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Abstract

This thesis is on partitions and analytic number theory. In particular, I prove results

about statistical properties of partitions, partition inequalities, and facts about special

values of coefficients of modular forms. The central methods of this paper are the

theory of integer weight modular forms and the circle method.

It is natural to study statistical questions about the parts of partitions. Recently,

Beckwith and Mertens proved that the parts of partitions are asymptotically equidis-

tributed among residue classes modulo t, but that there is a bias towards the residue

classes inhabited by lower positive integers. In this thesis, I prove that the same

phenomenon holds for partitions into distinct parts, and I prove that the biases be-

tween residue classes holds for n > 8. In order to prove these results, I derive explicit

error terms for asymptotic estimates involving Euler–Maclaurin summation and uti-

lize Wright’s circle method to prove asymptotic formulas approximating the relevant

counting functions.

Motivated by work of Dergachev and Kirillov, new work by Coll, Mayers and

Mayers explores new connections between partitions and Lie theory via the index of

seaweed algebras. This index may be viewed as a statistic on pairs of partitions, and

in this light Coll, Mayers, and Mayers conjectured that a peculiar kind of generating
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function identity related to this new index statistic. Seo and Yee made a significant

step towards proving this conjecture by reducing the problem to demonstrating the

non-negativity of the coefficients of a certain q-series. In this thesis, I complete the

proof of this conjecture using Wright’s circle method and effective Euler–Maclaurin

summation.

Hook numbers of partitions arise naturally from the connection between partitions

and the irreducible representations of the symmetric group. I prove results concerning

the number of t-hooks that appear within partitions. In joint work with Pun, I prove

formulas that give the number of partitions of n which have an even or odd number of

t-hooks, and as a consequence we prove that these counting functions obey a strange

distributions law. We prove these results using the Rademacher circle method.

In joint work with Bringmann, Males and Ono, I prove further asymptotic formulas

about the distributions of t-hooks and Betti numbers in residue classes. We prove that

the Betti numbers associated to Hilbert schemes on n points, which naturally add up

to the number of partitions of n, are equidistributed among residue classes modulo

b, while equidistribution fails when partitions are divided up based on the residue

class of the number of t-hooks. These results are proved using both Rademacher-

style and Wright-style circle methods. We also use facts about 2-core and 3-core

generating functions to prove that certain coefficients vanish in the cases of 2-hooks

and 3-hooks.

Since DeSalvo and Pak proved that the partition function is log-concave, the Turán
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inequalities have been a popular topic within partition theory. These inequalities

govern whether certain polynomials constructed from a given sequence of numbers

are hyperbolic. In joint work with Pun, I prove that the k-regular partition functions

satisfy all the Turán inequalities. We prove this using Hagis’ formula for the k-regular

partition functions and a very general criterion for proving Turán inequalities proven

by Griffin, Ono, Rolen, and Zagier.

The Atkin-Lehner newforms are extremely important examples of modular forms.

Their coefficients are multiplicative, and the values at prime powers are dictated by

two-term linear recurrence relations coming from Hecke operators. In joint work with

Balakrishnan, Ono, and Tsai, I prove a methodology for identifying which coefficients

of certain integer weight newform f(z) are allowed to take on a given odd value. In

particular, our method proves that under suitable assumptions, f(z) has only finitely

many Fourier coefficients equal to a given odd prime, and we give an algorithm which

determines the possible locations of these prime values by computing integer points

on algebraic curves with large genus.
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Chapter 1

Introduction

1.1 Partitions and modular forms

In this thesis, I present original results pertaining to the coefficients of infinite series

connected to partitions and modular forms. Both of these objects are ubiquitous in

modern mathematics, with applications to fields as diverse as combinatorics, mathe-

matical physics, number theory, representation theory, and topology. As my results

are mainly combinatorial and number theoretic in nature, we shall introduce these

objects from this perspective.

A partition is a non-increasing sequence of positive integers, which we denote by

λ = (λ1, λ2, · · ·λℓ), λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0.

It is standard to denote by P the set of all partitions. For any λ ∈ P , let us call

denote by |λ| the size of λ, which is defined by |λ| = λ1 + λ2 + · · · + λℓ. If |λ| = n,

then we say λ is a partition of n and we write λ ⊢ n. We will also call each λi a part

of the partition.
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The oldest question about partitions we know goes back to a letter from Leibniz

to J. Bernoulli [78], in which Leibniz asks Bernoulli about the number of “divulsions”

of integers, which we now call partitions. In modern notation, Leibniz’s question

concerns the partition function

p(n) := #{λ ∈ P : |λ| = n},

in particular how to evaluate the function. Many interesting questions about parti-

tions have arisen as the theory developed. Among these are the possibility of mul-

tiplicative structure, asymptotic growth rates, formulas for partition functions, and

rapid methods for computing values of partition functions.

The first published work on partitions goes back to Euler in 1741 [55], in which he

answers questions of Naudé on a variation of Leibniz’s question on the calculation of

partition functions. Euler answers these questions brilliantly using the (very new at

the time) mechanism of generating functions, which led him to develop many beautiful

identities connecting infinite sums and infinite products. The fundamental example

is the generating function for p(n), which Euler proves to be

P (q) :=
∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
=: (q; q)−1

∞ ,

where we have used the standard q-Pochhammer notation

(a; q)n :=
n−1∏
k=0

(
1− aqk

)
, (a; q)∞ := lim

n→∞
(a; q)n . (1.1.1)

Euler’s pioneering work deals with manipulation of formal power series which he con-

nects to partitions, and produces many recurrence relations for partition functions
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via sum-product identities such as Euler’s “Pentagonal Number Theorem” [4]. Essen-

tially, Euler answers questions about the calculation of partition functions by using

generating function identities to derive recurrence relations for various partition func-

tions. Such recurrence relations then allow for computations far more quickly than

explicit enumeration. Through such fundamental results, Euler established the theory

of partitions. His methods and results are still absolutely central in modern research.

Another pioneer in partition theory was the great Indian mathematician Srinivasa

Ramanujan. Ramanujan’s work contains in particular two revolutionary theorems on

partitions. One of these are his congruences [97, 98, 99], the most basic of which are

p(5n+ 4) ≡ 0 (mod 5), p(7n+ 5) ≡ 0 (mod 7), p(11n+ 6) ≡ 0 (mod 11),

which he proved using techniques of manipulating q-series manipulation which in

principle would have been accessible to Euler or Jacobi. Through these results, Ra-

manujan initiated the study of divisibility properties of partition numbers, which is a

fundamental area of research today and has led to such developments as Dyson’s rank

function [53] and the Andrews-Garvan crank function [6, 56] that give combinatorial

explanations for why Ramanujan’s congruences are true.

Another of Ramanujan’s groundbreaking results on partitions came in his famous

joint paper with Hardy [69] in which they prove an asymptotic formula for p(n) as

n → ∞ using the circle method (see (1.2.1)). Rademacher then improved their work

in 1937 to obtain an exact formula for p(n) [95]. These are fundamental results

answering questions of the type Leibniz asked about partitions. The circle method
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was a major revolution which has seen important applications not just to partition

functions, but to many other famous asymptotic problems in number theory. This is

because the circle method can be interpreted very generally as a method for computing

asymptotic formulae for any sequence of integers based on the asymptotic properties

of its generating function. In particular, the method is useful for problems involving

the number of ways to represent integers by elements of a given set, like Waring’s

problem or Goldbach-type problems.

Hardy and Ramanujan’s implementation of the circle method is centrally based

on relating the generating function of p(n) to modular forms. Roughly speaking,

modular forms are analytic functions f : H → C, where H = {τ ∈ C : Im(τ) > 0},

that transform nicely under the action of Möbius transformations on H. That is, for

integers a, b, c, d such that ad− bc = 1, a modular form should have the property that

f
(
aτ+b
cτ+d

)
is nicely related to f(τ) for all τ ∈ H.

The connection between modular forms and partitions comes through the mar-

riage of Euler’s generating functions with complex analysis as developed in the mid-

nineteenth century. Because modular forms are naturally periodic, under τ 7→ τ + 1,

any modular form f(τ) is going to come with a Fourier expansion
∑

n∈Z af (n)e
2πinτ .

If we let q := e2πiτ , then it turns out that the formal generating function P (q) for

partitions is closely connected with one of the fundamental examples of a modular

form called Dedekind’s eta function, denoted η(τ). This function satisfies the relation
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P (q) = q
1
24η(τ)−1 and has the modular transformation law

η

(
−1

τ

)
=

√
−iτ · η(τ). (1.1.2)

Transformation laws of this shape play a central role in the execution of the circle

method. Modular forms come in many different shapes, and have deep connections to

the functional equations of L-functions, algebraic geometry, and many other areas of

mathematics. For example, the modular transformation law of a certain theta func-

tion underpins Riemann’s proof of the analytic continuation and functional equation

of his zeta function [101], and by extension modular transformation laws are used

to derive functional equations for modular L-functions. For more details on the the-

ory of modular forms, see Chapter 2 or standard texts on modular forms such as

[7, 35, 52, 105]. Andrews’ book [5] is an excellent source for the theory of partitions.

The connections between modular forms and partitions, as well as various gener-

alizations and refinements of the Hardy–Ramanujan circle method, play a central role

in this thesis. Section 1.2 describes my results on generating function identities and

partition inequalities proven using the circle method, and Section 1.3 describes joint

papers with Pun and with Bringmann, Males and Ono that use the circle method

to study arithmetic statistics of certain invariants attached to partitions. Section

1.4 describes an application of the circle method to Turán inequalities, and Section

1.5 describes joint work with Balakrishnan, Ono, and Tsai on the coefficients of cer-

tain integral weight modular forms. Chapters 3 through 8 then prove the results

introduced in Chapter 1.
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1.2 Partition identities and inequalities

1.2.1 Parts of partitions into distinct parts

In their famous paper Asymptotic formulae in combinatory analysis, Hardy and Ra-

manujan (among other results) proved the asymptotic formula

p(n) ∼ 1

4n
√
3
eπ
√

2n
3 (1.2.1)

as n→ ∞. In fact, they are able to prove a complete divergent asymptotic expansion

for p(n) [69]. As mentioned in Section 1.1, one of the key tools in their method is the

modular transformation law for Dedekind’s eta function given in (1.1.2). The main

thrust of the proof is that the modular transformation law for η(τ) yields a similar

transformation law for P (q), which then gives good asymptotic estimates for the size

of P (q) near complex roots of unity. Through a remarkable series of calculations,

Hardy and Ramanujan are able to translate this asymptotic information about P (q)

into asymptotic information about p(n). There are many other important works,

including Meinardus [81] and Wright [113], which demonstrate a variety of methods

of computing asymptotic expansions for partition functions. In particular, the method

of Wright will be central to the Sections 1.2 and 1.3.

In Chapter 3, I present results about the total number of parts among partitions

into distinct parts residing in given congruences classes. As is standard, we let ℓ(λ)

be the number of parts possessed by the partition λ. The number of parts contained

in partitions is one of the most well-studied combinatorial aspects of these objects.
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For example, famous work of Erdős and Lehner [54] shows that for large n, almost

all partitions of n contain

(1 + o(1))

√
6n

2π
log(n)

parts. Such results have been extended in various directions. One such instance is

a recent result of Griffin, Ono, Rolen and Tsai [60] that counts expected number of

parts that are multiples of a given integer.

Dartyge and Sarkozy have studied a related problem in [45], in which they prove

a result which indicates that the parts of partitions might favor certain congruence

classes. More specifically, for positive integers 0 < r ≤ t, define the function

Tr,t(λ) := #{λi ∈ λ : λi ≡ r (mod t)}.

Dartyge and Sarkozy [45, Theorem 1.1] prove that for n ≫ 0 and 0 < r < s ≤ t, a

positive proportion of partitions satisfy the inequality

Tr,t(λ)− Ts,t(λ) >
(r + s)

√
n

50rs
.

Philosophically, such a result makes sense; smaller positive integers may be repeated

more times within partitions of a fixed size. We may note however that the expected

number of parts of a random partition is on the order
√
n log(n), which outstrips the

Dartyge–Sarkozy lower limit. At least at face value, this suggests that it could still

be true that parts of partitions are equidistributed among all residue classes.

Beckwith and Mertens [15, 16] answer these questions. Letting 0 < r ≤ t and
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n ≥ 0 be integers, Beckwith and Mertens define1

Tr,t(n) :=
∑
λ⊢n

Tr,t(λ),

which counts the total number of parts congruent to r modulo t among all partitions

of n. In their second paper studying this function, Beckwith and Mertens prove the

following theorem.

Theorem 1.1 ([16, Theorem 1.2]). Let 0 < r < s ≤ t and n ≥ 0 be integers. Then

as n→ ∞, we have

Tr,t(n) = eπ
√

2n
3

[
log(n)− log

(
π2

6

)
− 2

(
ψ
(r
t

)
+ log(t)

)
+O

(
n− 1

2 log(n)
)]

.

In particular, we have Tr,t(n) ∼ Ts,t(n) and Tr,t(n) ≥ Ts,t(n) as n→ ∞.

The asymptotic above agrees with the heuristics suggested by comparing the re-

sults of Erdös–Lehner with those of Dartyge–Sarkozy, that the parts should be both

equidistributed asymptotically and exhibit a strict inequality for n≫ 0.

There are two natural follow-up questions concerning this result – does this phe-

nomenon hold for other families of partitions, and how large must n be before

Tr,t(n) ≥ Ts,t(n) begins to hold? In Chapter 3, we shall address both of these ques-

tions in the context of partitions into distinct parts. We say a partition λ ∈ P has

distinct parts if no two λi ∈ λ are equal, and we let D be the set of partitions into dis-

tinct parts. In analogy with Beckwith and Mertens, we define for integers 0 < r ≤ t

1Beckwith and Mertens use the notation T̂r,t(n) for this function.
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and n ≥ 0 the function

Dr,t(n) :=
∑
λ∈D

Dr,t(λ) :=
∑
λ∈D

#{λi ∈ λ : λi ≡ r (mod t)}.

As in the case of Tr,t(n), we prove an asymptotic formula for Dr,t(n).

Theorem 1.2. As n→ ∞, we have

Dr,t(n) =
3

1
4 eπ

√
n
3

2πtn
1
4

(
log(2) +

(√
3 log(2)

8π
− π

4
√
3

(
r − t

2

))
n− 1

2 +O
(
n−1
))

.

Example 1.3. We consider the case t = 3 to illustrate the accuracy of the approxi-

mation of Dr,3(n) in Theorem 1.2. Let D̂r,t(n) denote the main term of Dr,t(n) from

Theorem 1.2. Additionally, let Qr(n) := Dr,3(n)

D̂r,3(n)
. The following table illustrates the

convergence of Qr(n) to 1 as n→ ∞.

n 10 100 1000 10000
Q1(n) 1.159706 1.002613 1.001068 1.000365
Q2(n) 0.904238 1.003913 1.001204 1.000378
Q3(n) 1.167157 1.008440 1.001641 1.000422

Table 1: Numerics for Theorem 1.2.

Theorem 1.2 immediately implies Dr,t(n) ∼ Ds,t(n) and Dr,t(n) ≥ Ds,t(n) as

n → ∞; this is because the main term of Dr,t(n) does not depend on r and the

secondary term depends monotonically on r. To make the inequality explicit, we

improve Theorem 1.2 by making the error terms completely explicit. The following

results contain our explicit asymptotics and the explicit bias which follows from it.
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Theorem 1.4. For any integer t ≥ 2 and all integers n > 400t2

3
, we have∣∣∣∣Dr,t(n)−

log(2)

t
V0(n) +

1

2
B1

(r
t

)
V1(n)−

t

8
B2

(r
t

)
V2(n) +

t3

192
B4

(r
t

)
V4(n)

∣∣∣∣
≤ Errt(n),

where Bn(x) are the Bernoulli polynomials defined in (3.1.1), Errt(n) is defined in

(3.8.2), and Vs(n) is defined in (3.8.1).

Corollary 1.5. For positive integers 1 ≤ r < s ≤ t we have Dr,t(n) ≥ Ds,t(n) for

sufficiently large n. In particular, for 2 ≤ t ≤ 10 this inequality holds for all n > 8.

Remark 1.6. We make the following remarks regarding Theorem 1.2 and Corollary

1.5.

1. Numerics suggest that the only tuples (r, s, n) which can furnish counterexamples

to Dr,t(n) ≥ Ds,t(n) are (1, 2, 2), (2, 3, 4), (2, 4, 4), (3, 4, 7), and (4, 5, 8). Each of

these holds for sufficiently large t. For instance, the partitions of 8 into distinct

parts are

8, 7 + 1, 6 + 2, 5 + 3, 5 + 2 + 1, 4 + 3 + 1.

Observe that 5 appears as a part twice and 4 only appears as a part once; this

implies that D5,t(8) > D4,t(n) for all t ≥ 5. The other counterexamples listed

above are similar in nature.

2. Similar results are possible to derive for other restricted partition functions. In

particular, Jackson and Otgonbayar [72, 73] have studied the analogous results
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for k-regular partitions and k-indivisible partitions. They prove that k-regular

partitions have an exactly analogous bias phenomenon, whereas k-indivisible

partitions have a more complicated bias which is not in general monotonic in r.

The proofs of these results occurs in four steps. We first produce generating func-

tions for Dr,t(n) using standard techniques which we review in Chapter 2. We then

use a technique derived from Euler–Maclaurin summation to estimate this generating

function near q = 1. We then use a variation of the circle method due to Wright to

translate these estimates into estimates for the coefficients Dr,t(n), which we finally

translate into effective inequalities through elementary computations and computer

calculations.

1.2.2 Seaweed algebras and the index statistic

Partition theory arises in many surprising ways throughout mathematics. One of the

most surprising might be the connections with Lie theory. For example, Macdonald

[80] unified many disparate theorems about power of Dedekind’s eta function under

a Lie theoretic framework. Other applications in Lie theory have arisen through the

work of Dergachev and Kirillov [50] on calculating the index of parabolic subalgebras

of GL(n). In Chapter 4, we will answer a conjecture of Coll, Mayers, and Mayers

connected to the work of Dergachev and Kirillov.

We first describe the construction of seaweed algebras by Dergachev and Kirillov.

Let {ej}1≤j≤n be the standard basis of kn for some field k. Given two partitions
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{aj}1≤j≤m, {bj}1≤j≤ℓ of n, Dergachev and Kirillov [50] defined seaweed algebras as

Lie subalgebras of Mat(n) which preserve the vector spaces span
(
e1, e2, . . . , ea1+···+aj

)
for 1 ≤ j ≤ m and span

(
eb1+···+bj+1, . . . , en

)
for 1 ≤ j ≤ ℓ.

Example 1.7 (Partitions of 8). Let λ = (3, 3, 2) and µ = (4, 3, 1). The seaweed

algebra associated to the pair (λ, µ) is the set of all 8 × 8 matrices X of the form

below:

X =



∗ ∗ ∗ 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 0 0

0 0 0 0 ∗ ∗ ∗ 0

0 0 0 0 ∗ ∗ 0 0

0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 ∗


Each part λi of λ is used to construct a λi × λi triangle of ∗’s in upper triangular

section of the matrix, and similarly for µ in the lower triangular section.

In [50, Theorem 5.1], Dergachev and Kirillov obtain an exact formula for the

index of seaweed algebras which is calculated from a certain graph constructed from

λ, µ. We denote by indµ(λ) the index of the seaweed algebra constructed from the

pair (λ, µ). Coll, Mayers and Mayers in [40] initiate the study of ind as a partition-

theoretic object, proving for example a connection between the special case of indµ(λ)
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with µ = (1, 1, · · · , 1) to the well-studied 2-colored partition function [40, Theorem

11].

Coll, Mayers and Mayers also studied the q-series

G(q) :=
∞∏
n=1

1

1 + (−1)n q2n−1
=:
(
q,−q3; q4

)−1

∞ ,

using the standard abbreviation (a, b; q)∞ := (a; q)∞ · (b; q)∞. Note that because

of the factor (−q3; q4)−1
∞ , it is not clear whether G(q) has non-negative coefficients.

We consider the restricted index statistic ind(n)(λ), which we henceforth denote by

ind(λ). Coll, Mayers, and Mayers define e(n) (resp. o(n)) as the number of partitions

of n into odd parts whose index is even (resp. odd). In this setting, they make the

following interesting conjecture [40, Conjecture 20] connecting the index statistic to

G(q).

Coll–Mayers–Mayers Conjecture. The following are true:

(1) All the coefficients of G(q) are non-negative.

(2) We have G(q) =
∑
n≥0

|e(n)− o(n)| qn.

Previous papers by Seo, Yee, and Chern have made progress towards the conjec-

ture, but a complete proof was not known. Seo and Yee [107, Theorem 1] made a

significant conceptual step, proving using generating function methods that it would

be enough to prove the first part of the conjecture; that is, if we define

G(q) =:
∞∑
n=0

a(n)qn,
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then (2) would follow from (1) in the Coll–Mayers–Mayers Conjecture. Chern [34]

used a version of the circle method to prove an upper limit on the last counterexample

to the conjecture, but the constants involved were too large to be calculated on a

personal computer, thus the conjecture remained open. We complete the proof of the

conjecture, using a different version of the circle method to prove explicit asymptotic

formulas for a(n). Our results are as follows:

Theorem 1.8. As n→ ∞, we have

a(n) ∼
Γ
(
1
4

)
π

1
4

2
9
43

3
8n

3
8

I− 3
4

(
π

2

√
n

3

)
+ (−1)n

Γ
(
3
4

)
π

3
4

2
11
4 3

5
8n

5
8

I− 5
4

(
π

2

√
n

3

)
,

and for n > 4800 the difference between these has absolute value at most E(n) as

defined in (4.4.2).

Theorem 1.9. Conjecture 1.2.2 is true. That is, we have

G(q) =
(
q,−q3; q4

)−1

∞ =
∑
n≥0

|e(n)− o(n)| qn.

Remark 1.10. We make several remarks about Theorems 1.8 and 1.9.

1. Theorem 1.8 implies Chern’s result (i.e. Theorem 1.2 of [34]).

2. Chern proves a(n) ≥ 0 for n > 2.4 × 1014 using his explicit error terms. Our

explicit error terms prove a(n) ≥ 0 for n ≥ 3.5×105, which reduces the problem

to a feasible computation on the author’s personal computer.

3. In combination with [107, Theorem 1] of Seo–Yee, our result also proves that

the sign of e(n)− o(n) is periodic.
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The proof of Theorems 1.8 and 1.9 rely on an explicit application of Wright’s

circle method. As G(q) is not any kind of modular object, we will require the explicit

Euler–Maclaurin asymptotic techniques that are developed in Chapter 3. Because

the two factors (q; q4)
−1
∞ and (−q3; q4)−1

∞ have poles which nearly cancel each other,

we have to add an additional layer to the calculations. In particular, we must include

in the so-called “major arc” not just behavior as q → 1 but also q → −1. Although

this does not rely on a traditional usage of Wright’s circle method, it remains in the

same spirit.

1.3 Arithmetic statistics of partitions

1.3.1 Distribution of t-hooks modulo 2

In Sections 1.2 and 1.3, we have discussed results derived fromWright’s circle method,

which in a sense is tailed to generating functions which are not suitably modular. If

the generating functions are modular, then by the work of Rademacher on p(n) [95]

we can improve on these results and use the circle method2 to derive exact formulas.

In particular, Rademacher proved that for n ≥ 1, we have

p(n) =
2π

(24n− 1)
3
4

∞∑
k=1

Kk(n)

k
I 3

2

(
π
√
24n− 1

6k

)
, (1.3.1)

2These exact formulas can also be derived using the method of Poincaré series, see for example

[35].
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where I 3
2
is the classical I-Bessel function of index 3

2
and Kk(n) is a certain “Kloost-

erman sum” defined by

Kk(n) :=
∑

0≤h<k
(h,k)=1

eπis(h,k)−2πinh
k , s(h, k) :=

k−1∑
r=1

r

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

)
. (1.3.2)

These results are extended in a very general setting by Zuckerman [115].

In Chapter 5, we prove an analogous exact formula connected to hook numbers of

partitions. To define hook numbers, it is most natural to refer to the Young diagram

of a partition, which for λ = (λ1, . . . , λℓ) is a diagram of left-justified cells with λi cells

in row i. In these diagrams, we fill each cell (i, j) with a hook number hi,j(λ), which

is defined as the number of cells lying below or to the right of (i, j) in the Young

diagram of λ. We let H(λ) denote the multiset of hook numbers of λ, and Ht(λ) the

multiset of hook numbers of λ that are multiples of t, which we call t-hooks.

Example 1.11. Consider the partition λ = (5, 4, 1), with hook diagram

7 5 4 3 1
5 3 2 1
1

.

Then H(λ) = {1, 1, 1, 2, 3, 3, 4, 5, 5, 7}, H2(λ) = {2, 4} and H5(λ) = {5, 5}.

Hook numbers play a central role in the representation theory of the symmetric

group. It is well known that the partitions of n index the irreducible representations

of Sn [71]. This is not merely a bijection, but these representations can be constructed

from the partitions, and properties of the hook numbers in the corresponding Young

diagrams encode properties of the representations. For example, the famous Frame-

Thrall-Robinson formula says that if ρλ is the Sn-representation associated to λ we
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have dim ρλ = n!∏
h∈H(λ) h

. In combinatorics, hook numbers show up in the Nekrasov-

Okounkov hook length formula [86], which says that for any complex number z, we

have

∑
λ∈P

x|λ|
∏

h∈H(λ)

(
1− z

h2

)
=

∞∏
n=1

(1− qn)z−1 . (1.3.3)

This formula connects the study of hook numbers to modular forms via Dedekind’s

eta function, as (1.3.3) connects hook numbers to powers of the eta function.

For integers t ≥ 2 and any partition λ, we wish to study the size of the t-hook

multisets Ht(λ), in particular their parity. We define

pet (n) := #{λ ⊢ n : #Ht(λ) ≡ 0 (mod 2)},

pot (n) := #{λ ⊢ n : #Ht(λ) ≡ 1 (mod 2)}.

We wish to study the distribution of the parity of #Ht(λ). Since p
e
t (n)+p

o
t (n) = p(n),

we wish to study δ
e/o
t (n) =

p
e/o
t (n)

p(n)
. Consider the following tables which give values of

these functions.

Numerically, this initial speculation receives support for small values of t like

t = 2, 4, 6, and 8. However, numerical evidence below for the cases t = 3, 5, 7 and

9 appears to refute this naive guess. In fact, these tables suggest the existence of

multiple limiting values.

In Chapter 5, we prove the following theorems that explain this data. In particular,

we see what the correct limiting values of δ
e/o
t (n) are.
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t δet (100) δet (1000) δet (10000) · · · ∞

2 0.56611246 0.50027931 0.50000000 · · · 1
2

4 0.47067843 0.50002869 0.50000000 · · · 1
2

6 0.52465920 0.50007471 0.50000000 · · · 1
2

8 0.49484348 0.49999135 0.50000000 · · · 1
2

Table 1.1: Data for δet (n), even t

t δet (100) δet (500) δet (1000) δet (1500) · · · ∞

3 0.7137967695 0.7502983017 0.7499480195 0.7500039425 · · · 3
4

5 0.6374948698 0.6252149479 0.6250102246 0.6250009877 · · · 5
8

7 0.5468769228 0.5624965413 0.5625165550 0.5624989487 · · · 9
16

9 0.5375271584 0.5313027269 0.5312496766 0.5312499631 · · · 17
32

Table 1.2: Data for δet (n), t odd and n even.

t δet (101) δet (501) δet (1001) δet (1501) · · · ∞

3 0.2376157284 0.2494431573 0.2499820335 0.2500060167 · · · 1
4

5 0.3755477486 0.3750000806 0.3750000001 0.3750000000 · · · 3
8

7 0.4396942088 0.4374987794 0.4374959329 0.4375000006 · · · 7
16

9 0.4787668076 0.4688094755 0.4687535414 0.4687510507 · · · 15
32

Table 1.3: Data for δet (n), t odd and n odd.
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Theorem 1.12. Assuming the notation above, the following are true.

1) If t > 1 is an even integer, then

lim
n→∞

δet (n) = lim
n→∞

δot (n) =
1

2
.

2) If t > 1 is an odd integer, then we have

lim
n→∞

δet (n) =


1

2
+

1

2(t+1)/2
if 2 | n,

1

2
− 1

2(t+1)/2
if 2 ∤ n,

and lim
n→∞

δot (n) =


1

2
− 1

2(t+1)/2
if 2 | n,

1

2
+

1

2(t+1)/2
if 2 ∤ n.

We also study the sign pattern of pet (n) − pot (n), for n → ∞, which determines

when pet (n) > pot (n) and p
o
t (n) > pet (n).

Theorem 1.13. For t > 1 a fixed positive integer, write t = 2sℓ for integers s, ℓ ≥ 0

such that ℓ odd. Then for sufficiently large n, the sign of pet (n) − pot (n) is periodic

with period 2s+1. In particular, when t is odd the sign of pet (n)− pot (n) is alternating

for sufficiently large n.

These results are proven using the Rademacher circle method. In particular, we

use (1.3.3) to show that the generating function for At(n) := pet (n)−eot (n) is a modular

form. We then follow the arguments of Rademacher to prove an exact formula for

At(n), and we then study this exact formula to determine the main terms that yield

Theorem 1.12, and the Kloosterman sums involved yield the sign patterns in Theorem

1.13.
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1.3.2 Distributions of t-hooks and Betti numbers

In analogy with the previous section, we might consider functions of the form

pt(a, b;n) := #{λ ⊢ n : #Ht(λ) ≡ a (mod b)},

which specialize to the functions pet (n) and p
o
t (n) when b = 2. Although the arguments

are much more involved, we can still derive an exact formula for these coefficients.

In Chapter 6, we use the circle method to produce the following asymptotics for

pt(a, b;n).

Theorem 1.14. If t > 1, b is an odd prime, and 0 ≤ a < b, then as n→ ∞ we have

pt(a, b;n) ∼
ct(a, b;n)

4
√
3n

· eπ
√

2n
3 ,

where ct(a, b;n) are certain rational numbers defined in Chapter 6, (6.6.1).

As a corollary, we obtain the following limiting distributions.

Corollary 1.15. Assuming the hypotheses in Theorem 1.14, if 0 ≤ a1 < b and

0 ≤ a2 < b, then

lim
n→∞

pt(a1, b; bn+ a2)

p(bn+ a2)
= ct(a1, b; a2).

In particular, if b|t we have pt(a1, b;n) ∼ pt(a2, b;n) as n → ∞ for any a1, a2. If

b ̸ | t, then equidistribution fails. Examples of the results are given in Chapter 6.

The cases where t ∈ {2, 3} are particularly striking. In addition to many instances

of non-uniform distribution, there are situations where certain counts are actually

identically zero.
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Theorem 1.16. The following are true.

(1) If ℓ is an odd prime and 0 ≤ a1, a2 < ℓ satisfy (−16a1+8a2+1
ℓ

) = −1, then for

every non-negative integer n we have

p2(a1, ℓ; ℓn+ a2) = 0.

(2) If ℓ ≡ 2 (mod 3) is prime and 0 ≤ a1, a2 < ℓ2 have the property that ordℓ(−9a1+

3a2 + 1) = 1, then for every non-negative integer n we have

p3
(
a1, ℓ

2; ℓ2n+ a2
)
= 0.

For example, Theorem 1.16 (1) implies that

p2(0, 3; 3n+ 2) = p2(1, 3; 3n+ 1) = p2(2, 3; 3n) = 0

and Theorem 1.16 (2) implies that

p3(0, 4; 4n+ 3) = p3(1, 4; 4n+ 2) = p3(2, 4; 4n+ 1) = p3(3, 4; 4n) = 0.

This result is proved not with the circle method, but with q-series identities related

to the paucity of 2-cores and 3-core partitions of n, which is discussed in Chapter

2. By the work of Granville and Ono [61], there are t-core partitions of n for every

t ≥ 4, n ≥ 1, and this explains why Theorem 1.16 only applies to the cases t = 2 and

t = 3.

In Chapter 6, we prove results on the Betti numbers of Hilbert schemes in alge-

braic geometry. We denote by bj(X) the jth Betti numbers of the scheme X, which is
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the dimension of its jth homology group, i.e. bj(X) = dim (Hj(X,Q)). These num-

bers are generated by the usual Poincaré polynomial P (X;T ) :=
∑

j bj(X)T j. Work

of Göttsche [58, 59] and of Buryak and Feigin [29, 30] establishes generating functions

for these Poincaré polynomials for certain Hilbert schemes (C2)
[n]

and
(
(C2)

[n]
)Tα,β

,

whose definitions we defer until Chapter 6. The relevant generating functions are

expressible as products of q-Pochhammer symbols in the relevant variables, which are

closely related to (but not equal to) modular forms. Because of the infinite prod-

uct representations of these generating functions, the Euler–Maclaurin asymptotic

method can be used to give asymptotic estimates for the generating functions near

roots of unity, which again allows applications of the circle method.

The application we consider involve the modular sums of Betti numbers

B (a, b;X) :=
∑

j≡a (mod b)

bj (X) =
∑

j≡a (mod b)

dim (Hj (X,Q))

where X represents the Hilbert schemes we consider. Now, equidistribution in the

most literal sense fails, since the odd index Betti numbers for these schemes identically

vanish. However, we can prove that this is the only obstruction for equidistribution

modulo b for these modular Betti sums. In particular, we define the constant

d(a, b) :=



1
b

if b is odd,

2
b

if a and b are even,

0 if a is odd and b is even.

(1.3.4)

Theorem 1.17. Assuming the notation above, the following are true.
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(1) As n→ ∞, we have

B
(
a, b;

(
C2
)[n]) ∼ d(a, b)

4
√
3n

· eπ
√

2n
3 .

(2) If α, β ∈ N are relatively prime, then as n→ ∞ we have

B

(
a, b;

((
C2
)[n])Tα,β

)
∼ d(a, b)

4
√
3n

· eπ
√

2n
3 .

Since the sum over all Betti numbers of these schemes is equal to p(n), to study

the distribution modulo b of the modular Betti sums, one considers the ratios

δ(a, b;n) :=
B
(
a, b; (C2)

[n]
)

p(n)
and δα,β(a, b;n) :=

B

(
a, b;

(
(C2)

[n]
)Tα,β

)
p(n)

.

As a consequence of Theorem 1.17, we obtain distributions for these proportions.

Corollary 1.18. If 0 ≤ a < b, then the following are true.

(1) We have that

lim
n→∞

δ(a, b;n) = d(a, b).

(2) If α, β ∈ N are relatively prime, then we have

lim
n→∞

δα,β(a, b;n) = d(a, b).

1.4 Applications to Turán inequalities

The study of the Turán inequalities begins first with the study of hyperbolic polyno-

mials. Recall that a real polynomial is called hyperbolic if all of its roots are real. For
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the simplest nontrivial case, i.e. quadratic polynomials ax2+bx+c, the hyperbolicity

is determined by the discriminant inequality b2 − 4ac ≥ 0. This simple observation

leads naturally to the question of how to determine the hyperbolicity of higher degree

polynomials on the basis of their coefficients. This is the purpose of the higher-order

Turán inequalities, whose precise definition we defer until Chapter 7.

Recently, there has been great interest in proving Turán inequalities for polyno-

mials of number-theoretic interest. Given a sequence of real numbers {α(n)}n≥0, the

Jensen polynomial of degree d and shift n associated to the sequence is the polynomial

Jd,n
α (X) :=

d∑
k=0

(
d

k

)
α(n+ k)Xk.

Jensen polynomials have a close relationship to the Riemann hypothesis, as Polyá [94]

has shown that the Riemann hypothesis is equivalent to the hyperbolicity of all the

Jensen polynomials associated to the Taylor coefficients of the Riemann xi-function.

This approach to the Riemann hypothesis has recently been taken up in [62].

We now consider the Turán inequalities for other number-theoretic sequences. We

call the sequence {α(n)}n≥0 log-concave if α(n)
2−α(n− 1)α(n+1) ≥ 0 for all n ≥ 1,

or that α is log-concave for n ∈ N if this inequality is satisfied for that particular value

of n. Nicolas [85] and DeSalvo and Pak [51] have shown that the partition function

p(n) is log-concave for p(n) ≥ 25, which in turn proves that the Jensen polynomials

J2,n
p (X) are hyperbolic for n ≥ 25. In analogy with this case, the sequence {α(n)}n≥0

satisfies the Turán inequalities of order d if and only if Jd,n
α (X) is hyperbolic for all

n ≥ 1. The case of d = 3 for the partition function was proven by Chen, Jia and
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Wang in [33], and they further conjectured that there were constants N(d) such that

the Jensen polynomials Jd,n
p (X) would be hyperbolic for all n ≥ N(d).

This conjecture was proven in a very general setting by Griffin, Ono, Rolen, and

Zagier [62]. They proved that if a sequence α(n) satisfies certain very general asymp-

totic properties, then certain renormalizations of the Jensen polynomials Jd,n
α (X)

converge uniformly to certain Hermite polynomials Hd(X) for fixed d as n → ∞.

Since this family of polynomials is known to have only simple real roots, this proves

the hyperbolicity for sufficiently large n, provided certain asymptotic formulas hold

for the sequence α(n). The Hardy-Ramanujan asymptotic formula turns out to be

sufficient for p(n), which completes the proof.

In Chapter 7, we investigate this in the case of the so-called k-regular partitions

pk(n), which counts the number of partitions none of whose parts are divisible by k

(or none of whose parts occur with k or more multiplicities). Hagis [65] has derived

an exact formula for this function using the circle method, and using this formula we

prove the following:

Theorem 1.19. If k ≥ 2 and d ≥ 1, then

lim
n→∞

Ĵd,n
pk

(X) = Hd(X),

uniformly for X on compact subsets of R, where Ĵd,n
pk

(X) are renormalized Jensen

polynomials for pk(n) as defined in (7.3.1).

Corollary 1.20. For k ≥ 2, d ≥ 1, then Jd,n
pk

(X) is hyperbolic for n≫ 0.
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Remark 1.21. By Corollary 1.20, there exists a minimal natural number Nk(d) such

that Jd,n
pk

(X) is hyperbolic for all n ≥ Nk(d). These numbers are not the focus of

this paper, however a brief discussion is worthwhile, as these numbers dictate the

effectiveness of the main theorem. The following table provides conjectural values of

Nk(d) for small k and d.

d N2(d) N3(d) N4(d) N5(d)

2 32 57 16 41

3 120 184 63 136

4 266 390 137 294

These results will be proved in Chapter 7. The basic idea of the proof is that any

sequence with a suitably modular generating function necessarily has an asymptotic

formula of a shape similar to that of the Hardy-Ramanujan formula for p(n). It

happens that pk(n) has such a formula, as its generating function is a modular form,

and we may conclude on this basis after verifying the conditions of [62, Theorem

3] that the Jensen polynomials Jd,n
pk

(X) are eventually hyperbolic for any fixed d as

n→ ∞.
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1.5 Variants of Lehmer’s conjecture

One of the most important examples of a modular form is furnished by Ramanujan’s

Delta function ∆(z), which is defined by

∆(z) := η24(z) = q
∞∏
n=1

(1− qn)24 =:
∞∑
n=1

τ(n)qn,

where we now write q = e2πiz to avoid abusing notation. The coefficients τ(n) are

referred to as Ramanujan’s τ -function, so-called because of Ramanujan’s study of

this function in “On certain arithmetical functions” [96]. ∆(z) stands out, for ex-

ample, as the unique normalized cusp form of level 1 and weight 12 (see Chapter

2 for definitions). Ramanujan’s study of this function has led to many important

developments, both in his proven results and in his conjectures. Ramanujan was able

to prove many congruences for τ(n) [96], which Serre later viewed as evidence of a

much larger theory of Galois representations [104]. Ramanujan also conjectured the

multiplicativity of this function and that its values at prime powers form a recursive

sequence; this was proven first by Mordell [83] and foreshadowed the theory of Hecke

operators. Ramanujan’s conjectured bounds for τ at prime values were a corollary of

Deligne’s celebrated proof of the Weil Conjectures [47, 48].

Much is known about τ(n), and yet some basic questions remain unanswered. For

example, Lehmer’s conjecture3 asks whether there are any positive integers n such

that τ(n) = 0. Lehmer himself proved [77] that if τ(n) = 0 for any positive integers

3The author is not aware of any written record of Lehmer conjecturing an answer to this problem,

but we will follow convention and refer to this problem as Lehmer’s conjecture.
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n, then there must be some prime p such that τ(p) = 0. Serre was able to show using

the Chebotarev Density Theorem that the set of such primes, if there are any, has

density zero within the primes [106]. This result was improved upon several times; it

is now known due to work of Thorner and Zaman [108] that

#{p ≤ X prime : τ(p) = 0} ≪ π(X) · (log log(X))2

log(X)
.

One can observe by multiplicativity that if τ(p) = 0 for even one prime p, then

τ(n) = 0 for a positive proportion of integers n, and it is now known due to Hu,

Iyer, and Shashkov [70] that the density of of n for which τ(n) = 0 is at most

1.15× 10−12. In yet another direction, Calegari and Sardani [31] have shown that at

most finitely many non-CM newforms with fixed tame p level N have vanishing pth

Fourier coefficient.

We consider a generalization of this question, asking for all solutions to the equa-

tion τ(n) = α for any odd α. Murty, Murty and Shorey [84] proved that τ(n) = α for

at most finitely many values of α; however, their method involves enormous bounds

coming from Baker’s theory of linear forms in logarithms, and so in practice it is not

very useful for explicitly solving the equation. In fact, this approach has only been

used to show that the only solution to τ(n) = ±1 is τ(1) = 1. For α = ±ℓ, where ℓ

is almost any odd prime, it is widely believed that there are no solutions. However,

there are counterexamples, such as Lehmer’s prime value example [76]

τ(2512) = 80561663527802406257321747. (1.5.1)
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Lygeros and Rozier [79] have subsequently discovered further prime values.

We study the same problem with a different method that not only proves that

τ(n) = α has finitely many solutions, but also theoretically locates where those solu-

tions are allowed to occur. This method works not only for Ramanujan’s tau-function,

but also for any Atkin-Lehner newform [8] with “trivial mod 2 Galois representation.”

We will not directly use Galois representations, but the idea of having a trivial mod

2 Galois representation is exemplified by the congruence

∆(z) = q
∞∏
n=1

(1− qn)24 ≡ q
∞∏
n=1

(
1− q8n

)3 ≡ ∞∑
n=1

q(2n+1)2 (mod 2),

proven using the Jacobi triple product identity. This shows that the odd values of

τ(n) are supported on odd squares, which is what the reader should have in mind

when thinking of “trivial mod 2 Galois representations.” In this thesis, we prove a

variety of theorems which are aimed at resolving equations of the form τ(n) = α for

α ∈ Z odd, as well as generalizations of this question to other newforms, of which

∆(z) is the first example.

As the full results of this work are quite technical and have a large number of

distinct cases, we outline here the results we obtain for just the function τ(n), but

the proofs of Chapter 8 will be framed in terms of the fully general case.

Let ℓ be an odd prime and m ≥ 1. We wish to resolve equations of the form

τ(n) = ±ℓm for m ≥ 1. Our first major result, which proves that this equation has

only finitely many solutions, comes in two steps. The first uses the theory of Lucas

sequences to force such solutions to occur for n = pd−1 for p an odd prime and only
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finitely many possible values of d. The second stage uses the recurrence relations for

Lucas sequences to use any solution τ(pd−1) = ±ℓm to construct an integer point on

an algebraic curve of large genus. Such curves only have finitely many integer points

by Siegel’s theorem, which will complete the proof of finiteness. Our first result for

τ(n) may be stated as follows.

Theorem 1.22. Let ℓ ∈ Z+ be an odd prime, and let n > 1 be such that |τ(n)| = ℓm

for an integer m ≥ 1. Then n = pd−1 for some odd prime p and positive integer d

satisfying d|ℓ (ℓ2 − 1). Furthermore, there are at most finitely many solutions (n,m)

such that |τ(n)| = ℓm.

A more general phenomenon is that τ(n) accumulates prime divisors as n accu-

mulates not merely distinct prime divisors because of its multiplicativity, but also

generally will accumulate more prime divisors as n accumulates more of some fixed

prime divisor. This result is framed in terms of the classical functions Ω(n) and ω(n),

which count the prime divisors of n with and without multiplicity, respectively. Our

second major result (which does not rely on any algebraic geometry) is as follows.

Theorem 1.23. Let n > 1 be an integer. Then we have

Ω (τ(n)) ≥
∑
p|n

(σ0 (ordp(n) + 1)− 1) ≥ ω(n),

where σ0(n) counts the number of positive divisors of n.

Proceeding in another direction, we know from previous discussion that a solution

to τ(n) = ±ℓm can be used to produce an integral point on one of finitely many
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explicitly determined algebraic curves. Using this procedure, we can find all integral

points on these curves and then determine by reversing this process whether that

point induces a solution τ(n) = ±ℓm. Using various techniques in effective algebraic

geometry, we obtain the following theorem.

Theorem 1.24. We have for all n > 1 that

τ(n) ̸∈ {±3,±5,±7,±13,±17,−19,±23,±37,±691}.

Remark 1.25. We add the following comments to this theorem.

1. If we assume the generalized Riemann hypothesis, additional values can be ruled

out.

2. The case ±691 requires additional input from the special congruence satisfied by

τ(n) modulo 691.

The last major result cannot be phrased in terms of τ(n) alone, because it requires

that we allow the weight of the newform to vary. Previous results, when framed in

their fully general context, show that for a given newform f of weight k with integer

Fourier coefficients af (n), there are only finitely many solutions to equations of the

form af (n) = ±ℓm for odd primes ℓ and m ≥ 1. This last theorem moves the weight

k instead of the coefficient n.

Theorem 1.26. Let ℓ be an odd prime and m ≥ 1 an integer. Then there exists an

effectively computable constants M±(ℓ,m) = Oℓ(m) such that ±ℓm is not a coefficient
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of any such newform f of weight 2k > M±(ℓ,m) with integer coefficients, trivial mod

2 Galois representation, and even level coprime to ℓ.

Many results have followed this work, particularly discussing generalizations of

the first three results. For examples, see [2, 3, 13, 17, 49, 68, 74]. Most notably, in

[17] it is shown that τ(n) ̸= ±ℓm for any odd primes 3 ≤ ℓ < 100 and any positive

integer m.

These results are proved using the theory of newforms, the theory of Lucas se-

quences, and effective algebraic geometry. In particular, the theory of newforms gives

a connection between τ(n) and Lucas sequences, where a theorem of Bilu, Hanrot,

and Voutier [20] on primitive prime divisors gives a method of determining the exact

locations where solutions τ(pm) = ℓm are allowed to occur. Once these locations are

determined, the recurrence relations for Lucas sequences are used to show that any

solution τ(n) = ℓm corresponds to some point on a finite family of algebraic curves of

large genus. We then compute all points on these curves using a variety of methods.
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Chapter 2

Background

2.1 Partitions: Combinatorial Aspects

2.1.1 Single-variable generating functions

As mentioned in Chapter 1, the first fundamental contribution to the theory of par-

titions is undoubtedly due to Euler, who introduced the tool of generating functions

(as defined by Abraham de Moivre) to the theory. Given a sequence {an}n≥0, the

generating function associated to that sequence is the formal power series

A(x) :=
∑
n≥0

anx
n.

In partition theory, it is customary to use q as the formal variable, although many

older works use x. We also make regular use of the q-Pochhammer symbol, as defined

in (1.1.1), by

(a; q)∞ :=
∞∏
n=0

(1− aqn) .

We will generally use q for this variable. To see how the method works, we consider

the most important theorem of this type coming from Euler’s method. We note here
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that, as usual in partition theory, we let p(0) = 1 (i.e. the empty set denotes the only

partition of 0).

Theorem 2.1. Let p(n) be the partition function. Then we have as formal power

series the identity

P (q) :=
∑
n≥0

p(n)qn =
∞∏
n=1

1

(1− qn)
= (q; q)−1

∞ .

Furthermore, the function P (q) is analytic for values q ∈ C such that |q| < 1.

Proof. The main tool is the well-known geometric series identity

1

1− qn
= 1 + qn + q2n + q3n + · · · =

∑
k≥0

qkn.

If this identity is taken as one of formal power series it is simply true; if we interpret

each side as functions of a complex variable, we have to assume |q| < 1. Now, we

may expand

∞∏
n=1

1

1− qn
=

∞∏
n=1

∞∑
k=0

qkn =
∑

k1,k2,···≥0

qk1+2k2+3k3+···.

The ki should be understood as corresponding to the k in the middle expression, and

the constants 1, 2, 3, . . . correspond to the range of values of n. Now, given a partition

λ ∈ P , we may write |λ| = m1(λ) + 2m2(λ) + 3m3(λ) + . . . , where mi(λ) denotes

the number of times i is repeated in λ. Since the family of values {mi(λ)} uniquely

determines the underlying partition, we have

∑
k1,k2,···≥0

qk1+2k2+3k3+··· =
∑
λ∈P

q|λ| =
∑
n≥0

p(n)qn.

This completes the proof.
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Once this technique is understood, the proofs can be made much shorter. Really,

the essence of the proof is that

∞∏
n=1

1

1− qn
=

∞∏
n=1

(
1 + qn + qn+n + qn+n+n + · · ·

)
=
∑
n≥0

p(n)qn,

where the first equality is by geometric series and the second comes from interpreting

the term selected from each geometric series denote a multiplicity of a part. Euler

used this kind of thinking to great effect, and ever since his time this method has

been indispensable in partition theory, as we will see throughout the remainder of the

chapter and the thesis.

We will use as a further example of this method a famous theorem of Euler and

a generalization of it which we shall require later.

Definition 2.2. Let k ≥ 2 be an integers. A partition into parts which are repeated

at most k − 1 times is called a k-distinct partitions, and a partition in which no part

is a multiple of k is called a k-regular partition.

The most basic examples of this are the cases k = 2. We call a 2-distinct partition

simply a distinct partition, as it is by definition a partition all of whose parts are

distinct. We call a 2-regular partition an odd partition, as it is a partition into all of

whose parts are odd. One of the foundational theorems of Euler which demonstrates

the power of generating functions is the following:

Theorem 2.3 (Euler, Glaischer). For all n ≥ 0, the number of odd partitions of

n is equal to the number of distinct partitions of n. More generally, the number of
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k-distinct partitions of n equals the number of k-regular partitions of n.

Proof. Euler’s case, i.e. k = 2, follows from the algebraic identity

∞∏
n=1

1

(1− q2n−1)
=

∞∏
n=1

(1− q2n)

(1− qn)
=

∞∏
n=1

(1 + qn) ,

along with the fact that by thinking with Euler’s methodology for generating functions

the left side counts partitions into odd parts and the right side counts partitions into

distinct parts. The more general case, often referred to as Glaischer’s Theorem, has

a similar style of proof which flows from the equation

∏
n≥1
k̸|n

1

1− qn
=

∞∏
n=1

(
1− qkn

)
(1− qn)

=
∞∏
n=1

(
1 + qn + q2n + · · ·+ q(k−1)n

)
.

This completes the proof.

During this proof, we obtained the generating function identity

∑
n≥0

pk(n)q
n =

(
qk; qk

)
∞

(q; q)∞
, (2.1.1)

where pk(n) denotes the number of k-regular (or k-distinct) partitions of n. Results

such as these are the prime examples of Euler’s methodology, but we shall see later

that the method Euler developed is even more general than this.

2.1.2 Partition statistics and two-variable generating func-

tions

As early as the original works of Euler on partition theory, a central thread in the

theory concerns studying intrinsic combinatorial properties exhibited by partitions.
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The most basic of these is the number of parts. For a partition λ = (λ1, λ2, . . . , λr)

with each λi ≥ 1, we may define a number-of-parts function ℓ(λ) = r. We may view ℓ

as a function ℓ : P → Z. The theory of partition statistics may be roughly defined as

the study of functions on the set P into some natural space, like Z, that track some

combinatorial feature of interest. Some famous examples of partition statistics that

may be expressed as maps P → Z include size, number of parts, the rank [53], and

the crank [6].

Many partition statistics, or more broadly maps between sets of partitions, are

most naturally expressed in terms of a sort of geometric method of representing

partitions. The standard way of thinking geometrically about a partition is the Ferrers

diagram, in which a partition λ = (λ1, λ2, . . . , λr) is represented as a left-aligned

collection of boxes in which the ith row as λi boxes. These diagrams were seen

in Section 1.3. We may also view the hook numbers of Section 1.3 as a variation

on partition statistics, more specifically as a function that takes a partition λ to a

multiset of size |λ|, or alternatively to an element of Zn.

One of the central types of results which enter into the theory of partition statistics

are so-called two-variable generating functions; these typically track the size of a

partition in one variable and the partition statistic in a second variable. We shall go

back to Euler’s very first paper in partition theory to see how this works in the case

of parts of a partition. As mentioned in Chapter 1, this paper of Euler was dedicated

to resolving several counting questions of Naudé [55]. We shall consider one of these
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to demonstrate a more general formulation of the methodology of Section 2.1.1. One

of Naudé’s questions is the following:

Question. How many partitions of 50 are there into seven distinct parts?

To frame this algebraically, let d(m,n) denote the number of ways to partition

n into m distinct parts. Naudé’s question is to evaluate d(7, 50). The answer, as

proven by Euler, is d(7, 50) = 522, which is too large to be reasonably calculated by

enumerating all 522 examples. Euler’s method relied on generating functions, but not

precisely the type discussed in Section 2.1.1. Euler instead constructs a two-variable

generating function

∑
m,n≥0

d(m,n)zmqn

which simultaneously keeps track of both the size of partitions and the number of

parts in the partitions. The basic idea here is that the exponent of z should keep

track of individual parts while ignoring their size, while the exponent of q should play

a role just like in Section 2.1.1. Using the modern q-Pochhammer symbol, Euler’s

observation was that

∑
m,n≥0

d(m,n)zmqn = (zq; q)∞ =
∞∏
n=1

(1 + zqn) .

Euler did not expand this infinite product by hand in order to calculate d(7, 50).

Instead, he leveraged algebra. Using the immediate observation

∑
m,n≥0

d(m,n)zmqn = (1 + zq)
∞∏
n=2

(1 + zqn) = (1 + zq)
∞∏
n=1

(1 + (zq)qn) ,
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Euler derived a functional equation from this generating function that leads to the

recurrence relation d(m,n) = d(m,n−m) + d(m− 1, n−m). This gave him a much

quicker method for calculating values of the functions d(m,n), and it isn’t too difficult

even by hand to show that d(7, 50) = 522 using this method.

Remark 2.4. It should be noted that partition recurrences played a central role in

partition theory, and in particular for computing large values of partition functions.

In fact, one of the fastest ways to compute a table of values for p(n) is to use Euler’s

pentagonal number theorem

(q; q)∞ = 1 +
∞∑
n=1

(−1)n
(
q

n(3n+1)
2 + q

n(3n−1)
2

)
to prove the recurrence relation

p(n) =
∑

k∈Z\{0}

(−1)k+1p

(
n− k(3k + 1)

2

)
.

This remains to this day a very efficient method for computing tables of values of

p(n).

We now move to a more general setting, whereby we wish to combine the area of

partition statistics with the area of generating functions. To this aim, let s : P → Z

be a partition statistic, and let ps(m,n) be the number of partitions λ of n such that

s(λ) = m. It is generally desirable to compute generating functions of the form

∑
λ∈P

zs(λ)q|λ| =
∑
n≥0
m∈Z

ps(m,n)z
mqn.
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One could also replace the family P with some other family of partitions, say the

collection of partitions into distinct parts.

There are many problems about partition statistics that may be addressed in a

natural way from the framework of two-variable generating functions. One of the

most immediate would be to calculated the limiting behavior of the average of the

partition statistic s, or equivalently to study asymptotics for s(n) :=
∑

λ⊢n s(λ). The

framework of two-variable generating functions makes this fairly straightforward. If

we let S(q) =
∑

n≥0 s(n)q
n, then it is immediate from calculus that

S(q) =
∂

∂z

∣∣∣∣
z=1

∑
λ∈P

zs(λ)q|λ| =
∂

∂z

∣∣∣∣
z=1

∑
n≥0
m∈Z

ps(m,n)z
mqn.

This can be used, for instance, to count the number of parts that appear amongst all

partitions of n, as the following proposition demonstrates.

Proposition 2.5. For λ ∈ P, let ℓ(λ) denote the number of parts of λ, p(m,n) the

number of partitions of n into exactly m parts, and L(n) =
∑

λ⊢n ℓ(λ). Then we have

the generating function identities

∑
m,n≥0

p(m,n)zmqn = (zq; q)−1
∞

and

∑
n≥0

L(n)qn = (q; q)−1
∞

∑
m≥1

qm

1− qm
.

Proof. The proof of the first generating function follows along the same lines as Eu-

ler’s solution to Naudé’s problem. The second follows by taking derivatives. From



52

definitions it is clear that L(n) =
∑

m≥0mp(m,n), so we have

∑
n≥0

L(n)qn =
∂

∂z

∣∣∣∣
z=1

∞∏
n=1

1

(1− zqn)
=
∑
m≥1

qm

(1− qm)2

∏
n̸=m

1

(1− qn)

= (q; q)−1
∞

∑
m≥1

qm

1− qm
.

This completes the proof.

We will see generating functions much like this one in Chapter 3, with some

modifications. The proofs there will be more in the classical spirit of Euler, with no

derivatives present, but the same proofs can be done with derivatives.

Another natural question which we can study using two-variable generating func-

tion is the question of the distribution of s(λ) among residue classes. More precisely,

let us define

ps(a, b;n) = #{λ ⊢ n : s(λ) ≡ a (mod b)}.

It is clear that

ps(0, b;n) + ps(1, b;n) + · · ·+ ps(b− 1, b;n) = p(n), (2.1.2)

and it is therefore natural to consider the distribution of values of ps(a, b;n) as n→ ∞

as a varies. Two natural questions arise in this context. One, are there arithmetic

progressions ℓn+ r for which

ps(0, b; ℓn+ r) = ps(1, b; ℓn+ r) = · · · = ps(b− 1, b; ℓn+ r) (2.1.3)
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for all n? If so, then by (2.1.2) this induces a congruence

p(ℓn+ r) ≡ 0 (mod b).

There is a way to establish this kind of congruence using the two-variable generat-

ing function for ps(m,n). This idea is used for example in Garvan’s famous paper on

vector cranks [56, Lemma 2.2], which established simultaneously all three of Ramanu-

jan’s congruences for p(n) and led to the Andrews-Garvan crank [6]. These papers

have given birth to an entire field of crank statistics that give combinatorial witness

to partition-theoretic congruences for a variety of congruence functions. One such

paper by Bringmann, Gomez, Rolen and Tripp [24], which explores cranks for colored

partition functions via the theory of theta blocks, lays out this principle in a very

general form. In particular, Lemma 2.1 of [24] implies that equalities like (2.1.3) are

equivalent to the divisibility of the Laurent polynomial
∑

m∈Z ps(m,n)z
m by cyclo-

tomic polynomials. Equivalently, this is equivalent to such polynomials vanishing at

z = ζb := e
2πi
b for suitable choices of n. This principle stands at the heart of much of

the modern developments on crank functions, and thus on partition congruences.

The principle that lies behind this application is, however, actually much more

broad than this. The principle extends far beyond partition theory to other areas of

number theory. In fact, the principle at play here is really an orthogonality relation.

In the setting of roots of unity, the orthogonality relation says that if ζb := e
2πi
b for



54

b ≥ 2, then

1

b

b−1∑
k=0

ζkmb =


1 m ≡ 0 (mod b),

0 otherwise.

(2.1.4)

One of the major takeaways from the proof of famous results like Dirichlet’s theorem

on primes in arithmetic progressions is that orthogonality relations for bth roots of

unity (or Dirichlet characters modulo b) are the correct device for creating indicator

functions for residue classes modulo b. In a partition-theoretic context, what this

means is that the generating functions for ps(a, b;n) are obtainable via orthogonality

from the two-variable generating function for ps(m,n).

Proposition 2.6. Let S(z, q) :=
∑
λ∈P

zs(λ)q|λ| and let ζb := e
2πi
b for any integer b ≥ 2.

Then we have for 0 ≤ a < b that

∑
n≥0

ps(a, b;n)q
n =

1

b

b−1∑
k=0

ζ−ak
b S(ζkb ; q).

Proof. From (6.2), it may be easily deduced that

1

b

b−1∑
k=0

ζ
(m−a)k
b =


1 m ≡ a (mod b),

0 otherwise.

On this basis, we have

1

b

b−1∑
k=0

ζ−ak
b S(ζkb ; q) =

1

b

∑
λ∈P

q|λ| ·
b−1∑
k=0

ζ
(s(λ)−a)k
b =

∑
n≥0

ps(a, b;n)q
n,

which completes the proof.

This proposition plays a central role in Chapters 5 and 6.
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2.2 Modular Forms

Modular forms are holomorphic (or sometimes meromorphic) functions that satisfy

certain nice transformation laws when acted on by the modular group SL2(Z) or one

of its subgroups. Modular forms are very important objects in many areas of mathe-

matical study. Historically, modular transformation laws played central roles in Rie-

mann’s functional equation for the zeta function [101] and in the Hardy-Ramanujan-

Rademacher circle method [69, 95]. In more modern times, modular forms are crucial

in the famous proof of Fermat’s last theorem and play a central role in the work on

sphere packings [37, 110] which earned a Fields medal in 2022 for Maryna Viazovska.

The subject of this section is to give suitable definitions for modular forms and to

give some important examples and properties exhibited by spaces of modular forms.

2.2.1 SL2(Z) and congruence subgroups

The modular group SL2(Z) is the group of all two by two integer matrices whose

determinant is 1. The modular group acts in a natural way on the upper half plane

H, but this action is best studied at first from a geometric perspective. In particular,

this action is inherited from the larger group SL2(R) by Möbius transformations; that

is, a matrix γ = ( a b
c d ) ∈ SL2(R) acts on points z ∈ H by γz = az+b

cz+d
. This action is

isometric with respect to the hyperbolic metric ds2 = y−2 (dx2 + dy2).

The action of SL2(Z) on H by Möbius transformations is discontinuous, i.e. the

orbits have no limit points. Thus, we can define a quotient space F := H/SL2(Z),
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which we call the fundamental domain of this action, which is a surface containing

exactly one representative from each orbit. In fact, this surface is a Riemann surface

that has genus zero when compactified, and the points on this surface parameterize

complex elliptic curves via the modular j-function.

The first examples of modular forms will be functions which have nice transfor-

mation laws when acted on by elements of SL2(Z). However, in many contexts we

are required to restrict ourselves to certain subgroups of SL2(Z) called congruence

subgroups. A congruence subgroup of level N is a subgroup Γ ≤ SL2(Z) that contains

the subgroup

Γ(N) :=


a b

c d

 ∈ SL2(Z) :

a b

c d

 ≡

1 0

0 1

 (mod N)

 .

The subgroups Γ(N) are called the principal congruence subgroups. These are the

kernels of the reduction maps SL2(Z) → SL2(Z/NZ), and are thus normal subgroups

of finite index in SL2(Z). The two examples with which we will be most concerned

are

Γ0(N) :=


a b

c d

 ∈ SL2(Z) :

a b

c d

 ≡

∗ ∗

0 ∗

 (mod N)


and

Γ1(N) :=


a b

c d

 ∈ SL2(Z) :

a b

c d

 ≡

1 ∗

0 1

 (mod N)

 ,

where in each case the ∗ signifies that any residue class is allowed. Since these each

contain Γ(N), they also have finite index in SL2(Z) and their indexes can be computed
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without too much difficulty. As with the modular group, each congruence subgroup

Γ acts on H by Möbius transformations and induces a quotient space which is a

Riemann surface. These surfaces are compactified by adding the “cusps”. One way

of writing this is that the compactification of the Riemann surface H/Γ is the space

(H ∪Q ∪ {i∞}) /Γ, where the action of γ = ( a b
c d ) on i∞ is taken to be a

c
. Because

these groups have finite index, the number of equivalence classes of cusps (which by

abuse of notation we refer to as cusps) is finite.

2.2.2 Definition and examples

We may now define a modular form. Throughout this section, we let N ≥ 1 be an

integer, k any integer, and χ a Dirichlet character modulo N . The most basic case

of modular forms, which we consider first, arise from the case N = 1 and χ = 1. To

define a modular form, we define an operator called the weight k slash action, which

is a group action of SL2(R) on functions f : H → C and is defined for γ = ( a b
c d ) by

(f |kγ) (z) = (det γ)
k
2 (cz + d)−k f(γz).

Definition 2.7. A holomorphic function f : H → C is called a modular form of

weight k on SL2(Z) if

1. f is invariant under the action of |k; that is, if (f |kγ) = f for all γ ∈ SL2(Z).

2. f has a Fourier expansion near infinity of the form

f(q) =
∞∑
n=0

anq
n
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in the variable q = e2πiz.

This definition may be immediately generalized or refined in a variety of ways.

One such family are the weakly holomorphic modular forms, which satisfy (1) and

have finite principal parts in their Fourier expansions; i.e. f may be meromorphic at

the cusps of H. A similar refinement are the cusp forms, which satisfy (1) but have

a0 = 0. Many modular forms, particular in the theory of Borcherds products, may

be meromorphic functions on H. There is a theory of half-integral weight modular

forms as well, which include functions like η(τ), which requires an altered version of

(1).

Another kind of generalization involves generalizing to congruence subgroups and

allowing a twist by Dirichlet characters. Here, we say that a holomorphic function f

on H is a modular form on a congruence subgroup Γ of weight k and Nebentypus χ if

it has a transformation law

f (γz) = χ(d) (cz + d)k f(z)

for any γ = ( a b
c d ) and that have Fourier expansions near every cusp of Γ analogous

to those for modular forms on SL2(Z), but in a different uniformizing variable q that

takes on the value 0 at the cusp. We denote the space holomorphic modular forms

on Γ of weight k and Nebentypus χ by Mk(Γ, χ). If there is no Nebentypus, we write

Mk(Γ), and if we wish instead to consider a space of cusp forms we write Sk(Γ, χ) or

Sk(Γ), respectively.
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To give some understanding of the theory, it is useful to give examples. Some

we have already seen in Chapter 1 include Dedekind’s eta function η(τ), which is

a modular form of weight 1
2
and “multiplier system” on SL2(Z) (multiplier system

is a generalization of Nebentypus which we will not need). For the sake of brevity,

we shall now focus on summarizing the theory of integer weight modular forms on

SL2(Z).

2.2.3 Modular forms of integer weight on SL2(Z)

This section gives an overview of the classification of modular forms on all of SL2(Z)

with integer weight. The fundamental examples in this scenario are the Eisenstein

series of weight k, defined for k ≥ 4 by

Ek(z) =
1

2ζ(k)

∑
c,d∈Z\{(0,0)}

1

(cz + d)k
.

Note that this sum vanishes identically if k is odd and does not converge absolutely

unless k > 2; we therefore restrict ourselves to even integers k ≥ 4. Because of the

properties of the weight k slash action, to prove that Ek is modular of weight k we

need only prove this for a set of generators for SL2(Z), which is furnished by the

matrices T = ( 1 1
0 1 ) and S = ( 0 −1

1 0 ). To say Ek is invariant under the action of |kT is

to say that Ek(z + 1) = Ek(z), i.e. that Ek(z) is periodic, and invariance under |kS

means that Ek

(
−1

z

)
= zkEk(z). The later is proven

Ek

(
−1

z

)
=
∑
c,d

1(
− c

z
+ d
)k =

∑
c,d

zk

(dz − c)k
= zkEk(z),
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since the change cz + d 7→ dz − c merely permuted the order of summands in an

absolutely convergent series. Periodicity also follows by showing z 7→ z + 1 merely

reorders summands.

The Fourier series is calculated as follows. By using the logarithmic derivative

of the product expansion of sin(πz) and identities for sine and cosine in terms of

complex exponentials, we have

πi+
2πi

e2πiz − 1
= π cot (πz) =

1

z
+
∑
n≥1

(
1

z + n
+

1

z − n

)
.

Now, if we interpret the ratio on the right hand side in terms of geometric series and

differentiate k times with respect to z we obtain

∑
n∈Z

1

(z + n)k
=

(2πi)k

(k − 1)!

∑
n=1

nk−1e2πinz.

Replacing z with mz and q = e2πiz and summing over m while ignoring the pair

(m,n) = (0, 0),

∑
n∈Z
m≥1

1

(mz + n)k
=

(2πi)k

(k − 1)!

∞∑
m=1

∑
n∈Z

nk−1qmn =
(2πi)k

(k − 1)!

∑
n≥1

σk−1(n)q
n,

where σk(n) :=
∑
d|n
dk is the standard divisor sum function. When the sums for n ∈ Z,

m ≤ −1 and m = 0, n ̸= 0 are accounted for, we obtain

2ζ(k)Ek(z) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∑
n≥1

σk−1(n)q
n = 2ζ(k)

(
1 +

2k

Bk

∑
n≥1

σk−1(n)q
n

)
,

and thus

Ek(z) = 1 +
2k

Bk

∑
n≥1

σk−1(n)q
n.
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After defining these examples of modular forms, one would like to compute the

spaces Mk := Mk (SL2(Z)) and Sk := Sk (SL2(Z)). The key principle which aids in

this process is the so-called valence formula, which is a zero-counting principle for

modular forms. The idea that for a modular form f(z) of weight k, one may study

its zeros and poles via the argument principle. Let

F = {z ∈ H : −1

2
≤ Re(z) ≤ 1

2
, |z| ≥ 1} ∪ ({i∞} ∪Q) / ∼

be the fundamental domain of f(z) with the cusp at i∞ adjoined. The quotient is

calculated by identifying points which are in the same SL2(Z)-orbit, which for example

identifies the lines Re(z) = ±1
2
and all the cusps {i∞} ∪ Q. In its natural topology

this space is compact, and so by analysis f(z) has only finitely many zeros and poles

in this region. By leveraging the modular transformation laws in various ways and

using standard contour integration techniques, one may show that any modular form

f(z) of weight k which is holomorphic on F satisfies the relation

vi∞(f) +
vi(f)

2
+
vρ(f)

3
+
∑
z ̸≡i,ρ

vx(f) =
k

12
,

where ρ = e
2πi
3 , vx(f) denotes the order of vanishing of f at x, and the sum takes

places over point in F not equivalent to i or ρ modulo the action of SL2(Z). This

formula can be leveraged to calculate the dimensions of spaces of modular forms. We

see how this plays out in the following theorem, which completely classifies the spaces

Mk and Sk for integral values of k. For this theorem, we need the Delta function ∆(z),



62

which is defined by

∆(z) =
E2

6 − E3
4

1728
.

Theorem 2.8. Let k ∈ Z. Then the following are true:

(1) If k < 0 or k is odd, then Mk = Sk = ∅.

(2) M0 = C, S0 = {0} and M2 = S2 = {0}.

(3) If k = 4, 6, 8, 10, then Mk = CEk.

(4) If k ≥ 4 is even, multiplication by ∆ induces an isomorphism Mk−12 → Sk.

Proof. Suppose f ∈Mk for some k ∈ Z. Then by the valence formula, there must be

a solution to the system

a+
b

2
+
c

3
+
∑
z ̸≡i,ρ

dk =
k

12
,

where a = vi∞(f), b = vi(f), c = vρ(f), and dx = vx(f). It is straightforward to derive

(1) from the fact that a, b, c, dx ≥ 0 must be integers.

We proceed with some observations about Eisenstein series. Since E4 ∈ M4, the

only possible solution to this system is a = b = dx = 0 and c = 1, and therefore

E4(ρ) = 0 is the only zero of E4 modulo the group action. Similarly, E6(i) = 0 is the

only zero of E6 modulo the group action. From definitions we also have ∆(i),∆(ρ) ̸=

0, and so ∆(i∞) = 0 follows from ∆ ∈ S12.

Now, if f ∈Mk−12, then it is clear that f∆ ∈Mk, and in fact by checking Fourier

expansions that f∆ ∈ Sk. Furthermore, if f, g ∈ Mk−12 such that f∆ = g∆, then
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noting the fact just proven that ∆ ̸= 0 on F\{i∞} readily implies f = g, so we

obtain an injective map Mk−12 → Sk. Similarly, given f ∈ Sk we may show that

f/∆ ∈Mk−12 using the same non-vanishing assumption, so we have an isomorphism.

It remains only to compute the dimensions of the spaces M4,M6,M8, and M10.

It is clear from computing Fourier expansions that Mk = Sk ⊕ CEk, and the valence

formula implies that ∆ is the lowest weight cusp form, so S4 = S6 = S8 = S10 = ∅,

and so each of M4,M6,M8,M10 is one-dimensional, which completes the proof.

We observe that from this theorem, one may quickly derive that the isomorphism

of graded algebras

⊕
k∈Z

Mk
∼= C[E4, E6].

by comparing dimensions.

2.2.4 Hecke operators, eigenforms and Atkin-Lehner new-

forms

We have shown in the previous section thatMk and Sk are finite-dimensional complex

vector spaces. More generally, the Riemann-Roch theorem has been used to compute

the dimensions of the spaces Mk(Γ0(N), χ) and Sk(Γ0(N), χ) for integers N ≥ 1 and

Dirichlet characters χmodulo N [36]. After learning how to compute the dimension of

spaces of modular forms, one of the next natural directions to seek out is a canonical

basis of some kind that has nice properties. By fairly straightforward arguments, the
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spaces Mk(Γ0(N), χ) decomposes as

Mk(Γ0(N), χ) ∼= Sk(Γ0(N), χ)⊕ Ek(Γ0(N), χ),

where Ek(Γ0(N), χ) is the so-called space of Eisenstein series. As it turns out, the full

space of Eisenstein series is relatively easy to explicate in terms of the cusps of the

Riemann surface H/Γ0(N), and so the problem of computing a basis there is not as

interesting for our purposes. We are concerned now with the problem of computing

an interesting basis for Sk(Γ0(N), χ).

Before discussing generalities, we will discuss some of the history which motivated

the discovery of the theory of newforms. The first nontrivial space of cusp forms with

level one is the space S12(Γ0(1)), which is generated by

∆(z) = q
∞∏
n=1

(1− qn)24 =:
∑
n≥1

τ(n)qn,

we call the coefficients τ(n) Ramanujan’s τ -function. In [96], Ramanujan endeavors

to understand the basic properties of this function. In particular, he conjectures that

τ(n) is a multiplicative function of n, so that τ(mn) = τ(m)τ(n) for m,n coprime,

and that for any prime p and m ≥ 1 we have a recurrence relation

τ(pm+1) = τ(p)τ(pn)− p11τ(pn−1).

These conjectures were proven by Mordell [83], but Hecke later demonstrated that

Ramanujan’s observation runs much deeper. What Hecke discovered is that ∆(z) is

merely the first example of an entire theory of eigenforms. Hecke’s major discovery
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was the family of Hecke operators T (n). To define these, we fix for the rest of the

section a space Mk(Γ0(N), χ). The nth Hecke operator T (n) on this space acts on

f(z) =
∑

n≥1 a(n)q
n ∈Mk(Γ0(N), χ) by

T (n)f(z) =
∑
n≥1

b(n)qn, b(n) =
∑

d| gcd(n,N)

χ(d)dk−1a
(mn
d2

)
.

These operators are constructed by summing over cosets of the action of determinant

n matrices on Γ0(N). Hecke showed that these operators have many nice properties.

For instance, we have T (mn) = T (m)T (n) = T (n)T (m) for all m,n coprime, and for

primes p and m ≥ 1 we have a recurrence relation

T (pm+1) = T (p)T (pm)− pk−1T (pm−1).

These operators are also Hermitian with respect to the Petersson inner product,

which we will not need here. As it natural in linear algebra, we consider eigenvectors

of the Hecke operators. In particular, say f ∈ Mk(Γ0(N), χ) is an eigenform if

it is an eigenvector of every Hecke operator. If we choose a normalized eigenform

f(z) =
∑

n≥1 af (n)q
n ∈ Sk(Γ0(N), χ), then we can show using the formulas above

that af (n) is the eigenvalue of f when hit by the operator T (n). In this setting,

because of the relations satisfied by the Hecke operators, any eigenform automatically

has multiplicative coefficients and the values af (p
m) satisfy recurrence relations.

Hecke’s theory is able to demonstrate on its own that Mk always has a basis of

eigenforms. Issues arise in more general cases, because only those Hecke operators

T (n) with gcd(n,N) = 1 behave nicely at first glance; the kinds of arguments used
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by Hecke are able to demonstrate only that Mk(Γ0(N), χ) has a basis of functions

that are eigenvalues of all Hecke operators T (n) of this special type.

To resolve this deficiency, Atkin and Lehner developed the theory of newforms

in [8] (see also [35]). They first develop a theory of Hecke operators for the spaces

Sk(Γ0(N), χ), and show that a basis can be found for all these spaces consisting of

eigenforms of all the Hecke operators. Within this framework, they isolate within

Sk(Γ0(N), χ) into two spaces, one of which is generated by eigenforms that arise

from spaces Sk(Γ0(N/d), χ), which they call the space of oldforms, and the space

of newforms which is orthogonal to it with respect to the Petersson inner product,

and that the spaces generated by the newforms and oldforms give Sk(Γ0(N), χ) are

a direct sum. Finally, the space of oldforms may be generated by elements which are

newforms with respect to other levels.

The theory of newforms is rich and, as newforms form a basis of all cusp forms, is

a central tool for studying the vector spaces Sk(Γ0(N), χ). We will only require the

theory of newforms in Chapter 8, we will defer the statement of relevant results until

that time (see Theorem 8.9).
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2.3 Partitions: Analytic Aspects

2.3.1 The circle method

In the introduction, we have mentioned results of Hardy, Ramanujan, and Rademacher

about the size of p(n). The monumental breakthrough of Hardy and Ramanujan in

[69] was, to repeat (1.2.1), that

p(n) ∼ 1

4n
√
3
eπ
√

2n
3

as n → ∞. We now wish to give a rough outline of the style of thought which leads

to this result.

We now give a rough outline of the ideas of Hardy, Ramanujan, and Rademacher;

for a more detailed account, see Apostol’s excellent account in [7].

The starting point of the argument is Euler’s generating function

P (q) :=
∑
n≥0

p(n)qn =
∞∏
n=1

1

(1− qn)
.

We now view P (q) as a complex analytic function in the variable q. The representation

of P (q) as an infinite product converges absolutely for |q| < 1. One can also see that

at each root of unity ζ, an infinite number of terms in this infinite product have a pole

at ζ; thus P (q) has essential singularities at each root of unity. Standard complex

analysis therefore shows that the region |q| < 1 is the largest on which P (q) may be

considered.
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By Cauchy’s theorem, we may represent p(n) by the contour integral

p(n) =
1

2πi

∫
C

P (q)

qn+1
dq,

where C is any circle, oriented counterclockwise, centered at q = 0 and having radius

0 < r < 1. This is a “formula” for p(n), but is not of any use until one has some kind

of idea how to evaluate it.

The insight of Hardy and Ramanujan, very briefly summarized, is that the size

of P (q) on C can be deduced from the essential singularities at each q = ζhk := e
2πih
k

by means of modular transformation laws. More specifically, we break up the circle

C into arcs Ch,k centered at ζhk , where
h
k
runs through the set of rational numbers

0 ≤ h
k
< 1 in reduced form with denominator bounded by some integer N ≥ 1. We

then rewrite the “Cauchy formula” for p(n) as a finite sum,

p(n) =
∑

0≤h<k≤N
gcd(h,k)=1

1

2πi

∫
Ch,k

P (q)

qn+1
dq.

The idea at this stage is to understand the size of P (q) as q → ζhk . This is achieved

via the modular transformation law of Dedekind’s eta function (1.1.2), from which it

may be deduced that if x = ζhk exp
(
−2πz

k2

)
and x′ = ζHk exp

(
−2π

z

)
, where hH ≡ −1

(mod k), then we have the identity

P (x) = eπis(h,k)
√
z

k
exp

( π

12z
− πz

12k2

)
P (x′).

Here s(h, k) is defined as in (1.3.2). Now, in order to obtain an asymptotic result, we

allow the radius r of the circle C to vary with n; more specifically, as n → ∞ we let
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r → 1; this way the arcs Ch,k are approaching the essential singularity at q = ζhk . It

is fairly straightforward to see that as r → 1, we must have z → 0 and so P (x′) → 1

very rapidly. Thus, as q → ζhk we have

P

(
exp

(
2πih

k
− 2πz

k2

))
∼ eπis(h,k)

√
z

k
exp

( π

12z
− πz

12k2

)
=: Ph,k(z).

The idea is now that as n → ∞, Ph,k(z) is a very good approximation of P (q) as

q → ζhk , and so (by tracking details very carefully) we must have a formula like

p(n) ≈
∑
h,k

i

k2
e−

2πinh
k

∫ z2(h,k)

z1(h,k)

Ph,k(z)e
2πnz
k2 dz,

where z1(h, k) and z2(h, k) should be viewed as the endpoints of the arcs Ch,k under

suitable changes of variables.

Hardy and Ramanujan are able to obtain from the above considerations an asymp-

totic series for p(n) by letting n→ ∞ in a suitable manner and keeping track of error

terms. Rademacher is able to use a much stronger approximation of error terms to

force the resulting asymptotic series to actually converge; thus obtaining (1.3.1). The

theme which should be kept in mind, which lies at the heart of the circle method in

any formulation, is that it is the growth rate of P (q) nearby its singularities at roots

of unity (as determined in this case by a modular transformation law) that allow the

estimation of p(n).
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2.3.2 Wright’s variation

Before we proceed, we should mention the idea behind a variation on this line of

thinking, which is due to Wright [113]. This variation has the downside that it is

incapable of producing exact formulas, but the upside that modular transformation

laws are not required.

The heart of any version of the circle method is necessarily reliant upon asymptotic

information of generating functions as |q| → 1. In the circle method as executed

by Hardy-Ramanujan or Wright, each root of unity ζhk produces one term in an

asymptotic series expansion for the coefficients of the generating function (in one

case this asymptotic series diverges, in the other it converges). The idea behind

Wright’s method is that in very general settings, the singularity associated to one

particular root of unity will exhibit a growth rate which rapidly outstrips all other

roots of unity. For the generating function P (q), and in fact for most generating

functions in partition theory, this is the case of q → 1. Intuitively, this is because

q = 1 occurs as a pole more often in the product expansion of P (q) than any other

pole. In scenarios like these, Wright is able to deduce that if we prove which pole is

the “dominant pole” and if we are able to compute an asymptotic expansion of P (q)

nearby this dominant pole, then that would suffice to recover the Hardy-Ramanujan

asymptotic formula for p(n).

We state here one formulation of Wright’s circle method, which will be restated

and proved in Chapter 6. The reader should take time to consider how the hypotheses
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of this result are really statements about a “dominant pole” nearby q = 1.

Theorem 2.9. Suppose that F (q) is analytic for q = e−z where z = x+iy ∈ C satisfies

x > 0 and |y| < π, and suppose that F (q) has an expansion F (q) =
∑∞

n=0 c(n)q
n near

1. Let c,N,M > 0 be fixed constants. Consider the following hypotheses:

(1) As z → 0 in the bounded cone |y| ≤Mx (major arc), we have

F (e−z) = zBe
A
z

(
N−1∑
j=0

αjz
j +Oδ

(
|z|N

))
,

where αs ∈ C, A ∈ R+, and B ∈ R.

(2) As z → 0 in the bounded cone Mx ≤ |y| < π (minor arc), we have

|F (e−z)| ≪δ e
1

Re(z)
(A−κ).

for some κ ∈ R+.

If (1) and (2) hold, then as n→ ∞ we have for any N ∈ R+

c(n) = n
1
4
(−2B−3)e2

√
An

(
N−1∑
r=0

prn
− r

2 +O
(
n−N

2

))
,

where pr :=
r∑

j=0

αjcj,r−j and cj,r :=
(− 1

4
√
A
)r
√
A

j+B+ 1
2

2
√
π

Γ(j +B + 3
2
+ r)

r!Γ(j +B + 3
2
− r)

.

For details of how this approach works, one may consult Wright’s work [113] or

a modern formulation in [87]. One can also see the inner workings of the proof in

Chapters 3, 4, or 6 where we implement various versions of this method.
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Chapter 3

Biases for Parts of Partitions

3.1 Bernoulli and Euler Polynomials

In this section, we recall the famous Bernoulli polynomials Bn(x) and Euler polynomi-

als En(x) and several of their properties we will need later. The generating functions

for these polynomials are given in [88, (24.2.3)] by

∑
n≥0

Bn(x)
tn

n!
:=

text

et − 1
(3.1.1)

and

∑
n≥0

En(x)
tn

n!
:=

2ext

et + 1
.

The Bernoulli numbers Bn are defined by Bn := Bn(0). We require a classical bound

of Lehmer [75] regarding the size of Bernoulli polynomials on 0 ≤ x ≤ 1 (and thus

also a bound for Bernoulli numbers) which says for n ≥ 2 that

|Bn(x)| ≤
2ζ(n)n!

(2π)n
, (3.1.2)
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where ζ(s) :=
∑

n≥1 n
−s is the Riemann zeta function. We recall the fact that B2n+1 =

0 for n > 0 (see [88, (24.2.2)]). We also require the identity

En(x) =
2

n+ 1

[
Bn+1(x)− 2n+1Bn+1

(x
2

)]
, (3.1.3)

which is [88, (24.4.22)].

3.2 Generating functions

This section is dedicated to defining the generating function for Dr,t(n) and an im-

portant factorization of this generating function. Define

Dr,t(q) :=
∑
n≥0

Dr,t(n)q
n.

We also use the standard q-Pochhammer symbol (a; q)∞, which is defined by

(a; q)∞ :=
∏
n≥1

(
1− aqn−1

)
for |q| < 1. Recall that (−q; q)∞ is the generating function for the number of partitions

of n into distinct parts, as each term (1 + qm) appearing in the product dictates

whether a given partition has a part of size m. By a slight modification of this

argument, we obtain Dr,t(q).

Lemma 3.1. We have the generating function identity

Dr,t(q) = (−q; q)∞
∑
k≥0

qkt+r

1 + qkt+r
.



74

Proof. By modifying Euler’s generating function (−q; q)∞ for partitions into distinct

parts, we see that qm

1+qm
(−q; q)∞ is the generating function for partitions into distinct

parts which include m as a part. Furthermore, since all parts are distinct, this is

also the generating function for Dr,t(n). Therefore, summing over m equivalent to r

modulo t yields

Dr,t(q) =
∑
m≥0

m≡r (mod t)

qm(−q; q)∞
1 + qm

= (−q; q)∞
∑
k≥0

qkt+r

1 + qkt+r
.

This completes the proof.

Next we require a brief lemma regarding a natural decomposition of this generating

function, which will be useful for computing asymptotics. Define the functions ξ(q) :=

(−q; q)∞ and Lr,t(q) :=
∑

k≥0
qkt+r

1+qkt+r , so that Dr,t(q) = ξ(q)Lr,t(q). Additionally,

define B(z) := e−z

z(1−e−z)
and E(z) := e−z

1+e−z . This notation is assumed throughout

the remainder of the paper. The importance of the functions B(z) and E(z) comes

from the following series expansions connecting them to Dr,t(q), which we record now

for convenience. Throughout the remainder of the paper, we let Log(z) denote the

principal branch of the logarithm.

Lemma 3.2. Let ξ(q) and Lr,t(q) be defined as above. Then, for q = e−z with

Re(z) > 0, we have

Log
(
ξ
(
e−z
))

= z

(∑
m≥0

B

((
m+

1

2

)
2z

)
−
∑
m≥0

B ((m+ 1) 2z)

)
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and

Lr,t

(
e−z
)
=
∑
k≥0

E
((
k +

r

t

)
tz
)
.

Proof. Expanding Log (ξ(q)) as a Taylor series, we have

Log (ξ(q)) =
∑
n≥1

Log (1 + qn) = −z
∑
m≥1

(−1)mqm

mz (1− qm)
.

For q = e−z, it follows from the definition of B(z) that

Log
(
ξ
(
e−z
))

= z

(∑
m≥0

B

((
m+

1

2

)
2z

)
−
∑
m≥0

B ((m+ 1) 2z)

)
.

This proves the first part of the lemma. The second is an analogous calculation with

E(z) in place of B(z), i.e.

Lr,t

(
e−z
)
=
∑
k≥0

e−(kt+r)z

1 + e−(kt+r)z
=
∑
k≥0

E
((
k +

r

t

)
tz
)
.

This completes the proof.

We also record the Taylor expansions of B(z) and E(z) for later use. From the fact

that z
ez±1

= ze−z

1±e−z the generating function for the Bernoulli numbers Bn is given by

B(z) = 1
z2

− 1
2z

+
∑

n≥0
Bn+2

(n+2)!
zn, and similarly E(z) =

∑
n≥0

en
n!
zn, where en := En(0)

2
.

We note for later that by (3.1.3), we have

en =
1− 2n+1

n+ 1
Bn+1. (3.2.1)

3.3 Euler–Maclaurin summation

This section recalls a not too widely known but very flexible method for computing

asymptotic expansions of infinite sums coming from classical Euler–Maclaurin sum-
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mation. This method has seen a large increase in usage over the last several years.

This thesis alone uses the method in Chapters 3, 4, and 6 in various forms. Outside

of this thesis, good references for its usage are [16, 25, 26, 72, 73]. This formula is par-

ticularly useful for computing the asymptotic growth of products of q-Pochhammer

symbols that don’t have nice modular transformation laws, which to a significant

extent explains its newfound prominence. Zagier [114] gives an excellent exposition

of this method. Since this work, the method has been refined and generalized in a

variety of ways. Because of the existence of many variations that fall under a unified

theme, we provide here a unified treatment which covers many results under one um-

brella. We begin this section by recalling the classical Euler–Maclaurin summation

formula and we show how this formula is used to produce asymptotic formulas. We

close the section with versions of these asymptotic formulas whose error terms are

computed explicitly.

3.3.1 Asymptotic Euler–Maclaurin summation

Recall the classical Euler–Maclaurin summation formula, which says that for inte-

grable functions f(z) on the interval [a, b], we have for any integer N ≥ 1 the formula

b∑
j=a+1

f(j)−
∫ b

a

f(x)dx =
N∑

m=1

Bm

m!

(
f (m−1)(b)− f (m−1)(a)

)
+ (−1)N+1

∫ b

a

f (N)(x)
B̂N(x)

N !
dx,
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where the modified Bernoulli polynomials B̂N(x) are given by B̂N(x) := BN (x− ⌊x⌋),

where ⌊x⌋ denotes the greatest integer less than or equal to x.

A natural extension of this question concerns infinite sums of the form
∑∞

n=1 f(nz)

for complex-valued z. In [114], Zagier gives a wonderful exposition of various methods

by which one might naively try to extract such expansions from asymptotic expansions

of f(z). Here and throughout this thesis we use asymptotic expansion in its strong

sense; that is, we say f(z) ∼
∑∞

n=0 cnz
n if f(z)−

∑N−1
n=0 cnz

n = O(zN) for all N ≥ 1.

Note that not all asymptotic expansions converge. Zagier shows in [114, Proposition

3] how to correcty derive such expansions. As we wish to provide some additional

details that will help with some later proofs, we defer for now the statement of the

formulas1.

We now fix notation which will be used freely for the remainder of the thesis. For

δ > 0, we define Dδ := {z ∈ C : |arg(z)| < π
2
− δ}. Note that if we set z = η + iy

for η > 0, then z ∈ Dδ if and only if 0 < |y| < Mη for some constant M > 0 which

depends on δ. The modified Bernoulli polynomial B̂N(x) is the periodic function

defined by B̂N(x) := BN (x− ⌊x⌋), where ⌊x⌋ is the greatest integer less than or

equal to x. We also use the Hurwitz zeta function ζ(s, x) :=
∑

n≥0
1

(n+x)s
and the

Euler–Mascheroni constant γ. We furthermore set

If :=

∫ ∞

0

f(x)dx

for any function f for which this integral converges. The asymptotic formulas we

1Proposition 3.4 is in fact a modest generalization of what Zagier formally states in [114].
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derive require two types of decay conditions of f(x) at infinity, which we call sufficient

decay and rapid decay. The first holds if f(x) = O
(
x−N

)
as x→ ∞ for some N > 1,

and the later holds if this true for every N > 1. We may now state as a consequence

of the classical Euler–Maclaurin formula the following lemma, which is a slightly

rewritten form of identities appearing in [16, Proposition 2.1], which itself is based

on the aforementioned work of Zagier [114].

Lemma 3.3. Suppose that f(z) is C∞ for z in Dδ for some δ > 0 such that f(z) and

all its derivatives have sufficient decay as z → ∞ in Dδ. Then for any real number

0 < a ≤ 1 and any positive integer N , we have

∑
m≥0

f ((m+ a)z) =
1

z

∫ ∞

az

f(x)dx+
N−1∑
n=0

(−1)nBn+1

(n+ 1)!
f (n)(az)zn

− (−z)N
∫ ∞

0

f (N) ((x+ a)z)
B̂N(x)

N !
dx,

where f (N) ((x+ a)z) is taken to be a derivative with respect to x.

Proof. The proof of [16, Proposition 2.1] implies with a slight change of variable in

the last term that

∑
m≥0

f ((m+ a)z) =
1

z

∫ ∞

az

f(x)dx+
N−1∑
n=0

(−1)nBn+1

(n+ 1)!
f (n)(az)zn

− (−1)N
∫ ∞

0

dN

dxN
[f ((x+ a)z)]

B̂N(x)

N !
dx.

This is equivalent to the stated formula, as evaluating the inner derivatives brings

into view the factor zN in the last term.
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We now state the asymptotic formula of Bringmann, Jennings-Shaffer and Mahlburg,

which is a generalization of [16, Proposition 2.1] and [114, Proposition 3].

Proposition 3.4 ([25, Theorem 1.2]). Suppose 0 ≤ δ < π
2
and that f : C → C is

holomorphic on a domain containing Dδ, in particular containing the origin. Assume

that f(z) and all its derivatives have sufficient decay as z → ∞ in Dδ. Then for

a ∈ R and N ≥ 1 an integer, we have

∑
m≥0

f ((m+ a)z) ∼ If
z

−
∑
n≥0

cn
Bn+1(a)

n+ 1
zn

uniformly as z → 0 in Dδ.

The following proposition is a refinement of Proposition 3.4 where the function

f(z) is allowed to have a pole at the origin. In other words, this extends the conclusion

of Proposition 3.4 to functions f(z) with principal parts Pf (z) with the added property

that f(z)− Pf (z) has sufficient decay at infinity.

Proposition 3.5 ([22, Lemma 2.2]). Let 0 < a ≤ 1 and A ∈ R+, and assume that

f(z) ∼
∑∞

n=n0
cnz

n (n0 ∈ Z) as z → 0 in Dδ. Furthermore, assume that f and all of

its derivatives are of sufficient decay in Dδ. Then we have that

∞∑
n=0

f((n+ a)z) ∼
−2∑

n=n0

cnζ(−n, a)zn +
I∗f,A
z

− c−1

z
(Log (Az) + ψ(a) + γ)

−
∞∑
n=0

cn
Bn+1(a)

n+ 1
zn,

as z → 0 uniformly in Dδ, where

I∗f,A :=

∫ ∞

0

(
f(u)−

−2∑
n=n0

cnu
n − c−1e

−Au

u

)
du.
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Remark 3.6. The proof of this lemma comes from [22] and is joint work with Bring-

mann, Males, and Ono. The results following this proposition are due to the author

and are taken from [41].

Proof. Let h be any holomorphic function on a domain containing Dθ, so that in

particular h is holomorphic at the origin, such that h and all of its derivatives have

sufficient decay, and h(z) ∼
∑∞

n=0 bnz
n as z → 0 in Dθ. Then we have for a ∈ R

∞∑
n=0

h((n+ a)z) ∼ Ih
z

−
∞∑
n=0

bn
Bn+1(a)

n+ 1
zn, (3.3.1)

as z → 0 in Dθ. For the given A, write

f(z) = g(z) +
c−1e

−Az

z
+

−2∑
n=n0

cnz
n, (3.3.2)

which means that

g(z) = f(z)− c−1e
−Az

z
−

−2∑
n=n0

cnz
n.

The final term in (3.3.2) yields the first term in the right-hand side of the lemma.

Since g has no pole, (3.3.1) gives that

∞∑
n=0

g((n+ a)z) ∼ Ig
z
−

∞∑
n=0

cn(g)
Bn+1(a)

n+ 1
zn,

where cn(g) are the coefficients of g. Note that Ig = I∗f,A. We compute that

−
∞∑
n=0

cn(g)
Bn+1(a)

n+ 1
zn = −

∞∑
n=0

(
cn −

(−A)n+1c−1

(n+ 1)!

)
Bn+1(a)

n+ 1
zn.
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Combining the contribution from the second term with the contribution from the

second term from (3.3.2), we obtain

c−1

z

(
∞∑
n=0

e−A(n+a)z

n+ a
+

∞∑
n=1

Bn(a)

n · n!
(−Az)n

)
.

Using [25, equation (5.10)], the term in the parenthesis equals −(Log(Az)+ψ(a)+γ).

Combining the contributions yields the statement of the proposition.

The results of this section are sufficient for Chapter 6, whereas Chapters 3 and 4

require explicit versions of these results.

3.3.2 Effective Euler–Maclaurin summation

This section is dedicated to reproving the results of the previous section with explicitly

computable error terms. This is achieved by simply keeping track of the higher

degree terms that were dropped in the proof of Propositions 3.4 and 3.5. These

two propositions essentially follow from “erasing” higher-order terms in Lemma 3.3.

Therefore, making the error terms in these results effective is essentially a matter of

bookkeeping. These effective error terms become the central tool for implementing

an effective version of Wright’s circle method, which is central to Chapters 3 and 4.

Proposition 3.7. Let f(z) be C∞ in Dδ with power series expansion f(z) =
∑

n≥0 cnz
n

that converges absolutely in the region 0 ≤ |z| < R for some positive constant R, and

let f(z) and all its derivatives have sufficient decay as z → ∞ in Dδ. Then for any
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real number 0 < a ≤ 1 and any integer N > 0,

∣∣∣∣∑
m≥0

f ((m+ a)z)− If
z

+
N−1∑
n=0

cn
Bn+1(a)

n+ 1
zn
∣∣∣∣

≤ MN+1Jf,N+1(z)

(N + 1)!
|z|N +

∑
k≥N

|ck|
(
1 +

k!

10(k −N)!

)
|z|k,

where MN+1 := max
0≤x≤1

|BN+1(x)| and

Jf,N+1(z) :=

∫ ∞

0

∣∣f (N+1) (w)
∣∣ |dw|,

where the path of integration proceeds along the line through the origin and z.

Proof. From Proposition 3.4, we already know that

SN(z) :=
∑
m≥0

f ((m+ a)z)− If
z

+
N−1∑
n=0

cn
Bn+1(a)

n+ 1
zn = ON

(
zN
)
.

It suffices to make this upper bound effective. We use the shorthand

JN+1,a(z) :=

∫ ∞

az

f (N+1) (w)
B̂N+1

(
w
z
− a
)

(N + 1)!
dw,

which is the integral from last term of Lemma 3.3 with a substitution w = (x+ a) z.

By Lemma 3.3, we may write

SN(z) =
−1

z

∫ az

0

f(x)dx+
N∑

n=0

(−1)nBn+1

(n+ 1)!
f (n)(az)zn +

N∑
n=0

cn
Bn+1(a)

n+ 1
zn

− (−z)NJN+1,a(z).

Because 0 < a ≤ 1 and 0 < |z| < R, we have |az| < R and so we may expand

f(x) and its derivatives as power series for 0 ≤ x ≤ |az|. Using these power series
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representations and the absolute convergence of
∫ az

0
f(x)dx, we have

SN(z) = −
∑
k≥0

ck
k + 1

ak+1zk +
N∑

n=0

(−1)nBn+1

(n+ 1)!

∑
k≥0

(k + n)!

k!
cn+ka

kzn+k

+
N∑

n=0

cn
Bn+1(a)

n+ 1
zn − (−z)NJN+1,a(z).

It is already known, for instance by Proposition 3.4, that SN(z) = O(zN), so the

lower-order terms in the above identity necessarily cancel. Thus, we have

SN(z) = −
∑
k≥N

ck
k + 1

ak+1zk +
N∑

n=0

(−1)nBn+1

(n+ 1)!

∑
k≥N−n

cn+k
(n+ k)!

k!
akzn+k

− (−z)NJN+1,a(z).

By taking k 7→ k − n in the second term and rearranging, we obtain

SN(z) =
∑
k≥N

ck

[
− ak+1

k + 1
+

N∑
n=0

1

n+ 1

[
(−1)nBn+1

(
k

n

)
ak−n

]]
zk − (−z)N JN+1,a(z).

We now bound the remaining terms. The integral JN+1,a(z) is bounded trivially

by

|JN+1,a(z)| ≤
MN+1

(N + 1)!
Jf,N+1(z) = ON(1)

since f(z) is bounded near zero and has sufficient decay as z → ∞ in Dδ.

We also have, using Lehmer’s bound (3.1.2) and elementary estimates that for

k ≥ N ,∣∣∣∣∣− ak+1

k + 1
+

N∑
n=0

1

n+ 1

[
(−1)nBn+1

(
k

n

)
ak−n

]∣∣∣∣∣ ≤ ak+1

k + 1
+
ak

2
+ ak

N∑
n=1
n odd

2ζ(n+ 1)n!

an(2π)n+1

(
k

n

)

<
1

k + 1
+

1

2
+
π

6

N∑
n=1
n odd

k!

(2π)n(k − n)!
.
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Since 1 ≤ n ≤ N ≤ k, k!
(k−n)!

< k!
(k−N)!

, and π
6

∑
n≥0

1
(2π)2n+1 <

1
10
,∣∣∣∣∣− ak+1

k + 1
+

N∑
n=0

1

n+ 1

[
(−1)nBn+1

(
k

n

)
ak−n

]∣∣∣∣∣ < 1 +
k!

10(k −N)!
.

Thus,

∣∣∣∣∑
k≥N

ck

[
− ak+1

k + 1
+

N∑
n=0

1

n+ 1

[
(−1)nBn+1

(
k

n

)
ak−n

] ]
zk
∣∣∣∣

≤
∑
k≥N

|ck|
(
1 +

k!

10(k −N)!

)
|z|k.

Combining all bounds completes the proof.

The proposition above shows how Euler–Maclaurin summation can be used to

derive effective asymptotics for certain infinite series involving a function f(z) with

rapid decay at infinity. In analogy with Proposition 3.5, we now show how to derive

explicit bounds for the case of sufficient decay at infinity.

Proposition 3.8. Let f(z) be C∞ in Dδ with Laurent series f(z) =
∑∞

n=n0
cnz

n that

converges absolutely in the region 0 < |z| < R for some positive constant R. Suppose

f(z) and all its derivatives have sufficient decay as z → ∞ in Dδ. Then for any real

numbers 0 < a ≤ 1, A > 0 and any integer N > 0, we have

∣∣∣∣∑
m≥0

f ((m+ a)z)−
−2∑

n=n0

cnζ(−n, a)zn −
I∗f,A
z

+
c−1

z
(Log (Az) + γ + ψ (a))

+
∑
n≥0

c∗n
Bn+1(a)

n+ 1
zn
∣∣∣∣ ≤ MN+1Jg,N+1(az)

(N + 1)!
|z|N +

∑
k≥N

|bk|
(
1 +

k!

10(k −N)!

)
|z|k,

where g(z) := f(z) − c−1e−Az

z
−
∑−2

n=n0
cnz

n, bn := cn − (−A)n+1c−1

(n+1)!
, MN and Jg,N are
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defined as in Proposition 3.7, and

c∗n :=


cn if n ≤ N − 1,

(−A)n+1c−1

(n+ 1)!
if n ≥ N.

Proof. Since

f(z) = g(z) +
c−1e

−Az

z
+

−2∑
n=n0

cnz
n,

then g(z) is holomorphic at z = 0 and has sufficient decay at infinity. Because f(z)

has a Laurent series converging for 0 < |z| < R, it follows that g(z) has a Taylor

series g(z) =
∑∞

n=0 bnz
n which converges for |z| < R. Also note that Ig = I∗f,A by

definition. Therefore, Proposition 3.7 implies for N > 0 that∣∣∣∣∑
m≥0

g ((m+ a)z)−
I∗f,A
z

+
N−1∑
n=0

bn
Bn+1(a)

n+ 1
zn
∣∣∣∣

≤ MN+1Jg,N+1(z)

(N + 1)!
|z|N +

∑
k≥N

|bk|
(
1 +

k!

10(k −N)!

)
|z|k

for z ∈ Dδ with 0 < |z| < R. From the definition of g(z) this becomes∣∣∣∣∣∑
m≥0

[
f ((m+ a)z)− c−1e

−A(m+a)z

(m+ a)z

]
−

−2∑
n=n0

cnζ(−n, a)zn −
I∗f,A
z

+
N−1∑
n=0

bn
Bn+1(a)

n+ 1
zn

∣∣∣∣∣
≤ MN+1Jg,N+1(z)

(N + 1)!
|z|N +

∑
k≥N

|bk|
(
1 +

k!

10(k −N)!

)
|z|k.

By the definition of bn we have

N−1∑
n=0

bn
Bn+1(a)

n+ 1
zn =

N−1∑
n=0

cn
Bn+1(a)

n+ 1
zn −

N−1∑
n=0

(−A)n+1c−1

(n+ 1)!

Bn+1(a)

n+ 1
zn,

and if we adopt the notation

c−1

z
Ha,N(z) :=

c−1

z

(∑
m≥0

e−A(m+a)z

m+ a
+

N−1∑
n=0

Bn+1(a)

(n+ 1)(n+ 1)!
(−Az)n+1

)
,
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it follows that∣∣∣∣∑
m≥0

f ((m+ a)z)−
−2∑

n=n0

cnζ(−n, a)zn −
c−1

z
Ha,N(Az)−

I∗f,A
z

+
N−1∑
n=0

cn
Bn+1(a)

n+ 1
zn
∣∣∣∣

≤ MN+1Jg,N+1(z)

(N + 1)!
|z|N +

∑
k≥N

|bk|
(
1 +

k!

10(k −N)!

)
|z|k.

By [25, Equation 5.10], it is known that

Ha(z) :=
∑
n≥0

e−(m+a)z

m+ a
+
∑
n≥0

Bn+1(a)

(n+ 1)(n+ 1)!
(−z)n+1

satisfies Ha(Az) = −Log(Az)− γ − ψ(a) for any A > 0. Since

Ha,N(Az) = Ha(Az)−
∑
n≥N

Bn+1(a)

(n+ 1)(n+ 1)!
(−Az)n+1,

this completes the proof.

3.4 Statement of Wright’s Circle Method

In this section, we recall a result of Bringmann, Ono, Males, and the author from

[22], which is a variation of the circle method going back to Wright [113]. Wright’s

circle method gives asymptotics for the coefficients of q-series F (q) having a nice

factorization and suitable analytic properties. Given a circle C centered at the origin

with radius less than 1, we define its major arc as that region of C where F (q) is

largest. In our applications, this is given by C1 := C ∩Dδ for δ > 0. The minor arc

of C is then defined by C2 := C\C1. In the circle method, the integral taken over C1

gives the main term for the coefficients of F (q) and the integral over C2 is merely an

error term.
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Here, we recall the version of Wright’s circle method which we will use in the proof

of Theorem 1.2.

Proposition 3.9 ([22, Proposition 4.4]). Suppose that F (q) is analytic for q = e−z

where z = x + iy ∈ C satisfies x > 0 and |y| < π, and suppose that F (q) has an

expansion F (q) =
∑∞

n=0 c(n)q
n near 1. Let N,M > 0 be fixed constants. Consider

the following hypotheses:

(1) As z → 0 in the bounded cone |y| ≤Mx (major arc), we have

F (e−z) = CzBe
A
z

(
N−1∑
j=0

αjz
j +Oδ

(
|z|N

))
,

where αs ∈ C, A,C ∈ R+, and B ∈ R.

(2) As z → 0 in the bounded cone Mx ≤ |y| < π (minor arc), we have

|F (e−z)| ≪δ e
1

Re(z)
(A−κ),

for some κ ∈ R+.

If (1) and (2) hold, then as n→ ∞ we have for any N ∈ R+

c(n) = Cn
1
4
(−2B−3)e2

√
An

(
N−1∑
r=0

prn
− r

2 +O
(
n−N

2

))
,

where pr :=
r∑

j=0

αjcj,r−j and cj,r :=
(− 1

4
√
A
)r
√
A

j+B+ 1
2

2
√
π

Γ(j +B + 3
2
+ r)

r!Γ(j +B + 3
2
− r)

.

Remark 3.10. The constant C in Proposition 3.9 does not appear in the statement of

Wright’s circle method proved in Proposition 2.9 proved in Chapter 6, but is trivially

equivalent to this result by factoring out C from each αi.
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We defer the proof of this proposition until Chapter 6. However, the line of attack

is exemplified by the proof of Theorem 1.4.

3.5 Estimates with Bessel functions

We now consider certain estimates with Bessel functions which we will require when

effectively implementing Wright’s circle method. Recall that the modified Bessel

function Iν(z) is defined for any ν ∈ C by

Iν(x) :=
(x
2

)ν 1

2πi

∫
D
t−ν−1 exp

(
x2

4t
+ t

)
dt,

where D is any contour running from −∞ below the negative real axis, counter-

clockwise around 0, and back to −∞ above the negative real axis. We shall choose

D = D− ∪ D0 ∪ D+, each of which depend on a particular choice of z = η + iy with

η = π√
12n

for n > 0. These components of D are given by

D± := {u+ iv ∈ C : u ≤ η, v = ±10η},

D0 := {u+ iv ∈ C : u = η, |v| ≤ 10η}.

Note that this dependence on z does not change the value of the integral, since one

can shift the paths of integration. We shall compare the size of Iν(z) to its main

term. In particular, define

Îν(n) :=

(
π2

12n

) ν
2 1

2πi

∫
D0

t−ν−1 exp

(
π2

12t
+

(
n+

1

24

)
t

)
dt.

The following lemma shows how Îν(n) approximates Iν(z) for certain values of z.
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Lemma 3.11. Let n ≥ 1 be an integer and ν ≤ −1. Then∣∣∣∣Iν
(
π

√
1

3

(
n+

1

24

))
− Îν(n)

∣∣∣∣
< 2

(
2π2

24n+ 1

) ν
2

exp

(
3π

4

√
n

3

)∫ ∞

0

(10 + u)−ν−1 e−(n+
1
24)udu.

Proof. By a change of variables t 7→
(
n+ 1

24

)
t and shifting of the path of integration

back to D, we see that

Iν

(
π

√
1

3

(
n+

1

24

))
=

(
π2

12
(
n+ 1

24

)) ν
2

1

2πi

∫
D
t−ν−1 exp

(
π2

12t
+

(
n+

1

24

)
t

)
dt.

Thus, we have

Iν

(
π

√
1

3

(
n+

1

24

))
− Îν(n)

=

(
2π2

24n+ 1

) ν
2 1

2πi

∫
D+∪D−

t−ν−1 exp

(
π2

12t
+

(
n+

1

24

)
t

)
dt.

For t ∈ D−, we may set t = (η − u) − 10ηi. Since we have Re
(

π2

12t

)
≤ π

4

√
n
3
for all

u ≥ 0 and |t| ≤ |η − u|+ |10ηi| < 11η + u = 11π√
12n

+ u, we have∣∣∣∣t−ν−1 exp

(
π2

12t
+ nt

)∣∣∣∣ ≤ |t|−ν−1 exp

(
π

4

√
n

3
+

(
n+

1

24

)
(η − u)

)
≤
(

11π√
12n

+ u

)−ν−1

exp

(
3π

4

√
n

3
−
(
n+

1

24

)
u

)
,

where the last inequality uses −ν − 1 ≥ 0. The same bound holds for D+. Since

11π√
12n

< 10, we conclude that∣∣∣∣Iν
(
π

√
1

3

(
n+

1

24

))
− Îν(n)

∣∣∣∣
< 2

(
2π2

24n+ 1

) ν
2

exp

(
3π

4

√
n

3

)∫ ∞

0

(10 + u)−ν−1 e−(n+
1
24)udu.

This completes the proof.
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3.6 Effective asymptotics

In this section, we prove effective bounds for the functions Lr,t(q) and ξ(q) on both

the major and minor arcs. The first subsection covers major arc bounds, and the

second covers minor arc bounds.

3.6.1 Major arc effective bounds

In this subsection, we compute effective bounds on the functions Lr,t(q) and ξ(q) on

the major arc. We also note that in the region 0 ≤ |y| < 10η, the hypothesis η < π
40t

always implies |z| <
√
101π
80

< 2
5
.

Lemma 3.12. Let t ≥ 2 and 0 < r ≤ t be integers and z = η + iy a complex number

satisfying 0 ≤ |y| < 10η and η < π
40t

. Then we have

∣∣∣∣Lr,t

(
e−z
)
− log(2)

tz
+

1

2
B1

(r
t

)
− t

8
B2

(r
t

)
z +

t3

192
B4

(r
t

)
z3
∣∣∣∣ < 1

20
t5|z|5.

Proof. The proof relies on an application of Proposition 3.7 to E(z) =
∑∞

n=0
en
n!
zn,

whose radius of convergence is π. We note M6 =
1
42
. Thus, applying Proposition 3.7

to E(z) =
∑

k≥0
ek
k!
zk with a = r

t
, we obtain

∣∣∣∣∑
k≥0

E
((
k +

r

t

)
z
)
− IE

z
+

1

2
B1

(r
t

)
− 1

8
B2

(r
t

)
z +

1

192
B4

(r
t

)
z3
∣∣∣∣

≤ JE,6(z)

30240
|z|5 +

∑
k≥5

|ek|
(
1 +

k!

10(k − 5)!

)
|z|k.
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We also have IE =
∫∞
0

dx
ex+1

= log(2) and therefore by Lemma 3.2 we have∣∣∣∣Lr,t

(
e−z
)
− log(2)

tz
+

1

2
B1

(r
t

)
− t

8
B2

(r
t

)
z +

t3

192
B4

(r
t

)
z3
∣∣∣∣

≤ JE,6(z)

30240
|tz|5 + |tz|5

∑
k≥5

|ek|
(
1 +

k!

10(k − 5)!

)
|tz|k−5,

which is valid for all for all |z| < π
t
, hence in particular when η < π

40t
and 0 ≤ |y| < 10η.

We now proceed to estimate each piece on the right-hand side.

Let α = π
2

z
|z| . Then we bound JE,6(z) by the decomposition

JE,6(z) =

∫ α

0

∣∣E(6)(w)
∣∣ dw +

∫ ∞

α

∣∣E(6)(w)
∣∣ dw.

The function E(6)(z) is given by

E(6)(z) =
ez (ez − 1) (e4z − 56e3z + 246e2z − 56ez + 1)

(ez + 1)7
.

By the triangle inequality, we have

∣∣E(6)(z)
∣∣ ≤ eη (eη + 1) (e4η + 56e3η + 246e2η + 56eη + 1)

(eη − 1)7
.

These bounds entail that for u = Re (w) and the major arc 0 ≤ |Im(w)| < 10u, we

have∫ ∞

α

∣∣E(6)(w)
∣∣ dw ≤

√
101

∫ ∞

π/2

eu (eu + 1) (e4u + 56e3u + 246e2u + 56eu + 1)

(eu − 1)7
|du| < 81.

The power series representation of E(6)(w) is valid in the region from 0 to α. Com-

bining the estimates |w| < π
2
, (3.1.2), (3.2.1), the vanishing of B2n+1 for n ≥ 1, and

the fact that ζ(n) is decreasing for n > 1, we have

∣∣E(6)(w)
∣∣ ≤ ∞∑

k=6

2k+1 |Bk+1|πk−6

(k − 6)!2k−6
≤ ζ(8)27

π7

∑
k≥3

(2k + 2)!

22k+1(2k − 5)!
< 429.
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Therefore, we find that

JE,6(z) <
429π

2
+ 81 < 755.

We may also show using (3.1.2) and (3.2.1) that
∣∣ en
n!

∣∣ ≤ π
3
·
(
1
π

)n
, and therefore since

|z| <
√
101
40t

we have

∑
k≥5

|ek|
(
1 +

k!

10(k − 5)!

)
|tz|k−5 <

1

3π4

∑
k≥5

(
1 +

k!

10(k − 5)!

)(√
101

40

)k−5

<
1

4
.

Thus,∣∣∣∣Lr,t

(
e−z
)
− log(2)

tz
+

1

2
B1

(r
t

)
− t

8
B2

(r
t

)
z +

t3

192
B4

(r
t

)
z3
∣∣∣∣

≤ 755

30240
|tz|5 + |tz|5

4
<

7

25
t5|z|5.

This completes the proof.

Corollary 3.13. Let 0 < r ≤ t be integers and z = η+iy a complex number satisfying

0 ≤ |y| < 10η and η < π
40t

. Then

∣∣Lr,t

(
e−z
)∣∣ < 14

|tz|
.

Proof. By the triangle inequality and Lemma 3.12, we have

∣∣Lr,t

(
e−z
)∣∣ < log(2)

t|z|
+

∣∣∣∣12B1

(r
t

)∣∣∣∣+ ∣∣∣∣ t8B2

(r
t

)
z

∣∣∣∣+ ∣∣∣∣ t3192
B4

(r
t

)
z3
∣∣∣∣+ 7

25
|tz|5.

The fact that η < π
40t

entails |z| <
√
101π
40t

< 4
5t
. Using the trivial bound on B1

(
r
t

)
,

Lehmer’s bound (3.1.2) and |tz| < 4
5
, we obtain

∣∣Lr,t

(
e−z
)∣∣ < log(2) + 1

4
|tz|+ 5

96
|tz|2 + 1

1344
|tz|4 + 7

25
|tz|6

|tz|
<

14

|tz|
,

which completes the proof.
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Lemma 3.14. For any integer t ≥ 2 and any complex number z = η + iy with

0 ≤ |y| < 10η and η < π
40t

, we have

∣∣∣∣Log (ξ (e−z
))

− π2

12z
+

log(2)

2
− z

24

∣∣∣∣ < 471|z|8.

Proof. By Lemma 3.2, we have

Log
(
ξ
(
e−z
))

= z
∑
m≥0

[
B

((
m+

1

2

)
2z

)
−B ((m+ 1) 2z)

]
,

where B(z) = e−z

z(1−e−z)
. We apply Proposition 3.8 with N = 7 and A = 1. Noting

that M8 =
1
30
, c−2 = 1, and c−1 = −1

2
, we have

∣∣∣∣∑
m≥0

B ((m+ a)z)− ζ(2, a)

z2
−
I∗B,1

z
− 1

2z
(Log (z) + γ + ψ (a))−

∞∑
n=0

c∗n
Bn+1(a)

n+ 1
zn
∣∣∣∣

≤ Jg,8(z)

1209600
|z|7 +

∑
k≥7

|bk|
(
1 +

k!

10(k − 7)!

)
|z|k,

where bk = Bk+2

(k+2)!
+ (−1)k+1

2(k+1)!
and g(z) = e−z

z(1−e−z)
− 1

z2
+ e−z

2z
. Note that like B(z), the

power series representation of g(z) has radius of convergence 2π. We now reduce the

bounds on the right-hand side of the above. Setting α = 3π
2

z
|z| , we decompose Jg,8(z)

as

Jg,8(z) =

∫ α

0

∣∣g(8)(w)∣∣ |dw|+ ∫ ∞

α

∣∣g(8)(w)∣∣ |dw|,
where the paths proceed radially as originally defined. We first bound g(6)(w) on the

interval near zero. Invoking (3.1.2), we can see that

|bk| ≤
1

12
·
(

1

2π

)k

+
1

2(k + 1)!
.
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for all k, so for |w| < 3π
2
we have

∣∣g(8)(w)∣∣ ≤∑
k≥0

(k + 8)!

k!

(
1

12
·
(

1

2π

)k+8

+
1

2(k + 9)!

)(
3π

2

)k

< 367.

Thus, we have that ∫ α

0

∣∣g(8)(w)∣∣ |dw| < 367
3π

2
< 1730.

Now, g(8)(w) may be written in the form

g(8)(w) =
9∑

j=1

pj(w)

(ew − 1)9−j wj

for certain polynomials pj(w) of degree j − 1 with non-negative coefficients. For w

on the major arc, we have u = Re(w) ≤ |w| ≤
√
101u, and therefore by the triangle

inequality we have

∣∣g(8)(w)∣∣ ≤ 9∑
j=1

pj
(√

101u
)

(eu − 1)9−j uj
.

Integrating with the aid of a computer, we have∫ ∞

α

∣∣g(8)(w)∣∣ |dw| ≤ √
101

∫ ∞

3π
2

9∑
j=1

pj
(√

101u
)

(eu − 1)9−j uj
du < 2206410.

Therefore, we find that

Jg,8(z) < 1730 + 2206410 = 2208140.

By the previous bound on |bk| as well as the fact that |z| < 2
5
on the major arc, we

have that

∑
k≥7

|bk|
(
1 +

k!

10(k − 7)!

)
|z|k−7

<
∑
k≥7

(
1

12
·
(

1

2π

)k

+
1

2(k + 1)!

)(
1 +

k!

10(k − 7)!

)(
2

5

)k−7

<
1

100
.
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Therefore, by letting z 7→ 2z and applying the bounds just derived, we obtain∣∣∣∣∑
m≥0

B ((m+ a)2z)− ζ(2, a)

4z2
−
I∗B,1

2z
− 1

4z
(Log (2z) + γ + ψ (a))−

∞∑
n=0

c∗n
Bn+1(a)

n+ 1
2nzn

∣∣∣∣
< 235|z|7.

By the expansion from Lemma 3.2, we may conclude immediately that∣∣∣∣Log (ξ (e−z
))

+
ζ(2, 1)− ζ

(
2, 1

2

)
4z

+
ψ(1)− ψ

(
1
2

)
4

−
∞∑
n=0

c∗n
Bn+1(1)−Bn+1

(
1
2

)
n+ 1

2nzn+1

∣∣∣∣
< 470|z|8.

We now proceed to simplify terms in the bounds above. By the definition of c∗n

along with c−1 = −1
2
, we may calculate

∞∑
n=0

c∗n
Bn+1(1)−Bn+1

(
1
2

)
n+ 1

2nzn+1 =
z

24
−
∑
n≥7

(−1)n+1
(
Bn+1(1)−Bn+1

(
1
2

))
(n+ 1)(n+ 1)!

2n−1zn+1.

Now, because of the identity ζ
(
s, 1

2

)
= (2s − 1) ζ(2), we have ζ (2, 1) − ζ

(
2, 1

2

)
=

−π2

3
. Furthermore, by [88, (5.4)] we have ψ(1) = −γ and −ψ

(
1
2

)
= −2 log(2) − γ.

Therefore, using the triangle inequality in the form |x| ≤ |x − y| + |y| and |z| < π
2
,

we may obtain∣∣∣∣Log (ξ (e−z
))

− π2

12z
+

log(2)

2
− z

24

∣∣∣∣
< 470|z|8 +

∣∣∣∣∣∑
n≥7

(−1)n+1
(
Bn+1(1)−Bn+1

(
1
2

))
(n+ 1)(n+ 1)!

2n−1zn−7

∣∣∣∣∣ · |z|8.
Lehmer’s bound (3.1.2) along with the straightforward inequality ζ(n+1) ≤ ζ(2) = π2

6

for n ≥ 1 implies that∣∣Bn+1(1)−Bn+1

(
1
2

)∣∣
(n+ 1)!

≤ 4ζ(n+ 1)

(2π)n+1
≤ π

3 (2π)n
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for n ≥ 1. Therefore using the fact that |z| < π
2
on the major arc with η < π

40t
, we

have

∑
n≥7

∣∣Bn+1(1)−Bn+1

(
1
2

)∣∣
(n+ 1)(n+ 1)!

2n−1|z|n−7 ≤ 1

6π6

∑
n≥7

1

(n+ 1)2n−7
< 1.

Putting together all evaluations, we conclude that

∣∣∣∣Log (ξ (e−z
))

− π2

12z
+

log(2)

2
− z

24

∣∣∣∣ < 471|z|8.

This completes the proof.

Corollary 3.15. For any integer t ≥ 2 and any complex number z = η+ iy satisfying

0 ≤ |y| < 10η and η < π
40t

, we have

∣∣∣∣ξ (e−z
)
− exp

(
π2

12z
− log(2)

2
+

z

24

)∣∣∣∣ < 630|z|8√
2

exp

(
π2

12|z|

)
.

Proof. Suppose f(z), g(z), e(z) are any three functions that satisfy

|Log (f(z))− Log (g(z))| ≤ e(z)

for |z| < π
40t

. Note that we may factorize

|f(z)− g(z)| = |exp (Log (f(z))− Log (g(z)))− 1| · |g(z)| .

Applying this factorization with f(z) := ξ (e−z) and g(z) := exp
(

π2

12z
− log(2)

2
+ z

24

)
will give the result. Using Lemma 3.14 and Taylor series, we have

∣∣∣∣exp(Log (ξ (e−z
))

− π2

12z
+

log(2)

2
− z

24

)
− 1

∣∣∣∣ <∑
n≥1

1

n!

(
471|z|8

)n
= exp

(
471|z|8

)
− 1.
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For |z| <
√
101π
80

, we have 471|z|8 < 0.28, and since ex − 1 < 4
3
x for 0 < x < 0.55, we

have ∣∣∣∣exp(Log (ξ (e−z
))

− π2

12z
+

log(2)

2
− z

24

)
− 1

∣∣∣∣ < 628|z|8.

Using η ≤ |z| and η < π
80
, we may conclude that∣∣∣∣exp( π2

12z
− log(2)

2
+

z

24

)∣∣∣∣ ≤ exp

(
π2η

12|z|2
+

η

24

)
<

501

500
√
2
exp

(
π

12|z|

)
.

Combining the given bounds completes the proof.

3.6.2 Minor arc effective bounds

We now calculate effective bounds on both ξ(q) and Lr,t(q) for the minor arc 10η ≤

|y| < π, subject to the additional constraint η < π
40t

≤ π
80
.

Lemma 3.16. Let t ≥ 2 be an integer. Assume z = η + iy satisfies 10η ≤ |y| < π

and 0 < η < π
40t

. Then we have

∣∣ξ (e−z
)∣∣ < exp

(
41

50η

)
.

Proof. Let q = e−z. Recall that

Log (ξ(q)) = −
∑
m≥1

(−1)mqm

m (1− qm)
.

By taking absolute values and splitting off them = 1 term and noting that logP (|q|) =∑
m≥1

|q|m
m(1−|q|m)

, we have

|Log (ξ(q))| ≤ Log (P (|q|))− |q|
(

1

1− |q|
− 1

|1− q|

)
,
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where P (q) = (q; q)−1
∞ . To bound Log (P (|q|)), we recall that |q| = e−η and use the

series expansion

Log (P (|q|)) =
∑
m≥1

|q|m

m (1− |q|m)
=
∑
m≥1

e−mx

m (1− e−mx)
.

From the fact that e−x

1−e−x <
1
x
for all x > 0, we may therefore deduce that

Log (P (|q|)) <
∑
m≥1

1

m2η
=
π2

6η
. (3.6.1)

Now, we have |1− q|2 = 1−2 cos(y)e−η+e−2η. In the region 10η ≤ |y| < π, we have by

the fact that cos(x) is decreasing for 0 < x < π that |1− q|2 ≥ 1−2 cos(10η)e−η+e−2η.

It can be checked in an elementary manner that 1− 2 cos(10η)e−η + e−2η > 95η2, and

so we have |1− q| >
√
95η. By using the bound 1 − |q| = 1 − e−η ≤ η, we have for

10η ≤ |y| < π and η < π
80

that

1

|1− q|
− 1

1− |q|
<

(
1√
95

− 1

)
1

η
.

Therefore, using |q| ≤ 1 we have

|Log (ξ (q))| ≤
(
π2

6
+

1√
95

− 1

)
1

η
<

3

4η
.

Exponentiating completes the proof.

Lemma 3.17. Let t ≥ 2 and 0 < r ≤ t be integers. Assume z = η + iy is a complex

number satisfying η > 0. Then we have

∣∣Lr,t

(
e−z
)∣∣ < 1

η2
.
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Proof. Let q = e−z and let σ0(n) =
∑

d|n 1 be the standard divisor counting function.

Then we have that

|Lr,t(q)| ≤
∑
m≥1

e−mη

1− e−mη
=
∑
m≥1

σ0(m)e−mη ≤
∑
m≥1

me−mη =
eη

(eη − 1)2
<

1

η2
.

This completes the proof.

3.7 Proof of Theorem 1.2

By Lemmas 3.12 and 3.14 in the following section, we have the asymptotics

Lr,t

(
e−z
)
=

log(2)

tz
− 1

2

(
r

t
− 1

2

)
+O(z), ξ

(
e−z
)
=

1√
2
e

π2

12z
+O(z)

on the major arc. These imply asymptotics for Dr,t(q) = Lr,t(q)ξ(q), which is the

generating function for Dr,t(n) by Lemma 3.1, that satisfies (1) in Proposition 3.9.

Lemmas 3.16 and 3.17 imply condition (2), and so we may apply Proposition 3.9,

which yields the claimed asymptotic formula.

3.8 Proof of Theorem 1.4

In this section, we complete the proof of Theorem 1.4 by following the proof of [87,

Proposition 1.8] (which is a version of Wright’s circle method slightly different from

Proposition 3.9) and making the bounds in each step effective. Let C be the circle

in the complex plane with center 0 and radius e−η, where η = π√
12n

. By Cauchy’s
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formula and Lemma 3.1, we have

Dr,t(n) =
1

2πi

∫
C

Dr,t(q)

qn+1
dq =

1

2πi

∫
C

Lr,t(q)ξ(q)

qn+1
dq.

Throughout, we fix q = e−z with z = η + iy, so that |q| = e−η. We will estimate

Dr,t(n) by decomposing this integral into convenient pieces. Choose δ > 0 so that for

the major arc C1, z = η + iy ∈ C1 satisfies 0 < |y| < 10η. We shall also assume that

η < π
40t

, which is equivalent to the bound n > 400t2

3
.

Let C2 := C\C1 denote the minor arc. Define for s ≥ 0 the integrals

Vs(n) :=
1

2πi

∫
C1

zs−1

qn+1
exp

(
π2

12z
− log(2)

2
+

z

24

)
dq

=
1

2π
√
2i

∫
D0

zs−1 exp

(
π2

12z
+

(
n+

1

24

)
z

)
dz. (3.8.1)

We use the integrals Vs(n) to estimate Dr,t(n). In particular, we have the decompo-

sition

Dr,t(n)− α0V0(n)− α1,rV1(n)− α2,rV2(n)− α4,rV4(n) = E1 + E2 + E3,

where α0 =
log(2)

t
, α1,r = −1

2
B1

(
r
t

)
, α2,r =

t
8
B2

(
r
t

)
, α4,r =

t3

192
B4

(
r
t

)
, and

E1 :=
1

2πi

∫
C2

Lr,t(q)ξ(q)

qn+1
dq,

E2 :=
1

2πi

∫
C1

Lr,t(q)

(
ξ(q)− exp

(
π2

12z
− log(2)

2
+

z

24

))
qn+1

dq,

E3 :=
1

2πi

∫
C1

(Lr,t(q)− α0z
−1 − α1 − α2z − α4z

3) exp

(
π2

12z
− log(2)

2
+

z

24

)
qn+1

dq.
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Although αi,r for i > 0 depends on r, we suppress this dependence when r is under-

stood from context. Because |z|2 ≥ η2 and η = π√
12n

, we have∣∣∣∣exp( π2

12z
+ nz

)∣∣∣∣ = exp

(
π2η

12|z|2
+ nη

)
≤ exp

(
π

√
n

3

)
.

Furthermore, we note that∣∣∣∣∫
C1
q−1dq

∣∣∣∣ = ∣∣∣[Log (e−z
)]z=η+10ηi

z=η−10ηi

∣∣∣ ≤ 20η.

and ∣∣∣∣∫
C2
q−1dq

∣∣∣∣ ≤ len(C2) ·max
z∈C2

|z| ≤ 4.2π2.

We also note that on the major arc 0 < |y| < 10η < π we have η ≤ |z| <
√
101η.

Since η < π
80
, we also have |z| <

√
101π
80

< 2
5
. These inequalities will be used freely in

what follows.

To bound E3, we recall that Lemma 3.12 says that for η < π
40t

on the major arc,

we have

∣∣Lr,t(q)− α0z
−1 − α1 − α2z − α4z

3
∣∣ < 1

20
t5|z|5,

and we therefore have using these equations and numerical estimates that

|E3| ≤
10η

π

∣∣Lr,t(q)− α0z
−1 − α1 − α2z − α4z

3
∣∣ ∣∣∣∣exp( π2

12z
− log(2)

2
+ nz +

z

24

)∣∣∣∣
<

14381t5

n3
exp

(
π

√
n

3

)
.

To bound E2, we apply Corollary 3.15, which we recall says∣∣∣∣ξ (e−z
)
− exp

(
π2

12z
− log(2)

2
+

z

24

)∣∣∣∣ < 630|z|8√
2

exp

(
π2

12|z|

)
.
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Therefore, we have that

|E2| ≤
10η

π
|Lr,t(q)|

∣∣∣∣ξ(q)− exp

(
π2

12z
− log(2)

2
+

z

24

)∣∣∣∣ |exp (nz)|
<

945285959087

tn4
exp

(
π

√
n

3

)
.

Finally, using Lemmas 3.16 and 3.17 we have

|E1| ≤
4.2π2

2π
|Lr,t(q)| |ξ(q)| |exp (nz)| < 9n exp

((
3
√
3

2π
+

π√
12

)
√
n

)
.

We have therefore shown that

|Dr,t(n)− α0V0(n)− α1V1(n)− α2V2(n)− α4V4(n)| ≤ Errt(n)

where

Errt(n) :=
14381t5

n3
exp

(
π

√
n

3

)
+

945285959087

tn4
exp

(
π

√
n

3

)
+ 9n exp

((
3
√
3

2π
+

π√
12

)
√
n

)
. (3.8.2)

This completes the proof of Theorem 1.4.

3.9 Proof of Corollary 1.5

We now wish to resolve the inequality Dr,t(n) ≥ Ds,t(n) for integers n ≥ 0 and

0 < r < s ≤ t. We define for convenience α∗
j,r := αj,r − αj,r+1 and

Mr,t(n) := α0V0(n) + α1,rV1(n) + α2,rV2(n) + α4,rV4(n).
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Note that since Dr,t(n) − Ds,t(n) =
∑s−1

j=r Dj,t(n) − Dj+1,t(n), it suffices to prove

Dr,t(n) ≥ Dr+1,t(n) for all n > 8 and 0 < r < t. We therefore focus on this inequality.

By Theorem 1.4 applied to both terms in Dr,t(n) − Dr+1,t(n), in order to show

Dr,t(n)−Dr+1,t(n) ≥ 0 it suffices to show

Mr,t(n)−Mr+1,t(n) ≥ 2Errt(n).

Collecting together like terms and simplifying, this is equivalent to

α∗
1,rV1(n) + α∗

2,rV2(n) + α∗
4,rV4(n) ≥ 2Errt(n).

We also wish to bound the terms α∗
j,r for j = 1, 2, 4. Since B1(x) = x − 1

2
, B2(x) =

x2 − x+ 1
6
, and B4(x) = x4 − 2x3 + x2 − 1

30
, and 1 ≤ r < t (since r + 1 ≤ t), we have

α∗
1,r =

1
2t
, α∗

2,r =
t−2r−1

8t2
≥ − 3

16
, and α∗

4,r ≥ −233
48

for 2 ≤ t ≤ 10. Therefore, it would

suffice to prove that

V1(n)

2t
≥ 3

16
V2(n) +

233

48
V4(n) + 2Errt(n).

Now, note that by the definition of Îs(n) used in Lemma 3.11, we have

Vs(n) =
1√
2

(
24n+ 1

2π2

)− s
2

Î−s(n),

and therefore by Lemma 3.11 we may conclude that for s ≥ 1,

∣∣∣∣Vs(n)− 1√
2

(
24n+ 1

2π2

)− s
2

I−s

(
π

√
1

3

(
n+

1

24

)) ∣∣∣∣
≤

√
2 exp

(
3π

4

√
n

3

)∫ ∞

0

(10 + u)s−1 e−(n+
1
24)udu.
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Now by a substitution u 7→ 1
n+ 1

24

u, we have

√
2

∫ ∞

0

(10 + u)−ν−1 e−(n+
1
24)udu =

24
√
2

24n+ 1

∫ ∞

0

(
10 +

24u

24n+ 1

)s−1

e−udu

For β1 = 1, β2 = 11, and β4 = 1349, we may conclude that each of s = 1, 2, 4 satisfies∣∣∣∣∣Vs(n)− 1√
2

(
24n+ 1

2π2

)− s
2

I−s

(
π

√
1

3

(
n+

1

24

))∣∣∣∣∣ < 24βs
√
2

24n+ 1
exp

(
3π

4

√
n

3

)
.

Therefore, if we set n′ := n + 1
24

for convenience, to prove the desired inequality it

would suffice to show that

π

4t
√
6n′

I−1

(
π

√
n′

3

)
≥ π2

64n′
√
2
I−2

(
π

√
n′

3

)
+

233π4

6912
√
2(n′)2

I−4

(
π

√
n′

3

)

+

(
1

t
√
2
+

33
√
2

16
+

314317
√
2

48

)
1

n′ exp

(
3π

4

√
n

3

)
+ 2Errt(n). (3.9.1)

In summary, we have shown that in order to show that Dr,t(n) ≥ Ds,t(n) for all

0 < r < s ≤ t for a fixed value of n, it suffices to consider the case s = r + 1 for

each r, and all of these cases follow from the inequality (3.9.1) is true. In the process

of deriving (3.9.1), we have also assumed n > 400t2

3
. Therefore, we define the integer

Nt(n) as the smallest positive integer satisfying Nt(n) >
400t2

3
and so that (3.9.1) is

true for all n > Nt(n), from which it follows that Dr,t(n) ≥ Ds,t(n) for all n > Nt(n).

The table below gives values of Nt(n), which are computed with the aid of a computer.

It therefore only remains to check the possible values of Dr,t(n) − Dr+1,t(n) for

n ≤ Nt(n) by computer and determine all possible counterexamples which arise from

these cases. All such counterexamples satisfy n ≤ 8 for 2 ≤ t ≤ 10, which completes

the proof.
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t 2 3 4 5 6

Nt(n) 108077 112183 115240 117804 120247

t 7 8 9 10

Nt(n) 122995 126772 133268 147752

Table 2: Numerics for Corollary 1.5.
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Chapter 4

The Coll–Mayers–Mayers
Conjecture

4.1 The work of Seo and Yee

The work in this section is not due to the author, but to Seo and Yee in [107]. However,

since this is a crucial ingredient in the proof of Conjecture 1.2.2, it is important to

understand the ideas which went into this proof. Thus, we shall summarize the main

line of argument used by Seo and Yee.

We recall the q-series which is the object of this chapter, which is

G(q) :=
(
q,−q3; q4

)−1

∞ =:
∞∑
n=0

a(n)qn.

Recall that o(n), e(n) denote the number of partitions into odd parts having

odd/even index, respectively. Seo and Yee [107, Theorem 1] prove the following

generating function identity.

Theorem 4.1. We have

G(q) =
∞∑
n=0

(−1)⌈
n
2
⌉ (o(n)− e(n)) qn.



107

4.1.1 Meanders

As the construction of the index statistic goes back to the work of Dergachev and

Kirillov in [50], we first must state their theorem which computes this index. To do

so, we must associate to each pair of partitions λ, µ ⊢ n a certain graph, which we

call G = G(λ, µ). The construction of this graph is as follows:

� Start with an empty graph on n vertices.

� For λ = (λ1, . . . , λr), label these vertices v1,1, v1,2, . . . , v1,λ1 , v2,1, . . . , v2,λ2 , . . . , vr,λr .

� For each 1 ≤ i ≤ r and 1 ≤ j ≤ ⌊λi/2⌋, draw a top edge between vi,j vi,λi+1−j.

� Do the same process for µ = (µ1, . . . , µs), and call the newly constructed edges

bottom edges.

The graph G is called the meander associated to the pair λ, µ. An example of this

construction is given below, which is the meander associated to the pair of partitions

of 8 given by λ = (3, 3, 2) and µ = (4, 3, 1).

Dergachev and Kirillov [50] construct certain Lie algebras g which depend on the

pair λ, µ ⊢ n which we defined in the introduction as seaweed algebras. They prove
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that

ind(g) = 2C + P − 1,

where C and P are defined as the number of cycles and paths occurring in G, respec-

tively. In this context, an isolated vertex is counted as a path. For example, for the

meander above, we have C = 0 and P = 2, and so the index is 1. Note that because

the degree of each vertex in G is at most two, every connected component of G is

either a path of a cycle.

In this way, Coll, Mayers and Mayers consider the index as a partition-theoretic

statistic by defining the index of the pair (λ, µ), which we might denote by indµ(λ),

as the index of the associated seaweed algebra; this index can be computed directly

from the meander without recourse to Lie theory. One of the main ideas in this proof

is that the number of paths in the meander can be given combinatorial meaning, as

we shall soon see.

4.1.2 Proof of Theorem 4.1

We now wish to give some indication of the method of Seo and Yee. First, we make

the observation that

indµ(λ) ≡ P + 1 (mod 2).

Thus, to know the parity of the index it would suffice to count the paths in the

meander G associated to the pair. Because the edges of G are constructed by a
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pairing of vertices, one can see that the number of vertices in G that are not touched

by any top edge are in bijective correspondence with the odd parts of λ; similarly

those not touched by a bottom edge are in bijection with odd parts of µ. Since each

path in G can be identified with its endpoints (the same point counted twice in the

case of the empty path), we see that

P =
op(λ) + op(µ)

2

for any pair of partitions λ, µ ⊢ n, where op(λ) denotes the number of odd parts in λ.

Note that this is always an integer, since we must have op(λ) ≡ op(µ) ≡ n (mod 2).

This is the key observation which lies behind the method of Seo and Yee.

Letting O denote the set of partitions into odd parts. Seo and Yee then compute

the difference o(n)− e(n) in terms of the relevant counts

dj(n) := #{λ ∈ O, λ ⊢ n : op(λ) ≡ j (mod 4)}.

In particular, o(n) = d0(n) if n is even and d2(n) if n is odd, and e(n) = d3(n) if n

is even and d1(n) if n is odd. They are then able to prove the result via standard

generating calculations based on the Euler-style generating function

F (z, q) :=
∑
k,n≥0

f(k, n)zkqn =
(
zq, zq3; q4

)−1

∞ ,

where

f(k, n) := #{λ ∈ O : |λ| = n, op(λ) = k}
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In the spirit of Proposition 2.6, Seo and Yee then calculate, noting that f(k, n) = 0

if k ̸≡ n (mod 2), that

F (i,−iq) =
∑
k,n≥0

(−1)nf(k, n)ik+nqn

=
∑
2|k,n

f(k, n)(−1)
k
2 (−1)

n
2 qn +

∑
2̸|k,n

(−1)
k+1
2 (−1)

n+1
2 f(k, n)qn

=
∑
2|k,n

(−1)
n
2 (o(n)− e(n)) qn +

∑
2̸|k,n

(−1)
n+1
2 (o(n)− e(n)) qn

=
∑
n≥0

(−1)⌈
n
2
⌉ (o(n)− e(n)) qn.

This completes the proof of Theorem 4.1, which in turn means that Conjecture 1.2.2

will follow if one can show a(n) ≥ 0.

4.2 Notation and an application of Euler–Maclaurin

summation

This section sets up notation which will be used for the rest of the chapter and states

a result which follows from the Euler–Maclaurin asymptotic method, more specifically

Proposition 3.8.

Define the function

Br,t(z) :=
e−

r
t
z

z (1− e−z)
=
∑
n≥−2

Bn+2

(
1− r

t

)
(n+ 2)!

zn,

where 0 < r ≤ t are integers and Bn(x) are the Bernoulli polynomials defined in

(3.1.1). Due to Lehmer’s bound (3.1.2), this Laurent expansion is absolutely conver-
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gent in the punctured disk 0 < |z| < 2π. This absolute convergence is important for

producing effective estimates of certain infinite sums related to G(q), which will be

seen in Lemma 4.2.

Because Br,t(z) has sufficient decay and has a Laurent series converging in the

region 0 < |z| < 2π, Proposition 3.8 can be applied to Br,t(z) for 0 < |z| < 2π. To

state this application, we first introduce convenient notation. Let

βr,t := log
(
Γ
(r
t

))
− 1

2
log(2π), gr,t(z) := Br,t(z)−

1

z2
−
(
1
2
− r

t

)
e−

r
t
z

z
,

and introduce the functions F r,t
a (z), Er,t

a (z) defined by

F r,t
a (z) :=

ζ(2, a)

z2
+
βr,t
z

− 1

z

(
1

2
− r

t

)
(Log(z) + γ + ψ(a)) +

∞∑
n=0

c∗n
Bn+1(a)

n+ 1
zn

(4.2.1)

and

Er,t(z) :=
Jgr,t,4(z)

720
|z|3 +

∑
k≥3

∣∣∣∣∣Bk+2

(
1− r

t

)
(k + 2)!

−
(−r)k+1 (1

2
− r

t

)
tk+1(k + 1)!

∣∣∣∣∣
(
1 +

k!

10(k − 3)!

)
|z|k,

(4.2.2)

where we define the coefficients c∗n as in Proposition 3.8 by

c∗n :=


Bn+1

(
1− r

t

)
(n+ 2)!

if n ≤ 2,

(−r)n+1
(
1
2
− r

t

)
tn+1(n+ 1)!

otherwise.

We now state our application of Proposition 3.8 to Br,t(z).
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Lemma 4.2. Let 0 < r ≤ t be integers and δ > 0 a constant. Then for any real

number 0 < a ≤ 1 and z ∈ Dδ with 0 < |z| < 2π , we have

∣∣∣∣∑
m≥0

Br,t ((m+ a)z)− F r,t
a (z)

∣∣∣∣ ≤ Er,t(z).

Proof. Br,t(z) satisfies the criteria of Proposition 3.8, and therefore for any A > 0

and N = 3 we have

∣∣∣∣∑
m≥0

Br,t ((m+ a)z)− ζ(2, a)

z2
−
I∗Br,t,A

z
+
c−1

z
(Log(Az) + γ + ψ(a))−

∞∑
n=0

c∗n
Bn+1(a)

n+ 1
zn
∣∣∣∣

≤
M4Jgr,t,4

24
|z|3 +

∑
k≥3

|bk|
(
1 +

k!

10(k − 3)!

)
|z|k,

where bk =
Bk+2(1− r

t )
(k+2)!

− (−r)k+1( 1
2
− r

t )
tk+1(k+1)!

. To simplify the integral

I∗Br,t,A =

∫ ∞

0

(
e−

r
t
z

z (1− e−z)
− 1

z2
+

(
r

t
− 1

2

)
e−Az

z

)
dz,

we use the substitutions z 7→ t
r
z and A = r

t
, which gives

I∗Br,t,
r
t
=

∫ ∞

0

 e−z

z
(
1− e−

t
r
z
) − 1

t
r
z2

+

(
r

t
− 1

2

)
e−z

z

 dz.

[22, Lemma 2.3] states that for any real number N > 0,

∫ ∞

0

(
e−x

x (1− eNx)
− 1

Nx2
+

(
1

N
− 1

2

)
e−x

x

)
dx

= log

(
Γ

(
1

N

))
+

(
1

2
− 1

N

)
log

(
1

N

)
− 1

2
log(2π),

and so the case N = t
r
implies

I∗Br,t,
r
t
= log

(
Γ
(r
t

))
+

(
1

2
− r

t

)
log
(r
t

)
− 1

2
log(2π) = βr,t +

(
1

2
− r

t

)
log
(r
t

)
.
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A short calculation therefore shows∣∣∣∣∑
m≥0

Br,t ((m+ a)z)− ζ(2, a)

z2
−
I∗Br,t,

r
t

z
− 1

z

(
1

2
− r

t

)(
Log

(r
t
z
)
+ γ + ψ(a)

)
−

∞∑
n=0

c∗n
Bn+1(a)

n+ 1
zn
∣∣∣∣ ≤ Jgr,t,4

720
|z|3 +

∑
k≥3

|bk|
(
1 +

k!

10(k − 3)!

)
|z|k.

By the definitions (4.2.1) and (4.2.2), this completes the proof.

4.3 Asymptotic estimates

The proof of Theorem 1.9 uses a variation of Wright’s circle method. As with any

variation of the circle method, there are various stages where estimates must be made.

This section collects together the most important estimates, which are subdivided into

three groups. The first two are dedicated to proving bounds on G(q) on the major

arc and minor arc, which play central roles in Wright’s circle method and are defined

in the first part. The last part considers elementary bounds on the functions F r,t
a (z)

and Er,t
a (z) which make later computations more straightforward.

4.3.1 Effective Major Arc Bounds

Before we proceed, we define the termsmajor arc andminor arc. When using Wright’s

circle method, one must define the major arc, which is the region of some circle C with

fixed radius |q|, where q = e−z lies near a dominant pole of the generating function. In

most examples, the dominant pole lies near q = 1 and only one major arc is required.

In our case, however, we will require two major arcs, which lie near q = ±1. The
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major arc near q = 1 will consist of those q = e−z for which z = x + iy satisfies

0 ≤ |y| < 15x, and the corresponding constraint near q = −1 is π − 15x < |y| ≤ π.

We will in practice use a change of coordinates q 7→ −q to translate the q = −1 major

arc into the q = 1 major arc of the function G(−q), which gives back the restriction

0 ≤ |y| < 15x. The minor arc will consist of the complement of the two major arcs,

that is, it consists of all q = e−z with 15x ≤ |y| ≤ π− 15x. We begin now by deriving

important bounds that hold on major arcs.

Proposition 4.3. Let q = e−z, z = x+ iy satisfy x > 0 and 0 ≤ |y| < 15x.

(1) We have for 0 < x < 2
5t

that

∣∣∣Log((qr; qt)−1

∞

)
− tzF r,t

1 (tz)
∣∣∣ ≤ |tz|Er,t(tz).

(2) We have for 0 < x < 1
5t

that

∣∣∣Log((−qr; qt)−1

∞

)
− tzF r,t

1 (2tz) + tzF r,t
1/2(2tz)

∣∣∣ ≤ 2|tz|Er,t(2tz).

Proof. By expanding logarithms into Taylor series, we obtain

Log
((
εqr; qt

)−1

∞

)
= −

∑
n≥0

Log
(
1− εqtn+r

)
=
∑
m≥1

εmqrm

m (1− qtm)
. (4.3.1)

Setting q = e−z and multiplying the above expression by tz
tz
, we obtain

Log
((
εqr; qt

)−1

∞

)
= tz

∑
m≥1

εm
e−rmz

tmz (1− e−tmz)
= tz

∑
m≥1

εmBr,t(tmz).

Now, for 0 < x < 2
5
we have since y2 < 225x2 that |z| =

√
x2 + y2 < 2

√
226
5

< 2π.

Therefore, the Laurent expansion for Br,t(tz) is convergent for 0 < x < 2
5t
, and
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likewise for Br,t(2tz) if 0 < x < 1
5t
. If we set ε = 1, (1) follows directly from Lemma

4.2. If ε = −1, by applying Lemma 4.2 to each summand of

Log
((

−qr; qt
)−1

∞

)
= tz

∑
m≥0

Br,t ((m+ 1)2tz)− tz
∑
m≥0

Br,t

((
m+

1

2

)
2tz

)
,

(2) follows as well.

4.3.2 Effective Minor Arc Bounds

We now estimate G(q) on the minor arc 15x ≤ |y| ≤ π − 15x when x is small. In

order to do this, we first prove several helpful results so that the proof of the main

bound will be more readable.

Lemma 4.4. Let m ≥ 1 be an integer, and q = e−z, z = x+ iy with 0 < x < π
480

and

15x ≤ |y| < π
2m

. Then there exists a constant αm > 0 such that

|q|m

m
∣∣1 + (−1)m+1 q2m

∣∣ − |q|m

m (1− |q|2m)
<
e−

mπ
480

2m2x

(
2m

αm

− 1

)
.

Furthermore, in the cases 1 ≤ m ≤ 3 we may choose α1 = 29, α2 = 55, and α3 = 77.

Proof. Since 15x ≤ |y| < π
2m

, we have cos (2my) ≥ − cos (30mx), and so

∣∣1 + (−1)m+1 q2m
∣∣2 = 1− 2 (−1)m+1 cos (2my) e−2mx + e−4mx

≥ 1− 2 cos (30mx) e−2mx + e−4mx.

From the Taylor expansion

1− 2 (−1)m+1 cos (30mx) e−2mx + e−4mx = 904m2x2 − 1808m3x3 + · · · ,
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it is apparent that 1− 2 (−1)m+1 cos (30mx) e−2mx + e−4mx > α2
mx

2 for some αm > 0

and 0 < x < π
480

. This shows that
∣∣1 + (−1)m+1 q2m

∣∣ > αmx for all 0 < x < π
480

, and

so

|q|m

m
∣∣1 + (−1)m+1 q2m

∣∣ − |q|m

m (1− |q|2m)
<

|q|m

mαmx
− |q|m

m (1− |q|2m)
.

By the inequalities 1 − |q|2m = 1 − e−2mx > 2mx and |q|m > e−
mπ
480 for 0 < x < π

480
,

we arrive at the desired bound.

We now evaluate α1, α2, α3. Let fm(x) := 1−2 (−1)m+1 cos (30mx) e−2mx+e−4mx,

and consider the auxiliary function gm(x) := fm(x) − α2
mx

2. Note that gm(0) =

g′m(0) = 0 since both fm(x) and x2 have a double zero at x = 0. In order to prove

that fm(x) > α2
mx

2 for 0 < x < π
480

, it will therefore suffice to prove that g′′m(0) > 0,

i.e. that f ′′
m(x) > 2α2

m, for 0 < x < π
480

. Now,

f ′′
m(x) = 16m2e−4mx

(
1 + 112e2mx cos (30mx)− 15e2mx sin (30mx)

)
,

and so the αm we choose must satisfy

α2
m < 8m2e−4mx

(
1 + 112e2mx cos (30mx)− 15e2mx sin (30mx)

)
for all 0 < x < π

480
. For each 1 ≤ m ≤ 3, f ′′

m(x) is decreasing on the interval

0 < x < π
480

, and so it suffices to choose αm that satisfy

α2
m < 8m2e−

m
120

(
1 + 112e

m
240 cos

(m
16

)
− 15e

m
240 sin

(m
16

))
.

For each of the values 1 ≤ m ≤ 3, the values α1 = 29, α2 = 55, and α3 = 77 solve the

required inequality.
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Lemma 4.5. Let q = e−z, z = x+ iy with 3π
4
≤ |y| ≤ π−15x and 0 < x < π

480
. Then

we have

− e−2x

2 (1− e−4x)
+

cos (2y) (e−2x − e−6x)

2 |1− q4|2
< − 1

10x
.

Proof. We have 3π ≤ |4y| ≤ 4π − 60x, and since cos (y) is increasing in the region

3π ≤ y ≤ 4y we have cos (4y) ≤ cos (4π − 60x) = cos (60x). Therefore, we have

∣∣1− q4
∣∣2 = 1− 2 cos (4y) e−4x + e−8x ≥ 1− 2 cos (60x) e−4x + e−8x

and thus

− e−2x

2 (1− e−4x)
+

cos (2y) (e−2x − e−6x)

2 |1− q4|2

≤ − e−2x

2 (1− e−4x)
+

e−2x − e−6x

2 (1− 2 cos (60x) e−4x + e−8x)
=: F (x).

Fix any A > 0. The inequality F (x) < −A
x
is equivalent to

2xe−6x (1− cos (60x)) > 2A
(
1− e−4x

) (
1− 2 cos (60x) e−4x + e−8x

)
.

If we set A = 1
10

and rearrange, this is equivalent to showing that

2xe−6x +
2

5
e−4x cos (60x) +

1

5
e−4x + e−12x

>
1

5
+ 2xe−6x cos (60x) +

2

5
e−8x cos (60x) +

1

5
e−8x.

By a term-by-term comparison, it suffices to show that e−12x > 1
5
for 0 < x < π

480
,

which is true.

Lemma 4.6. Let q = e−z, z = x+ iy with x > 0 and 15x ≤ |y| ≤ π − 15x. Then

Log
((

|q|; |q|2
)−1

∞

)
<

π2

12x
.



118

Proof. We have by expanding series that

Log
((

|q|; |q|2
)−1

∞

)
=
∑
m≥1

e−mx

m (1− e−2mx)
.

We have e−x

1−e−2x < 1
2x
; this inequality is equivalent to showing that 2x < ex − e−x,

which can be proven for all x > 0 using elementary calculus. We therefore have by

substitutions that

e−mx

m (1− e−2mx)
<

1

2m2x
,

and the result follows by summing over m.

Lemma 4.7. For 1 ≤ m ≤ 3 and 0 < x < π
480

, we have

e−mx

m (1− e−2mx)
>

499

1000m2x
.

Proof. For any A > 0, the inequality e−mx

1−e−2mx >
A
mx

reduces to mx > A (emx − e−mx).

The left and right-hand sides have equal values at x = 0, and so by taking derivatives

it would suffice to show that A (emx + e−mx) < 1 for 0 < x < π
480

. The left-hand side

is now an increasing function of x, and so it suffices to check that the inequality is

true for A = 499
1000

, 1 ≤ m ≤ 3 and x = π
480

, which holds.

We may now prove the main minor arc bound on G(q).

Proposition 4.8. Let q = e−z for z = x+ iy satisfying 0 < x < π
480

and 15x ≤ |y| ≤

π − 15x. Then we have

|G (q)| < exp

(
1

5x

)
.
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Proof. By taking exponentials, it suffices to prove that Re (Log (G(q))) < 1
5x
. As in

the proof of Proposition 4.3, we may use Taylor expansions to show

Log (G(q)) = Log
((
q; q4

)−1

∞

)
+ Log

((
−q3; q4

)−1

∞

)
=
∑
m≥1

qm

m
(
1 + (−1)m+1 q2m

) .
By taking real parts, we have

Re (Log (G(q))) =
∑
m≥1

cos (my)
(
|q|m + (−1)m+1 |q|3m

)
m
∣∣1 + (−1)m+1 q2m

∣∣2 . (4.3.2)

Note that since cosine is even, we may assume without loss of generality that y > 0.

This proof uses the idea of “splitting off terms” in this series expansion. In particular,

we make use of the string of inequalities

Re

(
qm

m
(
1 + (−1)m+1 q2m

)) ≤ |q|m

m
∣∣1 + (−1)m+1 q2m

∣∣ ≤ |q|m

m (1− |q|2m)
, (4.3.3)

in order to bound (4.3.2). A priori, one may show immediately using Lemma 4.6

and (4.3.3) that Re (Log (G(q))) < π2

12x
, which is insufficient for our purposes. The

idea of splitting terms off is to use (4.3.3) more carefully to keep track of some of the

error introduced in this process, eventually pushing the a priori bound of π2

12x
below

the required 1
5x
. More specifically, by applying (4.3.3) we have for any integer k ≥ 0

(with k = 0 denoting an empty sum) a corresponding “splitting bound”

Re (Log (G(q))) ≤
∑
m≥1

|q|m

m (1− |q|2m)

+
k∑

m=1

(
cos (my)

(
|q|m + (−1)m+1 |q|3m

)
m
∣∣1 + (−1)m+1 q2m

∣∣2 − |q|m

m (1− |q|2m)

)
.
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The infinite sum is a sort of main term which we must reduce below 1
5x

by means of

the finite sum. By Lemma 4.6 we have

Log
((

|q|; |q|2
)−1

∞

)
=
∑
m≥1

|q|m

m (1− |q|2m)
<

π2

12x
,

and therefore

Re (Log (G(q))) <
π2

12x
+

k∑
m=1

(
cos (my)

(
e−mx + (−1)m+1 e−3mx

)
m
∣∣1 + (−1)m+1 q2m

∣∣2 − e−mx

m (1− e−2mx)

)
.

(4.3.4)

Note that if the conditions of Lemma 4.4 are satisfied, then comparison between the

first and second terms in (4.3.3) implies that for any k ≥ ℓ ≥ 0 we have

Re (Log (G(q))) <
π2

12x
+

ℓ∑
m=1

e−
mπ
480

2m2x

(
2m

αm

− 1

)

+
k∑

m=ℓ+1

(
cos (my)

(
e−mx + (−1)m+1 e−3mx

)
m
∣∣1 + (−1)m+1 q2m

∣∣2 − e−mx

m (1− e−2mx)

)
.

(4.3.5)

Our objective now is to prove that the right-hand side of either (4.3.4) or (4.3.5)

is bounded above by 1
5x

for all 0 < x < π
480

and all 15x ≤ y ≤ π − 15x. This will not

be done all at once, but in stages. In the first stage of the proof, we will split the

interval π
2
≤ y ≤ π− 15x into several subintervals. On each subinterval, some version

of (4.3.4) will be sufficient to prove the desired inequality. After this is completed,

we will be able to apply the ℓ = 1 case of (4.3.5). We will use this case to prove the

result in the range π
4
≤ y < π

2
. We then use the case ℓ = 2 of (4.3.5) to cover the

range π
6
≤ y < π

4
, and finally we will use the case ℓ = 3 of (4.3.5) to cover the range
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15x ≤ y < π
6
. All of these cases together prove the desired result in the full range

15x ≤ y ≤ π − 15x. We begin now with the application of (4.3.4) to the interval

π
2
≤ y ≤ π − 15x.

Suppose 5π
6

≤ y ≤ π − 15x. Because cos (y) , cos (3y) ≤ 0 in this range, we have

using the k = 3 case of (4.3.4) that

Re (Log (G(q))) <
π2

12x
− e−x

1− e−2x
+

cos (2y) (e−2x − e−6x)

2 (1− cos (4y) e−4x + e−8x)

− e−2x

2 (1− e−4x)
− e−3x

3 (1− e−6x)
.

By Lemmas 4.5 and 4.7, we therefore have

Re (Log (G(q))) <
π2

12x
− 1

10x
− e−x

1− e−2x
− e−3x

3 (1− e−6x)

<

(
π2

12
− 1

10
− 499

1000

(
1 +

1

9

))
1

x
,

for all 0 < x < π
480

, which establishes Re (Log (G(q))) < 1
5x

in this region.

We now consider the region 3π
4
≤ y < 5π

6
. In this region we have cos (y) ≤ 0, and

so by the k = 2 variant of (4.3.4) we have

Re (Log (G(q))) <
π2

12x
− e−x

1− e−2x
+

cos (2y) (e−2x − e−6x)

2 (1− 2 cos (4y) e−4x + e−8x)
− e−2x

2 (1− e−4x)
.

By considering partial derivatives of the numerator and denominator separately, we

can see that in the region 3π
4
≤ y < 5π

6
the fraction

cos(2y)(e−2x−e−6x)
2(1−cos(4y)e−4x+e−8x)

is an increasing
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function of y, and therefore we have in this region by applying Lemma 4.7 that

Re (Log (G(q))) <
π2

12x
− e−x

1− e−2x
− e−2x

2 (1− e−4x)
+

e−2x − e−6x

4 (1− e−4x + e−8x)

<

(
π2

12
− 499

1000

(
1 +

1

4

))
1

x
+

e−2x − e−6x

4 (1− e−4x + e−8x)
.

It is clear that the term e−2x−e−6x

4(1−e−4x+e−8x)
is extremely small in 0 < x < π

480
. In particular,

it is straightforward to show that this quantity is less than 7
1000

for 0 < x < π
480

. It

follows that

(
π2

12
− 499

1000

(
1 +

1

4

))
1

x
+

e−2x − e−6x

4 (1− e−4x + e−8x)

<

(
π2

12
− 499

1000

(
1 +

1

4

))
1

x
+

7

1000
<

1

5x

for 0 < x < π
480

, and therefore Re (Log (G(q))) < 1
5x

for 0 < x < π
480

and 3π
4
≤ y < 5π

6
.

Consider now the range π
2
≤ y < 3π

4
. Here, we have cos (y) , cos (2y) ≤ 0 and

therefore by the k = 2 case of (4.3.4) and Lemma 4.7 we obtain

Re (Log (G(q))) <
π2

12x
− e−x

1− e−2x
− e−2x

2 (1− e−4x)
<

(
π2

12
− 49

100

(
1 +

1

4

))
1

x

As in the previous case, this establishes Re (Log (G(q))) < 1
5x

for all 0 < x < π
480

and,

by taking together all previous cases as well as this one, all π
2
≤ y < π.

Note that we are reduced to the region 15x ≤ y < π
2
, and so we may invoke the

case ℓ = 1 of (4.3.5). Consider the range π
4
≤ y < π

2
. By the ℓ = 1, k = 3 case of

(4.3.5) along with Lemma 4.7 and the fact that cos (2y) , cos (3y) ≤ 0 in this region,
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we obtain

Re (Log (G(q))) <
π2

12x
− 27e−

π
480

58x
− e−2x

2 (1− e−4x)
− e−3x

3 (1− e−6x)

<

(
π2

12
− 27e−

π
480

58
− 499

1000

(
1

4
+

1

9

))
1

x
,

which is less than 1
5x
, so the desired result is proven in the region π

4
≤ y < π

2
.

We now consider the range π
6
≤ y < π

4
, within which the ℓ = 2 case of (4.3.5)

applies by Lemma 4.4. By (4.3.5) with ℓ = 2 and k = 3, we have

Re (Log (G(q))) <
π2

12x
− 27e−

π
480

58x
− 51e−

π
240

440x
+

cos (3y) (e−3x + e−9x)

3 |1 + q6|2
− e−3x

3 (1− e−6x)
.

Since in this range we have cos (3y) ≤ 0, we have

Re (Log (G(q))) <
π2

12x
− 27e−

π
480

58x
− 51e−

π
240

440x
− e−3x

3 (1− e−6x)
,

which is as in earlier cases yields the desired result for 0 < x < π
480

by Lemma 4.7.

Finally, consider the interval 0 < 15x ≤ y < π
6
. We may use case ℓ = k = 3 of

(4.3.5), which implies

Re (Log (G(q))) <
π2

12x
− 21e−

π
480

58x
− 51e−

π
240

440x
− 71e−

π
160

1386x
.

for 0 < x < π
480

. The right-hand side above is always less than 1
5x
, and this completes

the proof in the region 15x ≤ y < π
6
. This completes the proof of the proposition.

4.3.3 Bounds on F r,t
a (z) and Er,t(z)

We will need the following effective estimates of the functions F r,t
a (z) and Er,t(z)

which appear in Lemma 4.2.



124

Lemma 4.9. Let 0 < a ≤ 1 be a real number and z = x + iy any complex number

satisfying |z| < 1 and 0 ≤ |y| < 15x. Then we have

E1,4(z) < 28|z|3

and

E3,4(z) < 56|z|3.

Proof. Recall that

Er,t(z) =
Jgr,t,4(z)

720
|z|3 +

∑
k≥3

∣∣∣∣∣Bk+2

(
1− r

t

)
(k + 2)!

−
(−r)k+1 (1

2
− r

t

)
tk+1(k + 1)!

∣∣∣∣∣
(
1 +

k

10(k − 3)!

)
|z|k,

where

c∗n =


Bn+1

(
1− r

t

)
(n+ 2)!

if n ≤ 2,

(−r)n+1
(
1
2
− r

t

)
tn+1(n+ 1)!

otherwise.

We first consider the two integrals Jg1,4,4(z) and Jg3,4,4(z), which we recall are taken

over a path of integration going through the origin and z. We bound these integrals

by splitting them each into upper and lower parts, taking advantage of the decay

properties of gr,t(x) in the upper parts and power series expansions in the lower

parts. For both cases r = 1, 3, we have

g
(4)
r,t (w) =

e−
rw
4

1024 (ew − 1)5w6

(
5∑

j=0

ejwpr,t,j(w) +
5∑

j=0

c̃je
4j+r

4
w

)

for certain constants c̃j and degree 5 polynomials pr,t,j(w). For α = 3π
2

z
|z| , applying the

triangle inequality and the major arc bounds Re(w) ≤ |w| ≤
√
226Re(w) imply upper
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bounds on
∣∣∣g(4)r,4 (w)

∣∣∣ that depend only on u = Re(w). Using these upper bounds, we

can conclude that∫ ∞

α

∣∣∣g(4)1,4(w)
∣∣∣ |dw| < 19900, and

∫ ∞

α

∣∣∣g(4)3,4(w)
∣∣∣ |dw| < 39900.

To bound the remainder of the integrals Jgr,4,4(z), we use the power series represen-

tations of g
(4)
r,4 (w), namely

g
(4)
1,4(w) =

∑
n≥0

(n+ 4)!

n!

(
Bn+6

(
3
4

)
(n+ 6)!

+
(−1)n

4n+6(n+ 5)!

)
wn

and

g
(4)
3,4(w) =

∑
n≥0

(n+ 4)!

n!

(
Bn+6

(
1
4

)
(n+ 6)!

+
(−1)n+13n+5

4n+6

)
wn.

By applying (3.1.2), ζ(n + 6) ≤ π6

945
, |w| < 3π

2
and other elementary estimates, we

have

∣∣∣g(4)1,4(w)
∣∣∣ ≤∑

n≥0

(n+ 4)!

n!

(
2π6

945(2π)n+6
+

1

4n+6(n+ 5)!

)(
3π

2

)n

< 1

and

∣∣∣g(4)3,4(w)
∣∣∣ ≤∑

n≥0

(n+ 4)!

n!

(
2π6

945(2π)n+6
+

3n+5

4n+6(n+ 5)!

)(
3π

2

)n

< 2.

Therefore, for α = 3π
2

z
|z| , we have

Jg1,4,4(z) =

∫ α

0

∣∣∣g(4)1,4(w)
∣∣∣ |dw|+ ∫ ∞

α

∣∣∣g(4)1,4(w)
∣∣∣ |dw| < 20000

and

Jg3,4,4(z) =

∫ α

0

∣∣∣g(4)3,4(w)
∣∣∣ |dw|+ ∫ ∞

α

∣∣∣g(4)3,4(w)
∣∣∣ |dw| < 40000.
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We now bound the other summand of Er,4(z) in the cases r = 1, 3. Using (3.1.2),

along with ζ(n) ≤ π2

6
for n ≥ 2 and |z| < 1, we have

∑
k≥3

∣∣∣∣∣Bk+2

(
1− 1

4

)
(k + 2)!

− (−1)n+1

4k+2(k + 1)!

∣∣∣∣∣
(
1 +

k!

10(k − 3)!

)
|z|k < |z|3

1000

and

∑
k≥3

∣∣∣∣∣Bk+2

(
1− 3

4

)
(k + 2)!

− (−3)k+1

4k+2(k + 1)!

∣∣∣∣∣
(
1 +

k!

10(k − 3)!

)
|z|k < |z|3

100
.

Therefore, we find that

∣∣E1,4(z)
∣∣ < 20000

720
|z|3 + 1

1000
|z|3 < 28|z|3

and

∣∣E3,4(z)
∣∣ < 40000

720
|z|3 + 1

100
|z|3 < 56|z|3,

which completes the proof.

We now estimate a certain combination of the functions F r,t
a (z) in a similar man-

ner. Define the functions G∗
1(q), G

∗
2(q) respectively by

G∗
1(q) := exp

(
π2

48z
− 1

4
Log (z) + β1,4 −

log(2)

4
− z

24

)

and

G∗
2(−q) := exp

(
π2

48z
+

1

4
Log (z) + β3,4 +

log(2)

4
− z

24

)
.

These will be useful in estimating G(q) along the two major arcs in the circle method.
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Lemma 4.10. Let q = e−z, z = x+ iy satisfy 0 < x < π
480

and 0 ≤ |y| < 15x.

1. We have

∣∣∣4zF 1,4
1 (4z) + 4zF 3,4

1 (8z)− 4zF 3,4
1/2(8z)− Log (G∗

1(q))
∣∣∣ ≤ |z|4

2
.

2. We have

∣∣∣4zF 3,4
1 (4z) + 4zF 1,4

1 (8z)− 4zF 1,4
1/2(8z)− Log (G∗

2(−q))
∣∣∣ ≤ |z|4

2
.

Proof. Define the functions

F1(z) := 4z
(
F 1,4
1 (4z) + F 3,4

1 (8z)− F 3,4
1/2(8z)

)
and

F2(z) := 4z
(
F 3,4
1 (4z) + F 1,4

1 (8z)− F 1,4
1/2(8z)

)
.

By expanding each of the terms F r,t
a (z), we have series expansions

F1(z)− Log (G∗
1(q)) =

∑
n≥3

αn+1z
n+1

and

F2(z)− Log (G∗
2(−q)) =

∑
n≥3

α′
n+1z

n+1

where

αn+1 = (−1)n+1Bn+1(1) + 3 · 6n
(
Bn+1

(
1
2

)
−Bn+1(1)

)
4(n+ 1) · (n+ 1)!
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and

α′
n+1 = (−1)n+1 −3n+1Bn+1(1) + 2n

(
Bn+1(1)−Bn+1

(
1
2

))
4(n+ 1)(n+ 1)!

.

Now, by (3.1.2), we have for n ≥ 2 that Mn = max
0≤x≤1

|Bn(x)| ≤ 2ζ(n)n!
(2π)n

, we have for

n ≥ 1 the bounds

|αn+1| ≤
|Bn+1(1)|+ 3 · 6n

(
|Bn+1(1)|+

∣∣Bn+1

(
1
2

)∣∣)
4(n+ 1) · (n+ 1)!

≤ (1 + 6n+1)Mn+1

4(n+ 1) · (n+ 1)!
<

π2

12(n+ 1)

(
1

(2π)n+1 +

(
3

π

)n+1
)
,

and likewise

∣∣α′
n+1

∣∣ ≤ (3n+1 + 2n+1)Mn+1

4(n+ 1) · (n+ 1)!
<

π2

12(n+ 1)

(
3

π

)n+1

.

Therefore, noting that on the major arc 0 ≤ |y| < 15x with 0 < x < π
480

we have

|z| <
√
226π
480

, we have

|F1(z)− Log (G∗
1(q))| ≤

∑
n≥3

|αn+1| |z|n+1 <
|z|4

2

and likewise

|F2(z)− Log (G∗
2(−q))| ≤

∑
n≥3

∣∣α′
n+1

∣∣ |z|n+1 <
|z|4

2
.

This completes the proof.

We now use the bounds so far derived to give an estimate for G(q) on arcs near

q = ±1. For this final lemma, we require some new notation. For any complex-valued

function f(z) and any real-valued function g(z), we shall say that f(z) = O≤ (g(z)) if

|f(z)| ≤ g(z) for all z in a specified region (which will always be clear from context).
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Lemma 4.11. Let q = e−z, z = x+ iy, 0 < x < π
480

and 0 ≤ |y| < 15x.

1. We have Log (G(q)) = Log (G∗
1(q)) + E+(q) where E+(q) = O≤ (4033|z|4).

2. We have Log (G(−q)) = Log (G∗
2(−q)) + E−(q) where E−(q) = O≤ (2689|z|4).

Proof. Let F1(z), F2(z) be defined as in the proof of Lemma 4.10. Then by Proposition

4.3 and Lemma 4.9, we have

|Log (G(q))− F1(z)| < 4|z|E1,4(4z) + 8|z|E3,4(8z) < 4032|z|4

and similarly

|Log (G(−q))− F2(z)| < 2688|z|4

in the relevant domain. We therefore obtain by Lemma 4.10 (1) and (2) that

|Log (G(q))− Log (G∗
1(q))| < 4033|z|4

and

|Log (G(−q))− Log (G∗
2(−q))| < 2689|z|4.

This proves the result.

4.4 Proof of Theorem 1.8

We now proceed to the proof of Theorem 1.9 (Theorem 1.8 will be proven along the

way), which relies on a variation of Wright’s circle method. We set q = e−z with
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Re (z) = x and Im (z) = y. Since G(q) has no poles inside the unit disk, we have by

Cauchy’s theorem that

a(n) =
1

2πi

∫
C

G(q)

qn+1
dq,

where C is the circle oriented counterclockwise centered at 0 with radius |q| = e−x.

We choose C so that x = π√
48n

. Impose the constraint 0 < x < π
480

throughout, which

by algebraic manipulations is equivalent to the assumption that n > 4800. Define the

three arcs

C1 := {q = e−z ∈ C : 0 ≤ |y| < 15x},

C2 := {q = e−z ∈ C : π − 15x ≤ |y| < π},

and

C̃ := {q = e−z ∈ C : 15x ≤ |y| ≤ π − 15x}.

We may decompose a(n) as

a(n) = J∗
1 (n) + J∗

2 (n) + Jmaj
1 (n) + Jmaj

2 (n) + Jmin(n),

where for k = 1, 2 we define define

G̃1(q) := exp

(
π2

48z
− 1

4
Log (z) + β1,4 −

log(2)

4

)
,

G̃2(−q) := exp

(
π2

48z
+

1

4
Log (z) + β3,4 +

log(2)

4

)
,
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and

J∗
k (n) :=

1

2πi

∫
Ck

G̃k(q)

qn+1
dq,

Jmaj
k (n) :=

1

2πi

∫
Ck

G(q)− G̃k(q)

qn+1
dq,

Jmin(n) :=
1

2πi

∫
C̃

G(q)

qn+1
dq.

J∗
1 (n) and J∗

2 (n) are the dominant terms, and so we begin with an analysis of the

error terms.

4.4.1 Error Bound for Jmin(n)

By Proposition 4.8, we have on all C̃ that |G(q)| < exp
(

1
5x

)
. Since the length of C̃ is

less than 2π and
∣∣∫

C̃
q−1dq

∣∣ < 2π|q|−1 = 2πe
π

480 < 21π
10

, it follows that

∣∣Jmin(n)
∣∣ = ∣∣∣∣ 1

2πi

∫
C̃

G(q)

qn+1
dq

∣∣∣∣ < 21π

10
exp

(
nx+

1

5x

)
=

21π

10
exp

((
π

4
√
3
+

4
√
3

5π

)
√
n

)
.

4.4.2 Error Bounds for Jmaj
1 (n) and Jmaj

2 (n)

We now consider Jmaj
1 (n) and Jmaj

2 (n). For Jmaj
1 (n), we may assume now that 0 ≤

|y| < 15x. Since we have x ≤ |z| ≤
√
226x,

∣∣∣G̃1(q)
∣∣∣ = Γ

(
1
4

)
2

3
4π

1
2

|z|−
1
4 exp

(
π2x

48|z|2

)
≤

Γ
(
1
4

)
2

3
4π

1
2

x−
1
4 exp

(
π2

48x

)

and

∣∣∣G̃2(−q)
∣∣∣ = Γ

(
3
4

)
2

1
4π

1
2

|z|
1
4 exp

(
π2x

48|z|2

)
≤

226
1
8Γ
(
3
4

)
2

1
4π

1
2

x
1
4 exp

(
π2

48x

)
.
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Similarly, we have

|G∗
1(q)| =

∣∣∣G̃1(q)
∣∣∣ · ∣∣∣exp(− z

24

)∣∣∣ = ∣∣∣G̃1(q)
∣∣∣ · exp(− x

24

)
<
∣∣∣G̃1(q)

∣∣∣
and |G∗

2(−q)| <
∣∣∣G̃2(−q)

∣∣∣. By Lemma 4.11, we have

Log (G(q))− Log (G∗
1(q)) = E+(q) = O≤

(
4033|z|4

)
,

and therefore by exponentiation G(q) = G∗
1(q) exp (E+(q)). Now, since |z| <

√
226π
480

on

C1, we have |E+(q)| < 4033|z|4 < 0.38. Because exp (t) = 1+O≤ (2t) for 0 < t < 0.76,

we have

|exp (E+(q))− 1| < 3

2
|E+(q)| < 6050|z|4.

In particular, this implies

|G(q)−G∗
1(q)| = |G∗

1(q)| · |exp (E+(q))− 1| < 9833929

n
15
8

exp

(
π

4

√
n

3

)
.

We now make a similar estimate for G∗
1(q)− G̃1(q). It is clear from definitions that

Log (G∗
1(q))− Log

(
G̃1(q)

)
= − z

24
= O≤

(
1

24
|z|
)
,

and so reasoning as earlier, we may write G∗
1(q) = G̃1(q) exp

(
− z

24

)
. We have exp (t) =

1+O≤
(
12
11
t
)
for 0 < t < 0.005, so since |z|

24
< 0.005 we have exp

(
− z

24

)
= 1+O≤

(
1
22
|z|
)
.

Therefore, we find that

∣∣∣G∗
1(q)− G̃1(q)

∣∣∣ ≤ |z|Γ
(
1
4

)
22 · 2 3

4π
1
2

x−
1
4 exp

(
π2

48x

)
<

1

2n
3
8

exp

(
π

4

√
n

3

)
.
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Thus, on C1 we have

∣∣∣G(q)− G̃1(q)
∣∣∣ ≤ ( 1

2n
3
8

+
9833929

n
15
8

)
exp

(
π

4

√
n

3

)
.

Now, let D0 = {z ∈ C : Re (z) = x, |Im (z)| ≤ 15x}, which is the image of C1 under

the change of variables q 7→ z. Since D0 has length 30x, we have

∣∣∣Jmaj
1 (n)

∣∣∣ ≤ 1

2π

∫
C1

∣∣∣G(q)− G̃1(q)
∣∣∣

|q|n+1
dq ≤ 1

2π

∫
D0

∣∣∣G(q)− G̃1(q)
∣∣∣ |exp (nz)| |dz|

≤ 30x

2π
·
(

1

2n
3
8

+
9833929

n
15
8

)
exp

(
π

4

√
n

3
+ nx

)
<

(
2

n
7
8

+
21291081

n
19
8

)
exp

(
π

2

√
n

3

)
.

We may similarly analyze the case of G(q)−G∗
2(q). Note to begin that we may shift

C2 to C1 by the substitution q 7→ −q, and so

∣∣∣Jmaj
2 (n)

∣∣∣ ≤ ∣∣∣∣∣ 1

2πi

∫
C1

G(−q)− G̃2(−q)
qn+1

dq

∣∣∣∣∣ .
We have by Lemma 4.11 that Log (G(−q))−Log (G∗

2(−q)) = E−(q) = O≤ (2689|z|4).

Thus |E−(q)| < 3
10

and as before we have exp (t) = 1+O≤
(
3
2
t
)
. Thus, exp (E−(q)) =

1 +O≤ (4034|z|4), and by the same reasoning as in the first case we obtain

|G(−q)−G∗
2(−q)| <

8183085

n
17
8

exp

(
π

4

√
n

3

)
.

As in the previous case, we have G∗
2(−q) − G̃2(−q) = G̃2(−q) × O≤

(
1
22
|z|
)
, and

therefore

∣∣∣G∗
2(−q)− G̃2(−q)

∣∣∣ ≤ |z|
22

·
226

1
8Γ
(
3
4

)
2

1
4π

1
2

x
1
4 exp

(
π2

48x

)
≤ 3

10n
5
8

exp

(
π

4

√
n

3

)
.
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Combining the two cases,

∣∣∣G(−q)− G̃2(−q)
∣∣∣ ≤ ( 3

10n
5
8

+
8183085

n
17
8

)
exp

(
π

4

√
n

3

)

and therefore

∣∣∣Jmaj
2 (n)

∣∣∣ ≤ 30x

2π
·
(

3

10n
5
8

+
8183085

n
17
8

)
exp

(
π

4

√
n

3
+ nx

)
<

(
13

20n
9
8

+
17716899

n
21
8

)
exp

(
π

2

√
n

3

)
.

4.4.3 Estimates for J∗
1 (n) and J∗

2 (n)

Having bounded the explicit error terms, we now estimate the integrals J∗
1 (n), J

∗
2 (n)

in terms of more familiar I-Bessel functions. Recall that for any real s, the function

Is(x) may be defined by

Is(x) :=
1

2πi

∫
D̃

w−s−1 exp

(
x

2

(
1

w
+ w

))
dw,

where D̃ is any contour that loops from −∞ below R<0 around zero counterclockwise

and back to −∞ above R<0. Let D0 := {w ∈ C : Re (w) = x, |Im (w)| ≤ 15x} as

earlier, and let

D± := {w ∈ C : Re (w) ≤ x, Im (w) = ±15x}.

Define the (counterclockwise-oriented) path D := D− ∪D0 ∪D+. Letting D̃ be the

image of D under the change of variables z = π
4
√
3n
w, we can see that

1

2πi

∫
D

z−
1
4 exp

(
π2

48z
+ nz

)
dz =

π
3
4

2
3
23

3
8n

3
8

I− 3
4

(
π

2

√
n

3

)
,
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and similarly

1

2πi

∫
D

z
1
4 exp

(
π2

48z
+ nz

)
dz =

π
5
4

2
5
23

5
8n

5
8

I− 5
4

(
π

2

√
n

3

)
.

By changing variables q 7→ z, we have

J∗
1 (n) =

Γ
(
1
4

)
2

3
4π

1
2

· 1

2πi

∫
D0

z−
1
4 exp

(
π2

48z
+ nz

)
dz,

and therefore

Γ
(
1
4

)
π

1
4

2
9
43

3
8n

3
8

I− 3
4

(
π

2

√
n

3

)
− J∗

1 (n) =
Γ
(
1
4

)
2

3
4π

1
2

· 1

2πi

∫
D+∪D−

z−
1
4 exp

(
π2

48z
+ nz

)
dz.

The same procedure applied to J∗
2 (n) yields

(−1)n
Γ
(
3
4

)
π

3
4

2
11
4 3

5
8n

5
8

I− 5
4

(
π

2

√
n

3

)
− J∗

2 (n) =
Γ
(
3
4

)
2

1
4π

1
2

· 1

2πi

∫
D+∪D−

z
1
4 exp

(
π2

48z
+ nz

)
dz.

For the remainder, we define

M1(n) :=
Γ
(
1
4

)
π

1
4

2
9
43

3
8n

3
8

I− 3
4

(
π

2

√
n

3

)
, M2(n) := (−1)n

Γ
(
3
4

)
π

3
4

2
11
4 3

5
8n

5
8

I− 5
4

(
π

2

√
n

3

)
,

which are the main terms of J∗
1 (n), J

∗
2 (n). For t ∈ D−, set t = (x− u) − 15xi for

u ≥ 0. Since Re
(

π2

48t

)
≤ π

4

√
n
3
and |t| ≥ 15x, we have∣∣∣∣t− 1

4 exp

(
π2

48t
+ nt

)∣∣∣∣ ≤ |t|−
1
4 exp

(
π

4

√
n

3
+ n (x− u)

)
≤ 2

1
23

1
8n

1
8

15
1
4π

1
4

exp

(
π

2

√
n

3
− nu

)
.

This bound holds not only for t ∈ D−, but also t ∈ D+, and therefore since∫∞
0

exp (−nu) du = 1
n
, we have∣∣∣∣ 1

2πi

∫
D+∪D−

z−
1
4 exp

(
π2

48z
+ nz

)
dz

∣∣∣∣ ≤ 2

(
2

1
23

1
8n

1
8

15
1
4π

1
4

exp

(
π

2

√
n

3

))∫ ∞

0

e−nudu

=
2

3
23

1
8

15
1
4π

1
4n

7
8

exp

(
π

2

√
n

3

)
.
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It therefore follows that

|M1(n)− J∗
1 (n)| ≤

2
3
4Γ
(
1
4

)
3

1
85

1
4π

3
4n

7
8

exp

(
π

2

√
n

3

)
<

8

5n
7
8

exp

(
π

2

√
n

3

)
.

Similarly, for t ∈ D±, set t = (x− u)± 15ηi for u ≥ 0. Then |t|2 ≤ 226x2 + u2. Since

we have assumed n > 4800, it is clear that 226x2 + u2 ≤ 1 + u2, and so

∣∣∣∣t 14 exp( π2

48t
+ nt

)∣∣∣∣ ≤ |t|
1
4 exp

(
π

4

√
n

3
+ n (x− u)

)
≤
(
1 + u2

) 1
8 exp

(
π

2

√
n

3
− nu

)
,

and therefore

∣∣∣∣ 1

2πi

∫
D+∪D−

z
1
4 exp

(
π2

48z
+ nz

)
dz

∣∣∣∣ ≤ 2 exp

(
π

2

√
n

3

)∫ ∞

0

(
1 + u2

) 1
8 exp (−nu) .

Since (1 + u2)
1
8 ≤ 1 + u

1
4 for u > 0, we have for n > 1 that

∫ ∞

0

(
1 + u2

) 1
8 exp (−nu) ≤

∫ ∞

0

exp (−nu) du+
∫ ∞

0

u1/4 exp (−nu) du < 2

n
.

and so

∣∣∣∣ 1

2πi

∫
D+∪D−

z
1
4 exp

(
π2

48z
+ nz

)
dz

∣∣∣∣ < 4

n
exp

(
π

2

√
n

3

)
.

As a consequence, we have

|M2(n)− J∗
2 (n)| ≤

2
11
4 Γ
(
3
4

)
π

1
2n

exp

(
π

2

√
n

3

)
<

5

n
exp

(
π

2

√
n

3

)
.

Combining all the estimates made thus far, we may conclude that

|a(n)−M1(n)−M2(n)| ≤ E(n), (4.4.1)
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where

E(n) :=
21π

10
exp

((
π

4
+

12

5π

)√
n

3

)
+

[
4

n
7
8

+
5

n
+

13

20n
9
8

+
21291081

n
19
8

+
17716899

n
21
8

]
exp

(
π

2

√
n

3

)
. (4.4.2)

Taken together, (4.4.1) and (4.4.2) now imply Theorem 1.8.

4.5 Proof of Theorem 1.9

In this section, we prove that a(n) ≥ 0 for all n ≥ 0. Note that in order to

prove a(n) ≥ 0 for a particular value of n, it would suffice to show that a(n) ≥

M1(n) +M2(n)− E(n). The majority of this proof consists in simplifying this suffi-

cient condition on n until an explicitly lower bound is achieved.

For simplicity, it is easiest to remove the (−1)n fromM2(n) by leveragingM2(n) ≤

|M2(n)|. Thus, to prove a(n) ≥ 0 it would suffice to prove that M1(n) − |M2(n)| −

E(n) ≥ 0, that is,

M1(n) ≥ |M2(n)|+ E(n). (4.5.1)

Note that to prove (4.5.1), it would suffice to prove M1(n) ≥ 2 |M2(n)| and M1(n) ≥

2E(n). We now prove these inequalities one at a time. Taking the definitions of

M1(n) and M2(n), the inequality M1(n) ≥ 2 |M2(n)| may be rearranged to the form

I− 3
4

(
π

2

√
n

3

)
I− 5

4

(
π

2

√
n

3

) >
2Γ
(
3
4

)
Γ
(
1
4

) √ π

6n
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Now, the I-Bessel function has the power series expansion

Is(t) =

(
t

2

)s∑
k≥0

t2k

4kk!Γ (s+ k + 1)
,

from which one may clearly see that I− 3
4
(t) > I− 5

4
(t) for all t > 1. In particular, it is

clear that for all n > 4800 that M1(n) > 2 |M2(n)|.

For a fixed n > 4800, in order to prove a(n) ≥ 0 we have shown that it will suffice

to prove M1(n) > 2E(n). We prove this result by first bounding M1(n) from below.

By [92, Exercise 13.2, pg. 269], we have for t > 0 real that

I− 3
4
(t) =

et√
2πt

(1 + δ1(t))− ie−
3
4
πi e

−t

√
2πt

(1 + γ1(t)) ,

where δ1(t), γ1(t) satisfy the bounds

|γ1(t)| <
5

16t
exp

(
5

16t

)
and |δ1(t)| <

5π

16t
exp

(
5π

16t

)
.

Therefore, we have

∣∣∣∣I− 3
4
(t)− et√

2πt

∣∣∣∣ < 5π

16
√
2πt

3
2

exp

(
t+

5π

16t

)
+

e−t

√
2πt

(
1 +

5

16t
exp

(
5

16t

))
,

from which it follows that

I− 3
4
(t) >

et√
2πt

−
[

5π

16
√
2πt

3
2

exp

(
t+

5π

16t

)
+

e−t

√
2πt

(
1 +

5

16t
exp

(
5

16t

))]
.

We wish now to show I− 3
4
(t) > 99et

100
√
2πt

for suitably large t, for which it will suffice

to consider their ratio (since both are positive). We have from the above inequality

that I− 3
4
(t)
(

99et

10
√
2πt

)−1

is plainly an increasing function of t, and so we can see that
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if we set t = π
2

√
n
3
, the inequality holds for all n > 4800. Thus, to prove (4.5.1) for

any given n > 4800 it will suffice to show that

99

100
·

Γ
(
1
4

)
2

5
43

1
8π

3
4n

5
8

exp

(
π

2

√
n

3

)
≥ 21π

5
exp

((
π

4
√
3
+

4
√
3

5π

)
√
n

)

+

[
8

n
7
8

+
10

n
+

13

10n
9
8

+
42582162

n
19
8

+
35433798

n
21
8

]
exp

(
π

2

√
n

3

)
,

which on dividing through by 1
n5/8 exp

(
π
2

√
n
3

)
and making a convenient numerical

estimate, it will suffice to show

21πn
5
8

5
exp

((
12

5π
− π

4

)√
n

3

)
+

[
8

n
1
4

+
10

n
3
8

+
13

10n
1
2

+
42582162

n
7
4

+
35433798

n2

]
<

11

20
.

(4.5.2)

It is clear that for n ≥ 350000 (in fact, much smaller n will do) the left-hand side

is a decreasing function of n. It can also be checked with a direct calculation that

(4.5.2) is true for n = 350000. Our method only assumed n > 4800, so we have now

proven that a(n) ≥ 0 for all n ≥ 350000. The author has checked the values of a(n)

for 1 ≤ n ≤ 350000 using his personal computer and found all to be non-negative.

Therefore, Theorem 1.9 follows.
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Chapter 5

Distribution of t-hook parity

The purpose of this chapter is to prove Theorems 1.12 and 1.13. This is joint work

with Anna Pun.

5.1 The Nekrasov-Okounkov formula

Generating functions connected to hook numbers are central in Chapters 5 and 6. The

most important formula in this direction is the Nekrasov-Okounkov formula [66, 86]

which states that

∑
λ∈P

x|λ|
∏

h∈H(λ)

(
1− z

h2

)
=

∞∏
n=1

(1− xn)z−1 .

This result is fundamental in its close relationship to Dedekind’s eta-function and

many partition-theoretic identities. Using the famous work of Garvan, Kim, and Stan-

ton on t-cores [57], Han reproved and generalized the formula of Nekrasov-Okounkov

in various ways which enabled the calculation of many kinds of generating functions

connected to counting hook numbers in partitions. In particular, we shall be con-



141

cerned with the multisets

Ht(λ) := {h ∈ H(λ) : t|h},

i.e. the multiset of all hook numbers in λ which are divisible by t. Of particular

interest to us is the following theorem of Han.

Theorem 5.1 ([66, Theorem 1.3]). Let t be a positive integer. For any complex

numbers y and z we have

∑
λ∈P

x|λ|
∏

h∈Ht(λ)

(
y − tyz

h2

)
=
∏
k≥1

(
1− xtk

)t
(1− (yxt)k)t−z (1− xk)

.

5.2 Generating functions and statement of results

Since pet (n)+ pot (n) = p(n), At(n) := pet (n)− pot (n) can serve a useful auxiliary role in

our study. The utility of the function At(n) comes from the generating function

Gt(x) :=
∑
n≥0

At(n)x
n =

∏
k≥1

(1− x4tk)t(1− xtk)2t

(1− x2tk)3t(1− xk)
, (5.2.1)

proven in Corollary 5.2 of [66], which comes from specializing the values of y, z in

Theorem 5.1 by specializing to y = −1 and z = 0, along with relatively simple

manipulations with infinite products.

The driving force which brings to bear the applicationo of Rademacher’s circle

method is the fact that Gt(x) may readily be written in terms of a modular infinite

product via the Dedekind eta-function (see (5.3.2)). Using the generating function
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(5.2.1), we prove the following exact formula for At(n), given as a Rademacher-type

infinite series expansion.

Theorem 5.2. If n, t are positive integers with t > 1, then

At(n) =
2t/2

(24n− 1)3/4

∑
k≥1

gcd(k,2t)=1

π

k

∑
0≤h<k

gcd(h,k)=1

e
−2πinh

k w(t, h, k)

Ut,k∑
m=0

e
2πi(4t)∗Hm

k c1(t, h, k;m)

·
(
t− 24m

t

)3/4

I 3
2

(
π

12k

√
(t− 24m)(24n− 1)

t

)

+
2t/2

(24n− 1)3/4

∑
k≥1
2||k0

2π

k

∑
0≤h<k

gcd(h,k)=1

e
−2πinh

k w(t, h, k)

Ut,k∑
m=0

e
2πi(2†t∗0)Hm

k c2(t, h, k;m)

·
(
t0(1 + 3 gcd(k, t)2)− 12m

t0

)3/4

I 3
2

 π

6k

√
t0(1 + 3 gcd(k, t)2)− 12m)(24n− 1)

t0


+

1

(24n− 1)3/4

∑
k≥1
4|k0

2π

k

∑
0≤h<k

gcd(h,k)=1

e
−2πinh

k w(t, h, k)

Ut,k∑
m=0

e
2πi(t∗0H)m

k c3(t, h, k;m)

·
(
t0 − 24m

t0

)3/4

I 3
2

 π

6k

√
(t0 − 24m)(24n− 1)

t0

 ,

where k0 :=
k

gcd(k, t)
, t0 :=

t

gcd(k, t)
, H satisfies hH ≡ −1 (mod k), h∗ (resp. h†)

denotes the inverse of h modulo k0 (resp. k0/2), Ut,k is defined by

Ut,k :=



⌊
t

24

⌋
if 2 ̸ | k0,

⌊
t0(1 + 3 gcd(k, t)2)

12

⌋
if 2||k0,

⌊
t0
24

⌋
if 4|k0,
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w(t, h, k) is defined by (5.4.1), cj(t, h, k;m) are defined by (5.6.1), and I 3
2
(z) is the

classical modified I-Bessel function.

Example 5.3. We illustrate Theorem 5.2 using the numbers At(d;n), which denote

partial sums for At(n) over 1 ≤ k ≤ d. Theorem 5.2 is therefore the statement that

lim
d→∞

At(d;n) = At(n). We offer some examples in the table below.

d 10 100 1000 · · · ∞

50 ≈ 114580.084 ≈ 114579.996 ≈ 114580.000 · · · 114580

100 ≈ 81486201.594 ≈ 81486198.001 ≈ 81486198.000 · · · 81486198

Table 5.1: Values of A3(d;n)

This exact formula gives the following corollary.

Corollary 5.4. For t > 1 a fixed positive integer, write t = 2sℓ for integers s, ℓ ≥ 0

such that ℓ is odd. Then as n→ ∞ we have

At(n) ∼
π

2s+
t
2

(
1 + 3 · 4s

24n− 1

) 3
4

I 3
2

(
π
√

(1 + 3 · 4s)(24n− 1)

6 · 2s+1

) ∑
0<h<2s+1

h odd

w2(t, h, 2
s+1)e−

πinh
2s .

In particular, when t is odd we have

At(n) ∼ (−1)n
π · 2(3−t)/2

(24n− 1)3/4
I 3

2

(
π
√
24n− 1

6

)
.

Proof. For z ∈ R+, it is known that I 3
2
(z) ∼ ez√

2πz
. From this asymptotic relation, we

can derive a condition for isolating the dominant term in Theorem 5.2. In particular,

let {gi(n)}∞i=0 be a countable collection of functions such that lim
n→∞

g0(n)

gi(n)
> 1 for all
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i ̸= 0 and let {ai(n)}∞i=0 be complex numbers each of which grow at most polynomially

in n. Then if the series
∞∑
i=0

ai(n)I3/2(gi(n)) converges and a0(n) does not vanish, we

have
∞∑
i=0

ai(n)I 3
2
(gi(n)) ∼ a0(n)I3/2(g0(n))

as n→ ∞. This reduces the proof to an analysis of the analogs of gi(n) and a0(n) in

Theorem 5.2.

Each of the arguments of I 3
2
(z) is maximized when m = 0, so we are left with

the task of finding the largest possible value of of coefficients on
√
24n− 1, which are

given by
π

12k
if 2 ̸ | k0,

π

6k

√
1 + 3 gcd(k, t)2 if 2||k0, and

π

6k
if 4|k0. Among these, it is

clear that the case where 2||k0 is the largest. Now, this expression can be rewritten

as

π

6k

√
1 + 3 gcd(k, t)2 =

π

6k

√
1 +

3

k20
k2.

When k0 is held fixed, since k0 ≥ 2 this expression is strictly decreasing in k, and

therefore the optimal choice of k must be of the form k = 2sk0. It is also clear that

k0 = 2 is optimal, and therefore k = 2s+1 has the dominant I-Bessel function. Since

by Lemma 5.10 the associated Kloosterman sum does not vanish, this completes the

proof.
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5.3 Set-up and notation

The approach that will be utilized in the proof of Theorem 5.2 is commonly referred

to as the “circle method”. Initially developed by Hardy and Ramanujan and refined

by Rademacher, the circle method has been employed with great success for the past

century in additive number theory. The crowning achievement of the circle method

lies in producing an exact formula for the partition function p(n), and it has been

utilized to produce similar exact formulas for variants of the partition function. A

helpful and instructive sketch of the application of Rademacher’s circle method to the

partition function p(n) is given in Chapter 5 of [7]. Here, we will provide a summary

of the circle method, in order to clarify the key steps and the general flow of the

argument.

The function At(n) has as its generating function Gt(x). Our objective is to use

Gt(x) to produce an exact formula for At(n). Consider the Laurent expansion of

Gt(x)/x
n+1 in the punctured unit disk. This function has a pole at x = 0 with

residue p(n) and no other poles. Therefore, by Cauchy’s residue theorem we have

At(n) =
1

2πi

∫
C

Gt(x)

xn+1
dx, (5.3.1)

where C is any simple closed curve in the unit disk that contains the origin in its

interior. The task of the circle method is to choose a curve C that allows us to

evaluate this integral, and this is achieved by choosing C to lie near the singularities

of Gt(x), which are the roots of unity. For every positive integer N and every pair
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of coprime non-negative integers 0 ≤ h < k ≤ N , we choose a special contour

C in the complex upper half-plane and divide this contour into arcs Ch,k near the

roots of unity e2πih/k. Integration along C can then be expressed as a finite sum of

integrals along the arcs Ch,k, and elementary functions ψh,k are chosen with behavior

similar to Gt(x) near the singularity e2πih/k. The functions ψh,k are found by using

properties of Gt(x) deduced from the functional equation of the Dedekind eta-function

η(τ) := eπiτ/12
∏
n≥1

(1− e2πinτ ) and the relation between Gt(x) and η(τ) given by

Gt(e
2πiτ ) =

η(tτ)2tη(4tτ)t

η(τ)η(2tτ)3t
. (5.3.2)

The error created by replacing Gt(x) by ψh,k(x) can be estimated, and the integrals

of the ψh,k along Ch,k evaluated. This procedure produces estimates that can be used

to formulate a convergent series for At(n). Our implementation of the circle method

will follow along these same lines.

To preface the proof of Theorem 5.2, we summarize notation which will be used

prominently throughout the rest of the chapter. The values of t, n, h, and k are always

non-negative integers. Additionally, we assume t > 1 and that h, k satisfy 0 ≤ h < k

and gcd(h, k) = 1. Frequently, it is necessary to remove common factors between

k and t, and so we define k0 := k
gcd(k,t)

and t0 := t
gcd(k,t)

. We will also make use of

multiplicative inverses to a variety of moduli, and use distinct notations to distinguish

these. We will always denote byH an integer satisfying hH ≡ −1 (mod k), and h∗, h†

will denote inverses of h modulo k0 and k0/2 respectively. The complex numbers x

and z are related by x = exp
(
2πi
k
(h+ iz)

)
. Note that although x depends on h
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and k, the dependence is suppressed since these values will be clear in context. The

notation x′ will always be used to denote a modular transformation of the variable x.

The modular transformations also make use of the Dedekind sum s(u, v), which for

any integers u, v is given by

s(u, v) :=
v∑

m=1

((m
v

))((um
v

))
where

((m)) :=


m− ⌊m⌋ − 1

2
m ̸∈ Z,

0 m ∈ Z.

These Dedekind sums will always arise in the context of certain roots of unity eπis(u,v),

and so it is convenient to adopt the notation ωu,v := eπis(u,v).

5.4 Modular transformation laws

We first recall the transformation formula for the generating function of p(n) (see, for

example [65] or p. 96 in [7]).

Theorem 5.5. Let k, t be positive integers with t > 1 and 0 ≤ h < k an integer

coprime to k and H an integer satisfying hH ≡ −1 (mod k). Let z be a complex

number with Re(z) > 0 and let x, x′ be defined by x = exp

(
2πi

k
(h + iz)

)
and x′ =

exp

(
2πi

k

(
H +

i

z

))
. If F (x) is defined by F (x) :=

∞∏
m=1

1

1− xm
, then

F (x) =
√
z · ωh,k exp

(
π(z−1 − z)

12k

)
F (x′).
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The proof of this theorem comes directly from the modular transformation prop-

erties of Dedekind’s eta-function.

By (5.3.2), Gt(x) can be expressed in terms of F (x):

Gt(x) =
F (x)

[
F
(
x2t
)]3t[

F
(
xt
)]2t[

F
(
x4t
)]t .

We can therefore apply Theorem 5.5 to find a similar transformation formula for

Gt(x).

Lemma 5.6. Define x1 := xt, x2 := x2t, and x3 := x4t. Then the following transfor-

mation formulas for F (xj) hold.

(a) When k0 is odd, for 1 ≤ j ≤ 3 we have

F (xj) =
√

2j−1t0z · ω2j−1t0h,k0 exp

[
π

12k0

(
1

2j−1t0z
− 2j−1t0z

)]
F (x′j)

hold, where x′j = exp

[
2πi

k0

(
(2j−1t0)

∗H +
i

2j−1t0z

)]
.

(b) Suppose k0 ≡ 2 (mod 4). Then we have the transformation formulas

F (x1) =
√
t0z · ωt0h,k0 exp

[
π

12k0

(
1

t0z
− t0z

)]
F (x′1)

where x′1 = exp

[
2πi

k0

(
t∗0H +

i

t0z

)]
, and for j = 2, 3 we have

F (xj) =
√

2j−2t0z · ω2j−2t0h,k0/2 exp

[
π

6k0

(
1

2j−2t0z
− 2j−2t0z

)]
F (x′j),
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where x′2 = exp

[
2πi

k0/2

(
t∗0H +

i

t0z

)]
, and x′3 = exp

[
2πi

k0/2

(
2†t∗0H +

i

t0z

)]
.

(c) Suppose 4|k0. Then we have the transformation formulas

F (xj) =
√
t0z · ωt0h,k0/2j−1 exp

[
23−jπ

12k0

(
1

t0z
− t0z

)]
F (x′j),

where x′j = exp

[
2πi

k0

(
2j−1t∗0H +

i

21−jt0z

)]
.

Proof. We first prove the case j = 1 of (a) By definition, x1 = exp

(
2πi

k0
(t0h+ it0z)

)
.

Since gcd(t0h, k0) = 1 and t0h(t
∗
0H) ≡ −1 (mod k0), applying Theorem 5.5 gives the

result by the substitutions h 7→ t0h, k 7→ k0, and z 7→ t0z. Every other case of the

result follows by rearranging terms in xj in a manner such that the terms playing the

roles of h and k in Theorem 5.5 are coprime.

Using these identities for each case, we obtain the transformation law

Gt(x) =



2t/2
√
z exp

[
π

12k

(
4− 3 gcd(k, t)2

4z
− z

)]
w1(t, h, k)

F (x′)[F (x′2)]
3t

[F (x′1)]
2t[F (x′3)]

t
2 ̸ | k0,

2t/2
√
z exp

[
π

12k

(
1 + 3 gcd(k, t)2

z
− z

)]
w2(t, h, k)

F (x′)
[
F (x′2)

]3t[
F (x′1)

]2t[
F (x′3)

]t 2||k0,

√
z exp

[
π

12k

(
1

z
− z

)]
w3(t, h, k)

F (x′)
[
F (x′2)

]3t[
F (x′1)

]2t[
F (x′3)

]t 4|k0,

where w1(t, h, k) := ωh,kω
3t
2t0h,k0

ω−2t
t0h,k0

ω−t
4t0h,k0

, w2(t, h, k) := ωh,kω
3t
t0h,k0/2

ω−2t
t0h,k0

ω−t
2t0h,k0/2

,

and w3(t, h, k) := ωh,kω
3t
t0h,k0/4

ω−2t
t0h,k0

ω−t
t0h,k0/4

. From the definition of s(h, k) we can see

that s(dh, dk) = s(h, k) for every integer d, and therefore ωt0h,k0/2 = ω2t0h,k0 when
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2|k0 and ωt0h,k0/4 = ω2t0h,k0/2 = ω4t0h,k0 when 4|k0. Therefore wj(t, h, k) = w(t, h, k)

for all j, where

w(t, h, k) :=
ωh,kω

3t
2t0h,k0

ω2t
t0h,k0

ωt
4t0h,k0

. (5.4.1)

Therefore, the transformation law for Gt(x) can be rewritten as

Gt(x) =



2t/2
√
z exp

[
π

12k

(
4− 3 gcd(k, t)2

4z
− z

)]
w(t, h, k)Jt,h,k(x

′) 2 ̸ | k0,

2t/2
√
z exp

[
π

12k

(
1 + 3 gcd(k, t)2

z
− z

)]
w(t, h, k)Jt,h,k(x

′) 2||k0,

√
z exp

[
π

12k

(
1

z
− z

)]
w(t, h, k)Jt,h,k(x

′) 4|k0,

(5.4.2)

where for shorthand we define Jt,h,k(x
′) :=

F (x′)
[
F (x′2)

]3t[
F (x′1)

]2t[
F (x′3)

]t .

5.5 The Farey decomposition

We follow closely to the notations and proofs in Chapter 5 of [7]. Let notation be as

before, and let N be any positive integer. Recall that

Gt(x) :=
∑
λ∈P

x|λ|(−1)#Ht(λ) =
∑
n≥0

∑
λ⊢n

(−1)#Ht(λ)xn =
∑
n≥0

At(n)x
n.

By Cauchy’s residue theorem, we have

At(n) =
1

2πi

∫
C

Gt(x)

xn+1
dx,

where C is any positively oriented simple closed curve in a unit disk that contains

the origin in its interior. In our implementation of the circle method, we set C = CN
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for CN centered at zero with radius e−2πN−2
. Using the transformations x = e2πiτ

and z = −ik2
(
τ − h

k

)
in succession, the circle CN is mapped onto the circle K with

center 1
2
and radius 1

2
. In the rest of this proof, K will denote this same circle. If we

breakdown CN into Farey arcs, then this change of variables gives the formula

At(n) =
N∑
k=1

[
i

k2

∑
0≤h<k
(h,k)=1

e−
2πinh

k

∫ z2(h,k)

z1(h,k)

Gt

(
e

2πi
k (h+ iz

k )
)
e

2πnz
k2 dz

]
,

where the integral runs along the arc of K between the points z1(h, k) and z2(h, k)

defined by

z1(h, k) =
k2

k2 + k21
+ i

kk1
k2 + k21

and z2(h, k) =
k2

k2 + k22
− i

kk2
k2 + k22

,

where k1, k, k2 are the denominators of consecutive terms of the Farey series of order

N . Computing At(n) therefore reduces to computing the integrals

I(t, h, k, n) :=

∫ z2(h,k)

z1(h,k)

Gt

(
e

2πi
k (h+ iz

k )
)
e

2πnz
k2 dz.

5.6 Exact formula for At(n)

The first step to evaluating these integrals is an application of the transformation

law for Gt(x). Because of the formulation of (5.4.2), the exact formula is naturally

broken into three sums. One of these is given by

∑
k≥1

k0 odd

∑
0≤h<k

gcd(h,k)=1

e−2πinh/kI(t, h, k, n)
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and the other two are defined similarly with the modification that k0 odd is replaced by

either 2||k0 or 4|k0. Because of this natural breakdown, the evaluation of I(t, h, k, n)

also naturally breaks into three cases.

In order to estimate the integrals I(t, h, k, n), we will use a series expansion for

the factor Jt,h,k(x
′) =

F (x′)[F (x′2)]
3t

[F (x′1)]
2t[F (x′3)]

t
in the modular transformation law for Gt(x).

The variable we will use for this series expansion will depend on the value of k0. In

particular, define yj for 1 ≤ j ≤ 3 by

y1 := e
2πi
k

(
4∗t∗0H+ i

4t0z

)
, y2 := e

2πi
k

(
2†t∗0H+ i

2t0z

)
, y3 := e

2πi
k

(
t∗0H+ i

t0z

)
.

The utility of using yj is that it relates nicely to the variables x′, x′1, x
′
2, and x′3

appearing in Jt,h,k(x
′). From definitions, it follows that

x′1 = y
4 gcd(k,t)
1 = −y2 gcd(k,t)2 = y

gcd(k,t)
3 ,

x′2 = y
2 gcd(k,t)
1 = y

4 gcd(k,t)
2 = y

2 gcd(k,t)
3 ,

x′3 = y
gcd(k,t)
1 = y

2 gcd(k,t)
2 = y

4 gcd(k,t)
3 ,

and

x′ = y4t01 e
−2πi(4t0(4t0)

∗−1)H
k = y2t02 e

−2πi(2·2†t0t∗0−1)H
k = yt03 e

−2πi(t0t
∗
0−1)H

k .

Therefore, we have three series expansions for Jt,h,k(x
′) given by

Jt,h,k(x
′) =:

∑
m≥0

cj(t, h, k;m)ymj (5.6.1)

for 1 ≤ j ≤ 3. These series expansions, along with the transformation laws for Gt(x),

are used to aid in the evaluation of the integrals I(t, h, k, n).
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5.6.1 Estimating I(t, h, k, n)

The process of evaluating I(t, h, k, n) breaks into three cases based on the value of k0.

Since the proofs in every case run along similar lines, we need only write out details

in the case where k0 is odd and to comment on which aspects of the proof need to

be altered for the other two cases. When k0 is odd, we use the series expansion for

Jt,h,k(x
′) in y1. Applying the substitution z 7→ z

k
in (5.4.2), we have

I(t, h, k, n) =
2t/2w(t, h, k)√

k

∫ z2(h,k)

z1(h,k)

∑
m≥0

e
2πi(4t0)

∗Hm
k c1(t, h, k;m)fk,t,m(z)e

2πnz
k2 dz,

where

fk,t,m(z) :=
√
z exp

[
π

12

(
4− 3 gcd(k, t)2

4z
− 6m

t0z
− z

k2

)]
.

From the theory of Farey arcs (see Theorem 5.9 of [7]) we know that the path of

integration has length less than 2
√
2kN−1 and that for any z on the path of inte-

gration, |z| <
√
2kN−1. Furthermore, any z ∈ K\{0} satisfies 0 < Re(z) ≤ 1 and

Re(1/z) = 1. From these facts, we can see that m > Mt,k :=

⌊
t0 (4− 3 gcd(k, t)2)

24

⌋
if and only if ∣∣∣∣∣e π

12

(
4−3 gcd(k,t)2

4z
− 6m

t0z
− z

k2

)∣∣∣∣∣ < 1,

and that therefore

∫ z2(h,k)

z1(h,k)

∑
m>Mt,k

e
2πi(4t0)

∗Hm
k c1(t, h, k;m)fk,t,m(z)e

2πnz
k2 dz = O

(
k3/2N−3/2

)
.
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Applying this estimate to I(t, h, k, n), it follows that

I(t, h, k, n) =
2t/2w(t, h, k)√

k

∫ z2(h,k)

z1(h,k)

Mt,k∑
m=0

e
2πi(4t0)

∗Hm
k c1(t, h, k;m)fk,t,m(z)e

2πnz
k2 dz

+O
(
k1/2N−3/2

)
.

Similar estimates apply in the other two cases. In particular, extend the definition of

Mt,k by

Mt,k :=



⌊
t0(4− 3 gcd(k, t)2)

24

⌋
if 2 ̸ | k0,

⌊
t0(1 + 3 gcd(k, t)2)

12

⌋
if 2||k0,

⌊
t0
24

⌋
if 4|k0,

and in place of y1 use y2 when 2||k0 or y3 when 4|k0. These modifications lead to the

following proposition.

Proposition 5.7. Adopt all notation as above. Then if k0 is odd, we have

I(t, h,k, n) =
2t/2w(t, h, k)√

k

Mt,k∑
m=0

e
2πi(4t0)

∗Hm
k c1(t, h, k;m)

·
∫ z2(h,k)

z1(h,k)

√
z exp

[
π

12

(
4− 3 gcd(k, t)2

4z
− 6m

t0z
+

(24n− 1)z

k2

)]
dz +O

(
k1/2N−3/2

)
.

If 2||k0, then we have

I(t, h,k, n) =
2t/2w(t, h, k)√

k

Mt,k∑
m=0

e
2πi(2†t∗0)Hm

k c2(t, h, k;m)

·
∫ z2(h,k)

z1(h,k)

√
z exp

[
π

12

(
1 + 3 gcd(k, t)2

z
− 12m

t0z
+

(24n− 1)z

k2

)]
dz +O

(
k1/2N−3/2

)
.
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If 4|k0, then we have

I(t, h, k, n) =
w(t, h, k)√

k

Mt,k∑
m=0

e
2πi(t∗0H)m

k c3(t, h, k;m)

·
∫ z2(h,k)

z1(h,k)

√
z exp

[
π

12

(
1

z
− 24m

t0z
+

(24n− 1)z

k2

)]
dz +O

(
k1/2N−3/2

)
.

In light of Proposition 5.7, the problem of evaluating I(t, h, k, n) is reduced to

evaluating integrals of the form

∫ z2(h,k)

z1(h,k)

√
z exp

[
π

12

(
A−Bm

z
+

(24n− 1z)

k2

)]
dz

for certain constants A,B. This evaluation has two main steps. Firstly, we show that

extending the path of integration to the whole circle K introduces only a small error

term. Secondly, we show how the integral along K is expressible by familiar functions

from analysis. These steps are carried out together in the following proposition.

Proposition 5.8. Fix an integer t > 1, and let A,B be constants independent of z

for which A = Ok(1) as N → ∞ and B > 0. Then we have

1

2πi

∫ z2(h,k)

z1(h,k)

√
ze

π
12(

A−Bm
z

+
(24n−1)z

k2
) dz =

k3/2(A−Bm)3/4

(24n− 1)3/4
I 3

2

( π
6k

√
(A−Bm)(24n− 1)

)
+O

(
k3/2N−3/2

)
.

Proof. For K− the negative orientation of the circle K, we can break down integrals

over K− by ∫
K−

=

∫ z2(h,k)

z1(h,k)

+

∫ z1(h,k)

0

+

∫ 0

z2(h,k)

.
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Define the function f(z) by

f(z) :=
√
z exp

[
π

12

(
A−Bm

z
+

(24n− 1)z

k2

)]
.

Then by the theory of Farey arcs, the arc on K− from 0 to z1(h, k) has length less

than π|z1(h, k)| <
√
2πkN−1 and therefore |z| <

√
2kN−1 on the path of integration.

Recalling that Re(1/z) = 1 and 0 < Re(z) ≤ 1 on K\{0},∣∣∣∣∣
∫ z1(h,k)

0

f(z) dz

∣∣∣∣∣ ≤ 23/4πk3/2

N3/2
exp

[ π
12

(A+ 24n− 1)
]
= O

(
k3/2N−3/2

)
.

A similar estimate holds for integrals from z2(h, k) to 0, and therefore we have

∫ z2(h,k)

z1(h,k)

f(z) dz =

∫
K−

f(z) dz +O
(
k3/2N−3/2

)
.

It suffices now to evaluate the integral

I :=

∫
K−

√
z exp

[
π

12

(
A−Bm

z
+

(24n− 1)z

k2

)]
dz.

The substitution w = z−1, dw = −z−2dz implies

I = −
∫ 1+i∞

1−i∞
w−5/2 exp

(
π(A−Bm)

12
w +

π(24n− 1)

12k2
w−1

)
dw.

Furthermore, by the substitution s = cw for c :=
π(A−Bm)

12
we have

I = −
(
π(A−Bm)

12

)3/2 ∫ c+i∞

c−i∞
s−5/2 exp

(
s+

(
π2(A−Bm)(24n− 1)

144k2

)
1

s

)
ds.

Since the classical modified I-Bessel function I 3
2
(z) satisfies the identity

I 3
2
(z) =

(z/2)3/2

2πi

∫ c+i∞

c−i∞
s−5/2 exp

(
s+

z2

4s

)
ds,
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setting
z

2
=

√
π2(A−Bm)(24n− 1)

144k2
=

π

12k

√
(A−Bm)(24n− 1) yields

I =
2π

i
· k

3/2(A−Bm)3/4

(24n− 1)3/4
I 3

2

( π
6k

√
(A−Bm)(24n− 1)

)
.

Combining the estimation and the evaluation of I completes the proof.

From Proposition 5.8, we may complete the proof of the exact formula. The idea

is that the error term in the evaluation of At(n) introduced by the error in I(t, h, k, n)

vanishes as N → ∞, and the resulting series converges.

5.6.2 Completing the proof of Theorem 5.2

We have shown that

At(n) =
N∑
k=1

i

k2

∑
0≤h<k
(h,k)=1

e−
2πinh

k I(t, h, k, n).

By Proposition 5.7 and Proposition 5.8, we obtain for every pair h, k estimates for

I(t, h, k, n) with error term O(k1/2N−3/2). These exact formulas yield an estimate for

At(n) with error term O(N−1/2). Therefore, as N → ∞ we may replace I(t, h, k, n)

with these estimates and retain equality. That is,

At(n) =
∞∑
k=1

i

k2

∑
0≤h<k
(h,k)=1

e−
2πinh

k I(t, h, k, n).

This exact formula naturally splits into three sums according to the value of k0

(mod 4). When k0 is odd, the formula derived from Propositions 5.7 and 5.8 give
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the contribution

S1 := 2t/2
∑
k≥1

k0 odd

2π

k

∑
0≤h<k

gcd(h,k)=1

e
−2πinh

k w(t, h, k)

Mt,k∑
m=0

e
2πi(4t0)

∗Hm
k c1(t, h, k;m)

(A−Bm)3/4

(24n− 1)3/4

· I 3
2

( π
6k

√
(A−Bm)(24n− 1)

)
,

where A = 1 − 3

4
gcd(k, t)2, B =

6

t0
, and Mt,k =

⌊
t0(4− 3 gcd(k, t)2)

24

⌋
. Noting that

the sum is only nonempty when k is odd and gcd(k, t) = 1, in which case k0 = k,

t0 = t, Mt,k =

⌊
t

24

⌋
, A = 1/4 and B = 6/t we have

S1 =
2t/2

(24n− 1)3/4

∑
k≥1

gcd(k,2t)=1

π

k

∑
0≤h<k

gcd(h,k)=1

e
−2πinh

k w(t, h, k)

·
⌊ t
24

⌋∑
m=0

e
2πi(4t)∗Hm

k c1(t, h, k;m)

(
t− 24m

t

)3/4

I 3
2

(
π

12k

√
(t− 24m)(24n− 1)

t

)
.

The sums S2, S3 simplify similarly to

S2 =
2t/2

(24n− 1)3/4

∑
k≥1
2||k0

2π

k

∑
0≤h<k

gcd(h,k)=1

e
−2πinh

k w(t, h, k)

·
⌊
t0αt,k

12
⌋∑

m=0

e
2πi(2†t∗0)Hm

k c2(t, h, k;m)

(
t0αt,k − 12m

t0

)3/4

I 3
2

 π

6k

√
t0αt,k − 12m)(24n− 1)

t0


where αt,k := 1 + 3 gcd(k, t)2 and

S3 =
1

(24n− 1)3/4

∑
k≥1
4|k0

2π

k

∑
0≤h<k

gcd(h,k)=1

e
−2πinh

k w(t, h, k)

·
⌊ t0
24

⌋∑
m=0

e
2πi(t∗0H)m

k c3(t, h, k;m)

(
t0 − 24m

t0

)3/4

I 3
2

 π

6k

√
(t0 − 24m)(24n− 1)

t0

 .

As At(n) = S1 + S2 + S3, the proof is complete.
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5.7 Certain Kloosterman sums

We start by proving that the Kloosterman sum

∑
0≤h<k
(h,k)=1

exp

[
πi

(
s(h, k)− 2nh

k

)]

is nonzero when k is a power of 2. Note that this Kloosterman sum can also be

rewritten as a sum of solutions modulo 24k to a quadratic equation as defined in the

lemma below.

Lemma 5.9. Let Sk(n) be the Kloosterman sum defined by

Sk(n) :=
1

2

√
k

12

∑
x (mod 24k)

x2≡−24n+1 (mod 24k)

χ12(x)e

(
x

12k

)
, (5.7.1)

where χ12(x) =
(
12
x

)
is the Kronecker symbol and e(x) := e2πix. If k is a power of 2,

then Sk(n) ̸= 0 for all positive integers n.

Proof. Let n ≥ 1, and let k = 2s for an integer s ≥ 0. To show that Sk(n) ̸= 0, we

need only show that the summation given in (5.7.1) is nonzero. To evaluate this sum,

consider the condition on x that x2 ≡ −24n + 1 (mod 24k). Since −24n + 1 ≡ 1

(mod 4), x2 ≡ −24n + 1 (mod 2s+3) has exactly 4 incongruent solutions, and so the

congruence x2 ≡ −24n + 1 (mod 24k) has exactly 8 incongruent solutions. For any

given solution x, we can see that all of 12k−x, 12k+x, and 24k−x are also solutions

and are pairwise distinct.

Now, let x, y (mod 24k) be solutions to x2 ≡ −24n+1 (mod 24k) such that y is not

congruent to any of x, 12k− x, 12k+ x, or 24k− x, so that the summation in (5.7.1)
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runs over the set of eight values {±x,±(12k+x)}∪{±y,±(12k+y)}. Taking real parts

in the summation in (5.7.1) yields the value 4a + 4b, where a = χ12(x) cos (πx/6k)

and b = χ12(y) cos (πy/6k). The equivalences known about x and y imply that

χ12(x), χ12(y) ̸= 0, and so the proof reduces to demonstrating that |a| ≠ |b|. If

|a| = |b|, then x ≡ y (mod 6k) must hold, so we may fix y = 6k − x. Since x is odd,

y2 = x2 − 12kx + 36k2 ≡ −24n + 1 + 12k + 36k2 (mod 24k), and the equivalence

modulo 6k of x and y implies 12k+36k2 ≡ 12k(1+3k) ≡ 0 (mod 24k). This requires

that 1 + 3k be even, which is a contradiction since k = 2s. Therefore, |a| ≠ |b|, and

it then follows that Sk(n) ̸= 0 for all n.

Lemma 5.10. For t > 1 a fixed positive integer, write t = 2sℓ with integers s, ℓ ≥ 0

such that ℓ is odd. Then

∑
0<h<2s+1

h odd

w(t, h, 2s+1)e−
πinh
2s = S2s(n) ̸= 0.

Proof. By making use of the fact that ωdh,dk = ωh,k for any integer d, it follows that

w(t, h, 2s+1) = ωh,k, and therefore

∑
0<h<2s+1

h odd

w(t, h, 2s+1)e−
πinh
2s =

∑
0<h<2s+1

h odd

eπi(s(h,k)−nh/2s) = S2s(n),

which is non-vanishing by Lemma 5.10.

5.8 Proof of Theorem 1.12

We are now ready to prove the main theorems.
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Proposition 5.11. Let n be positive integers. Then for t fixed, as n→ ∞ we have

At(n)

p(n)
∼


(−1)n/2(t−1)/2 if 2 ∤ t,

0 if 2 | t.

Furthermore,
At(n)

p(n)
∼ 0 as n, t→ ∞.

Proof. Recall that p(n) satisfies p(n) ∼ 2π

(24n− 1)3/4
I 3

2

(
π
√
24n− 1

6

)
as n → ∞.

Then by Corollary 5.4, as n→ ∞ we have

At(n)

p(n)
∼ (1 + 3 · 4s)3/4

2s+1+ t
2

·
I 3

2

(
π

6

√(
1

4s+1
+

3

4

)
(24n− 1)

)
I 3

2

(
π
√
24n− 1

6

) ∑
0<h<2s+1

h odd

w(t, h, 2s+1)e−
πinh
2s .

When s > 0 and n→ ∞, the asymptotic behavior of I3/2 implies that

I 3
2

(
π

6

√(
1

4s+1
+

3

4

)
(24n− 1)

)
I 3

2

(
π
√
24n− 1

6

) ∼ 0.

Therefore when t is even,
At(n)

p(n)
∼ 0 as n → ∞. When s = 0,

At(n)

p(n)
∼ (−1)n2

−t+1
2

as n→ ∞.

Proof of Theorem 1.12. By Proposition 5.11, we see that

δet (n)− δot (n) →


(−1)n

2(t−1)/2
if t odd,

0 if t even.

Since δet (n) + δot (n) = 1 by definition, the result follows by solving for δet (n) and

δet (n).
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5.9 Proof of Theorem 1.13

By Corollary 5.4, we have

At(n) ∼
π

2s+
t
2

(
1 + 3 · 4s

24n− 1

) 3
4

I 3
2

(
π
√

(1 + 3 · 4s)(24n− 1)

6 · 2s+1

) ∑
0<h<2s+1

h odd

w(t, h, 2s+1)e−
πinh
2s ,

whose sign is determined by the summation over h, which on inspection is periodic

in n with period 2s+1. In particular, the period is 2 when s = 0 which implies the

At(n) has alternating sign when t is odd as n→ ∞.

5.10 Reflections

The surprising nature of this result justifies some reflection. Theorem 1.12 differs

from the naive expectation of equidistribution in two ways. Not only does equidis-

tribution frequently fail, but there are multiple limiting values when t is odd. Since

the distribution properties correspond to the size of At(n) in relation to p(n), the

proof of Theorem 5.2 reveals on an analytic level the source of these discrepancies.

Namely, the I-Bessel functions in Theorem 5.2 control whether equidistribution holds

and when t is odd the Kloosterman sums arising from w(t, h, k) control the relation-

ship between the parity of n and the sign of At(n). All of these details can be read

directly off of Theorem 5.2. However, the circle method does not provide insight into

combinatorial explanations of this phenomena, and therefore we leave this question

open.
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The motivation behind this proof comes from the Nekrasov-Okounkov formula and

the applications of this formula made by Han in [66] which connect hook numbers

to the expansions of various modular forms. In the context of this connection, the

problem of the distribution in parity of #Ht(λ) is translated into a question about

asymptotic formulas for the coefficients of a certain modular form, or at least a q-

series which is closely related to a modular form. This study has made use of only a

microscopic portion of this world of connections, and therefore it is natural to study

further problems about t-hooks through the lens of modular forms. In particular, in

Chapter 6, we will study the more difficult question about the distribution of #Ht(λ)

modulo odd primes.
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Chapter 6

Distribution of t-hooks and Betti
Numbers

The purpose of this chapter is to prove Theorems 1.14, 1.16, 1.17 and Corollary 1.18.

This is joint work with Kathrin Bringmann, Joshua Males, and Ken Ono.

6.1 Hook number generating functions

Here we derive the generating functions for the modular t-hook functions pt(a, b;n).

To this end, we recall the following beautiful formula of Han that he derived in his

work on extensions of the celebrated Nekrasov–Okounkov formula1 (see (6.12) of [86])

with w ∈ C: ∑
λ∈P

q|λ|
∏

h∈H(λ)

(
1− w

h2

)
=

∞∏
n=1

(1− qn)w−1 .

Here P denotes the set of all integer partitions, including the empty partition, and

H(λ) denotes the multiset of hook lengths for λ. Han [66] proved the following beau-

1This formula was also obtained by Westbury (see Proposition 6.1 and 6.2 of [111]).
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tiful identity for the generating function for t-hooks in partitions

Ht(ξ; q) :=
∑
λ∈P

ξ#Ht(λ)q|λ|.

Theorem 6.1. (Corollary 5.1 of [66]) As formal power series, we have

Ht(ξ; q) =
1

F2(ξ; qt)t

∞∏
n=1

(1− qtn)
t

1− qn
.

As a corollary, we obtain the following generating function for pt(a, b;n).

Corollary 6.2. If t > 1 and 0 ≤ a < b, then as formal power series we have

Ht(a, b; q) :=
∞∑
n=0

pt(a, b;n)q
n =

1

b

b−1∑
r=0

ζ−ar
b Ht (ζ

r
b ; q) ,

where ζb := e
2πi
b .

Proof. We have that

1

b

b−1∑
r=0

ζ−ar
b Ht(ζ

r
b ; q) =

1

b

∑
λ∈P

q|λ|
b−1∑
r=0

ζ
(#Ht(λ)−a)r
b = Ht(a, b; q).

This completes the proof.

The dependence ofHt(ξ; q) on F2(ξ; q
t) enables us to compute asymptotic behavior

of Ht(ξ; q) using Theorem 6.3 (2) and, by Corollary 6.2, the asymptotic behavior of

Ht(a, b; q).
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6.2 Proof of Theorem 1.16

Here we prove Theorem 1.16. We first consider the case (1), where ℓ is an odd prime.

We consider the generating function, using Corollary 6.2

H2(a1, ℓ; q) =
∞∑
n=0

p2(a1, ℓ;n)q
n =

1

ℓ

ℓ−1∑
r1=0

ζ−a1r1
ℓ H2 (ζ

r1
ℓ ; q) .

Applying again orthogonality of roots of unity, keeping only those terms a2 (mod ℓ),

where a2 ∈ {0, 1, . . . , ℓ− 1}, we find that

∞∑
n=0

p2(a1, ℓ; ℓn+ a2)q
ℓn+a2 =

1

ℓ2

∑
r1,r2 (mod ℓ)

ζ−a1r1−a2r2
ℓ H2 (ζ

r1
ℓ ; ζr2ℓ q) .

Making use of the definition of Ht(ξ; q), if we define B2(q) and C2(q) by

B2(q) =
∞∑
n=0

b2(n)q
n :=

∞∏
n=1

1

(1− qn)2
and C2(q) :=

∞∏
n=1

(1− q2n)
2

1− qn
, (6.2.1)

then we have

∑
n≥0

n≡a2 (mod ℓ)

p2(a1, ℓ;n)q
n =

1

ℓ2

∑
r1,r2 (mod ℓ)

ζ−a1r1−a2r2
ℓ B2

(
ζr1+2r2
ℓ q2

)
C2 (ζr2ℓ q) .

Thanks to the classical identity of Jacobi

C2(q) =
∞∑
k=0

q
k(k+1)

2 ,

for N ≡ a2 (mod ℓ), we find that

p2(a1, ℓ;N) =
1

ℓ2

∑
r1,r2 (mod ℓ)

ζ−a1r1−a2r2
ℓ

∑
k,m≥0

2m+
k(k+1)

2
=N

b2(m)ζ
(r1+2r2)m+r2

k(k+1)
2

ℓ

=
∑

m≡a1 (mod ℓ)

2m+
k(k+1)

2
=N

b2(m), (6.2.2)
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by making the linear change of variables r1 7→ r1 − 2r2 and again using orthogonality

of roots of unity. This then requires the solvability of the congruence a2−2a1 ≡ k(k+1)
2

(mod ℓ). Completing the square produces the quadratic residue condition which pro-

hibits this solvability, and hence completes the proof of (1).

The proof of (2) follows similarly, with ℓ replaced by ℓ2 for primes ℓ ≡ 2 (mod 3).

The functions in (6.2.1) are replaced with

B3(q) =
∞∑
n=0

b3(n)q
n :=

∞∏
n=1

1

(1− qn)3
and C3(q) :=

∞∏
n=1

(1− q3n)
3

1− qn
.

It is well-known that (for example, see Section 3 of [61] or [67, Lemma 2.5]),

C3(q) =:
∞∑
n=0

c3(n)q
n =

∞∑
n=0

∑
d|(3n+1)

(
d

3

)
qn.

For primes ℓ ≡ 2 (mod 3), this implies that c3(ℓ
2n+ a) = 0 for every positive integer

n, whenever ordℓ(3a+ 1) = 1. For example, this means that c3(4n+ 3) = 0 if ℓ = 2.

Let 0 ≤ a1, a2 < ℓ2. In direct analog with (6.2.2), a calculation reveals that

non-vanishing for N ≡ a2 (mod ℓ2) relies on sums of the form

∑
m≡a1 (mod ℓ2)

3m+k=N

b3(m)c3(k).

If ordℓ(3a + 1) = 1 and a2 − 3a1 ≡ a (mod ℓ2), then p3(a1, ℓ
2; ℓ2 + a) = 0. This is

claim (2).
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6.3 Asymptotic methods

The Hardy–Ramanujan asymptotic formula given in (1.2.1) marked the birth of

the Circle Method. Its proof relied on the modular transformation properties of

Dedekind’s eta-function η(τ) := q
1
24

∏∞
n=1(1− qn), where q := e2πiτ (for example, see

Chapter 1 of [90]). Their work has been thoroughly developed in the theory of mod-

ular forms and harmonic Maass forms (for example, see Chapter 15 of [23]), and has

been generalized beyond this setting in papers by Grosswald, Meinardus, Richmond,

Roth, and Szekeres [63, 81, 100, 102], to name a few.

6.3.1 Statement of the results

Generalizing the infinite product which defines η, we consider the ubiquitous q-infinite

products

F1(ξ; q) :=
∞∏
n=1

(1− ξqn) ,

F2(ξ; q) :=
∞∏
n=1

(1− (ξq)n) ,

F3(ξ; q) :=
∞∏
n=1

(
1− ξ−1(ξq)n

)
.

These infinite products are common as factors of generating functions in combina-

torics, number theory, and representation theory. We obtain the asymptotic proper-

ties for F1(ξ; q), F2(ξ; q), and F3(ξ; q), where ξ is a root of unity, which are generally

required for implementing the Circle Method to such generating functions. This result

is of independent interest.
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To make this precise, we recall Lerch’s transcendent

Φ(z, s, a) :=
∞∑
n=0

zn

(n+ a)s
.

Moreover, for coprime h, k ∈ N we define

ωh,k := exp(πi · s(h, k)), (6.3.1)

using the Dedekind sum

s(h, k) :=
∑

µ (mod k)

((µ
k

))((hµ
k

))
.

Here we use the standard notation

((x)) :=


x− ⌊x⌋ − 1

2
if x ∈ R \ Z,

0 if x ∈ Z.

For arbitrary positive integers m and n, we define ωm,n := ω m
gcd(m,n)

, n
gcd(m,n)

. Note that

s(h, k) only depends on h (mod k) and that s(0, 1) = 0. Moreover, we let

λt,a,b,h,k := gcd(k, t)



1 if k = 1 or
(
k > 1 and b ̸ | k

gcd(k,t)

)
,

b if b| k
gcd(k,t)

and ht
gcd(k,t)

+ a k
b gcd(k,t)

̸≡ 0 (mod b),

b2 if b| k
gcd(k,t)

and ht
gcd(k,t)

+ a k
b gcd(k,t)

≡ 0 (mod b).

(6.3.2)

For 0 ≤ θ < π
2
, we define the domain

Dθ :=
{
z = reiα : r ≥ 0 and |α| ≤ θ

}
. (6.3.3)

Theorem 6.3. Assume the notation above. For b > 0, let ξ be a primitive b-th root

of unity, then the following are true.
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(1) As z → 0 in Dθ we have

F1

(
ξ; e−z

)
=

1√
1− ξ

e−
ξΦ(ξ,2,1)

z (1 +O (|z|)) .

(2) Suppose that b is an odd prime, and let ξ = e
2πia
b , q = e

2πi
k

(h+iz) for

0 ≤ h < k with gcd(h, k) = 1, t ∈ N, and z ∈ C with Re(z) > 0.

Then as z → 0 we have

F2

(
ξ; qt

)
∼ ω−1

hbt+ak
λt,a,b,h,k

, kb
λt,a,b,h,k

(
λt,a,b,h,k
tbz

) 1
2

e−
πλ2t,a,b,h,k

12b2ktz .

(3) As z → 0 in Dθ, we have

F3

(
ξ; e−z

)
=

√
2π (b2z)

1
2
− 1

b

Γ
(
1
b

) b−1∏
j=1

1

(1− ξj)
j
b

e−
π2

6b2z (1 +O (|z|)) .

Remark 6.4. If ξ = 1 and q = e2πiτ , then we have

F1(1; q) = F2(1; q) = F3(1; q) = q−
1
24η(τ).

Asymptotic properties in this case are well-known consequences of the modularity of

η(τ).

6.3.2 An integral evaluation

We require the following integral evaluation.

Lemma 6.5. We have for N ∈ R+

∫ ∞

0

(
e−x

x (1− eNx)
− 1

Nx2
+

(
1

N
− 1

2

)
e−x

x

)
dx

= log

(
Γ

(
1

N

))
+

(
1

2
− 1

N

)
log

(
1

N

)
− 1

2
log(2π).
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Proof. Making the change of variables x 7→ x
N
, the left-hand side equals∫ ∞

0

(
e−

x
N

x (1− e−x)
− 1

x2
+

(
1

N
− 1

2

)
e−

1
N

x

)
dx.

Now write

1

x (1− e−x)
=

1

x
+

1

x (ex − 1)
.

Thus the integral becomes∫ ∞

0

(
1

ex − 1
+

1

2
− 1

x

)
e−

x
N

x
dx

+

∫ ∞

0

(
e−

x
N

x
− 1

x2
+

(
1

N
− 1

2

)
e−

x
N

x
− e−

x
N

2x
+
e−

x
N

x2

)
dx.

We evaluate the second integral as − 1
N
. The claim now follows, using Binet’s first

integral formula (see 12.31 of [112]).

6.3.3 Proof of Theorem 6.3

We employ the generalized Euler–Maclaurin summation, i.e. Proposition 3.5, to prove

Theorem 6.3 (1) and (3); for part (2) we use modularity.

Proof of Theorem 6.3 (1)

Let |z| < 1. Taking logarithms, we have

Gξ

(
e−z
)
:= Log

(
F1

(
ξ; e−z

))
= −z

b∑
j=1

ξj
∞∑

m=0

f

((
m+

j

b

)
bz

)
,

where

f(z) :=
e−z

z (1− e−z)
=

1

z2
− 1

2z
+

∞∑
n=0

Bn+2

(n+ 2)!
zn.
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By Proposition 3.5, it follows that

∞∑
m=0

f

((
m+

j

b

)
bz

)
=
ζ
(
2, j

b

)
b2z2

+
I∗f,1
bz

+
1

2bz

(
Log (bz) + ψ

(
j

b

)
+ γ

)
+O(1).

Therefore, we find that

Gξ

(
e−z
)
= − 1

b2z

b∑
j=1

ξjζ

(
2,
j

b

)
−
I∗f,1
b

b∑
j=1

ξj

− 1

2b

b∑
j=1

ξj
(
Log (bz) + ψ

(
j

b

)
+ γ

)
+O(|z|).

Now note that
∑b

j=1 ξ
j = 0. Moreover, we require the identity [32, p. 39] (correcting

a minus sign and erroneous k on the right-hand side)

b∑
j=1

ψ

(
j

b

)
ξj = bLog (1− ξ) . (6.3.4)

Combining these observations, we obtain

Gξ

(
e−z
)
= − 1

b2z

b∑
j=1

ξjζ

(
2,
j

b

)
− 1

2
Log(1− ξ) +O (|z|) .

After noting that

b∑
j=1

ξjζ

(
2,
j

b

)
= b2ξΦ(ξ, 2, 1),

the claim follows by exponentiation.

Proof of Theorem 6.3 (2)

Note that

F2

(
ξ; qt

)
=
(
ξqt; ξqt

)
∞ ,
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where (a; q)∞ :=
∏∞

j=1(1 − aqj−1). The classical modular transformation law for

the Dedekind η-function (see 5.8.1 of [35]) along with the identity η(τ) = q
1
24 (q; q)∞

implies that

(q; q)∞ = ω−1
h,kz

− 1
2 e

π
12k(z−

1
z )(q1; q1)∞, (6.3.5)

where q1 := e
2πi
k

(h′+ i
z
) where 0 ≤ h′ < k is defined by hh′ ≡ −1 (mod k) and ωh,k is

defined as in (6.3.1). In particular, this implies that

(q; q)∞ ∼ ω−1
h,kz

− 1
2 e−

π
12kz (6.3.6)

as z → 0 with Re (z) > 0. Now, by using the definitions of ξ, q given in the statement

of Theorem 2.1 (2) we have

ξqt = e
2πi
kb

(hbt+ak+itbz).

We claim that λt,a,b,h,k as defined in (6.3.2) satisfies λt,a,b,h,k = gcd(kb, hbt + ak). If

k = 1, then the claim is clear, and so we assume that k > 1. Write k = gcd(k, t)k1

and t = gcd(k, t)t1. Then we have

gcd(kb, hbt+ ak) = gcd(k, t) gcd(k1b, hbt1 + ak1).

Noting that gcd(k1, b) divides each of k1b, hbt1, and ak1, it follows that

gcd(kb, hbt+ ak) = gcd(k, t) gcd(k1, b) gcd

(
k1b

gcd(k1, b)
,

hbt1
gcd(k1, b)

+ a
k1

gcd(k1, b)

)
.

Note that, since b is prime, gcd(k1, b) ∈ {1, b}. If gcd(k1, b) = 1, then

gcd(k1b, hbt1 + ak1) = gcd(k1, hbt1) gcd(b, ak1) = 1.
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If on the other hand gcd(k1, b) = b, then write k1 = bκk2 with gcd(k2, b) = 1.

Then we have

gcd

(
k1, ht1 + a

k1
b

)
= gcd

(
bκk2, ht1 + ak2b

κ−1
)
= gcd

(
bκ, ht1 + ak2b

κ−1
)
gcd(k2, ht1)

= gcd
(
bκ, ht1 + ak2b

κ−1
)
.

If κ > 1, then gcd(bκ, ht1 + ak2b
κ−1) = 1 since gcd(b, ht1) = 1. If κ = 1, then we are

left with gcd(b, ht1 + ak2). Therefore, we obtain

gcd(kb, hbt+ ak) = gcd(k, t)



1 if b ̸ | k
gcd(k,t)

,

b if b| k
gcd(k,t)

and ht
gcd(k,t)

+ a k
b gcd(k,t)

̸≡ 0 (mod b),

b2 if b| k
gcd(k,t)

and ht
gcd(k,t)

+ a k
b gcd(k,t)

≡ 0 (mod b),

which is equal to λt,a,b,h,k.

It follows that gcd( kb
λt,a,b,h,k

, hbt+ak
λt,a,b,h,k

) = 1. Therefore, by making the replacements

h 7→ hbt+ak
λt,a,b,h,k

, k 7→ kb
λt,a,b,h,k

, and z 7→ tbz
λt,a,b,h,k

in (6.3.6), the result follows.

Proof of Theorem 6.3 (3)

Again assume that |z| < 1. Writing

F3(ξ; q) =
b∏

j=1

∞∏
n=0

(
1− ξj−1qbn+j

)
,

we compute

Log
(
F3

(
ξ; e−z

))
= −z

∑
1≤j,r≤b

ξ(j−1)r

∞∑
m=0

fj

((
m+

r

b

)
bz
)
,
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where fj(z) :=
e−jz

z(1−e−bz)
. By Proposition 3.5, we obtain

∞∑
m=0

fj

((
m+

r

b

)
bz
)
∼
ζ
(
2, r

b

)
b3z2

+
I∗fj,1
bz

+
B1

(
j
b

)
bz

(
Log (bz) + ψ

(r
b

)
+ γ
)
+O(1)

The first term contributes − π2

6b2z
. By Lemma 6.5, the second term contributes

−1

b

b∑
j=1

I∗fj,1

b∑
r=1

ξ(j−1)r = −I∗f1,1 = − log

(
Γ

(
1

b

))
−
(
1

2
− 1

b

)
log

(
1

b

)
+

1

2
log(2π)

= log

(
b

1
2
− 1

b (2π)
1
2

Γ
(
1
b

) )
.

Next we evaluate

−1

b
(Log (bz) + γ)

∑
1≤j≤b

B1

(
j

b

) ∑
1≤r≤b

ξ(j−1)r = −B1

(
1

b

)
(Log (bz) + γ) .

Finally we are left to compute

−1

b

∑
1≤j,r≤b

ξ(j−1)r

(
j

b
− 1

2

)
ψ
(r
b

)
= −1

b

∑
0≤j≤b−1
1≤r≤b

ξjr
(
j

b
+

1

b
− 1

2

)
ψ
(r
b

)
.

The (1
b
− 1

2
)-term yields γ(1

b
− 1

2
). Thanks to (6.3.4), the j

b
term contributes

− 1

b2

∑
0≤j≤b−1

j
∑
1≤r≤b

ψ
(r
b

)
ξjr = −1

b

∑
1≤j≤b−1

j Log
(
1− ξj

)
.

Combining these observations yields that

Log
(
F3

(
ξ; e−z

))
= log

(
b

1
2
− 1

b (2π)
1
2

Γ
(
1
b

) )
− π2

6b2z
−B1

(
1

b

)
Log (bz)

−
∑

1≤j≤b−1

j

b
Log

(
1− ξj

)
+O (|z|) .

Exponentiating gives the desired claim.
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6.4 Evaluation of Kloosterman sums

The proof of Theorem 1.14 relies on the arithmetic of the Kloosterman sums

K(a, b, t;n) :=
b−1∑
h=1

ωh,b

ωt
th,b

ζ
(at−n)h
b ,

where b is an odd prime, and s ≥ 1, t > 1 are integers. We evaluate this sum if t is

coprime to b. We start by computing ωh,bω
−t
th,b.

Proposition 6.6. Let b be an odd prime, h, t integers coprime to b, and let ωh,k be

defined by (6.3.1). Then we have

ωh,b

ωt
th,b

=

(
h

b

)(
th

b

)t

eπi
(1−t)(b−1)

4 e
2πi
b

1
24(1−t2)(1−b2)h.

Proof. The proof of this proposition uses the η-multiplier, which we label ψ. Theorem

5.8.1 of [35] yields that for
(
α β
γ δ

)
∈ SL2(Z) with γ > 0 odd, we have

ψ

α β

γ δ

 =

(
δ

γ

)
e

πi
12((α+δ)γ−βδ(γ2−1)−3γ).

We also have from formula (57b) of [64] that for
(
α β
γ δ

)
∈ SL2(Z)

ψ

α β

γ δ

 = eπi(
α+δ
12γ

− 1
4)ω−1

δ,γ .

By letting δ = h, γ = b, we obtain

ωh,b =

(
h

b

)
eπi(

1
12b

(α+h−βhb)(1−b2)+ b−1
4 ),
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where α, β satisfy αh− βb = 1. We therefore may conclude that

ωh,b

ωt
th,b

=

(
h

b

)(
th

b

)t

eπi
(1−t)(b−1)

4 e
πi
12b((α−tA)(1−b2)+h(1−βb−t2(1−Bb))(1−b2)),

where αh−βb = Ath−Bb = 1. A straightforward calculation then gives the claim.

We now turn to evaluating the Kloosterman sum K(a, b, t;n).

Proposition 6.7. Suppose that b is an odd prime, a, n are integers, and t > 1 is an

integer coprime to b. Then we have

K(a, b, t;n) =


I(a, b, t, n)(−1)

(1−t)(b−1)
4

(
t
b

)
if t is odd,

(−1)
(1−t)(b−1)

4 εb

(
1
24(1−t2)(1−b2)+at−n

b

)√
b if t is even,

where I(a, b, t, n) is defined

I(a, b, t, n) :=


b− 1 if 1

24
(1− t2) (1− b2) + at− n ≡ 0 (mod b),

−1 otherwise.

Proof. By Proposition 6.6, we have

K(a, b, t;n) = e
πi
4
(1−t)(b−1)

b−1∑
h=1

(
h

b

)(
th

b

)t

ζ
(at−n)h+ 1

24(1−t2)(1−b2)h
b .

The multiplicativity of the Legendre symbol implies

(
h

b

)(
th

b

)t

=

(
h

b

)t+1(
t

b

)t

=


(
t
b

)
if t is odd,

(
h
b

)
if t is even.
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We proceed distinguishing on the parity of t. Suppose first that t is odd. Then

since b is odd, 1
4
(1− t)(b− 1) is an integer and the claim directly follows.

Suppose next that t is even. Then we have

K(a, b, t;n) = eπi
(1−t)(b−1)

4

b−1∑
h=1

(
h

b

)
ζ
h( 1

24(1−t2)(1−b2)+at−n)
b .

Using the classical evaluation of the Gauss sum (see for example pages 12-13 of [46]),

we obtain

b−1∑
h=1

(
h

b

)
ζ
( 1
24(1−t2)(1−b2)+at−n)h

b =

( 1
24
(1− t2) (1− b2) + at− n

b

)
εb
√
b.

6.5 Zuckerman’s exact formula

Here we recall a result of Zuckerman [115], building on work of Rademacher [95].

Using the circle mthod, Zuckerman computed exact formulae for Fourier coefficients

for weakly holomorphic modular forms of arbitrary non-positive weight on finite index

subgroups of SL2(Z) in terms of the cusps of the underlying subgroup and the principal

parts of the form at each cusp. Let F be a weakly holomorphic modular form of weight

κ ≤ 0 with transformation law

F (γτ) = χ(γ)(cτ + d)κF (τ),

for all γ = ( a b
c d ) in some finite index subgroup of SL2(Z). The transformation law

can be viewed alternatively in terms of the cusp h
k
∈ Q. Let h′ be defined through the

congruence hh′ ≡ −1 (mod k). Taking τ = h′

k
+ i

kz
and γ = γh,k :=

(
h β
k −h′

)
∈ SL2(Z),
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we obtain the equivalent transformation law

F

(
h

k
+
iz

k

)
= χ(γh,k)(−iz)−κF

(
h′

k
+

i

kz

)
.

Let F have the Fourier expansion at i∞ given by

F (τ) =
∑

n≫−∞

a(n)qn+α

and Fourier expansions at each rational number 0 ≤ h
k
< 1 given by

F |κγh,k(τ) =
∑

n≫−∞

ah,k(n)q
n+αh,k

ck .

Furthermore, let Iα denote the usual I-Bessel function. In this framework, the relevant

theorem of Zuckerman [115, Theorem 1] may be stated as follows.

Theorem 6.8. Assume the notation and hypotheses above. If n + α > 0, then we

have

a(n) = 2π(n+ α)
κ−1
2

∞∑
k=1

1

k

∑
0≤h<k

gcd(h,k)=1

χ(γh,k)e
− 2πi(n+α)h

k

×
∑

m+αh,k≤0

ah,k(m)e
2πi
kck

(m+αh,k)h
′
(
|m+ αh,k|

ck

) 1−κ
2

I−κ+1

4π

k

√
(n+ α)|m+ αh,k|

ck

 .
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6.6 Proofs of Theorem 1.14 and Corollary 1.15

We next provide proofs of both Theorem 1.14 and Corollary 1.15. Our main tool is

the powerful theorem of Zuckerman. For these proofs, we require the definition

ct(a, b;n) :=
1

b
+



0 if b|t,

(−1)
(1−t)(b−1)

4 I(a, b, t, n)b− t+1
2

(
t
b

)
if b ̸ | t and t is odd,

i
(1−t)(b−1)

2 εbb
− t

2

(
1
24(1−t2)(1−b2)+at−n

b

)
if b ̸ | t and t is even,

(6.6.1)

Proof of Theorem 1.14. Using Corollary 6.2 we have

Ht(a, b; q) =
1

b(q; q)∞
+

b−1∑
r=1

ζ−ar
b Ht (ζ

r
b ; q) . (6.6.2)

From Theorem 6.1 we conclude

Ht (ζ
r
b ; q) =

(qt; qt)
t
∞

(ζrb q
t; ζrb q

t)t∞ (q; q)∞
.

To obtain the transformation formula for Ht(ζ
r
b ; q) at the cusp h

k
, we write

qt = e
2πit
k

(h+iz) = e
2πi
k

gcd(k,t)
(h t

gcd(k,t)
+i t

gcd(k,t)
z)
,

where we note that gcd(h t
gcd(k,t)

, k
gcd(k,t)

) = 1. Thus we may use (6.3.5) with k 7→

k
gcd(k,t)

, h 7→ h t
gcd(k,t)

, z 7→ t
gcd(k,t)

z to obtain

(
qt; qt

)
∞ = ω−1

h t
gcd(k,t)

, k
gcd(k,t)

(
t

gcd(k, t)
z

)− 1
2

e
π gcd(k,t)

12k ( t
gcd(k,t)

z− gcd(k,t)
tz )

×
(
e

2πi gcd(k,t)
k (hk,t+i

gcd(k,t)
tz ); e

2πi gcd(k,t)
k (hk,t+i

gcd(k,t)
tz )

)
∞
, (6.6.3)
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where 0 ≤ hk,t <
k

gcd(k,t)
is defined by h t

gcd(k,t)
hk,t ≡ −1 (mod k

gcd(k,t)
).

Similarly, for (ζrb q
t; ζrb q

t)∞ the proof of Theorem 6.3 (2) implies that we may use

(6.3.5) with h 7→ hbt+rk
λt,r,b,h,k

, k 7→ kb
λt,r,b,h,k

, z 7→ tbz
λt,r,b,h,k

and obtain

(
ζrb q

t; ζrb q
t
)
∞ = ω−1

hbt+rk
λt,r,b,h,k

, kb
λt,r,b,h,k

(
tbz

λt,r,b,h,k

)− 1
2

e
πλt,r,b,h,k

12kb

(
tbz

λt,r,b,h,k
−

λt,r,b,h,k
tbz

)

×
(
e

2πiλt,r,b,h,k
kb

(
hk,t,b,r+i

λt,r,b,h,k
tbz

)
; e

2πiλt,r,b,h,k
kb

(
hk,t,b,r+i

λt,r,b,h,k
tbz

))
∞
, (6.6.4)

where 0 ≤ hk,t,b,r <
kb

λt,r,b,h,k
is defined by hbt+rk

λt,r,b,h,k
hk,t,b,r ≡ −1 (mod kb

λt,r,b,h,k
).

Combining (6.3.5), (6.6.3), and (6.6.4) yields

Ht (ζ
r
b ; q) = Ωb,t(r;h, k)

(
gcd(k, t)b

λt,r,b,h,k

) t
2

z
1
2 e

π
12k

(
−z+

(
1−gcd(k,t)2+

λ2t,r,b,h,k

b2

)
1
z

)

×

(
e

2πi gcd(k,t)
k (hk,t+i

gcd(k,t)
tz ); e

2πi gcd(k,t)
k (hk,t+i

gcd(k,t)
tz )

)t
∞(

e
2πiλt,r,b,h,k

kb

(
hk,t,b,r+i

λt,r,b,h,k
tbz

)
; e

2πiλt,r,b,h,k
kb

(
hk,t,b,r+i

λt,r,b,h,k
tbz

))t

∞

(
e

2πi
k (h′+ i

z ); e
2πi
k (h′+ i

z )
)
∞

,

(6.6.5)

where

Ωb,t(r;h, k) :=

ωt
hbt+rk

λt,r,b,h,k
, kb
λt,r,b,h,k

ωh,k

ωt
h t

gcd(k,t)
, k
gcd(k,t)

.

As usual, we define Pt(q) := (q; q)t∞ =:
∑∞

n=0 qt(n)q
n, and P (q)t =:

∑∞
n=0 pt(n)q

n.

Then we see that the principal part of (6.6.5) is governed by the sum

∑
n1,n2,n3≥0

rk,h,t,b(n1,n2,n3)≥0

qt(n1)pt(n2)p(n3)ζ
gcd(k,t)bhk,tn1+λt,r,b,h,khk,t,b,rn2+bh′n3

kb e
π

12kz
rk,h,t,b(n1,n2,n3),

where

rk,h,t,b(n1, n2, n3) := 1− gcd(k, t)2 +
λ2t,r,b,h,k
b2

− 24

(
gcd(k, t)2

t
n1 +

λ2t,r,b,h,k
tb2

n2 + n3

)
.
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We denote the Fourier coefficients of Ht(ζ
r
b ; q) by ct,b,r(n). Using Theorem 6.8 we

conclude that

ct,b,r(n) =
2π

n
3
4

b
t
2

∞∑
k=1

gcd(k, t)
t
2

k

∑
0≤h<k

gcd(h,k)=1

Ωb,t(r;h, k)e
− 2πinh

k λ
− t

2
t,r,b,h,k

×
∑

n1,n2,n3≥0
rk,h,t,b(n1,n2,n3)≥0

qt(n1)pt(n2)p(n3)ζ
gcd(k,t)bhk,tn1+λt,r,b,h,khk,t,b,rn2+bh′n3

kb

×
(
rk,h,t,b(n1, n2, n3)

24

) 3
4

I 3
2

(
π

k

√
2nrk,h,t,b(n1, n2, n3)

3

)
. (6.6.6)

Since xαIα(x) is monotonically increasing as x → ∞ for any fixed α, the terms

which dominate asymptotically are those which have the largest possible value of

1
k

√
rk,h,t,b(n1, n2, n3). In particular for this we require n1 = n2 = n3 = 0. Note that

we have qt(0) = pt(0) = p(0) = 1. Since the expression in question is positive we can

maximize its square, that is we maximize

rk,h,t,b(0, 0, 0)

k2
=

1

k2

(
1− gcd(k, t)2 +

λ2t,r,b,h,k
b2

)
.

We consider the three possible values of λt,r,b,h,k. If λt,r,b,h,k = gcd(k, t), then

rk,h,t,b(0, 0, 0)

k2
=

1

k2

(
1 +

(
1

b2
− 1

)
gcd(k, t)2

)
≤
(
1 +

(
1

9
− 1

))
< 1.

If λt,r,b,h,k = b gcd(k, t), then (noting that in this case k > 1)

rk,h,t,b(0, 0, 0)

k2
=

1

k2
< 1.

Finally, if λt,r,b,h,k = b2 gcd(k, t), then we have

rk,h,t,b(0, 0, 0)

k2
=

1

k2
(
1 +

(
b2 − 1

)
gcd(k, t)2

)
.



183

Since b || k

gcd(k, t)
in this case, we may write gcd(k, t) = bϱd where gcd(b, d) = 1,

bϱ || t, and k = bϱ+1dk0 for gcd(k0,
t

gcd(k,t)
) = gcd(k0, b) = 1. Therefore, we have

rk,h,t,b(0, 0, 0)

k2
=

1 + (b2 − 1) b2ϱd2

b2ϱ+2d2k20
,

which is maximized if k0 = 1. In this case, we have k = b gcd(k, t) and therefore we

may write

rk,h,t,b(0, 0, 0)

k2
=

1 + (b2 − 1) gcd(k, t)2

b2 gcd(k, t)2
=
b2 − 1

b2
+

1

b2 gcd(k, t)2
.

To maximize this, we need to minimize gcd(k, t), which is gcd(k, t) = 1. Note that in

this case

rk,h,t,b(0, 0, 0)

k2
= 1.

Since ht+ r ≡ 0 (mod b), we have

Ωb,t(r;h, b) =
ωt

ht+r
b

,1
ωh,b

ωt
ht,b

=
ω−rt̄,b

ωt
−r,b

,

where t̄ denotes the inverse of t (mod b). Then by (6.6.6) we have

ct,b,r(n) ∼
2πb

t
2ω−rt̄,be

2πinrt̄
b

(24n)
3
4ωt

−r,bb
t+1

I 3
2

(
π

√
2n

3

)
∼ eπ

√
2n
3

4
√
3nb

t
2
+1

ω−rt̄,b

ωt
−r,b

e
2πinrt̄

b ,

as n→ ∞, where we use that Iα(x) ∼ ex√
2πx

as x→ ∞. Using (1.2.1), we obtain

ct,b,r(n)

p(n)
∼


1

b
t
2
+1

ω−rt̄,b

ωt
−r,b

e
2πinrt̄

b if b ̸ | t,

0 otherwise.
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By (6.6.2), we have

pt(a, b;n) =
1

b
p(n) +

1

b

b−1∑
r=1

ζ−ar
b ct,b,r(n),

and so dividing through by p(n) yields

pt(a, b;n)

p(n)
=

1

b
+

1

b

b−1∑
r=1

ζ−ar
b

ct,b,r(n)

p(n)
∼


1

b
+

1

b
t
2
+2

b−1∑
r=1

ω−rt̄,b

ωt
−r,b

ζ
(nt̄−a)r
b if b ̸ | t,

1

b
otherwise

as n→ ∞. This completes the proof in the case where b|t. Otherwise, setting h = −rt̄

shows

pt(a, b;n)

p(n)
∼ 1

b
+

1

b
t
2
+2

b−1∑
h=1

ωh,b

ωt
th,b

ζ
(at−n)h
b =

1

b

(
1 +

K(a, b, t;n)

b
t
2
+1

)
as n → ∞. The evaluation of K(a, b, t;n) in Proposition 6.7 then completes the

proof.

Proof of Corollary 1.15. To derive Corollary 1.15, it is enough to consider the leading

constants in Theorem 1.14. Namely, it suffices to show that for a, b fixed, ct(a, b;n)

depends only on n (mod b), which is clear from the definition of (6.6.1).

6.7 Examples of t-hook distributions

This section includes examples of Theorem 1.14 and Corollary 1.15. For convenience,

we define the proportion functions

Ψt(a, b;n) :=
pt(a, b;n)

p(n)
.
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Example 6.9. In the case of t = 3, we find that

H3(ξ; q) = 1 + q + 2q2 + 3ξq3 + (2 + 3ξ)q4 + (1 + 6ξ)q5 +
(
2 + 9ξ2

)
q6

+
(
6ξ + 9ξ2

)
q7 +

(
1 + 3ξ + 18ξ2

)
q8 + . . . .

and the three generating functions H3(a, 3; q) begin with the terms

H3(0, 3; q) = 1 + q + 2q2 + 2q4 + q5 + 2q6 + q8 + . . . ,

H3(1, 3; q) = 3q3 + 3q4 + 6q5 + 6q7 + 3q8 + . . . ,

H3(2, 3; q) = 9q6 + 9q7 + 18q8 + . . . .

Theorem 1.14 implies (independently of a) that

p3(a, 3;n) ∼
1

12
√
3n

· eπ
√

2n
3 ∼ 1

3
· p(n).

The next table illustrates the conclusion of Corollary 1.15, that the proportions

Ψ3(a, b;n) → 1
3
.

n Ψ3(0, 3;n) Ψ3(1, 3;n) Ψ3(2, 3;n)

100 ≈ 0.4356 ≈ 0.1639 ≈ 0.4003

...
...

...
...

500 ≈ 0.3234 ≈ 0.3670 ≈ 0.3096

600 ≈ 0.3318 ≈ 0.3114 ≈ 0.3567

...
...

...
...

2100 ≈ 0.3320 ≈ 0.3348 ≈ 0.3332

2300 ≈ 0.3330 ≈ 0.3345 ≈ 0.3325

2500 ≈ 0.3324 ≈ 0.3337 ≈ 0.3339
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Example 6.10. We consider a typical case where the modular sums of t-hook func-

tions are not equidistributed. We consider t = 2, where we have

H2(ξ; q) = 1 + q + 2ξq2 + (1 + 2ξ)q3 + 5ξ2q4 +
(
2ξ + 5ξ2

)
q5 +

(
1 + 10ξ3

)
q6

+
(
5ξ2 + 10ξ3

)
q7 +

(
2ξ + 20ξ4

)
q8 + . . . .

The three generating functions H2(a, 3; q) begin with the terms

H2(0, 3; q) = 1 + q + q3 + 11q6 + 10q7 + . . . ,

H2(1, 3; q) = 2q2 + 2q3 + 2q5 + 22q8 + . . . ,

H2(2, 3; q) = 5q4 + 5q5 + 5q7 + . . . .

Theorem 1.14 implies that

p2(a, 3;n) ∼
A(a, n)

12
√
3n

· eπ
√

2n
3 ∼ A(a, n)

3
· p(n),

where A(a, n) ∈ {0, 1, 2} satisfies the congruence A(a, n) ≡ 2− a− n (mod 3). This

explains the uneven distribution established by Corollary 1.15 in this case. In partic-

ular, we have that

lim
n→∞

pt(a, 3; 3n+ 2− a)

p(n)
= 0.

Of course, this zero distribution is weaker than the vanishing obtained in Theo-

rem 1.16.

The next table illustrates the uneven asymptotics for n ≡ 0 (mod 3).
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n Ψ2(0, 3;n) Ψ2(1, 3;n) Ψ2(2, 3;n)

300 ≈ 0.7347 ≈ 0.2653 0

...
...

...
...

600 ≈ 0.6977 ≈ 0.3022 0

900 ≈ 0.6837 ≈ 0.3163 0

...
...

...
...

4500 ≈ 0.6669 ≈ 0.3330 0

4800 ≈ 0.6669 ≈ 0.3330 0

5100 ≈ 0.6668 ≈ 0.3331 0

Example 6.11. We consider another typical case where the modular sums of t-hook

functions are not equidistributed. We consider t = 4, where we have

H4(ξ; q) = 1 + q + 2q2 + 3q3 + (1 + 4ξ)q4 + (3 + 4ξ)q5 + (3 + 8ξ)q6

+(3 + 12ξ)q7 +
(
4 + 4ξ + 14ξ2

)
q8 + . . . .

The three generating functions H4(a, 3; q) begin with the terms

H4(0, 3; q) = 1 + q + 2q2 + 3q3 + q4 + 3q5 + 3q6 + 3q7 + 4q8 + . . . ,

H4(1, 3; q) = 4q4 + 4q5 + 8q6 + 12q7 + 4q8 + . . . ,

H4(2, 3; q) = 14q8 + . . . .
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Theorem 1.14, restricted to partitions of integers which are multiples of 12, gives

p4(a, 3; 12n) ∼



4
9
· p(12n) if a = 0,

1
3
· p(12n) if a = 1,

2
9
· p(12n) if a = 2.

The next table illustrates these asymptotics.

n Ψ4(0, 3; 12n) Ψ4(1, 3; 12n) Ψ4(2, 3; 12n)

10 ≈ 0.4804 ≈ 0.3373 ≈ 0.1823

...
...

...
...

50 ≈ 0.4500 ≈ 0.3381 ≈ 0.2119

60 ≈ 0.4485 ≈ 0.3373 ≈ 0.2142

...
...

...
...

180 ≈ 0.4447 ≈ 0.3340 ≈ 0.2212

190 ≈ 0.4447 ≈ 0.3339 ≈ 0.2214

200 ≈ 0.4446 ≈ 0.3338 ≈ 0.2215

6.8 Betti number generating functions

For convenience, we let P (X;T ) be the usual Poincaré polynomial

P (X;T ) :=
∑
j

bj(X)T j =
∑
j

dim (Hj(X,Q))T j,

which is the generating function for the Betti numbers of X. For the various Hilbert

schemes on n points we consider, the work of Göttsche, Buryak, Feigin, and Nakajima
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[29, 30, 58, 59] offers the generating function of these Poincaré polynomials as a formal

power series in q. Namely, we have the following.

Theorem 6.12. (Göttsche) We have that

G(T ; q) :=
∞∑
n=0

P
((

C2
)[n]

;T
)
qn =

∞∏
m=1

1

1− T 2m−2qm
=

1

F3(T 2; q)
.

Theorem 6.13. (Buryak and Feigin) If α, β ∈ N are relatively prime, then we have

that

Gα,β(T ; q) :=
∞∑
n=0

P

(((
C2
)[n])Tα,β

;T

)
qn =

1

F1(T 2; qα+β)

∞∏
m=1

1− q(α+β)m

1− qm
.

Remark 6.14. The Poincaré polynomials in these cases only have even degree terms.

The odd index Betti numbers are always zero. Moreover, letting T = 1 in these

generating functions give Euler’s generating function for p(n). Therefore, we directly

see that

p(n) = P
((

C2
)[n]

; 1
)
= P

(((
C2
)[n])Tα,β

; 1

)
.

Of course, the proofs of these theorems begin with partitions of size n.

Arguing as in the proof of Corollary 6.2, we obtain the following generating func-

tions for the modular sums of Betti numbers.

Corollary 6.15. For 0 ≤ a < b, the following are true.

(1) We have that

∞∑
n=0

B
(
a, b;

(
C2
)[n])

qn =
1

b

b−1∑
r=0

ζ−ar
b G(ζrb ; q).
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(2) If α, β ∈ N are relatively prime, then we have

∞∑
n=0

B

(
a, b;

((
C2
)[n])Tα,β

)
qn =

1

b

b−1∑
r=0

ζ−ar
b Gα,β(ζ

r
b ; q).

6.9 A reformulation of Wright’s circle method

The classical circle method, as utilized by Hardy–Ramanujan and many others, de-

rives asymptotic or exact formulas for the Fourier coefficients of q-series by leveraging

modular properties of the generating functions. More recently, a variation of the circle

method due to Wright has grown increasingly important in number theory. For the

proof of Theorem 1.17 and Corollary 1.18, we use Wright’s variation, which obtains

asymptotic formulas for generating functions carrying suitable analytic properties.

Remark 6.16. Ngo and Rhoades [87] proved a more restricted version2 of the follow-

ing proposition where the generating function F splits as two functions. Our purposes

do not require such a splitting, and so we state the proposition in terms of a single

function F .

Proposition 6.17. Suppose that F (q) is analytic for q = e−z where z = x + iy ∈

C satisfies x > 0 and |y| < π, and suppose that F (q) has an expansion F (q) =∑∞
n=0 c(n)q

n near 1. Let c,N,M > 0 be fixed constants. Consider the following

hypotheses:

2We note that hypothesis 4 in Proposition 1.8 of [87] is stated differently than our hypothesis 2

in Proposition 6.17 below.



191

(1) As z → 0 in the bounded cone |y| ≤Mx (major arc), we have

F (e−z) = zBe
A
z

(
N−1∑
j=0

αjz
j +Oδ

(
|z|N

))
,

where αs ∈ C, A ∈ R+, and B ∈ R.

(2) As z → 0 in the bounded cone Mx ≤ |y| < π (minor arc), we have

|F (e−z)| ≪δ e
1

Re(z)
(A−κ).

for some κ ∈ R+.

If (1) and (2) hold, then as n→ ∞ we have for any N ∈ R+

c(n) = n
1
4
(−2B−3)e2

√
An

(
N−1∑
r=0

prn
− r

2 +O
(
n−N

2

))
,

where pr :=
r∑

j=0

αjcj,r−j and cj,r :=
(− 1

4
√
A
)r
√
A

j+B+ 1
2

2
√
π

Γ(j +B + 3
2
+ r)

r!Γ(j +B + 3
2
− r)

.

Proof. By Cauchy’s theorem, we have

c(n) =
1

2πi

∫
C

F (q)

qn+1
dq,

where C is a circle centered at the origin inside the unit circle surrounding zero exactly

once counterclockwise. We choose |q| = e−λ with λ :=
√

A
n
. Set

Aj(n) :=
1

2πi

∫
C1

zB+je
A
z

qn+1
dq,

where C1 is the major arc. We claim that

c(n) =
N−1∑
j=0

αjAj(n) +O
(
n

1
2
(−B−N−1)e2

√
An
)
. (6.9.1)
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For this write

c(n)−
N−1∑
j=0

αjAj(n) = E1(n) + E2(n),

where

E1(n) :=
1

2πi

∫
C2

F (q)

qn+1
dq,

E2(n) :=
1

2πi

∫
C1

(
F (q)z−Be−

A
z −

N−1∑
j=0

αjz
j

)
zBe

A
z q−n−1dq,

where C2 is the minor arc.

We next bound E1(n) and E2(n). For E2(n) we have, by condition (1)∣∣∣∣∣F (e−z
)
z−Be−

A
z −

N−1∑
j=0

αjz
j

∣∣∣∣∣≪δ |z|N .

Note that on C, x = λ and that∣∣∣∣exp(Az + nz

)∣∣∣∣ ≤ exp
(
2
√
An
)
.

Since the length of C1 is ≈ λ, we obtain

E2(n) ≪ λ|z|N+B exp
(
2
√
An
)
.

On C1, we have y ≪ λ, implying |z| ∼ 1√
n
. This gives E1(n) satisfies the bound

required in (6.9.1).

On C2, we estimate

|F (q)| ≪ e
1
λ
(A−κ).

Therefore, we have

E1(n) ≪ |F (q)||q|−n ≪ e
1
λ
(A−κ)+nλ ≪ e(2−κ)

√
An.
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The required bound (6.9.1) follows. Using Lemma 3.7 of [87] to estimate the integrals

Aj(n) now gives the claim.

6.10 Proof of Theorem 1.17 and Corollary 1.18

We now apply the circle method to the generating functions in Theorems 6.12 and

6.13.

Proof of Theorem 1.17. Using first Corollary 6.15 (1) and then Theorem 6.12, we

obtain

Ha,b(q) :=
∞∑
n=0

B
(
a, b;

(
C2
)[n])

qn =
1

b

(
1 + δ2|b

) 1

(q; q)∞
+

1

b

∑
1≤r≤b−1

r ̸= b
2

ζ−ar
b

1

F3 (ζ2rb ; q)
.

We want to apply Proposition 6.17. For this we first show (M > 0 arbitrary) that we

have as z → 0 on the major arc |y| ≤Mx

Ha,b

(
e−z
)
=

1

b

(
1 + δ2|b

)√ z

2π
e

π2

6z (1 +O(|z|)). (6.10.1)

Recall that we have P (q) :=
∑∞

n=0 p(n)q
n = (q; q)−1

∞ . First we note the well-known

bound (for |y| ≤Mx, as z → 0)

P
(
e−z
)
=

√
z

2π
e

π2

6z (1 +O(|z|)).

Next we consider 1
F3(ζ2rb ;q)

for ζ2rb ̸= 1 on the major arc. By Theorem 6.3 (3)

1

F3 (ζ2rb ; e−z)
=

(b2z)
1
b
− 1

2 Γ
(
1
b

)
√
2π

b−1∏
j=1

(
1− ζ2rjb

) j
b e

π2

6b2z (1 +O(|z|)) ≪ |z|−Ne
π2

6z
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for any N ∈ N. This gives (6.10.1).

Next we show that we have as z → 0 on the minor arc |y| ≥Mx

Ha,b

(
e−z
)
≪ e

(
π2

6
−κ
)

1
x . (6.10.2)

It is well-known (and follows by logarithmic differentiation) that for some C > 0

∣∣P (e−z
)∣∣ ≤ x

1
2 e

π
6x

−C
x .

We are left to bound 1
F3(ζ2rb ;q)

on the minor arc. For this we write

Log

(
1

F3 (ζ2rb ; q)

)
=

∞∑
m=1

qm

m (1− ζ2rmb qm)
.

Noting that |1− ζ2rmb qm| ≥ 1− |q|m, we obtain

∣∣∣∣Log( 1

F3 (ζ2rb ; q)

)∣∣∣∣ ≤ ∣∣∣∣ q

1− ζ2rb q

∣∣∣∣− |q|
1− |q|

+ log(P |q|)

so we are done once we show that

∣∣∣∣ q

1− ζ2rb q

∣∣∣∣− |q|
1− |q|

< −C
x

for some C > 0. Note that

1

1− ζ2rb q
= Ob,r(1),

and thus ∣∣∣∣ q

1− ζ2rb q

∣∣∣∣− |q|
1− |q|

= −1

x
+Ob,r(1)

giving (6.10.2). The claim of (1) now follows by Proposition 6.17.
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(2) By Corollary 6.15 (2) and Theorem 6.13 we have

Ha,b,α,β(q) :=
∞∑
n=0

B

(
a, b;

((
C2
)[n])Tα,β

)
qn =

1

b
(1 + δ2|b)P (q)

+
1

b

∑
1≤r≤b−1

r ̸= b
2

ζ−ar
b

(
qα+β; qα+β

)
∞

F1 (ζ2rb ; qα+β) (q; q)∞
.

We show the same bounds as in (1) with the only additional condition that

M <
2π2

b2
min

1≤r< b
2

r(b− 2r)∣∣∣∣∑∞
n=1

sin( 4πr
b )

n2

∣∣∣∣ . (6.10.3)

We only need to prove the bounds for

Hα,β(q) :=

(
qα+β; qα+β

)
∞

F1 (ζ2rb ; qα+β) (q; q)∞
.

for ζ2rb ̸= 1. We may assume without loss of generality that 1 ≤ 2r < b. We start by

showing the major arc bound. By Theorem 6.3 (1) and (6.3.6), we have, for z on the

major arc

Hα,β(q) ≪

∣∣∣∣∣eπ2

6z
− π2

6(α+β)z
+

ζ2rb ϕ(ζ2rb ,2,1)
(α+β)z

∣∣∣∣∣ .
So to prove the major arc bound we need to show that for some ε > 0(

π2

6
− ε

)
Re

(
1

z

)
− Re

(
ζ2rb ϕ (ζ

2r
b , 2, 1)

z

)
> 0.

We first rewrite

ζ2rb ϕ
(
ζ2rb , 2, 1

)
=

∞∑
n=1

cos
(
4πrn
b

)
+ i sin

(
4πrn
b

)
n2

.

Now note the evaluation for 0 ≤ θ ≤ 2π (see e.g. [114])

∞∑
n=1

cos(nθ)

n2
=
π2

6
− θ(2π − θ)

4
.
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Thus we are left to show

2π2r

b2
(b− 2r)x ≥

∣∣∣∣∣
∞∑
n=1

sin
(
4πrn
b

)
n2

∣∣∣∣∣ y.
This follows by the definition of M given in (6.10.3).

Proof of Corollary 1.18. This follows immediately from Theorem 1.17 and the defi-

nition of d(a, b) in (1.3.4).

6.11 Examples of Theorem 1.17 and Corollary 1.18

Finally, we consider examples of the asymptotics and distributions in the setting of

Hilbert schemes on n points.

Example 6.18. By Göttsche’s Theorem (i.e., Theorem 6.12), we have

G(T ; q) :=
∞∑
n=0

P
((

C2
)[n]

;T
)
qn =

∞∏
m=1

1

1− T 2m−2qm
=

1

F3(T−2;T 2q)

= 1 + q +
(
1 + T 2

)
q2 +

(
1 + T 2 + T 4

)
q3 +

(
1 + T 2 + 2T 4 + T 6

)
q4 + . . . .

Theorem 1.17 (1) implies that

B
(
a, 3;

(
C2
)[n]) ∼ 1

12
√
3n

· eπ
√

2n
3 ,

and so Corollary 1.18 implies that δ(a, 3;n) → 1
3
. The next table illustrates this

phenomenon.
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n δ(0, 3;n) δ(1, 3;n) δ(2, 3;n)

1 1 0 0

2 0.5000 0 0.500

...
...

...
...

18 ≈ 0.3377 ≈ 0.3325 ≈ 0.3299

19 ≈ 0.3367 ≈ 0.3306 ≈ 0.3327

20 ≈ 0.3333 ≈ 0.3317 ≈ 0.3349

Example 6.19. By Theorem 6.13, for α = 2 and β = 3 we have

G2,3(T ; q) :=
∞∑
n=0

P

(((
C2
)[n])T2,3

;T

)
qn =

1

F1(T 2; q5)

∞∏
m=1

(1− q5m)

1− qm

= 1 + q + 2q2 + · · ·+
(
6 + T 2

)
q5 +

(
10 + T 2

)
q6 +

(
13 + 2T 2

)
q7 + . . . .

Theorem 1.17 (2) implies that

B

(
a, 3;

((
C2
)[n])Tα,β

)
∼ 1

12
√
3n

· eπ
√

2n
3 ,

and so Corollary 1.18 yields that δ2,3(a, 3;n) → 1
3
. The next table illustrates this

phenomenon.
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n δ2,3(0, 3;n) δ2,3(1, 3;n) δ2,3(2, 3;n)

1 1 0 0

2 1 0 0

...
...

...
...

100 ≈ 0.3693 ≈ 0.2658 ≈ 0.3649

200 ≈ 0.3343 ≈ 0.3176 ≈ 0.3481

300 ≈ 0.3313 ≈ 0.3293 ≈ 0.3393

400 ≈ 0.3318 ≈ 0.3324 ≈ 0.3358

500 ≈ 0.3324 ≈ 0.3332 ≈ 0.3343
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Chapter 7

Turán inequalities

The purpose of this chapter is to prove Theorem 1.19 and Corollary 1.20. This is

joint work with Anna Pun.

7.1 Jensen polynomials and Turán inequalities

Given an arbitrary sequence α = (α(0), α(1), α(2), · · · ) of real numbers, the associated

Jensen polynomial Jd,n
α (X) of degree d and shift n is defined by

Jd,n
α (X) :=

d∑
j=0

(
d

j

)
α(n+ j)Xj. (7.1.1)

The Jensen polynomials also have a close relationship to the Riemann hypothesis.

Indeed, Pólya [94] proved that the Riemann hypothesis is equivalent to the hyper-

bolicity of all of the Jensen polynomials Jd,n
γ (X) associated to the Taylor coefficients

{γ(j)}∞j=0 of
1

8
Ξ

(
i
√
x

2

)
. Griffin, Ono, Rolen and Zagier [62] proved that for each

d ≥ 1, all but finitely many Jd,n
γ (X) are hyperbolic, which provides new evidence

supporting the Riemann hypothesis.
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There is a classical result by Hermite that generalizes the Turán inequalities using

Jensen polynomials. Let

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

be a polynomial with real coefficients. Let β1, β2, · · · , βn be the roots of f and denote

S0 = n and

Sm = βm
1 + βm

2 + · · ·+ βm
n , m = 1, 2, 3, · · ·

their Newton sums. Let M(f) be the Hankel matrix of S0, · · ·S2n−2, i.e.

M(f) :=



S0 S1 S2 · · · Sn−1

S1 S2 S3 · · · Sn

S2 S3 S4 · · · Sn+1

...
...

...
...

...

Sn−1 Sn Sn+1 · · · S2n−2


.

Hermite’s theorem [89] states that f is hyperbolic if M(f) is positive semi-definite.

Recall that a polynomial with real coefficients is called hyperbolic if all of its roots

are real. Each Sm can be expressed in terms of the coefficients a0, · · · , an−1 of f for

m ≥ 1, and a matrix is positive semi-definite if and only if all its principle minors are

non-negative. Thus Hermite’s theorem provides a set of inequality conditions on the
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coefficients of a polynomial f to be hyperbolic:

∆1 = S0 = n,∆2 =

∣∣∣∣∣∣∣∣
S0 S1

S1 S2

∣∣∣∣∣∣∣∣ ≥ 0, · · · ,∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S0 S1 S2 · · · Sn−1

S1 S2 S3 · · · Sn

S2 S3 S4 · · · Sn+1

...
...

...
...

...

Sn−1 Sn Sn+1 · · · S2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≥ 0.

For a given sequence α(n), when Hermite’s theorem is applied to Jd,n
α (X) then the

condition that all minors ∆k of the Hankel matrix M(Jd,n
α (X)) are non-negative

gives a set of inequalities on the sequence α(n), and we call them the order k Turán

inequalities. In other words, Jd,n
α (X) is hyperbolic if and only if the subsequence

{α(n + j)}∞j=0 satisfies all the order k Turán inequalities for all 1 ≤ k ≤ d. In

particular, the result in [62] shows that for any d ≥ 1, the partition function {p(n)}

satisfies the order d Turán inequality for sufficiently large n.

7.1.1 Criterion of Griffin, Ono, Rolen, and Zagier

Griffin, Ono, Rolen and Zagier [62] produced the following criterion that is useful for

proving that a sequence α(n) satisfies the Turán inequalities for sufficiently large n.

Theorem 7.1 (Theorem 3 & Corollary 4, [62]). Let {α(n)}, {A(n)}, and {δ(n)} be

sequences of positive real numbers such that δ(n) → 0 as n → ∞. Suppose further

that for a fixed d ≥ 1 and for all 0 ≤ j ≤ d, we have

log

(
α(n+ j)

α(n)

)
= A(n)j − δ(n)2j2 + o

(
δ(n)d

)
as n→ ∞.
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Then the renormalized Jensen polynomials Ĵd,n
α (X) =

δ(n)−d

α(n)
Jd,n
α

(
δ(n)X − 1

exp(A(n))

)
sat-

isfy lim
n→∞

Ĵd,n
α (X) = Hd(X) uniformly for X in any compact subset of R. Furthermore,

this implies that the polynomials Jd,n
α (X) are hyperbolic for all but finitely many values

of n.

Because the conditions for this result are so general, the method can be utilized in

a wide variety of circumstances. For instance, it is shown in Theorem 7 of [62] that if

af (n) are the (real) Fourier coefficients of a modular form f on SL2(Z) holomorphic

apart from a pole at infinity, then there are sequences Af (n) and δf (n) such that

α(n) = af (n) satisfies the required conditions. What we prove can then be regarded

as a higher-level generalization of this result, since the sequences pk(n) are coefficients

of weight zero weakly holomorphic modular forms on proper subgroups of SL2(Z).

7.2 A formula for k-regular partitions

Recall that the k-regular partitions have generating function

∑
n≥0

pk(n)q
n =

∞∏
n=1

(
1− qkn

)
(1− qn)

=

(
qk; qk

)
∞

(q; q)∞
.

Because the Dedekind eta function η(z) = q
1
24 (q; q)∞ is a modular form, we ca deduce

that the generating function for pk(n) also has a modular transformation law. This

fact leads via the method of Poincaré series, which is analogous to the Rademacher

circle method of Chapter 5, to an exact formula for pk(n).
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This process was carried out by Hagis [65]. This result on pk(n) play a key

role in the main theorem. The resulting formula expressible as a sum of modified

Kloosterman sums times Bessel functions. Using facts about the asymptotics of Bessel

functions and the explicit formulas, useful asymptotics for pk(n) may be derived. In

particular, Hagis proves as a corollary (Corollary 4.1 in [65]) the asymptotic formula

pk(n) = 2π

√
mk

k(n+ kmk)
· I1
(
4π
√
mk(n+ kmk)

)
(1 +O(exp(−cn1/2))), (7.2.1)

where I1 is a modified Bessel function of

7.3 Proofs of Theorem 1.19 and Corollary 1.20

Fix d ≥ 1 and k ≥ 2, and let the sequences Ak(n), δk(n) be defined by

Ak(n) = 2π
√
mk/n+

3

4

⌊3d/4⌋∑
r=1

(−1)r

rnr
and δk(n) =

(
−

∞∑
r=2

4π
√
mk

(
1/2
r

)
nr−1/2

)1/2

.

Define the renormalized Jensen polynomials Ĵd,n
pk

(X) by

Ĵd,n
pk

(X) :=
δk(n)

−d

pk(n)
Jd,n
pk

(
δk(n)X − 1

exp(Ak(n))

)
. (7.3.1)

By application of the Jensen-Pólya method, it suffices to show that for any fixed d

and all 0 ≤ j ≤ d,

log

(
pk(n+ j)

pk(n)

)
= Ak(n)j − δk(n)

2j2 + o
(
δk(n)

d
)

as n→ ∞. (7.3.2)

Using (7.2.1), we have

pk(n) = bk(n+ kmk)
−1/2I1(4π

√
nmk) +O(ndke−ck

√
n),
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as n → ∞, where bk, ck > 0, and dk are constants which depend at most on k. In

light of the expansion of the Bessel functions of the first kind at infinity, this implies

that pk(n) has asymptotic expansion to all orders of 1/n in the form

pk(n) ∼ e4π
√
nmkn−3/4 exp

( ∞∑
r=0

ar
nr

)
,

where a0, a1, · · · are constants depending only on k. Furthermore, when the exponen-

tial terms are considered asymptotically, the terms
ar
nr

in the sum vanish compared

with the term 4π
√
nmk for r ≥ 1, and so we have

pk(n) ∼ ea0+4π
√
nmkn−3/4.

It follows that for fixed 0 ≤ j ≤ d, we have

log

(
pk(n+ j)

pk(n)

)
∼ 4π

√
mk

∞∑
r=1

(
1/2

r

)
jr

nr−1/2
− 3

4

∞∑
r=1

(−1)r−1jr

rnr

= 2π
√
mk

j√
n
+ 4π

√
mk

∞∑
r=2

(
1/2

r

)
jr

nr−1/2
+

3

4

∞∑
r=1

(−1)rjr

rnr

= 2π

√
mk

n
j +

3

4

⌊3d/4⌋∑
r=1

(−1)rjr

rnr
+ 4π

√
mk

∞∑
r=2

(
1/2

r

)
jr

nr−1/2
+

3

4

∞∑
r=⌊3d/4⌋+1

(−1)rjr

rnr

=

(
2π

√
mk

n
+

3

4

⌊3d/4⌋∑
r=1

(−1)rjr−1

rnr

)
j +

(
∞∑
r=2

4π
√
mk

(
1/2
r

)
jr−2

nr−1/2

)
j2

+
3

4

∞∑
r=⌊3d/4⌋+1

(−1)rjr

rnr
.
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Then the required result follows since

log

(
pk(n+ j)

pk(n)

)
− Ak(n)j + δk(n)

2j2 = O(n−⌊3d/4⌋−1) = o(δk(n)
d).
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Chapter 8

Variations of Lehmer’s Conjecture

The purpose of this chapter is to prove the theorems of the introduction in the broader

context of newforms with trivial mod 2 Galois representation. In particular, these

results include Theorems 8.7, 8.13, 8.16, and 8.21. This section is joint work with

Jennifer Balakrishnan, Ken Ono, and Wei-Lun Tsai.

8.1 Lucas Sequences

8.1.1 Classical facts

Suppose that α and β are algebraic integers for which α + β and αβ are relatively

prime non-zero integers, where α/β is not a root of unity. Their Lucas numbers

{un(α, β)} = {u1 = 1, u2 = α + β, . . . } are the integers

un(α, β) :=
αn − βn

α− β
. (8.1.1)

A prime ℓ primitive prime divisor of un(α, β) if ℓ ∤ (α−β)2u1(α, β) · · ·un−1(α, β) and

ℓ | un(α, β). We require several classical facts about Lucas numbers.
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Proposition 8.1 (Proposition 2.1 (ii) of [20]). If d | n, then ud(α, β)|un(α, β).

To keep track of the first occurrence of prime divisors, we let mℓ(α, β) be the

smallest n ≥ 2 for which ℓ | un(α, β). We note that mℓ(α, β) = 2 if and only if

α + β ≡ 0 (mod ℓ).

Proposition 8.2 (Corollary 2.21 of [20]). If ℓ ∤ αβ is an odd prime with mℓ(α, β) > 2,

then the following are true.

1. If ℓ | (α− β)2, then mℓ(α, β) = ℓ.

2. If ℓ ∤ (α− β)2, then mℓ(α, β) | (ℓ− 1) or mℓ(α, β) | (ℓ+ 1).

Remark 8.3. If ℓ | αβ, then either ℓ | un(α, β) for all n, or ℓ ∤ un(α, β) for all n.

8.1.2 The work of Bilu-Hanrot-Voutier

Bilu, Hanrot, and Voutier [20] proved the following definitive theorem.

Theorem 8.4. Every Lucas number un(α, β), with n > 30, has a primitive prime

divisor.

This theorem is sharp; there are sequences for which u30(α, β) does not have a

primitive prime divisor. We call a Lucas number un(α, β), with n > 2, defective2 if

un(α, β) does not have a primitive prime divisor. Bilu, Hanrot and Voutier essentially

1This corollary is stated for Lehmer numbers. The conclusions hold for Lucas numbers because

ℓ ∤ (α+ β).
2We do not consider the absence of a primitive prime divisor for u2(α, β) = α+ β to be a defect.
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complete the theory; they basically characterized all of the defective Lucas numbers.

Their work, combined with a subsequent paper3 by Abouzaid [1], gives the complete

classification of defective Lucas numbers. Tables 1-4 in Section 1 of [20] and Theorem

4.1 of [1] offer this classification. Every defective Lucas number either belongs to a

finite list of sporadic examples or a finite list of parameterized infinite families.

We consider Lucas sequences arising from those quadratic integral polynomials

F (X) = X2 − AX +B = (X − α)(X − β), (8.1.2)

where B = αβ = p2k−1 is an odd power of a prime p, and |A| = |α + β| ≤ 2
√
B =

2p
2k−1

2 . A straightforward analysis of these tables of defective Lucas numbers reveals

a list of sporadic examples, and several potentially infinite families of examples. A

straightforward case-by-case analysis using elementary congruences, divisibilities, and

the truth of Catalan’s conjecture [82], that 23 and 32 are the only consecutive perfect

powers, yields the following characterization.

Theorem 8.5. Tables 8.1 and 8.2 in the Appendix list the defective un(α, β) satisfying

(8.1.2).

To identify the cases where |un(α, β)| = 1 and |un(α, β)| = ℓ is prime, we require

the curves

Br,±
1,k : Y 2 = X2k−1 ± 3r, and B2,k : Y

2 = 2X2k−1 − 1. (8.1.3)

3This paper included a few cases which were omitted in [20].
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Lemma 8.6. Suppose that un(α, β) is a defective Lucas number from Table 8.1 or

Table 8.2.

1. We have that |un(α, β)| = 1 if and only if

(A,B, n) ∈
{
(±1, 2, 5), (±1, 2, 13), (±1, 3, 5), (±1, 5, 7), (±2, 3, 3), (±3, 23, 3)

}
,

or (A,B, n) = (±m, p, 3), where p = m2 + 1 is prime with m > 1.

2. If |un(α, β)| = ℓ is prime, (A,B, ℓ, n) ∈
{
(±1, 2, 7, 7), (±1, 2, 3, 8), (±2, 11, 5, 5)

}
,

or (A,B, ℓ, n) = (±m, p2k−1, 3, 3), where (p,±m) ∈ B1,±
1,k and 3 ∤ m, or (A,B, ℓ, n) =

(±m, p2k−1,m, 4), where (p,±m) ∈ B2,k.

Proof. The proof of both (1) and (2) follow by a simple (and tedious) case-by-case

analysis.

8.2 ∆(z) and other eigenforms

Throughout this paper we suppose that

f(z) = q +
∞∑
n=2

af (n)q
n ∈ S2k(Γ0(N)) ∩ Z[[q]] (8.2.1)

is an even weight 2k newform. Let Sf be the finite (generally empty) set of primes p

for which (A,B) = (af (p), p
2k−1) appears in Tables 8.1 or 8.2. For primes p ̸∈ Sf and

m ≥ 1, we let

σ̂(p;m) := σ0(m+ 1)− 1, (8.2.2)
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while for p ∈ Sf we define σ̂(p;m) in Table 8.3 in the Appendix. We have the following

theorem.

Theorem 8.7. Assume the notation and hypotheses above. If n > 1 an integer, then

Ω(af (n)) ≥
∑
p|N

(k − 1) ordp(n) +
∑
p∤N

ordp(n)≥2

σ̂(p; ordp(n)).

Remark 8.8. Theorem 8.7 does not take into account those primes p ∤ N which

exactly divide n because it can happen that |af (p)| = 1. However, if the mod 2

residual Galois representation is trivial, then af (p) is even for every prime p ∤ 2N .

In such cases, we get

Ω(af (n)) ≥
∑
p|N

(k − 1) ordp(n) +
∑
p∤2N

σ̂(p; ordp(n)).

This applies to ∆(z), by the congruence ∆(z) ≡
∑∞

n=0 q
(2n+1)2 (mod 2). Since (A,B) =

(τ(p), p11) does not appear in Lemma 8.6 (1), the proof of Theorem 8.7 gives Theo-

rem 8.18.

8.2.1 Proof of Theorem 8.7

We recall some basic facts about Atkin-Lehner newforms (see [8]), along with the

deep theorem of Deligne [47, 48] that bounds their Fourier coefficients.

Theorem 8.9. Suppose that f(z) = q +
∑∞

n=2 af (n)q
n ∈ S2k(Γ0(N)) is a newform

with integer coefficients. Then the following are true:

1. If gcd(n1, n2) = 1, then af (n1n2) = af (n1)af (n2).
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2. If p ∤ N is prime and m ≥ 2, then

af (p
m) = af (p)af (p

m−1)− p2k−1af (p
m−2).

3. If p ∤ N is prime and αp and βp are roots of Fp(x) := x2 − af (p)x+ p2k−1, then

af (p
m) = um+1(αp, βp) =

αm+1
p − βm+1

p

αp − βp
.

Moreover, we have |af (p)| ≤ 2p
2k−1

2 , and αp and βp are complex conjugates.

4. If p | N is prime, then f |U(p) :=
∑∞

n=1 af (np)q
n = af (p)f(τ). Moreover, we

have

af (p
m) =


(±1)mp(k−1)m if ordp(N) = 1,

0 if ordp(N) ≥ 2.

Theorem 8.9 leads to lower bounds for the number of prime divisors (counted with

multiplicity) of the coefficients in the sequence {af (p2), af (p3), . . . }, where p is prime.

Proposition 8.10. Assuming the notation in Theorem 8.9, the following are true for

m ≥ 2.

1. If p | N is prime, then ordp(af (p
m)) ≥ (k − 1)m.

2. If p ∤ N is prime and (A,B) = (af (p), p
2k−1) does not appear in Tables 8.1 or

8.2, then

Ω(af (p
m)) ≥ σ0(m+ 1)− 1.

3. If p ∤ N is prime and (A,B) = (af (p), p
2k−1) appears in Tables 8.1 or 8.2, then

Table 8.3 of the Appendix contains a lower bound for Ω(af (p
m)).
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Proof of Proposition 8.10. The first claim follows from Theorem 8.9 (4). The second

claim follows from Theorem 8.9 (3), Proposition 8.1 and Theorem 8.4 in a case-by-

case analysis. The point is that at least one new prime divisor is accumulated with

each subsequent step in a Lucas sequence. In other words, the relative divisibility

of Lucas numbers and the presence of primitive prime divisors guarantees the lower

bound. The only divisor ofm+1 which does not contribute is u1 = 1. The third claim

follows similarly by taking into account the defective Lucas numbers that appear in

Tables 8.1 and 8.2.

Proof of Theorem 8.7. The theorem follows from Theorem 8.9 (1) and Proposition 8.10.

8.3 Statement of general results

This section discusses the fully detailed generalizations of the main results stated

in the introduction. We investigate questions about the prime divisors of Fourier

coefficients and equations of the form af (n) = α for even weight newforms with

integer coefficients and trivial mod 2 residual Galois representation (i.e. even Hecke

eigenvalues for T (p) for primes p ∤ 2N , where N is the level). We obtain a general

theorem (see Theorem 8.21) that theoretically locates those coefficients that are odd

prime powers in absolute value for such newforms. For τ(n), this theorem gives the

following criterion, which restricts arguments to explicit finite sets.
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Theorem 8.11. If ℓ is an odd prime for which τ(n) = ±ℓm, with m ∈ Z+, then

n = pd−1, where p and d | ℓ(ℓ2 − 1) are odd primes. Furthermore, τ(n) = ±ℓm for at

most finitely many n.

Theorem 8.11 offers a method for determining whether |τ(n)| = ℓm has any so-

lutions, which reduces the problem to the determination of certain integer points on

finitely many algebraic curves. For ℓ ∈ {3, 5, 7}, examples of these curves include

Y 2−X11 = ±3m, Y 2− 5X22 = ±4 · 5m and Y 3− 5XY 2+6X2Y −X3 = ±7m.

(8.3.1)

By classifying such points when m = 1, we obtain the following theorem.4

Theorem 8.12. For every n > 1, the following are true.

(1) We have that

τ(n) ̸∈ {±1,±3,±5,±7,±13,±17,−19,±23,±37,±691}.

(2) Assuming the Generalized Riemann Hypothesis, we have that

τ(n) ̸∈
{
±ℓ : 41 ≤ ℓ ≤ 97 with

(
ℓ

5

)
= −1

}
∪ {−11,−29,−31,−41,−59,−61,−71,−79,−89} .

4The Journal of Number Theory published the proceedings of the conference “Modular forms

and Drinfeld Modules” held in 2018 in Pisa, Italy. Paper [10] is an exposition of the third author’s

lecture at the conference, and pertains to some of the cases of Theorem 8.12 (1). All of the other

results in the present paper have not appeared elsewhere. This article is the main reference for the

authors’ work on variants of Lehmer’s speculation.
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There are infinite families of newforms with even level for which these methods

apply. The next theorem offers unconditional results for 3 ≤ ℓ ≤ 37, when 2k ∈

{4, 6, 8, 10} or gcd(3 · 5 · 7, 2k− 1) ̸= 1. It also gives further results conditional on the

Generalized Riemann Hypothesis (GRH).

Theorem 8.13. If f(z) = q+
∑∞

n=2 af (n)q
n ∈ S2k(Γ0(2N))∩Z[[q]] is an even weight

2k ≥ 4 newform with trivial mod 2 residual Galois representation, then the following

are true.

1. For every n > 1 we have af (n) ̸∈ {±1}.

2. If 2k = 4, then for every n we have

af (n) ̸∈ {±ℓ : 3 ≤ ℓ ≤ 37 prime} \ {±11,−13, 17,±19,−23, 37} .

Assuming GRH, for every n we have

af (n) ̸∈ {±ℓ : 41 ≤ ℓ ≤ 97 prime} \ {−41,−53,−61,−67,±71, 73,−89}.

3. If 2k = 6, then for every n we have

af (n) ̸∈ {±ℓ : 3 ≤ ℓ ≤ 37 prime} \ {11, 13} .

Assuming GRH, for every n we have

af (n) ̸∈ {±ℓ : 41 ≤ ℓ ≤ 97 prime} \ {−47}.



215

4. If 2k = 8, then for every n we have

af (n) ̸∈ {±ℓ : 3 ≤ ℓ ≤ 37 prime} .

Assuming GRH, for every n we have

af (n) ̸∈ {±ℓ : 41 ≤ ℓ ≤ 97 prime} \ {−71}.

5. If 2k = 10, then for every n we have

af (n) ̸∈ {±ℓ : 3 ≤ ℓ ≤ 37 prime} .

Assuming GRH, for every n we have

af (n) ̸∈ {±ℓ : 41 ≤ ℓ ≤ 97 prime} \ {−83}.

6. If gcd(3 · 5 · 7 · 11 · 13, 2k − 1) ̸= 1 and 2k ≥ 12, then for every n we have

af (n) ̸∈
{
±ℓ : 3 ≤ ℓ < 37 prime with

(
ℓ

5

)
= −1

}
∪ {−37}.

Moreover, if 2k ̸= 16, then af (n) ̸= 37. Assuming GRH, for every n we have

af (n) ̸∈
{
±ℓ : 41 ≤ ℓ ≤ 97 prime with

(
ℓ

5

)
= −1

}
.

7. If gcd(3 · 5, 2k − 1) ̸= 1 and 2k ≥ 12, then for every n we have

af (n) ̸∈
{
±ℓ : 11 ≤ ℓ ≤ 31 prime with

(
ℓ

5

)
= 1

}
.

Assuming GRH, the range of this set can be expanded to include ℓ ≤ 89.
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8. If 7 | (2k − 1) and 2k ≥ 12, then for every n we have

af (n) ̸∈
{
±ℓ : 11 ≤ ℓ ≤ 31 prime with

(
ℓ

5

)
= 1

}
.

Assuming GRH, for every n we have

af (n) ̸∈ {±41,±59,±61,−71,±79,±89}.

9. If 11 | (2k − 1), then for every n we have af (n) ̸= −19, and assuming GRH we

have

af (n) ̸∈ {−11,−29,−31,−41,−59,−61,−71,−79,−89} .

10. If 13 | (2k − 1), then for every n we have af (n) ̸= −11, and assuming GRH we

have

af (n) ̸∈ {−19,−29,−31,−41,−59,−61,−71,−79} .

Remark 8.14.

(i) Theorem 8.13 applies to all newforms [91] with integer coefficients with level 2aN ,

where a ≥ 0 and N ∈ {1, 3, 5, 15, 17}. Moreover, the result holds for all odd levels

when af (2) is even.

(ii) These results follow from Theorem 8.21, which constrains coefficients that are

odd prime powers in absolute value. This method extends to arbitrary odd integers by

Hecke multiplicativity, thereby giving an algorithm for determining whether a given

odd integer is a newform coefficient.
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(iii) The proof of Theorem 8.13 (2-6) locates values ±ℓ that are possible coeffi-

cients. For example, Theorem 8.13 (2) allows weight 4 coefficients to be in the set

{±11,−13, 17,±19,−23, 37}. The proof shows that these values can only occur as one

of the following coefficients:

af (3
2) = 37, af (3

2) = −11, af (3
2) = −23, af (3

4) = 19, af (5
2) = 19,

af (7
2) = −19, af (7

4) = 11, af (17
2) = −13, af (43

2) = 17.

Similarly, Theorem 8.13 (6) allows a coefficient of 37 for weight 16, which must be

af (3
2) = 37.

(iv) The assumption that 2k ≥ 4 guarantees that certain algebraic curves have positive

genus, and so have finitely many integer points by Siegel’s theorem. Moreover, we do

not believe that conclusions analogous to those obtained in Theorem 8.13 hold for

weight 2 newforms.

(v) Some of the results in Theorem 8.13 rely on the GRH. These cases pertain to sit-

uations where GRH was required to reduce the running time of certain computational

number theoretic algorithms. The unconditional bounds lead to infeasible computer

calculations.

Example 8.15. By Theorem 8.13, the coefficients of the Hecke eigenform E4(z)∆(z)

never belong to

{−1} ∪ {±ℓ : 3 ≤ ℓ ≤ 37 prime}.

Moreover, under GRH the range of the second set can be extended to the odd primes

ℓ ≤ 97.
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Theorems 8.12 and 8.13 offer variants of Lehmer’s speculation for individual new-

forms. It is natural to consider an aspect of these questions where the newforms f

vary. Namely, can a fixed odd α be a Fourier coefficient of newforms with arbitrarily

large weight? We effectively show that this is generically not the case. To ease no-

tation, if ℓ is an odd prime, then let Sℓ denote the set of even weight newforms with

integer coefficients, trivial residual mod 2 Galois representation, and even level that

is coprime to ℓ.

Theorem 8.16. If ℓ is an odd prime and m ∈ Z+, then there are effectively com-

putable constants M±(ℓ,m) = Oℓ(m) for which ±ℓm is not a coefficient of any f ∈ Sℓ

with weight 2k > M±(ℓ,m). In particular,5 for ℓ ∈ {3, 5}, we have

M±(ℓ,m) :=



2m+ 1023
√
m if ε = +,m odd, and ℓ = 3,

2m+ 1013
√
m if ε = +,m even, and ℓ = 3,

2m+ 1032
√
m if ε = − and ℓ = 3,

3m+ 1024
√
m if ε = ±,m odd, and ℓ = 5,

3m+ 1013
√
m if ε = +,m even, and ℓ = 5,

3m+ 1030
√
m if ε = −,m even, and ℓ = 5.

Remark 8.17.

(i) The condition that the level of f is even is not crucial for the proof of Theorem 8.16.

If the level is odd, then the proof implies that af (2n + 1) ̸= ±ℓm for all n provided

5We offer these values to indicate that one can easily work out explicit constants.



219

that f has large weight. Furthermore, if af (2) is even, then the stronger claim that

±ℓm is not a Fourier coefficient holds.

(ii) The condition that the level of f is coprime to ℓ also is not crucial. If ℓ exactly

divides the level, then there is at most one counterexample, and it will be a Fourier

coefficient of the form af (ℓ
r) (see Theorem 8.9 (4)). Otherwise, the stronger claim

holds.

(iii) Using the methods in this paper, one can obtain a generalization of Theorem 8.16

for all odd α, as well as analogous results for odd weights and forms with real Neben-

typus.

These results are related to lower bounds for the number of prime divisors of

coefficients of newforms. We obtain a general theorem (see Theorem 8.7) which

implies the following lower bound for Ω(τ(n)), the number of prime divisors (counted

with multiplicity) of τ(n). As usual, we let ω(n) denote the number of distinct prime

divisors of n, and we let ordp(n) denote the power of p dividing n.

Theorem 8.18. If n > 1 is an integer, then

Ω(τ(n)) ≥
∑
p|n

prime

(σ0(ordp(n) + 1)− 1) ≥ ω(n).

Remark 8.19. Theorem 8.18 is sharp, as the prime in (1.5.1) satisfies Ω(τ(2512)) =

σ0(3)− 1 = 1.
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8.4 Proof of Theorem 8.13

Regarding coefficients of newforms satisfying (8.2.1), we classify those n for which

|af (n)| = ℓ is an odd prime. For the remainder of the paper, we assume that all

newforms have weight 2k ≥ 4. We first determine when |af (n)| = 1. Define the set

Uf :=


{1, 4} if af (2) = ±3, 2k = 4, and N odd},

{1} otherwise.

(8.4.1)

Proposition 8.20. Suppose that the mod 2 residual Galois representation for f(z)

is trivial. Then we have |af (n)| = 1 if and only if n ∈ Uf .

Proof. By multiplicativity (i.e. Theorem 8.9 (1)), it suffices to determine when

|af (pm)| = 1, where p is prime. By Proposition 8.10 (1), we have p ∤ N. By The-

orem 8.9 (3), it suffices to determine when the |um+1(αp, βp)| = 1, where m ≥ 2.

Indeed, af (p) = u2(αp, βp) is even for p ∤ 2N . By Theorem 8.4, this reduces to

Lemma 8.6 (1). The defective cases (A,B, n) = (±3, 23, 3) correspond to potential

weight 4 newforms, while the remaining possibilities are for weight 2. In the weight

4 cases we have af (2) = ±3, which gives af (4) = af (2)
2 − 23 = 1.

Theorem 8.21. Suppose that the mod 2 residual Galois representation for f(z) is

trivial. If |af (n)| = ℓm, with m ∈ Z+ and ℓ is an odd prime, then n = m0p
d−1, where

m0 ∈ Uf , p ∤ N is prime, and d | ℓ(ℓ2 − 1) is an odd prime. Moreover, |af (n)| = ℓm

for finitely many (if any) n.
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Proof of Theorem 8.11 and 8.21. By Proposition 8.20 and Theorem 8.9 (1) and (4),

it suffices to determine when |af (pd−1)| = |ud(αp, βp)| = ℓ, where p ∤ N is prime. Since

2k ≥ 4, ℓ is odd, and A = af (p) is even, Lemma 8.6 (2) leaves the defective possibilities

(A,B, ℓ, n) = (±m, p2k−1, 3, 3), which by Theorem 8.9 (2), implies that (p, af (p)) is

an integer point on Y 2 = X2k−1±3. This means that u3(αp, βp) = af (p
2) = ±3, which

is the claimed conclusion with d = ℓ = 3.

Now we consider whether a prime power can be a nondefective Lucas number

ud(αp, βp) = af (p
d−1), for primes p ∤ 2N . Since af (p) is even, we may assume that

ℓ ∤ αpβp and mℓ(αp, βp) > 2. Moreover, Theorem 8.9 (2) implies that af (p
b) is odd if

and only if b is even, and so we may assume that d is odd. Proposition 8.2 implies

that mℓ(αp, βp) = ℓ or mℓ(αp, βp)|(ℓ− 1) or mℓ(αp, βp)|(ℓ+ 1).

Due to the generic presence of primitive prime divisors, a Lucas number that is

a prime power ℓm in absolute value is the first multiple of ℓ in the sequence. By

Theorem 8.4, Proposition 8.1, and Lemma 8.6 (2), this holds for every sequence

satisfying (8.1.2) for weights 2k ≥ 4. In particular, d is an odd prime. The finiteness

of the number of p for which |af (pd−1)| = ℓ, follows from Siegel’s Theorem, that

positive genus curves have at most finitely many integer points. These curves are

easily assembled using Theorem 8.9 (2) (see Lemma 8.27).
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8.5 Integral Points on some curves

To prove Theorems 8.12 and 8.13, we require knowledge of the integer points on

certain curves.

8.5.1 Some Thue equations

An equation of the form F (X, Y ) = D, where F (X, Y ) ∈ Z[X, Y ] is homogeneous

and D is a non-zero integer, is known as a Thue equation. We require such equations

that arise from the generating function

1

1−
√
Y T +XT 2

=
∞∑

m=0

Fm(X, Y ) · Tm = 1 +
√
Y · T + (Y −X)T 2 + · · · . (8.5.1)

The first few homogenous polynomials F2m(X, Y ) are as follows:

F2(X, Y ) = Y −X,

F4(X, Y ) = Y 2 − 3XY +X2

F6(X, Y ) = Y 3 − 5XY 2 + 6X2Y −X3.

F10(X, Y ) = Y 5 − 9XY 4 + 28X2Y 3 − 35X3Y 2 + 15X4Y −X5.

For every positive integer m, we consider the degree m Thue equations of the form

F2m(X, Y ) =
m∏
k=1

(
Y − 4X cos2

(
πk

2m+ 1

))
= D. (8.5.2)

The next lemma gives integer points on several Thue equations that we shall

require.

Lemma 8.22. The following are true.
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1. Table 8.4 in the Appendix lists all of the integer solutions to

Fd−1(X, Y ) = ±ℓ

for every pair of odd primes (d, ℓ) for which 7 ≤ d | ℓ(ℓ2 − 1) and ℓ ∈ {7 ≤ ℓ ≤

37}.

2. Conditional on GRH, Table 8.5 in the Appendix lists all of the integer solutions

to

Fd−1(X, Y ) = ±ℓ

for every pair of odd primes (d, ℓ) for which 7 ≤ d | ℓ(ℓ2 − 1) and 41 ≤ ℓ ≤ 97.

3. There are no integer solutions to F22(X, Y ) = ±691.

4. The points (±1,±4) are the only integer solutions to F690(X, Y ) = ±691.

Proof. Claims (1), (2) and (3) are easily obtained using the Thue solver in PARI/GP

[93] (see [12] for all of the code required for this paper).

The proof of (4) is more formidable, as F690(X, Y ) has degree 345. However, for

odd primes p, the Thue equations Fp−1(X, Y ) = ±p are equivalent to the well-studied

equations

F̂p(X, Y ) =

p−1
2∏

k=1

(
Y − 2X cos

(
2πk

p

))
= ±p (8.5.3)

that were prominent in the work of Bilu, Hanrot, and Voutier on primitive prime

divisors of Lucas sequences. Indeed, we have Fp−1(X, Y ) = F̂p(X, Y − 2X). They

prove the important fact (see Cor. 6.6 of [20]) that there are no integer solutions
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to (8.5.3) with |X| > e8 when 31 ≤ p ≤ 787. By a well-known criterion (for ex-

ample, see Lemma 1.1 of [109] and Proposition 2.2.1 of [19])), midsize solutions of

F̂691(X, Y ) = ±691 correspond to convergents of the continued fraction expansion of

some 2 cos(2πk/691). A short calculation rules this out, possibly leaving some small

solutions, those with |X| ≤ 4. For these X, we find (±1,±2), which implies that

(±1,±4) are the only integral solutions to F690(X, Y ) = ±691.

8.5.2 The elliptic and hyperelliptic curves Y 2 = X2d−1 ± ℓ

For d ∈ {2, 3, 4, 6, 7} and odd primes ℓ ≤ 97, we list all of the integer points on

C±
d,ℓ : Y

2 = X2d−1 ± ℓ. (8.5.4)

Lemma 8.23. If 3 ≤ ℓ ≤ 97 is prime and d ∈ {2, 3, 4, 6, 7}, then the following are

true:

1. Table 8.6 in the Appendix lists the integer points on C+
d,ℓ.

2. Table 8.7 in the Appendix lists the integer points on C−
d,ℓ.

Proof. Work by Barros [14], Cohn [38] and Bugeaud, Mignotte and Siksek [28] estab-

lish these claims. Table 8.6 is assembled from the Appendix of [14], and Table 8.7 is

assembled from the Appendix of [28].



225

8.5.3 The hyperelliptic curves Y 2 = 5X2d ± 4ℓ

For d ≥ 2, we define the hyperelliptic curves

H±
d,ℓ : Y

2 = 5X2d ± 4ℓ. (8.5.5)

The following satisfying lemma classifies the integer points on H±
d,5.

Lemma 8.24. If ℓ = 5, then the following are true.

1. If d = 2 and ℓ = 5, then the only integer points on H+
2,5 are (±1,±5) and

(±2,±10).

2. If d > 2, then the only integer points on H+
d,5 are (±1,±5).

3. If d ≥ 2, then H−
d,5 has no integer points.

Proof. We recall the classical Lucas sequence

{Ln} = {2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, . . . },

defined by L0 := 2 and L1 := 1 and the recurrence Ln+2 := Ln+1 + Ln for n ≥ 0. A

theorem of Bugeaud, Mignotte, and Siksek [27] asserts that L1 = 1 and L3 = 4 are

the only perfect power Lucas numbers. By the theory of Pell’s equations, the positive

integer X-coordinate solutions to H+
1,5 and H−

1,5, namely {L1 = 1, L3 = 4, L5 =

11, . . . } and {L0 = 2, L2 = 3, L4 = 7, . . . } respectively, split the Lucas numbers. The

three claims follow immediately.
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For primes ℓ ∈ {691}∪
{
11 ≤ ℓ ≤ 89 : prime with

(
ℓ
5

)
= 1
}
, we have the following

lemma.

Lemma 8.25. The following are true.

1. For most6 d ∈ {3, 5, 7, 11, 13} and primes ℓ ∈
{
11 ≤ ℓ ≤ 89 :

(
ℓ
5

)
= 1
}
, Table

8.8 in the Appendix lists (some cases conditional on GRH) the integer points

on H±
d,ℓ.

2. There are no integer points on C−
6,691.

3. There are no integer points on H−
11,691.

Proof. Generalized Lebesgue–Ramanujan–Nagell equations are equations of the form

x2 +D = Cyn, (8.5.6)

where D and C are non-zero integers. An integer point on (8.5.6) can be studied in

the ring of integers of Q(
√
−D) using the factorization

(x+
√
−D)(x−

√
−D) = Cyn.

This observation is a standard tool in the study of Thue equations. In particular,

Theorem 2.1 of [14] (also see Proposition 3.1 of [28]) gives a step-by-step algorithm

that takes alleged solutions of (8.5.6) and produces integer points on one of finitely

many Thue equations constructed from C,D and n via the algebraic number theory

6We were unable to obtain results for H+
7,71, H

−
13,89, and any H+

11,ℓ and H+
13,ℓ.
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of Q(
√
−D). These equations are assembled from the knowledge of the group of units

and the ideal class group.

To prove all three parts of the lemma (apart from H+
7,89), we implemented this

algorithm in SageMath (see [12] for all SageMath code required for this paper). Some

cases required GRH as a simplifying assumption. As the curves in (2) and (3) are the

most complicated, we offer brief details in these two cases.

To prove (2), we consider the hyperelliptic curve C−
6,691, which corresponds to

(8.5.6) for the class number 5 imaginary quadratic field Q(
√
−691), where x = Y, y =

X,C = 1, D = 691, and n = 11. In this case the algorithm gives exactly one Thue

equation, which after clearing denominators can be rewritten as

2× 555 = (991077174272090396)x11 + (119700018439220789119)x10y

− (8831599221002836172345)x9y2 − (337116345512786456280840)x8y3

+ (8492967300375371034332430)x7y4 + (175189311986919278870504298)x6y5

− (1881807368163995585644810248)x5y6 − (22992541672786450593030038430)x4y7

+ (104772541553739359102253613965)x3y8 + (697875798749922445133117312720)x2y9

− (1068801486169809452619368218519)xy10 − (2292300374810647823111384294421)y11.

The Thue equation solver in PARI/GP, which implements the Bilu–Hanrot algo-

rithm, establishes that there are no integer solutions, and so C−
6,691 has no integer

points.

Claim (3) is about the hyperelliptic curve H−
11,691. Its integer points (X, Y ) satisfy

(Y + 2
√
−691)(Y − 2

√
−691) = 5X22.
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Therefore, we again employ the imaginary quadratic field Q(
√
−691). In particular,

we have (8.5.6), where x = Y, y = X,C = 5, D = 4 · 691 and n = 22. The algorithm

again gives one Thue equation, which after clearing denominators can be rewritten

as

22 × 5110 = −(20587212586465949627980680671826599752)x22

+ (1133274396835827658613802749227310922394)x21y

+ · · ·

− (79670423145107301772779399379735976309907264511718034789276856)xy21

+ (71809437208138431262783549625248617351731199323326115439324273)y22.

The Thue solver in PARI/GP establishes that there are no integer solutions, and so

H−
11,691 has no integer points.

We use the Chabauty–Coleman method7, which employs p-adic integration to

determine the rational points on suitable curves of genus g ≥ 2, to determine the

integer points on C+
6,691, H

+
7,89, and H

+
11,691.

Lemma 8.26. The following are true.

1. There are no integer points on C+
6,691.

2. There are no integer points on H+
11,691.

7We could have (in theory) used the Thue method as in the proof of Lemma 8.25. We chose this

method as it did not require substantial computer resources.
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3. Assuming GRH, the only integer points on H+
7,89 have (|X|, |Y |) = (1, 19).

Proof. We employ the Chabauty–Coleman method [39] to determine the integral

points on these curves.

We first prove (1). The genus 5 curve C+
6,691 has Jacobian with Mordell-Weil

rank 0. This can be determined using the implementation of 2-descent in Magma [21].

Since the rank is less than the genus, the Chabauty–Coleman method applies, which,

in this case, gives a 5-dimensional space of regular 1-forms vanishing on rational

points. We take as our basis for the space of annihilating differentials the set {ωi :=

X i dX
2Y

}i=0,1,...,4. The prime p = 3 is a prime of good reduction for C+
6,691, and taking

the point at infinity ∞ as our basepoint, we compute the set of points

{
z ∈ C+

6,691(Z3) :

∫ z

∞
ωi = 0 for all i = 0, 1, . . . , 4

}
,

where the integrals are Coleman integrals computed using SageMath [103]. By con-

struction, this set contains the integral points on the working affine model of C+
6,691.

The computation gives three points: two points with X-coordinate 0 and a third

point with Y -coordinate 0 in the residue disk corresponding to (2, 0) ∈ C+
6,691(F3).

(Indeed, the power series corresponding to the expansion of the integral of ω0 has

each of these points occurring as simple zeros.) Hence, there are no integral points

on C+
6,691.

Turning to H+
11,691, we consider the integral points on the curve Y 2 = 5X11 + 4 ·

691 and then pull back any points found using the map (X, Y ) → (X2, Y ). Using
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Magma, we find that the rank of the Jacobian of this genus 5 curve is 0. We rescale

variables to work with the monic model Y 2 = X11 + 4 · 510 · 691 and we apply the

Chabauty–Coleman method using p = 3. As before, the computation gives three

points with coordinates in Z3: two points with X-coordinate 0 and a third point

with Y -coordinate 0 in the residue disk corresponding to (2, 0). The power series

corresponding to the expansion of the integral of ω0 has each of these points occurring

as simple zeros. None of these points are rational. Therefore, H+
11,691 has no integral

points. This proves (2).

Now we turn to (3). To compute integral points on H+
7,89, we work with the genus

3 curve Y 2 = 5X7+4 ·89 and then pull back any integral points found using the map

(X, Y ) → (X2, Y ). Using Magma, we find that the rank of the Jacobian of this genus

3 curve is 2, under the assumption of GRH8. We work with the monic model

Hm : Y 2 = X7 + 4 · 56 · 89

and run the Chabauty–Coleman method using p = 3.

The points

P = [x3 + 14x2 − 800, 9x2 + 200x− 4050] and Q = [x− 5, 19 · 53]

(given in Mumford representation) are independent in the Jacobian of Hm. To sim-

plify the Chabauty–Coleman computation—in particular, so that we carry out all of

8The Magma procedure that computes ranks requires GRH in this case to be computationally

feasible.
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our computations over Q3—we replace P with P ′, a small Z-linear combination of P

and Q that is linearly independent from Q, with the property that the first coordinate

of the Mumford representation of P ′ splits over Q3.
We take P ′ := 2P − 5Q, with Mumford representation of P ′ given by [f(x), g(x)]

where

f(x) = x
3 −

57819608106819190393450758001494220029312032281

243432625872206959773347921129373894485149809
x
2
+

301022057022978383553067428985393708004188803800

81144208624068986591115973709791298161716603
x−

4935244227803215636634926465657011220846146763100

243432625872206959773347921129373894485149809
,

g(x) =
13467788979408324218581419111573847035681150845619031139253274307312471

3798115572194618764136691476777323149900556269646219373513689210377
x
2−

73837091689655128840131596065726589815272462202819205672839132728899500

1266038524064872921378897158925774383300185423215406457837896403459
x+

1249983247105360333943070938652709476597593148217064351317870016169354850

3798115572194618764136691476777323149900556269646219373513689210377
.

To compute an annihilating differential, we compute the 3 × 2 matrix of Coleman
integrals (

∫
P ′ ωi,

∫
Q
ωi)i=0,1,2, where ωi = X i dX

2Y
, in Sage:


2 · 3 + 2 · 32 + 34 + 2 · 36 + 38 + 2 · 39 + O(310) 33 + 2 · 34 + 37 + 2 · 38 + 39 + O(310)

2 · 3 + 32 + 33 + 2 · 35 + 2 · 36 + 2 · 37 + O(310) 2 · 3 + 32 + 33 + 2 · 37 + 2 · 38 + 39 + O(310)

3 + 32 + 2 · 33 + 2 · 34 + 2 · 35 + 36 + 37 + 2 · 39 + O(310) 2 · 3 + 32 + 33 + 2 · 34 + 35 + 37 + 2 · 38 + 2 · 39 + O(310)

 .

We then compute a basis of the kernel of this matrix, which gives us our annihi-

lating differential

ω = ω0 + (1 + 2 · 32 + 2 · 34 + 35 + 36 + 2 · 37 + 2 · 38 + 2 · 39 +O(310))ω1

+ (2 + 2 · 3 + 32 + 33 + 2 · 34 + 35 + 2 · 36 + 39 +O(310))ω2.

Finally, we have three residue disks to consider, corresponding to (1, 0) and

(2,±1) ∈ Hm(F3). We compute the set of points z ∈ Hm(Z3) in these residue disks

such that
∫ z

∞ ω = 0. This produces three points, each occurring as simple zeros of

the corresponding 3-adic power series: a Weierstrass point and the points (5,±2375).

The Weierstrass point is not rational, while the points (5,±2375) correspond to the

points (±1,±19) on H+
7,89.
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8.6 Proof of Theorem 8.21

We combine results from the previous section with Theorem 8.21 to prove Theo-

rems 8.12 and 8.13. The following lemma, which relates Fourier coefficients to special

integer points on algebraic curves, is a straightforward consequence of Theorem 8.9

(2) and (3).

Lemma 8.27. Assuming the notation in Theorem 8.9, if p ∤ N is prime, then we

have the following:

1. If af (p
2) = α, then (p, af (p)) is an integer point on

Y 2 = X2k−1 + α.

2. If af (p
4) = α, then (p, 2af (p)

2 − 3p2k−1) is an integer point on

Y 2 = 5X2(2k−1) + 4α.

3. For every positive integer m we have that F2m(p
2k−1, af (p)

2) = af (p
2m).

Proof of Theorem 8.12. It is well-known that τ(n) is odd if and only if n is an odd

square. To see this, we employ the Jacobi Triple Product identity to obtain the

congruence

∞∑
n=1

τ(n)qn : = q

∞∏
n=1

(1− qn)24 ≡ q

∞∏
n=1

(1− q8n)3 =
∞∑
k=0

(−1)k(2k + 1)q(2k+1)2 (mod 2).

We consider the possibility that ±1 appear in sequences of the form

{τ(p), τ(p2), τ(p3), . . . }. (8.6.1)



233

By Theorem 8.9 (2), if p is prime and p | τ(p), then pm | τ(pm) for every m ≥ 1, and

so |τ(pm)| ≠ 1. Moreover, |τ(p)| ≠ p, where p is an odd prime, because τ(p) is even.

Therefore, such sequences may be completely ignored for the remainder of the proof.

For primes p ∤ τ(p), Theorem 8.9 (3) gives a Lucas sequence with A = τ(p) and

B = p11. Lemma 8.6 shows that there are no defective terms with um+1(αp, βp) =

τ(pm) ̸= ±1 or ±ℓ, where ℓ is an odd prime. To see this, we note that A = τ(p)

is even. Lemma 8.6 (2) does not allow for A to be even with one exception, the

possibility that (A,B, ℓ, n) = (±m, p11, 3, 3), where (p,±m) ∈ B1,±
1,6 . However, these

curves are the same as C±
6,3, and Lemma 8.23 shows that there are no such points.

Therefore, we may assume that all of the values in (8.6.1) have a primitive prime

divisor, and never have absolute value 1.

We now turn to the primality of absolute values of τ(n). Thanks to Hecke mul-

tiplicativity (i.e. Theorem 8.9 (1)) and the discussion above, if ℓ is an odd prime

and |τ(n)| = ℓ, then n = pd, where p is an odd prime for which p ∤ τ(p). The fact

that τ(pd) = ud+1(αp, βp) leads to a further constraint on d (i.e. refining the fact

that d is even). By Proposition 8.1, which guarantees relative divisibility between

Lucas numbers, and Lemma 8.1.2, which guarantees the absence of defective terms

in (8.6.1), it follows that d+1 must be an odd prime, and τ(pd) is the very first term

that is divisble by ℓ.

To make use of this observation, for odd primes p and ℓ we define

mℓ(p) := min{n ≥ 1 : τ(pn) ≡ 0 (mod ℓ)}. (8.6.2)
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For |τ(pd)| = ℓ, we have mℓ(p) = d, where d+1 is also an odd prime. The Ramanujan

congruences [18, 96, 104]

τ(n) ≡



n2σ1(n) (mod 9),

nσ1(n) (mod 5),

nσ3(n) (mod 7),

σ11(n) (mod 691),

where σν(n) :=
∑

1≤d|n d
ν , make it simple to compute mℓ(p) for the primes ℓ ∈

{3, 5, 7, 691}.

Thanks to the mod 9 congruence, we find that

m3(p) =


1 if p ≡ 0, 2 (mod 3),

2 if p ≡ 1 (mod 3).

Therefore, d = 2 is the only possibility. If τ(p2) = ±3, then Lemma 8.27 (1) implies

that (p, τ(p)) is a point on C±
6,3, which were considered immediately above. Again,

Lemma 8.23 (1) implies that there are no such integer points.

Thanks to the mod 5 congruence, we find that

m5(p) =



1 if p ≡ 0, 4 (mod 5),

3 if p ≡ 2, 3 (mod 5),

4 if p ≡ 1 (mod 5).

Therefore, d = 4 is the only possibility. If τ(p4) = ±5, then Lemma 8.27 (2) implies
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that (p, 2τ(p)2 − 3p11) is an integer point on H±
11,5. Lemma 8.24 shows that no such

points exist on these hyperelliptic curves.

Thanks to the mod 7 congruence, we find that

m7(p) =


1 if p ≡ 0, 3, 5, 6 (mod 7),

6 if p ≡ 1, 2, 4 (mod 7).

Hence, d = 6 is the only possibility, and so we must rule out the possibility that

τ(p6) = ±7. If there are such primes p, then Lemma 8.27 (3) implies that F6(p
11, τ(p)2) =

±7. Lemma 8.22 (1) shows that there are no such solutions to F6(X, Y ) = ±7.

Thanks to the mod 691 congruence, we find that the only cases where m691(p) = d

where d + 1 is an odd prime are d = 2, 4, 22, and 690. For the cases where d = 2

and 4 respectively, Lemma 8.27 (1-2) implies that (p, τ(p)) would be an integral

point on C±
6,691, and that (p, 2τ(p)2 − 3p11) would be an integral point on H±

11,691.

Lemma 8.25 (2-3) and Lemma 8.26 show that no such points exist. By Lemma 8.27

(3), the remaining cases (i.e. d = 22 and 690) correspond to the Thue equations

F22(p
11, τ(p)2) = ±691 and F690(p

11, τ(p)2) = ±691. Lemma 8.22 (3) and (4) show

that there are no such integer solutions.

The arguments above show that τ(n) ̸∈ {±1,±3,±5,±7,±691}. The remaining

cases are special cases of Theorem 8.13 (6) and (9) and are proved below.

Proof of Theorem 8.13. By hypothesis, for primes p ∤ 2N we have that af (p) is even.

For such primes, Theorem 8.9 (2) implies that af (p
m) is odd if and only if m is even.

Suppose that p is a prime for which p | af (p), which includes those primes p | 2N by
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Theorem 8.9 (4). Theorem 8.9 (2) and (4) imply that pm | af (pm). Therefore, we do

not need to consider these coefficients in the remainder of the proof.

It suffices to consider the Lucas sequences corresponding to A = af (p) and

B = p2k−1, when p ∤ af (p). By applying Lemma 8.6 (2) (as above in the proof

of Theorem 8.12), we may assume that {1, af (p), af (p2), . . . } is a Lucas sequence

without any defective terms. To establish this, we must show that B1,±
1,k , which are

the same as C±
k,3, have no suitable integer points. Since we only consider weights for

which gcd(3 · 5 · 7 · 11 · 13, 2k− 1) ̸= 1, it suffices to show that C±
d,3 has no such points

for d ∈ {2, 3, 4, 6, 7}. Lemma 8.23 confirms this requirement for these ten curves.

The first claim of the theorem now follows from Proposition 8.20. To prove the

remaining claims we apply Theorem 8.21. Namely, if |af (n)| = ℓ, then n = pd−1, where

d | ℓ(ℓ2 − 1) is an odd prime. The existence of such coefficients can be ruled out with

Lemma 8.27, which reduces the proof to a case-by-case search for suitable integral

points on hyperelliptic curves and solutions to Thue equations which were considered

in the previous section. If af (p
2) = ±ℓ, then (p, af (p)) ∈ C±

k,ℓ. If af (p
4) = ±ℓ,

then (p, 2f (p)
2 − 3p2k−1) ∈ H±

2k−1,ℓ. Obviously, it suffices to study curves C±
d,ℓ (resp.

H±
2d−1,ℓ) with d | (2k− 1). Finally, if af (p

d−1) = ±ℓ with d ≥ 7, then (p2k−1, af (p)
2) is

a solution to Fd−1(X, Y ) = ±ℓ. By Lemmas 8.22, 8.23, 8.24, and 8.25 (i.e. inspecting

the tables in the Appendix), there are no such integral points (sometimes under GRH)

in the cases claimed by the theorem.
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8.7 Baker’s linear forms in logarithms

To prove Theorem 8.30, we make use of the following classical result of Baker and

Wüstholz [9] on linear forms in logarithms.

Theorem 8.28 (p. 20 of [9]). Let α1, . . . , αr be algebraic numbers and b1, . . . , br be

rational integers. If Λ := b1 logα1 + · · · + br logαr (note. where the logarithms have

their principal values such that −π < Im(logα) ≤ π) is nonzero, then we have

log |Λ| > −C(r, d) log(max {e, B})
r∏

i=1

h′(αi),

where d := [Q(α1, . . . , αr) : Q], B := max {|b1|, . . . , |br|},

C(r, d) := 18(r + 1)! rr+1(32d)r+2 log(2rd),

and h′(α) := max {h(α)/d, | logα|/d, 1/d}, where h(α) is the logarithmic Weil height

of α.

This deep theorem can be applied to the Diophantine equations in (8.8.3) and

(8.8.4). We shall now assume that n is fixed for the remainder of this discussion.

Namely, we view potential integer points as factorizations, in the ring of integers of

the quadratic fields K = Q(
√
−εℓm), given by

(X +
√
−εℓm)(X −

√
−εℓm) = Y n and (X + 2

√
−εℓm)(X − 2

√
−εℓm) = Y n.

Namely, if [K : Q] = 2 and hK = 1, then we have β ∈ OK such that NK/Q(β) = Y

and

(X +
√
−εℓm) = βn (mod O×

K) and (X + 2
√
−εℓm) = βn (mod O×

K).
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If K does not have class number one, then we may pick β ∈ OK such that NK/Q(β) =

Y hK and consider βn/hK instead. This only applies when ε = 1, ℓ = 5 and m is odd,

in which case hQ(
√
−5) = 2. In these cases we let β denote the Galois conjugate of β.

Finally, if K = Q, then we may pick β, β ∈ Z (abusing notation) such that ββ = Y

and |β| ≤
√

|Y |. In each case, the algebraic integer β is uniquely determined up to

unit.

Given such a β, we construct a corresponding linear form in logarithms arising

from β/β. For convenience, we denote the relevant fundamental units by w3 := 2+
√
3

and w5 := 1/2+
√
5/2, and we denote the 6th root of unity by w−3 := 1/2+

√
−3/2.

By taking logarithms, we obtain a triple of integers 0 ≤ j4 ≤ 3, 0 ≤ j6 ≤ 5, and

0 ≤ jn < n− 1, for which one of the corresponding forms (depending on ε, ℓ and the
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parity of m), say ΛT ε(ℓ,m) and ΛUε(m), is given by

ΛT ε(ℓ,m) :=



j6 log(w−3/w−3)− n log(β/β) + kiπ if ε = +,m odd, and ℓ = 3,

j4 log(i/i)− n log(β/β) + kiπ if ε = +,m even, and ℓ = 3,

−(n/2) log(β/β) + kiπ if ε = +,m odd, and ℓ = 5,

j4 log(i/i)− n log(β/β) + kiπ if ε = +,m even, and ℓ = 5,

jn log(w3/w3)− n log(β/β) if ε = −,m odd, and ℓ = 3,

−n log(β/β) if ε = −,m even, and ℓ = 3,

jn log(w5/w5)− n log(β/β) if ε = −,m odd, and ℓ = 5,

−n log(β/β) if ε = −,m even, and ℓ = 5,

(8.7.1)

and

ΛUε(m) :=



−(n/2) log(β/β) + kiπ if ε = + and m odd,

j4 log(i/i)− n log(β/β) + kiπ if ε = + and m even,

jn log(w5/w5)− n log(β/β) if ε = − and m odd,

−n log(β/β) if ε = − and m even,

(8.7.2)

where k ∈ Z with |ΛT+(ℓ,m)|, |ΛU+(m)| < π. The next lemma bounds these quantities.

Lemma 8.29. Assuming the notation and hypotheses above, the following are true.

(1) If n > 2 log(4
√
ℓm)/ log |Y | and (X, Y ) is an integer point on (8.8.3), with Y ̸∈
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{0,±1}, then

|ΛT ε(ℓ,m)| ≤ 2.78 ·
√
ℓm

|Y |n2
.

(2) If n > 2 log(8
√
5m)/ log |Y |, and (X, Y ) is an integer point on (8.8.4), with Y ̸= 0,

then

|ΛUε(m)| ≤ 5.56 ·
√
5m

|Y |n2
.

Proof. By the definition of ΛT ε(ℓ,m), we directly find that

|eΛTε(ℓ,m) − 1| =
∣∣∣∣X +

√
±ℓm

X −
√
±ℓm

− 1

∣∣∣∣ ≤ 2
√
ℓm

|Y |n2
. (8.7.3)

For |z| < 1/2, we note that | log(1+ z)| ≤ 1.39 · |z|. Also, we note that the hypothesis

on n gives |eΛTε(ℓ,m) − 1| < 1/2. Hence, we obtain (1), the claimed inequality

|ΛT ε(ℓ,m)| ≤ 1.39 · |eΛTε(ℓ,m) − 1| = 2.78 ·
√
ℓm

|Y |n2
.

The same method gives (2), after noting that Y = ±1 has no integer point on (8.8.4).

8.8 More Diophantine equations

Here we prove some Diophantine results concerning families of Lebesgue–Ramanujan–

Nagell type equations which are of independent interest. To make them precise, for
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ℓ ∈ {3, 5}, ε ∈ {±}, and m ∈ Z+, we define

T ε(ℓ,m) :=



2m+ 1032
√
m if ε = + and ℓ = 3,

2m+ 1023
√
m if ε = −,m odd, and ℓ = 3,

2m+ 1013
√
m if ε = −,m even, and ℓ = 3,

3m+ 1024
√
m if ε = ±,m odd, and ℓ = 5,

3m+ 1030
√
m if ε = +,m even, and ℓ = 5,

3m+ 1013
√
m if ε = −,m even, and ℓ = 5.

(8.8.1)

Furthermore, we define U ε(m) by

U ε(m) :=



3m+ 1024
√
m if ε = ± and m odd,

3m+ 1030
√
m if ε = + and m even,

3m+ 1013
√
m if ε = − and m even.

(8.8.2)

Theorem 8.30. If ℓ ∈ {3, 5}, ε ∈ {±}, and m ∈ Z+, then the following are true.

(1) If n > T ε(ℓ,m) = Oℓ(m), then there are no integer points9 (X, Y ), with Y ̸∈

{0,±1}, on

X2 + εℓm = Y n. (8.8.3)

9We switch X and Y here to be consistent with the literature on Lebesgue–Ramanujan–Nagell

equations.
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(2) If n > U ε(m) = Oℓ(m), then there are no integer points (X, Y ), with Y ̸= 0, on

X2 + ε4 · 5m = Y n. (8.8.4)

8.9 Proof of Theorem 8.16

For brevity, we only consider when ℓ = 3 and ε = −, as the same method applies

to all of the cases. Suppose that there is an integer point (X, Y ) on X2 + 3m = Y n.

Therefore, there is an integer 0 ≤ j6 ≤ 5 and an algebraic integer β ∈ Q(
√
−3) for

which NK/Q(β) = Y and

(X +
√
−3m) =

βn

wj6
−3

.

In particular, if m is odd, then we have

ΛT ε(ℓ,m) = j6 log(w−3/w−3)− n log(β/β) + kiπ = j6 log(w−3/w−3)− n log(β/β) + k log(−1).

Since ΛT ε(ℓ,m) ̸= 0, Theorem 8.28 implies that

log |ΛT ε(ℓ,m)| > −C(3, 2)h′(w−3/w−3)h
′(β/β)h′(−1) log(max {e, j6, n, |k|} .

Furthermore, by a short calculation, we get

h′(w−3/w−3) ≤
π

3
,

h′(β/β) ≤ max {log |Y |, π}

h′(−1) ≤ π

2
, max {e, j6, n, |k|}) ≤ n+ 5.
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Therefore, Theorem 8.28 implies that

log |ΛT ε(ℓ,m)| > −π
2

6
C(3, 2)max {log |Y |, π} log(n+ 5).

However, Lemma 8.29 (1) gives

log(2.78 ·
√
3m)− n

2
· log |Y | > log |ΛT ε(ℓ,m)| > −π

3

6
C(3, 2) log(n+ 5) · log |Y |,

which in turn implies that

log(2.78 ·
√
3m)− n

2
log 2 > −π

3

6
C(3, 2)

√
n+ 4.

Since we have C(3, 2) = 18(4)! 34(64)5 log(12), a direct calculation shows that we

must have

n ≤ 1.6m+ (60
√
m+ 5.9) · 1030,

which gives a constant that is smaller than the claimedM−(3,m). Taking into account

even m, a similar calculation gives n < 1.6m + (9.4
√
m + 1.4) · 1031. The claimed

M−(3,m) is a “rounded up” version of the maximum of these two constants.

Proof of Theorem 8.16. Suppose that ℓm is a power of an odd prime. Thanks to

Theorem 8.21, if af (n) = ±ℓm, then n = pd−1, where p and d | ℓ(ℓ2 − 1) are odd

primes. For each d, Lemma 8.27 gives an integer point on an elliptic or hyperelliptic

curve, or gives an integer solution to a Thue equation.

If ℓ = 3 (resp. ℓ = 5), then we find that the only possibility is d = 3 (resp.

d = 3, 5). This leads to the equations in Theorem 8.30, which in turn gives the
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claimed bounds in these cases. Turning to ℓ ≥ 7, we note for d = 3 (resp. 5) that

one can argue again as in the proof of Theorem 8.30 to conclude that af (p
2) ̸= ±ℓm

(resp. af (p
4) ̸= ±ℓm) for f with (effectively) sufficiently large weight 2k. For any

d ≥ 7, Lemma 8.27 (3) gives the integer solution (X, Y ) = (p2k−1, af (p
2)) to the Thue

equation

Fd−1(X, Y ) = ±ℓm.

As an implementation of Baker’s theory of linear forms in logarithms, a well-known

paper of Tzanakis and de Weger (see p. 103 of [109]) on Thue equations gives a

method for effectively determining an upper bound10 for |X| of any integer point

satisfying Fd−1(X, Y ) = ±ℓm, which in turn leads to an upper bound for the weight

2k. The linearity of these constants in m aspect follows from the formal taking of a

logarithm in these Diophantine equations.

8.10 Appendix: Tables

The families of defective Lucas numbers satisfying (8.1.2) are given by the following

curves.

Br,±
1,k : Y 2 = X2k−1 ± 3r, B2,k : Y

2 = 2X2k−1 − 1, B±
3,k : Y

2 = 2X2k−1 ± 2,

Br
4,k : Y

2 = 3X2k−1 + (−2)r+2, B±
5,k : Y

2 = 3X2k−1 ± 3, Br,±
6,k : Y 2 = 3X2k−1 ± 3 · 2r.

(8.10.1)

10The reader should switch the roles of X and Y when applying the discussion in [109].
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(A,B) Defective un(α, β)

(±1, 21)
u5 = −1, u7 = 7, u8 = ∓3, u12 = ±45,

u13 = −1, u18 = ±85, u30 = ∓24475

(±1, 31) u5 = 1, u12 = ±160

(±1, 51) u7 = 1, u12 = ∓3024

(±2, 31) u3 = 1, u10 = ∓22

(±2, 71) u8 = ∓40

(±2, 111) u5 = 5

(±4, 51) u6 = ±44

(±5, 71) u10 = ∓3725

(±3, 23) u3 = 1

(±5, 23) u6 = ±85

Table 8.1: Sporadic examples of defective un(α, β) satisfying (8.1.2)
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(A,B) Defective un(α, β) Constraints on parameters

(±m, p) u3 = −1 m > 1 and p = m2 + 1

(±m, p2k−1) u3 = ε3r
(p,±m) ∈ Br,ε

1,k with 3 ∤ m,

(ε, r,m) ̸= (1, 1, 2), and m2 ≥ 4ε3r−1

(±m, p2k−1) u4 = ∓m (p,±m) ∈ B2,k with m > 1 odd

(±m, p2k−1) u4 = ±2εm
(p,±m) ∈ Bε

3,k with (ε,m) ̸= (1, 2)

and m > 2 even

(±m, p2k−1) u6 = ±(−2)rm(2m2 + (−2)r)/3
(p,±m) ∈ Br

4,k with gcd(m, 6) = 1,

(r,m) ̸= (1, 1), and m2 ≥ (−2)r+2

(±m, p2k−1) u6 = ±εm(2m2 + 3ε) (p,±m) ∈ Bε
5,k with 3 | m and m > 3

(±m, p2k−1) u6 = ±2r+1εm(m2 + 3ε · 2r−1)
(p,±m) ∈ Br,ε

6,k with m ≡ 3 mod 6

and m2 ≥ 3ε · 2r+2

Table 8.2: Parameterized families of defective un(α, β) satisfying (8.1.2)

Notation: m, k, r ∈ Z+, ε = ±1, p is a prime number.
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(af (p), p
2k−1) σ̂(p,m)

(±3, 23)
σ0(m+ 1)− 2 when 3|(m+ 1),

σ0(m+ 1)− 1 otherwise.

(±5, 23)
σ0(m+ 1)− 2 if 6|(m+ 1),

σ0(m+ 1)− 1 otherwise.

(±m, p2k−1)
σ0(m+ 1)− 4 if (p,±m) ∈ S,

σ0(m+ 1)− 1 otherwise.

Table 8.3: Lower bounds on Ω(af (p
m)) in defective cases for weights 2k ≥ 4.

Notation: S is the collection of all points on any of Br,±
1,k , B2,k, B

r
3,k, B4,k, B

r
5,k.
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(d,D) Integer Solutions to Fd−1(X, Y ) = D

(7,±7) (±1,±4), (±2,±1), (∓3,∓5)

(7,±13)
(±3,±10), (±2,±7), (±3,±4), (±4,±1),

(±3,±1), (∓1,±1), (∓2,∓5), (∓5,∓8), (∓7,∓11)

(7,±29)
(∓6,∓1), (∓5,∓ 16), (∓4,∓7), (±1,±5),

(±3,±2), (±11,±17)

(11,±11), (19,±19),
(±1,±4)

(23,±23), (31,±31)

(11,±23) (±3,±2), (±2,±1), (∓2,∓3)

(13, 13), (17, 17), (29, 29), (37, 37) (−1,−4), (1, 4)

(13,−13), (17,−17),
∅

(29,−29), (37,−37)

(19,±37) (∓2,∓5)

Table 8.4: Solutions for the Thue equations where D = ±ℓ and 7 ≤ ℓ ≤ 37
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(d,D) Integer Solutions to Fd−1(X, Y ) = D

(7,±41) (∓3,∓7), (∓1,±2), (±4,±5)

(41, 41), (53, 53), (61, 61),

(73, 73), (89, 89), (97, 97)

(−1,−4), (1, 4)

(41,−41), (23,±47), (13, 53), (53,−53), (29,±59),

∅(31,±61), (61,−61), (17,−67), (37,±73), (73,−73),

(13,−79), (41,±83), (89,−89), (97,−97)

(7,±43) (∓3,∓8), (∓2,±1), (±5,±7)

(11,±43) (∓3,∓5), (±2,±5)

(43,±43), (47,±47), (59,±59), (67,±67),
(±1,±4)

(71,±71), (79,±79), (83,±83)

(13,−53), (17, 67) (−2,−3), (2, 3)

(11,±67) (∓7,∓12), (∓3,∓11), (∓2,∓7)

(7,±71)
(∓16,∓25), (∓5,∓9), (±1,±6),

(±4,±3), (±7,±23), (±9,±2)

(13, 79) (−2,−5), (2, 5)

(7,±83)
(∓8,∓13), (∓7,∓1), (∓6,∓19),

(±3,±11), (±5,±2), (±13,±20)

(11,±89) (∓1,±1)

(7,±97) (∓4,∓11), (∓3,±1), (±7,±10)

Table 8.5: Solutions (with GRH) to the Thue equations where D = ±ℓ and 41 ≤ ℓ ≤

97
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ℓ C+
2,ℓ C+

3,ℓ C+
4,ℓ C+

6,ℓ C+
7,ℓ

3 (1,±2) (1,±2) (1,±2) (1,±2) (1,±2)

5 (−1,±2) (−1,±2) (−1,±2) (−1,±2) (−1.± 2)

7,23, 29, 47, 53,

59, 61, 67, 83

∅ ∅ ∅ ∅ ∅

11 ∅ (5,±56) ∅ ∅ ∅
13 ∅ (3,±16) ∅ ∅ ∅

17

(−2,±3), (−1,±4), (2,±5),

(4,±9), (8,±23)(43,±282),

(52,±375), (5234,±378661)

(−1,±4) (−1,±4) (−1,±4) (−1,±4)

19 (5,±12) ∅ ∅ ∅ ∅
31 (−3,±2) ∅ ∅ ∅ ∅

37
(−1,±6), (3,±8),

(243,±3788)

(−1,±6), (27,±3788) (−1,±6) (−1,±6) (−1,±6)

41 (2,±7) (−2,±3) (2,±13) ∅ ∅
43 (−3,±4) ∅ ∅ ∅ ∅
71 (5,±14) ∅ ∅ ∅ ∅

73

(−4,±3), (2,±9),

(3,±10), (6,±17),

(72,±611), (356,±6717)

∅ ∅ ∅ ∅

79 (45,±302) ∅ ∅ ∅ ∅

89
(−4,±5), (−2,±9),

(10,±33), (55,±408)

(2,±11) ∅ ∅ ∅

97 ∅ ∅ (2,±15) ∅ ∅

Table 8.6: Integer points on C+
d,ℓ
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ℓ C−
2,ℓ C−

3,ℓ C−
4,ℓ C−

6,ℓ C−
7,ℓ

3, 5, 17, 29, 37,

41, 43, 59, 73, 97

∅ ∅ ∅ ∅ ∅

7 (2,±1), (32,±181) (2,±5), (8,±181) (2,±11) ∅ ∅

11 (3,±4), (15,±58) ∅ ∅ ∅ ∅

13 (17,±70) ∅ ∅ ∅ ∅

19 (7,±18) (55,±22434) ∅ ∅ ∅

23 (3,±2) (2,±3) ∅ (2,±45) ∅

31 ∅ (2,±1) ∅ ∅ ∅

47 (6,±13), (12,±41), (63,±500) (3,±14) (2,±9) ∅ ∅

53 (9,±26), (29,±156) ∅ ∅ ∅ ∅

61 (5,±8) ∅ ∅ ∅ ∅

67 (23,±110) ∅ ∅ ∅ ∅

71 (8,±21) ∅ (3,±46) ∅ ∅

79 (20,±89) ∅ (2,±7) ∅ ∅

83 (27,±140) ∅ ∅ ∅ ∅

89 (5,±6) ∅ ∅ ∅ ∅

Table 8.7: Integer points on C−
d,ℓ
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ℓ H−
3,ℓ H+

3,ℓ H−
5,ℓ H+

5,ℓ H−
7,ℓ H+

7,ℓ H−
11,ℓ H−

13,ℓ

11 ∅ (1, 7), (7, 767) ∅ (1, 7) ∅ (1, 7) ∅∗ ∅

19 ∅ (1, 9), (3, 61) ∅ (1, 9) ∅ (1, 9) ∅ ∅∗

29 ∅ (1, 11) ∅ (1, 11) ∅ (1, 11) ∅∗ ∅∗

31 (2, 14) ∅ ∅ ∅ (2, 286) ∅ ∅∗ ∅∗

41 (3, 59) (1, 13), (2, 22) ∅ (1, 13) ∅ (1, 13)∗ ∅∗ ∅∗

59 ∅ ∅ ∅ ∅∗ ∅ ∅∗ ∅∗ ∅∗

61 ∅ ∅ ∅ ∅ ∅ ∅∗ ∅∗ ∅∗

71 (2, 6), (5, 279) (1, 17) ∅ (1, 17) ∅ ? ∅∗ ∅∗

79 (2, 2), (4, 142) ∅ ∅ ∅ ∅ ∅∗ ∅∗ ∅∗

89 ∅ (1, 19), (2, 26) ∅ (1, 19)∗, (2, 74)∗ ∅ (1, 19)∗ ∅∗ ?

Table 8.8: (|X|, |Y |) for integer points on H±
d,ℓ with

(
ℓ
5

)
= 1. (note. GRH assumption

indicated by ∗.)



Bibliography

[1] Abouzaid M. Les nombres de Lucas et Lehmer sans diviseur primitif. J. Th.
Nomb. Bordeaux 18, 299-313 (2006).

[2] Amir M., Hatziiliou A. A short note on inadmissible coefficients of weight 2 and
2k + 1 newforms. https://arxiv.org/abs/2102.03912.

[3] Amir M., Hong L. On L-functions of modular elliptic curves and certain K3
surfaces. Ramanujan J. 57, 1001–1019 (2022).

[4] Andrews G. E., Euler’s pentagonal number theorem. Math. Magazine 56, 279–284
(1983).

[5] Andrews, G. E. The Theory of Partitions. Encyl. of Math. and Its Appl. 2, Ad-
dison Wesley, Reading, 176 (Reissued: Cambridge University Press, Cambridge,
1985 and 1998).

[6] Andrews, G. E., Garvan, F. Dyson’s crank of a partition. Bull. Am. Math. Soc.
18, 167–171 (1988).

[7] Apostol, T. Modular functions and Dirichlet series in number theory. Graduate
Texts in Mathematics, Volume 41. Springer-Verlag, New York, second edition.
1990.

[8] Atkin A. O. L, Lehner J. Hecke operators on Γ0(m). Math. Ann. 185, 134-160
(1970).
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