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Abstract

A residually finite group is a group for which the intersection of all finite index sub-
groups is trivial; such a group can be studied using its finite quotients. Normal resid-
ual finiteness growth measures how well a finitely generated residually finite group is
approximated by its finite quotients. We show that any linear group I' < GL4(K)
has normal residual finiteness growth asymptotically bounded above by (n log n)inl;
notably this bound depends only on the degree of linearity of I'. If char K = 0,
then this bound can be improved to n®=1. We also give lower bounds on the normal
residual finiteness growth of I' in the case that I is a finitely generated subgroup of a
Chevalley group G of rank at least 2. These lower bounds agree with the computed
upper bounds, providing exact asymptotics on the normal residual finiteness growth.
In particular, finite index subgroups of G(Z) and G(IF,[t]) have normal residual finite-
ness growth nd™( . We also compute the non-normal residual finiteness growth in
the above cases; for the lower bounds the exponent dim(G) is replaced by the minimal
codimension of a maximal parabolic subgroup of G.
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Chapter 1
Introduction

This thesis contains two results on the residual finiteness growth of linear groups. The
first result is computing an upper bound on the residual finiteness growth of finitely
generated linear groups that depends only on the degree of linearity and not the field
of coefficients. The second is computing a lower bound on the residual finiteness
growth of Chevalley groups. These results combine to provide exact asymptotics on
the residual finiteness growth of Chevalley groups. We first give some background on

residual finiteness growth and then summarize the new results.

1.1 Definitions and Overview

Let I" be a finitely generated group with finite generating set X which is symmetric,
ie. X = X' If y € T, the word length of v with respect to X is ||y||x = min{n :
Y=y Tp,x; € X}. Set wr x(n) = |{y €' :||7||lx < n}. In other words, wr x(n)
is the size of the ball of radius n in the Cayley graph of I' with respect to X. Then

the word growth of I', sometimes just called the growth of I', is the the asymptotic



growth of wr x(n). Using a different generating set for I' changes wr x(n) by a
multiplicative constant, so the growth of I' is independent of the choice of generating
set X. For example, the growth of Z? is n?, and the growth of a nonabelian free
group is exponential in n.

The central tenet of geometric group theory is that the geometry of a group, via
its Cayley graph, can be used to understand algebraic properties of a group. This
is illustrated by one of the main early results of geometric group theory, Gromov’s
theorem. It is relatively straightforward to show that if [ is virtually nilpotent, i.e. T’
has a finite index subgroup which is nilpotent, then I' has polynomial word growth;
that is, the growth of I'" is bounded above by a polynomial in n. Gromov proved
the converse: every finitely generated group I' which has polynomial word growth is
virtually nilpotent.

Prior to 1984, no groups were known to have growth that was not polynomial or
exponential, but in [13] Grigorchuk constructed a group of intermediate growth, with
growth function strictly between eV™ and e”. The group can be realized as a group
of autmorphisms on an infinite rooted regular tree, and the study of this group has
spurred research into branch groups, self-similar groups, and other areas.

Studying the word growth of groups increased understanding of groups and helped
spur the development of new areas of mathematics, so it is natural to study other
asymptotic invariants of finitely generated groups. One of these invariants is the

subgroup growth of I', defined to be the asymptotic growth of sp(n) = [{H < T':



I' : H] < n}|. If R(I') is the intersection of all finite index subgroups of I', then
sp(n) = sr/rary(n), so it is enough to consider groups with R(I') = 1; such groups
are called residually finite. In a similar spirit as Gromov’s theorem, Lubotzky, Mann,
and Segal proved that a finitely generated, residually finite group I' has polynomial
subgroup growth if and only if I' is virtually solvable of finite rank, where I' has finite
rank if there is some positive integer N such that every finitely generated subgroup
of T can be generated by at most N elements (see [20]).

Residually finite groups have many subgroups of finite index, which places restric-
tions on the properties of the group. For example, there exist groups of bounded
exponent which are infinite, but by the solution to the restricted Burnside problem,
every residually finite finitely generated group of finite exponent is finite. Since ev-
ery finitely generated linear group is residually finite, we also have a large class of
examples to work with.

It is natural to try to understand a residually finite group G by studying its finite
index subgroups. Omne approach is to compute how many subgroups of a certain
index G has, as mentioned above, but one can also try to quantify how quickly
the intersection of finite index subgroups becomes trivial. In [3], Khalid Bou-Rabee
introduced a new asymptotic invariant, the normal residual finiteness growth of G,
as a way to quantify how residually finite a given group is. In this thesis we further
investigate this invariant for finitely generated linear groups.

An equivalent definition of a group I' being residually finite is that for every



nontrivial v € ', there is a homomorphism ¢ : I' — @ of I' onto a finite group such
that ¢(7y) # 1; if this is the case we say that the quotient @) detects . If T is finitely
generated by X, then we define F;-}X(n) to be the smallest natural number N such
that every nontrivial v in the ball of radius n is detected in some quotient of size at
most N. The asymptotic growth of this function does not depend on X and is called
the normal residual finiteness growth of I', denoted by F (n).

With this definition, the normal residual finiteness growth of a group I' can be
thought of as quantifying how well I' is approximated by finite quotients. If Frﬁ (n)
grows very quickly in n, then there are many elements of I" of short word length that
vanish even in large quotients of I'. Conversely, if Fpﬁ(n) grows slowly, then I' is well
approximated by finite quotients.

Estimates for normal residual finiteness growth have been found for virtually nilpo-
tent groups [3], linear groups [§], arithmetic groups [6], and free groups [4] [15] [27]. In
particular, the normal residual finiteness growth of a virtually nilpotent group grows
slower than a power of logn, and the normal residual finiteness growth of a linear
group is slower than n* for some k. It is still an open problem whether the converses
of the above statements are true, or if we can infer algebraic properties of a group
from knowing that its residual finiteness growth is bounded by a power of logn or n.
A first step is to compute the normal residual finiteness growth of many classes of

groups to provide evidence for possible conjectures.

The primary difficulty in computing normal residual finiteness growth lies in find-



ing lower bounds; indeed for the case of the free group, this amounts to finding a
group law which is satisfied by all finite groups of size at most n. In contrast, to
establish an upper bound one must find a single quotient of appropriate size which
detects a given element, which is in general more straightforward.

An element v € T is detected by a quotient of size at most N if and only if v ¢ H
for some normal subgroup H of I of index at most n. By generalizing this statement
to include all subgroups instead of just normal subgroups, one can define the non-
normal residual finiteness growth of I', sometimes called the residual finiteness growth
of I'. Specifically, FF%X (n) is defined as the smallest natural number N such that for
all nontrivial v € T" with ||y||x < n, there exists H < T'withy ¢ H and [G : H] < N,
and the asymptotic growth of FFS +(n), denoted by FFS (n), is the non-normal residual
finiteness growth of I'.

Non-normal residual finiteness growth has also been studied for various classes of
groups, including right angled Artin groups and virtually special groups in [5] and
free groups in [7] [9] [17].

It is difficult to compute the normal and non-normal residual finiteness growth
of a group, even for such well understood groups as linear groups. While exact
asymptotics exist for normal residual finiteness growth for some arithmetic groups
in characteristic 0, a uniform upper bound on the normal and non-normal residual
finiteness growth of finitely generated subgroups of GL4(C) had not been established,

and there were very few results in positive characteristic, e.g. for subgroups of GL4(K)



where K is a field of characteristic p. The new results presented in this thesis add to
our understanding of the normal and non-normal residual finiteness growth of linear
groups and present a unified strategy for proving statements in both characteristic 0

and positive characteristic.

1.2 Summary of New Results

It was shown in [8] that if I is a finitely generated linear group over an infinite field,
then Frﬂ (n) = nF for some k depending on the field and the degree of linearity. A
natural question is whether the degree of polynomial growth actually depends on the
field of coefficients. Our first result is that in fact there is a uniform bound on the
normal and non-normal residual finiteness growth of finitely generated linear groups
with a fixed degree of linearity. We write f(n) < g(n) if for some C, f(n) < Cg(Cn)

for all n.

Theorem 1.2.1. Let K be a field and let T' < GL4(K) be a finitely generated linear

group with d > 2.
(i) If char K > 0, then F2(n) < (nlogn)*~' and F=(n) < (nlogn)*.

(i1) If char K =0 or K is a purely transcendental extension of a finite field, then

F2(n) < n®1 and F5(n) < n*'.

The proof is contained in chapter [6f we give a brief outline of the argument.

Since T is finitely generated, it is contained in GLg4(R) for some finitely generated



integral domain R. We let A € I" have word length n and find a ring homomorphism
¢ : R — F, where F is a field of size approximately nlogn or n, depending on if
we are in case (i) or (ii) of the theorem, such that A remains nontrivial under the
induced group homomorphism ¢* : GL4(R) — GL4(F). With the proper choice of
¢, the image of A remains nontrivial in GL4(FF)/Z(GL4(F)), the size of which has
order n™~1 or (nlogn)®~'. This establishes the bound on normal residual finiteness
growth. One then shows that the image of A is not in a maximal parabolic subgroup
of index approximately n?~! to provide the bound on non-normal residual finiteness
growth and complete the proof.

The key step is finding the correct ring homomorphism ¢. This is straightforward
when K is purely transcendental, but in the general situation we must use variations of
the Chebotarev density theorem, a result from number theory concerning the density
of primes with certain splitting properties in Galois extensions. In characteristic 0 we
are able to use a higher dimensional generalization of the Chebotarev density theorem
proved by Serre in [25], while in characteristic p we use an effective version of the
Chebotarev density theorem which produces slightly weaker bounds.

The proof of Theorem [1.2.1]is based on inducing a group homomorphism of gen-
eral linear groups using a ring homomorphism, so the argument generalizes to linear
algebraic groups, yielding the following more specific result. We write dim(G) for
the dimension of a linear algebraic group. If G is a simple Chevalley group, i.e. a

Chevalley group whose root system is irreducible, then we let a(G) be the minimal



codimension of a proper parabolic subgroup. The values of dim(G) and a(G) when

(G is a simple Chevalley group are given in Table and justified in Lemma [2.5.5

Theorem 1.2.2. Let G be a linear algebraic group defined over Z, let K be a field,

and let I' < G(K) be finitely generated.

(i) If char K > 0, then F(n) < (nlogn)¥™@) and, if G is a simple Chevalley

group, FFS(n) =< (nlog n)“(G).

(i1) If char K =0 or K is a purely transcendental extension of a finite field, then

FF(n) = nd™©) and, if G is a simple Chevalley group, F=(n) = n®@.

The second result concerns finding lower bounds on normal and non-normal resid-
ual finiteness growth. In [6], Bou Rabee and Kaletha proved that if G is a simple
Chevalley group of rank at least 2 and I' is a finite index subgroup of G(Z), then
FF(n) = nd™@  In addition, Bou-Rabee, Hagen, and Patel showed in [5] that
FSSLd(Z) (n) = n®tif d > 2. Both results were proved using techniques specific to
characteristic 0. We generalize the normal residual finiteness growth result to charac-
teristic p and provide lower bounds on non-normal residual finiteness growth in both
characteristic 0 and p. The restriction on the rank of GG is because the congruence

subgroup property plays a pivotal role in the proof.

Theorem 1.2.3. If G is a simple Chevalley group of rank at least 2, O = Z or IF,[t],
and T < G(O) has finite index, then F7(n) = n™S) and FS(n) = n®®, where

dim(G) and a(G) are given in Table[1.1]



P dim(G) | a(G)

Al>2 242 | 1
B,l>2| 2241 |21—1
C,l>3|22+1 |20—-1

Dyl>4| 221 [20—2

Gy 14 5
F 52 15
Eg 78 16
E; 133 27
Ey 248 57

Table 1.1: This table gives the dimension dim(G) of a simple Chevalley group G and

the minimal codimension a(G) of a proper parabolic subgroup.

The proof of this theorem, contained in chapter [7] has the advantage of using the
same techniques for both G(Z) and G(F,[t]). We choose a specific element A € I' and
show that if a subgroup H of I does not contain A, then [I" : H] must be appropriately
large in terms of the word length of A. Instead of dealing with subgroups of I' directly,
we use the congruence subgroup property to work with subgroups of G(O/m*) for
some maximal ideal m of O and k£ > 1. Once in this setting, we define G; to be the
kernel of the natural projection G(O/mF) — G(O/m?) and give L(G) = @ G;/Giy1

the structure of a graded Lie algebra, where the quotients G; /G4 are identified with
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the Lie algebra of G over the field O/m. The details of this construction are given in
section [7.1]

We then associate to each subgroup H of G(O/m*) a graded subalgebra L(H)
of L(G). The index of H is related to the codimension of L(H) in L(G), so it is
enough to show that if the image of A is not in L(H), then the codimension of L(H)
is large. Computing a bound on the codimension of L(H) based on the word length
of A involves fairly technical arguments, which have been collected in chapter {4 along
with more general results about codimensions of certain subspaces of Lie algebras.

Normal and non-normal residual finiteness growth can only decrease when passing
to a subgroup, so Theorem also gives lower bounds for all finitely generated
subgroups of G(K), where G is a simple Chevalley group of rank at least 2 and K is
a field. Combining this lower bound with the upper bound from Theorem then

gives exact asymptotics for normal and non-normal residual finiteness growth.

Corollary 1.2.4. Let G be a simple Chevalley group of rank at least 2, let K be a
field of characteristic 0 or a purely transcendental extension of a finite field, and let
I' < G(K) be finitely generated. Put O =7 if char K =0 and O =TF,[t] if

char K =p > 0.

If T NG(O) < G(O) has finite index, then F5(n) =~ n™%) and FT(n) ~ n*%),
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Chapter 2
Lie Algebras and Chevalley Groups

Lie algebras are an important tool in the study of the residually finite groups, and
Chevalley groups are an important class of linear groups; in this chapter we review
their constructions and basic properties, and set some notation. The reader is referred

to [10], [14], and [26] for more details.

2.1 Root Systems

We begin by defining the notion of a root system. Let £ be a Euclidean space with
the usual inner product (-,-). Any vector a € E defines a reflection o, : E — FE by

the formula

where (5, a) =
Definition. A root system in F is a subset of E satisfying the following axioms:

(R1) @ is finite, spans F, and does not contain 0.

(R2) For all @ € &, RanN® = {+a}.
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(R3) For all o, 5 € @, 0,() € P.

(R4) For all o, 5 € @, (B,a) € Z.

Some authors define root systems more generally. In those cases, what we are
defining as a root system is both reduced (because of (R2)) and crystallographic
(because of (R4)). Such a root system is sometimes called a classical root system.

The Weyl group of ¢ is W = (0, : a € ®), which embeds into Sym(®) and is
thus finite. An important property of W is that (w(8),w(«)) = (B, a) for all roots
a,f and all w € W.

A base of a root system ® is a subset II which is a basis for £ such that every
element of ® is either a positive or negative linear combination of elements of II.
Elements of II are called simple roots, and W = (o, : « € II).

A root system @ is irreducible if it is not the union of two proper orthogonal
subsets. If ® is not irreducible, then it decomposes uniquely as the union of irreducible
root systems ®; in F; such that £ = F, @ --- ® Ej.

In any irreducible root system ®, there are at most two lengths of roots; we will
call the roots of smaller length short and the roots of greater length long. Any two
roots of the same length are conjugate under the action of the Weyl group. If ® has
roots of only one length, then by convention we will say these are long roots.

If & is a root system and «,8 € ®, then the a-string through S is the set
{f+na:neZ}n . Root strings are unbroken, i.e. the a-string through £ can be

written as f—ra, - - - , B+qa for some positive integers r, ¢. In addition, (3, a) = r—gq,
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and every root string has length at most 4.

2.2 Lie Algebras

Definition. A Lie algebra over a field F' is a vector space L over F' with a bracket

operation [, | satisfying the following axioms:

(L1) The bracket operation is bilinear.

(L2) [z,z] =0 forall z € L.

(L3) [z, [y, 2]] + [y, [z, z]] + [z, [x,y]] = 0 for all z,y,z € L.

The third axiom is called the Jacobi identity. The dimension of L is just its
dimension over F' as a vector space. We will only be considering finite dimensional
Lie algebras. If K is a subfield of I, then L can also be considered as a Lie algebra
over K. When we need to consider L as a Lie algebra over both K and F', we will use
the following notation to indicate over which field we are working(note that K = F
is a possibility): we write U <x L to mean U is a K-subspace of L, and given
UV <k L, [U,V]g is the K-span of {[u,v] : u € Uyv € V}. If we are considering L

only over one field, no subscripts will be used.
Example.

e If F'is a field, then the associative matrix algebra Mat,(F') of d X d matrices

over F'is a Lie algebra with bracket operation defined by [A, B] = AB — BA.
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When viewing this algebra as a Lie algebra, we denote it by gl;(F).

e The set of d x d matrices over a field F' with trace 0, denoted by sl;(F'), is a
sub-Lie algebra of gl;(F'). This set is closed under the bracket operation because
if A, B € gly(F), then AB and BA have the same trace, so [A, B] = AB — BA

has trace 0. This also shows that [gl;(F'), gl;(F)] C sla(F).

An ideal I of L is a subspace satisfying [L,I] C I. A Lie algebra L is simple if
it has no nonzero, proper ideals, and L is semisimple if it is a direct sum of ideals
which are each simple Lie algebras. We say L is abelian if [L,L] = 0, and L is
perfect if [L, L] = L.

On any Lie algebra L, one can define a symmetric, bilinear form &, defined by
k(z,y) = trace(adzady). This is called the Killing form. The Killing form is
nondegenerate if and only if L is semisimple.

Now let L be a complex Lie algebra, i.e. a Lie algebra over C, and assume L is

semisimple for the remainder of this section.

Definition. An element = € L is called semisimple if ad x € End(L) is semisimple,
i.e. ad z is a diagnolizable linear transformation. A subalgebra of L consisting entirely

of semisimple elements is called a toral subalgebra.

Lemma 2.2.1. Any toral subalgebra H of L is abelian. If H is a maximal toral
subalgebra of L, then H 1is its own centralizer in L, and the restriction of the Killing

form to H is nondegenerate.
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Let H be a maximal toral subalgebra of L. Since the restriction of x to H is
nondegenerate, we can use this form to identify H with H* as follows: for ¢ € H*,
define t, € H by p(h) = k(t,, h) for all h € H. We then define an inner product on
H* by (a, 8) = k(ta, tg)-

Since H is abelian, it consists of commuting endomorphisms adh,h € H, of L.
Thus L is the direct sum of the subspaces L, = {z € L : [h,z] = a(h)x for all h € H}
as a ranges over H*, the dual space of H. Let ® = {a € H*\ 0: L, # 0}. It is the

case that Ly = H, so L has a root space decomposition

L=H®EP L

Each L, is one-dimensional and ® is a root system; this root system is independent
of the choice of H and depends only on L.

A semisimple complex Lie algebra is simple if and only if its root system & is
irreducible. The complex simple Lie algebras are classified by their irreducible root
systems @, which fall into four infinite families and five exceptional cases. We will
need to explicitly reference the roots in these root systems, so we present descriptions
of each.

In what follows, {€;,--- ,€,} will be an orthonormal basis of R™ with the usual

inner product.

e The root system of type A;,1 > 1, has roots ® = {¢; —¢;: 1 <i#j <[+ 1}.
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e The root system of type B;,l > 2, has roots
O ={te:1<i<I}U{x(e=Le):1<i#yj<I},
where the first set consists of short roots and the latter set of long roots.
e The root system of type Cj, [l > 3, has roots
O ={t(e;Le):1<iz#j<I}u{x2e:1<1<I},
where the first and second set are the short and long roots, respectively.
e The root system of type D;,[ > 4, has roots ® = {£(¢; £ ¢;) : 1 <i#j <[}
e The root system of type Eg has roots & = ®; U &5, with
O ={te, +¢: 1 <i#j <8},
18 8
Py = {i§;% Lo = ﬂ,Eei =1}.

The root systems of type Eg and E; can naturally be viewed as subsystems of
Ey; in Eg we restrict to 3 < 4,7 < 7 in ®; and require ¢; = ¢o = ¢g in 5. In Fr,

we restrict to 2 <i,j < 7 in @y, require ¢; = ¢g in Po, and add in (€1 + €5).
e The root system of type Fj has roots
1
O ={te,t(e; L¢):1<i#j<4}U {i§(€1 +etestey)t

The roots of the form +¢; & ¢; are long, while the remaining roots are short.
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e For the root system of type Go, we fix a base {ag, ap }, where ag and oy, are short
and long, respectively. Then the short roots are {+ag, £(as+ayr), = (2as+ar)}

and the long roots are {+ay, +(3as + ar), £(3as + 2ayr)}.

Example. The Lie algebra of type A, is s[,11(C) = {A € Mat;;,(C) : trace(A4) = 0}.

The root systems A;, D;, and E; only have one root length; we call these root
systems simply laced. In the remaining cases, the ratio of root lengths is v/2, except
in (G5, where the ratio is V3.

We will need the following result about irreducible root systems.
Lemma 2.2.2. Let ® be an irreducible root system.
(1) If a,y € ® and « is a long root, then v — 2a € @ if and only if v = a.

(2) If ® is not of type Cy,1 > 2, then there ezist long roots o, € ® such that

a+pedanda— & P.

Proof. We first prove (1). Let a,y € ® with « long. If ® is simply laced, assume
v —2a € ® with v # . Then the a-root string through ~ is at least v — 2a, v — «, 7.
This can never occur in the simply laced root systems, where root strings have length
at most 2.

If ® is of type B; or Fy, then o = +£¢; £ ¢; for some ¢, j, and by examining the
descriptions of the root systems, v—2a &€ @ if v # «. If @ is of type C}, then a = +2¢;

for some i, and *e; = ¢, £ (4¢;) & ® for any j, k.
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Finally, if ® is of type G5, then inspection of the roots verifies the claim.

We now prove (2) case by case, using the descriptions of the root systems given
above. If ® is a simply laced root system, then there are no root strings of length
greater than 2, so any choice of a, € ® with a + € & will suffice.

If & is of type B;, l > 3, or Fy, set « = €; — ey and f = €3 — €3. Then a+ 3 =
eg—ezedand a— [ & P.

If @ is of type Go, then put a = ay, and f = 3ag+ay. Then a+ = 3ag+2ay, €

and « — = —3ag € . O

2.3 Chevalley Algebras

Let g be a complex semisimple Lie algebra with root system & of rank [ and Car-

tan subalgebra H, with root space decomposition g = H @ @ga. Then g has a
aced
Chevalley basis

B={e,:acd}U{h :1<i<I},
where e, € g, for all @ and h; € H for 1 < i <[, with the following properties:
1. [hihj]=0forall 1 <i,j <l
2. [hi,eq] = (o, )z, forall 1 <i <[, o € P.

l
3. [ear—a] = ha € @D Zh; for all a € .

=1
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4. If o and S are independent roots and 5 —ra;, - -+ , 4 qa is the a-string through

0 ifa+p5¢&P
B, then [e,, es] = )

t(r+1l)ewrs ifa+ped
Example. Let g = s[;(C), which has rank [ — 1, and let e;; be the [ by [ matrix with
a 1 in entry (7,7) and Os everywhere else. Then the Chevalley basis for g consists of

€e; = €ij for i 7éj and hl = €4 — €i+1,i+1 for 1 < 1 < l—1.

—€;

We can use a Chevalley basis to construct Lie algebras over other fields that have
the same structure constants as g. Let g(Z) be the Z span of the Chevalley basis B
and, for a field K, define g(K) = g(Z) ®z K, the Chevalley algebra of type ® over
K. We will in particular be focusing on the case when K is a finite field.

We note that if g = g(C) is simple, g(K) may fail to be simple. For example, if
g is type A;, then g(K) = sl,11(K) has a one dimensional center whenever char K

divides [ + 1.

2.4 Elementary Chevalley Groups

If L is a Lie algebra, then each x € L induces a linear map adz : L — L given by
ad z(y) = [z,y]. Now let L = g be a complex semisimple Lie algebra with root system
® and Chevalley basis B = {e,, h; : « € ®,1 < i <[}. Then ade, is nilpotent for all

a € O, so we can define

(ad ey )? N (ad eq )

exp(ade,) =1 +ade, + T ...+T’
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N+1

where (ade,) = 0. In fact we can always take N < 3, as will be seen later. The

maps exp ad e, are automorphisms of g and have the following important property.

(ad ey)”

Proposition 2.4.1. If a € ®, then i
n!

leaves g(Z) invariant for any n € Zso.

As a consequence, exp(ade,) leaves g(Z) invariant.

As a result, if K is a field then exp(adte,), t € K, can be viewed as an automor-

phism of the Chevalley algebra g(K). Set x,(t) = exp(adte,).

Definition. The adjoint elementary Chevalley group Ei(K) of type ® over
K is

EA(K) = (24(t) : a € ®,t € K) < Aut(g(K)).

The definition makes it clear that E33(K) is in fact a linear group. Also, one can
replace the field K by any commutative ring R in the defintion, so that one obtains
a functor E3d from commutative rings to groups; this is the perspective we will take
from now on.

While we will be working over commutative rings in general, we will also need
the fact that adjoint elementary Chevalley groups over fields whose root systems are
irreducible are usually simple. The proof of the following proposition can be found

in Chapter 4 of [26].

Proposition 2.4.2. Let ® be an irreducible root system and let K be a field with at

least 4 elements. Then E3Y(K) is a simple group.
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We now let G = E3(R), with the understanding that we are working with a fixed
root system ¢ and a fixed a commutative ring R, and turn our attention to describing
the action of G on the Chevalley basis B. These actions can be found immediately
from the definition of z,(t) and the properties of a Chevalley basis. If « € ®,¢ € R,

then

Zo(t) - eq = €q,
$a<t) “e_q =€_q+thy — t2ea7

Zo(t) - ho = ho — 2te,.
If a, 8 € ® are linearly independent, i.e. § # +«, then

xa<t> : hﬁ = h,B - <a76>6a7

q
To(t) - eg =eg+ Z Mo pit"€iatp,
i=1

where M, 5, € {£1,+2,+3}.

We now focus on the structure of G. For each o € ®, let X, = {z,(t) : t € R}.
We call X, a root subgroup of GG. Each X, is isomorphic to the additive group of
R, so that x4 (t)z.(s) = z4(t + s). To understand how the root subgroups interact,

we use the Chevalley commutator formula: if a, 8 € ® are linearly independent, then
wa(t), 25(5)] = [ @iasis(Nagist', s'),
i,§>0
where the product is taken over roots iav 4+ j8 € ® in order of increasing ¢ + j and

the Nygi; € {£1,+2,+3} are independent of s and ¢, with [e,, e5] = Nag11€a+5. The
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following specific cases occur in all root systems, and are the only formulas needed

when ® is simply laced:

[2a(t),z5(s)) =1if a+ [ & P;

[Ta(t), 25(s)] = ayp(Ets) if a + € 20+ f,a+28,a— 3 & .

For all other pairs of roots, excepting some in G5, one of the following formulas from

Bs applies.

[xq (t)a Ley (5)] = $61+62(:l:2t5);

[Tei—ex (1), ey (8)] = e, (£E8) T, 4oy (j:tsz)'

Remark 2.4.3. We have given formulas where the signs of the coefficients are un-
determined. One can choose a consistent set of signs for each root system, which
depends on the choice of Chevalley basis, but the specific choice will not be relevant

for what follows, so we will continue using =.

We have defined elementary adjoint Chevalley groups as groups of automorphisms
of Lie algebras, but they can also be described abstractly by a group presentation
with generators and relations, allowing us to define elementary Chevalley groups more
generally. Before we proceed, we define some additional elements of G.

For a € ® and t € R*, define

Wa (t) = xa(t>x—a(_t_1)xa (t)5

ho(t) = wa (t)we (1)t
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We will denote w, (1) by w,. The elements w, act via the Weyl group action on roots,

and the h,(t) act diagonally. More precisely, if o, 5 € ®, ¢t € R, s € R*, then

wa:rg(t)w;1 = To,(5)(EL);

ha(s)s(D)ha(s) ™" = 25(sP1).

The elements w, and h,(t) act on the Chevalley basis as follows, where «, 5 € @,

te R".

ha(t) - hg = hg,
ha(t) ceg = t<5’°‘>65,
We * hﬁ = haa(ﬁ)>

Wq * 65 = :Eega(ﬁ).

The following proposition also serves as a definition of elementary Chevalley
groups other than the adjoint elementary Chevalley group. Traditionally these el-
ementary Chevalley groups are defined by actions on admissible lattices similar to
the action of the adjoint elementary Chevalley group on g(Z), but for us the defini-

tion using generators and relations is more convenient and useful.

Proposition 2.4.4. Let ® be a root system and let R be a commutative ring. If

no irreducible component of ® has rank 1, let G be the abstract group generated by
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elements z,(r), r € R, a € ®, subject to the relations

Zo(t)Ta(s) = xa(ts),

[2a(t), 25(s)] = H Tiotjs(Nagist', ') if a4+ B # 0,

i,j>0
ho(t)ha(s) = ha(st) if s,t € R*.
where ho(t) = wo(H)wa (1)1 and wa(t) = xo(t)r_o(—t 1) zo(t) fort € R*.

If ® has irreducible components ®; of rank 1, let G be as described above, except
for a € ®; we replace the commutator relation with we(t)T.(s)wa(—t) = z_o(—1%s)
forse R,t € R*. Then

G/Z(G) = EX(R).
We call G the universal, or simply connected, elementary Chevalley group
E¥(R) of type ® over R. For any N < Z(G), we say G/N is an elementary

Cheuvalley group E¢(R) of type ®.

Il

Example. If ® = A; and K is a field, then E(K) = SL;,;(K) and E3(K)
PSLi41(K). If R is a commutative ring, then E¥(R) = EL;;;(R), the matrix group
generated by elementary matrices. Whether or not this group is equal to SL;;(R)

depends on the ring R.

Remark 2.4.5. By Proposition 2.4.2] if ® is an irreducible root system and Eg is
an elementary Chevalley group of type ®, then Eq(K)/Z(Eg(K)) is a simple group
when K is a field with at least 4 elements. Thus we will say that E¢ is a simple

elementary Chevalley group of type ® if ® is irreducible.
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One of the nice properties of elementary Chevalley groups is that they are usually

perfect.

Proposition 2.4.6. Let E¢ be a simple elementary Chevalley group. Then Eq(FF,[t])

1s perfect unless p = 2 and ® is of type By or Gs.

Proof. The statement is proved in chapter 11 of [10] for elementary Chevalley groups

over fields, but the same arguments apply to the polynomial ring IF,[¢]. O

2.5 Chevalley Groups As Algebraic Groups

We now let K be an algebraically closed field and discuss the connection between
elementary Chevalley groups over K and linear algebraic groups, for which we now
give some brief background.

A subset V' of K™ is called algebraic if there exists a subset of polynomials

S C Klxy,- -+ ,x,] such that
V={(ay, - ,a,) € K" : f(a1, - ,a,) =0 for all f e S}.

That is, V' is the zero set of a collection of polynomials. Defining algebraic sets to be
closed puts a topology on K™, called the Zariski topology.

If n = d®>+1, then GLy4(K) can naturally be identified with an algebraic subset of
K". To see this, number the indeterminates as xg, x;; for 1 < i < n. Then GL4(K)

is the zero set of the polynomial 1 — xy det(x;;).
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Definition. A linear algebraic group G is a subgroup of GL4(K') which is also
an algebraic subset of K @+1 for some algebraically closed field K and some natural

number d.

If V' is an algebraic subset of K™, put
IV)=A{f€e Klzxy, - ,x,]: flar, -+ ,a,) =0 for all (a1,--- ,a,) €V}

The set I(V') contains all the polynomials which vanish on V. The coordinate ring
of G is

where \/T(V) = {f : f™ = 0 for some m € N} is the radical of I(V'). The linear
algebraic group G is connected if and only if its coordinate ring K[G] is an integral
domain.

If G is a linear algebraic group and R is a subdomain of K, we say that G is

defined over R if Ix (V) has a basis of polynomials with coefficients in R.

Example. The special linear group SL4(C) is defined over Z since it has defining

equation 1 — det(x;;) = 0, which has integer coefficients.

Definition. Let G be a linear algebraic group. The radical of G, denoted rad(G), is
the maximal connected, solvable, normal subgroup of G. The group G is semisimple

if rad(G) = 1 and G is connected.

The following theorem allows us to connect elementary Chevalley groups and

linear algebraic groups.
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Theorem 2.5.1. Let K be an algebraically closed field. Every elementary Chevalley
group over K 1is a semisimple linear algebraic group defined over K, and in fact is

defined over 7.
Proof. See Theorem 6 in chapter 5 of [26]. O

Suppose G < GLg4(K) is a linear algebraic group defined over Z. Then we can
view the set of defining polynomials S of G as having coeflicients in any commutative

ring R using the natural homomorphism Z — R that maps 1 to 1. We define
G(R) == {(Tij) < GLd(R) . f(rij) =0 Vf € S}

Definition. Let Eq(K) be an elementary Chevalley group of type ® over an alge-
braically closed field K. Then by Theorem Eg(K) is a linear algebraic group
G defined over Z. If R is a commutative ring, then we call G(R), as defined above, a

Chevalley group of type ® over R.

Remark 2.5.2. If Fg(K) and G(K) are as in the above definition, then Eg¢(K) =
G(K). However, it is not the case that Eg(R) = G(R) for an arbitrary ring R. For
example, if ® is of type A;, then E(R) = EL;41(R), while G(R) = SL;;1(R), which

contains EL;1(R) but in general can be larger.

We note that every Chevalley group G' embeds into SL,; for some d.
The Chevalley group G(C) corresponding to E§(C) is simply connected, topolog-
ically, so when referring to any Chevalley or elementary Chevalley group arising from

EY¥, we say it is simply connected or of simply conected type.
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Both Chevalley groups and elementary Chevalley groups have certain nice prop-
erties with regards to changing rings of coefficients. If GG is a Chevalley group and
R C S are commutative rings, then it is clear that G(R) = G(S) N GL4(R). In
contrast, E¢(R) # Eg(S) N GL4(R) in general.

However, elementary Chevalley groups are better behaved under homomorphisms.
Any ring homomorphism ¢ : R — S induces a group homomorphism ¢* : GL4(R) —
GL4(S), where ¢*(ai;) = (p(ai;)). If ¢ is surjective, then the image of E¢(R) is
Eg(S), since the generators z,(t) of E¢(R) are mapped to x,(¢(t)), which generate
E4(S). However, in the case of Chevalley groups, the image of G(R) is not necessarily
G(9).

When an elementary Chevalley group agrees with a Chevalley group, we can take
advantage of both sets of nice properties. The following result, proved in [26] for the
case R is a Euclidean domain and in [I] when R is semi-local, i.e. has only finitely

many maximal ideals, gives a set of conditions for which this is the case.

Lemma 2.5.3. If R is a Euclidean domain or a semi-local ring and G is a simply

connected Chevalley group of type ®, then G(R) = E¥(R).

We will mostly be concerned with Chevalley groups G associated with irreducible
root systems. Following Remark in such cases we will say G is a simple
Chevalley group.

Let G be a simple Chevalley group of type ®, considered as an algebraic group.

If F is a field, one can recover the Chevalley algebra g(F') of type ® from G(F') as
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follows. Details can be bound in chapter 2 of [21] Let Fle] = F[xz]/(z?), so €2 = 0,
and define

Lie(G(F)) = ker(G(F[e]) — G(F)),

where the map is induced by sending € to 0. If we fix an embedding G — SL,4(F)),
then Lie(G(F)) = {I;+€A € SLy4(F) : I;+€A € G(F)} can be viewed as an F-vector
space because

(Ig+€A)(I;+€eB) =1+ e¢(A+ B).

Thus Lie(G(F)) naturally embeds into sly(F) under the map I; + €A — A, and
defining the Lie bracket to be [A, B] = AB — BA turns Lie(G(F')) into a Lie algebra
over F which is isomorphic to the Chevalley algebra g(F). This embedding of g(F)
into sly(F') is particularly nice in that the action of G(F') on g(F') by conjugation,
using matrix multiplication, is the same as the adjoint action of G(F') on g(F) given
in section 2.4l

If « € ® and t € F, then keeping in mind that €2 = 0,
zo(€et) = exp(eadte,) = 1 + eadte, € Lie(G(F)).

Then under the map Lie(G(F)) — sly(F), x,(et) is sent to adte,. In particular,

z4(€) is mapped to ade,. Since ad is a Lie algebra homomorphism which is faithful

on @ Fe,, we may identify the image ad e, with e, when working in the Lie algebra.
acd

We finish this section with some size estimates of Chevalley groups and linear

algebraic groups over finite fields. To state the results we need the notion of the
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dimension of a linear algebraic group. Dimension is more naturally viewed as a
geometric property, but the equivalent algebraic definition is more applicable to our

setting.

Definition. Let G be a linear algebraic group. The dimension of G, denoted by

dim(G), is the transcendence degree of the field of quotients of K[G].

Remark 2.5.4. The construction of Lie(G(F')) done above can be carried out for any
linear algebraic group. The dimension of this Lie algebra is equal to the dimension
of G' as defined above. In particular, if G is a Chevalley group with corresponding

Chevalley algebra g, then dim(G) = dim(g).

The values of a(G) and dim(G) for simple Chevalley groups G are given in Table
1.1} a(G) is the minimal codimension of a proper parabolic subgroup of G, but the
following lemma also acts as a definition for a(G). We note that a(G) and dim(G)
depend only on the root system ® of G (and not, for example, on whether G is simply

connected or adjoint).

Lemma 2.5.5. Let G be a simple Chevalley group with an embedding into SLgy, q
be a prime power, and H < G(F,) be a proper subgroup of minimal index. Then

G(F)/Z(G(F))| = 554™™ Y and 3¢"9 < [G(F,) : H] < 2¢".

Proof. The size bound of |G(F,)/Z(F,)| follows from Theorem 25, §9, in [26]. The
index of the largest maximal subgroup of G(FF;) can be found in [I6] (Theorem 5.2.2)

if G is of type A, By, C;, or Dy, and in [28], [29] for the remaining cases. ]
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Lemma 2.5.6. Let G be a linear algebraic group defined over Z and q be a prime

power. There exists a constant C' independent of q such that |G(F,)| < Cq¥im(©).

Proof. The connected component of G containing the identity is a normal subgroup
of finite index, so it suffices to prove the lemma in the case G is connected, so that
K|[G] is an integral domain.

There is a natural bijection between G(F,) and Homg (K[G],F,), so we bound the
size of the latter. By Noether normalization, K |G| is a finitely generated module over
a polynomial ring K[z1,- - , x4, where d = dim(G). If K[G] is generated as a module
by y1,- -, Ym, then each y; is integral over K|z, -, x4], so for each 1 <7 < m we

can find a polynomial
filwr, - xa,Y) € Kl -+ wa][Y]

such that f;(x1, -+ ,z4,4;) = 0. Let c = max deg f;. An element ¢ € Homg (K[G],F,)
is determined by the images of the x; and y;. Given choices of (z;), which can be
made arbitrarily, for each 1 < j < m there are at most ¢ choices of ¢(y;) that will
satisfy fj(¢(z1),- ,¢(xa), (y;)) = 0. Thus [Homg(K[G],F,)| < ¢™¢?, so C = ™

is a constant satisfying the lemma. O
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2.6 Invariant Ideals Under The Adjoint Action Of

Chevalley Groups

We now examine the action of a Chevalley group on its Lie algebra over a finite field

in more detail.

Proposition 2.6.1. Let F be a finite field of characteristic p and G a simple simply
connected Chevalley group. For all but finitely many p, the adjoint action of G(F)
on g(F) is irreducible. The exceptions are given in Table along with the largest
possible dimension of a proper ideal I C g(F) invariant under the action of G(F) in
those cases. If G is of type By and p = 2, then any invariant ideal I is either the

center or contains Fe,, for all short roots .
Proof. See Theorem 2.1 in [11]. O

We will be concerned with F,-subspaces of g(F) which are invariant under the
action of a simple simply connected Chevalley group G(F). The following lemma

allows us to apply Proposition to this situation.

Lemma 2.6.2. Let F be a finite field of characteristic p such that |F| > 4, and let G
be a simple simply connected Chevalley group of type ®. Let V' be a proper F),-subspace
of g(F). If V is G(F)-invariant, then FV, the F-subspace spanned by V', is a proper

ideal of g(IF) which is invariant under the action of G(F).

Proof. Let ® have rank [ and fix a Chevalley basis B = {e, : a € @} U {hy, -+, Iy}



o P max dim(/) | min codim([)
Apl=>2 | pl(l+1) 1 2420 —1
B,l>3 p 2 +2 €W —]—2
Cpl>2 P 22 — | 21
Dy l>4 P 9 22— —2

Go 3 7 7

Fy 2 26 26

Eg 3 1 7

B, 9 1 132

Table 2.1:
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of g(F). The F-subspace FV is an ideal of g(IF) if [g(F),FV] C FV, but it is sufficent

to check that [e,, FV] C FV for all a € ®, as we now show.

Recall that ® has a base II = {«y, -+ , o} and h; = [eq,, €, for 1 <i <. Then

using the Jacobi identity, for v € FV and 1 <1 <[,

[hh U] = Heaw e—ai]v U] = [eom [e_ai7v]] - [6—0@'7 [eam UH

i

Thus if [e,, FV] C FV for all a € &, then [h;, FV]| C FV as well, so [g(F),FV] C FV

and FV is an ideal. We now proceed to the proof of the lemma.

First assume that V' is actually an F-subspace of g(F), so V = FV. If a € ®,

A€ and v € V then

1 1
To(N) - v —v = Neg, v] + )\25[%, e, V)] + )\36

[eaa [eo” [ea,'l)]]] cevV.

(2.6.1)
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As noted in the construction of elementary Chevalley groups, the last two terms in
(2.6.1) can be considered as elements in the Z-span of B. With this interpretation
the equation is valid for any characteristic.

Using for three distinct nonzero elements s,t,u € F, one can use linear
combinations to obtain [e,,v] € V for all v € V and a € ®. To see this, fix v € V
and a € ¢ and write the right hand side of as A\zp + A2z + X325 € V. Since V

is an F-subspace, this implies z; + Az + A\223 € V. Using s, ¢, u in place of A, we have

V1 =21 + S20+ s23 €V,
Vo =2 +tzg+ 12z €V,
Vs = 21 4+ uzy + u’z3 € V.
Then
vy =t — Py = (12 — 8%z +st(t — 8)zm €V,
vs = u?vy — 523 = (u? — 5%)z; + su(u — 8)z € V.
Finally,
u(u — s)vg — t(t — s)vs = (u(u — 8)(t* — s*) — t(t — s)(u® — 5%))z
=s(u—s)(t—s)(u—t)z V.
Since s,t, and u are all nonzero and distinct, we conclude that z; = [e,,v] € V.

Thus V is an ideal of g(IF). Since V' is assumed to be proper, V = FV is a proper

ideal of g(IF), so the lemma is proved in this case.
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Now assume V' is not an F-subspace of g(F). Then FV is a G(F)-invariant F-
subspace of g(IF) and thus an ideal by the above argument. It remains to show that
FV # g(IF).

When p # 2 and @ is not of type G, this is straightforward. For any s € F,
a€ P, andv eV,

To(8) v+ zo(—=$) - v =28[eq,v] €V,

S0 sleq,v] € V, and thus also s[h;,v] € V forall s € F, 1 < i <[, v € V by the
argument at the beginning of this proof.

Therefore the F-span of {[z,v] : x € g(F),v € V'} is contained in V' and is not all
of g(F). But this set is just [g(F),FV]. Since char F # 2, [g(F), g(F)] = g(FF), so we
must have FV # g(FF).

Treating the general case requires using the structure of each root system. We
now assume p is any prime, until we reach the case of ® being of type C;.

Assume FV = g(F); we will show that this implies V' = g(IF), a contradiction. Let
Ep and Eg be the F-subspaces of g(IF) spanned by {e, : a long} and {e, : «a short},
respectively, so g(F) = H ® Es @ Ep, with the convention that Eg = 0 if ® is simply
laced. Since V is G(F)-invariant and z4(t) - e_o = €_o + thy — t?e, for a € @, t € T,
to show that V' = g(IF) it suffices to show Es & E;, C V.

Fix v € V', which we write as

v=h+ Z sgeg €V, (2.6.2)
ped
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where h € H. If v € ® is a long root, then 2y + 6 € ® if and only if § = —v by

Lemma [2.2.2] so for any t € FF,
z,(t) - v —v =tle,,v] — t’s_je, € V. (2.6.3)

Assume @ is not of type Cj, I > 2. By Lemma [2.2.2] we can find long roots «
andf such that a + f € ® and o« — 8 ¢ ®. Also by Lemma 2.2.2] if v € ®, then
v —2a € @ if and only if v = a.

Now put 71 = 5, 72 = —«, and v3 = —(a + ). We show that for any ¢ € F and

any v € V written as in ([2.6.2)),

t[e’Ysa [6’727 [671,’0] - 8*71671“ = *tsaea € V.
SofixteF,veV. Set vy = [ey,,v] — 5_4,€,,, which is in V by (2.6.3)). Since

—(71+72):Oé—6¢(1),

the coefficient of e_,, in vy is 0, and thus vy = [ey,,v1] = [ey,,[e4,,0]] € V by
. We also have vy € Eg @ Eyp. Similarly, the coefficient of e_., in v, is 0 since
—(M+ 72+ 73) =20 € P, s0 vg = t[e,,, va] €V by and vy € Es @ Ey.

For any v € ®,

YEnt+rtyn=7-2q

and v — 2« € @ if and only if v = a. We also have v + 73 = 8 — 2a & P, so in fact
v3 = *ts,e_,, as claimed.

By assumption, FV = g(F), so there exists v € V' with s, # 0, when v is written

as in ([2.6.2)). Using the above computation, we conclude that Fe_, C V.
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Since (w, : v € ®) < G(F) acts transitively on {e, : a long}, we conclude
that £, C V. If ® is simply laced, this immediately implies V' = g(F). We treat
the remaining root systems case by case, using the fact that £, C V. We use the
descriptions of the root systems given in section

If @ is of type B;,l > 3 or Fy, then for t € FF,

Tey (1) - Ceymey — €ey—e, = Etee, = t2661+62 eV,

so Fe., C V. By the transitive action of G(F) on {e, : a short}, E¢ C V and hence
V = g(F).

If @ is of type G, then for t € F,

L—ag—ayr (t) "Cap T Cap = ite*OéS?

so Fe_o, C V. Hence £, CV and V = g(F).

In every case we contradict the assumption that V' is proper, so we must have
FV # g(IF).

We now consider the remaining case. Assume @ is of type C;, [ > 2 and p = 2. Let
v1 = 2¢5 and 5 = —2¢;. These are long roots with 7, + 7% € P and v+, + 72 €
if and only if v = €; — €. Then by the same reasoning as in the argument for root

systems not of type Cj, for t € F and v € V written as in (2.6.2) we have

t[ewa [ewa U] - 3—71671] = £tSe;—e1€e,—e; € V.

Therefore Fe., ., €V and hence Es C V.
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To show E;, C V, let v € V with sy, # 0. Since Eg C V, we can write v as

v=h+>

o long Sa€a- The only long roots « satisfying ¢, — €2 +a € ® are a = —2¢

and a = 2¢,, and

x61762(1> : 67261 - 67261 = :l:e,61,62 :i: 62617

Teymen (1)« €2¢y — €26y = € 1y T €26,
Therefore
Teymey(1) 0 — 0 = 8€¢; ey TS 96,61 —co T S_9¢,€2¢; T S26,€c;tey L S26,€ 26, € V.
Again using the fact that Fg C V, we conclude that
V] = £59¢,€2¢, £ S_2¢,€-2¢, € V.
Then if t € T,
Te . ., (t) - 01 — V1 = £t526)€e; ey T 12526,6_2¢, €V,

SO 1289¢,6 9., € V. But F is a finite field with characteristic 2, so F? = FF, and thus we

conclude that £, C V and hence V' = g(F), the desired contradiction. O]
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Chapter 3

Number Theory Background

3.1 The Prime Number Theorem

In this section we recall estimates on the number of primes up to a certain size in Z

and IF,[t], where ¢ is a prime power. Asymptotics will be measured as follows. If f, g

are two real valued functions on R or N, we will write f ~ ¢ if lim % =1.
T—r00 g X

We start with primes in Z. Let 7(x) be the number of primes p € Z with p < x.

Then the classical prime number theorem states that

X

where we write log = to indicate the natural logarithm of x. In addition to this result,

we will need the following two equivalent statements of the prime number theorem:

lem(1,---,n) ~e",

| | pr~e.
p<n
p prime

Primes in F,[¢] are irreducible polynomials, which we will always assume to be

monic, so counting primes up to a certain size is the same as counting the number of
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irreducible polynomials in F,[t] of a given degree. This was computed by Gauss and
can be found, for example, in [24]. Before stating the formula, recall that the Mobius

funciton p is defined by

(

1 ifn=1
pu(n) = (—=1)k if n=p;---py for distinct primes p; -

0 otherwise

\

Proposition 3.1.1. If q is a prime power, then the number of irreducible polynomials
of degree k in F,[t] is
1 k/d
LK) = 7 3 ()

d|k

3.2 Integral Extensions

The reference for this section is Chapter 1 of [I§]. All rings in this chapter will
be integral domains, i.e. commutative rings with unity which do not contain zero

divisors. We begin with some definitions.

Definition. Let A be a ring contained in a field L. An element x € L is integral

over A if it satisfies an equation
" 4ay +--+ar+as=0,

where n is a positive integer and each a; € A. Such an equation is called an integral

equation.
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Definition. If A C B are rings and every element of B is integral over A, then we

say B is integral over A, or that B is an integral extension of A.

A subset S C A containing 1 is called multiplicatively closed if s1s5 € S for all
s1,89 € S. If S C A is multiplicatively closed, then S™!A, the set of quotients a/s
for a € A,s € S, is a ring, and there is a canonical inclusion of A into S7'A. If p is
a prime ideal of A, then S = A\ p is a multiplicatively closed set. Then S™'A is the
localization of A at p and denoted by A,. If B is a ring containing A, we will denote
S™IB by B,.

We now collect some facts about integral extensions.
Proposition 3.2.1. Let A be a ring with field of fractions K.

1. If A is contained in a field L, then the set of elements in L which are integral
over A is a ring, which is called the integral closure of A in L. The ring A
is said to be integrally closed if it is equal to its integral closure in its field of

fractions K.
2. If A is a unique factorization domain, then A is integrally closed.

3. If L/K is a field extension, B is the integral closure of A in L, and p is a prime

ideal of A, then A, is integrally closed and By is the integral closure of A, in L.

Our main interest in integral extensions concerns the properties of prime ideals.

Let B be an integral extension of A and let p be a prime ideal of A. If B is a prime
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ideal of B such that B N A = p, then we say P lies above p. In this case, there is a
natural injection A/p — B/9B. By the following proposition, if A/p is a field, then

B/ is a field extension of A/p.

Proposition 3.2.2. Let B be an integral extension of A, and let p be a prime ideal
of A. Then there exists a prime ideal B3 of B lying above p. If B lies above p, then

B s mazimal if and only if p is maximal.

We close this section by showing the connection between the maximal ideals lying
above p and the factorization of an irreducible polynomial f(z) € A[z] when taken
modulo p.

Let A be integrally closed, with field of fractions K. Let f(z) € A[x] be an
irreducible polynomial, and let p be a maximal ideal of A. Define the discriminant of

f to be

A(f) = [Tl = a):

i#]

where the «; are the roots of f in some algebraic closure of K. The image of f(x) in
(A/p)[z], which we denote by f(x), may fail to be irreducible. The factorization of
f(x) is controlled by the maximal ideals lying above p in a certain integral extension.

The following lemma shows when f(z) factors into distinct linear factors.

Lemma 3.2.3. Let A be an integrally closed ring with field of fractions K, and let
f(z) € Alz] be an irreducible, separable polynomial. Set L = Klz|/f(z) = Klq]

for some root o of f(x) and let B be the integral closure of A in L. Let p be a
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mazximal ideal of A with A(f) & p. If B/SB = A/p for every B lying above p, then

f(x) € (A/p)[x] is a product of distinct linear factors.

Proof. We prove the statement by localizing at p. By Proposition [3.2.1] B, is the
integral closure of A,. If B lies above p, then ‘PN A = p, so no element of P becomes
a unit in By, and hence ‘BB, # B,. We observe that B, /BB, = B/P.

Denote A/p by F and let z be a root of an irreducible factor P(z) of f(z) € Flx].
Since A(f) is a unit in Ay, B, = Ay[a] by Lemma 5.3 in [I2]. Then the map B, =
Apla] — F[z] given by g(a) — g(z) mod p for g(X) € A,[X] is a ring homomorphism.

Its kernel is a maximal ideal 8B, for some maximal ideal 33 of B. But

By/¥B, = B/B = A/p =T,

so z € F. Hence P(z) is linear. We also have A(f) # 0 since A(f) € p, so f(z) is

separable. Hence f(x) is the product of distinct linear factors. ]

3.3 The Chebotarev Density Theorem

Let K be a global field, i.e. a finite extensions of Q or the function field F,(¢). The
ring of integers of K, denoted by Ok, is the integral closure of Z or F,[t] in K, where
char K is 0 or p, respectively. Let L/K be a finite Galois extension with Galois group
G. Then Oy is the integral closure of O in L. Let p be a maximal ideal of O and

let P be a maximal ideal of O, lying above p. We have 0O = Oy for all o € G, so if
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0B = P, then there is a natural action of o on Of /P which leaves Ok /p invariant.
We call the group Gy = {0 € G : o' =B} the decomposition group of P.

The field extension (O /B)/(Ok/p) is a finite extension of a finite field, so it is a
Galois extension; the natural map Gg — Gal(B/A) is surjective. The kernel of this
map is called the inertia group Iy of 3.

The Galois group G acts transitively on the maximal ideals lying above p, so the
decomposition groups are all conjugate, as are the inertia groups. If the inertia group
of P is trivial, then the inertia group of every maximal ideal lying above p is trivial,
and we say p is unramified in L.

We define the norm of p to be Np = |Ok/p|. Then if p is unramified in L and
B lies above p, then Gy is isomorphic to the Galois group of a finite extension of a
finite field of size Np. This group is cyclic with a canonical generator ¢, called the
Frobenius automorphism, which acts by pz = 2™ on Op/%B. Since Gy < G, this
Frobenius automorphism can be realized as an element of G. The conjugacy class
of this element in GG depends only on p; we will denote this conjugacy class or an
element of it by the Artin symbol <L/TK> We note that by writing this symbol, it
is implied that p is unramified.

Let P(K) be the set of maximal ideals of O. If x € R, define
m(z) = [{p € P(K): Np <z},

Definition. Let S C P(K) and set mg(z) = |{p € S : p < z}|. Then S has natural
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density \ in P(K) if lim ~5)

s ()

=\, ie. if mg(x) ~ Am(x).

If C is a conjugacy class of G, define

P(K)c = {p € P(K): (L/TK> ZC},

w(z) = [{p € P(K)c : Np < z}|.
We are now ready to state the Chebotarev density theorem.

Theorem 3.3.1 (Chebotarev density theorem). Let K be a global field and let L/ K
be a finite Galois extension with Galois group G. If C is a conjugacy class of G, then

P(K)¢ has natural density |C|/|G| in P(K), i.e. 7°(x) ~ ||£G||7r(x)

Our main application of the Chebotarev density theorem is to the factorization
of a polynomial modulo a prime ideal p. In particular we are interested in the case
L/K S :
when e = {1}, which implies that O /P = Ok /p for any B lying above p.
Lemma 3.3.2. Let K be a global field with ring of integers Ok. Let f(x) € Ok[z] be
L

K
a separable polynomial with splitting field L. If A(f) & p and </T> = {1}, then

f(z) mod p is a product of distinct linear factors.

Proof. Let f(x), L, and p be as in the statement of the lemma. It is enough to show
that if g(z) is an irreducible factor of f(z), then g(z) mod p is a product of distinct
linear factors. Let a be a root of g(x) and put F' = KJa], with ring of integers Op.

Consider a maximal ideal q of Op lying above p. Then there is a maximal ideal



46
: , L/K
P of Op lying above q, and thus also p. Since e = {1}, we have

Ok/p = Op/q— Or/PB = Ok /p,

so Or/q = Ok /p for every q lying above p. We also have A(g) & p because A(f) & p,

so by Lemma g(x) mod p is a product of distinct linear factors. O
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Chapter 4

Codimension Bounds

4.1 Subspaces

Let g(F') be a Chevalley algebra with root system ® and let F'/K be a finite, separable
field extension. In this section we investigate how large K-subspaces U and V of g(F)
can be and still satisfy [U, V]x # g(F). In particular, we find upper bounds on the
sum of the dimensons of U and V' which satisfy Fe, € [U, V]k for some a € L. These
bounds will depend on o and char F'.

The methods used to compute the upper bounds do not use the full Chevalley
algebra but rather a subalgebra with certain properties. We prove results in the
setting of an abstract subalgebra with the desired properties and then apply them to

the Chevalley algebra setting.

Lemma 4.1.1. Let F/K be a finite, separable field extension and let L be a Lie

algebra over F'. Fix x € L, and suppose J = @ Ji <k L such that

=1

1. dimp(J;) = 2 for all 1.
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2. [Ji, Jjlp =0 fori # j.
3. [Ji, J;) = Fx for all 1.
If UV <k L and Fx € [U, V], then there exist Wy, Wy, <k J such that
1. WygnU=0 and Wy NV =0.
2. dimg (Wy) + dimg (Wy) = dimg (J) = [F 2 K] dimg(J).

Proof. Let Tr : F — K be the nondegenerate trace on F' and write [U,V|N Fx = Tz,
T < F. Since T is proper, there exists some nonzero a € F' such that Tr(at) = 0 for
all t € T. Replacing U by aU, we may assume Tr(¢) =0 for all ¢t € T.

Let B = {by,--- ,bn} be a K-basis of F, and let B" = {b},---,b/,} be the dual

basis of B with respect to the trace, so that

1 ifi=j
0 ifij.

Recalling the properties of J from the lemma statement, let J; be generated over

F by {y2i—1, 92} with [ya;_1, 9] = 2, and set
X ={byy_1:0€e B, 1<i<n}U{by;:0 € B 1<i<n}
Define an involution on X by b;ys;—1 = bys;. Then for all wy,w; € X,

+1 if w1 = Wy
[wy, W3] = tx with Tr(t) = (4.1.1)

0 if w1 #/LUQ.
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Let Xy € X be maximal with respect to the property (Xy)x NU = 0, and set
XV:{EZQUGX\XU}.

Put Wy = (Xy)k and Wy = (Xy) k. Since Xy and Xy are each K-linearly indepen-
dent and | Xy| + | Xv| = | X| = dimg(J), all that remains to show is Wy NV = 0.

Assume not. Then there is some nonzero

v = stwev,

weXy

where each s, € K. We now construct « € U such that the coefficient of [u,v] € Fx
has nonzero trace, a contradiction.

Some coeflicient s,,, is nonzero, and we may assume s,,, = 1. Then Wy € Xy, so
by the maximality of Xy,

u=wyg+ze€U
for some z € (Xy)k. By the definition of Xy and (4.1.1), [2,v], [wo,v — wy] € Fx
each have coefficients with trace 0, so for some t € F' with Tr(t) = 0,
[u, v] = [Wo, wo| + to = (£bb' + t)x € [U, V]
for some b € B. But Tr(bb' +t) = £1 # 0, giving the desired contradiction. O]

Proposition 4.1.2. Let F/K be a finite, separable field extension and let L be a Lie
algebra over F. Suppose I is an ideal of F and [I,I|r = Z(I) = Fx for some z € L.
Then I = Fx @ J, and J satisfies the assumptions of Lemmald. 1.1 If [L, Fx|p =

Fz and U,V <y L such that Fx ¢ [U,V]k, then there exist Wy, Wy < L such that
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1. WynU =0 and Wi,y NV =0.
2. dimg(Wy) 4+ dimg (Wy ) = [F : K|(dimg(J) + 2).
3. dimg(Wy N J) 4+ dimg(Wy N J) = dimg(J) = [F : K] dimg(J).

Proof. Write [ as I = Z(I) & J and let {y1, -+ ,ym} be an F-basis for J. We show
J=J&- & Jy with each J; 2 dimensional, [J;, J;] = 0if i # j, and [J;, J;] = Fz.

By assumption, [I,I]p = Fx for some x € Z(I), so since y; is not central in I,
[y1,y;] = ax for some i > 1,a # 0; after reordering and rescaling we may assume
[y1, y2] = @ If [y1,y;] = a;@ and [y2,y;] = b;x for j > 2, replace y; by y; — a;y2+bjy1.
Then for j > 2, [y1,y;] = [y2,y;] = 0. After repeating this process inductively on
{y3, -+, Ym}, the subspaces J; = (ya;_1, Yo2;) r are seen to satisfy the desired conditions.

Set n = 2m. We proceed as in the beginning of the proof of Lemma [£.1.1]
constructing the same basis and dual basis of F/K and the same set X with an
involution. In addition, we may assume [U,V]| N Fz = Tx with Tr(t) = 0 for all
t € T, so equation is still true. We now deviate from that proof. For the
remainder of this proof, all subspaces will be considered as K-subspaces, and (W)
will mean (W) .

Let By C {bx : b € B}, respectively By C {0z : ¥/ € B'}, be maximal with
respect to the property (By) N U = 0, respectively (By) NV = 0. Let Xy C X
be maximal with respect to the property (By U Xy) NU = 0, and let Xy = {w :

w € X \ Xy}. Note that X C I and By, By C Z(I). In what follows, all linear
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combinations are K —linear combinations, and all instances of s are in K.
We first show (By U Xy) NV = 0. If not, then for some ax € (By), there is a
nonzero element

v =axr + Z Spw € V.

weXy

Since ax € V, sy, # 0 for some wy € Xy; we may assume s, = 1. Since wy ¢ Xy,

by the maximality of X there is a nonzero
u=wyg+ze€U

for some z € (By U Xy). Using (4.1.1) and the fact that [By, X] = [By,X]| =

[Bu, By] = 0, we see that
[u,v] = [z, v] + [wo, v — W) + [Wo, wo] = (t £ b0 )x € [U, V]

for some b € B, with Tr(¢) = 0. Then Tr(t £ bb') = £1, giving a contradiction.

Since [L, Fx]p = Fz, there exists h € L such that [h, ] = x. Define

HU = {bh . blili' ¢ Bv}

Hy = {b'h : bx & By},

where V' is the element of B’ corresponding to b € B. Now set Wy = (ByUXyUHy).

We claim Wy MU = 0. If not, then there is a nonzero element

u =z + Z spbh € U

bheHy

for some 2, € (By U Xy). Since (By U Xy) NU =0, s. # 0 for some ¢ € B; we may

assume s. = 1. By definition of Hy;, dx & By, so (By,dx)NV # 0 by the maximality
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of By . Hence we can find some nonzero element
v=2+dr eV

with 29 € <Bv>

Using (4.1.1]), the choice of h, and the properties of the dual basis, we find that
[u,v] = [u, 20] + [u — ch,d'z] + [ch,dx] = (t + )z € [U, V]

with Tr(¢) = 0. Then Tr(t + ¢c’) = 1 # 0, yielding a contradiction.

Set Wy = (By U Xy U Hy). Then the same argument as above with U and
V' switched shows that Wy, NV = 0. To compute the sum of the dimensions of
Wy = (ByUXyUHy) and Wy = (ByUXyUHy ), observe that the sets By UXyUHy
and By U Xy U Hy are each linearly independent over K, so we just need to calculate

their cardinalities. By construction,

[ Xu|+ [Xv| = |X]
|Bu| + [Hv| = |B|

|Bv|+ |Hy| = |B|.
Since | X| = dimg(J) = [F : K] dimp(J) and |B| = [F : K],
dimg (W) + dim(Wy) = [F : K](dimp(J) + 2).
Also, Wy N J = (Xy) and Wy N J = (Xy), so
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We now use this proposition to find results for subspaces of Chevalley algebras.
Let ® be an irreducible root system of rank [ > 2, F/K a finite, separable field
extension, and g(F') the corresponding Chevalley algebra with Chevalley basis {e, :
ae€dyU{hy, -, h}. Set

l
E =P Fe., H = Fh,.
=1

acd

We seek to apply Proposition to a Chevalley algebra g(F') in the case z = e,
for some o € ®. To accomplish this, we first construct a subspace J of E which
satisfies the conditions of Lemma[4.1.1} in particular, [J, J]p = Fe,. This fails in the
case when @ is of type C, [ > 2, char F' = 2, and « is a long root, because then g(F)
is not perfect and e, & [g(F"), g(F)]r, but otherwise such a J can be constructed.

One then hopes that I = Fe, & J and L = H & [ satisfy the assumptions of
Proposition 4.1.2] Fortunately this is the case except for certain instances when ®

is of type B;,l > 2, or GG3. The details are provided in the proof of the following

proposition and in Tables [4.1] and [£.2]

Proposition 4.1.3. Let g(F') be a Chevalley algebra with irreducible root system @
and fir « € ®. Then there exists J <p FE, with dimension given in Tables and
and depending on the length of a and char F', such that if I = Fe, & J and

L= H & I, then either

1. I is an ideal of L, and I, L, and x = e,, satisfy the assumptions of Proposition

ATY or
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2. I is not an ideal of L, and J and x = e, satisfy the assumptions of Lemma

41T

Proof. Each J we construct is of the form J = @ Fe, for some ®; C ®, so we
vePs

will define J by defining the appropriate set of roots ®;. Because the Weyl group

acts transitively on the set of roots of a given length, for each length it suffices to

consider a specific root « of that length. The choices of ®; and « are given in Table

for every root system except FEj, for which the corresponding ®; is slightly more

complicated.

In each case ®; was found by first considering the set {v,a—~:v,a—v € ®} and
then removing roots that resulted in [J, J] # Fe,. In most cases, this was enough for
I =Fe,® J tobe an ideal of L = H® I with Z(I) = [I,I] = Fe,; when this was
not the case, [ is still an ideal in small characteristic.

That J and I satisfy the desired conditions is a straightforward computation.
Except in the case of ® = (), [ > 2, and « long, one can always find § € & with
[hg,eq] = teq, so that [L, Fe,] = Fe, for every characteristic. We are excluding the
aforementioned case already when char F' = 2, so we always have [L, Fe,] = Fe,. We
will point out why I sometimes fails to be an ideal and explain some of the differences
in ®; when the characteristic changes.

When @ is type B;,l > 2, and a = €, we have e, ,e.,_, € J for 2 < k <[. Then
[€as e.] = £2€¢,4c,, s0 I is an ideal when char F' = 2 but not an ideal otherwise.

Also, [e¢, € cy] = £2€¢,_¢,, SO When a = €1 — €9, €; and —ey are only added to @,
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when char F' # 2.
When @ is type Cj,1 > 3, and char F' = 2, then [g(F'), g(F)] N Fe, = 0 for any
long root «a, so no appropriate J can be constructed in this case.
When @ is type Ej, | = 6,7,8, let a = iei, and set ¢, = {e; +¢ : 1 <14,5 <
i=1

8} N ®. Then define

O, =, U{a—pB:8ed}.

We have e3+¢, € ® for each [, and [he,1c,, €a] = £eo. The values of |® | are computed
by examining the root systems as described in the chapter on Lie algebras.

When @ is type F) and a = €¢;, ®; can be enlarged when char F' = 2 because
for 5,y € ®; with 5+ v € @\ {a}, [es,e,] = £2es;,. The reverse is true when
a is long; now @ is larger when char F' # 2 because there are pairs v, 8 € ® with
e, eg] = £2e,.

Finally we comment on the case when ® is type GGo. There are three pairs of roots
{B,~} in ® which sum to ag. Examing the coefficients of [e,, eg], [eay, €3], and [eqg, €]
leads one to the choices of ®; given in Table as well as the conclusion that I is an
ideal only when F' has characteristic 2 or 3. In contrast, when o = oy, characteristic

3 is the only exception to the general rule, since [e_ng, €agta,] = £3€q, - O



o char ' | I < L? | dimp J
Ayl >2 | any yes | 2(l—1)
Dyl >4 | any yes | 4(l—1)

Es any yes 20

E; any yes 32

Eg any yes 56

o6

Table 4.1: This table gives the dimensions of the subspaces J given in Proposition

4.1.3| and indicates when [ is an ideal when ® is simply laced.

We can now state the result we will need when computing lower bounds for normal

and non-normal residual finiteness growth.

Corollary 4.1.4. Let F/K be a finite, separable field extension. Fix o € ® and

assume that o is a short root if © is of type Cy,1 > 2. Suppose U,V <y g(F) satisfy

Fe, £ [U,V]k. Then

codim(U) + codim(V') > 2[F : K].

Proof. By Proposition and Lemma(4.1.1] there exist Wy, Wy <j g(F) such that

WynNU =Wy NV =0 and dimg(Wy) + dimg(Wy) > 2[F : K|. This immediately

gives the desired inequality.

]
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d length of o | char F' | I < L? dimp J
2 yes 2
short
By #+ 2 no 2
long # 2 yes 2
2 yes 2
short
%2 no 2
Bl >3
2 yes 4(1 —2)
long
# 2 ves | 4(1—2)+2
short any yes 4(1—2)
Ci,l>3
long # 2 yes 2(1-1)
2 yes 8
short
# 2 yes 2
Fy
2 yes 8
long
# 2 yes 14
2 yes 4
short 3 yes 2
Gy #+2,3 no 2
3 yes 2
long
#3 yes 4

Table 4.2: This table gives the dimensions of the subspaces J given in Proposition

[4.1.3 and indicates when [ is an ideal in the case ® is not simply laced.
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P « char F d;
Al >2 ] € —e | any {61 —€er, e —€2:3< k<I+1}
€1 any {€2, 61 — €2}
B,
€1 — €9 #+2 {e1, —€2}
€1 any {1 —er, e 1 2< k<I}
B, 1 >3 2 {e1 L e, e, — e :3< k <I}
€1 — €2

+ 2 {e1 e, e — e :3 <k <I}U{e, —e}

€1 — € | any {e1 e, e, — e :3< k <I}
Ci,1>3
26, + 2 {ar e :2<k<I}
Dl >4]€ —e | any {e1 L e, e, — e :3 <k <I}
2 {%(61i€2:‘:63:‘:€4)}
€1
7é2 {%(614—624‘634—64),%(61—62—63—64)}
Fy
2 {€1 £ €k, e, —€a 1 k= 3,4}
€1 — €2
+ 2 above and {e1, —€q, %(61 —€yte3 ey}
2 {——as,a5-+-aL,——2a5 —-aL,3ag-+-aL}
as
# 2 {—as —ar,2as + ar}
G 3 {3as + 2ay, —3as — ar}
ar,

#:3 {3@3—%2aL,—3aS——aL,as%—aLf—aS}

Table 4.3: This table gives the set of defining roots ®; of J = @ Fe, for each

v€P

root system and a root « of each length. The details for E; are given in the proof of

Proposition [4.1.3]
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4.2 Group action

We now restrict ourselves to the case that F' = F, is a finite field and consider the
action of the Chevalley group G(F,) on F,-subspaces of g(F,). The following result
was initially found while working on lower bounds of non-normal residual finiteness
growth but ultimately was not needed there.

We note that certain choices of a are excluded in the proposition. The proof uses
the sets ®; constructed in the proof of Proposition and given in Table [4.3] For
this proposition to be valid we require a4+ g & ® for all § € @, so we exclude short
roots in B;,l > 3, and (5. In addition, the proof requires the existence of § € ® such

that (a,d) = 1. This fails only when « is a long root in Cj,1 > 2.

Proposition 4.2.1. Let g = p™ for some prime p. Let K < G(F,), V <g, g(IF,) such
that K acts on' V. Let o € ® and assume that « is a long root if ® is type By, 1 > 3,

or Gy, and that o is a short root if ® is type C;,1 > 2. If Fpeq, LV, then
log,([G(F,) : K]) + codim(V') > m(dimg, (J) + 2),
where dimg, (.J) is given in Table with F =T,,.

Proof. Let Tr : F, — F, be the trace, and write V NF.e, = Te,, T' <p, F;. As in
the proof of Lemma [4.1.1] we may assume Tr(7") = 0.

Let {b1,---,b,} be an F,-basis for T, and extend it to a basis B = {by,--- , b}
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of F,. Let B' = {b,---0/,} be the dual basis with respect to the trace, so that

1 ifi=j

0 ifi#j.
For each i, let b; = b} and b_; = b;.
Let @; be as given in Table 1.3 depending on ®, p, and the length of a. Note
that |®;| = dimg, (/) is even, so we can write ®; = ®;; L ®;5, where @5 = {a— 3 :

ﬁ S CI)(]J}. Let

EV:{beﬂ:bEB,BGCDJJ}U{b'eﬁ:b'EB',BECI)JQ}

Eyx = {I‘B(b) :beB,f e @J}l} U {l’g(b/> 0 e B/,B S (I)J’g}.

Define a map from Ex to Ey by m = l_)ea_g. This map will be useful when we
bound the codimension of V. Before we get to V', we investigate the index of K in
G(F,).

Let 6 € ® such that («,d) = 1; this is possible because of our restrictions on «.
Set N = (Xa,{Xp}sea,) and Hs = {hs(s) : s € F;}. Note that X, commutes with
N since a+ ¢ @ for all § € &, and [N, N| = X, since [J, J] = F,e,. Define Gy =
(Hs, N) and Ky = K NGy, and observe that N < Gy. Since [G(F,) : K| > [Go : Ky,
it suffices to find a lower bound for [Gy : Kj).

Let ¢ : Gy — Go/X, be the natural projection map. Let Bx C {z,(b) : b € B}
be maximal with respect to (Bg) N Ky = 1, and let Xx C Ex be maximal with

respect to the property (o(Xg)) Np(Ky) = 1.
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We first compute | Ky N N|. The kernel of ¢ restricted to Ko N N is Ky N X,, so
[ Ko N N| = |o(Ko N N)[[Ko N Xa| < [0(FKo) N(N)]|[Ko N Xal.

The groups X, and ¢(N) are elementary abelian p-groups, so we can view them
as vector spaces over [F,,. With this perspective and the fact that (Bx) N Ky =1, we
see that

dim(KyN X,) <m —dim((Bk)) = m — |Bg]|.
Similarly, since (p(Xk)) N@(Ky) = 1,
dim(p(Ko) N @(N)) < dim(p(N)) — dim((p(Xk))) = m[P,| — | Xk].

Thus

|KO N N’ S pm\¢J|+m—|XK\—\BK‘.
Of course, what we really want is |Ky|. Let ¥ : Gy — Hs be reduction mod N.
Then (Ky) = Ko/(Ko N N), so |Ko| = [¢(Ky)||Ko N N|. Thus it remains to find

¥ (Ko)l.

Since [/, e,] = 0, N acts trivially on e,, so the action of K, on e, descends to the
action of ¢(Ky) < H. Suppose hs(s) € (Ky), where s = > s;bh. If s; # 0 for

some 1 < j < n, then since bje, € V and («, ) =1,
hs(s) - bjeq = sbje, € V
with Tr(sb;) = Tr(s;bb;) = s; # 0, a contradiction. Therefore

¢(K0) - {h5(5) HERS <b;1+17 e 7b;n> \ {0}}7
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so |[Y(Kp)| < p™ ™ — 1. Thus

. (pm — Lpri®sm n+| X x|+ B |
[GO ’ KO] = <pmfn _ 1)pm|(bJ‘+m7|XK‘7IBK‘ = '

We now turn our attention to V. Set By = {byi1€a, - ,bmes} and Xy = {w :
w € Ex \ Xk} C By, and recall that Fee, = Te, & By.
Because [eq, J] =0, z,(s) -w = w for all w € Fk, s € F,. Also, by the properties

of &, for all wi,wy € Fx we have

+1 if w1 = Wo
wy - Wy = Wy + te, with Tr(t) = (4.2.1)

0 if w1 7£U)2.

We begin by showing (By U Xy) NV = 0. If not, then Xy is nonempty and

k
v:z+Zs,~WiEV

=1

for some z € (By),wq, - ,w, € Ex \ Xx. We may assume s; # 0. Since w; & Xk,
the maximality of Xy implies g = wywy € K for some wy € (Xg, X,). By we
have g - v —v =te, € V for some t € F, with Tr(t) = £s; # 0, a contradiction.

Now define Hy = {V'hs : z4(b) ¢ Bk} and suppose (By U Xy U Hy) NV # 0, so
that

v=2z+ Z syblhs €V

YhsEHy

for some z € (By U Xy ), some s» # 0. By the maximality of By, g = z,(c)wy € Ky
for some wy € (Bg). Then g-v—v = te, € V with Tr(t) = £s» # 0, a contradiction.
Recalling that

log,([Go : Ko]) > n+ |Xk| + [Bkl,



we now have

log,([G : K]) + codim(V)) > n + |Xk| + |Bg| + |By| + | Xv| + |Hy|
:n+|XK|+\BK|+m—n+|XV|+m—\BK|

= m(|®,] +2) = m(dimg, (J) +2),

since | Xk|+ | Xv| = |Ex| = m|®,].

63
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Chapter 5

Residual Finiteness Growth
Background

5.1 Residually Finite Groups

We recall the definition of a residually finite group.

Definition. A group I is residually finite if for every 1 # g € I'; there is a finite

group @ and a group homomorphism ¢ : I' = @ such that ¢(g) # 1.

Sometimes it is useful to work with an equivalent definition, two of which are

given below.

Proposition 5.1.1. Let I' be a group. The following are equivalent.
(1) T is residually finite.

(2) The intersection of all finite index normal subgroups of T' is trivial.

(8) The intersection of all finite index subgroups of T is trivial.
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Proof. We first show (1) and (2) are equivalent. Let 1 g e . If o: T = Q is a
homomorphism to a finite group with ¢(g) # 1, then g € ker ¢, a normal subgroup
of I' of finite index, so (1) implies (2). If (2) is true and 1 # g € T, then g € N for
some N <T of finite index. Then g is nontrivial in the finite group G/N, giving (1).

We clearly have that (2) implies (3) since the intersection is being taken over a
larger set. The other direction follows from the fact that every finite index subgroup

H contains a finite index normal subgroup of GG, namely ﬂ gHg™'. [
geG

We will freely switch among these equivalent definitions whenever appropriate.

Example.

Any finite group is trivially residually finite.

Finitely generated free groups are residually finite.

Subgroups and direct products of residually finite groups are residually finite.

e The Baumslag-Solitar group B(m,n) = {(a,b : ba™b~! = a") is not residually

finite if |m| # |n| and |n|, |m| # 1.
A large class of examples of residually finite groups are linear groups.

Definition. We call a group I' a linear group, or say I is linear, if I' < GL4(K)

for some positive integer d and some field K.

It is a classical result by Mal’cev that all finitely generated linear groups are

residually finite. As the goal of this thesis is to provide a more detailed description
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of this fact, we give a proof of Mal’cev’s theorem. The proof requires the following

standard number theory fact.

Lemma 5.1.2. Let A be a finitely generated integral domain. Then the intersection

of all maximal ideals of A is trivial and if A is a field, then A is finite.

Theorem 5.1.3 (Mal’cev’s Theorem). Every finitely generated linear group I is resid-

ually finite.

Proof. We first prove the statement in the case I' = SLy4(Z) to illustrate the idea. For
a prime p, let I'(p) = ker(I"' — SL4(Z/pZ). We observe that each I'(p) is finite index

in I' since SL4(Z/pZ) is finite. It is easy to see that [ [(p) is trivial, so I' is

p prime
residually finite by Proposition [5.1.1}]

We now address the general case. Assume I' < GL4(K) for some field K and that
I is generated by a finite set X. The entries of the matrices in X and their inverses
generate a finitely generated subdomain A of K with I' < GL4(A). For a maximal
ideal m of A, let I'(m) = ker(GL4(A) — GL4(A/m)). Since A/m is a finitely generated
domain which is a field, it is finite by Lemmal[5.1.2] Hence I'(m) has finite index. Also

by Lemma the intersection of all I'(m) as m ranges over the maximal ideals of

A is trivial. Therefore GL4(A) is residually finite, so I is as well. O
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5.2 Residual Finiteness Growth Definition

Let I' be a residually finite, finitely generated group, generated by a finite symmetric

set X, by which we mean x € X if and only if 27 € X. If v € T is nontrivial, define

Df(y) = min{[l': N]: N <T,y ¢ N},

Di(y) =min{[l': H]: H<T,y¢ H}.

Since T is residually finite, and using Proposition [5.1.1}, both DZ(y) and D5 (v)

are finite integers for nontrivial v € T'.

Remark 5.2.1. While DS (y) and D5 (y) are defined similarly, in practice we will
use the following equivalent definition of D3 (v) to take advantage of the restriction

to normal subgroups.

Df(y) =min{|Q| : ¢ : T = Q, p(7) # 1}.

That is, the strategy to compute Drﬂ () will be to find a small finite quotient of I' in

which the image of v is nontrivial.

Definition. A set X C I' is symmetric if X = X~!. Let I be finitely generated by

a symmetric set X. If g € GG, we define the word length of g with respect to X to be
lg/lx =min{n:g=2y - 2,,2; € X}.

The normal and non-normal residual finiteness growth of I' are determined, re-
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spectively, by the residual finiteness growth functions

Frix(n) = max{DF(7) : [Mllx < n.y # 1},

Ffx(n) = max{DF () : [Yllx < n,v # 1}.

We are interested not in the exact values of these functions for a given n but in
how they grow as n goes to infinity. We will compare the asymptotic growth of two
functions f, g : N — N by writing f =< g if there exists C' such that f(n) < Cg(Cn)
foralln e N. If f < gand g < f we will write f ~ g.

The first advantage of considering asymptotic growth is that it is independent of
the choice of generating set. The following lemma is Lemma 1 from [3]; we give its

proof for completeness.

Lemma 5.2.2. Let H < T be residually finite groups finitely generated by S and X

respectively. Then Fg}s(n) = ng(n) and ng(n) =< FFSX(n)

Proof. f K <T,then [K : KNH|<[[': K],and KNH IK if K QT It follows
that D3 (h) < Df(h) and D3;(h) < D5 (h) for all h € H.

Since S and X are finite, there exists some C' > 0 such that ||s||x < C for all
s € S. Hence

{he H:|lhlls <n} S{gel:|lgllx <Cn}.
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Therefore
F}?’S(n) = max{D3;(h):1#h € H,||h||s <n}
<max{Dg(h):1#1¢€ H,||h|ls <n}
<max{D5(g): 1 # g € G,|lgl[x < Cn}
= FEX(Cn).
The same argument works replacing F'< by F<. O

If X; and X, are two finite generating sets of I', then applying Lemma twice
with H = I' shows that the choice of generating set does not affect the asymptotic
growth of either residual finiteness growth function. We thus drop the reference to
the generating set.

Another important consequence of Lemma is that when computing upper
bounds for F(n) or F5(n), we may pass to a larger group, and when computing

lower bounds we may pass to a subgroup.

5.3 Basic Results

We will need the following result when proving lower bounds; it is contained in Lemma
2.4 in [6]. In particular it will allow us to pass from a Chevalley group to its simply

connected cover.
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Lemma 5.3.1. Assume I' and A are finitely generated, residually finite groups. If

f:T — A is surjective with finite kernel, then F5(n) < Fx(n) and F5(n) < Fx(n).

Proof. Since f(I') < A, Fj

H(n) = FX(n) by Lemma/5.2.2| Hence it suffices to show

F(n) < Fiigy(n).

Assume I' = (X)), | X| < oo. Then f(I') is generated by f(X) = {f(x) : x € X}.
Since the kernel of f is finite, if n sufficiently large then f(v) # 1 for all v € T" with
l|7||x = n. Let n be large enough to ensure this and let v € I" with ||v||x = n. We
have || f(7)||fx) < nand f(v) # 1, so there exists a normal subgroup N < f(I") such

that f(v) € N and [f(I') : N] < F5,

f(F),f(X)(n)' Hence N’ = N ker(f) < T satisfies

v¢ N and [I': N'] < Ff(r),f(xﬂ”%

SO Frﬂ,x(n) < F3

0.7 (1) and thus FZ(n) = Fﬁr)(n).

The same argument with N replaced by an arbitrary subroup H shows that

F5(n) = FX(n). O

The following proposition was proved as Theorem 2.2 in [3]. We present a slightly

different proof more aligned with the strategies we will use in the next section.

Proposition 5.3.2. We have Fzﬂ(n) ~ logn. In particular, if n is sufficiently large

then there is a prime p not dividing n with p < 2logn.

Proof. We first show F;'(n) < logn. Let X = {—1,1} and fix n a sufficiently large

positive integer. If we set m = [log 2n], the smallest integer which is at least log 2n,



71

then by the prime number theorem,

1 1
H P> §€m > 5(27&) =n.
p<m
p prime

Thus there is a prime p < m such that p does not divide n. Since m < 1+ log2n <
2log n, we have a homomorphism ¢ : Z — Z/pZ with ¢(n) # 0 and |Z /pZ| < 2logn.
Hence F;X(n) < 2logn, so F'(n) < logn.

To show the lower bound is also logn, let k& > 0 be sufficiently large and set
n =lem(1,--- , k). Then the prime number theorem implies n < 2¢*, so k > log(n/2).
Thus if m does not divide n, then m > k > log(n/2). Since every finite quotient of Z

is of the form Z/mZ, this shows that FZ—}X(n) > log(n/2), so Fy (n) = logn. O

This proof illustrates the basic strategy we will apply to linear groups, and it
already indicates the added difficulty in finding a lower bound in general. One needs
to account for every subgroup up to a certain index. While this is easy in the case of

Z., we will need to use the congruence subgroup property to approach linear groups.
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Chapter 6

Residual Finiteness of Linear
Groups: Upper Bounds

In this chapter we provide upper bounds on the residual finiteness of finitely generated
linear groups. The essential ideas are conveyed by treating the case of SL4(Z). We

then prove a characteristic p specific result before proving the general upper bound.

6.1 Special Linear Group Over Z

We begin by providing proofs of the upper bounds on the normal and non-normal
residual finiteness growth of SL4(Z) that indicate the strategy for the general case.

These bounds were first proved in [3] and [5], respectively.
Proposition 6.1.1. Let I' = SLy(Z). Then FS(n) < n® ! and F5(n) < nd 1.

Proof. Let X be a finite symmetric generating set for I', let n > 0 be sufficiently
large, and let A € I with ||A||x = n. For B € T, let ||B||; be the maximum absolute
value of an entry of B. If ||B||; < ¢ for all B € X, then the properties of matrix

multiplication imply [|A]|; < d" !
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Since A is nontrivial and SL4(7Z) has only finitely many diagonal matrices, we may
assume A has a nonzero entry a off the diagonal. Then |a| < (dc)™, so by Proposition
, there is a prime p < 2log|a|] < 2nlog(cd) such that p does not divide a.
The ring homomorphism ¢ : Z — 7Z/pZ naturally induces a group homomorphism
©* 1 SL4(Z) — SL4(Z/pZ), given by applying ¢ to each entry of a matrix. Since p
does not divide a, *(A) is nontrivial, so Frg,x(”) < |SL4(Z/pZ)|. By Lemma ,

| SL4(F,)| < Cp®*~! for some constant C' independent of p, so
FF%X(”) < C(?nlog(cd))d2—1 = (2 log(cd))dQ_lndz_l.

Therefore F5(n) < n®~1,

Let A be the image of ¢*(A) in PSL4(F,) = SL4(F,)/Z(SL4(F,)). Since p*(A)
has a nonzero entry off the diagonal, A is nontrivial. By Lemma PSL4(F,) has
a proper subgroup Hy of index at most 2p?~!. The intersection of all the conjugates
of Hy is normal in PSL,4(F,) and hence trivial since PSL4(FF) is simple (it is safe to

assume p > 3). Hence A is not in some conjugate of Hy, so if H is the preimage of

Hy under the map I' — PSL4(F,), then A ¢ H and
[T : H] < 2p! < 2(2log(cd)®1)n1.
Therefore F(n) < nd=1. O

Remark 6.1.2. In [3], Bou-Rabee proved the normal residual finiteness upper bound
of SL4(Z) as part of showing the bound held for SLy(Ok), where O is the ring of

integers in a number field K. The proof uses the Chebotarev density theorem (see
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section [3.3). We will use variations of the Chebotarev density theorem for the case

where Ok is replaced by a more general domain.

The above proof provides an outline in the general case where I' < G(R) is finitely
generated, for some linear algebraic group G defined over Z and some ring R. We let
A € T have word length n and find a bound on the size of its entries, which we use
to create a homomorphism ¢* : I' — G(F) for some finite field F with |F| < Cnd™(@),
thus providing an upper bound on Fpﬂ (n). If G is a simple Chevalley group, we ensure
that ¢*(A) does not vanish in the simple group G(F)/Z(G(F)) and use Lemma

@) not containing the image of A,

to find a subgroup H of index approximately n®
which establishes the desired upper bound on F(n).

The main difficulty in the above argument is in finding a finite field F of the
correct size so that A does not become trivial in G(F). The strategy will differ

between characteristic 0 and p, but each will use variations of the Chebotarev density

theorem.

6.2 Purely Transcendental Extensions

In this section we prove Theorem in the case K is a purely transcendental

extension of a finite field. We first need the following lemma.

Lemma 6.2.1. Let f(t) € F,[t] be nonzero with degree at most n. Then there exists

a finite field F with 2n < |F| < 2ng and a homomorphism ¢ : Fy[t] — F such that
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¢(f(t)) # 0.

Proof. Recall from section [3.1| that [,(k) is the number of irreducible polynomials in
F,[t] of degree k; the inequality kI, (k) > 3¢* for k > 2 follows immediately from
Proposition |3.1.1}

Given f(t) € F,[t], we wish to find an irreducible polynomial of appropriate degree
that does not divide f(¢). To that end, note that if f(¢) is divisible by all irreducible

polynomials of degree k, then

dog £ (1) > kI, (K) > 3"

So now let f(t) € F,[t] have degree at most n. Choose M € N with ¢! <n <
%qM . Then by the above observation, there is some irreducible polynomial h(t) with

degree M such that h(t) does not divide f(t). From the choice of M we have
on < ¢M < 2ng,

so f(t) is not zero in the field F = F,[t]/(h(t)), which satisfies 2n < |F| < 2ng. O

We now set some notation to make the proof of the following proposition clearer.

Let F,(t)(z1,--- ,x5) be a purely transcendental extension of F, of degree at least 1.
If f(t, 1, ,25) € Fylt][x1,- -+, xs], we will view it as a polynomial in the indetermi-
nates xy,- -,z with coefficients in F,[¢t]. Then the degree of f is the largest degree

of a monomial term of f, where the degree of 7" --- a7 is ny + - - - + ns. The height

of f is the maximum degree in ¢ of a coefficient of f.
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Proposition 6.2.2. Let G be a linear algebraic group defined over Z and let K be
a purely transcendental extension of Fy(t) for some prime power q. If I' < G(K)

dim(G

1s finitely generated, then Frﬁ(n) <n ) and, if G is a simple Chevalley group,

F5(n) = n“9 . If G = GLy, then FE(n) < n®~! and F5(n) < ni 1.

Proof. Fix an embedding G — GLg4, allowing us to treat elements of I' as invertible
matrices with entries in K. Because I is finitely generated, we may assume the tran-
scendence basis of K is finite, so write K = F,(t)(xy,- - - , x,) for some indeterminates
x;. For notational convenience write R = F[t][z1,- -, xs]. Again using the fact that
[ is finitely generated, I' < G(S) for some S = R[g™'], g € R.

Let X be a symmetric finite generating set of I'. Let m > 0 such that ¢™vy €
Maty(R) for all v € X. Fix A € I" with ||A||x = n and put B = ¢"" A € Maty(R).

Since A is a word of length n in the elements of X, we may view B as a word of
length n in the elements of ¢™X = {¢g™vy : v € X}. Let N be larger than the degree
or height of any entry of an element of ¢™.X.

If A is not a scalar matrix, then B has a nonzero off-diagonal entry or two diagonal
entries with nonzero difference; in this case put f equal to one of these nonzero values.
We can ignore the finitely many instances where A is a scalar matrix of determinant
1. If A = aly is scalar with determinant not equal to 1, put f = ¢g"™?(a? — 1). Our
general strategy is to map R[xy,- - , 24| to an appropriately sized finite field F so that

fg is not mapped to 0. This map will then extend to a homomorphism ¢ : S — F
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with ¢(f) # 0, so that under the induced homomorphism
©": G(S) = G(F),

the image of A is not a scalar matrix or has determinant not equal to 1.

We must first bound the degrees of the entries of B. Recall that B can be repre-
sented as a word of length n in g™ X, and each entry of an element of g™ X has degree
less than or equal to N. Thus each entry of B has degree bounded above by n/V; in
particular, deg f < ndN, so if we set h = fg, then degh < 2ndN for sufficiently large
n. Similar reasoning shows ht(f) < 2ndN.

Since h is nonzero, it has some nonzero coefficient hy(t) € F,[t] with degho(t) <
2ndN. By Lemma there exists a field F and homomorphism 7 : F,[t] — F such
that

2n(2dN) < |F| < 2¢n(2dN)

and 7(hg) # 0. Extending 7 in the natural way to
7 B[tz - xs] = Flag, -+, xs),

note that 7(h) # 0 and deg7(h) < 2ndN < |F|. Hence there exist oy, -+ ,as € F so
that 7(f)(c1,- -+, a5) € F*, as is easily shown by induction on s.

Composing this evaluation map with 7 yields a homomorphism 6 : R — F such
that 8(h) # 0. Since the image of 6 is a field and h = fg, ¢ is mapped to a unit by

0, so 0 extends to a ring homomorphism ¢ : S — T satisfying ¢(f) # 0. Finally, ¢
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induces a group homomorphism
0" G(S) — G(F)

with ¢*(A) nontrivial. By Lemma [2.5.6] |G(F)| < C[F|%™® for some constant C
depending only on G, so |F| < 4¢gdNn and F'(n) < ndm(@),

Now assume G is a simple Chevalley group. If A is a scalar matrix, then by the
choice of f we have det p*(A) # 1, so the image of p*(A) in F under the determinant
map is nontrivial. So suppose A was not scalar. Then ¢*(A) is not scalar by the
choice of f, so its image A is nontrivial in the simple group G(F)/Z(G(F)). Let P be
a maximal subgroup of minimal index in G(F)/Z(G(F)), so [G(F)/Z(G(F)) : P] <
2|F|*“) by Lemma m The intersection of all conjugates of P is normal, so since

G(F)/Z(G(F)) is simple, this intersection is trivial. Thus A is not in a subgroup of

G(F)/Z(G(F)) of index at most 2|F|*%). Hence
A¢ H <T with [[': H] < 2|F|%9),

so F=(n) < nd@),

Now suppose G = GLg4. If A is a scalar matrix, then det(¢*(A)) # 1 and the image
of ¢*(A) in F* under the determinant map is nontrivial. Otherwise ¢*(A) € GL4(F)
is not a scalar matrix, so the image of ¢*(A) is nontrivial in GL4(F)/Z(GL4(IF)), the
size of which is bounded by a constant multiple of |F|d2*1. Hence F(n) < n®-1,

In addition, the image of ¢*(A) in GL4(F)/Z(GL4(F)) is in the image of SL4(F),

which is isomorphic to PSLy(F). Applying the Chevalley group argument from above
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to G = PSLy and using the fact that [PGLg(F) : PSLy(F)] < d, we find that FS(n) <

nd-1, O

6.3 Chebotarev Density Theorems

We now prepare to prove Theorem and finish proving Theorem To work
with coefficients in arbitrary fields, we need two variations of the Chebotarev density
theorem, which was discussed in section [3.3]

The standard Chebotarev density theorem applies to global fields; in particular
it applies to finite Galois extensions of (. We will need a version of the Chebotarev
density theorem which applies to finite Galois extensions of K = Q(zq,---,z5), a
purely transcendental extension of Q. Its ring of integers, i.e. the integral closure of
Z in K, is the polynomial ring O = Z[xy,- - , 4]

We recall the notation of section [3.3] We denote by P(K) the set of maximal
ideals of Ok and put

m(z) = [{p € P(K) : Np <z},

where Np = |Og/p| < .

Let L/K be a finite Galois extension with Galois group G and ring of integers
Op. If p is a maximal ideal of Ok which is unramified in L and ‘B is a maximal ideal
of Oy, lying above p, then G contains a unique element which acts on O /P as the

Frobenius automorphism z ~— z¥?. We denote the conjugacy class of this element by
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)

If C is a conjugacy class of GG, define

P(K)e = {p € P(K) (L/TK> - c} ,

w(z) = {p € P(K)c : Np < a}|.

The following result is obtained by applying Theorem 9.11 of [25], which is a

broader generalization of the Chebotarev density theorem, to the setting

K :Q(xb'" 7375)-

Theorem 6.3.1. Let K = Q(x1,- - ,x,) be a purely transcendental extension of Q
and let L/K be a finite Galois extension with Galois group G. If C is a conjugacy

class of G, then P(K)c has natural density |C|/|G| in P(K).

To apply this result to residual finiteness growth, we need to know how 7 (x) grows.
We would also like to work with maximal ideals of the form (p,x1 — a1, - 25 — as)
instead of arbitrary maximal ideals. If p is a maximal ideal of Ok, then Ok /p is a
finite field, so it is isomorphic to F,« for some d. Define the degree of p to be d, the

degree of the field extension Ok /p over F,. Set
m(z) =|{p € P(K): Np < x,p is degree 1}.

If p has degree 1, then Ok /p = F, for some prime p. Thus the map O — F, sends
p to 0 and each z; to an element a; of IF,, so p,z; —a; € p for each 1 <4 < s. Since

(p, 1 —aq,- -+ ,xs — ay) is maximal and contained in p, it must equal p. So we want
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to work with degree 1 maximal ideals. Fortunately, in terms of density most maximal
ideals are degree 1, by the following lemma.

ZL‘S+1

Lemma 6.3.2. Let K = Q(z1,--- ,x5). Then m(x) ~ m(x) ~ Tog (@)’
og(x?

Proof. The statement follows from Corollary 9.2 and Lemma 9.3 in [25]. O

We are most interested in applying the Chebotarev density theorem with the

. . L/K .
trivial conjugacy class {1}. If 0 = {1}, then O /P = Ok /p for any P lying
above p. In particular, if p is degree one, then both these fields are just I, for some
prime p. We define 7¢(z) in the natural way, counting the maximal ideals counted

by 7°(z) which have degree 1. Applying Theorem and Lemma to this case

gives the following result.

Corollary 6.3.3. Let K = Q(z1,- -+ ,x,) be a purely transcendental extension of Q
and let L/ K be a finite Galois extension with Galois group G. Then

(1} 1 1 :L.nJrl

S G e et

Remark 6.3.4. We will apply this result to find ideals over which a polynomial
factors into a product of distinct linear polynomials. We note that the analogue of

Lemma is true in this setting, with the same proof.

Returning to the standard setting of global fields, we will need an effective version
of the Chebotarev density theorem for [F,(¢). We note that each maximal ideal p

of F,[t] is a principal ideal generated by an irreducible polynomial ¢(¢) satisfying
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Np = peeld®); we will conflate these two notions when convenient. The following
theorem is a specific case of Theorem 1 in [22]. Recall that I,(x) is the number of

irreducible polynomials in F,[t| with degree =, and define
I39(x) = |{p € P(K)y - Np =7}

That is, we count ideals with norm equal to p*. This is more natural to consider in

characteristic p because the norm of each maximal ideal is a power of p.

Theorem 6.3.5. Let L be a finite Galois extension of F,(t) with Galois group G,
let P be the set of irreducible polynomials in Fp[t] which ramify over L, and set
D = deg([],iyepa(t)). Let Fym be the algebraic closure of ¥y, in L. If m divides x

and x > max{degq(t) : q(t) € P}, then

®/2(24+ D 1
m p +
1@~ bt < TP 4o (14 7)

Remark 6.3.6. In the statement of Theorem 1 in [22], there is no requirement on the
size of =, and I,(z) is replaced by the number of unramified irreducible polynomials
of degree x. Since there are only finitely many ramified irreducible polynomials,
these numbers are equal for x sufficiently large, which we have taken x to be in our

statement of the result.

The following technical lemma will enable us to apply Theorem to finding
upper bounds on residual finiteness growth of linear groups over fields of positive

characteristic.
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Lemma 6.3.7. Fiz c1,co > 0. Let f(y) € F,[t][y] be separable with degree k. If n is
sufficiently large, h(t) € F,[t] has degree at most cynlogn, and f(y) has discriminant
A(f) € F,lt] of degree less than cylogn, then there exists ¢ < 2c;(k!)p*', dependent
on n, so that there exists an irreducible polynomial g(t) € F,[t] of degree at most

log,(cnlogn) not dividing h(t) such that f(y) factors into distinct linear factors mod
g(t).
Proof. Assume h(t) and f(y) satisfy the assumptions of the lemma. Let L be the

splitting field of f(y), so that L/IF,(¢) is a finite Galois extension. Let

Q.= |{p € P(K)py : Np=p"}|,

so that I;l}(a;) = |Q:|. If z > deg(A(f)), then A(f) & p for all p € Q.. Lemmam
then immediately implies that f(y) factors into distinct linear factors mod p for all
peQs

We now treat the elements of (), as irreducible polynomials of degree x. We want
to find an z of appropriate size so that some g(t) € @), does not divide h(t). To that

end, observe that

deg H q(t) :xlgl}(x).

q(t)€Qq
Let F,m be the algebraic closure of F,, in L. Since [L : F,,(¢)] < k!, we have |G| < k!

and m|k!, so if m|x and z is sufficiently large, then Theorem yields
*2(2+ D) 1
> " Tl pliaz
v (@) k! (@) z|G| T

p*/?(2+ D)
T

1
> 1) - —9D.
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Since deg(h(t)) < einlogn, if I} (z) > cinlogn, then some g(t) € Q, will not

divide h(t). Using the estimates xI,(x) > % and D < deg(A(f)) < calogn, we have

L
xll;{l}(x) > xz—sx) —p"*(2+ D) — 2Dz
> ﬁ — (2 + cylogn) — 252 log n.
Then
xjgl}(x) — cinlogn > 2?]@') — p*2(2 + c3logn) — 2coxlogn — eynlogn.  (6.3.1)

If we set # = log,(c'nlogn) for some ¢’ > 0, then the right hand side of (6.3.1)

becomes

dnlogn

0 Vdnlogn(2+ cylogn) — 2¢ylog,(nlogn) logn — cinlogn.

The highest order terms in n are c’g(l%)n and cinlogn. Hence if ¢ > 2¢i(k!) and n
is sufficiently large, then the above expression is positive.

However, we also need x to be an integer divisible by m, while log,(c'nlogn) may
not even be an integer. Since m divides k!, it is enough to have k! divide x. For any n,

the interval (log,(2c;(k!)nlogn),log,(2c1(k!)p*nlogn)] has length k!, so it contains

an integer multiple of k!. Thus there exists ¢ > 0 satisfying
2c1 (k") < ¢ < 2¢(K)p*

such that o = log,(cnlogn) € k!Z. Note that while the choice of ¢ depends on n, its

absolute value is bounded independent of n.
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For n sufficiently large, the above choice of ¢ yields x],gl}(x) > deg(h(t)), so we
conclude that there is some irreducible g(¢) € IF,[t] such that g(¢) does not divide h(t)

and f(y) mod g(t) factors into distinct linear factors. O

6.4 The Main Result

We prove two straightforward lemmas to aid the argument in characteristic p.

Lemma 6.4.1. Let f € F,[t][z1,- -, x5] be nonzero with deg f < 2™. Then there exist

g1(t), -+, gs(t) € Fplt] with degg;(t) < m for each i such that f(gi(t),--- ,gs(t)) # 0.

Proof. We induct on s. Suppose s = 1. Since F,[t] is an integral domain and deg f <
2™ f(x) has at most 2™ roots. There are at least 2™+ elements of F,[t] with degree
at most m, so f(g(t)) # 0 for some g(t) with degg(t) < m.

Now assume the lemma is true for s = n —1 and suppose s = n. When considered
as a polynomial over z, with coefficients in IF,[t][x1, - - - , zs_1], f has at most 2" roots,

so there is some g,(t) € F,[t] with deg g(¢) < m such that

f(l’l, T 7%—179(15)) 7’é 0.

Applying the inductive hypothesis finishes the proof. O

The primitive element theorem will play an important role in the proof of the main
theorem of this chapter. This theorem is not guaranteed to hold in positive charac-
teristic because finite extensions are no longer necessarily separable. The following

lemma allows us to reduce to the case of a separable extension.
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Lemma 6.4.2. Let p be a prime and put Ey = F,(xy,--- ,xs) for some xq,--- , g

algebraically independent over F,. If Ly/Ey is a finite extension, then there is some

positive integer m such that if T; = x;/pm for1 <j <s, then L = Lo(Zy, -+ ,Ts) is
a separable extension of E =F (%1, -+, Ts).
Proof. First note that since Lo/ Ej is finite, there are some a, - -+, ay € Ly such that

Lo = Eg(ay, -+, ). Each «; is the root of an irreducible polynomial f;(y) € Epy].
In turn, each f;(y) = g;(y?"") for some irreducible, separable g;(y) € Fyly] and some
positive integer m;. Set m = max{m;}, put z; = le-/pm for 1 < j < s, and let
E = F (%, -+ ,%,). For each i, form g;(y) € E[y] by replacing each z; in g;(y) by
~pm T L/pmi

.Tj :Z'j

Since we are in characteristic p, we then have

so gi(a;) = 0. Each g;(y) is separable, so L = Ly(Z1,- -+ , ) is separable over E. [
We now prove Theorems and together.

Theorem 6.4.3. Let G be a linear algebraic group defined over Z, K a field, and
I' < G(K) a finitely generated subgroup. Put g(n) = n if char K = 0 and g(n) =
nlogn if char K > 0.

Then F5(n) < g(n)®™(S) and, if G is a simple Chevalley group, F=(n) < g(n)*),

If G = GLg, then FE(n) < g(n)* " and F5(n) < g(n)?'.
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Proof. Fix an embedding G — GL4 (G — SL,4 if G is a Chevalley group) and let
I' = (X) < G(K), where X is finite and symmetric. We may assume K is the field
generated by the entries of the elements of X. We first consider the case char K = 0,
though we will see later that most of the arguments leading up to the use of the
Chebotarev density theorem apply when char K > 0.

Since K is a finitely generated field, K is a finite extension of F' = Q(xy,- -, zy)
for some algebraically independent elements x1,--- ,x;. Replacing K by its Galois
closure if necessary, we may assume K/F' is Galois. By the primitive element the-
orem, K = Q(z1,---,2,)[a] for some o € K, which we can choose to be integral
over Z[zy,- -+ ,xs] = Op. Let f(y) € Oply] be the minimal polynomial for « over
Q(z1,- -+ ,xs) and set k = deg f(y).

The entries of the elements of X generate a ring contained in Or[g~!][a] for some
g € Or. Set R = Or[g~'] and J be the ideal of R[y] generated by f(y). If the ring
homomorphism

€ : Fly] = Fla] = K

is evaluation of y to «, then clearly kere, is the ideal generated by f(y). We claim
the kernel of €,|gpy is J, so that R[a] = R[y]/J. This follows from the fact that f(y)
is monic; if some element of R[y] is a multiple of f(y) in K[y], then it must in fact
be a multiple in R[y|, as is seen by an easy computation of coefficients.

Before proceeding, let us set up some convenient notation. If h € R[y]|, set h to

be the element of R[y] with & = h mod J and degy?z <k. Ifb=h+J € Rla], set
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We now present an outline of the proof. Let A € T" with ||A||x = n. Using
the above argument, we consider I' as being embedded in G(R[y|/J). By using
appropriate coset representatives and multiplication to eliminate inverses, we examine
the entries of A as elements of Oplyl, i.e. as polynomials with integer coefficients.
We then use the variation of the Chebotarev density theorem given in Corollary
to produce a homomorphism Op[y] — F,[y] under which an element related to the
entries of A remains nontrivial and the image of f(y) factors as a product of distinct
linear factors. The end result is a homomorphism R[y|] — F, which factors through J,
inducing a homomorphism G(R[y|/J) — G(F,) in which A remains nontrivial. This
suffices to prove the normal residual finiteness growth bound; for the non-normal
residual finiteness growth upper bound, we use similar techniques as in the proof of
Proposition |6.2.2)]

Accomplishing this with no regard for the size of G(FF,) is fairly straightforward,
but to achieve the desired bound, we must keep track of certain details. This is the
reason we prefer to work in Op|y]; its elements are just polynomials with integer
coefficients, with easily tracked “size” properties.

So let A = (A;;) € T be nontrivial with ||A||x = n. For each 7 = (y;;) € X, let
7 = (i) be the element of Maty(R[y|) with 7;; = 7;;. Put X = {3y € X} and let
m > 0 such that ¢"75 € Maty(Orly]) for all v € X. Let Ny be the maximum degree

in xq, -,z of the entries of all the ¢™7.
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IfA=m Y v €X,set A=7;---7,. Then <gm)n;[: B = (B;;) is a product
of n elements chosen from gm)N( , so B € Mat,(Op[y]). For convenience, suppose B
has a nonzero off-diagonal entry h(xy,--- ,zs,y) = h which is not divisible by f(y);
the case when B is diagonal can be treated as in the proof of Proposition [6.2.2] Then

for some constant g depending on ¢™, X, and s, we have
deg, h < (k—1)n, deg,, .. .. h < Non, and ht(h) < ag,

where ht(h), called the height of h, is the largest absolute value of a coefficient of h.

We want to ensure that h continues to not be divisible by f(y) when we evaluate
the x;; the easiest way to accomplish this is by degree considerations, so we now
replace h by h. Since our goal is to map this element to something nonzero, it will then
suffice to clear denominators and map the resulting polynomial to something nonzero.

We need to do this carefully to keep track of how the x degrees and coefficient sizes

change.
Write
k-1
F) =9+ aj(er,--z)y,
j=0

where a; € Op, and put M to be the maximum degree of the a;. Then for r > k, the

coefficients of y” will be sums of products of the a;. For example,
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k—1
yk+1 =~ yk =y <_Zajyj) mod .J

Jj=0
k2
= —ap_1y~ — E a;y’ ™ mod J
=0

k-1 k2

= a1 E a;y’ — E a;y’ T mod J
=0 =0

-1

= apar—1 + Y (ajap—1 — aj,l)yj mod J
1

=

<.
Il

— i k+1
iyﬂL_

As the above example helps illustrate, each y” € Or[y], and the coefficients of y
will include products of at most r — (k — 1) coefficients of f(y), so y*~17 includes

products of at most (k — 1)(n — 1) terms. Hence if a(zy, - - -, x,) is a coefficient of y"

with 7 < (k — 1)n, then
dega < M(n —1)(k—1) and ht(a) < Br=1(k=1)

for some S independent of n.
We obtain h € Orly] by replacing each y" by y. Using the size and degree

estimates on 3", we have
degyﬁ <k, deg,, ..., h < Nin, and ht(h) < o7,

where N; and o are independent of n.
Viewing hasa polynomial with coefficients in Op = Z[z1, - - - , x;], some coefficient

b(z1,- - ,x,) = bof his nonzero. Let A(f(y)) be the discriminant of f(y), an element
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of Op. Consider the polynomial

Vg, - xs) = g(ay, -, x) A(f(y)b(z1, -+ ,25) € Op. (6.4.1)

The only term in this product that depends on n is b(xy,- - ,xs), so b’ retains the
properties from I that its degree is linear in n and its height is exponential in n, so
bounded above by Nn and ", respectively, for some N, « independent of n.

Our goal is to find a homomorphism from R[y| to an appropriately small finite
field such that the image of ¥’ is nontrivial and the image of f(y) is a product of
distinct linear factors. We will use Corollary to accomplish this.

Let Ok be the integral closure of Op in K, and recall the definitions of m(x) and
wfl}(:c) from Corollary|6.3.3l We wish to find p<IOp of degree 1 with |Op/p| < Cn for
some constant C' independent of n such that &' (zq,- - ,zs) mod p # 0 and f(y) mod p
factors into distinct linear factors.

There are Wfl}(C’n) degree 1 maximal ideals p with |O/p| < Cn and (%) —
{1}; if V' & p, then A(f) & p, so by Lemma [3.3.2) and Remark f(y) mod p is a
product of distinct linear factors. Thus we wish to show that the number of degree 1
maximal ideals of norm at most C'n that contain b’ is less than Wfl}(Cn).

Each degree one maximal ideal of Op = Z[zy, -+ , x4 is of the form (p,x; —
ap,- - ,rs—ag) for some 0 < a; < p—1. For such an ideal p, b/'(z1, -+ ,z,) € p if and

only if ¥'(ay, -+ ,as) =0 mod p. Set

X,(V') ={a €T, V(a) =0mod p}.
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Then | X,(0)| = p* if p|b/. If p does not divide V', we claim | X, (V)] < sdeg(d/)p*'.

To show this, we induct on s. When s =1, X,(') = {a € F,, : /(a) = 0 mod p},
50 |X,(¥)] < deg(t).

Now assume s > 1. There are at most deg(b’) values of a, in F, such that
V(zy, - ,2s-1,as) = 0 mod p, yielding at most p*~! deg(b’) elements of X,(V'). For
the remaining at most p values of ag, b/'(z1,- -+, 25_1,as) is a nonzero polynomial mod
p, so by induction there are at most (s— 1) deg(b')p*~2 tuples (ay, - - ,as_1) such that

V(ay, - ,as) =0 mod p. This gives at most (s — 1) deg(d/)p*~! elements of X,('), so
[ Xp(0)] < p*" deg (V) + (s — 1) deg(V)p*™" = sdeg(t)p" ",

proving the claim. Hence if M > 0,
Z | X,(0')] < sdeg(V) Z pit Z p’.
p<M p<M p<Mp|V/
We can split the second sum into two as

o= D>+ > P (6.4.2)

p<M,plb/ p<~/n,p|t/ Vn<p<M,p|V’

Each prime in the second sum of (6.4.2)) is greater than y/n, so if there are [ terms
in the sum, the product of the involved primes is at least (y/n). Since b’ has height

at most ", (y/n)! < a”, so l < 2nloga/logn. Hence

Z p < 2nlogons'
logn
Vn<p<M,p|b’

The sum Zpg\/ﬁps is the number of ideals in Z[zy,--- ,x,] of the form (p,z; —



93

ai, -+ ,xs — ag) with p < +/n, so if n is sufficiently large, Lemma m gives

\/_)erl
Z p - 10g )s-‘rl)

p<y/n

If we put M = Cn for some C' > 1 to be determined, we conclude that

Z p < 4nlog04MS‘

logn
p<M,p|v/ &

Using Lemma [6.3.2 again with s — 1 in place of s, we have

MS
Zp Ms)

p<M

so recalling that deg(V’) < ¢n, we can conclude that

S

4nlog o

. c 2log a
log(M?#) logn

> IX,(1)] < 2sen

p<M

M* = 2pM* ( > . (6.4.3)

logM  logn
Thus we can find p with the desired properties if Wi{l}(M ) is greater than the

right hand side of (6.4.3). If we let mo = |Gal(K/F)| < k!, then by Corollary [6.3.3)

1 Ms+1
m (M) > S Tog (M1 so we want
1 M+ c 2log a 2log aclog M
> 2nM*® S M >4 1 —_— .
2myg log(Ms+1) " <logM * logn ) mo(s+1)n (c+ logn )

Recalling that M = Cn, the above inequality implies we want C' to satisfy

C >4mg(s+1) <c+210ga (1—1— logC>> :

logn

Since my, ¢, s, and « are all independent of n, such a C' exists independent of n for

n sufficiently large. Then with M = Chn, Wi{l}(M> > > pen | Xp(0)]. The number
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on the right side of this inequality is the number of degree one maximal ideals con-
taining (1, -+ ,x,), so we can in fact choose a maximal ideal p of Op such that
b'(z1, -+ ,25) # 0 mod p, f(y) mod p is a product of distinct linear factors, and
Op/p =F, with p < M = Ch.

Now consider the homomorphism

¥ : Oply] = (Or/p)ly] = Fply].

Since (b') # 0 and g|V/, we have 1(g) # 0, so ¥ extends to

m: Rly] = Oplg~']ly] — Fply]

with 7(b") # 0 and 7(f(y)) a product of distinct linear polynomials.
Recalling that ¥ is a coefficient of h, w(b') # 0 implies 7(h) # 0. By our choice of
h, degm(h) < degm(f), so w(f) does not divide 7(h). In particular, 7(f) has some

linear factor y — A € F,[y] that does not divide 7(h). Hence under the evaluation

map e : F,[y] — F, that sends y to A\, w(f) is sent to 0 and 7(h) remains nontrivial.

Thus we have a homomorphism
exonm: Rly] = F,

which maps f(y) to 0 and maps h(y) to a nonzero element of F,. This map thus

factors through J = (f(y)) < R|y], yielding the commutative diagram below.
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Recall from the beginning of the proof that h = B;; = ¢""A;; mod J for some
1 # j, and that h = h mod J. Then by the above diagram, the homomorphism

¢ : Rly|]/J — F, satisfies
07 p(h+J) = p(h+J) = p(g"" Ay +J).

Since g € R*, (g™ + J) # 0, so we conclude that ¢(A;; + J) # 0. Thus the ring

homomorphism ¢ induces a group homomorphism
v": G(Rly]/T) = G(Fy)

with ¢*(A) a nontrivial, non-diagonal matrix. Restricting ¢* to I' yields the desired
homomorphism.

By the choice of p we have |F,| < Cn, so by Lemma [2.5.6, we conclude F7'(n) <
nd™(&)  The upper bounds on non-normal residual finiteness growth G is a sim-

ple Chevalley group can now be proved using the same arguments in the proof of

Proposition [6.2.2] as can bounds on both growth functions in the case G = GL.

Now consider the case char K = p > 0. Then K is a finite extension of F' =
F,(t,z1,- - ,x,) for some algebraically independent elements ¢, 24, - - - , x5. By Lemma
[6.4.2] we can assume K is a separable extension of F' by adding appropriate roots of the
indeterminates. As in the characteristic 0 case we may then replace K by its Galois
closure and assume K/F' is Galois. By the primitive element theorem, K = F[a] for
some a € K. We again can assume « is integral, and we let f(y) € F,[t][x1,- -, xs][y]

be the minimal polynomial for o over Fp(t)(zy,--- ,x,), with deg, f(y) = k. In
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this context Op = F,[t][x1, -+ ,zs] and R = Op[g™'], g € Op. As noted before
Proposition [6.2.2] the degree of an element of Op is its total degree in x4, - -+ , z, and
its height is its degree in t.

One can now perform the same steps as in the characteristic 0 case, replacing Z
by F,[t] and replacing the exponential size bounds on the coefficients by linear degree
bounds. Indeed, the first place where the characteristic p argument diverges is just
after . So we pick up the argument at that point, using the same notation as

before.

We have a polynomial &' (xq,- - ,xs) defined similarly as in (6.4.1)),

b,<1]1, e 7x5) = g(xlf o 7IS>A(f(y))b(x17" o ,ZES> € OF;

with deg b’ < ¢yn and the height of b’ at most con for some constants ¢y, ¢, independent
of n. Then by Lemma , there exist g1(t),---,gs(t) € F,[t], each of degree at
most log(cin), such that 0'(g1(t), -+ ,gs(t)) # 0. If € : Op — F,[t] is the evaluation
homomorphism with e(x;) = g;(t), we have €(g) # 0, so € extends to € : R — F,[t]

and thus induces a homomorphism
¥ 2 Rly] = Fp[i][y]

satisfying 1 (h) # 0, ¢(f) # 0, and $(A(f)) # 0.

We are now in a position to use Lemma [6.3.7, We observe that

deg (V') < con + cynlog(cin) < dnlogn
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for some constant . Also, the discriminant of 1(f(y)) has degree at most c3logn
for some constant ¢ since f(y) is independent of n and each g;(t) has degree at most
log(cin). Thus if we let n be sufficiently large, then by Lemma we can find ¢ > 0
bounded above independently of n and an irreducible polynomial F'(t) of degree less
than log,(cnlogn) such that F(t) does not divide ¥(b) and ¥ (f(y)) mod F(t) is a
product of distinct linear factors.

Put F = F,[t]/(F(t)), let mp be the homomorphism 7p : F,[t][y] — F[y] induced
by F,[t] = F, and define 7 = 7p o4 : R[y] — F[y]. Observe that |F| < cnlogn.
Following the same arguments as in the characteristic 0 case, one can then show
FZ(n) < (nlogn)®™(©) using Lemma [2.5.6, The remaining upper bounds are then

found using the exact same arguments as in the proof of Proposition [6.2.2 m
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Chapter 7

Residual Finiteness of Linear
Groups: Lower Bounds

In this chapter we establish lower bounds on normal and non-normal residual finite-
ness growth of simple Chevalley groups over Z or F,[t]. The methods were developed
specifically to address the F,[t] case but also carry over to the characteristic 0 setting,
where some results had already been found. We first construct a graded Lie algebra
that allows us to work with vector spaces instead of subgroups. The characteristic 0

and p settings are then treated separately.

7.1 A Graded Lie Algebra

Let G be a simple, simply connected Chevalley group with irreducible root system
¢ of rank | > 2. Let g(C) be the Lie algebra of G, with Chevalley basis {e, : a €
Oy U{hy, -y}

Fix an embedding G < SLy. As discussed in section there is an embedding

of g(C) into sly(C) respecting the Lie bracket so that the action of G on g(C) by
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conjugation, via matrix multiplication, is the same as the adjoint action of G on

g(C). We will use this more concrete perspective for the remainder of this section.

Example. In the case ® is type A; and K is a field, we have g(K) = sl (K) C
gl (K), with e.,_., = e;; as Chevalley basis elements, as in the example in section
. Then the generators of the Chevalley group G(K) are the elementary matrices
xo(t) = Eij(t) = 1+ te;;, which are known to generate SLj1(K). If @ = ¢ — ¢ ,

B = €; — € are linearly independent roots, then e,ege, = 0, so

(14 teq)(ep)(1 —te) = ep + teqep — tege, — tzeaegea

= ep + tlea, €5l
which is the action described in section 2.4

Let K be the field Q or F,,(¢), with ring of integers O = Z or F,[t], respectively. We
have G(O) = G(K)NSLy(O). Fix a maximal ideal m <O and k € N. Set R = O/m*
and F = O/m; if K =TF,(¢) then char F = p, and if K = Q, put p = char F.

Let G; be the kernel of the projection G(R) — G(O/m') for i > 1 (note that

G; = {1} for i > k). Since G is simply connected,

G(R) = (xo(r) : 7 € R, € D),

G(O/m") = (z4(r mod m") : r € R, € ®).

by Lemma2.5.3] Then the generators of G(O/m?) are all in the image of the projection

G(R) — G(O/m"), so the projection is surjective.
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We now use the groups G; to construct a graded Lie algebra (see [20], Chapter 7
for more details and [2] for a similar construction). In the case K = Q, these kernels

were used in [0] to study the normal residual finiteness growth of Chevalley groups.

Lemma 7.1.1. Let G(R), G; be as above. Then (G, Gp) C Gpim and GE < Gy

As a consequence, G;/Giyq is an elementary abelian p-group for 1 <i <k — 1.

Proof. Let nym > 1 withn+m < k—1, and let x € G,,,y € G,,. Since O is a
PID, we can write m = (m) for some irreducible element 7. Then z = I; + 7" A,
y = Iy + 7B for some A, B € Maty(R), where I; is the d x d identity matrix. We
show that (z,y) mod m™™™ is the identity. We have (z,y) = xyz~'y~! = zy(yz)™*,

SO

(z,y) = (Ig+ A+ 7"B+7"""AB)(I; + " A+ 7" B + """ BA) ™!
=(Ig+7"A+7"B)(I;+ 7" A+ 7"B)"" mod m"*"™

= ]d mod m"+m.

Hence (z,y) € Gpim.-

Still letting x = I; + " A € G,,, by the binomial theorem we have

a? = (I + 7" AP = I + pr" A mod m" .

If O = Z, then 7 = p, and if O = F,[t], then p = 0, so in either case 2¥ = [; mod m"*!

and hence x? € G4 1. O
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By Lemma [7.1.1} each G;/G;;1 can be viewed as a vector space over F,, so we

can define an F,-vector space
k—1
L(Gy) = P Gi/Gisr.
i=1

In fact, we can make L(G;) a Lie algebra over F,. An element of L(G;) is called
homogeneous if it belongs to one of the direct summands, i.e. it is of the form G4
for some 1 < i < k—1, x € G;. Using Lemma [7.1.1] define the Lie bracket on
homogeneous elements to be

[ Gl [2,y]Givj1 € Gigj/Gipja ifi+j<k—1
Gip1,YGja] = ’

0 otherwise

where [z,y] = zyz~ly~! is the group commutator, and extend the bracket to all of
L(Gy) by linearity.

We note that G(F) = G(R)/G; acts on G;/G;+1 by conjugation. Indeed, G(R)
acts on G;/Gyyq since Gi, Giy1 < G(R), and if x € Gy, y € G, then zyz™! € yG, 1y
by Lemma so (G acts as the identity on G;/G;y1.

Since G(IF) also acts on g(F) by conjugation, this suggests these objects are related.
Indeed, the following proposition shows that G;/G;1 can be treated as a copy of g(IF).

We use without proof the fact that |G;/Giyi| < |[F|4™©),
Proposition 7.1.2. For 1 <i <k —1, the map ¢ : G;/Gis1 — gly(F) given by

I+ 1A~ Amod 7
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induces an isomorphism of elementary abelian p-groups G;/G;y1 = ¢(F), and this
isomorphism is equivariant with respect to the action of G(IF) on both sides by conju-

gation.
Proof. Begin with ¢ = 1. Then
G1/Gy = ker(G(F[r]/7?) — G(F)).

The right hand side of the above equation is how Lie(G(F)) was defined in section
2.5 with € in place of 7. As discussed in that section, the map I; +7A — A mod
produces an isomorphism with g(IF) C sl,(F).

Now assume i > 1. Since O/7" = F[rn]/x", we have
Gi/Gis1 = ker(G(Flz]/7'"") — G(F[x]/7)).
If A€ G;/Giyq, then then entries of A are in
(F @ «'F)/r™ = (F @ «'F) /7% = F[r] /=%,
so we have
Gi/Gis1 = ker(G(EF[r'] /7*) — G (F[x]/7"))
= ker(G(F[r']/7*) — G(F)),
since the image of F[r’] /7% modulo 7 is just F. Using € = 7, the same reasoning as

when ¢ = 1 now applies.

Finally, for any 1 <i<k—1, I+ 1A € G;, and g € G(F), we have

g(Ig+m'A)g ' = I;+7'gAg ",
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so the isomorphism is equivariant under conjugation by G(F). O

For any a € @, z,(7%) mod 7' € G;/G;1, and its image in g(F) can be identified
with the Chevalley basis element e,, as noted in section [2.5]
By Proposition [7.1.2] if we let  be an indeterminate then we have a Lie algebra

isomorphism
k—1
L(Gy) = o(F) © 2F[z]/a* = P 2" (F).
i=1

We now define certain Lie subalgebras of L(G1) arising from subgroups of G(R). Let

H < G(R) and for 1 <i <k — 1, define
bi = (HNG)Git1/Gin = (HNG)/(H N Gipa),
which we view as an F,-subspace of g(IF). Then [b;, b;lr, € biy; if i + 5 <k, so
k-1
L(H) = D(H N Gi)Gi1/Gin
i=1

is a graded Lie subalgebra of L(G). Observe that the group H/(HNG,) = G1H/G; <
G(F) acts on each b; by conjugation.

Using the realization of L(Gy) as g(F) ® zF|[z]/(x*), we can write
k-1
L(H) = @ «'bs.
i=1

The dimension of L(H) (as an F,-vector space) is naturally related to |H N G|, as

seen in the following lemma.
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Lemma 7.1.3. Let H < G(R) and consider the graded Lie algebras L(G1) and
L(H) defined above as vector spaces over F,. Then dim(L(H)) = log, |H N G| and

codimp g, )(L(H)) = log,[G1 : HNG1].

Proof. The statement follows from a few computations. Note that dim(L(H)) =

k—1
|HNGi| dim (b .
HNGy| = | | | | im(h;) _ , dim(L(H))
| 1= [HN Gy L7 p )

proving the first claim.

Using H = G4, it follows that dim(L(G1)) = log, |G1], so

log,[G1 : HNGy] = log, |G1| —log, |H NG
= dim(L(G;)) — dim(L(H))

= codimp g,y L(H). O

7.2 Lower Bound Preliminaries

We now prove some lemmas that will enable us to use the graded Lie algebra con-
structed in the previous section to find lower bounds on the normal and non-normal
residual finiteness growth of Chevalley groups.

We continue with the assumptions and notation of the previous section; in partic-
ular GG is a simple simply connected Chevalley group with irreducible root system ®.

When bounding normal finiteness growth in the characteristic p case, we will want to
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guarantee G1H # G(R) when H is a proper normal subgroup of G(R). In almost all

cases, G(R) is perfect by Proposition [2.4.6 so the following lemma will apply.

Lemma 7.2.1. Assume G(R) is perfect and H < G(R). If H # G(R), then G1H #

G(R).

Proof. Recall that R = O/mk. For any 1 < i < k — 1, there is a natural surjective
homomorphism

Gi/Gi—H — GZH/GZ_HH

If G;H = G(R), then G(R)/G;11H is the image of the abelian group G;/G;1;. Since
G(R) is perfect, G(R)/G;+1 H must be trivial, so G;H = G411 H.
In particular, if GiH = G(R), then the above argument implies Gy H = G(R).

Since Gy = 1, we conclude that H = G(R) if G1H = G(R). O

We cannot apply the above lemma when O = Fy[t] and @ is type By or Gy. We
won’t need this result in the G5 case, so we now prove a similar result when @ is type

By. We write G(R)' for the derived subgroup of G(R).

Lemma 7.2.2. Fiz k > 1 and set R = Fy[t]/f(t)* for some irreducible f(t) € Flt].
Let G be a simply connected Chevalley group of type By and let H be a proper normal

subgroup of G(R). If G(R)' € H, then G1H # G(R).

Proof. Recall that the root system of type By has roots {£e;, e, (61 £ €3)}. We

set up some notation to make the computations clearer. For 1 < j < k, put G(j) =
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G(Fy[t]/f(t)?), and for 1 < ¢ < j, set G(j); = ker(G(j) — G(i)). We will continue
writing G; for G(k);. Note that G(k) = G(R).

We first show Gy H # G(k). If this is not the case, then
G(k)/H = Gy 1H/H = Gx_1/(H N Gj_1)

is a nontrivial abelian quotient of G(k), so G(k) C H, a contradiction.

Recall that we can view h; = (H N G,;)Gj4+1/Gj11 as a subspace of g(F).

We now assume for the sake of contradiction that GyH = G(k). Since Gy_1H #
G(k), there exists some 2 < j < k — 1 such that G;_1H = G(k) and G;H # G(k).
Then

9(F) /b1 =G /(HNGj)G; =G H/GjH

is nontrivial, so h;_; # g(F).
Put H(j) = G;H/G,; and observe H(j) is properly contained in G(j). Since

Gj_1H = G(k), we have G(j);_1H(j) = G(j), so G(j) € H(j). Hence
Te (EF () ) Tegre (Ef () ) = [26,(1), Ter—ee (F () )] € H(j) N G(5) -1,

SO €¢; + €epte; € Bj1.

The subspace b;_; is invariant under the action of G1H/G; = G(F) and is proper
in f(F), so Fh;_; is a proper ideal of g(F) by Lemma Then by Proposition m,
[Fh,_; is the center of g(F) or contains Fe, for each short root . Clearly Fh,_; is not
the center, so it contains e., and thus also contains e.,.,. This then forces Fh,_; to

be all of g(F), a contradiction. O
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If g € O, we write G(O, g) = ker(G(O) — G(O/g)), and we denote the ged of w
and g as (m,g). We call G(O, g) a principal congruence subgroup; any subgroup of
G(O) containing a principal congruence subgroup is called a congruence subgroup.

If the rank of G is at least 2, then G(QO) has the congruence subgroup property:
every finite index subgroup of G(0O) is a congruence subgroup (see Chapter 9 of [23]
for details). We note that it is necessary that G be simply connected for this to be
true.

Using the congruence subgroup property we will be able to reduce to the case of
considering principal congruence subgroups. The next two statements will help us

work with their images in G(R).

Lemma 7.2.3. Let R = O/7" for some irreducible m € O and set A = G(O, g) for

some g € O. Let A be the image of A in G(R).
1. If (7,9) =1, then A = G(R).
2. If (7, g) = 7 with s < k, then (AN G;)Git1/Giz1 = g(F) for s <i <k —1.

Proof. First assume (7, g) = 1. Then for any f € O, there exist hy, hy € O such that

him* + hog = f. Thus if o € D,
xa(hQQ) = xa(f)'ra(_hlﬂ-k) € A’

s0 7o (f mod %) € A. By Lemma [2.5.3] G(R) is generated by {z,(f mod 7*) : f €

0}, s0 A = G(R).
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Now assume (7%, g) = m* with s < k. For notational convenience, write
0;, = (Z N Gi>Gi+1/Gi+1'

Using similar reasoning as above, for any o € ® and any f € O, z,(7°f mod 7*) € A.

Hence for s <i <k —1,
{zo(n'f mod 7¥):a € @, f € O} CANG,,

so Fe, C 0, for all a € .
Since the projection G(O) — G(R) is surjective, A < G(R), so G(R)/G, = G(F)

actson 0;. Fora € ¢, t € F,
To(t)e_aTal—t) = e_q + the — te,.

Since Fe_,, & Fe, C 0;, we must have th, € 0;. Since this is true for all « € & and

t € F, in fact 0; = g(F). O

Corollary 7.2.4. With the same setup as in Lemma let H< A and fit o € ®,
a short root if ® is type C;. Assume (7%, g) = 7° and Fe, € b; for some 1 < j < k-1

such that s < j/2. If s =0, then
codimy,x) L(H) > [F : Fpl(j — 1).

If s > 1, then

codimyx) L(H) > [F : F)](j — 2s +1).
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Proof. Since Fe, Z b, and [h;,h;_;] € b; for 1 <1i < j —1, we have Fe, Z [b;,h;_i].
Put Di = (Zﬂ Gi)Gi—l—l/Gi—I—l-
If s = 0, then A = G(R) by Lemma [7.2.3 so d; = g(F) for 1 <i < k — 1. Then

Corollary implies
codimy, (h;) 4 codim,,_,(h;—;) > 2[F : )]
for 1 <i<j—1. Hence
codimyx) L(H) > [F : F,)(j — 1).

If s > 1, Lemma gives that 9; = g(F) for s < i < k — 1. There are
Jj—2s+1 integers in the interval [s, j — 5], so the previous reasoning yields the desired

inequality. 0

7.3 Lower Bounds In Characteristic O

We continue with the notation of the previous section, with G remaining a simple
simply connected Chevalley group with a fixed embedding into SL;. Fix o € ®, a
short root if G is type C;. We first provide lower bounds for the normal and non-

normal residual finiteness growth of G(Z).

Lemma 7.3.1. Let R = Z/p* for a prime p, k > 1. Let A = G(Z,N), let A be the

image of A in G(R), and assume (p*, N) = p*. Let r > N be sufficiently large and
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set

L, = (lem(1,2,- - ,r))3@dm(@+s),

M, = 2,(L, mod p¥).

_ — 1 _
If H < A and M, ¢ H, then [A : H| > ér"(G). If in addition H < A, then

B H] > = pin(),

Proof. Let M,, H be as in the statement and suppose p™ !||L,, by which we mean
p™~1 divides L, and p™ does not divide L,. We have m < k since M, # 1, and
M, € A since r > N implies N|L,. The proof splits into three cases; we will consider

H as an arbitrary subgroup and as a normal subgroup in each case.

Case 1: k = 1. Since k = 1, we have R = F, and p > r > N, so (p, N) = 1. By
Lemma , A = G(F,), so H is a proper subgroup of G(F,). Then by Lemma m,
[G(F,) : H] > 1p®@ . Since M, is nontrivial, p does not divide L,, so by construction
of L., p > r. Hence [G(F,) : H] > %r“(c), as desired.

If in addition H is normal, then H C Z(G(F,)) since G(F,)/Z(G(F,)) is simple.

Thus by Lemma [2.5.5]

dim(G) > irdim(G) .

(G(F,) : H] > |G(F,)/Z(G(E,)| > o 2d

_de

Case 2: k > 2, m = 1. Let G; be the kernel of the projection G(R) — G(F,), and
recall the graded Lie algebras L(G1) and L(H) defined in section [7.1] Since m = 1,

p does not divide L,, so again p > r and A = G(F,). We also have M, ¢ G;. If in
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addition G1H # G(R), then the image of H in G(R)/G; = G(F,) is proper, so

[G(R) : H] > =p°

N —

If H is normal, then by the same reasoning as before we see that [G(R) : H| >

1 .
_— .dim(G)
er .

If GiH = G(R), then since p > r is large, G1H/G1 = G(F,) acts irreducibly on

g(IF,) by Proposition [2.6.1} so for each j, b; is trivial or h; = g(IF,). If all are g(F,),

this forces H = G(R), contradicting M, ¢ H. Thus b; is trivial for some j and
codimp g,y L(H) > codim b; = dim(G),

so [G(R) : H] > piim(@) > pdim(G),

Case 3: k> 2, m > 2. Since M, ¢ H and p™!||L,, we have M, € G,,_1 \ Gy, s0

Fpea Z Bmo1. If p'|[lem(1,- -+ ,r), then
m — 1 = 3(dim(G) + s)l and p+HdmE) ~ ,.dim(@)
In particular, s < j/2, so by Corollary , if s > 1 then
codimy x)(L(H)) > m — 2s.

Since

m — 2s = 3(dim(G) + s)l —2s + 1 > dim(G)(l + 1),

we conclude that

[A:H>[ANG,: HNGy] > pIm(G)UH1) - . dim(G)
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A similar argument works when s = 0, using the corresponding inequality from
Corollary [7.2.4] O

Theorem 7.3.2. Let G be a simple Chevalley group of type ® of rank at least 2,
not necessarily simply connected, and let A be a finite index subgroup of G(Z). Then

FX(n) = n™©) and F5(n) = n*%),

Proof. Let G be the simply connected Chevalley group of type & and let p :
G¥(Z) — G(Z) be the natural map; it is surjective and has finite kernel. Then
p~1(A) has finite index in G§°(Z) and the map p~!(A) — A is a surjection with finite
kernel, so by Lemma [5.3.1] the residual finiteness growth of A is bounded below by
that of p~!(A). Thus we may assume from the start that G is simply connected.

Then G(Z) satisfies the congruence subgroup property, so A contains some prin-
cipal congruence subgroup. Since residual finiteness growth can only decrease by
passing to a subgroup, we may assume A = G(Z, N) for some N € Z. Let s be the
largest power of a prime dividing N.

Fix r > N sufficiently large and put L, = (lem(1,2,--- ,r))3dm™(&+s)  Fix some
a € &, a short root if G is type C;. We show that M, = x,(L,) is in every subgroup
of G(R) of sufficiently small index. First we need to determine the word length of M,
in A.

By Theorem A in [19], there exists a generating set X of G(R) so that

[|M:||x < Cylog |Ly|
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for some C; > 0. By the prime number theorem, lem(1,--- ,r) ~ €", so
log | L,| < Cy(dim(G) + s)r
for some absolute constant Cy. Since A has finite index in G(Z), we conclude that
[ M, [ly < Cr

for some generating set Y of A and some constant C' independent of r.

Now suppose M, ¢ H < A. By the congruence subgroup property of G(Z),
H D G(Z,N') for some N’ € Z. Set R =7Z/N' and let N’ = Hlepfi be the prime
factorization of N'. Write Gy = G(Z/p}*) for each i. Then by the Chinese Remainder

Theorem,

Let 7n+ be the natural projection G(Z) — G(R). Then nn/(M,) & wn/(H), so in
some G;), M, = 24(Lr mod pf’) ¢ H, where M, and H are the images of M, and H

in G;), respectively. So by Lemma [7.3.1}

Ta(G)

vV
N | —

[A:H] >[A: H]|

Y

1 .
and [A : H] > ﬁrdlm(G) if H<JA. Recalling that M, has word length n < C'r finishes

the argument. O
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7.4 Lower Bounds In Characteristic p

We continue using the same setup as in the previous section but now deal with the
groups G(F,[t]) € SL4(F,[t]). Let a € ® be a short root if G is of type C;. Recall

that the root system of type By has roots {+e€;, *€3, £(€1 - €2)}.

Lemma 7.4.1. Let R = F,[t]/f(t)* for an irreducible polynomial f(t), k > 1. Let
A =ker(G(F,[t]), g(t)), let A be the image of A in G(R), and assume (f(t)*, g(t)) =

F(t)°. Fizr > deg(g(t)), and set
L,(t) = (lem{h(t) € F,[1] : deg(h(t)) < r})* @@+,
Ifp=2 and G is of type By, let
M, = e, (L (t) mod f(t)*)@e, e (Lo (t) mod f(#)"),

and otherwise set

_ _ 1 _
If H < A and M, ¢ H, then [A : H] > §pm(G). If in addition H < A, then

_— rdim(G) ]

Proof. Let M,, H be as in the statement, put ¢ = p?°8/®) and suppose f(t)™'||L,(t),
where m < k since M, # 1. Observe that M, € A since g()|L,(t). The argument
splits into a few cases. As in the proof of Lemmal7.3.1], we will treat H as an arbitrary
subgroup and then as a normal subgroup in each case. The arguments are similar to

the characteristic 0 case, so details will sometimes be skipped.
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Case 1: k= 1. Since k = 1, we have R = F, and deg(f(t)) > r > deg(g(t)), so f(t)

and g(t) are relatively prime. Then A = G(F,) by Lemma [7.2.3| so H is a proper

1
2

a(@)

subgroup of G(F,). By Lemma [2.5.5, [G(F,) : H] > . Hence

q

If H is normal, then H C Z(G(F,)) since G(F,)/Z(G(F,)) is simple, so Lemma

[2.5.5] gives

Case 2: k > 2,m = 1. Since m = 1, we again have deg(f(t)) > r and A = G(R).
Let G; be the kernel of the projection G(R) — G(F,), and define graded Lie algebras
L(G4) and L(H) as in section

We first consider the case H < G(R). If G(R) is perfect, then by Lemma [7.2.1]

G1H # G(R). Hence the image of H in G(F,) is proper and

as before. Otherwise, by Proposition p =2 and G is of type By or G5. In the
former case,

M, = [26,(1), 2e,—e, (Li(t) mod f(£)")] € G(R),

so G(R) € H and thus G1H # G(R) by Lemma yielding the desired bound
as shown above. If G is type Gy and G1H = G(R), then G1H/G; = G(F,) acts

irreducibly on each h; by Proposition [2.6.1] and Lemma [2.6.2 Hence some b; is
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trivial, so
codimpq,) L(H) > dim(G) deg(f(t))

and

A H] > plin(@) deg(f(®) > gy dim(©),

If H is an arbitrary subgroup of G(R), then the case G1H # G(R) again reduces
to a previous argument. So assume G1H = G(R). Then G1H/G; = G(F,) acts on
each b;, so for each i, either h; = g(F) or Fh; is a proper ideal, using Lemma m
Since h; C Fh;, by examining Table 2.1 and Table we see that each b is all of
g(FF,) or has codimension at least a(G)deg(f(t)). Since H is proper, not all the b;

can be g(F,), so

codimp g,y L(H) > a(G) deg(f(t)) > ra(G).

Thus [G(R) : H] > p (@),
Case 3: k£ > 2,m > 2. We handle H being normal and arbitrary simultaneously.
Since M, ¢ H and f(t)™ '|L,(t), we have M, € Gp—1 \ G, so Fee, € b; for some
m—1<j<k—1(F,(e + €e+e,) € b, if G is type By, p = 2).

By the construction of L,(t), f(¢t)™!||L,(t) implies m — 1 = 3(dim(G) + s)I for

some integer | > 1 satisfying deg(f(¢))({ + 1) > r. In particular, s < j/2, so by

Corollary [7.2.4] if s > 1 then
codinmy i (L(H)) > deg(£())(j — 25 + 1)

> deg(f(t))(m — 2s).
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We have

m — 2s = 3(dim(G) + s)l — 2s + 1 > dim(G) (I + 1),

SO

deg(f(t))(m — 2s) > dim(G) deg(f(£))(I +1) > rdim(G),

and hence

[Z : H] Z [ZﬂGl : HﬂGl] zprdim(G)'

A similar argument works when s = 0, using the corresponding inequality from

Corollary [7.2.4]

We note that while Corollary does not directly apply in the case G is of type
By, p = 2, the same arguments in Corollary work when using e., + €., 4, in

place of e, because
Cey + Certer = i[eﬁl + Ceys Ce1—en + 662*61]' L
We can now prove the positive characteristic analogue of Theorem [7.3.2]

Theorem 7.4.2. Let G be a simple Chevalley group, not necessarily simply connected,
of rank at least 2, let p be a prime, and let A be a finite index subgroup of G(F,[t]).

Then Fx(n) = nd™&) and Fx(n) = n©.

Proof. As in the proof of Theorem we may assume G is simply connected and
A = G(F,[t], g(t)) for some g(t) € F,[t]. Let s be the largest power of an irreducible

polynomial dividing g(t).



Fix r > deg(g(t)) and set

118

L,(t) = (lem{h(t) : deg(h(t)) < r})3dm(@+s)

Let ® be the root system of GG, and let o € &, with the extra condition that « is a

short root if ® is of type C},1 > 2. Set

Tey (Lr(8))Tey4ey (L (t)) i @ = By, p=2

zo(Ly(t)) otherwise

By Theorem A in [19], there exists a generating set X of G(F,[t]) so that

[|My|[x < Crdeg(Ly (1))

for some constant C. The degree of lem{h(t) € F,[t] : deg(h(t)) < r} is at most

2p", so deg(L,(t)) < 6(dim(G) + s)p". Hence ||M,||x < Cayp” for some constant Cs.

Since A has finite index in G(F,[t]), we conclude that M, has word length n < Cp"

for some constant C' with respect to some generating set of A.

The remaining argument is the same as in the proof of Theorem|[7.3.2] Substituting

Lemma

7.4.1

for Lemma

7.3.1

1
. one shows that if M, ¢ H < A, then [A : H] > §pra(G)’

[
and if H is normal then [A : H] > —p"4™(&) Then M, having word length at most

—2d

Cp’ implies Fx(n) = nd™(©@ and F5(n) = n*9). 0
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