#ff#)) and 16#000000ff#) xor
        rk(4*Nr+1);
  s2 := (Te4(byte(Shift_Right(t2,24)           )) and 16#ff000000#) xor
        (Te4(byte(Shift_Right(t3,16) and 16#ff#)) and 16#00ff0000#) xor
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        (Te4(byte(Shift_Right(t0, 8) and 16#ff#)) and 16#0000ff00#) xor
        (Te4(byte(            t1     and 16#ff#)) and 16#000000ff#) xor
        rk(4*Nr+2);
  s3 := (Te4(byte(Shift_Right(t3,24)           )) and 16#ff000000#) xor
        (Te4(byte(Shift_Right(t0,16) and 16#ff#)) and 16#00ff0000#) xor
        (Te4(byte(Shift_Right(t1, 8) and 16#ff#)) and 16#0000ff00#) xor
        (Te4(byte(            t2     and 16#ff#)) and 16#000000ff#) xor
        rk(4*Nr+3);

  ct := block'(others => 0);
  SplitWord(s0, b0, b1, b2, b3);
  ct( 0) := b0; ct( 1) := b1; ct( 2) := b2; ct( 3) := b3;
  SplitWord(s1, b0, b1, b2, b3);
  ct( 4) := b0; ct( 5) := b1; ct( 6) := b2; ct( 7) := b3;
  SplitWord(s2, b0, b1, b2, b3);
  ct( 8) := b0; ct( 9) := b1; ct(10) := b2; ct(11) := b3;
  SplitWord(s3, b0, b1, b2, b3);
  ct(12) := b0; ct(13) := b1; ct(14) := b2; ct(15) := b3;
end aesEncrypt;

B.2.2 AES Encrypt Function after Loop Rerolling

Following is the AES encrypt function after loop rerolling was applied:

procedure aesEncrypt(rk: in key_schedule; Nr: in Integer; pt: in block; 
ct: out block)
is
  s0, s1, s2, s3, t0, t1, t2, t3: word;
  b0, b1, b2, b3: byte;
begin
  s0 := CombineWord(pt( 0), pt( 1), pt( 2), pt( 3)) xor rk(0);
  s1 := CombineWord(pt( 4), pt( 5), pt( 6), pt( 7)) xor rk(1);
  s2 := CombineWord(pt( 8), pt( 9), pt(10), pt(11)) xor rk(2);
  s3 := CombineWord(pt(12), pt(13), pt(14), pt(15)) xor rk(3);

  for r in Natural range 1 .. Nr-1 loop
    t0 := Te0(byte(Shift_Right(s0,24)           )) xor
          Te1(byte(Shift_Right(s1,16) and 16#ff#)) xor
          Te2(byte(Shift_Right(s2, 8) and 16#ff#)) xor
          Te3(byte(            s3     and 16#ff#)) xor
          rk(4*r  );
    t1 := Te0(byte(Shift_Right(s1,24)           )) xor
          Te1(byte(Shift_Right(s2,16) and 16#ff#)) xor
          Te2(byte(Shift_Right(s3, 8) and 16#ff#)) xor
          Te3(byte(            s0     and 16#ff#)) xor
          rk(4*r+1);
    t2 := Te0(byte(Shift_Right(s2,24)           )) xor
          Te1(byte(Shift_Right(s3,16) and 16#ff#)) xor
          Te2(byte(Shift_Right(s0, 8) and 16#ff#)) xor
          Te3(byte(            s1     and 16#ff#)) xor
          rk(4*r+2);
    t3 := Te0(byte(Shift_Right(s3,24)           )) xor
          Te1(byte(Shift_Right(s0,16) and 16#ff#)) xor
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          Te2(byte(Shift_Right(s1, 8) and 16#ff#)) xor
          Te3(byte(            s2     and 16#ff#)) xor
          rk(4*r+3);
    s0 := t0; s1 := t1; s2 := t2; s3 := t3;
  end loop;

  t0 := (Te4(byte(Shift_Right(s0,24)           )) and 16#ff000000#) xor
        (Te4(byte(Shift_Right(s1,16) and 16#ff#)) and 16#00ff0000#) xor
        (Te4(byte(Shift_Right(s2, 8) and 16#ff#)) and 16#0000ff00#) xor
        (Te4(byte(            s3     and 16#ff#)) and 16#000000ff#) xor
        rk(4*Nr  );
  t1 := (Te4(byte(Shift_Right(s1,24)           )) and 16#ff000000#) xor
        (Te4(byte(Shift_Right(s2,16) and 16#ff#)) and 16#00ff0000#) xor
        (Te4(byte(Shift_Right(s3, 8) and 16#ff#)) and 16#0000ff00#) xor
        (Te4(byte(            s0     and 16#ff#)) and 16#000000ff#) xor
        rk(4*Nr+1);
  t2 := (Te4(byte(Shift_Right(s2,24)           )) and 16#ff000000#) xor
        (Te4(byte(Shift_Right(s3,16) and 16#ff#)) and 16#00ff0000#) xor
        (Te4(byte(Shift_Right(s0, 8) and 16#ff#)) and 16#0000ff00#) xor
        (Te4(byte(            s1     and 16#ff#)) and 16#000000ff#) xor
        rk(4*Nr+2);
  t3 := (Te4(byte(Shift_Right(s3,24)           )) and 16#ff000000#) xor
        (Te4(byte(Shift_Right(s0,16) and 16#ff#)) and 16#00ff0000#) xor
        (Te4(byte(Shift_Right(s1, 8) and 16#ff#)) and 16#0000ff00#) xor
        (Te4(byte(            s2     and 16#ff#)) and 16#000000ff#) xor
        rk(4*Nr+3);
  s0 := t0; s1 := t1; s2 := t2; s3 := t3;

  ct := block'(others => 0);
  SplitWord(s0, b0, b1, b2, b3);
  ct( 0) := b0; ct( 1) := b1; ct( 2) := b2; ct( 3) := b3;
  SplitWord(s1, b0, b1, b2, b3);
  ct( 4) := b0; ct( 5) := b1; ct( 6) := b2; ct( 7) := b3;
  SplitWord(s2, b0, b1, b2, b3);
  ct( 8) := b0; ct( 9) := b1; ct(10) := b2; ct(11) := b3;
  SplitWord(s3, b0, b1, b2, b3);
  ct(12) := b0; ct(13) := b1; ct(14) := b2; ct(15) := b3;
end aesEncrypt;

B.2.3 Final AES Encrypt Function

Following is the final refactored AES encrypt function with optimizations of word pack-

ing, table lookup, and function inlining were all reversed:

procedure aesEncrypt(rk: in key_schedule; Nr: in Integer; pt: in block; 
ct: out block)
is
  st: state;
begin
  st := AddRoundKey(Block2State(pt), rk(0), rk(1), rk(2), rk(3));

  for r in Natural range 1 .. Nr-1 loop
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  st := AddRoundKey(MixColumns(ShiftRows(SubBytes(st))), rk(4*r), 
rk(4*r+1), rk(4*r+2), rk(4*r+3));
  end loop;

  st := AddRoundKey(ShiftRows(SubBytes(st)), rk(4*Nr), rk(4*Nr+1), 
rk(4*Nr+2), rk(4*Nr+3));

  ct := State2Block(st);
end aesEncrypt;



Appendix C:  Example Direct Specification 
Extraction from Code
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C.1 Specification Extraction of Tokeneer

The Tokeneer source program are not completed annotated with precondition and postcon-

dition annotations. However, the program is mainly about state transitions (and to avoid 

insecure states) with little calculations. Augmenting the program with complete annota-

tion is feasible but not helpful in abstracting out implementation details. Specification 

extraction was thus performed directly on top of the code. Following is an example of the 

extracted specification corresponding to the UserEntry package:

UserEntry: THEORY
BEGIN

IMPORTING AuditLog
IMPORTING Bio
IMPORTING CertificateStore
IMPORTING Clock
IMPORTING ConfigData
IMPORTING Display
IMPORTING Door
IMPORTING KeyStore
IMPORTING Latch
IMPORTING Stats
IMPORTING UserToken

prf_UserEntryUnlockDoor: Boolean

%% Traceto: FD.UserEntry.UserHasDeparted
UserHasDeparted(st: State): Boolean =
  st`UserEntry_Status > Quiescent and not UserToken.IsPresent(st)

%% Traceto: FD.UserEntry.UserTokenTorn
UserTokenTorn(TheStats: Stats_T, st: State): [# TheStats: Stats_T,
                                                st: State #] =
  LET st1 = AuditLog.AddElementToLog(UserTokenRemoved, Warning,
                       UserToken.ExtractUser(st), NoDescription, st) IN
  LET st2 = Display.SetValue(Welcome, st1) IN
  LET st3 = st2 WITH [`UserEntry_Status := Quiescent] IN
  (# `TheStats := Stats.AddFailedEntry(TheStats),
     `st := UserToken.Clear(st3) #)

%% Traceto: FD.UserEntry.TISReadUserToken
%% Traceto: FD.UserEntry.BioCheckNotRequired
%% Traceto: FD.UserEntry.BioCheckRequired
%% Traceto: FD.UserEntry.ValidateUserEntryFail
%% Traceto: FD.UserEntry.UserTokenTorn
ValidateUserToken(TheStats: Stats_T, st: State): [# TheStats: Stats_T,
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                                                    st: State #] =
  IF NOT UserToken.IsPresent(st) THEN
    UserTokenTorn(TheStats, st)
  ELSE
    LET AuthCertOK = UserToken.ReadAndCheckAuthCert(st)`AuthCertOK,
        st1 = UserToken.ReadAndCheckAuthCert(st)`st IN
    IF AuthCertOK THEN
      LET st2 = AuditLog.AddElementToLog(UserTokenPresent, Information,
                  UserToken.ExtractUser(st1), NoDescription, st1) IN
      LET st3 = AuditLog.AddElementToLog(AuthCertValid, Information,
                  UserToken.ExtractUser(st2), NoDescription, st2) IN
      LET st4 = Display.SetValue(Wait, st3) IN
      LET st5 = st4 WITH [`UserEntry_Status := WaitingEntry] IN
      (# `TheStats := TheStats,
         `st := st5 #)
    ELSE
      LET Description = UserToken.ReadAndCheck(st1)`Description,
          TokenOK = UserToken.ReadAndCheck(st1)`TokenOK,
          st2 = UserToken.ReadAndCheck(st1)`st IN
      IF TokenOK THEN
        LET st3 = AuditLog.AddElementToLog(UserTokenPresent, Information,
                   UserToken.ExtractUser(st2), NoDescription, st2) IN
        LET st4 = AuditLog.AddElementToLog(AuthCertInvalid, Information,
                    UserToken.ExtractUser(st3), NoDescription, st3) IN
        LET st5 = Display.SetValue(InsertFinger, st4) IN
        LET st6 = st5 WITH [`UserEntry_Status := WaitingFinger,
                            `FingerTimeout := Clock.AddDuration(
                              Clock.TheCurrentTime(st5),
                              ConfigData.TheFingerWaitDuration(st5))] IN
        LET st7 = Bio.Flush(st6) IN
        (# `TheStats := TheStats,
           `st := st7 #)
      ELSE
        LET st3 = AuditLog.AddElementToLog(UserTokenPresent, Information,
                   UserToken.ExtractUser(st2), NoDescription, st2) IN
        LET st4 = AuditLog.AddElementToLog(UserTokenInvalid, Warning,
                    UserToken.ExtractUser(st3), NoDescription, st3) IN
        LET st5 = Display.SetValue(RemoveToken, st4) IN
        LET st6 = st5 WITH[`UserEntry_Status :=
                             WaitingRemoveTokenFail] IN
        (# `TheStats := TheStats,
           `st := st6 #)
      ENDIF
    ENDIF
  ENDIF

%% Traceto: FD.UserEntry.ReadFingerOK
%% Traceto: FD.UserEntry.NoFinger
%% Traceto: FD.UserEntry.FingerTimeout
%% Traceto: FD.UserEntry.UserTokenTorn
ReadFinger_State_pre(st: State): bool =
  st`UserEntry_Status = WaitingFinger
ReadFinger(TheStats: Stats_T,
           st: (ReadFinger_State_pre)):[# TheStats: Stats_T, 
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                                          st: State #] =
  IF NOT UserToken.IsPresent(st) THEN
    UserTokenTorn(TheStats, st)
  ELSE
    IF Clock.GreaterThan(Clock.TheCurrentTime(st), st`FingerTimeout) 
THEN
      LET st1 = AuditLog.AddElementToLog(FingerTimeout, Warning,
                           UserToken.ExtractUser(st), NoDescription, st) IN
      LET st2 = Display.SetValue(RemoveToken, st1) IN
      LET st3 = st2 WITH [`UserEntry_Status := WaitingRemoveTokenFail] IN
      (# `TheStats := TheStats,
         `st := st3 #)
    ELSE
      LET FingerPresence = Bio.Poll(st) IN
      IF FingerPresence = Present THEN
        LET st1 = AuditLog.AddElementToLog(FingerDetected, Information,
                    UserToken.ExtractUser(st), NoDescription, st) IN
        LET st2 = Display.SetValue(Wait, st1) IN
        LET st3 = st2 WITH [`UserEntry_Status := GotFinger] IN
        (# `TheStats := TheStats,
           `st := st3 #)
      ELSE
        (# `TheStats := TheStats,
           `st := st #)
      ENDIF
    ENDIF
  ENDIF

AchievedFARDescription(AchievedFAR: FarT): DescriptionT

%% Traceto: FD.UserEntry.ValidateFingerOK
%% Traceto: FD.UserEntry.ValidateFingerFail
%% Traceto: FD.UserEntry.UserTokenTorn
ValidateFinger(TheStats: Stats_T, st: State): [# TheStats: Stats_T,
                                                 st: State #] =
  IF NOT UserToken.IsPresent(st) THEN
    UserTokenTorn(TheStats, st)
  ELSE
    LET TheTemplate = UserToken.GetIandATemplate(st) IN
    LET MaxFar =
          IF TheTemplate`RequiredMaxFAR < ConfigData.TheSystemMaxFar(st)
          THEN TheTemplate`RequiredMaxFAR
          ELSE ConfigData.TheSystemMaxFar(st)
          ENDIF IN
    LET MatchResult = Bio.Verify(TheTemplate, MaxFar, st)`MatchResult,
        AchievedFAR = Bio.Verify(TheTemplate, MaxFar, st)`AchievedFAR,
        st1 = Bio.Verify(TheTemplate, MaxFar, st)`st IN
    LET st2 = Bio.Flush(st1) IN
    IF MatchResult = Match THEN
      LET st3 = AuditLog.AddElementToLog(FingerMatched, Information,
                           UserToken.ExtractUser(st2),
                           AchievedFARDescription(AchievedFAR), st2) IN
      LET st4 = Display.SetValue(Wait, st3) IN
      LET st5 = st4 WITH [`UserEntry_Status := WaitingUpdateToken] IN
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      (# `TheStats := Stats.AddSuccessfulBio(TheStats),
         `st := st5 #)
    ELSE
      LET st3 = AuditLog.AddElementToLog(FingerNotMatched, Warning,
                           UserToken.ExtractUser(st2),
                           AchievedFARDescription(AchievedFAR), st2) IN
      LET st4 = Display.SetValue(RemoveToken, st3) IN
      LET st5 = st4 WITH [`UserEntry_Status := WaitingRemoveTokenFail] IN
      (# `TheStats := Stats.AddFailedBio(TheStats),
         `st := st5 #)
    ENDIF
  ENDIF

%% Traceto: FD.UserEntry.UpdateUserTokenNotRequired
%% Traceto: FD.UserEntry.WriteUserTokenOK
%% Traceto: FD.UserEntry.WriteUserTokenFail
%% Traceto: FD.UserEntry.UserTokenTorn
UpdateToken(TheStats: Stats_T, st: (KeyStore.PrivateKeyPresent)):
  [# TheStats: Stats_T,
     st: State #] =
  IF NOT UserToken.IsPresent(st) THEN
    UserTokenTorn(TheStats, st)
  ELSE
    LET UpdateOK = UserToken.AddAuthCert(st)`Success,
        st1 = UserToken.AddAuthCert(st)`st IN
    LET st2 = st1 WITH [`UserEntry_Status := WaitingEntry] IN
    LET UpdateOK1 = IF UpdateOK
                    THEN UserToken.UpdateAuthCert(st2)`Success
                    ELSE FALSE
                    ENDIF,
        st3 = IF UpdateOK
              THEN UserToken.UpdateAuthCert(st2)`st
              ELSE st2
              ENDIF IN
    IF UpdateOK1 THEN
      LET st4 = AuditLog.AddElementToLog(AuthCertWritten, Information,
                  UserToken.ExtractUser(st3), NoDescription, st3) IN
      LET st5 = Display.SetValue(Wait, st4) IN
      LET st6 = CertificateStore.UpdateStore(st5) IN
      (# `TheStats := TheStats,
         `st := st6 #)
    ELSE
      LET st4 = AuditLog.AddElementToLog(AuthCertWriteFailed, Warning,
                  UserToken.ExtractUser(st3), NoDescription, st3) IN
      LET st5 = Display.SetValue(TokenUpdateFailed, st4) IN
      (# `TheStats := TheStats,
         `st := st5 #)
    ENDIF
  ENDIF

%% Traceto: FD.UserEntry.EntryOK
%% Traceto: FD.UserEntry.EntryNotAllowedC
%% Traceto: FD.UserEntry.UserTokenTorn
ValidateEntry(TheStats: Stats_T, st: State): [# TheStats: Stats_T,
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                                                st: State #] =
  IF NOT UserToken.IsPresent(st) THEN
    UserTokenTorn(TheStats, st)
  ELSE
    IF ConfigData.IsInEntryPeriod(st, UserToken.GetClass(st),
                                  Clock.TheCurrentTime(st)) THEN
      LET st1 = AuditLog.AddElementToLog(EntryPermitted, Information,
                           UserToken.ExtractUser(st), NoDescription, st) IN
      LET st2 = Display.SetValue(OpenDoor, st1) IN
      LET st3 = st2 WITH [`UserEntry_Status := WaitingRemoveTokenSuccess,
                          `TokenRemovalTimeout := Clock.AddDuration(
                            Clock.TheCurrentTime(st2),
                            ConfigData.TheTokenRemovalDuration(st2))] IN
      (# `TheStats := TheStats,
         `st := st3 #)
    ELSE
      LET st1 = AuditLog.AddElementToLog(EntryDenied, Warning,
                  UserToken.ExtractUser(st), NoDescription, st) IN
      LET st2 = Display.SetValue(RemoveToken, st1) IN
      LET st3 = st2 WITH [`UserEntry_Status := WaitingRemoveTokenFail] IN
      (# `TheStats := TheStats,
         `st := st3 #)
    ENDIF
  ENDIF

%% Traceto : FD.UserEntry.UnlockDoorOK
%% Traceto : FD.UserEntry.WaitingTokenRemoval
%% Traceto : FD.UserEntry.TokenRemovalTimeout
UnlockDoor_pre(TheStats: Stats_T, st: State): bool =
  st`UserEntry_Status = WaitingRemoveTokenSuccess AND
  ((Latch.IsLocked(st) AND
    Door.TheCurrentDoor(st) = Open AND
    Clock.GreaterThanOrEqual(Clock.TheCurrentTime(st),
                             Door.prf_alarmTimeout(st))) <=>
    Door.TheDoorAlarm(st) = Alarming)
UnlockDoor_post(TheStats_: Stats_T, st_: State,
                TheStats: Stats_T, st: State): bool =
  ((Latch.IsLocked(st) AND
    Door.TheCurrentDoor(st) = Open AND
    Clock.GreaterThanOrEqual(Clock.TheCurrentTime(st),
                             Door.prf_alarmTimeout(st))) <=>
    Door.TheDoorAlarm(st) = Alarming) AND
  ((Latch.IsLocked(st_) AND NOT Latch.IsLocked(st))
      <=> prf_UserEntryUnlockDoor)
UnlockDoor_State_pre(st: State): bool =
  st`UserEntry_Status = WaitingRemoveTokenSuccess
UnlockDoor(TheStats: Stats_T,
           st: (UnlockDoor_State_pre)): [# TheStats: Stats_T,
                                           st: State #] =
  IF NOT UserToken.IsPresent(st) THEN
    LET st1 = Door.UnlockDoor(st) IN
    LET st2 = UserToken.Clear(st1) IN
    LET st3 = Display.SetValue(DoorUnlocked, st2) IN
    LET st4 = st3 WITH [`UserEntry_Status := Quiescent] IN
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    (# `TheStats := Stats.AddSuccessfulEntry(TheStats),
       `st := st4 #)
  ELSE
    IF Clock.GreaterThan(Clock.TheCurrentTime(st),
                         st`TokenRemovalTimeout) THEN
      LET st1 = AuditLog.AddElementToLog(EntryTimeout, Warning,
                  UserToken.ExtractUser(st), NoDescription, st) IN
      LET st2 = Display.SetValue(RemoveToken, st1) IN
      LET st3 = st2 WITH [`UserEntry_Status := WaitingRemoveTokenFail] IN
      (# `TheStats := TheStats,
         `st := st3 #)
    ELSE
      (# `TheStats := TheStats,
         `st := st #)
    ENDIF
  ENDIF
UnlockDoor: LEMMA
  FORALL (TheStats_: Stats_T, st_: State):
    UnlockDoor_pre(TheStats_, st_)
      => UnlockDoor_post(TheStats_, st_, result`TheStats, result`st)
    WHERE result = UnlockDoor(TheStats_, st_)

%% Traceto: FD.UserEntry.FailedAccessTokenRemoved
FailedAccessTokenRemoved(TheStats: Stats_T,
                         st: State): [# TheStats: Stats_T,
                                        st: State #] =
  LET st1 = AuditLog.AddElementToLog(UserTokenRemoved, Information,
              UserToken.ExtractUser(st), NoDescription, st) IN
  LET st2 = Display.SetValue(Welcome, st1) IN
  LET st3 = st2 WITH [`UserEntry_Status := Quiescent] IN
  (# `TheStats := Stats.AddFailedEntry(TheStats),
     `st := UserToken.Clear(st3) #)

%% Traceto: FD.UserEntry.UserEntryInProgress
InProgress(st: State): Boolean =
  st`UserEntry_Status > Quiescent AND
  st`UserEntry_Status < WaitingRemoveTokenFail

%% traceto: FD.UserEntry.CurrentUserEntryActivityPossible
CurrentActivityPossible(st: State): Boolean =
  InProgress(st) OR UserHasDeparted(st)

%% traceto: FD.UserEntry.UserEntryCanStart
CanStart(st: State): Boolean =
  st`UserEntry_Status = Quiescent AND UserToken.IsPresent(st)

%% traceto: FD.Interface.DisplayPollUpdate
DisplayPollUpdate(st: State): State =
  IF Latch.IsLocked(st) THEN
    LET NewMsg = IF st`UserEntry_Status = WaitingRemoveTokenFail
                 THEN RemoveToken
                 ELSE Welcome
                 ENDIF IN
    Display.SetValue(NewMsg, st)
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  ELSE
    st
  ENDIF

%% traceto: FD.UserEntry.ProgressUserEntry
Progress_pre(TheStats: Stats_T, st: State): bool =
  KeyStore.PrivateKeyPresent(st) AND
  st`UserEntry_Status > Quiescent AND
  (st`UserEntry_Status = WaitingRemoveTokenFail
     => NOT UserToken.IsPresent(st)) AND
  ((Latch.IsLocked(st) AND
    Door.TheCurrentDoor(st) = Open AND
    Clock.GreaterThanOrEqual(Clock.TheCurrentTime(st),
                             Door.prf_alarmTimeout(st))) <=>
    Door.TheDoorAlarm(st) = Alarming)
Progress_post(TheStats_: Stats_T, st_: State,
              TheStats: Stats_T, st: State): bool =
  ((Latch.IsLocked(st) AND
    Door.TheCurrentDoor(st) = Open AND
    Clock.GreaterThanOrEqual(Clock.TheCurrentTime(st),
                             Door.prf_alarmTimeout(st))) <=>
    Door.TheDoorAlarm(st) = Alarming) AND
  ((Latch.IsLocked(st_) AND NOT Latch.IsLocked(st))
      <=> prf_UserEntryUnlockDoor)
Progress_State_pre(st: State): bool =
  KeyStore.PrivateKeyPresent(st) AND
  st`UserEntry_Status > Quiescent AND
  (st`UserEntry_Status = WaitingRemoveTokenFail => NOT 
UserToken.IsPresent(st))
Progress(TheStats:
         Stats_T, st: (Progress_State_pre)): [# TheStats: Stats_T,
                                                st: State #] =
  LET LocalStatus = st`UserEntry_Status IN
  CASES LocalStatus OF
    GotUserToken:              ValidateUserToken(TheStats, st),
    WaitingFinger:             ReadFinger(TheStats, st),
    GotFinger:                 ValidateFinger(TheStats, st),
    WaitingUpdateToken:        UpdateToken(TheStats, st),
    WaitingEntry:              ValidateEntry(TheStats, st),
    WaitingRemoveTokenSuccess: UnlockDoor(TheStats, st),
    WaitingRemoveTokenFail:    FailedAccessTokenRemoved(TheStats, st)
  ENDCASES
Progress: LEMMA
  FORALL (TheStats_: Stats_T, st_: State):
    Progress_pre(TheStats_, st_)
      => Progress_post(TheStats_, st_, result`TheStats, result`st)
    WHERE result = Progress(TheStats_, st_)

%% traceto: FD.UserEntry.TISReadUserToken
StartEntry(st: State): State =
  LET st1 = Display.SetValue(Wait, st) IN
  st1 WITH [`UserEntry_Status := GotUserToken]

END UserEntry
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D.1 Synergistic Analysis of Tokeneer Requirements

In order to demonstrate the synergistic analysis approach, my colleague Ben Taitelbaum 

and I conducted a small case study based on Tokeneer ID Station (TIS). A representative 

subset (two) of the TIS security requirements defined by the NSA were selected for study. 

We refined each requirement into a set of more detailed obligations that was partitioned 

into static and dynamic subsets. Echo could thus be applied to prove the static part of the 

obligations.

The natural language and PVS statements of the first requirement that we chose to 

use in this example, R1, are shown in Figure 18. The statements for the second, R2, are 

shown in Figure 19. R1 states that the correct sequence of checking actions will be taken 

by the TIS, and R2 states that the alarm will be raised if the system is deemed to be “inse-

cure”. Each of these requirements is dealt with most conveniently by partitioning into a set 

of shorter, more manageable obligations that are, in fact, defined in the original NSA 

requirements. The results of this partitioning are shown in the respective figures for R1

and R2. To illustrate synergistic assurance, for each of these obligations we present the 

choice we made (static or dynamic) for the associated assurance and the rationale for each 

choice.

R1 is a requirement about the user authentication and entry process. The user has to 

insert a card into a reader for authentication and, depending on the user and his or her cir-

cumstances, also present a finger for fingerprint checking. The process is multi-staged, 

and is documented as a finite-state machine with transitions on eight internal states: 

quiescent, gotUserToken, waitingFinger, gotFinger, waitingUpdateToken, 

waitingEntry, waitingRemoveTokenSuccess, and waitingRemoveTokenFail. Based 
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on the transitions of these internal states, we partitioned R1 into the obligations shown in 

Figure 18 and dealt with these obligations as follows:

TIS Requirement 1:
If the latch is unlocked by the TIS and the TIS is not in possession of an Admin Token, 
then the TIS must be in possession of a User Token. The User Token must either have 
a valid Authorization Certificate, or must have valid ID, Privilege, and I&A Certifi-
cates, together with a template that allows the TIS to successfully validate the user’s 
fingerprint.

R1: THEOREM
  FORALL (f: StateChange): 
    (FORALL (st: SystemState):
       st`Latch = locked AND
       f(st)`Latch = unlocked AND
       st`adminTokenPresence = absent
         =>
       TokenWithValidAuth(st`currentUserToken) AND
       UserTokenWithOKAuthCert(st`currentUserToken, st`currentTime)
         OR
       ValidToken(st`currentUserToken) AND
       UserTokenOK(st`currentUserToken, st`currentTime) AND
       FingerOK(st`currentFinger))

Obligation 1:
The enclave door is only unlocked in the waitingRemoveTokenSuccess state.

Obligation 2:
In order to reach the state waitingRemoveTokenSuccess, the state transitions must 
either follow: (1) gotUserToken � waitingFinger � gotFinger � 
waitingUpdateToken � waitingEntry � waitingRemoveTokenSuccess, or: (2) 
gotUserToken � waitingEntry � waitingRemoveTokenSuccess.

Obligation3:
In the first path: ValidToken and UserTokenOK are checked in the transition to 
waitingFinger, FingerOK is checked in the transition to waitingUpdateToken. In 
the second path: TokenWithValidAuth and UserTokenWithOKAuthCert are checked 
in the transition to waitingEntry.

Obligation 4:
User token is not changed during the transitions from gotUserToken to 
waitingRemoveTokenSuccess, and user fingerprint is not changed during the transi-
tions from gotFinger to waitingRemoveTokenSuccess.

Figure 18. TIS requirement R1 and associated obligations
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R1 - Obligation 1:

This obligation is concerned with actually opening the enclave door and is obviously cru-

cial. It is, however, easy to check both statically and dynamically, and so we checked it 

statically, the preferred approach. The check was completed by translation of the obliga-

tion into simple function postconditions.

R1 - Obligation 2:

This obligation is simple to understand, but to verify it statically involves a lot of detail. It 

is necessary to prove that the postcondition of every function that can change the state sat-

isfies the obligation, and some functions define more than one state change. Function level 

granularity might not be sufficient unless we perform full verification. On the other hand, 

checking this obligation dynamically only requires checking the assignment of the state. 

Thus we discharged this obligation dynamically.

R1 - Obligation 3:

This obligation is concerned with the conduct of the various authentication mechanisms 

(for example, checking the fingerprint) as state transitions occur. It is obviously critical 

that the right checks occur in the right way at the right place and at the right time. Since 

the checks are tied to state transitions and implemented as predicate functions, the 

required actions are quite easy to check statically. If an attempt were made to check them 

dynamically, then the checking function would essentially have to duplicate the existing 

predicate functions because the obligation is to actually confirm the truth of something 

like the fingerprint check not merely that it was conducted. Thus the dynamic check would 

have to fully invoke the fingerprint-checking hardware. The verification of the check 

would be as complex as the static verification of the implementation. The static verifica-
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tion has to prove that the hardware is used correctly and that its results are used to influ-

ence the flow of control correctly. We chose the static route.

R1 - Obligation 4:

This obligation is concerned with the possibility of an attacker trying to switch artifacts in 

mid-authentication. The whole authentication process relies on continuity of trust between 

states. If a switch occurs part way through the process, the credentials associated with one 

individual might be hijacked by another. That the implementation ensures this obligation 

is, therefore essential. The obligation could be checked either statically or dynamically 

with roughly equal effort, and we chose statically.

R2 is a requirement about the timing of the TIS. Time is an important part of the 

overall security mechanism. For example, if the enclave door were left open for an inordi-

nate amount of time, it might be possible for an attacker to gain access without being 

noticed because an authorized user had entered at some point in the past.

TIS Requirement 2:
An alarm will be raised whenever the door/latch is insecure. “Insecure” is defined to 
mean the latch is locked, the door is open, and too much time has passed since the last 
explicit request to lock the latch.

R2: THEOREM
  FORALL (st: SystemState):
    st`Latch = locked AND
    st`Door = open AND
    st`currentTime >= st`alarmTimeout
      =>
    st`Alarm = alarming

Obligation 1:
The value alarmTimeout complies with the specification.

Obligation 2:
The alarm will sound when the door/latch is insecure.

Figure 19. TIS requirement R2 and associated obligations



191

R2 - Obligation 1:

This obligation is concerned with ensuring that the actual time-out value in the system is 

the one that was specified. The concern is with the possibility of the time-out value being 

changed incorrectly by a software defect. The obligation maps to the postconditions of 

those functions modifying the value of alarmTimeout. Either static verification or a 

dynamic check could be used for this obligation, each with little effort, and we used static 

verification.

R2 - Obligation 2:

This obligation is a real-time requirement that is difficult to deal with statically. To dis-

charge this obligation with static methods requires determination of worst-case execution 

time bounds on various sections of the software, a complete proof of functionality, a proof 

that machine time is an adequate representation of real-world time, etc. By contrast, pro-

vided machine time is an adequate representation of real-world time, a dynamic check is 

simple to implement and to verify. A timer could be set to halt the system when it goes off. 

In summary, these six obligations derive from realistic requirements for a system 

that has serious consequences of failure. The partitioning and the associated rationale sug-

gests that splitting the proof burden between static and dynamic techniques is quite feasi-

ble and is potentially effective as a way of producing a useful level and form of assurance. 

The Echo approach was used to prove the static part of the obligations and was seamlessly 

integrated with the dynamic checks. This increases the expressive power of Echo verifica-

tion to allow a more comprehensive whole-system assurance arguments to be constructed.
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