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Abstract

State-of-charge (SOC) balancing has been the target of numerous battery man-

agement system (BMS) algorithms that have been put forth. The creation and as-

sessment of an experimental platform for BMS algorithm testing are described in

this thesis. Our designed platform facilitates simple parameter or physical amount

expression adjustments, which makes evaluating the performances of different BMS

algorithms more straightforward. The DSP processor (TMS320F28335), a specially

made buck converter, different battery packs, and load resistors make up the plat-

form’s hardware. An SOC vs open-circuit voltage graph is generated for the purpose

of estimating SOC by modeling circuit processes and examining battery output under

load. The platform evaluation selects A BMS algorithm is adopted for the evaluation

of the platform, confirming the efficacy of the algorithm in achieving SOC balancing

across battery units.
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Chapter 1

Introduction

1.1 Literature Review

Converting electrical energy from the grid into a form that can be stored and then

converted back into electrical energy as needed is known as Electrical Energy Storage

(EES) [1, 2]. When using intermittent energy sources or in times of low demand

and low generation costs, this capacity allows the creation of power, which may then

be used in times of high demand, high generation costs, or in the absence of other

generating choices [3].

The attributes of energy storage, particularly its energy transfer efficiency and

rapid ramp-up capabilities, have spurred interest in battery technologies to support

the integration of renewable energy sources (RESs). The drive towards energy storage

technologies has been fueled by the necessity to accommodate higher penetrations of

RES, aiming to diminish the costs associated with meeting peak demand. Energy

storage facilitates the shifting of energy from times of peak to off-peak demand, or

the absorption of surplus renewable energy for later use, thereby enhancing grid sta-

bility. Furthermore, energy storage is positioned as a workable countermeasure to the

1
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unpredictability and inconsistency of RESs because to its quick ramp-up capability.

Utilizing energy storage can mitigate the operational strain on thermal power units,

which typically are not designed for frequent load variations [4].

RESs are now essential to maintaining the viability of contemporary power sup-

ply systems in the face of growing worries about climate change, the burning of

fossil fuels, and the need for a more sustainable grid architecture [5]. The surge in

RESs integration has complicated the management of power system generation and

demand equilibrium. Recent studies have explored the challenges associated with

energy storage scheduling and its diverse applications in systems enriched with re-

newable resources. The studies in [6, 7] have assessed the role of wind energy in

energy storage systems, employing a unit commitment model that accommodates the

uncertainty of wind power generation. Moreover, the effect of erratic wind predic-

tions on the energy storage system (pumped storage) valuation has been studied. A

novel, system-wide methodology has been proposed to evaluate the contribution of

grid-scale electric storage, optimizing investments across new generation capacities,

network expansion, and storage capabilities, all while minimizing operational costs

and adhering to reserve and security standards [8].

Batteries are one of the many storage technologies that provide a particularly

promising way to manage the intermittent nature of RESs [9]. Batteries have no

no-load costs and are often not constrained by minimum power input/output levels

during the charging and discharging operations, in contrast to thermal power units.

Batteries are positioned favorably within the range of energy storage options due to

this benefit and their higher power density when compared to other energy storage

technologies like compressed air energy storage and pumped hydro storage. Nonethe-

less, the principal obstacle to widespread adoption of battery technology remains its

high initial investment cost. However, concerted efforts are currently underway to
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mitigate these capital expenditures and enhance the cost-efficiency of various battery

technologies [10].

Battery energy storage systems (BESSs) are crucial for enhancing the integration

of renewable energy sources, such as solar and wind power, into smart grids. By

storing excess energy generated at peak production times and releasing it during

periods of high demand or low production, BESSs help to balance supply and demand,

improving the stability and dependability of the power grid [11,12].

Rechargeable batteries represent the most traditional method of electrical energy

storage, converting electrical energy into chemical energy [1]. One or more electro-

chemical cells, each with a positive (anode) and a negative (cathode) electrode, to-

gether with an electrolyte in liquid, paste, or solid form, make up a battery. Reversible

electrochemical reactions occur at both electrodes during the discharge process, which

facilitates the flow of electrons across an external circuit. Because of its reversibility,

the battery may be recharged by passing an external voltage across its electrodes.

Batteries improve system stability by responding quickly to changes in load and

by incorporating external or co-generated power. Notably, batteries exhibit minimal

standby losses and boast high energy efficiencies, ranging from 60% to 95%. At-

tributes such as short lead times, ease of installation, and technological modularity

support the deployment of rechargeable batteries [13].

Large-scale battery storage has historically been hampered by issues including

poor energy and power densities, high maintenance costs, short cycle lifetimes, and

constrained discharge capacities. Additionally, the environmental impact of battery

disposal is a critical consideration, given the toxic substances many batteries contain

[14].

At the transmission and distribution system levels, battery storage applications

have undergone extensive evaluation. Research has highlighted the benefits of batter-
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ies within renewable energy transmission systems through security-constrained unit

commitment (SCUC) modeling, examining the composition and scheduling of power

systems with varying degrees of wind energy integration and the inclusion of battery

energy storage (BES) as a viable energy storage solution [15, 16]. Using Lagrangian

relaxation-based optimization algorithms, these studies have tackled the short-term

battery scheduling in SCUC environments and investigated the intricate operational

dynamics of PV/battery systems. They have also determined the hourly charging and

discharging schedules of batteries linked to the utility grid. Moreover, investigations

into grid-connected PV/battery systems have shed light on their influence on spot

pricing, peak demand management, and transmission congestion [16].

At the distributed level, battery storage remains a pivotal area of research. A no-

table study delineated a three-step methodology for optimizing generation scheduling

within islanded microgrids, focusing on initial thermal unit combination solutions,

resolving thermal unit combination dilemmas, and optimizing renewable energy dis-

patch based on thermal unit commitment outcomes [17]. A novel strategy that makes

use of cost-benefit analysis has also been put out to maximize the size of energy stor-

age systems in microgrids while emphasizing the workings of lithium-based batteries

during cycles of charging and discharging [18].

Of these battery kinds, lithium-ion battery systems are the most sought-after

due to their high energy density, long lifespan, high voltage capacity, and low self-

discharge rate [19]. These qualities also make them perfect for grid storage, electric

cars, and portable electronics [20–22].

About thirty years ago, Sony was the first company to commercialize lithium-ion

batteries (LIBs), a breakthrough that completely changed the portable electronics

market and spurred a wave of interest in research [23]. The development of lithium-

ion rechargeable batteries has been identified as a critical growth sector due to the
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batteries’ versatility, which can power anything from small electronic devices to large

power storage systems and electric vehicles (EVs). Notably, these batteries are char-

acterized by their compact size, ability to undergo stable cycling for more than 500

cycles, and their adaptability to a wide range of sizes—from microns to large batter-

ies capable of energizing computer memory chips, communication devices, electronic

displays, and EVs [24].

When it comes to specific capacity (3861 mAh g-1), lithium metal stands out as

the best option for the negative electrode in rechargeable batteries due to its high

electronegativity and lowest density among metals [25]. Lithiated metal oxides, such

as LiCoO2, LiMnO2, and LiNiO2, are often used as cathodes in lithium-ion batteries

(LIBs), whereas graphitic carbon, with its layered structure, is the most common

anode material [26]. The introduction of LIBs transformed portable electrical design

and made it possible for a wide range of handheld gadgets that are essential to modern

living to proliferate.

Even though the initial composition of the cathode was basically unaltered, fur-

ther advancements in LIB performance after commercialization were mostly focused

on improving the energy densities, discharge/charge rates, and cycle lifetimes through

adjustments to the anode and electrolyte components. Three different types of ma-

terials were found in Dahn’s 1995 research on carbon anodes: hard carbon, graphite,

and carbon containing hydrogen [27]. The substantial overpotential during delithia-

tion has restricted the practical use of carbon materials containing hydrogen, despite

their high capacity. Although graphite offered high capacity, its recyclability was a

concern, leaving hard carbon as a viable alternative despite its disadvantages. By

the mid-1990s, the market had largely transitioned to graphite anodes, with hard

carbon’s share diminishing significantly by 2010 [28].

Towards the late 20th century, the industry began shifting from liquid electrolyte
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batteries encased in metal to lithium polymer batteries (LPBs) housed in plastic

casings [29]. Central to LPB technology is the electrolyte’s composition, ideally a

solid-state polymer film mixed with a lithium salt. However, the operational temper-

ature constraints of solid-state LPBs (60°C) led to the development of gel electrolytes

as a hybrid solution, balancing the properties of solid and liquid electrolytes and

offering cost and safety advantages due to reduced flammability risks [30].

Li-ion batteries have not only maintained their dominance in consumer electronics

but have also expanded into the electric vehicle and uninterruptible power supply

markets, incorporating advanced cathode technologies like spinel LiMn2O4 and olivine

LiFePO4 [31]. Research continues to explore next-generation Li-ion technologies,

such as lithium- and manganese-rich anodes [32], 5V anodes [33], and silicon anodes,

aiming for breakthroughs in cost and energy density. This ongoing research, traversing

diverse subdisciplines within materials science and electrochemistry, seeks to enhance

battery performance through both crystal structure optimization and morphological

innovations.

Battery Management Systems (BMS) play a critical role in managing and guaran-

teeing the security of battery packs in applications that use lithium-ion batteries [34].

BMS’s main responsibility is to enable the safe and dependable functioning of batter-

ies by performing tasks like cell balance, charge regulation, and condition monitoring

and assessment. Given the variability in battery performance due to operating and

environmental conditions, BMS must accurately reflect the battery’s status in terms

of safety, usage, performance, and lifetime. Lithium-ion batteries pose risks of fire

if overcharged, owing to their volatility and flammability, which is particularly con-

cerning in electric and hybrid vehicles where such incidents can result in catastrophic

outcomes [35]. Moreover, over-discharging can cause irreversible capacity loss due to

chemical reactions. To mitigate these risks, BMS monitors and manages battery op-
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eration through safety circuits, executing corrective actions upon detecting anomalies

like overvoltage or overheating.

A well-designed BMS encompasses features for data acquisition, safety, status

determination and prediction, charge/discharge control, battery balancing, thermal

management, and communication with battery components and users, thereby ex-

tending battery life. From a hardware perspective, BMS implementations can adopt

centralized, distributed, or modular architectures, each with similar functional objec-

tives [36]. Challenges in BMS development, especially for electric vehicles, stem from

complexities in assessing battery states, modeling, and balancing [37].

It is vital to comprehend battery states, such as State of Charge (SOC) and State

of Health (SOH), in order to guarantee operational safety and dependability as well as

to inform the charging and discharging procedures that are necessary for stable bat-

tery conditions. SOC, analogous to a fuel gauge, is challenging to estimate accurately

due to factors like aging, environmental changes, and cycling, whereas SOH indicates

the remaining battery life [38]. Battery modeling complicates further with the need

to account for diverse electrochemical mechanisms, necessitating various equivalent

circuit models to satisfy different material properties and accuracy requirements [39].

Battery degradation models aim to support SOH estimation but must consider dy-

namic external factors like ambient temperature and load currents [40].

Batteries in electric and hybrid cars are arranged in parallel and series configu-

rations to satisfy precise voltage and capacity specifications. Variability among cells

leads to uneven charging and discharging, risking overcharge or overdischarge in in-

dividual cells and potentially shortening the battery pack’s lifespan. Effective cell

balancing mechanisms are thus critical for maintaining uniform SOC levels across

cells, minimizing disparities and prolonging battery life [41].

Evaluating battery state poses significant challenges but is vital for BMS perfor-
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mance. Accurate SOC modeling is hindered by the nonlinear nature of lithium-ion

batteries, influenced by varying scales and aging processes, and is further complicated

by the internal and external environmental fluctuations [42]. Discrepancies in bat-

tery manufacturing affect pack performance, underscoring the need for reliable SOC

monitoring techniques [43].

Coulomb counting, which integrates the current over time, and lookup tables,

which connect certain parameters with SOC, are two techniques for estimating SOC.

Both approaches have drawbacks, such as the requirement for routine calibration and

the reliance on the correctness of the reference data [44]. The simplest technique

for estimating SOC is coulometric counting, which measures a battery’s energy in

coulombs. By integrating the current entering and leaving the battery over time, this

approach determines the capacity of a battery. At full charge, the SOC is determined

by referring to a calibration point; however, because of battery age and coulombic

efficiency, this reference point, or the starting point, may vary. Consequently, while

running in real-world settings, the reference point needs to be adjusted, and the SOC

estimate needs to be updated at various observed voltages [44]. Look-up tables are

particularly helpful and simple to use; they map the relationship between the SOC

characteristic parameters and the LIB, enabling for SOC estimate. The primary

drawback of look-up tables is that they require the LIB to be kept standing for an

extended amount of time in order to guarantee the accuracy of the measurements and

the dependability of the internal electrochemistry. The precision of the tables em-

ployed also has a significant impact on the efficiency of SOC computations [45]. These

methods show how continuous attempts are being made to improve SOC estimate,

which is essential for efficient BMS operation and battery maintenance plans.

Several works have shown encouraging simulation results and empirically con-

firmed that SOC balancing control techniques are feasible. Creating a broad experi-
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mental platform for battery systems is our goal in this project. The purpose of this

platform is to enable the testing and validation of sophisticated SOC balance control

algorithms, as those in [46,47], that have been recently proposed for BESSs.

A prototype system was constructed to validate the proposed energy sharing con-

troller for balancing the state-of-charge (SOC) in distributed battery energy storage

systems. The prototype comprised two 18650 lithium-ion battery cells, two bidirec-

tional dc-dc buck/boost power converters, and a programmable electronic load, all

controlled by a TMS320F28335 microcontroller from Texas Instruments. This setup

was used to simulate a small-scale version of the proposed system [48]. The SOC

of the batteries was estimated using a coulomb-counting method, integrating current

flow in and out of the batteries without the need for detailed battery modeling. The

SOC values were updated by the controller every second, optimizing the balance be-

tween accuracy and speed of SOC balancing. The power converters were controlled

by the microcontroller’s PWM module, which adjusted the duty cycles based on SOC

measurements. This thesis emphasizes the practical application of the proposed en-

ergy sharing controller, highlighting its feasibility and effectiveness in managing SOC

balancing and dc bus voltage regulation in a real-world scenario.

A great example of combining the power of microcontrollers and digital signal

processors (DSPs) into one chip is Texas Instruments’ TMS320F28335 DSP, which

provides strong performance for a range of high-demand applications [49]. Thanks

to its floating-point capabilities and effective operation in intricate control algo-

rithms, this integration makes it the perfect solution for applications demanding

high performance, such as intelligent instrumentation, motor servo control, power

electronics, and industrial automation. The 32-bit floating-point DSP core of the

TMS320F28335 operates at a primary frequency of 150MHz, making it particularly

effective at handling computationally demanding tasks. This processor is capable of
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32*32-bit multiply-accumulate operations in a single cycle, an accomplishment that

would require more than four cycles for a typical 32-bit microcontroller.

From a hardware standpoint, the F28335 has a large number of on-chip peripher-

als. These consist of a 12-bit AD converter with 16 analog input channels, 6 improved

capture (CAP) units, 2 quadrature encoder pulse (QEP) units, 18 PWM channels, 6

of which are high-resolution PWM (HRPWM) channels, and an extensive set of com-

munication interfaces (SCI, CAN, SPI, I2C). By enabling the creation of complicated

control systems without the need for extra external components, this wide range of

peripherals helps to reduce system complexity and costs [50]. TMS320F28335 DSP

embodies a powerful blend of DSP and microcontroller features, offering a versatile

platform for developing advanced digital control systems.

Converters are also a key component of the BMS test platform’s structure. Con-

verters plays a pivotal role in managing the interaction between energy storage units

and the DC microgrid. Converters in the ESS architecture play a crucial role in en-

abling bidirectional power flow, allowing for both charging and discharging of the stor-

age units. This bidirectionality is essential for smoothing out the intermittent output

from renewable sources, facilitating intentional islanding during faults, and executing

optimization routines for improved microgrid performance. The thesis describes the

static V-I (Voltage-Current) characteristics of the ESU converters, illustrating their

behavior under various load conditions and the impact of SOC balancing on their

performance. The converters are designed to operate within specific current limits

to prevent overcharging or excessive discharge, with these limits being dynamically

adjusted based on SOC levels and system requirements [51].

The thesis elaborates on the implementation of a distributed cooperative control

framework that includes primary and secondary control levels among DC-ESs within

a DC microgrid. The thesis discusses the control mechanisms that involve converters
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in the broader context of maintaining voltage regulation and power quality within DC

microgrids. It emphasizes the importance of converters in facilitating the operation

of DC-ESs, which are crucial for mitigating power imbalance and enhancing voltage

quality. The primary control utilizes a droop mechanism for the coordination of mul-

tiple DC-ESs’ operations, whereas the secondary control employs a consensus algo-

rithm for adjusting the DC-bus voltage reference based on the state-of-charge (SOC)

balance among DC-ESs. This hierarchical control scheme is essential for achieving

efficient power distribution and stabilization within the microgrid, underlining the

critical role of converters in this process [52].
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1.2 Thesis Structure

Fig. 1.1 depicts a schematic diagram of our experimental platform, wherein each

battery system consists of a battery unit and a power converter. Every battery

unit generates power via a programmable buck converter, and the output voltage,

current, or power of the battery is controlled by a DSP processor. Circuit operations

are represented within the platform by using an external load resistor in conjunction

with the electrical equivalent circuit model from [53]. The SOC of each battery unit

can be estimated using this representation, which is described as a relationship with

the open-circuit voltage [54]. The open-circuit voltage (OCV) is estimated in real-

time during the experiment, acknowledging that each cell exhibits a distinct OCV

and SOC relationship.

Battery

Unit 1
Converter 1

Battery System 1

LoadBattery

Unit 2
Converter 2

Battery System 2

DSP

Battery

Unit n
Converter n

Battery System n

Figure 1.1: Schematic diagram of the experimental platform.

In the subsequent phases of our investigation, we delve into a comprehensive
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evaluation and development narrative of an experimental platform designed for the

meticulous study of State-of-Charge (SOC) balancing within lithium-ion battery sys-

tems. This exploration commences with a focused performance assessment of a sin-

gular battery system to gauge the efficacy of the platform under scrutiny. Central

to this examination are the proportional-integral (PI) controllers, which are adeptly

employed to forge cascaded voltage and current control loops. These loops play a piv-

otal role in the localized converter control intrinsic to the battery system, enabling

the swift modulation of both the battery’s output voltage and power to align with

predefined voltage set-points, as illuminated by the empirical data.

Venturing beyond the solitary battery system, the scope of evaluation broadens

to encompass multiple battery systems. This segment of the investigation leverages

the SOC balancing control algorithm as delineated in the referenced literature. The

experimental apparatus for this phase consists of a platform amalgamating four dis-

tinct battery unit types, through which the platform’s proficiency in SOC balancing

is put to the test. The experimental outcomes affirm the platform’s capability in this

regard, substantiating its utility and effectiveness.

The forthcoming chapters of this thesis are structured to unfold the layers of de-

velopment and evaluation that underpin the experimental platform. Chapter 3 is

dedicated to elucidating the intricacies of the platform’s development. It comprehen-

sively covers the architectural blueprint of the platform, the nuances of converter con-

trol mechanisms, the methodologies employed in data collection, and the algorithms

underpinning SOC estimation. This chapter aims to provide a holistic overview of

the technical and conceptual framework that facilitates the platform’s operation.

Subsequently, Chapter 4 presents a detailed account of the experimental tests con-

ducted to scrutinize the platform’s operational viability. This chapter is particularly

illuminating as it showcases experimental findings pertaining to the control of SOC
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balance across multiple battery systems and the regulation of voltage within single

battery systems. Through this exposition, the thesis aims to validate the platform’s

designed functionalities and highlight its potential applications.

Concluding the discourse, Chapter 5 encapsulates the essence of the thesis. It

reflects on the journey of development and evaluation that the experimental platform

has undergone, summarizing key insights and outcomes. This chapter not only reaf-

firms the contributions of the platform to the realm of battery management systems

but also hints at future avenues for research and enhancement, thereby setting the

stage for subsequent explorations in this domain.



Chapter 2

Preliminaries

2.1 Buck Converter Design

In order to construct a robust battery control system, it is imperative to regulate

the output voltage of the battery. To achieve this objective, a buck converter is

used. The components are listed in Table 1. The buck converter, a form of non-

isolated DC-to-DC switching converter, efficiently reduces higher DC voltages from

the supply to lower DC voltages at the load, with efficiencies nearing 90%. This

efficiency is significantly superior to that of other DC step-down methods, such as

linear regulators. The foundational topology of the buck converter utilized is depicted

in Fig. 2.1.

The buck converter incorporates two switches—typically a diode (D1) and a tran-

sistor (Q1), an inductor (L1), and a capacitor (C1). The transistor Q1’s gate receives

a control signal, usually a PWM signal generated by a microcontroller or a dedicated

DC switching controller. Activation of Q1 permits current flow from the source,

through L1, and into the load, charging the output capacitor C1 in the process.

When Q1 is deactivated, the inductor’s current continuity forces a voltage adjust-

15
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Table 2.1: Component Specifications

Name Product Number Important Parameters

D1, D2 GSGC1545SA Rectifier, Schottky, 15A, 45V, E

Q1 IRLZ44SPBF N-Channel 60 V 50A (Tc) 3.7W (Ta), 150W (Tc)

L1 SBC6-4R7-802 4.7 µH Unshielded Drum Core

C1 TPSD477M006R0100 470 µF Molded Tantalum Capacitors

C2 RL80J102MDN1KX 1000 µF 6.3 V Aluminum

C3 FK16X7R1C106KR020 10 µF ±10% 16V Ceramic Capacitor X7R Radial

R1 WSL2010R1000FEA18 100 mOhms ±1% 1W Chip Resistor

Figure 2.1: Topology of the buck converter.

ment across L1, enabling diode D1 to maintain current flow through the load while

C1 discharges. The duty cycle of the PWM signal thus modulates the output voltage,

which inherently exhibits some ripple due to the switching nature of the topology.

Factors such as the switching frequency, inductor and capacitor values, and circuit

parasitics influence the ripple magnitude.
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2.2 PI Control

Fig. 1.1 illustrates a system diagram with multiple battery cells in operation,

currently utilizing a single battery-powered cell to verify the system’s capability to

control the battery output at a specified voltage.

The battery control system employs a dual-layer PI (Proportional-Integral) con-

trol algorithm, a staple in industrial control systems for its feedback loop mechanism.

A detailed schematic of the operating system design is presented in Fig. 2.2, providing

a comprehensive view of the system architecture, including critical components, in-

terconnections, and signaling pathways. This schematic is essential for understanding

the subsystems’ interactions within the BMS, highlighting the integration of hard-

ware and software components, data exchange protocols, and the underlying control

logic.

This blueprint delineates the PI controller’s adaptability in regulating the charg-

ing and discharging processes, adjusting currents to mitigate voltage deviations and

ensuring balanced cell operation. The BMS’s control algorithm leverages a two-tier

PI control scheme for effective voltage and current regulation across battery cells in

an energy storage unit (ESU).

Consider the control process for battery 1 and its associated buck converter as

an example. The initial PI controller, focused on Voltage Control, uses the Target

Voltage 1 as its setpoint, modulating the interfacing converter’s input to align the

output voltage with the target. The output from this PI stage (PI Output 1) acts as

a directive for the subsequent control phase—current control.

The following PI controller receives PI Output 1, comparing it against the ESU’s

actual output current. Adjustments made based on this comparison (PI Output 2)

aim to achieve the target voltage with increased accuracy. This layered PI approach
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ensures precise power output control from the ESU, with the second PI controller

generating a control signal (PWM) to manage buck converter 1, thus achieving the

target voltage. The explored control algorithm adopts a cascaded method, utilizing

two layers of PI controllers to maintain the system’s current within desired parame-

ters, facilitating regulation through nested layers of control to maintain adherence to

the specified target current.
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Figure 2.2: Schematic of the local control for a buck converter.



Chapter 3

Development of the Platform

As seen in Fig. 1.1, we demonstrate in this chapter the creation of an experimental

platform for lithium-ion battery systems.

3.1 Platform Architecture

The TMS320F28335 is the cornerstone of the experimental platform designed to

manage the battery’s charging and discharging processes. The TMS320C2000 se-

ries DSPs are notable for their hybrid functionality, merging the benefits of high-

performance digital signal processors with microcontrollers to enable robust control

and signal processing capabilities. These DSPs feature an integration of Flash mem-

ory, a rapid AD converter, an enhanced CAN module, an event manager, a quadrature

encoding circuit interface, and peripherals such as a multi-channel buffered serial port,

facilitating the development of high-performance digital control systems at a reduced

cost.

At the heart of the experimental platform is the DSP chip TMS320F28335, cho-

sen for its accurate regulation of EPWM output values and sophisticated signal pro-

cessing capabilities, which are crucial for implementing complex control algorithms.
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Figure 3.1 showcases a prototype of the developed experimental platform.

Figure 3.1: Prototype of the experimental platform.

The hardware foundation is provided by the PZ-DSP28335-L development board,

incorporating the TMS320F28335 DSP chip. This board is equipped with multi-

ple ADC interfaces for real-time voltage monitoring—essential for the control algo-

rithm—and an RS232 module for data communication with a host computer. For

comprehensive testing and debugging, the XDS 100V2 emulator is employed. A con-

stant resistor load of 1.6Ohms ensures a stable testing environment for the Battery

Management System (BMS), under uniform load conditions. The experimental setup

includes two types of battery packs: 974058 rechargeable lithium-ion polymer batter-

ies (Battery Type 1, 3.7V, 3000mAh) and 18650 rechargeable lithium-ion batteries

(Battery Type 2, 3.7V, 4400mAh), each interfaced with a buck converter to maintain

consistency across battery packs.

A DC-DC buck converter is utilized to effectively control the output voltage of the



21

battery system. Table 1 lists the components of the designed buck converter. This

non-isolated DC-DC switching converter efficiently lowers a higher input voltage to

a desired lower output voltage, with its basic topology depicted in Fig. 2.1.

To facilitate parallel operations of multiple buck converters, enhancements to the

base schematic depicted in Fig. 2.1 were necessary, as shown in Fig. 3.2. Modifications

include the addition of a diode (D2) for current OR-ing, a gate driver (U1) for opti-

mized MOSFET performance, and a current-sensing resistor (R1) for precise supply

current measurement. Further augmentations such as a battery connector (JP2), test

points (JP4, JP5), and a swappable load resistance (JP6) enhance testing flexibility.

Stability and control improvements are achieved through the inclusion of an input

capacitor (C2) and an external microcontroller connection header (JP3).

Figure 3.2: Schematic of the enhanced buck converter.

The adapted schematic is illustrated in Fig. 3.2, which has been transformed into

a board layout for manufacturing, as demonstrated in Fig. 3.3. The PCB layout

employs a color scheme indicative of its layers and elements: red and blue for the

top and bottom copper layers, respectively, green for through-hole drills, and white

for silkscreen elements, with dimensions of 56x33mm. Fig. 3.4 presents a render of
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Figure 3.3: PCB layout for fabrication.

Figure 3.4: Schematic of the PCB.

the PCB with components mounted, employing a 4-layer FR4-TG 150-160 substrate,

1oz copper plating, and HASL finishing. Surface-mount components are affixed via

stenciling and reflow soldering, while through-hole components are soldered manually.

The completed PCB post-fabrication is showcased in Fig. 3.5.
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Figure 3.5: Prototype of the enhanced buck converter.

3.2 Converter Control

A schematic of the local control for a buck converter within a battery system is

depicted in Fig. 2.2, employing two cascaded Proportional-Integral (PI) controllers to

regulate the output voltage and current of the converter. To elucidate the control pro-

cess, consider the buck converter associated with battery 1. The voltage controller (PI

controller) receives as its input the deviation between the reference voltage, defined

as Target Voltage 1, and the actual output voltage of converter 1. This reference

voltage corresponds to the power set-point determined by the power control algo-

rithm for State of Charge (SOC) balancing. The output from the voltage controller,

referred to as PI Output 1, serves as the reference current for the current controller.

For the current controller (another PI controller), the input is the difference between

this reference current and the measured output current of converter 1. The current

controller’s output, termed PI Output 2, is then utilized to generate a Pulse Width

Modulation (PWM) signal, acting as the control signal for the switch of converter
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1. Through these cascaded PI controllers, the output power of converter 1 is able to

swiftly align with the desired power set-point.

The power set-point for the converter’s output power is ascertained by SOC bal-

ancing control algorithms. In this study, the control algorithm delineated in [46] is

implemented as follows. For each battery unit i, we define:

τi = SOCi ×Qi × Vini (3.1)

where SOCi represents the SOC, Qi the battery’s capacity, and Vini the battery’s

voltage, which also corresponds to the input voltage for buck converter i. Conse-

quently, the power set-point for buck converter i is given by:

Prefi =

(
τi
τavg

)
× Pload

N
(3.2)

where τavg =
1
N

∑N
i=1 τi, with N denoting the number of battery units, and Pload the

load power.
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3.3 Data Collection

Given the PZ-DSP28335-L development board’s integration of multiple ADC

(Analog-to-Digital Converter) jumpers, it is feasible to sequentially measure the volt-

age at these jumpers. The ADC-converted digital values are used to determine the

interface voltage value, according to the equation:

Voltage Value =
3× ADC Data Value

4096
(3.3)

In a system powered by a single battery, the output power can be directly cal-

culated from the measured output voltage. With a constant resistive load, the re-

lationship between the output power Poutput and the load power Pload is expressed

as:

Pload =
V 2
out

Rload

(3.4)

Given that the load is a constant resistor, the output current is derived from the buck

converter’s output voltage as:

Iout =
Vout

Rload

(3.5)

Furthermore, the battery’s output power is defined by:

Pout = Vout × Iload =
V 2
out

Rload

(3.6)

However, for configurations where multiple battery units are connected in parallel,

direct calculation of branch circuit current as in a single battery setup is not straight-

forward. To circumvent this, a measuring resistor is introduced in each branch post

the buck converter, as illustrated in Fig. 3.6, enabling branch current measurement.

The resistance of the measuring resistor is set at RMeasureResistor = 0.3Ω. The voltage
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drop across measuring resistor 1, upon measuring the output voltage Vout1 of converter

1, is calculated by:

VMeasureResistor1 = Vload − Vout1 (3.7)

where Vload denotes the voltage measured across the load. The output current for buck

converter 1 in the branch equals the current through measure resistor 1, determined

as:

Iout1 =
Vmeasure1

RMeasureResistor

(3.8)

Consequently, the output power of buck converter 1 is given by:

Pout1 = Vout1 × Iout1 (3.9)

The output power Pout1 in (3.9) represents the measured output power for buck con-

verter 1. The control aim is to ensure this measured output power Pout1 follows the

power set-point Prefi as specified by (3.2).

GND

Battery 1

Battery  i

Buck 

Converter 1

Load

Resistor

.

.

.

Measure Resistor i

Measure Resistor 1

Vout i

Vout 1

Buck 

Converter i

Figure 3.6: Schematic of multiple battery units in parallel.
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3.4 SOC Estimation

This study employs a look-up table methodology for estimating the SOC of

the battery, utilizing real-time voltage readings during battery operation. A pre-

established table correlating SOC values to battery voltage enables the immediate

determination of SOC upon acquiring the battery’s voltage. The process involved in

constructing the SOC-voltage relationship table is explained in depth, highlighting

the practicality and accuracy of this approach for real-time SOC estimation.

The Equivalent Series Resistance (ESR) of a battery, a critical parameter affecting

its performance and efficiency, is quantified through a method beginning with the

open-circuit voltage (OCV) measurement. The procedure initiates with measuring the

OCV, denoted as U0, followed by momentarily short-circuiting the battery terminals

to establish a baseline voltage. Subsequently, a resistor, R0, is connected in parallel

to the terminals to initiate a discharge cycle. The voltage, U , across the battery

terminals is monitored during this phase.

The ESR is computed utilizing the equation:

ESR =
U0 − U

U/R0

(3.10)

Applying this methodology to two different lithium battery types yielded:

• For Battery Type 1 (3000 mAh, 3.7V), an ESR of 0.142 ohm was calculated.

• For Battery Type 2 (4400 mAh, 3.7V), the ESR was found to be 0.202 ohm.

These measurements afford insights into the electrical characteristics of the bat-

teries, facilitating a comparative analysis of their performance predicated on internal

resistance metrics.
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ESR

Battery

Rload

Figure 3.7: Schematic diagram of measurement circuit.

Fig. 3.7 illustrates the circuit configuration employed for measuring the correla-

tion between battery voltage and State of Charge (SOC). An external load resistor,

characterized by a resistance Rload, is connected to the battery.

The battery discharges continuously from a fully charged state, maintaining a

constant discharge rate. The closed-loop current, Iclosed loop, is defined as:

Iclosed loop =
Vload

Rload

(3.11)

where Iclosed loop represents the operating current of the circuit, and Vload denotes the

voltage across the load resistor.

Utilizing the previously calculated equivalent series resistance (ESR), the voltage

drop across the battery’s internal resistance, VESR, is estimated by:

VESR = Iclosed loop × ESR (3.12)
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Figure 3.8: Relationship between open-loop and operating voltage (3000mAh).

Consequently, the open-circuit voltage, Vopen loop, can be expressed as:

Vopen loop = Vload + VESR (3.13)

Taking Battery Type 1 (3000mAh, 3.7V) as an instance, Fig. 3.8 delineates the

relationship between the open-circuit voltage and the operating voltage under load

conditions. The power consumed by the load, Pload, is calculated as:

Pload =
V 2
load

Rload

(3.14)

The total energy expended by the battery throughout the discharge process,

Econsumed, is obtained through the integration of Pload over time. The total energy

expended by the battery throughout the discharge process, Econsumed, is obtained



30

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

E
ne

rg
y 

(J
)

104 Energy Consumed by Load(3000mAh)
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through the integration of Pload over time:

Econsumed =

∫
Pload dt (3.15)

Fig. 3.9 exhibits the energy consumption over time. The consumed charge, Cconsumed,

is derived from the energy through the equation:

Cconsumed =
Econsumed

Vload × 3.6
(3.16)

Fig. 3.10 presents the continuous power consumption during the experiment. By

comparing this with the initial battery charge C0 = 3300mAh, the SOC can be

determined as follows:

SOC =

(
C0 − Cconsumed

C0

)
× 100% (3.17)

As illustrated in Fig. 3.11, in conjunction with the voltage-time relationship shown
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Figure 3.11: SOC versus open-loop voltage (3000mAh).

in Fig. 3.8, a plot of SOC versus voltage is derived. This methodology enables the de-

termination of the battery’s SOC at any given moment during the circuit experiment

by measuring the battery voltage, crucial for the accurate estimation of the battery’s

state.
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Similarly, for Battery Type 2 (4400mAh, 3.7V), Fig. 3.12 and Fig. 3.13 demon-

strate the open-circuit and operating voltage relationship, alongside its SOC versus

open-circuit voltage curve, respectively. In the subsequent battery control exper-

iment, the State of Charge (SOC) of the battery is ascertainable by reading the

voltage across the battery. This voltage measurement is then incorporated into the

battery control algorithm.
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Chapter 4

Evaluation of the Platform

4.1 Performance Evaluation for Single Battery Sys-

tems

We start by analyzing the performance of a single battery system. We must

choose the right parameters for two PI controllers in the experimental test. Each

PI controller is initialized with a set of gains tailored to the system’s response char-

acteristics. Within the scope of the test conditions formulated for this study, two

distinct sets of PI control parameters were meticulously assessed. Specifically, the

first controller is configured with P = 12, I = 1, which implies that the derivative

component is not active in the control process. This tuning implies that the control

strategy prioritizes the steady-state error correction and the system’s responsiveness

without the derivative action’s influence. The operation of the controller is a cyclical

process of error computation, where the difference between the expected and the ac-

tual current values dictates the control action. The PI output is a cumulative sum of

the proportional and the integrated terms, adjusted at each cycle to steer the system

toward the target current.
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Following the initial voltage adjustment, a second PI controller receives the pro-

cessed signal for further refinement. The second PI controller, with a finer tuning

resolution, is initialized with P1 = 0.1, I1 = 0.05 . This controller employs a similar

error computation mechanism but operates with different gain settings, signifying

its role in fine-tuning the control signal to match the exact target current values.

This secondary PI controller fine-tunes the adjustments made by the first controller,

thereby achieving a highly accurate current output.

The algorithmic structure ensures that the first PI controller’s output is meticu-

lously adjusted by the second, enabling a higher fidelity in current regulation. The

subsequent control loop, sensitive to the variations in current, acts on these devia-

tions to perfect the control signal. The collective operation of the dual PI controllers

ensures a robust control mechanism. The first controller makes coarse adjustments,

while the second refines them, addressing complexities and non-linearities within the

system. Continuity in the control process is maintained by storing the last error

values, which reflects a system’s past behavior to inform subsequent control actions.

To evaluate the dynamic performance of the designed battery control system, a

step response test was conducted. The experimental setup included the connection

of a solitary battery cell, with the Load consisting of a solid-state resistor. Estab-

lishing and attaining a specific target voltage value under these conditions served as

a confirmation of the system’s power tracking capabilities. This is due to the direct

relationship between the output power, Poutput, and the load power, Pload, which, in

the presence of a constant resistance, can be expressed as

Pload =
V 2
out

Rload

(4.1)

The successful attainment of the target voltage not only underscores the precision of
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the control system but also its efficiency in power regulation. Given that the output

power is a function of the square of the output voltage over the load resistance, reach-

ing the target voltage is synonymous with achieving the desired power output. This

aspect of the experiment illustrates the system’s proficiency in maintaining the en-

ergy flow at predetermined levels.This experiment is critical for assessing the system’s

responsiveness to changes in control input and its ability to track varying voltage set-

points over time. The test involved applying a discrete step function to the voltage

setpoint of an individual battery cell within the system. The step function consisted

of a sequence of voltage levels.

The target voltage as a function of time, targetvoltage(t), for a repeating 40-

second cycle is defined by the following piecewise function with non-negative integer

i denoting the cycle index:

targetvoltage(t) =



0.5V if 40i ≤ t < 40i+ 10

1.0V if 40i+ 10 ≤ t < 40i+ 20

1.5V if 40i+ 20 ≤ t < 40i+ 30

2.0V if 40i+ 30 ≤ t < 40(i+ 1)

(4.2)

where i a nonnegative integer.

The response of the battery cell to the step function was recorded and is depicted in

Fig. 4.1. The results demonstrate the system’s capability to accurately track the step

changes in the voltage setpoint. The transition between voltage levels illustrates the

control system’s precision and stability, confirming its compliance with the predefined

control specifications. Each step increase in the setpoint voltage was followed by a

corresponding and timely adjustment in the battery cell’s output, showcasing the

efficacy of the PI control algorithm in maintaining the desired voltage levels. The
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Figure 4.1: Experimental result for voltage regulation of a single battery system.

system’s performance in this experiment substantiates its potential applicability in

real-world scenarios, where precise voltage control is imperative.
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4.2 Performance Evaluation for Multiple Battery

Systems

The actual output value of the Buck converter will be utilized as the actual value

in the PI algorithm, aiding the platform in controlling the battery output. In [46],

the total voltage supplied to the load in the case of N power supply units is:

Pload =
N∑
i=1

Pi (4.3)

where Pi is the output power of the ith buck converter. A coefficient τi for the ith

battery cell is defined as:

τi = SOCi ×Qi × Vouti (4.4)

Here, SOCi is the state of charge value of the battery, Qi is the capacity of the

battery, and Vouti is the output voltage after passing through the buck converter. The

average value of τ is computed as:

τavg =
1

N

N∑
i=1

τi (4.5)

The target output value of Buck Converter i is then:

Pi =

(
τi
τavg

)
× Pload

N
(4.6)

Setting Pload = 5W connects to the platform system. Fig. 3.1 presents the actual

results after connecting four battery-powered units; two Battery Type 1 and two

Battery Type 2 are utilized.

Fig. 4.2 presents the outcomes of the experimental tests conducted to assess the
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Figure 4.2: Experimental result for SOC balancing among four battery systems.

SOC balancing capabilities of the proposed battery management system. The tests

involved two sets of batteries, designated as SOC1 and SOC2 for Battery Type 1,

and SOC3 and SOC4 for Battery Type 2. It was observed that despite starting

from different SOC levels, batteries of varying specifications converged to a similar

SOC value, achieving equilibrium at approximately 20%. However, fluctuations in

the measured voltage values were noted, attributable to the system’s measurement

accuracy. This, in turn, led to observable variations in the recorded data.

Fig. 4.3 presents the result of the experimental test conducted to assess the SOC

balancing capabilities by applying the control algorithm (3.2). In Fig. 4.3, SOC 1

is for Type 1 batteries, and SOC 2 and SOC 3 are for Type 2 batteries. It can

be observed that the SOC levels converge towards the same value but with some

fluctuations. This is because of inaccuracy in the measurement of the voltage values.
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

This thesis has introduced and evaluated an experimental platform designed for

the testing and validation of Battery Management System (BMS) algorithms aimed

at achieving State-of-Charge (SOC) balancing in lithium-ion battery systems. The

platform, developed around a DSP chip (TMS320F28335), custom-designed buck

converter, various battery packs, and load resistors, offers a versatile environment for

adjusting parameters and testing different BMS algorithms. Through the application

of a selected BMS algorithm, we demonstrated the platform’s capability in managing

SOC balancing among heterogeneous battery units, showcasing its effectiveness and

validating its design choices.

The experimental results provide compelling evidence of the platform’s utility in

both single and multiple battery system configurations. For single battery systems,

the implementation of cascaded PI controllers allowed for precise control of the bat-

tery’s output, quickly aligning it with set voltage points. In the context of multiple

battery systems, our experiments confirmed the platform’s proficiency in maintaining
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SOC balancing across battery units, despite the presence of measurement inaccura-

cies and fluctuations. These findings underscore the potential of our experimental

platform to serve as a valuable tool in the research and development of advanced

BMS algorithms.

The successful development and evaluation of the experimental platform mark a

significant step forward in the study of SOC balancing control strategies for lithium-

ion battery systems. By facilitating a deeper understanding and testing of various

BMS algorithms, the platform aids in the advancement of battery technology, con-

tributing to more efficient and reliable battery energy storage solutions. Furthermore,

the platform’s design enables researchers to simulate real-world conditions, offering

insights into the performance and potential challenges of implementing BMS algo-

rithms in practical applications.

5.2 Future Works

Looking ahead, several avenues for future research emerge from this study. Firstly,

there is a need to explore and implement distributed SOC balancing control algo-

rithms to test more complex scenarios that closely mimic real-world battery system

configurations. Such studies could enhance our understanding of the dynamics in-

volved in managing SOC across battery units interconnected in large-scale battery

systems. Secondly, efforts will be directed toward refining the buck converter’s struc-

ture. This would simplify the process of measuring voltage and current directly from

the battery, thereby reducing complexity and potential sources of error in experi-

ments. Finally, enhancing the accuracy of measurements stands as a critical objec-

tive. Improved precision in SOC estimation and other relevant metrics is crucial

for the effective assessment and optimization of BMS algorithms. Addressing these
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challenges will pave the way for the development of more sophisticated and efficient

battery management solutions, contributing to the broader adoption of renewable

energy sources and the advancement of sustainable energy storage technologies.
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