
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Behind the Meter: Implementing Distributed Energy Technologies to Balance Energy Load in 

Virginia 

 

 

 

 

 

A Technical Report 

Presented to the Faculty of the 

School of Engineering and Applied Science 

University of Virginia 

 

 

By 

Thomas Anderson 

12 May 2021 

Team Members: Daniel Collins, Chloe Fauvel, Harrison Hurst, Nina Mellin, Bailey Thran 

 

 

 

 

 

On my honor as a University student, I have neither given nor received unauthorized aid on this assignment 

as defined by the Honor Guidelines for Thesis-Related Assignments. 

 

Signed:                                     Thomas Anderson                                                               . 

 

Approved:                                                                                            Date:                                    . 

Benjamin Laugelli, Department of Engineering and Society 

 

Approved:                                                                                             Date:                                   . 

Andres Clarens, Department of Civil Engineering 

 

 

 

 

 



Behind the Meter: Implementing Distributed Energy 

Technologies to Balance Energy Load in Virginia 

Thomas Anderson  
Student in Systems Engineering 

in the  

Department of Engineering 

Systems and Environment 
University of Virginia 

tpa3xk@virginia.edu 

 

Daniel Collins  
Student in Systems Engineering 

in the  

Department of Engineering 

Systems and Environment 
University of Virginia 

dpc7ns@virginia.edu 

 

Chloe Fauvel  
Student in Systems Engineering 

in the  

Department of Engineering 

Systems and Environment 
University of Virginia 

cff2aa@virginia.edu 

 

Harrison Hurst  
Student in Civil Engineering in 

the  

Department of Engineering 

Systems and Environment 
University of Virginia 

hh5dj@virginia.edu 

 

Nina Mellin  

Student in Civil Engineering in 

the  
Department of Engineering 

Systems and Environment 

University of Virginia 

nkm9jt@virginia.edu 

 

 

Bailey Thran 

Student in Systems Engineering 
in the  

Department of Engineering 

Systems and Environment 

University of Virginia 
bwt2ts@virginia.edu 

 

 

 

Andres Clarens  

Professor of Civil Engineering in 
the  

Department of Engineering 

Systems and Environment 

University of Virginia 
afc7r@virginia.edu 

 

 

 

Arthur Small  

Economist and Decision Scientist 
in the Cooper Center for 

Economic Policy Studies  

University of Virginia 

asmall@virginia.edu 
 

 

 

Abstract—One of the principal challenges associated with 

decarbonization is the temporal variability of renewable 

energy generation, which is creating the need to better 

balance load on the grid by shaving peak demand. We 

analyzed how innovative load-shifting technologies can be 

used by large institutions like the University of Virginia to 

shift load and support statewide efforts to decarbonize. To do 

this, we focused on the University's plans for expansion of the 

Fontaine Research Park, which is a good model for 

understanding how these technologies could distribute energy 

load behind the meter. First, we worked to develop a predictive 

model to forecast when peak demands will occur and 

understand how interventions, including heat recovery 

chillers and thermal storage tanks, might be used to balance 

load. Then, we extended a statewide energy systems model 

using the Tools for Energy Modeling Optimization and 

Analysis (TEMOA) to simulate the ways in which these types 

of interventions might be scaled to the whole state. Using the 

energy demand model in conjunction with aggregated 

institutional energy use data, the team evaluated the effects 

that broader adoption of distributed energy technologies in 

Virginia could have on the grid's ability to handle the energy 

transition. Our study showed implementing distributed energy 

sources on a state-scale had insignificant effect on balancing 

load. However, on a microgrid scale, such technologies prove 

to be a useful resource to decrease peak demand which would 

allow for further clean energy projects and possible cost 

reductions.  

Keywords—Load Balancing, TEMOA, Distributed Energy 

Technology (DET), Thermal Energy Storage (TES), Heat Recovery 

Chillers (HRC) 

I. INTRODUCTION (HEADING 1) 

As of 2020, the University of Virginia (UVA) and the 

Commonwealth have made commitments to achieve carbon 

neutrality by 2030 and 2050, respectively. One of the most 

important unanswered energy challenges is how to reduce peak 

demand. This concern is of particular importance because 

energy utilities charge most large institutions based on their 

peak energy consumption rate from the previous year. This is 

set to change with utilities transitioning to time-of-use pricing, 

where energy usage at peak hours incurs greater costs than 

energy use during off-hours. For this reason, stakeholders at 

UVA are interested in exploring the potential of load-shifting 

technologies that would reduce peak energy consumption and 

save UVA money to finance future sustainable projects. 
UVA currently operates a thermal energy storage 

facility that provides chilled water to the hospital and medical 

school. A thermal energy storage system is being considered for 

the development at Fontaine Research Park, a satellite campus 

that is under development which includes amenities, office 

spaces, research, academic, and clinical buildings. The thermal 

storage system is in ‘charging’ mode as electricity is taken from 

the grid and used to run chillers that cool the tank’s water down 

to 42°F.  The water is stored at this temperature until the hours 

of peak energy usage when the system changes to ‘discharging’ 

mode. In this mode the chilled water is sent out to be used in 

the buildings for cooling, and is returned to the tank at a 

temperature of 55°F. The rate of discharge varies based on the 

season as cooling demand changes with outside temperature; 

the winter months exhibit a lower demand for cooling than the 

summer months. Implemented on a state scale, load-shifting 

technologies like thermal energy storage may accelerate the 

adoption of time-of-use pricing.  



 Currently, PJM, the energy grid that Virginia belongs 

to, sources roughly 13% of its energy from renewable resources 

[1]. Renewable energy is often less expensive, but its 

production rates are unpredictable and depend strongly on 

outside factors such as solar irradiance and cloud coverage. To 

compensate for renewable resources’ dependence on external 

factors, load-shifting technology will play a pivotal role in 

adjusting demand to be more conducive to dynamic grid 

behavior. The first step of this transition, and the focus of this 

paper, centers around implementing distributed energy 

technologies (DETs), more specifically heat recovery chillers 

(HRCs), in conjunction with thermal energy storage (TES). 
HRCs greatly increase energy efficiency by saving 

heat that would otherwise be wasted in the cooling process. 

HRCs require significant concurrent heating and cooling load. 

For this reason, and because of the large upfront cost of 

installation, HRCs work particularly well at large institutions. 

Universities, military bases, and campuses are uniquely 

positioned to see a measurable difference in performance due 

to the large volumes of energy they consume, their centralized 

infrastructure, and their concurrent heating and cooling loads.  
Tools for Energy Model Optimization and Analysis 

(TEMOA) is an open-source modeling framework for 

conducting energy systems analysis [2]. TEMOA allows users 

to create and specify the economic and functional 

characteristics of energy generating plants and the fuels that 

they consume. TEMOA also allows users to specify energy 

demand by time of day, constrain the model with emission caps, 

and limit the rate of new power plant creation. The model is run 

for a set time span and can return data from set years over the 

run’s duration. TEMOA has been utilized in previous studies, 

like one modeling Puerto Rico’s energy grid and its change in 

response to the probability of hurricanes and the 

implementation of climate mitigation policies [3].   
Most other studies involving TEMOA focus on the 

model’s application as a point of comparison for other energy 

models to verify the tool’s accuracy [4] [5]. Such research 

provides legitimate grounds for modeling the Virginian energy 

grid in TEMOA to analyze the viability of deploying DETs on 

a statewide scale.    

II. METHODOLOGY 

A. Data Acquisition 

Data used for modeling Fontaine was collected by 

Facilities Management at the University of Virginia. It is a set 

of historic electricity (kW) and cooling (kbtu/hr) usage data for 

proxy buildings1 at UVA along with corresponding 

temperatures (F) and relative humidity taken at fifteen-minute 

time intervals. Corresponding weather data for solar radiation 

(W/m2), wind direction (degrees relative to North), and wind 

speed (m/s) was sourced from the KVACHARL80 weather 

station located at Scott Stadium. For each building type, 

average energy usage was determined by dividing each proxy 

building by its square footage and then averaging all buildings 

of that type to get the mean energy demand per square foot. In 

order to avoid data discrepancies, linear interpolation was 

performed for missing data values. Other predictor variables 

included whether it was a weekday or weekend, whether 

courses were in session, and season of the year. The data spans 

from February 1st, 2019 to June 30th, 2020. To avoid anomalies 

caused by the COVID-19 pandemic, the time span was reduced 

down to February 1st, 2019 to March 8th, 2020.  
For modeling the state of Virginia, energy use 

statistics were sourced from The Association for the 

Advancement of Sustainability in Higher Education’s 

(AASHE’s) Sustainability Tracking, Assessment & Rating 

System (STARS). The STARS database provided recent energy 

usage statistics from most large universities and colleges across 

the United States [6]. A summation of total energy use values 

for Virginian institutions predicted the potential impact that 

these institutions could have on the overall energy landscape of 

Virginia should they choose to implement DETs. 
 

B. Modeling 

Using the statistical software R, linear regression was 

performed to predict energy demand per square foot using the 

following predictors: hour of the day, relative humidity, 

temperature, whether it was a weekday or weekend, season, 

solar radiation, wind direction, and wind speed. Since the 

response variable is non-negative, we performed a natural log 

transformation on the response variable to output positive 

values, then reconverted the output back to its original form 

by transforming into exponential form. In order to correct for 

high correlation in the time series data, we also performed 

ARIMA modeling on the residuals of the linear model using 

R’s auto.arima() function. The ARIMA output gave a 

correction factor that was then added to the predictive linear 

model. Adding the two models together gave an output of 

average demand per square foot for each building type which 

was then multiplied by the estimated square footage for each 

building type.2 The output of the cooling model was converted 

from kBtu/hr to kW to be consistent with the units used for 

electricity demand. In estimating the electricity usage for the 

cooling demand, an efficiency loss assumption of 25% was 

applied to account for system losses associated with chillers 

[7]. The two kW outputs from the cooling and electricity 

demand were then summed to give an output of overall 

demand.  

 

 
Fig. 1. Linear regression model predicting total electricity and 

cooling demand for the first week of March 2020 superimposed 

on the true, observed demand. 

1 The proxy buildings included two academic buildings (Minor Hall, Skipwith 

Hall), six research buildings (Jesser Hall, Rice Hall, Physical and Life 

Sciences, Chemical Research Engineering, MR-5, MR-6), and two clinical 

buildings (Primary Care Center, Battle Building)  

 

2 179,000 GSF for academic buildings, 606,000 GSF for clinical buildings, 

and 500,000 GSF for research buildings. 

 



We modeled the thermal energy storage tank using 

many of the assumptions outlined from the hospital’s system. 

Figure 2 displays the assumed monthly schedule of discharge 

rate for the thermal storage tank. We converted discharge flow 

rates from gal/min to cooling capacity in kW given the 

parameters of the tank in order to combine kW consumption 

with electricity consumption. Since we are considering the 

effect of charging and discharging the thermal storage tank on 

total electricity consumption in kW, we applied the efficiency 

loss to the charge and discharge flow rate in kW by dividing by 

its efficiency factor of 75%, to get kW of electricity used to cool 

the water. Additionally, the charge rate also took into account 

efficiency loss from the thermal storage tank itself, assumed to 

be 5%. Thus, the charge rate was also divided by the TES 

efficiency factor of 95%. 
 

 
Fig. 2. Monthly schedule of thermal energy storage tank 

discharge rate in gal/min. 
 

We applied the same schedule the hospital uses which 

discharges between 11:00am to 7:30pm and charges between 

8:00pm to 10:30am. Additionally, the transition period between 

charging and discharging was assumed to be negligible. The 

outputs of this model were used to qualitatively analyze the 

technology’s behavior on a microgrid scale so it could be 

applied to institutions across the State using the TEMOA 

modeling tool.  
The TEMOA model used in this project builds off a 

previously constructed model that simulated energy use in the 

Commonwealth of Virginia [3] and adds HRCs to the grid.  The 

runs would show the effect of mass implementation of HRCs 

on hourly distribution of net energy activity (PJ), with a focus 

during the summer, when the technology’s impact would be 

most significant due to the simultaneous heating and cooling 

loads.  
Three sets of runs were performed to conduct a 

thorough sensitivity analysis of factors suspected to affect net 

energy activity. The first set of runs varied the total capacity of 

HRCs. The second set of runs varied the efficiency of the HRCs 

at a constant 3,000 MW capacity. The third set did not restrict 

the building of additional capacity of HRCs and sampled three 

separate points in time over a thirty-year period: 2025, 2035, 

and 2045.  
Part of TEMOA’s output are database files for each 

scenario. These were transformed using an in-browser 

converter into a folder of “.csv” files that each represented a 

table from the database. These files were then read into an R 

environment and the energy activity of the various power plants 

were analyzed. 
The model aims to explore the relationship between 

varying input parameters and the degree of load balancing on 

the grid. It was hypothesized that a larger capacity and greater 

efficiency would further balance load which is represented by a 

flatter energy activity curve. 

III. ANALYSIS AND RESULTS 

Figure 3 shows the intervention of TES to the 

predicted energy demand for the first week of March 2020. As 

predicted, the application of thermal energy storage 

significantly shifted load from the peak grid demand hours that 

occur in the middle of the day and redistributed demand during 

the hours of 8:00 pm to 10:30 am. TES in Figure 3 displaced a 

total of 2,572,500 gallons of chilled water for that week of 

March.  
Predicted energy demand was developed so other 

institutions could simulate similar load-balancing technologies 

and thus augment statewide use of TES. Though the predictive 

model closely resembles real demand trends, there are 

limitations to the predictive abilities of the tool driven in part 

that the demand data was collected from only the last year and 

a half. Due to the COVID-19 pandemic, much of the more 

recent data cannot be applied given its irregularities. With these 

data limitations, an analysis using predicted energy demand 

could not be simulated during the summertime when the 

benefits of HRCs are most pronounced. Rather, thermal storage 

intervention was applied to the observed data for the month of 

July 2019, as seen in Figure 4. TES in Figure 4 displaced a total 

of 1,181,250 gallons of chilled water from peak hours to off-

peak hours for just a single average day in July. Given that 

cooling demand accounts for 12% of total commercial energy 

consumption in the US [8], the shift in load dramatically 

displaced electricity usage as seen in Figure 3 and 4. 

 

 
Fig 3. Linear regression model predicting total electricity and 

cooling demand for the first week of March 2020 with thermal 

energy storage. 



 

 
Fig. 4. Total electricity and cooling demand for an average July 

day based on 2019 historical data with thermal energy storage. 
 

HRCs were then applied to a similar summer day in 

the TEMOA analysis. The aggregated net energy activity in PJ 

was graphed by hour over the summer season, both including 

and excluding HRCs. In addition to the graphical analysis, a 

multifactor ANOVA test was performed over each set of graphs 

using a binary HRC inclusion factor and varied each parameter 

over different runs (efficiency, year, capacity). The ANOVA 

table examined the difference between the daily and hourly 

average, a smaller difference indicating a flatter curve overall 

which implies a more even load distribution.  
 

 
 
Fig. 5. Projections of HRC implementation at four different 

capacities 1,000, 2,000, 3,000, and 4,000 MWs. 
 

As shown in Figure 5, varying the capacity between 

1,000 and 4,000 MW of HRCs does not have a significant effect 

on net energy activity. At any of the given capacities, the two 

output levels nearly overlap, indicating minimal load shifting 

from the HRCs. This assertion was further supported by the 

results of a multi-factor ANOVA test, where capacity as an 

isolated variable had a p-value of 0.965.  
 

 
Fig. 6. Changes in efficiency of HRCs between three levels, 

65%, 80%, 95%, at a constant 3,000 MW capacity. 

 
Visual inspection of Figure 6 brings about a 

conclusion that is akin to the previous analysis centered on the 

effect of capacity manipulation. In the same way, changing 

efficiency rates for the HRC fails to significantly alter net 

energy activity, indicating that as a whole, HRCs have a 

negligible effect on the effectiveness of load-balancing efforts, 

even with increased efficiency. This assertion is further 

corroborated by the results of a multi-factor ANOVA test, 

where efficiency as an isolated variable had a p-value of 0.71. 
 



 
Fig. 7. Unrestricted building of HRCs for 2025, 2035, and 2045 

on a statewide basis. 
 

As can be discerned in Figure 7, future grid forecasting 

indicates the passage of time has a statistically significant effect 

on the daily energy activity curve. This assertion is further 

corroborated by the results of a multi-factor ANOVA test, 

where time as an isolated variable had a p-value of less than 

0.01. Note that when the HRC capacity in the model was left 

unrestricted the capacity grew to 8,400 MW in 2025, 22,600 

MW in 2035, and 29,000 MW in 2045.  
 

IV. CONCLUSION 

Currently, we are seeing a national trend toward 

electrification as the nation transitions away from oil dependent 

activities. Given the demand implications on the local 

microgrid, the implementation of TES systems may encourage 

local utilities to adopt time-of-use pricing. This would further 

incentivize load shifting activities, in turn supporting future 

growth of renewables. Such an effect would free up local 

substation capacities, allowing for more local clean energy 

projects. However, when scaled to the state level, the findings 

concluded that mass HRC implementation had no real 

significant effect on load balancing.  
There are some significant considerations when 

reviewing the results of the model. The largest grid scale battery 

in the world is currently only 300 MW [9]. When considering 

that total HRC capacities would need to be in the thousands, 

this would require massive implementation at nearly all 

institutions in Virginia. In other words, the amount of capacity 

needed to become significant is improbable. That being said, 

HRCs benefit at the institutional level may provide significant 

cost savings, especially with time-of-use pricing. Further, the 

resilient nature of such technologies allows institutions to 

operate more independently from the grid. 
Even though the degree of load balancing increases in 

the future as more technologies are implemented, state 

resources would be better suited elsewhere. Further research 

may be conducted to explore other state level technologies to 

either increase load balancing on a macro scale or increase grid 

capacities. Potential demand response programs could be 

implemented to take advantage of the growing number of 

electric vehicles on the road. Perhaps discounting and paying 

electric vehicle owners to charge and discharge electricity from 

the grid may provide more significant results given the growing 

market. Further, electric bus storage implemented on a state 

scale may provide similar benefits. Continued research in 

renewable forms of energy which provide more controlled 

production would further increase the stability of the grid. 
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