
A

Presented to
the faculty of the School of Engineering and Applied Science

University of Virginia

in partial fulfillment
of the requirements for the degree

by

APPROVAL SHEET

This

is submitted in partial fulfillment of the requirements
for the degree of

Author:

Advisor:

Advisor:

Committee Member:

Committee Member:

Committee Member:

Committee Member:

Committee Member:

Committee Member:

Accepted for the School of Engineering and Applied Science:

Jennifer L. West, School of Engineering and Applied Science

© Mengdi Huai 2022
ALL RIGHTS RESERVED

Acknowledgements

I would like to thank all the people who gave me tremendous support and help during my Ph.D.

study. Without their support and help, this dissertation would not have been possible.

First and foremost, I would like to thank my advisor - Professor Aidong Zhang, for her

invaluable supervision, continuous support, and persistent encouragement during my PhD study.

I consider myself very fortunate to work with Professor Zhang, and her immense knowledge and

plentiful experience have encouraged me in all the time of my academic research and daily life.

She taught me not only the way of doing excellent research, but also how to write high quality

research papers, mentor students, and find the good things in life. When I was in trouble, she

was always there to provide help and support. Her passion in research, teaching, and student

supervision has also motivated me to pursue a career in academia.

Next, I would like to express my deepest appreciation to my committee committee mem-

bers, Professor Hongning Wang, Professor Jundong Li, Professor Haifeng Xu, and Professor

Stefan Bekiranov, for their constructive comments and suggestions for my research projects.

I would also like to extend my deepest gratitude to Professor Jinhui Xu, Professor Jing Gao,

Professor Chunming Qiao, Professor Lu Su, and Professor Changyou Chen for valuable discus-

sions, suggestions, and collaborations.

I would also like to express my great appreciation to all my colleagues and friends who

supported me during these years. I have enjoyed the time we spent together, and they make my

Ph.D. journey a pleasant and exciting one. In particular, I would like to thank Guangxu Xun,

Liuyi Yao, Qiuling Suo, Hongfei Xue, Jinduo liu, Jianhui Sun, Kishlay Jha, Guangtao Zheng,

Jiayi Chen, Jing Ma, Sanchit Sinha, Yaliang Li, Qi Li, Houping Xiao, Fenglong Ma, Chuanhao

Li, Tianhang Zheng, Di Wang, Renqin Cai, Yi Zhu, Wenjun Jiang, and those I have not included

their names here, for the collaborations and helpful advice.

i

I would like to thank my parents, Zhengui Huai and Xueqin Zhang, for loving and sup-

porting me unconditionally. I would like to thank my sister and brother, Jiwei Huai and Jian-

wei Huai, for their constant help and encouragement. I would also like to thank my husband,

Chenglin Miao, for all his sacrifices and being there all the time. Especially helpful to me is

their belief in me, which has kept my spirits and motivation high during this process.

ii

Abstract

Recent years have witnessed an explosion of works that develop and apply machine learning

algorithms to build intelligent learning systems (e.g., medical decision systems and self-driving

cars). However, traditional machine learning algorithms mainly focus on optimizing accuracy

and efficiency, and they fail to consider how to foster trustworthiness in their design. Trustwor-

thiness reflects the degree of a user’s confidence that the deployed machine learning algorithms

will operate as the user expects in the face of various circumstances such as human errors,

system failures, and malicious attacks. The essential characteristics at the core of trustworthi-

ness include model transparency, robustness against malicious attacks, and privacy preservation.

Without fully studying the trustworthiness of the deployed machine learning algorithms, we will

face a variety of devastating social and environmental consequences. In this dissertation, we

take steps to study and address the untrustworthy issues in the design of machine learning algo-

rithms. Specifically, we first propose several model interpretation methods that can give insights

on machine learning models’ working mechanisms by interpreting what they have learned and

hence help increase the trust in model decisions. Then, we design both offensive and defensive

strategies to investigate the security vulnerabilities of machine learning algorithms to malicious

attacks. In addition, we design several effective privacy-preserving mechanisms for privately

sharing data and machine learning models without leaking the sensitive information. Exten-

sive experiments are conducted and presented to demonstrate the effectiveness of the proposed

methods.

iii

Contents

Acknowledgements i

Abstract iii

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Motivation . 2

1.2 Dissertation Overview . 4

1.3 Dissertation Organization . 6

I Enabling Transparency for Predictive Models 9

2 Towards Interpretation of Pairwise Learning 10
2.1 Introduction . 10

2.2 Methodology . 12

2.2.1 Adaptive Interpretation Method for Pairwise Models 12

2.2.2 Robust Approximation Interpretation Method for Pairwise Models . . . 15

2.3 Experiments . 18

2.4 Related Work . 23

2.5 Conclusions . 24

3 Understanding Generalization in Deep Metric Learning 25
3.1 Introduction . 25

3.2 Preliminary . 26

iv

3.3 Generalization Analysis for Deep Metric Learning 28

3.4 Adaptive Dropout for Deep Metric Learning 30

3.5 Experiments . 32

3.5.1 Experimental Setup . 32

3.5.2 Experiments for Theoretical Observations 33

3.5.3 Experiments for ADroDML . 37

3.6 Related Work . 38

3.7 Conclusions . 40

II Studying Security Vulnerability and Robustness to Malicious Attacks 41

4 On the Robustness of Deep Reinforcement Learning Interpretations 42
4.1 Introduction . 42

4.2 Preliminary . 45

4.3 Adversarial Attack against DRL Interpretations 47

4.3.1 Threat Model . 47

4.3.2 Formalization of Universal Adversarial Attack 48

4.3.3 Optimization . 50

4.3.4 Theoretical Analysis . 51

4.4 Model Poisoning Attack against DRL Interpretations 53

4.4.1 Threat Model . 53

4.4.2 Formalization of Model Poisoning Attack 53

4.5 A Defense Mechanism against Malicious Attacks on DRL Interpretations . . . 55

4.6 Experiments . 57

4.6.1 Experimental Setup . 58

4.6.2 Experiments for Adversarial Attack 59

4.6.3 Experiments for Model Poisoning Attack 62

4.6.4 Experiments for the Proposed Defense Mechanism 63

4.7 Related Work . 64

4.8 Conclusions . 66

5 Robust and Automatic Model Explanations 67
5.1 Introduction . 67

5.2 Methodology . 69

v

5.3 Experiments . 75

5.3.1 Visualization . 75

5.3.2 Robustness . 79

5.3.3 Architecture Search . 80

5.4 Related Work . 80

5.5 Conclusions . 82

III Privacy-preserving Sharing of the Sensitive Information 83

6 Pairwise Learning with Differential Privacy Guarantees 84
6.1 Introduction . 84

6.2 Related Work . 86

6.3 Preliminaries . 86

6.3.1 Private Pairwise Learning . 87

6.3.2 Online Private Pairwise Learning . 88

6.4 Online Private Pairwise Learning . 90

6.5 Offline Private Pairwise Learning . 92

6.5.1 Generalization Error Induced by Generalized Regret 92

6.5.2 Improved Upper Bounds by Offline Differentially Private Algorithms . 93

6.6 Experiments . 95

6.6.1 Experimental Setup . 95

6.6.2 Experiments for AUC Maximization 96

6.6.3 Experiments for Metric Learning . 97

6.7 Conclusions . 100

7 Privacy-preserving Synthesizing for Crowdsourced Data 101
7.1 Introduction . 101

7.2 Problem Setting . 102

7.3 Preliminary . 103

7.4 Methodology . 104

7.4.1 Overview . 104

7.4.2 Weighted KDE-based Data Representation 104

7.4.3 Privacy Test-based Synthetics Release 107

7.4.4 Theoretical Analysis . 109

vi

7.5 Experiments . 110

7.6 Related Work . 115

7.7 Conclusions . 116

8 Conclusions and Future Directions 117

9 Appendix 120
9.1 Proof of Theorem 1 . 120

9.2 Proof of Theorem 2 . 122

9.3 Proof of Theorem 3 . 124

9.4 Proof of Theorem 4 . 128

9.5 Proof of Theorem 5 . 131

9.6 Proof of Lemma 4 . 133

9.7 Proof of Theorem 6 . 135

9.8 Proof of Theorem 7 . 135

9.9 Proof of Theorem 8 . 137

9.10 Proof of Theorem 9 . 137

9.11 Proof of Theorem 10 . 138

9.12 Proof of Theorem 11 . 139

9.13 Proof of Theorem 12 . 142

References 147

vii

List of Tables

2.1 The statistics of the datasets. 20

3.1 The statistics of the adopted datasets. 32

3.2 The number of units in each layer of the neural networks. 32

4.1 The setting of parameters. 59

4.2 Percentage of identified features on the game of Breakout. 64

5.1 The statistic information of the adopted datasets. 75

5.2 The reconstruction error and classification accuracy on the adopted datasets. . . 76

5.3 The change of explanations under different perturbation values. 79

7.1 The statistics of the adopted datasets. 111

7.2 Accuracy comparison on the real-world datasets 113

viii

List of Figures

2.1 The AUC metric w.r.t the percentage of masked features. 19

2.2 Running time of ASIPair and RAIPair. 21

2.3 The calculated deviation scores for testing instance pairs on MNIST dataset.

The results in (a)-(d) are for four different instance pairs. 22

2.4 Visualization results generated by the proposed RAIPair on the MNIST dataset. 22

3.1 The testing loss of the DML model on the MNIST 8v9 dataset (a-c) and the

bone disease dataset (d-f). (a) and (d): The effect of the training data size. (b)

and (e): The effect of batch normalization. (c) and (f): The effect of regularization. 34

3.2 The testing loss of the DML model under different retention rates on the MNIST

8v9, bone disease and wine-quality datasets. 35

3.3 The training loss of the DML model for different input feature dimensions on

the MNIST 8v9 dataset. The results in (a), (b) and (c) are for three different

neural network structures, respectively. 36

3.4 Classification accuracy of the proposed ADroDML on the MNIST 8v9 dataset. 38

3.5 Classification accuracy of the proposed ADroDML on the wine quality dataset. 39

3.6 The training loss of AdroDML w.r.t Number of batches on the MNIST 8V9

dataset. 40

4.1 Performance comparison of adversarial attacks on the accumulative reward. . . 58

4.3 Performance of the proposed model poisoning attack on the accumulative reward. 61

4.2 Visualization results for the Pong game. 61

4.4 Percentage of identified features when k = 706. 62

4.5 Percentage of identified features when k = 1, 058. 62

5.1 Model structure of the proposed method. 70

5.2 Reconstructed images on the adopted datasets. 76

ix

5.3 The learned prototype-based concepts on the MNIST dataset where λ2 = λ3 =

λ6 = 0.05 and λ2 = λ3 = λ6 = 0. 77

5.4 Visualization results for the prediction result. 77

5.5 The retrieved training samples having the smallest distances from the learned

concepts on the MNIST dataset. 78

5.6 The training loss of the proposed method under values of M̂ on the adopted

datasets. 81

6.1 The objective value of OnPairStrC for AUC maximization. 97

6.2 The objective value of OnPairC for AUC maximization. 97

6.3 The objective value of OffPairStrC for AUC maximization. 98

6.4 The AUC measurement of OffPairC. 98

6.5 The objective value of OnPairC for metric learning task under different training

sizes. 99

6.6 The classification accuracy of OffPairC for metric learning task under different

training sizes. 99

7.1 An example for the standard KDE . 104

7.2 Privacy-aware synthesizing for crowdsourced data 104

7.3 Case study on real-world datasets. (a) and (b): the two cases for Population

dataset. (c) and (d): the two cases for Stock dataset. (e) and (f): the two cases

for Indoor Floorplan dataset. 112

7.4 Accuracy w.r.t. Number of Sampled Claims. (a) and (b): Population. (c) and (d):

Stock. (e) and (f): Indoor Floorplan. 114

7.5 Running time vs. number of sampled claims for each object. (a): Population.

(b): Indoor Floorplan. 115

x

Chapter 1

Introduction

We have entered into the data age where everything around us is connected to a data source,

and everything in our lives is digitally recorded. For instance, the current electronic world has

a wealth of various kinds of data, including the Electronic Health Records (EHRs), social me-

dia data, smartphone data, smart city data, cybersecurity data, spatiotemporal data, genomics

data, and the Internet of Things (IoT) data. Extracting knowledge and useful insights from these

wealthy data can be used for building smart decision-making systems in various relevant do-

mains. For instance, to build personalized healthcare applications to improve health outcomes,

the relevant healthcare data can be utilized; to build the efficient and intelligent cybersecurity

systems, the relevant cybersecurity data can be exploited, and so on.

Particularly, machine learning have grown rapidly in recent years in the context of data

analysis and computing that typically allows the applications to function in an intelligent man-

ner. Machine learning is the essence of machine intelligence, and refers to the development of

the systems that can automatically improve through experience and through the applications of

real-time data. Specifically, machine learning consists of the techniques that can enable com-

puters to discover different patterns in data by using flexible methods for modeling and variable

selection and deliver artificial intelligence applications.

The field of machine learning has exploded in recent years and researchers have devel-

oped an enormous number of algorithms to choose from. Based on the nature of the “signal”

(or “feedback”) available to the learning systems, machine learning algorithms can be gen-

erally divided into the following three categories: supervised learning, unsupervised learning,

semi-supervised learning and reinforcement learning. In supervised learning, the training data

1

2

includes observations and labels, which represent some sort of true outcome or common hu-

man practice in reacting to the observations. In unsupervised learning, the training data only

includes observations and no labels are given to the algorithm. In semi-supervised learning, a

combination of a small amount of labeled data and a large amount of unlabeled data is used to

train machine learning models. Thus, it falls between learning without supervision and learning

with supervision. In reinforcement learning, the inputs are interactions with the real world and

rewards accrued through those actions rather than a fixed dataset, and no predefined data are

given and the agent learns by the trial-and-error method. In practice, machine learning models

can be utilized to perform different tasks, e.g., classification analysis, regression analysis, data

clustering, association rule learning, and feature engineering for dimensionality reduction.

Despite this great variety of machine learning models to choose from, they can all be dis-

tilled into three components. The three components that make a machine learning model are

representation, evaluation, and optimization. Specifically, representation refers to the encoded

representations of objects, such as a face being represented by features such as “eyes”. Eval-

uation is used to distinguish good models from bad models. This evaluation is done using an

evaluation function (e.g., accuracy and squared error). Optimization means updating the model

parameters to minimize the value of loss function. Specifically, an optimization algorithm is

used to fund the values of the parameters that minimize the error of the function when used

to map inputs to outputs. This means that each time we fit a machine learning algorithm on a

training dataset, we are solving an optimization problem.

Nowadays, machine learning becomes popular in various application areas, due to its learn-

ing capabilities from the experience and making intelligent decisions. The popular application

areas of machine learning technology include image recognition, sentiment analysis, product

recommendations, automating employee access control, marine wildlife preservation, language

translation, language translation, and sustainable agriculture. In addition to these application

areas, machine learning based models can also apply to several other domains such as bioin-

formatics, cheminformatics, computer networks, DNA sequence classifcation, economics and

banking, robotics, advanced engineering, and so on.

1.1 Motivation

Although machine learning has been applied successfully in a wide variety of areas (e.g., dis-

ease diagnosis, autonomous driving, fraud detection, face recognition, and product recommen-

dations), traditional machine learning algorithms mainly focus on optimizing accuracy, and they

3

fail to consider trustworthiness in their design.

• First, users usually treat a machine learning model as a black box because of its incom-

prehensible functions and complex working mechanism. However, the “black box” nature

of the machine learning models may impede decision makers from trusting the predicted

machine learning results, especially when the model is used for making critical decisions

(e.g., medical disease diagnosis and autonomous deriving), because the consequences

may be catastrophic if the predictions are acted upon blind faith. In general, transparent

machine learning models have the advantage of faithfully reflecting the model behav-

ior during the decision-making process, which helps users to examine whether a ma-

chine learning model has employed the true evidences instead of biases (that widely exist

among training data) and reduces the likelihood of an error.

• Second, traditional approaches to machine learning usually assume that the training and

testing data distributions are stationary and do not consider the trustworthiness in the

presence of active adversaries. Recent studies have demonstrated that the trustworthiness

in terms of security can be violated when motivated adversaries perturb test examples

at testing time through evasion attacks, or inject well-crafted malicious instances into

training data to induce learning errors through poisoning attacks.

• In addition, traditional machine learning methods also face serious privacy leakage risks.

And the privacy of the sensitive private information refers to the trust that the sensi-

tive information is not compromised or altered maliciously. In practice, privacy can be

compromised when the shared data and machine learning models are exposed to an ad-

versary. For example, in model inversion attacks, an adversary uses the shared model to

make predictions of sensitive attributes (used as input to the model) of a target individual

when some background information about the target individual is available.

Without fully studying all of the above trustworthiness aspects (i.e., transparency, secu-

rity and privacy), we will face a variety of devastating social and environmental consequences,

which are harmful to the connections between humans and the deployed real-world intelligent

learning systems. In fact, the machine learning community also recognizes that all-hands efforts

at various levels are needed to support and ensure the development of robust and trustworthy

machine learning systems. Thus, there is a great need to ensure that the real-world intelligent

learning systems that rely on machine learning are trustworthy in terms of transparency, security

and privacy preservation.

4

1.2 Dissertation Overview

In this dissertation, towards the objective of fostering trustworthiness in machine learning al-

gorithms, we take steps to address the untrustworthy issues when machine learning algorithms

are applied in different real-world applications. According to the studied problems,we organize

the dissertation with three parts: 1) research on enabling transparency for predictive machine

learning models to address the problem of interpreting the predictions of black-box machine

learning models, 2) research on investigating the security vulnerability and robustness of ma-

chine learning algorithms in the malicious environments, and 3) research on designing effective

privacy-preserving mechanisms for privately sharing the information. In this section, we provide

an overview of each work.

Enabling Transparency in Predictive Models
As we know, machine learning models have demonstrated great success in learning complex

patterns that enable them to make predictions about unobserved data. However, in addition to

using machine learning models for prediction, academic researchers and industrial practitioners

are facing challenges that demand more transparent and explainable systems for better under-

standing the inner working mechanisms of machine learning models. The concerns about the

black-box nature of machine learning models impede decision-makers from trusting the model

predictions in real-world applications. For example, an advanced self-driving car equipped with

various machine learning algorithms does not brake or decelerate when confronting a stopped

firetruck. This unexpected behavior may frustrate and confuse users, making them wonder why.

Even worse, the wrong decisions could cause severe consequences if the car is driving at high-

way speeds and might ultimately crash into the firetruck. In general, transparent algorithms

have the advantage of, potentially, more eyes on them, reducing the likelihood that an error or

oversight results in a bad outcome.

Thus, we here dive into model interpretation to interpret what a model has learned. Specifi-

cally, we first utilize the feature importance scoring as a specific approach to address the prob-

lem of interpreting the predictions of black-box pairwise learning models, which involve pairs

of instances as the input of the loss functions. We also provide theoretical analysis to show that

the proposed adaptive interpretation method for pairwise learning is the unique interpretation

solution for pairwise learning with the desired properties. In addition, to investigate how accu-

rately an algorithm is able to predict outcome values for previously unseen data, we also prove

a generalization error bound for deep metric learning, which is a group of techniques that aims

to measure the similarity between the data samples. The derived generalization error bound for

5

deep metric learning can help explain the behaviors of existing deep metric learning models and

guide the design of good neural networks for deep metric learning.

Studying Security Vulnerability and Robustness to Malicious Attacks
Malicious attacks exist because there are inherent security vulnerabilities in the underlying ma-

chine algorithms that attackers can exploit to breach security and make the system fail. Security

threats can be anything that attackers take advantage of a vulnerability to breach security and

negatively alter objects of interest. For security, an attacker’s goal is to manipulate a machine

learning system such that the system makes predictions as the attacker desires. An attacker can

manipulate the training phase and/or the testing phase to achieve this goal.

In order to analyze attackers’ actions in adversarial environments and thereby derive robust

learning strategies, we here study the security vulnerability and robustness of machine learning

methods. In particular, we first discover the vulnerability of the model interpretation methods

for deep reinforcement learning to two different representative types of attacks, i.e., adversarial

attacks and model poisoning attacks. Specifically, we first design an universal adversarial attack

against deep reinforcement learning interpretations and then design a model poisoning attack,

based on which the attacker can significantly alter the interpretation results while ensuring the

stealthiness of the performed attacks. We also design a general defense mechanism to provide

the guarantees of robustness of the interpretation results. In addition, we also design a novel

robust and automatic self-explaining method, which can provide certified robustness guarantees

for the generated concept-based automatic explanations.

Privacy-preserving Sharing of Sensitive Information
With the development of new emerging technologies, information sharing is becoming increas-

ingly popular, and the shared information can fuel a variety of services from personalized health-

care recommendations to personalized product. As the scale of information sharing expands,

however, there is also growing concerns about privacy and protecting sensitive information

since the shared information usually contains sensitive information (e.g., regarding our health

or our daily activities). If any adversary attack can be applied to learn any private and sensitive

information, there is a privacy leakage. And the shared information is vulnerable to privacy

attacks (e.g., membership inference attacks and model inversion attacks). With the increased

concerns about privacy breaches, both data and model providers in machine learning systems

have a growing desire for great confidentiality/privacy: data providers desire privacy of their

shared data, while model providers desire confidentiality of their proprietary learning models as

they represent intellectual property. The growing privacy concerns have been influencing data

6

owners and preventing them from achieving the maximum benefit of data sharing.

Motivated by this, we here propose novel privacy-preserving mechanisms to allow infor-

mation providers to privately share the private sensitive information. In particular, we first use

differential privacy techniques to keep the sensitive information of pairwise learning models

private in both of the online and offline settings, while guaranteeing good generalization perfor-

mance. Specifically, for each setting, we first propose a differentially private algorithm for the

strongly convex loss functions, and then extend this algorithm to general convex loss functions

by proposing another differentially private algorithm. Additionally, we also propose a novel

privacy-aware synthesizing method for crowdsourced data, based on which the data collector

can release users’ data with strong privacy protection for their private information, while at the

same time, the data analyzer can achieve good utility from the released data.

1.3 Dissertation Organization

In the next six chapters, I will elaborate on the aforementioned trustworthy mechanisms, shed-

ding light on their design philosophy and desirable properties. Specifically,

• In Chapter 2, we investigate how to enable interpretation in pairwise learning. Specifi-

cally, we first propose a novel adaptive interpretation method for pairwise learning, based

on which a vector of importance scores associated with the underlying features of a test-

ing instance pair can be adaptively calculated, and these importance scores can be used to

indicate which features make key contributions to the final prediction. Considering that

this proposed pairwise interpretation method is computationally challenging, we further

propose a novel robust approximation interpretation method for pairwise learning mod-

els. This proposed pairwise approximation interpretation method is not only much more

efficient but also robust to data noise. We also conduct theoretical analysis to verify the

effectiveness of the proposed interpretation methods for pairwise learning.

• In Chapter 3, to understand how good a learned deep metric learning model is able to

perform on unseen data, we derive the generalization error bound for deep metric learn-

ing, which can give a comprehensive theoretical generalization analysis for the trained

deep metric learning models and provide much important information about the practi-

cal performance of deep metric learning. In addition, based on the derived generalization

bound, we propose a novel method to adaptively learn the retention rates for the deep met-

ric learning models with dropout in a theoretically justified way. Compared with existing

7

deep metric learning works that require predefined retention rates, this proposed novel

method can learn the retention rates in an optimal way and achieve better performance.

We also conduct experiments on real-world datasets to verify the findings derived from

the generalization error bound and demonstrate the effectiveness of the proposed adaptive

deep metric learning method.

• In Chapter 4, we study the vulnerability of deep reinforcement learning interpretations

to the malicious attacks. More specifically, in this chapter, we firstly present an univer-

sal adversarial attack against deep reinforcement learning interpretations, from which the

attacker can add the crafted universal perturbation uniformly to the environment states

in a maximum number of steps to incur minimal damage to the agent’s end goal. Then,

we design a model poisoning attack against deep reinforcement learning interpretations,

which can significantly alter the interpretation results while incurring minor damage to

the model performance. To enhance the robustness of deep reinforcement learning in-

terpretations against malicious attacks, we also propose a general defense mechanism to

increase the attack resistance of deep reinforcement learning interpretations against the

malicious attacks. Both theoretical analysis and extensive experimental results are pro-

vided to demonstrate the effectiveness of our proposed approaches.

• In Chapter 5, we design a novel robust and automatic self-explaining method that can

not only automatically provide the concept-based explanations without human interven-

tions but also provide certified robustness guarantees for the generated concept-based

explanations. Specifically, to free human from the tedious manual defining procedure, we

first proposed a novel interpretability regularizer that guides the model to automatically

extract the prototype-based concepts from the training data, which provide insights into

representative patterns that are utilized by the model for classification. In addition, to pro-

mote certified robust interpretability, we also proposed a novel interval bound propagation

based regularizer, which minimizes an upper bound on the maximum difference between

any pair of explanation results when the input can be adversarially perturbed to provide

verifiable robustness guarantees for the generated explanations. We also conducted exper-

iments to demonstrate the effectiveness of the proposed method on real-world datasets.

• In Chapter 6, we consider the pairwise learning problems in both online and offline set-

tings. For the online setting, we first propose an differential privacy algorithm for the

8

strongly convex loss functions, and then extend this proposed differential private algo-

rithm to general convex loss functions by proposing another differentially private algo-

rithm. For the offline setting, we also propose two differentially private algorithms for

strongly convex loss functions and general convex loss functions, respectively, and then

give their regret upper bounds. The experimental results on real-world datasets not only

confirm our theoretical analysis but also demonstrate the effectiveness of the proposed

algorithms in real-world applications.

• In Chapter 7, we propose a novel privacy-aware synthesizing method for crowdsourced

data. Based on this method, the data collector can release the crowdsourced data with

strong privacy protection for users’ private information, while at the same time, the data

analyzer can achieve good utility from the released data. We also conduct both theoretical

analysis and extensive experiments on real-world datasets to verify the effectiveness of

the proposed private synthesizing method.

Finally, in Chapter 8, we conclude the research contributions of this dissertation. Then, we

discuss the directions for future research.

Part I

Enabling Transparency for Predictive
Models

9

Chapter 2

Towards Interpretation of Pairwise
Learning

2.1 Introduction

In recent years, there has been increasing interest in an important family of learning problems

that is categorized as pairwise learning [1]. Different from the traditional pointwise learning

(e.g., regression and classification) [2] where the loss function takes only individual instances

as its input, pairwise learning involves pairs of instances as the input of its loss function. Com-

paring to pointwise learning, pairwise learning is more capable of modeling the relative relation-

ship between pairs of instances, which has been demonstrated in many real-world applications.

For example, in patient similarity learning, the learner (e.g., a doctor/hospital) can learn a clin-

ically meaningful similarity metric to measure the proximity between a pair of patients through

formulating the learning task as a pairwise learning problem [3]. Additionally, many other learn-

ing tasks can also be classified as pairwise learning, such as AUC maximization [4, 5], metric

learning [6, 7, 8], bipartite ranking [9].

Despite its tremendous success in many real-world applications, pairwise learning still faces

one challenging problem, i.e., the lack of transparency behind its behaviors, which makes it dif-

ficult for users to understand how particular decisions are made by the learned pairwise model.

For instance, in the patient similarity learning task, the similarity metric is usually learned from

a large amount of high dimensional and complex patient data. The learner can obtain the prox-

imity between a pair of patients based on the learned metric, but he/she has no idea why the

10

11

metric reports such proximity. The “black box” nature of the learned pairwise models may im-

pede users from trusting the predicted results, especially when the model is used for making

critical decisions (e.g., medical diagnosis), because the consequences may be catastrophic if

the predictions are acted upon blind faith. The lack of transparency behind pairwise learning

models has hampered their further applications in real world. Thus, it is essential to investigate

how to enable interpretaion in pairwise learning.

In this chapter, we aim to study feature importance scoring as a specific approach to the

problem of interpreting the predictions of black-box pairwise models. Specifically, given a

learned pairwise model and a testing instance pair, we hope to design an interpretation method

that can generate a vector of importance scores associated with the underlying features of the

testing instance pair, and enable these importance scores to indicate which features make key

contributions to the final predicted result. There is now many interpretation methods that can

score the importance of the input features for traditional pointwise learning models (e.g., classi-

fication models). Among them, the Shapley-value-based methods [10, 11, 12, 13, 14, 15, 16, 17]

have drawn significant attention as they are the only methods that can provide theoretical guar-

antee. However, these methods cannot be directly used for pairwise models. First of all, to score

the importance of a subset of input features, these methods usually need to pre-define a reference

vector to mask the rest features. An implicit assumption in these methods is that all the testing

instances use the same reference vector, which is unreasonable for pairwise models. When in-

terpreting the predictions made by pairwise models, if both instances in the testing pair use the

same reference vector, the relationship between them will be largely affected (e.g., may make

them more similar) and wrong prediction may be generated. Additionally, existing interpretation

methods for pointwise learning usually assume that the input features are nearly independent.

However, in practice, the features may be correlated with each other and the correlation can also

affect the predictions made by the models [18].

To address the above challenges, in this chapter, we first propose a novel adaptive Shapley-

value-based interpretation method for pairwise models (ASIPair), which not only takes into

account feature correlations but also can adaptively calculate the importance scores of the un-

derlying features for each testing instance pair. We also provide theoretical analysis to show

that the proposed adaptive method is the unique solution with the desired properties. Consid-

ering that Shapley-value-based methods are usually computationally challenging, we further

propose a robust approximation interpretation method for pairwise models (RAIPair), which

is motivated by the fact that not all features are important and only a subset of features con-

tain the discriminative information for the final predicted result. The proposed approximated

12

interpretation method does not make any assumptions on the underlying feature structure and

is also robust to data noise. To the best of our knowledge, we are the first to investigate how to

enable interpretation in pairwise learning. Both theoretical analysis and extensive experiments

demonstrate the effectiveness of the proposed interpretation methods for pairwise learning.

2.2 Methodology

In this section, we describe the proposed interpretation methods for pairwise models. Specifi-

cally, we first propose an adaptive Shapley-value-based interpretation method (called ASIPair)

with the consideration of feature correlations. Considering that Shapley-value-based methods

are usually computationally challenging, we then propose a robust approximation interpretation

method (called RAIPair).

2.2.1 Adaptive Interpretation Method for Pairwise Models

The importance of each feature in xi and xj can be reflected by its contribution to the final

predicted result. For any given subset T ⊂ [D] = {1, 2, ..., D}, we use xTi = {xi,t, t ∈ T}
to denote the associated sub-vector of features, where xi,t denotes the t-th element in xi. Let

E[ζ(xi,xj)|xTi ,xTj] be the induced expected conditional prediction for the testing instance pair

(xi,xj) when it is restricted to using only the sub-vectors xTi and xTj . Then, for a given subset

T ⊂ [D] \ {d}, the marginal contribution of the d-th feature to T (joining the subset T) can be

calculated as follows

∆d(xi,xj , T, ζ) =E[ζ(xi,xj)|xT∪{d}i ,x
T∪{d}
j] (2.1)

− E[ζ(xi,xj)|xTi ,xTj].

To obtain ∆d(xi,xj , T, ζ), we need to calculate the two expected pairwise conditional functions

E[ζ(xi,xj)|xT∪{d}i ,x
T∪{d}
j] and E[ζ(xi,xj)|xTi ,xTj].

As described in the introduction section, existing interpretation methods developed for tra-

ditional pointwise learning models cannot be directly used here to calculate ∆d(xi,xj , T, ζ)

for pairwise learning. There is an implicit assumption in these methods that all the testing in-

stances use the same pre-defined reference vector that is used for replacing xi,t (t ∈ [D] \ T)

when measuring the contribution of xTi to the prediction, which is unreasonable for pairwise

models. For pairwise models, if xi and xj use the same reference vector, we cannot obtain rea-

sonable ∆d(xi,xj , T, ζ), because the relationship between xi and xj will be largely affected

13

and wrong prediction may be generated. Furthermore, these methods assume that the input fea-

tures are nearly independent. However, in practice, the features are usually correlated with each

other and the correlations can also affect the predicted result. To address the above challenges,

we propose the following calculation method for ∆d(xi,xj , T, ζ).

Since the calculation procedures for E[ζ(xi,xj)|xT∪{d}i ,x
T∪{d}
j] and E[ζ(xi,xj)|xTi ,xTj]

are similar, here we take E[ζ(xi,xj)|xTi ,xTj] as an example to describe the calculation proce-

dure. We first rewrite the expected conditional pairwise function E[ζ(xi,xj)|xTi ,xTj] as follows

E[ζ(xi,xj)|xTi ,xTj] = (2.2)∫ ∫
ζ([xT̄i ,x

T
i], [x

T̄
j ,x

T
j])P (x

T̄
i |xTi)P (xT̄j |xTj)dxT̄i dxT̄j ,

where T̄ = [D]\T andP (xT̄i |xTi) denotes the conditional distribution of xT̄i given xTi . [xT̄i ,x
T
i]

denotes the concatenation of xT̄i and xTi , i.e., xi = [xT̄i ,x
T
i]. To take the feature correlation

into account, we propose to incorporate the covariance matrix that contains features’ correlation

information into the calculation process of the expected conditional pairwise function. Suppose

the training set is denoted as {xk}Kk=1, where K is the size of the training set. xTi and xTj can

be transformed as

x̃Ti = Ω
−1/2
T (xTi − µT), x̃Tj = Ω

−1/2
T (xTj − µT), (2.3)

where µT and ΩT denote the mean vector and covariance matrix of the set of sub-vectors

{xTk }Kk=1 for training instances, respectively. The t-th element in µT represents the mean value

of the t-th feature over {xTk }Kk=1. Considering the fact that the training instance xk = [xT̄k ,x
T
k]

with xTk close to xTi is more informative when calculating P (xT̄i |xTi), we then propose to use

the training instances {xk}Kk=1 to empirically calculate the pairwise conditional expectation

E[ζ(xi,xj)|xTi ,xTj]. Specifically, we first calculate the distance between xi and each instance

xk in the training set {xk}Kk=1 as

QTi (xi,xk) = (2.4)

(x̃Ti −Ω
−1/2
T (xTk − µT))

′(x̃Ti −Ω
−1/2
T (xTk − µT))/|T |.

The distance between the testing instance xj and the training instance xk can be calculated in a

similar way. Then, for each pair (xi,xk) where k ∈ [K], we calculate a weight wT (xi,xk) =

exp(−QTi (xi,xk)/2σ2), where σ is a smoothing parameter (the value is set as 0.2 in our exper-

iment). After deriving all the weights {wT (xi,xk)}Kk=1, we sort these weights in an increasing

order, and we use xk′ to denote the training instance corresponding to the k′-th element in the

14

ordered weight set. Similarly, we can derive the weights {wT (xj ,xk)}Kk=1 for xj and order

them in an increasing order. Let xk′′ be the training instance corresponding to the k′′-th element

in the ordered weight set for xj . Then, we can estimate E[ζ(xi,xj)|xTi ,xTj] as

E[ζ(xi,xj)|xTi ,xTj)] =
1∑K1

k′=1wT (xi,xk′)
∑K1

k′′=1wT (xj ,xk′′)
{
K1∑
k′=1

wT (xi,

xk′) · [
K1∑
k′′=1

wT (xj ,xk′′)ζ([x
T̄
k′ ,x

T
i], [x

T̄
k′′ ,x

T
j])]}, (2.5)

where K1 denotes the number of the selected training instances, and it can be decided as

K1 = argmin
L∈[K]

{
∑L

k′=1wT (xi,xk′)
∑L

k′′=1wT (xj ,xk′′)∑K
k′=1wT (xi,xk′)

∑K
k′′=1wT (xj ,xk′′)

≥ η}.

Here η is a pre-defined constant.

After calculating E[ζ(xi,xj)|xT∪{d}i ,x
T∪{d}
j] and E[ζ(xi,xj)|xTi ,xTj], we can then derive

∆d(xi, xj , T, ζ). Finally, taking all possible subset T ⊂ [D]\{d} into account, the contribution

(i.e., importance score) of the d-th feature to the prediction of ζ on (xi,xj) is given as

ϕd(xi,xj , ζ) =
∑

T⊂[D]\{d}

|T |!(D − |T | − 1)!

D!
∆d(xi,xj , T, ζ). (2.6)

The above equation captures the average marginal contribution of the d-th feature by averaging

∆d(xi,xj , T, ζ) over all the possible subset T . The value of ϕd(xi,xj , ζ) reflects the impor-

tance of the d-th feature to the final pairwise prediction. Based on this fact, we can identify

which features in xi and xj make key contributions to the final predicted result.

An alternative way to calculate the contribution. Besides Eqn. (2.6), we also have another

way to calculate the contribution of the d-th feature to the prediction of ζ on (xi,xj). Let π(D)

be the set of all possible ordered permutations of the feature indices {1, 2, ..., D}. Let O be

any permutation of the feature index {1, 2, ..., D}. For the permutation O ∈ π(D), we denote

the set of features that precede d in O as P dO. From Eqn. (2.6), we know that ϕd(xi,xj , ζ) is

the average marginal contribution of d to any coalition of D assuming that all orderings are

equal. Another way to calculate ϕi(xi,xj , ζ) is averaging the marginal contributions of the d-th

feature to the set of its predecessors, where the average value is taken over all permutations

equally. Thus, we have

ϕd(xi,xj , ζ) =
1

D!

∑
O∈π(D)

(E[ζ(xi,xj)|x
P d
O∪{d}
i ,x

P d
O∪{d}
j]

− E[ζ(xi,xj)|x
P d
O
i ,x

P d
O
j]). (2.7)

15

Next, we provide the theoretical analysis to show that the proposed ASIPair is the unique

pairwise interpretation method with the desired theoretical properties, which strongly motivates

the use of ASIPair for reliable pairwise interpretations.

Theorem 1. The proposed ASIPair is the unique solution that satisfies the following properties:

(1) Efficiency. The sum of the marginal contributions of all input features is equal to the

pairwise function value, i.e.
∑D

d=1 ϕd(xi,xj , ζ) = ζ(xi,xj).

(2) Fairness. For all T ⊂ {1, 2, · · · , D} \ {d1, d2}, if E[ζ(xi,xj)|xT∪{d1}i ,x
T∪{d1}
j] =

E[ζ(xi,xj)|xT∪{d2}i ,x
T∪{d2}
j], then we have ϕd1(xi,xj , ζ) = ϕd2(xi,xj , ζ).

(3) Dummy. For all subset T ⊂ {1, 2, · · · , D} \ {d}, if E[ζ(xi,xj)|xT∪{d}i ,x
T∪{d}
j] =

E[ζ(xi,xj)|xTi ,xTj], then we have ϕd(xi,xj , ζ) = 0.

(4) Additivity. For any two pairwise decision functions ζ1 and ζ2, we have that for each

d ∈ [D], ϕd(xi,xj , ζ1 + ζ2) = ϕd(xi,xj , ζ1) + ϕd(xi,xj , ζ2), where (ζ1 + ζ2) is defined by

(ζ1 + ζ2)(xi,xj) = ζ1(xi,xj) + ζ2(xi,xj).

Note that all the four properties are reasonable in the context of pairwise learning. The

efficiency property states that the total pairwise value ζ(xi,xj) is divided among all of the

features. This property makes it easier to compare features’ contributions. The fairness property

means that if two features always add the same marginal value to any subset to which they

are added, they will be assigned equal contributions on the total pairwise value ζ(xi,xj). The

dummy property states that if a feature never adds any marginal value, the contribution value

of this feature will be assigned with zero. The additivity property shows that the solution to the

sum of two pairwise models (ζ1 and ζ2) must be the sum of what it assigns to each of the two

pairwise models. Although the proposed ASIPair method can effectively score the importance

of the input features on the predicted result and provide theoretical guarantee, the Shapley value

approach makes it computationally challenging. The computation complexity of ASIPair (in

terms of the pairwise model evaluations) on all features’ contributions (i.e., {ϕd(xi,xj , ζ)}Dd=1)

is O(D ∗ 2D log2D). To address this problem, we further propose a more efficient interpretation

method for pairwise models in the next section.

2.2.2 Robust Approximation Interpretation Method for Pairwise Models

In this section, we propose a robust approximation interpretation method for pairwise models

(RAIPair), which is motivated by that not all features are important and only a subset of features

contain the discriminative information for the final predicted result. RAIPair is not only much

more efficient than ASIPair but also robust to data noise.

16

Let ϕ = (ϕ1(xi,xj , ζ), · · · , ϕD(xi,xj , ζ)) ∈ RD be the feature importance score vector

for the testing instance pair (xi,xj). Based on Theorem 1, we know that
∑D

d=1 ϕd(xi,xj , ζ) =

ζ(xi,xj). Then, we can calculate the average feature importance score over all the features as

ϕ̄ = ζ(xi,xj)/D. Suppose ϕ̃∗ ∈ RD denotes the deviation vector, in which the d-th element

ϕ̃∗d is calculated as ϕ̃∗d = ϕd(xi,xj , ζ) − ϕ̄. Obviously, we can get ϕ = ϕ̄ID + ϕ̃∗, where ID

is a D dimensional vector with all entries being one. For the non-discriminative features, their

importance scores are close to the average value ϕ̄, and the deviation values of them are close

to zero. In contrast, for the discriminative features, their importance scores deviate from the

average value ϕ̄ far away.

Since the average value ϕ̄ can be easily calculated, to reduce the computational complexity,

our goal here is to first optimize the deviation vector ϕ̃∗, and then derive the feature importance

score vector based on ϕ = ϕ̄ID + ϕ̃∗. Considering that only a subset of features contain

the discriminative information, we assume that ϕ̃∗ is s-sparse, and ϕ̃∗ is called s-sparse if

∥ϕ̃∗∥L0 ≤ s, where ∥ϕ̃∗∥L0 = limp→0
∑D

d=1 |ϕ̃∗
d|p =

∑D
d=1 I(ϕ̃∗

d ̸= 0). Specifically, the

quantity ∥ϕ̃∗∥L0 computes the number of nonzero elements in the feature importance score

vector ϕ̃∗. To calculate the sparse vector ϕ̃∗, we propose to solve the following optimization

problem

ϕ̃∗ = argmin ϕ̃∈RD{∥ϕ̃∥L0 : s.t. ∥b−A(ϕ̄ID + ϕ̃)∥L2 = 0},

where b ∈ RM is an observed measurement vector, and A ∈ RM×D is a random Bernoulli mea-

surement matrix for which the number of rows is far less than that of columns (i.e., M ≪ D).

The entries of A take the value 1√
M

or − 1√
M

with equal probability. In the above equation, we

aim to use much fewer measurements to calculate ϕ̃∗ and further derive the feature importance

score vector ϕ.

However, the above L0-norm minimization formulation is NP-hard because it involves enu-

merative search and is computationally intractable for practical applications. Besides scalability,

another important requirement for real-world applications is the robustness to noise, namely, the

observation vector b may be corrupted by data noise. Without loss of generality, we assume that

the measurement vector b is corrupted by noise of magnitude up to ϵ. To address the computa-

tionally intractable problem, we propose to use the convex relaxation by replacing the L0-norm

with the L1-norm. To take the noise into account, we propose to relax the equality constraint as

∥b−A(ϕ̄ID + ϕ̃)∥L2 ≤ ϵ. Then, we can derive the following optimization problem

ϕ̂∗ = argminϕ̂∈RD{∥ϕ̂∥L1 : s.t. ∥b−A(ϕ̄ID + ϕ̂)∥L2 ≤ ϵ},

17

where ϵ > 0 is a pre-defined noise level. Finally, ϕ̃∗ ∈ RD can be well approximated by

ϕ̂∗ based on Eqn. (2.8). Note that the above problem is an underdetermined linear problem

since M ≪ D, and the L1-norm minimization solution is also the sparsest possible solution

[19, 20]. The problem can be recast as a linear program and can be solved by conventional

methods such as interior-point methods. However, these methods suffer from poor scalability

for real-world problems with large-scale data. To address this challenge, we propose to use the

fast iterative shrinkage-threshold method [21] to solve the above optimization problem, and

the proposed RAIPair is summarized in Algorithm 1. In this algorithm, we first estimate the

measurement vector b from a set of random permutations (i.e., {Oh}Hh=1) (Step 1-12), and then

derive the approximated importance score vector ϕ̃ by solving the L1 minimization problem

(Step 13-14). In Theorem 2, we also present the approximation error bound for the proposed

RAIPair. The computational complexity of RAIPair on all features’ contributions is H ∗ D =

O(log(logD) ∗D), where D is the feature dimension. Thus, the computational complexity of

RAIPair is much lower than that of ASIPair

Algorithm 1 The robust approximation interpretation method for pairwise models
Input: Pairwise model ζ, the number of measurements M , the test pair (xi,xj), the number

of permutations H , and the random Bernoulli matrix A.

1: for h← 1 to H do
2: Randomly select the permutation Oh ∈ π(D);

3: for d← 1 to D do
4: ∆h

d(xi,xj , P
d
Oh
, ζ) = E[ζ(xi,xj)|x

P d
Oh

∪{d}
i ,x

P d
Oh

∪{d}
j)] −

E[ζ(xi,xj)|x
P d
Oh
i ,x

P d
Oh
j)];

5: end for
6: for m← 1 to M do
7: Ym,h ←

∑D
d=1Am,d∆

h
d(xi,xj , P

d
Oh
, ζ);

8: end for
9: end for

10: for m← 1 to M do
11: bm = 1

H

∑H
h=1 Ym,h; // bm is the m-th element in b

12: end for
13: ϕ̂∗ = argminϕ̂∈RD{∥ϕ̂∥L1 : s.t. ∥b−A(ϕ̄ID + ϕ̂)∥L2 ≤ ϵ};
14: return the approximated feature importance score vector ϕ̃ = ϕ̄ID + ϕ̂∗.

18

Theorem 2. Assume that the range of the predictions made by the pairwise model ζ(xi,xj)

is [−r,+r], and the restricted isometry constant δ2s of the matrix A ∈ RM×D satisfies δ2s <
3

4+
√
6
≈ 0.465. Let σs(ϕ)L1 := inf{∥ϕ−Ψ∥L1 ,Ψ is s-sparse}, ϵ > 0, 0 < δ < 1, and C be a

universal constant. Then, if M ≥ C(0.465)−2(2s log(D/(2s)) + log(2/δ)) and 2r2

ϵ2
log 4M

δ ≤
H , we then can derive

∥ϕ̃− ϕ∥L2 = ∥ϕ̂∗ − ϕ̂∥L2 ≤ Φ1ϵ+Φ2
σs(ϕ)L1√

s
, (2.8)

where ϵ denotes the noise amount, Φ1 ∈ R and Φ2 ∈ R are two constants that only depend on

δ2s. Note that H denotes the number of random permutations used to estimate the measurement

vector b.

Based on Theorem 2, we can bound the error between the proposed ASIPair and its ap-

proximated version (i.e., RAIPair). In fact, both ASIPair and RAIPair use the same strategy to

calculate the marginal function ∆d, which can be seen in Eqn.(2.1) and Step 4 of Algorithm

1. The difference between ASIPair and RAIPair is that RAIPair uses very few operations to

average ∆d to approximate ASIPair.

2.3 Experiments

We conduct experiments on both real-world and synthetic datasets to evaluate the performance

of the proposed interpretation methods. All the experiments are conducted 10 times and we

report the average results.

Datasets

For real-world datasets, we adopt four UCI datasets (i.e., Heart, Diabetes, Parkinson and Iono-

sphere), and the MNIST 1V9 dataset [22] that is a subset of the 784-dimensional MNIST set.

The statistical information of these real-word datasets is described in Table 2.1. For the syn-

thetic dataset, we use the following method to generate the data: We first generate N instances

{xi}Ni=1, where xi is a D-dimensional feature vector in which each element is randomly gener-

ated in range (−1, 1). Then we build a linear classifier with the weight vector w in which each

element wi ∼ U(−0.5, 0.5). Finally, we use the linear classifier to generate the label of each

instance. For each dataset, we randomly select 80% of the instances as the training set to train

the pairwise model, and take the rest instances as the test set.

19

0.00 0.05 0.10 0.15 0.20 0.25

Percentage of masked features

0.7

0.8

0.9

1.0

A
U

C

RAIPair

ASIPair

Random

(a) Heart

0.00 0.05 0.10 0.15 0.20 0.25

Percentage of masked features

0.7

0.8

0.9

1.0

A
U

C

RAIPair

ASIPair

Random

(b) Diabetes

0.00 0.05 0.10 0.15 0.20 0.25

Percentage of masked features

0.6

0.7

0.8

0.9

1.0

A
U

C

RAIPair

ASIPair

Random

(c) Parkinson

0.00 0.05 0.10 0.15 0.20 0.25

Percentage of masked features

0.7

0.8

0.9

1.0

A
U

C

RAIPair

ASIPair

Random

(d) Inosphere

Figure 2.1: The AUC metric w.r.t the percentage of masked features.

Performance Measure

We evaluate the performance of the proposed interpretation methods through observing the

change of the predicted results after masking a proportion of the top features ranked by the

learned feature importance scores. Specifically, given a trained pairwise model and a test in-

stance pair, both the proposed ASIPair and RAIPair can generate a vector of importance scores

that reflects all features’ contributions to the pairwise prediction on this test pair. When evalu-

ating the performance of each proposed method, we first rank the importance scores and mask

a proportion of the top ranked features. Then, we measure the change of the result predicted

by the pairwise model before and after masking the features. The larger the predicted result

changes, the more important the masked features are. In addition, considering that there is no

existing interpretation method designed for pairwise learning, we adopt the random masking

method as the baseline, in which we randomly select a proportion of features and then mask

them.

20

Table 2.1: The statistics of the datasets.

Dataset Size Dimension

Heart 303 23

Diabetes 768 9

Parkinson 195 22

Ionosphere 351 34

MNIST 2,134 784

Interpretation for AUC Maximization

We first study the performance of the proposed interpretation methods on a widely used AUC

maximization model, i.e., OPAUC [23], which aims to maximize the AUC metric by going

through the training data only once without storing the entire training dataset. Here we evaluate

the performance of the proposed methods through observing the change of AUC metric before

and after masking the top features ranked by the calculated importance scores. The AUC metric

of a pairwise model is equal to the probability that the model ranks a randomly chosen positive

instance higher than a randomly chosen negative instance [24]. The lower the AUC metric, the

larger the change of the predicted results, the better the proposed interpretation method. In this

experiment, we vary the percentage of masked features over the total number of features from

0.001 to 0.25, and the AUC metric on the four UCI datasets are shown in Figure 2.1. As we can

see, compared with masking a proportion of randomly selected features, masking the top ranked

features derived based on our proposed interpretation methods have more effect on the predicted

results, which means both ASIPair and RAIPair can effectively identify important features that

make key contributions to the predicted results. Additionally, this figure also shows that the

performance of ASIPair is little better than that of RAIPair.

Efficiency

We also evaluate the efficiency of the proposed interpretation methods. In this experiment, we

adopt a widely used metric learning model, i.e., LowRank [25], which aims to learn a metric that

can measure the similarity degree between a pair of instances. In this experiment, we generate

several synthetic datasets by varying the value of D from 2 to 9. The size of each synthetic

dataset (i.e., N) is set as 1000. We then evaluate the running time of ASIPair and RAIPair on

each dataset, and the average result on all testing instance pairs is shown in Figure 2.2. From

21

this figure, we can see that the running time of RAIPair is polynomial with respect to the input

feature dimension D while that of ASIPair is approximately exponential with respect to D.

When the number of features increases, RAIPair shows great advantage in running time, which

verifies our conclusion that RAIPair is much more efficient than ASIPair.

2 3 4 5 6 7 8 9

Number of features

0

3

6

9

12

15

T
im

e
 (

s)

RAIPair

ASIPair

Figure 2.2: Running time of ASIPair and RAIPair.

Sparsity

In addition, we evaluate the performance of the proposed RAIPair on sparse feature selection

using the MNIST dataset. The pairwise model to be interpreted is OPAUC. We randomly select

four testing instance pairs and report the deviation score of each feature (i.e., ϕ̂∗d ∈ ϕ̂∗) cal-

culated by RAIPair in Figure 2.3. The results in this figure show that RAIPair can effectively

select a subset of features that make key contributions to the predicted result. Take Figure 2.3a

as an example. We can see the deviation scores of most features are close to 0 and only a subset

of features have large deviation scores, which means the importance scores of most features are

around the average value (i.e., ϕ̄) and only a subset of features play an important role in provid-

ing discriminative information for the final predicted result. Based on Figure 2.3a, we can also

know only a subset of features contain discriminative information.

Visualization

Last but not least, we provide some visualization results to further evaluate the effectiveness

of the proposed methods. In this experiment, we use RAIPair to interpret the predictions made

by the AUC maximization model OPAUC on the MNIST 1V9 dataset. The results for one

testing instance pair (a picture for digital 9 and a picture for digital 1) are shown in Figure 2.4.

Figure 2.4a shows the correctly classified testing instance pair, which means that the positive in-

stance (the digit 9) ranks higher than the negative instance (the digit 1). After applying RAIPair

22

0 100 200 300 400 500 600 700 800

Feature index

-0.02

-0.01

0.00

0.01

D
e
v
ia

ti
o
n

 s
c
o
r
e

(a)

0 100 200 300 400 500 600 700 800

Feature index

-0.02

-0.01

0.00

0.01

D
e
v
ia

ti
o
n

 s
c
o
r
e

(b)

0 100 200 300 400 500 600 700 800

Feature index

-0.02

-0.01

0.00

0.01

D
e
v
ia

ti
o
n

 s
c
o
r
e

(c)

0 100 200 300 400 500 600 700 800

Feature index

-0.02

-0.01

0.00

0.01

D
e
v
ia

ti
o
n

 s
c
o
r
e

(d)

Figure 2.3: The calculated deviation scores for testing instance pairs on MNIST dataset. The

results in (a)-(d) are for four different instance pairs.

(a) (b)

(c)

Figure 2.4: Visualization results generated by the proposed RAIPair on the MNIST dataset.

23

to this pair, we can get the importance score vector associated with the underlying features of

this pair. We then rank these importance scores and select the 8% of the top-ranked features,

which are highlighted with red color in Figure 2.4b. In Figure 2.4c, we use blue rectangles to

highlight the salient parts of the selected features that make key contributions to the pairwise

prediction. As we can see, the proposed RAIPair can accurately capture the salient parts of the

input features for the pairwise predicted result, and these parts agree well with the empirical

intuition of humans.

2.4 Related Work

Although pairwise learning has been well studied in many works [4, 5], there is no existing work

that considers how to interpret the predictions made by the learned pairwise models. Recently,

a wide variety of interpretation methods have been developed to provide explanations for the

pointwise learning models (e.g., classification model) through scoring the importance of each

input feature for a given instance [10, 11, 12, 13, 14, 15, 16, 17, 26, 27]. Among these pointwise

interpretation methods, the Shapley-value-based methods have drawn significant attention as

they can provide strong theoretical foundations and better agree with the human intuition [13,

14, 15, 16, 17, 28, 29]. However, these pointwise interpretation methods do not take into account

pairwise input and cannot be directly used in pairwise learning. To calculate the importance

scores of the input features, these methods usually need a pre-defined reference vector and

require all the instances to use the same reference vector, which is unreasonable for pairwise

models. Furthermore, these methods usually assume that the input features do not correlate

with each other. However, in practice, the features of an instance may correlate with each other

and the correlations can also affect the predicted results. Thus, we take into account feature

correlations when we design the interpretation methods for pairwise models.

Considering that Shapley value approach is usually computationally challenging, existing

works also take measures to reduce the computational cost. Specifically, the authors in [17, 14,

13] propose various sampling-based approximation methods. However, these sampling-based

methods may suffer from high variance when the number of instances to be collected is limited.

The authors in [15] develop two approximation methods based on the assumption that the input

features have an underlying graph structure. By assuming that the hidden layer is distributed

with an isotropic Gaussian, the authors in [16] propose an approximation method for deep neural

networks. Different from these methods, our proposed approximation method RAIPair is more

general and does not make any assumptions on the input data structure.

24

In addition, this work is significantly different from existing pairwise feature selection meth-

ods [30, 31] for pairwise learning. Existing pairwise feature selection methods aim to alter the

training phase to learn a subset of features that are relevant to the targeted model. Also, even

for these selected features, they cannot distinguish their relative relevance scores. However,

our proposed interpretation methods only involve the testing stage, and aim to interpret each

individual pairwise prediction that is made by the trained pairwise model.

2.5 Conclusions

In this chapter, we investigate how to enable interpretation in pairwise learning. Specifically, we

first propose a novel adaptive interpretation method for pairwise learning (i.e., ASIPair), based

on which a vector of importance scores associated with the underlying features of a testing in-

stance pair can be adaptively calculated, and these scores can be used to indicate which features

make key contributions to the final prediction. Considering that the proposed ASIPair is compu-

tationally challenging, we further propose a novel robust approximation interpretation method

for pairwise models (i.e., RAIPair). This method is not only much more efficient but also robust

to data noise. Theoretical analysis and extensive experiments demonstrate the effectiveness of

the proposed interpretation methods for pairwise learning.

Chapter 3

Understanding Generalization in Deep
Metric Learning

3.1 Introduction

Measuring the similarity between data samples plays an important role in many machine learn-

ing and data mining algorithms. Although some simple metrics (e.g., Euclidean distances) can

be used to measure the similarity between samples, they have no capability to capture the sta-

tistical regularities in the data, and thus largely degrade the performance of the algorithms

[32]. To address this challenge, metric learning, whose goal is to learn a distance metric that

can capture the important relationships among data samples, has drawn significant attention

[33, 32, 34, 35, 36, 8, 7]. The basic idea of most metric learning methods is first to learn a Ma-

halanobis distance metric, which is a linear mapping to project the original samples into a new

feature space, and then determine the similarity of samples in the new feature space. However,

these conventional Mahalanobis-based methods usually have inherent limits on their mapping

capability, and thus fail to achieve good performance when handling data with nonlinear struc-

tures.

Given that deep learning has good capability of modeling the nonlinearity of samples, there

has been significant effort [37, 38, 39, 40, 41, 42] studying deep metric learning (DML), which

unifies deep learning and metric learning into a joint learning framework. The key idea of DML

is to explicitly train a deep neural network and derive a set of hierarchical nonlinear mappings,

based on which the data samples can be projected into a new feature space for comparing. The

25

26

derived nonlinear mappings are capable of guaranteeing that the distance between similar sam-

ples is close and the distance between dissimilar samples is far in the new feature space [42].

Additionally, compared with the traditional metric learning methods, DML has shown better

scaling properties when handling massive data. Although DML has achieved practical success

in many applications, there is no existing work that theoretically analyzes the generalization

error of DML, which is the difference between the empirical and expected errors, and it can

measure how good a learned model is able to perform on unseen data. A comprehensive theo-

retical generalization analysis is essential for DML as it can not only provide much important

information about the practical performance of DML but also guide the design of effective net-

work architectures for DML.

In this chapter, we try to fill up this research gap and derive the generalization bound for

DML. Here we consider a general case where the DML models adopt the dropout strategies,

in which each connection is kept in the neural network with a predefined retention rate during

the training process. In particular, when these retention rates are set to ones, it reduces to the

generalization bound of the DML model without dropout. Based on the derived generalization

bound, we can have a good understanding of the generalization properties of DML in many

applications, especially in the settings where dropout is used to train DML models with the goal

of achieving good generalization performance [43]. In practice, specifying these predefined re-

tention rates for dropout is usually difficult as it requires significant levels of experience and

domain knowledge. However, the derived generalization error bound for DML can be treated

as a function related to the weight parameters of the neural networks and the retention rates

for dropout. Based on this fact, we propose a novel Adaptive Dropout based DML method

(ADroDML) by incorporating the obtained generalization bound to the objective function of

DML models as a regularizer. The goal of incorporating the bound-based regularizer is to re-

duce the model complexity for DML to give a lower error on future unseen data. ADroDML

allows us to jointly learn the weight parameters and the retention rates for DML in a theoreti-

cally justified way, and it can achieve better performance compared with existing DML works

that require predefined retention rates. Extensive experiments on real-world datasets verify the

findings derived from the error bound and show the effectiveness of the proposed ADroDML.

3.2 Preliminary

In this section, we introduce the DML model that takes dropout into account. Without loss of

generality, we use the widely adopted Siamese network [37, 38, 44] as our example. Suppose

27

z = {zi = (xi, yi)}ni=1 denote the labeled training dataset, where xi ∈ Rd is a d dimensional

feature vector and yi ∈ {−1, 1} is the class label. DML aims to train a L-layer neural network

to predict whether two input samples (i.e., two feature vectors) are similar or not. Assume that

the trained L-layer neural network is parameterized by the weights W = {W l ∈ Rhl∗hl−1}Ll=1

(note that the biases are included in W with a corresponding fixed input of 1 for simplicity),

where hl represents the number of neurons in the l-th layer of the network and h0 = d. We

denote the retention rates for dropout as ρ = {ρl}Ll=1, where ρl represents the retention rate for

the l-th layer. Then, given the input sample xi ∈ Rd, the output of the l-th layer in the network

can be written as

f l(xi;W
1:l,M1:l) = (W l ⊙M l)σ(f l−1(xi,W

1:l−1,M1:l−1))

= (W l ⊙M l)σ((W l−1 ⊙M l−1)σ(· · ·σ((W 1 ⊙M1)xi))),

where σ(·) denotes the activation function, M1:l = {M1,M2, ...,M l}, and M l = {M l
ij}

hl,hl−1

i=1,j=1 ∈
Rhl∗hl−1 is a binary matrix where each element M l

ij ∈ {0, 1} is drawn from the distribution

Bern(ρl). The term (W l⊙M l) corresponds to dropping each of the weight parameters W l =

{W l
ij}

hl,hl−1

i=1,j=1 independently with probability 1− ρl. In particular, f1(xi,W 1,M1) = (W 1⊙
M1)xi. Note that the most top level representation of the input xi, i.e.,fL(xi;W 1:L,M1:L), is

a random vector due to the adopted Bernoulli random variable M . Thus, following [45, 46, 47],

we use the expected value fL(xi;W ,ρ) = EM [fL(xi;W ,M)] as the deterministic output of

the neural network with dropout.

Specifically, DML aims to seek the nonlinear embedding function fL : Rd → RhL , which

guarantees that the distance between xi and xj is smaller than a pre-specified margin γ > 0 in

the transformed space if xi and xj are similar, and larger than γ in the transformed space if xi
and xj are dissimilar. To learn a good embedding function fL with such desirable properties,

the widely adopted method is to minimize the following empirical risk with dropout over the

given training samples

Rz(W) =
2

n(n− 1)

∑
i<j

g(1 + yij(D(fL(xi;W ,ρ), fL(xj ;W ,ρ))− γ)), (3.1)

where yij = yiyj ∈ {−1, 1} is the similarity label, γ is the unit margin and g(·) is the hinge

28

loss. D(fL(xi,W ,ρ), fL(xj ;W ,ρ)) is defined as follows:

D(fL(xi,W ,ρ), fL(xj ;W ,ρ)) (3.2)

= (fL(xi;W ,ρ)− fL(xj ;W ,ρ))T (fL(xi;W ,ρ)

− fL(xj ;W ,ρ)) =

hL∑
k=1

(fLk (xi;W ,ρ)− fLk (xj ;W ,ρ))2,

where fLk (·) represents the output of the k-th neuron in theL-th layer of the network. In practice,

the deterministic output fL(xi;W ,ρ) can be derived by introducing a deterministic scaling

factor (i.e., E[M l]) for each layer to replace the random dropout variable [46, 48]. Then, the

empirical loss Rz(W) can be easily computed since it only involves a single deterministic

network. Note thatRz(W) is also known as the contrastive loss and can measure how well fL

is able to place similar samples nearby and keep dissimilar samples separated.

3.3 Generalization Analysis for Deep Metric Learning

In this section, we derive the generalization bound for DML, which is the difference between

the expected and empirical risks. We derive the generalization bound by analyzing

the generalization bound ≜ R(Wz)−Rz(Wz), (3.3)

where Wz = argminW Rz(W) is the empirical risk minimizer andR(Wz) = Ez[Rz(Wz)]

represents the expected risk of the trained model on the whole space of possible data. Note that

the empirical risk Rz(Wz) is also known as a U-statistic [49] in the statistic literature, and is

no longer an empirical average of independent random samples from z as in the standard deep

learning setting, but rather an average of pairs of random samples from z. Thus, it is more

challenging to perform generalization analysis for DML. To address this challenge, we develop

a novel analysis method by extending Rademacher complexity analysis [50] to the setting of

DML, and then we derive Theorem 1 that describes the generalization bound for DML with

dropout.

Theorem 3. (Generalization Bound for DML with Dropout) Suppose the deep neural network

needed to be learned has L layers and the weight parameter W l (l ∈ [L]) satisfies ∥W l∥F ≤
Bl. Let σ(·) be a 1-Lipschitz activation function (e.g., ReLU) and X ∈ [0, 1]d denote the feature

space. Then for any δ ∈ (0, 1), with probability 1− δ we have

29

R(Wz)−Rz(Wz) ≤ 3V1

√
2 log(1/δ)

n
+ 6

√
1/⌊n

2
⌋ (3.4)

+ 32hLB
LV L(

√
2L log 2 + 1)(

L∏
l=1

Bl)(

L∏
l=1

√
ρl)

√
d/⌊n

2
⌋,

where |g(·)| ≤ V1, and ∥σ(fL−1(·))∥ ≤ V L. Note that g(·) denotes the loss function, and

fL−1(·) represents the output of the (L− 1)-th layer of the learned neural network.

Proof. The detailed proof for this theorem is provided in Appendix.

Observations. With Theorem 1, we can derive the following observations, which can help

explain the behaviors of existing DML models and guide the design of good neural networks

for DML.

• The generalization bound (i.e.,R(Wz)−Rz(Wz)) decreases monotonically at the rate of

O(
√
1/n) when the training data size n increases. In particular, (R(Wz)−Rz(Wz))→

0 when n→ +∞, which indicates that the DML models can achieve good generalization

performance when the training data size is sufficiently large.

• The generalization bound is also related to the dimensionality of the feature vector (i.e.,

d). In the cases where the value of d is extremely small (e.g., d = 0), we may get a small

generalization bound. However, the empirical loss may be very large since the learned

model cannot capture the particular characteristics of the data [46]. On the other hand,

high-dimensional input features (i.e., d is extremely large) usually contain much noisy

information, which can hide the relationship between the learning task and the most rele-

vant features [51] and thus incurs large generalization bounds. Thus, a proper feature set

that dominates the underlying learning task should be selected, and are then fed into the

network.

• The magnitude of the weight parameters (i.e., ∥W l∥F) at the end of the learning process

is critical to the generalization performance, and small magnitude of the weights is pre-

ferred. By observing this, explicit regularizers can be imposed on the weight parameters,

which is achieved by penalizing the norm of the optimal solution. In this way, the general-

ization bound can be dramatically reduced when the magnitude of the weight parameters

are very large. Also, weight-decay can be adopted to avoid choosing large-magnitude

weights, which can improve the generalization performance.

30

• The multiplicative term
∏L
l=1

√
ρl which is related to the retention rates of dropout helps

us to understand how the dropout method works. When ρl = 0, the above bound is

tight since the features from the training samples have no influence on the output [46].

When ∀l ∈ [L], ρl = 1, it reduces to the complexity of a standard model. That is to

say, when these retention rates are set to ones, it reduces to the generalization bound of

the DML model without dropout. For other cases where ρl ∈ (0, 1), we can obtain that∏L
l=1

√
ρl < 1, which means that dropout can reduce the generalization bound. However,

when continuously decreasing the retention rates for dropout, the quality of the learned

model may deteriorate [46]. The reason is that the learned model may be tuned to the

particular training samples, rather than the underlying characteristics of the data. Thus,

specifying optimal retention rates for dropout is very crucial in practice.

• The generalization bound is also affected by V L, which denotes the bounded output range

of the activation function σ(·) on the (L − 1)-th layer. This theorem implies that batch

normalization can improve the generalization performance as it is an operator that nor-

malizes the output of the previous layer within each mini-batch, especially in the settings

where the output range is extremely large.

Two other factors that affect the derived generalization bound are L and hL, which can provide

suggestions on non-extreme-deep neural networks and non-extreme-wide output layers, respec-

tively. As we can see, all the above observations are consistent with the widely used network

architectures in practice. Additionally, Theorem 1 can be easily generalized to other situations

where different loss functions (e.g., the triplet network-based DML models), activation func-

tions and types of dropout (e.g., dropout of both weights and units) are adopted.

3.4 Adaptive Dropout for Deep Metric Learning

The above generalization analysis implies that taking dropout into account during the train-

ing process can help to reduce the generalization error of DML. However, the retention rates

for dropout are usually pre-defined based on the experience and domain knowledge, and fixed

throughout the training process. It is still not clear how to choose the optimal retention rates

such that the learned DML model can achieve the best performance. To address this challenge,

in this section, we propose a novel adaptive dropout based DML method (called ADroDML)

by incorporating the derived generalization error bound into the objective function of DML as

a regularizer, and let this error bound guide the choice of the retention rates. Specifically, the

31

retention rates ρ = {ρl}Ll=1 for dropout and the weight parameters W = {W l}Ll=1 of the

network are unified into one objective function, which is defined as

min
W ,ρ

L(W ,ρ) =
2

n(n− 1)

∑
i<j

g(1 + yij(D(fL(xi,W ,ρ),

fL(xj ,W ,ρ))− γ)) + βΩ(W ,ρ), (3.5)

where β > 0 is the associated regularization parameter, and the regularization term Ω(W ,ρ) is

derived from the generalization bound given in Eqn. (3.4). There are two terms in the right hand

side of Eqn. (3.5). The first term is used to penalize the large distance between similar sample

pairs and penalize the small distance between dissimilar instance pairs. The goal of the second

term is to reduce the model complexity for DML to give lower error on future unseen data. The

term Ω(W ,ρ) in Eqn. (3.5) is computed as follows

Ω(W ,ρ) = ∆ ∗ (
L∏
l=1

∥W l∥F)(
L∏
l=1

√
ρl),

where ∆ = 32hLB
LV L

√
d/⌊n2 ⌋(

√
2L log 2 + 1). Note that the first two terms in the right

hand of Eqn. (3.4) are omitted since they do not contain either the weight parameters or the

retention probability parameters.

Optimization. Next, we discuss how to solve the optimization problem formulated in Eqn. (3.5),

where we have two sets of parameters that need to be learned, i.e., W = {W l}Ll=1 and

ρ = {ρl}Ll=1. Here we solve this optimization problem using the block-coordinate descent

algorithm [52], which starts with an initial setting of the parameters, and then optimize W and

ρ in an alternating fashion. Specifically, we iteratively conduct the following two steps:

Step 1: Weights update. With an initial estimate of the retention rates ρ = {ρl}Ll=1, we first

update the weight parameters W = {W l}Ll=1 by minimizing L(W ,ρ) with fixed ρ = {ρl}Ll=1.

By solving this optimization problem, we can then obtain the set of weight parameters W =

{W l}Ll=1 which minimize L(W ,ρ) with the fixed retention rates.

Step 2: Retention rates update. In this step, we fix the weight matrices W = {W l}Ll=1

for different layers, and then calculate the retention rates ρ = {ρl}Ll=1 through minimizing the

objective function L(W ,ρ) given in Eqn. (3.5).

The above two steps are iteratively conducted until the convergence criterion is satisfied.

In this chapter, the convergence criterion is that the difference between the objective function

values in two consecutive iterations is less than a threshold. Compared with the dropout strategy

that requires to specify the retention rates in advance, the bound-based regularizer enables us

32

Dataset Size Dimension

MNIST 8v9 2,016 28× 28

Bone disease 9,704 672

Wine quality 4,898 11

Table 3.1: The statistics of the adopted datasets.

Dataset # units in the three layers

MNIST 8v9 (784, 64, 10)

Bone disease (672, 64, 10)

Wine quality (11, 8, 4)

Table 3.2: The number of units in each layer of the neural networks.

to adaptively optimize the objective and adjust the retention rates for dropout in a theoretically

justified way.

3.5 Experiments

3.5.1 Experimental Setup

Datasets. We adopt the following real-world datasets for our experiments: the MNIST 8v9

dataset1 , the bone disease dataset2 , and the wine quality dataset 3 . The statistics of these

datasets are provided in Table 7.1.

Model settings. Unless otherwise specified, all the neural networks adopted in the experi-

ments have 3 layers. For each dataset, the number of the units in each layer of the neural net-

work is provided in Table 3.2. We implement the DML model using Google Tensorflow, and the

training process is done locally using NVIDIA GeForce GTX 1060 GPU. Additionally, Adam

optimizer is used in the training process for DML and the learning rate is set as 1e − 4. As for

the activation function, we use ReLU because it is a 1-Lipschitz activation function and satisfies

the Lipschitz-continuous condition.
1 http://yann.lecun.com/exdb/mnist/
2 https://sofonline.epi-ucsf.org/interface/
3 https://archive.ics.uci.edu/ml/datasets.php

http://yann.lecun.com/exdb/mnist/
https://sofonline.epi-ucsf.org/interface/
https://archive.ics.uci.edu/ml/datasets.php

33

3.5.2 Experiments for Theoretical Observations

We first conduct experiments to verify the derived theoretical observations in Section 3. Specif-

ically, we evaluate the effect of the training data size, batch normalization, regularization,

dropout and the input feature dimension on the generalization behavior of DML. Note that

the input for DML is a set of sample pairs instead of individual samples. For each dataset, 4,950

sample pairs are selected as the test set (no overlap with training set). Unless otherwise speci-

fied, the training data sizes for the MNIST 8v9 dataset, the bone disease dataset and the wine

quality dataset are set as 160, 220 and 100, respectively. Correspondingly, the numbers of the

generated training sample pairs for the MNIST 8v9 dataset, the bone dataset and the wine qual-

ity dataset are 12,720, 24,090 and 4,950, respectively. We do not use the validation set to tune

parameters, but assign values by standard settings. When evaluating the effect of the training

data size, batch normalization, regularization and dropout, we report the testing loss because

the generalization bound is mainly used to measure how well the learned ML model performs

on the unseen data (test data). Additionally, we also evaluate the impact of the input feature

dimension on the empirical training loss.

The effect of the training data size. To investigate the effect of the training data size (i.e., n)

on the generalization behavior of DML, we train the model with different training data sizes and

then calculate the testing loss. Here we consider three cases where the training data sizes are set

as 20, 50 and 110, respectively. Figure 3.1a and Figure 3.1d show the results on the MNIST 8v9

and bone disease datasets when the number of batches varies. From the two figures, we can see

that the larger the training data size, the smaller the testing loss. This verifies that increasing the

training data size can potentially improve the generalization performance on unseen data.

The effect of batch normalization. Then we evaluate the effect of batch normalization on the

generalization behavior of DML. Here we still adopt the MNIST 8v9 and bone disease datasets.

For each dataset, we train the model with and without batch normalization, respectively, and

then calculate the testing loss. The results for the two datasets are shown in Figure 3.1b and

Figure 3.1e, from which we can see the testing loss of the model trained with batch normaliza-

tion is lower than that of the model trained without batch normalization. The results verify that

batch normalization play an important role to generalize DML.

The effect of regularization. We also evaluate the effect of regularization for DML through

explicitly comparing the performance of the DML models with and without regularization.

34

0 50 100 150 200 250 300

Number of batches

0.45

0.55

0.65

0.75

0.85

0.95

1.05

T
es

ti
n

g
 l

o
ss

(a)

0 200 400 600 800 1000

Number of batches

0.5

0.6

0.7

0.8

0.9

1.0

1.1

T
es

ti
n

g
 l

o
ss

w/o batch normalization

w/ batch normalization

(b)

0 20 40 60 80 100

Number of batches

0.4

0.5

0.6

0.7

0.8

0.9

T
es

ti
n

g
 l

o
ss

w/o regularization

w/ regularization

(c)

80 120 160 200 240 280

Number of batches

0.80

0.85

0.90

0.95

1.00

T
es

ti
n

g
 l

o
ss

(d)

200 400 600 800 1000

Number of batches

0.80

0.85

0.90

0.95

1.00

1.05

1.10

T
es

ti
n

g
 l

o
ss

w/o batch normalization

w/ batch normalization

(e)

200 250 300 350 400 450 500

Number of batches

0.86

0.88

0.90

0.92

0.94

0.96

0.98

T
es

ti
n

g
 l

o
ss

w/o regularization

w/ regularization

(f)

Figure 3.1: The testing loss of the DML model on the MNIST 8v9 dataset (a-c) and the bone

disease dataset (d-f). (a) and (d): The effect of the training data size. (b) and (e): The effect of

batch normalization. (c) and (f): The effect of regularization.

Then we report the calculated testing losses on the MNIST 8v9 and bone disease datasets in

Figure 3.1c and Figure 3.1f, respectively. From the two figures we can see the models with reg-

ularization perform much better than those without regularization. That is to say, regularization

can help to improve the generalization performance.

35

The effect of dropout. Next, we analyze the effect of dropout on the performance of the DML

model. In this experiment, we adopt the MNIST 8v9, bone disease and wine quality datasets. We

vary the retention rate from 0.3 to 1.0 for the MNIST 8v9 dataset, from 0.1 to 1.0 for the bone

disease dataset and from 0.1 to 0.9 for the wine quality dataset. Note that when the retention

rate for each layer is set as 1.0 (i.e., ∀l ∈ [L], ρl = 1.0), it is the case without dropout. The

calculated testing losses for the three datasets are shown in Figure 3.2. The results show that

the DML model trained with dropout performs better than that trained without dropout, which

means dropout can improve the model’s generalization ability. Additionally, from this figure we

can see that smaller retention rate does not mean better generalization performance. This result

also accords with the previous theoretical analysis.

0 200 400 600 800 1000

Number of batches

0.3

0.5

0.7

0.9

1.1

1.3

T
es

ti
n

g
 l

o
ss

(a) MNIST 8v9

120 160 200 240 280 320 360

Number of batches

0.82

0.84

0.86

0.88

0.90

0.92

T
es

ti
n

g
 l

o
ss

(b) Bone disease

0 100 200 300 400 500

Number of batches

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

T
es

ti
n

g
 l

o
ss

(c) Wine quality

Figure 3.2: The testing loss of the DML model under different retention rates on the MNIST

8v9, bone disease and wine-quality datasets.

The effect of the input feature dimension. Finally, we evaluate the effect of the input fea-

ture dimension (i.e., d) on the training loss. Here we adopt the MNIST 8v9 dataset. We first

randomly select a subset of features to reduce the feature dimension of this dataset. Then, for

36

this newly derived reduced-dimensional dataset, we randomly select 1, 200 samples as the train-

ing samples (i.e., n = 1, 200). Additionally, we consider three neural network structures in this

experiment, and all of them have three layers. The numbers of the units in different layers of

the three network structures are (d, 64, 10), (d, 80, 10) and (d, 128, 16), respectively. Figure 3.3

reports the evolution of the training loss under various input feature dimensions (i.e., d). In this

figure, each line denotes the evolution of the training loss for a specific value of d. We can see

that the smaller the value of of the input feature dimension (i.e., d), the larger the training loss.

This is also consistent with our previous theoretical analysis in Section 3 that when the value

of the input feature dimension (i.e., d) is very small, the empirical training loss could be very

large. The reason is that when the number of the randomly selected features is very small com-

pared with that in the original unreduced dataset, most of the useful information in the original

dataset cannot be captured, which means the learned DML model cannot capture the particular

characteristic features in the original dataset. Thus, the empirical training loss becomes large.

0 200 400 600 800 1000

Number of batches

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
ra

in
in

g
 l

o
ss

(a)

0 200 400 600 800 1000

Number of batches

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
ra

in
in

g
 l

o
ss

(b)

0 200 400 600 800 1000

Number of batches

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
ra

in
in

g
 l

o
ss

(c)

Figure 3.3: The training loss of the DML model for different input feature dimensions on

the MNIST 8v9 dataset. The results in (a), (b) and (c) are for three different neural network

structures, respectively.

37

3.5.3 Experiments for ADroDML

In this section, we evaluate the performance of ADroDML on the MNIST 8v9 and wine quality

datasets. For each dataset, we first select 1,200 samples as the training set, and then use the

remaining samples as the test set.

Baseline methods. We compare the performance of ADroDML with the following two base-

line methods:

• Normal DML training (NormalDML). In this method, we use the standard contrastive loss

to train a DML model and do not take the dropout strategy into consideration.

• DML training with a constant dropout retention rate (DMLCons). In this method, we

consider the dropout strategy with a pre-defined retention rate. Here we set the value of

the retention rate as 0.5 by following existing DML works [53, 54].

For the sake of fairness, the network structure for each of the baseline methods is the same as

that of ADropDML.

Performance. In this experiment, we use the standard K-nearest neighbor algorithm (KNN)

as the classifier, which means for each given test sample, its label is assigned by majority voting

over its top-K nearest samples in the training set. Here we consider three cases where the

value of K is set as 3, 5 and 7, respectively. In Figure 3.4 and Figure 3.5, we respectively

report the classification accuracy of ADroDML on the MNIST 8v9 dataset and the wine quality

dataset. The results in the two figures show that our proposed ADroDML can achieve the best

performance in all cases. When K = 3, the classification accuracy of ADroDML on the wine

quality dataset is around 97.8% while that of the two baseline methods (i.e., NormalDML and

DMLCons) is around 60.0% and 62.8%, respectively. The main reason is that the proposed

ADroDML can adaptively learn the optimal dropout retention rates to avoid the overfitting

problem.

Convergence. Next, we evaluate the convergence of ADroDML through calculating the train-

ing loss in each batch of the training process. Figure 3.6 reports the experimental results on the

MNIST 8v9 dataset. Here we conduct the experiment for three times. Each time the training

data are randomly selected from the dataset. From this figure, we can see that the training loss

gradually converges to zero with the increase of the number of batches. This confirms that the

convergence can be guaranteed in our proposed method ADroDML.

38

0 200 400 600 800 1000

Number of batches

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy

(a) K=3

0 200 400 600 800 1000

Number of batches

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy

(b) K=5

0 200 400 600 800 1000

Number of batches

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy

(c) K=7

Figure 3.4: Classification accuracy of the proposed ADroDML on the MNIST 8v9 dataset.

3.6 Related Work

Based on the types of neural networks, the existing DML works can be roughly divided into

the following three categories: (1) The Siamese network based DML methods [37, 38] are

trained by minimizing a contractive loss function, where the task is to minimize the distance

between similar sample pairs and to push the pairwise distance between dissimilar pairs larger

than a fixed margin. (2) The triplet network based DML methods [39, 40] are trained by

minimizing a triplet loss function, and the triplets are usually generated based on the class

labels of the training dataset. (3) There are also some DML methods based on other types of
networks [41, 42]. However, all the existing works do not provide generalization analysis for

DML. Additionally, they do not consider how to derive the optimal retention rates for dropout.

Although there are some works providing the theoretical analysis for traditional linear met-

ric learning [55, 56], they can not be directly used for analyzing the generalization bound of

39

0 200 400 600 800 1000

Number of batches

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

(a) K=3

0 200 400 600 800 1000

Number of batches

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

(b) K=5

0 200 400 600 800 1000

Number of batches

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

(c) K=7

Figure 3.5: Classification accuracy of the proposed ADroDML on the wine quality dataset.

DML. Even though [56] also adopts the Rademacher complexity, this work is significantly dif-

ferent from ours. First of all, we provide the generalization bound for DML that solves the

nonlinear transformation problem, while [56] presents the bound for traditional metric learning

that solves the linear transformation problem. Thus, the problem studied here is more chal-

lenging than that in [56]. Secondly, to make the theoretical analysis more general, we take into

account the dropout strategy for DML models, which is unfortunately not considered in [56].

Additionally, adding a regularization related to a specific upper bound to learn the param-

eters in an optimal way has many practical applications [57, 46]. However, their settings are

different from ours. For example, [46] considers the classification model with a final softmax

layer, which assumes that the input data are i.i.d. However, we aim to derive the bound for DML,

where the input data are not independent, making our problem more challenging. Moreover, the

techniques used to derive the bound here and those used in [46] are significantly different. In

particular, the derived bound based on the techniques in [46] has an exponential dependency

40

0 50 100 150 200 250 300

Number of batches

0

10

20

30

40

50

T
ra

in
in

g
 l

o
ss

Figure 3.6: The training loss of AdroDML w.r.t Number of batches on the MNIST 8V9 dataset.

(i.e., 2L) on the network length L, which is not appealing even for moderate networks. In con-

trast, based on our proposed techniques, the derived bound only linearly depends on L. Finally,

the dropout strategy considered here and that in [46] are different. Here, we consider randomly

dropping out each connection, whereas they considered randomly dropping out each hidden

neuron, which is more restrictive than ours.

3.7 Conclusions

In this chapter, we present the generalization error bound for DML and analyze the findings

derived from this bound. Additionally, we propose a novel method (ADroDML) to adaptively

adjust the dropout rates for DML based on the derived generalization bound. Compared with

existing DML works that require predefined dropout rates, ADroDML can adaptively learn the

dropout retention rates for DML in a theoretically justified way. We also conduct experiments

on real-world datasets to verify the findings derived from the generalization bound and test the

effectiveness of the proposed adaptive method. The experimental results are consistent with our

theoretical analysis, and they also show that the proposed ADroDML can achieve much better

performance compared with the baselines.

Part II

Studying Security Vulnerability and
Robustness to Malicious Attacks

41

Chapter 4

On the Robustness of Deep
Reinforcement Learning
Interpretations

4.1 Introduction

In recent years, there has been increasing interest in RL, a machine learning paradigm that has

achieved great success in addressing challenging sequential decision-making problems [58].

The key components of RL include an agent and its environment, where the agent learns an

optimal action selection policy by iteratively interacting with and receiving rewards from its

environment. RL has served in a wide spectrum of applications, such as healthcare, autonomous

navigation, and optimal control. In reality, many achievements of RL are due to its combination

with deep learning. This combination, called DRL, is more capable of handling tasks with

either high dimensional state space or complex task selection policy. Recently, various DRL

algorithms have been developed, including deep Q-networks (DQN) [59], trust region policy

optimization (TRPO) [60], and asynchronous advantage actor-critic (A3C) [61].

Although DRL techniques have shown superior performance in many real-world applica-

tions, their decision-making process is opaque and lacking transparency, which makes the inner

workings of DRL models incomprehensible for human users. The “black box” nature of the

DRL models may impede users from trusting the predicted results, especially when the model

is used for making critical decisions (e.g., medical diagnosis and autonomous driving), because

the consequences may be catastrophic if the predictions are acted upon blind faith. To address

42

43

this problem, a plethora of DRL interpretation methods have been proposed to gain insight into

the decision-making process of DRL agents [59, 62, 63, 61, 64, 65, 66]. These interpretation

methods can provide explanations for particular predictions of DRL models and help humans

understand the inner mechanisms. For example, at each time step of a sepsis patient’s trajectory,

doctors can use these interpretation methods to interpret the clinical decision making. However,

an implicit assumption for these DRL interpretation methods is that they are performed in a

reliable and secure environment, which may not be true in practice. As DRL interpretations

play an increasingly critical role in many real-world applications, they are susceptible to a risk

of being maliciously attacked. In this chapter, we consider two representative types of attacks

against DRL interpretations: adversarial attacks and model poisoning attacks.

Adversarial attacks. This type of attacks happens in the testing stage of DRL where the

attacker tampers the input data after the victim DRL model is trained. Unlike deep supervised

learning models, where decision is made instantaneously and independently, adversarial attacks

to DRL models are extremely difficult to analyze quantitatively and defend effectively, as DRL

models involve a temporally dependent sequential decision making process where states at dif-

ferent time-steps are perturbable. At each targeted victim time-step, the attacker’s goal is to fool

both the DRL model and the corresponding DRL interpretation method through manipulating

the current state observation that is communicated between the agent and the environment. For

example, at a specific time step of a sepsis patient’s trajectory, the attacker could add adversarial

perturbation onto patient’s clinical records, which not only causes the DRL model to produce

wrong medical decision but also leads the adopted interpreter to give wrong interpretation re-

sults.

Model poisoning attacks. Different from the adversarial attacks at the testing stage, the

model poisoning attacks occur in the training stage of DRL. In this type of attacks, the attacker

aims to dramatically degrade the performance of the DRL interpretation methods through ma-

nipulating the learned DRL model parameters, while maintaining the original performance of

DRL model to ensure maximal stealthiness. This type of attacks is common in many real-world

applications. Consider the example where due to the vast computational cost of training DRL

models, the agent resorts to downloading the well-trained DRL model from an online model

repository to complete its own tasks. However, during this process, the attacker could perform

the model poisoning attack to manipulate the pre-trained DRL model to make the agent unwit-

tingly download a maliciously re-trained DRL model.

Despite the prevalence of malicious attacks in real-world applications, there is no existing

work studying the vulnerability of DRL interpretations to these attacks. Although there are some

44

works addressing the adversarial vulnerability of the interpretation methods for supervised deep

neural networks (DNN) based classification models [67, 68, 69, 70, 71], they cannot be directly

applied to DRL interpretations due to the following unique features of DRL: First of all, they

only focus on attacking a particular test instance in supervised classification settings, and ignore

the agent’s sequential decision-making process that consists of a continuous sequence of state-

action predictions. If we directly adopt these per-instance attack methods and craft different

perturbations to different states, the computation complexity will be extremely high. Secondly,

a human imperceptible per-instance attack as in supervised deep learning models, may be highly

noticeable for DRL agent as a tiny perturbation in one certain state may have unpredictable and

apparent shift towards the whole future path. DRL is in fact goal-oriented, and it aims to learn

sequences of actions that can lead the agent to achieve its goal. For example, in the autonomous

driving scenarios, the ultimate goal of the agent is to successfully and safely reach the desired

destination. If an attacker locally perturbs some states with per-instance perturbation methods

without a global grasp of agent’s end goal, the agent can easily detect the attack based on the

deviation away from his desirable destination. Thus, the attacker who aims to attack the DRL

models should be more cautious because he needs not only to guarantee the imperceptibility of

local perturbations, but also to avoid compromising the end goal of the agent. Last but not least,

an implicit assumption in the existing adversarial attack methods is that the attacker has the

capability of manipulating the whole input data (e.g., the entire image). However, in practice,

the attacker may be restricted to only manipulating a subset of each input data point (e.g., the

bottom right region where digital watermark is), and hence this assumption may be impractical

for the real-world physical attacks.

As for the model poisoning attacks, to the best of our knowledge, there is no existing work

studying the vulnerability of interpretation models to such attacks. The challenge here is how

to manipulate the pre-trained DRL model such that the attacker can dramatically alter the inter-

pretation results without significantly hurting the performance of the DRL model. If the perfor-

mance of the DRL model is significantly degraded after the manipulation, the model poisoning

attack can be easily detected by evaluating on a holdout set, and then the manipulated DRL

model will be immediately rejected by the agent.

To well understand the performance of DRL interpretations in malicious environment, in

this chapter, we study their vulnerability to the above two types of attacks. Specifically, we first

propose an universal adversarial attack against DRL interpretations (UADRLI), based on which

the attacker can add the crafted universal perturbation to the environment states on a maximum

number of time steps while incurring minimal damage to the agent’s end goal. In our design,

45

the optimal attack strategy can be efficiently derived by solving an optimization problem even

with the sequential and progressive nature of DRL taken into account. Additionally, we pro-

pose a model poisoning attack against DRL interpretations (MPDRLI), based on which the

attacker can manipulate the pre-trained DRL model such that the attacker can dramatically alter

the interpretation results without significantly hurting the efficacy of the original DRL model.

With the proposed model poisoning manipulation, the interpretations can be successfully mis-

led in multiple experimental settings. We also provide theoretical results indicating the change

in overall efficacy of DRL model is strictly bounded, which guarantees the difficulty to detect

such attacks. In order to mitigate the effect of malicious attacks, we also propose a general de-

fense mechanism to increase the attack resistance of DRL interpretations against the malicious

attacks. To summarize, our contributions are:

• First of all, we propose an universal adversarial attack against DRL interpretations (i.e.,

UADRLI), which aims to craft a single universal perturbation that can be applied identi-

cally (uniformly) on every time step. Based on the proposed UADRLI, the attacker can

efficiently deceive downstream DRL interpretation methods via state perturbations.

• We also design a model poisoning attack against DRL interpretations (MPDRLI), based

on which the attacker can secretly alter the interpretation results through providing the

agent a strategically poisoned but equally effective pre-trained DRL model.

• In order to enhance the robustness of DRL interpretations against malicious attacks, we

also propose a general defense mechanism to increase the attack resistance of DRL inter-

pretations against the malicious attacks.

• Both theoretical analysis and extensive experimental results validate the effectiveness of

the proposed approaches.

4.2 Preliminary

Deep reinforcement learning. In RL, an agent aims to learn an optimal behavior through trial-

and-error by sequentially interacting with an environment, which is referred to as the Markov

Decision Process (MDP) defined with a tuple < S,A,P,R, γ >. In a MDP, the agent interacts

with its environment in the following way: The agent starts by gathering an initial state s0 ∈
S that describes the environment. At each time step t, the agent chooses an action at ∈ A
according to some policy π based on the current state st ∈ S (i.e., at = argmaxa∈A π(st, a)),

46

and progresses to a new state st+1 ∈ S according to the transition dynamics P . Additionally,

the agent receives a scalar reward r(st, at) = R(st, at), provided by the reward function R,

which judges the quality of its decision. This sequential decision making process produces a

sequence of state-action pairs T = {(st, at)}Tt=0, where T is the timestep that the environment

terminates. The return is computed as R =
∑T

t=0 γ
tr(st, at), where γ ∈ [0, 1] is a discount

factor indicating how much the agent values an immediate reward compared to a future reward.

The agent’s goal is to find a policy π∗ that maximizes the expected value of the total reward

from all states

π∗ = argmax
π
{E[

T∑
t=0

γtr(st, at)]}, (4.1)

where E denotes the expectation over all possible trajectories generated by policy π. DRL is the

combination of deep learning and RL, and is proposed to overcome the challenges in learning

control policies from high-dimensional raw input data and large state and action spaces in tra-

ditional RL environments. In DRL, we represent the policy π with a deep neural network that

is parameterized by Θ (i.e., the weights of the policy network). To find out the optimal policy

parameters, many different DRL algorithms have been proposed, including DQN [59], TRPO

[60], and A3C [61].

Interpretation methods for deep reinforcement learning. Currently, many works have

been proposed to make DRL more transparent. In general, existing interpretation methods for

DRL can be grouped into two categories: intrinsic interpretability and post-hoc interpretability.

The latter case does not require modifying model architectures or parameters, thereby lead-

ing to higher prediction accuracy. In this chapter, we mainly consider post-hoc interpretations.

Formally, for the given state-action pair (st, at) and policy π, the post-hoc interpreter I can gen-

erate the feature importance scores I(st, at;π), which measures how important each feature of

the state st is, in determining the corresponding action at under policy π. In the following,

we describe several widely-used post-hoc interpretation methods for DRL, all of which aim to

generate feature importance scores (also called saliency maps) to show the relevancy of each

feature for the prediction.

• Gradient saliency. This method [61] is a generic interpretation method that combines

gradient information with class activation maps to visualize the importance of each fea-

ture. The map is computed as I(st, at;π) = ∂π(st,at)
∂st

, and quantifies how sensitive the

action prediction score (i.e., π(st, at)) is with respect to the small changes of input fea-

tures.

47

• Jacobian saliency. Wang et al. [62] extend gradient-based saliency maps to DRL by com-

puting the Jacobian of the output logits with respect to a stack of input images. Specifi-

cally, to visualize the salient part of the image as seen by the value stream, they compute

the absolute value of the Jacobian of the predicted state value with respect to the input

frame.

• Object saliency. Iyer et al. [72] use template matching, a common computer vision tech-

nique, to detect objects within an input image and measure saliency through changes in

Q-values for masked and unmasked objects.

• Perturbation saliency. Greydanus et al. [61] use saliency maps to provide explanations

for the DRL agent’s behaviors over temporally extended sequences. Specifically, they

generate saliency maps by perturbing the original input image using a Gaussian blur of

the image and measure changes in policy from removing information from a region.

Note that all of the above interpretation methods for DRL focus on instance-level interpretabil-

ity, which means the different interpretation results would be given on different state-action

pairs in one episode, and provide the importance score of each feature.

4.3 Adversarial Attack against DRL Interpretations

In this section, we first introduce the threat model and then develop an optimization framework

to formalize our universal adversarial attack against DRL interpretations (i.e., UADRLI). After

that, we present the theoretical analysis for the proposed universal attack.

4.3.1 Threat Model

Following the line of work on adversarial attacks [67, 68, 69, 70, 71], we here assume a white-

box setting, which is a conservative and realistic assumption. The attacker in this setting tries

to evade the system by manipulating malicious states during the testing phase. The attacker

cannot change the DRL algorithm used for the training of the agent, and cannot change the

architecture of the policy networks. The attacker can only change the state observations that are

communicated between the agent and the environment. The attacker’s goal is to deceive both

the trained DRL model and its adopted interpretation method.

48

4.3.2 Formalization of Universal Adversarial Attack

In the adversarial attack settings, when we design the adversarial attack against DRL inter-

pretations, we need to take the unique characteristics of DRL into account. Firstly, the attacker

should handle the sequentiality of DRL, and this sequential decision-making process produces a

sequence of state-action pairs {(st, at)}Tt=0. If we directly adopt existing methods on supervised

learning attacks and craft state-dependent adversarial perturbations, the computation complexity

will be significantly increased due to the generation of a large amount of perturbations differ-

ent with each other. Additionally, when generating state-dependent perturbations, the attacker

has to query the victim DRL model at test time. Instead, we propose to add the state-agnostic

perturbations. Specifically, we aim to craft a single universal adversarial perturbation (dubbed

as δ), which can be identically (uniformly) applied on every observed state without accessing

the target victim DRL model at test time. We further restrict the attacker to only manipulating

pixels within a small region of the image-the attacker may choose the location of the area, but

cannot perturb pixels outside this selected image area. Formally, for any given observed state

st, the attacker crafts the corresponding adversarial state s̃t as follows

s̃t = A(st, kt ∗M , δ) = (1− kt ∗M)⊙ st + (kt ∗M)⊙ δ, (4.2)

where kt ∈ {0, 1}, ⊙ denotes the matrix element-wise product, and δ is the universal pertur-

bation to be generated. Here, M is a predefined binary mask matrix representing the position

and shape of the area that can be attacked. Note that kt ∈ {0, 1} denotes whether at time

step t the perturbation should be applied (kt = 1) or not (kt = 0). Specifically, if kt = 1,

A(st, ktM , δ) = (1 −M) ⊙ st + M ⊙ δ. Otherwise, A(st, ktM , δ) = (1 − (0 ∗M)) ⊙
st + (0 ∗M) ⊙ δ = 1 ⊙ st = st. Secondly, we should make sure that the universal adversar-

ial perturbation (i.e., δ) that causes the wrong predictions is imperceptible. We use parameter

ϵ to control the magnitude of the universal perturbation δ. Specifically, given a state st of the

system, the attacker can only select a perturbed state s̃t as

s̃t ∈ {s̃t ∈ S : d(st, s̃t) ≤ ϵ}, (4.3)

where d(st, s̃t) = ∥st− s̃t∥∞ = ∥δ∥∞. Thirdly, when added to any clean state st, the universal

adversarial perturbation will cause the policy to select a different action at this state and the

interpretation results to be wrong at the same time. Note that the attacked image region is the

real reason why the policy alters decision. Hence, the attacker should mislead the interpreter to

highlight other image regions that are not perturbed. In addition to fooling the interpreter for

49

DRL, when adding δ to state st at time step t, the attacker also wants to mislead the agent to

take any wrong action (instead the original optimal action), that is,

argmax
a∈A

π(st, a) ̸= argmax
a∈A

π(s̃t, a), (4.4)

where s̃t is calculated based on Eqn. (4.2). Last but not least, since DRL is goal-oriented, the

attack will be easily detected if the attacker perturbs the observed state at every time step. The

reason is that when the attacker perturbs every observed state, the final accumulated reward

will be largely compromised. On the attacker’s side, he also wants to maximize his expected

utility. In this chapter, we consider the case where the attacker wants to maximize the total

number of attacked time steps (i.e.,
∑T

t=0 kt). On the other hand, to avoid being detected, the

attacker should also make sure that the end goal of the entire DRL task is not significantly

compromised. In practice, the end goal of the agent is formalized in terms of the accumulated

reward in the long run. Specifically, the attacker should make sure that the difference of the

accumulated reward before and after the attack should be small, and the difference is defined

as (
∑T

t=0 Eπ[γtr(s̃t, ãt)] −
∑T

t=0 Eπ[γtr(st, at)])2, where ãt = argmaxa∈A π(s̃t, a). Now,

the problem is how can the attacker find an effective attack strategy {k0, · · · , kT } with the

corresponding single universal perturbation δ, which not only maximizes the attacker’s utility

(i.e.,
∑T

t=0 kt) but also incurs minimal damage to the agent’s end goal.

Based on the above arguments, the attacker’s goal is to add smallest (imperceptible) uni-

versal perturbation to the environment states in a maximum number of steps while incurring

minimal damage to the agent’s end goal. With this goal in mind, for the given episode that

consists a sequence of state-action pairs {(st, at)}Tt=0 and the threat model, at high level, we

formulate the proposed adversarial attack using the following optimization framework

min
δ,{kt∈{0,1}}Tt=0

(

T∑
t=0

Eπ[γtr(s̃t, ãt)]−
T∑
t=0

Eπ[γtr(st, at)])2

+ λ1

T∑
t=0

exp(I(s̃t, ãt;π)⊙M)− λ2
T∑
t=0

kt

s.t. ∀t ∈ [T], s̃t = A(st, kt ∗M , δ)

∀t ∈ [T], ãt = argmax
a∈A

π(s̃t, a),

∥δ∥∞ ≤ ϵ,

∀t ∈ T1, argmax
a∈A

π(st, a) ̸= argmax
a∈A

π(s̃t, a), (4.5)

50

where T1 = {t : kt = 1} denotes the set of time steps being attacked, and λ1 and λ2 are

two regularization parameters. The first loss term is utilized to enforce that the actual ultimate

accumulated reward does not change significantly. The second loss term is used to decrease the

importance scores of the pixels that are within the attacked image region. The third loss term

is introduced to maximize the attacker’s utility (i.e., the number of attacked time steps). The

two hyper-parameters (i.e., λ1 and λ2) balance the three factors. The third constraint allows

the attacker to manipulate all the states that the agent perceives within an ϵ budget, and hence

ensures that the universal perturbation (i.e., δ) is imperceptible. The last constraint forces that

the action predictions are wrong.

4.3.3 Optimization

In this section, we discuss how to solve the optimization problem described in Eqn. (6). How-

ever, it is very challenging to directly solve the above optimization problem as it involves too

many variables. To address this challenge, we propose to convert it into two sub-problems, and

then solve them in two separate steps. Specifically, in the first step, we aim to figure out the uni-

versal adversarial perturbation δ by solving a sub-optimization problem. In the second step, we

solve the problem of identifying the optimal attack strategy {k0, · · · , kT }. Below, we elaborate

the two steps in greater detail.

Step 1: Generating the universal adversarial perturbation. In this step, we focus on how

to generate the universal adversarial perturbation (i.e., δ), which can be applied identically on

every time step. As aforementioned, when generating the universal adversarial perturbation δ,

the attacker should satisfy the following requirements: Firstly, when applying the universal ad-

versarial perturbation (i.e., δ) to each observed state, the attacker should make sure that not

only the predicted action is altered but also the corresponding interpretations are wrong. Ad-

ditionally, we should note that the attacker is restricted to only manipulating pixels within a

small region of the input image. Based on the above two restrictions, for the given unattacked

trajectory {(st, at)}Tt=0, we formulate the following optimization problem

min
δ

T∑
t=0

1

T + 1
π(s̃t, at) + λ1

T∑
t=0

1

T + 1
exp(I(s̃t, ãt;π)⊙M)

s.t. ∀t ∈ [T], s̃t = A(st,M , δ),

∀t ∈ [T], ãt = argmax
a∈A

π(s̃t, a),

∥δ∥∞ ≤ ϵ, (4.6)

51

where A(st,M , δ) = (1 −M) ⊙ st +M ⊙ δ. The first loss term is used to force the agent

to take an arbitrary action (instead of the original optimal action). The second term is used

to fool the interpretation results. The first constraint enforces the attacker to only manipulate

a small region of the input data. The last constraint aims to find the sufficiently imperceptible

universal perturbation that leads to the wrong action prediction and interpretations desired by the

adversary. To derive the universal perturbation δ, we can solve the above optimization problem

using the projected gradient algorithm.

Step 2: Identifying attack points. Note that after Step 1, the attacker can generate the

universal perturbation δ that can be identically applied to every time step. However, as afore-

mentioned, if the attacker perturbs the observed state at every time step, the launched universal

attack will be easily detected due to the significant decrease in the end reward. Hence, in this

step, we discuss how to identify the optimal attack strategy {k0, · · · , kT } by strategically se-

lecting a set of time steps. With this identified attack strategy, the attacker can maximize his

attack utility while avoiding being detected. To derive the attack strategy, at each time step, the

attacker first computes the variance of the Q value as follows

V ar(Q(st)) =
1

|A| − 1

|A|∑
i=1

(Q(st, ai)−
1

|A|

|A|∑
j=1

Q(st, aj))
2, (4.7)

where A is the action space of the MDP, and |A| is the number of actions. Then, according

to the above calculated variance, the attacker decides whether he should perturb st. Based on

Lemma 5 (in Appendix), we know that when attacking states with low variance, the attacker

will get more reward in expectation. Hence, to avoid being detected, the attacker should attack

the states with low variance to incur low decrease in the accumulated reward.

4.3.4 Theoretical Analysis

In this section, we theoretically quantify the influence of our proposed universal attack on the

accumulated reward collected by the agent throughout the game. To do so, we first characterize

the environment under attack as a new MDP1 (denoted asM1 orM2, depending on detailed

attack setup), which is different from the original MDP M in its transition probability and

immediate reward function. Then we have the following theorem.
1 Due to space constraints, both the formal definitions of M1 and M2, and the proof of the theorems are deferred

to Appendix.

52

Theorem 4. Let V ∗, V ∗
1 , and V ∗

2 be optimal value functions for M, M1, and M2, respec-

tively. Note that the value function is equal to the expected total reward for an agent start-

ing from a particular state. SupposeM,M1, andM2 have bounded immediate rewards, i.e.,

maxs∈S,a∈A |R(s, a)| ≤ R. Let TV (P,Q) be the total variation distance between two proba-

bility measures P and Q on S. Let ∥f − g∥∞ = maxs∈S,a∈A |f(s, a)− g(s, a)|. SupposeM
has transition and immediate reward models which are continuous on S, i.e., ∀s ∈ S, a ∈ A,

∥P(·|s, a) − P1(·|s, a))∥1 ≤ Lϵ, and |R(s, a) − R2(s, a)| ≤ lϵ, for some constant L and l.

Then, we have

∥V ∗ − V ∗
1 ∥∞ ≤

2γR

(1− γ)2
max

s∈S,a∈A
TV (P(·|s, a),P1(·|s, a)) ≤

γRL

(1− γ)2
ϵ,

∥V ∗ − V ∗
2 ∥∞ ≤

2γR max
s∈S,a∈A

TV (P(·|s, a),P2(·|s, a)) + (1− γ)∥R −R2∥∞

(1− γ)2

≤ γRL+ (1− γ)l
(1− γ)2

ϵ. (4.8)

The above theorem upper bounds the change in the optimal total accumulated reward if all

time steps in the episode of game playing are perturbed. Note that in our proposed adversarial

attack paradigm, we control the total number of attacked time steps in one episode. Therefore,

the result from Theorem 1 on value function, which is essentially the sum of discounted rewards

from all time steps, is insufficient. Accordingly, we define T -step value function (in Appendix)

to formally measure the influence of the attacker on the accumulated reward collected only from

the perturbed T steps. Then, based on this, we can derive the following theorem.

Theorem 5. Suppose M, M1, and M2 satisfy the same assumptions as in Theorem 1. V ∗,

V ∗
1 , and V ∗

2 are optimal value functions for M, M1, and M2, respectively. π∗, π∗1 , and π∗2
are optimal policies for M, M1, and M2, respectively. Denote max(Lϵ, lϵ) to be δ. Sup-

pose π∗ is executed on Mi for T steps, we denote T -step value function under policy π∗ as

Vπ∗
i (s, T) = E[

∑T −1
t=0 γtRi(st, π∗(st))|s0 = s]. We denote the maximum possible T -step

return by GT = maxs∈S Vπ
∗
(s, T). For all ω ≥ 0, if ϵ ≤ 1

max(L,l)(
ω

12|S|T GT
)2, we have

|Vπ∗
(s, T)− Vπ∗

i (s, T)| ≤ ω, where i ∈ {1, 2}.

From Theorem 2, we can see that when the agent unconsciously executes the original opti-

mal policy in the adversarially perturbed environmentM1/M2, since the agent is not allowed

to re-train the policy network, the fluctuation measured by T -step value function the agent may

experience, is well bounded if the perturbation the attacker imposes is small, which validates

our previous argument on stealthiness of our proposed attack.

53

4.4 Model Poisoning Attack against DRL Interpretations

In this section, we firstly describe the threat model considered in the poisoning attack settings.

Then, we present an algorithmic framework to rigorously design a model poisoning attack

against DRL interpretations.

4.4.1 Threat Model

Here, we describe the threat model considered in our poisoning attack. Different from tradi-

tional data poisoning attacks where the attacker injects fake samples into the training dataset

before the training process of the victim model begins, we do not assume that the attacker has

full knowledge of the original training data. Instead, we assume that the attacker in our setting

only has access to the pre-trained DRL model. The attacker’s goal is to manipulate the param-

eters of the pre-trained DRL model such that the interpretation results are significantly altered.

Consider the aforementioned example where due to the limited computational resources, the

agent resorts to downloading the pre-trained DRL model provided by a third party. During this

process, the attacker could pose potential threats to the system. To contrast with traditional data

poisoning attacks [73, 74], we here call our attack the model poisoning attack since the attacker

directly manipulates the pre-trained model parameters that are generated in the training phase

instead of the training dataset. In practice, model poisoning attacks are more ubiquitous than

data poisoning attacks as the attacker may not always have access to the training database that

is typically secured by professional staff, while ordinary agent may acquire poisoned model

from the attacker disguised as third-party model provider.

4.4.2 Formalization of Model Poisoning Attack

In this section, we introduce our designed model poisoning attack against DRL interpretations

(i.e., MPDRLI). Note that in our model poisoning attack setting, the attacker directly manipu-

lates the model parameters instead of the training data. However, if the performance of the re-

trained DRL model is significantly degraded, the model poisoning attack can be easily detected

by evaluating on the validation games, and then the re-trained DRL model will be immediately

rejected by the agent. Hence, when the attacker manipulates the trained DRL model, he should

guarantee that he can dramatically alter the interpretation results without significantly hurting

the performance of the original DRL model. To address this challenge, we propose to design our

model poisoning attack against DRL interpretations by fine-tunning the pre-trained DRL model

54

with the objective function that combines the ordinary loss of the original DRL model with a

penalty term that involves the interpretation results. Without loss of generality, in the following,

we use the DQN algorithm [59] as a representative example of DRL to present the proposed

model poisoning attack (i.e., MPDRLI). Note that the proposed MPDRLI is model-agnostic

and can generalize to other DRL algorithms naturally.

Note that a deep Q network estimates the Q-value function by leveraging a multi-layered

neural network. The input for the network is the current state, and the output is the correspond-

ing Q-value for each of the action. Specifically, for each given state-action pair (i.e., state st

and action at), the deep Q-Network predicts the corresponding Q-Value Q(st, at;Θ) through

a forward pass, where Θ are the parameters of the deep Q network. The value Q(st, at;Θ) is

an estimate of the expected future reward that can be obtained from (st, at). The correspond-

ing policy for a DQN is obtained by choosing the action with the maximum Q-value for each

state. The deep Q-network parameters (i.e., Θ) can be derived by minimizing the following

mean-squared Bellman error

J(Θ) = E[(r(st, at) + γmax
a∈A

Q(st+1, a;Θ
−)−Q(st, at;Θ))2],

where Θ− represents the parameters of the target network, and the parameters Θ of the online

network are updated by sampling gradients from minibatches of past transition tuples. The

above mean squared error measures the squared difference between the target Q value (i.e.,

r(st, at) + γmaxa∈AQ(st, a;Θ
−)) and the current Q output (i.e., Q(st, at;Θ)).

Here, we consider the case where the attacker wants to secretly alter the model parameters,

such that the agent cannot figure out what features are really most important for the current

action prediction with targeted interpretation method. In our model poisoning attack settings,

the attacker has no knowledge of the training dataset Dtr but he can collect a substitute dataset

D′
tr by iteratively running the targeted model. Let pt,k(Θ∗) denote the set of pixels that had

the top k highest saliency map values with interpreter I of the original clean DQN model

(parameterized by Θ∗), for the state-action pair (st, at). Note that to avoid being detected, the

attacker should maintain the performance of the retrained DRL model, while only focusing on

attacking the interpretation results. In order to achieve the attack goals, based on the pre-trained

model parameters Θ∗ and the substitute dataset D′
tr, the attacker can manipulate the original

55

clean DQN model as follows

min
Θ̃
L(Θ̃) = E[(r(st, at) + γmax

a∈A
Q(st+1, a; Θ̃

−)−Q(st, at; Θ̃))2]

+ λ3 ∗
1

T + 1

T∑
t=0

∑
j∈pt,k(Θ∗)

exp(I(st, at; Θ̃)), (4.9)

where Θ∗ is the model parameters of the original unattacked DQN model, λ3 is a trade-off

parameter, and the penalty term is designed to reduce the interpretation scores of the pixels that

originally had the top k highest values. By differentiating the above loss function with respect

to Θ̃, we can get the following gradient

∂L(Θ̃)

∂Θ̃
= E[(r + γmax

a∈A
Q(st, a; Θ̃

−)−Q(st, at; Θ̃))
Q(st, at; Θ̃)

∂Θ̃
]

+ λ3 ∗
1

T + 1

T∑
t=0

∑
j∈pt,k(Θ∗)

(exp(I(st, at; Θ̃)) ∗ ∂I(st, at; Θ̃)

∂Θ̃
). (4.10)

Then, based on the above, we can re-train the DQN model by using the projected gradient

descent method [59]. Note that the original parameters Θ∗ are used as the initialized parameters.

Discussion. In the above, we consider how to reduce the interpretation scores of the pixels

that originally have the top k highest values. In practice, we can also make the interpretations

always say that some particular region of the input (e.g., boundary or corner of the image), is

important regardless of the input.

4.5 A Defense Mechanism against Malicious Attacks on DRL In-
terpretations

In this section, we design a novel general defense mechanism to mitigate malicious attacks on

DRL interpretations. Note that, in the previous sections, we study the security vulnerabilities

of DRL interpretations to two representative types of attacks against DRL interpretations: ad-

versarial attacks and model poisoning attacks. More specifically, we first design an universal

adversarial attack against DRL interpretations (i.e., UADRLI), from which the attacker can add

the crafted universal perturbation uniformly to the environment states in a maximum number

of steps to incur minimal damage to the agent’s end goal. In addition, we also design a model

poisoning attack (i.e., MPDRL), based on which the attacker can significantly alter the interpre-

tation results while incurring minor damage to the performance of the original DRL model. With

56

the previously proposed malicious attack frameworks (i.e., UADRLI and MPDRL), the attacker

can significantly degrade the effectiveness of the interpretation methods designed for DRL, and

hence poses a serious threat to the success of the interpretation methods for DRL in practice.

Thus, it is extremely essential to design effective mechanisms to defend DRL interpretations

against such malicious attacks (i.e., adversarial attacks and poisoning attacks).

To address the above problem, we propose a general defense mechanism to increase the

attack resistance of DRL interpretations against the proposed malicious attacks. Specifically,

we propose to build an ensemble of multiple explanation methods as an simple and effective

way to reduce vulnerabilities. Our approach is motivated by a key insight in machine learning:

Ensemble models can reduce both bias and variance compared to applying a single model. In

practice, ensemble methods have also been previously used to defend against adversarial attacks

on neural network outputs [10, 75, 76], motivating the usage of an explanation ensemble to

defend against malicious attacks on the generated explanations. Thus, we propose to apply the

same idea to explanation methods and build an ensemble of explanation methods, which can be

achieved at less computational complexity.

More specifically, we propose to calculate the average over all available explanation meth-

ods. By taking the average over all available explanation methods, we can reduce the variance

of the explanation compared to using a single interpretation method. We theorize that the aver-

aging of the diverse set of explanation methods involved in the aggregation creates smoothness.

The resilience of the aggregation to malicious attacks can be understood in terms of averag-

ing induced smoothness, and smoothness can lead to increased robustness. In addition, to get a

theoretical understanding of the explanation aggregation, we propose to hypothesize the exis-

tence of a “true” explanation. In this way, we can quantify the error of an explanation method

as the mean squared difference between the “true” explanation and an explanation produced by

an explanation method, i.e., the mean squared error. In other words, we define the error of an

explanation method as the mean squared difference between a hypothetical “true” explanation

and an explanation procured by the explanation method.

Based on the above, we first discuss how to provide guarantees of robustness to adversarial

attacks. Let I(st, at;π) denote the interpreter being attacked. For the given state-action pair

(st, at), we can utilize this interpreter to generate the importance vector (i.e., I(st, at;π)),
which can help us to identify which features are important for the predicted action. For the

motivated attackers, they can follow the above proposed malicious attacks to alter the generated

interpretation results. We use {Ĩm}Mm=1 to denote the set of available clean interpreters. In the

proposed adversarial attacks, the attackers aim to perturb the current state st to mislead the

57

targeted interpreter I(·) to reduce the importance scores of the initially top-ranked features.

Here, we use s̃t to denote the perturbed version of st. In order to defend against the adversarial

attacks, we propose to average all of the generated interpretations

E1(s̃t, at) =
I(s̃t, at;π) +

∑M
m=1 Ĩm(s̃t, at;π)

M + 1
,

where M represents the number of the available clean interpreters, and I(·, ·;π) denotes the

interpreter being attacked.

Next, we talk about how to defend model poisoning attacks, which happen at the training

stage. Note that in the settings of model poisoning attacks, the attacker targets a specific inter-

pretation method, and aims to manipulate the interpretation results (generated by the targeted

interpretation method) by modifying the model parameters of the previously trained deep rein-

forcement learning model. In order to defend the model poisoning attacks, we also propose to

average the feature importance scores that are generated from all of the available interpreters.

Specifically, for each incoming testing sample, we first calculate the averaged feature impor-

tance score vector. Then, we compute the top-ranked feature overlap between the average fea-

ture importance score vector and the feature importance score vector that is derived from the

targeted interpreter, which is attacked by the attacker. Similar to the above, the higher the fea-

ture intersection, the better the performance of the proposed defense mechanism. Based on this,

we propose to defend model poisoning attacks by calculating the averaged feature importance

scores, which is given as follows

E2(st, at) =
I(st, at; π̃) +

∑M
m=1 Im(st, at; π̃)

M + 1
,

where M represents the number of the available clean interpreters, π̃ denotes the maliciously

manipulated policy network, and I(st, at; π̃) is the targeted interpretation method that is at-

tacked at the training stage.

4.6 Experiments

In this section, we firstly introduce the experimental setup in Section 4.6.1. Next, we conduct

experiments to validate the effectiveness of the proposed universal adversarial attack against

DRL interpretations (i.e., UADRLI) in Section 4.6.2. Then, in Section 4.6.3, we verify the ef-

fectiveness of the proposed model poisoning attack against DRL interpretations (i.e., MPDRLI).

Lastly, in Section 4.6.4, we conduct experiments to evaluate the performance of the proposed

58

0 2M 4M 6M 8M 10M

Number of time steps

0

5

15

25

A
cc

u
m

u
la

te
d

 r
ew

a
rd

(a) Pong

0 2M 4M 6M 8M 10M

Number of time steps

0

100

200

300

A
cc

u
m

u
la

te
d

 r
ew

a
rd

(b) Breakout

0 2M 4M 6M 8M 10M

Number of time steps

0

200

400

600

700

A
cc

u
m

u
la

te
d

 r
ew

a
rd

(c) SpaceInvader

Figure 4.1: Performance comparison of adversarial attacks on the accumulative reward.

general defense mechanism to increase the attack resistance of DRL interpretations against the

proposed malicious attacks.

4.6.1 Experimental Setup

Model setting. Our experimental implementation of the environments builds on OpenAI gym’s

control environments with the Atari physics simulator. In experiments, we train agents on

Pong, Breakout, and SpaceInvaders by using two state-of-the-art DRL algorithms (i.e., A3C and

DQN). We choose these three games because each of them poses a different set of challenges

and the two adopted DRL algorithms have historically exceeded human-level performance on

them. For evaluation, the game’s randomness seed is reset for every episode. We also adopt two

representative DRL interpreters, i.e., the Jacobian and gradient saliency.

Network architecture and parameter settings. For the adopted A3C algorithm, all of

the Atari agents have the same recurrent architecture. The input at each time step is a pre-

processed version of the current frame, and the preprocessing operations include gray-scaling,

59

Table 4.1: The setting of parameters.

Parameter Value Parameter Value

learning rate 1e-4 λ1 1.0

discount factor (γ) 0.99 k 706

λ3 1.0 - -

down-sampling by a factor of 2, cropping the game space to an 80× 80 square and normalizing

the values to [0, 1]. This input is processed by 4 convolutional layers (each with 32 filters, kernel

sizes of 3, strides of 2, and paddings of 1), followed by an LSTM layer with 256 hidden units

and a fully connected layer with |A|+ 1, where |A| denotes the dimension of action space. For

the adopted DQN algorithm, the network architecture is a convolutional neural network with 3

convolution layers and a fully-connected hidden layer. Specifically, the first hidden layer con-

volves 32 filters of 8× 8 with stride 4 with the input image and applies a rectifier nonlinearity.

The second hidden layer convolves 64 filters of 4 × 4 with stride 2, again followed by a recti-

fier nonlinearity. The third hidden layer convolves 64 filters of 3 × 3 with stride 1 followed by

a rectifier. The final fully-connected layer consists of 512 rectifier units. Here, the input RGB

frame (i.e., the observed state) is rescaled to 84×84. The output layer is a fully-connected linear

layer with a single output for each valid candidate action. The setting of parameters is given in

Table 4.1.

Baselines. For the proposed universal attack, in experiments, we adopt two baselines: Firstly,

we adopt the uniform adversarial attack as the baseline, denoted as UniAck, which is a direct

extension of the traditional adversarial attacks on DRL. In UniAck, we apply the generated

universal perturbation to the observed state at each time step. Additionally, we also compare

the agent’s performance under our proposed adversarial attacks with that under no adversarial

attack, denoted as NoAck. For the proposed model poisoning attack, since there is no existing

work addressing the vulnerability of DRL to poisoning attacks, we adopt the no model poison-

ing attack baseline (dubbed as NoPAck).

4.6.2 Experiments for Adversarial Attack

In this section, we evaluate the performance of the proposed universal adversarial attack (i.e.,

UADRLI). Unless otherwise specified, in this experiment, we adopt the Jacobian saliency and

restrict the attacker to only manipulating the pixels at the top-left corner of the input image, and

set the size of the attacked image area as 40 × 40. Additionally, given an episode that consists

60

of an alternating sequence of state-action pairs, for the proposed UADRLI, we only attack 10%

of these state-action pairs that have the lowest Q value variance. In contrast, for the baseline

UniAck, we attack 10% of these state-action pairs that have the largest Q value variance.

Performance of adversarial attacks on the discounted accumulative reward. Next, we

compare the performance of the proposed UADRLI with that of the two baselines by averaging

the total reward accumulated by the target agent. Here, for the proposed UADRLI, the universal

perturbation δ is crafted with ϵ = 0.12. For an episode of game playing, we only attack 10% of

the state-action pairs that have the lowest Q value variance. In contrast, for the adopted baseline

UniAck, we attack 10% of the state-action pairs that have the largest Q value variance. The

experimental results on the three adopted games are shown in Figure 4.1, where the y-axis is the

accumulated reward and the x-axis is the number of time steps. The reference line in the figure

is the purple line which corresponds to the reward function under no attack (NoAck). From

this figure, we can see that the proposed UADRLI can reach the similar effect of the original

unattacked DRL model. In contrast, for the adopted baseline UniAck that attacks the time steps

where the variance of the corresponding states are high, it suffers from the most severe reduction

in accumulated reward, which is also in accordance to the conclusion of Lemma 5 (in Appendix)

that attacking the states with low variance incurs low decrease in the accumulated reward. In

sum, regardless of which game the agent plays, the proposed UADRLI indeed incurs minor

decrease in the policy’s performance.

Visualization. Next, we visually demonstrate the effectiveness of the proposed UADRLI.

To better visualize the experimental results, in this experiment, we set the value of ϵ as 0.12, and

set the size of the attacked image region as 20× 20. In practice, we can set ϵ as a much smaller

value to make the crafted universal perturbation δ more imperceptible. In Figure 4.2, we plot

the visualization results on the Pong game. In this figure, the leaftmost (i.e., Figure 4.2a) is the

original input image, the second one (i.e., Figure 4.2b) is the adversarial image that is derived

by adding the crafted universal perturbation δ to its original unattacked state (i.e, Figure 4.2a),

and the rightmost (i.e, Figure 4.2c) highlights the most important features that are identified by

the adopted Jocabian interpreter. By adding the universal perturbation, the trained agent, who

should have taken the “down” action, take the “up” action instead. And the added perturbations

at the top-left corner are the the real reason for the wrong action prediction. However, from

Figure 4.2c, we can observe that the crafted universal perturbation can successfully fool the

adopted interpreter. That is to say, the adopted interpreter cannot identify the attacked image

region. These results show that the proposed UADRLI not only leads the trained agent to make

wrong action judgement but also can avoid being detected.

61

5M 10M 15M 20M 25M

Number of time steps

0

5

10

15

20
A

cc
u

m
u

la
te

d
 r

ew
a

rd

(a) Pong

5M 10M 15M 20M 25M

Number of time steps

0

300

600

900

A
cc

u
m

u
la

te
d

 r
ew

a
rd

(b) Breakout

5M 10M 15M 20M

Number of time steps

0

300

600

900

A
cc

u
m

u
la

te
d

 r
ew

a
rd

MPDRLI

NoPAck

(c) SpaceInvader

Figure 4.3: Performance of the proposed model poisoning attack on the accumulative reward.

(a) (b) (c)

Figure 4.2: Visualization results for the Pong game.

62

1 30 60 90

Number of states

0

0.05

0.10

0.15

P
er

ce
n

ta
g
e

(a) Pong

1 30 60 90

Number of states

0

0.15

0.30

0.45

P
er

ce
n

ta
g
e

(b) Breakout

Figure 4.4: Percentage of identified features when k = 706.

1 30 60 90

Number of states

0

0.15

0.30

0.45

P
er

ce
n

ta
g
e

(a) Pong

1 30 60 90

Number of states

0

0.15

0.30

0.45

P
er

ce
n

ta
g
e

(b) Breakout

Figure 4.5: Percentage of identified features when k = 1, 058.

4.6.3 Experiments for Model Poisoning Attack

In this section, we evaluate the performance of the proposed model poisoning attack (i.e., MP-

DRLI). The adopted DRL algorithm is DQN, and the adopted interpreter is the gradient saliency.

In the following experiment, unless otherwise specified, we set λ3 = 1.0 and k = 706, and there

are 84 ∗ 84 features in total.

Performance on the accumulated discounted reward. First of all, we compare the per-

formance of the proposed MPDRLI with that of the adopted baseline (i.e., NoPAck) on the

accumulated reward. The experimental results are reported in Figure 4.3, where x-axis denotes

the number of time steps and y-axis represents the accumulated reward. From this figure, we can

see that the proposed MPDRLI achieves similar performance as that of the adopted no attack

baseline (i.e., NoPAck). These experimental results verify that the proposed model poisoning

63

attack incurs minor decrease to the performance of the original DRL model. In this way, the

proposed poisoning attack can remain undetected (i.e., stealthy). In practice, if the performance

of the poisoned DRL model is significantly decreased, the agent can easily detect the launched

attacks by just checking the accumulated reward.

Performance on altering the interpretation results. We then evaluate the effectiveness

of the proposed MPDRLI in terms of altering the interpretation results. In this experiment, we

first let the agent play a game with the original DRL model, and then select a sequence of

state-action pairs from this entire game episode. Next, for each selected state-action pair, we

first use the adopted interpreter to identify the k highest ranked features that are crucial for

explaining the prediction decision made by the original DRL model. Then, for this state-action

pair, we select the k highest ranked features that explain the decision made by the poisoned

DRL model. After that, we count the number of the features in the intersection between the

two selected feature subsets. The lower the number of features in the intersection, the better the

performance of the proposed MPDRLI. Based on this count, we can calculate the percentage of

features in the intersection over the number of features originally identified by the interpreter.

The averaged experimental results are reported in Figure 4.4. Here, we vary the number of the

selected state-action pairs from 1 to 99. Take Figure 4.4a as an example. From this figure, we can

see that the percentage of the features in the intersection is only around 0.10. In other words,

the interpretation results generated from the poisoned DRL model are significantly different

from that of the original clean model. Hence, the proposed MPDRLI can guarantee that the top-

ranked features cannot be identified by the agent. In Figure 4.5, we also show the experimental

results when the value of k is set as 1, 058, which means that the attacker attacks 15% of all

the features that have the largest feature importance scores. From this figure, we can also derive

the same observation that the interpretation results generated from the poisoned DRL model are

significantly different from that of the original clean DRL model.

4.6.4 Experiments for the Proposed Defense Mechanism

In this section, we will conduct experiments to evaluate the performance of the proposed defense

mechanism. Note that in the previous sections, we studied the vulnerability of deep reinforce-

ment learning interpretations by presenting the algorithmic frameworks to rigorously formulate

the malicious attacks. The proposed malicious attacks aim to reduce the importance scores of

the features that originally had the top k highest values.

64

Number of time steps

Datasets 10 20 30 40 30 40

Breakout 0.205 0.212 0.207 0.215 0.245 0.205

Breakout (defense) 0.627 0.632 0.687 0.637 0.621 0.678

Table 4.2: Percentage of identified features on the game of Breakout.

We here conduct experiments to evaluate the performance of the proposed defense mecha-

nism against the adversarial attacks. Specifically, in this experiment, we first generate the adver-

sarial instance for each of the instances in the test set based on the proposed adversarial attack

strategy described in the previous section. Then, by using all of the available interpreters, we

calculate the averaged feature importance score vector for each adversarial instance. Here the

derived feature importance score vectors are derived based on the proposed defense mechanism.

After that, we can compute the feature overlap based on the averaged feature importance score

vector and the original feature importance score vector for the original clean instance. Finally,

we can calculate the percentage of features in the intersection over the number of features orig-

inally identified by the interpreter. The larger the feature overlap, the better the performance

of the proposed defense mechanism. In addition, to estimate the performance of the proposed

defense mechanism against the model poisoning attacks, for each incoming testing sample, we

first calculate the averaged feature importance score vector. Then, we compute the top-ranked

feature overlap between the average feature importance score vector and the feature importance

score vector that is derived from the targeted interpreter. Similar to the above, the higher the fea-

ture intersection, the better the performance of the proposed defense mechanism. The averaged

experimental results on the game of Breakout are reported in Figure 4.2. In this experiment, we

trained the agents on the game of Breakout, and varied the number of the time steps from 10 to

40. From the reported experimental results this figure, we can see that the interpretation results

(i.e., the feature overlap) generated from the defense mechanism are significantly larger than

that of the attacked interpreter.

4.7 Related Work

Adversarial attacks against deep reinforcement learning. Recent studies [77, 78, 79, 80,

81] show that DRL algorithms are unavoidably susceptible to adversarial perturbations. [77]

makes use of white-box assumptions and proposes an attack method where the attacker attacks

every time step by applying the FGSM. [78] designs a targeted controlling attack where the

65

attacker can manipulate the policy by adding the imperceptible noise to the observations of the

environment. [79] proposes adversarial attacks that lead the agent into increased probability of

taking worst possible actions. [80] verifies the transferability of adversarial examples across

different DQN models. [81] unveils how little it takes to deceive an DRL policy by considering

three restrictive settings. However, these methods only focus on attacking specific states using

traditional per-instance techniques, and ignore the end goal of the entire DRL task. In contrast,

[82, 83] consider how to significantly deteriorate the agent’s end reward. However, the agent

can easily identify the adversarial attack by simply comparing the consequent end goal with his

own desired one. Additionally, all of the above works only focus on how to craft state-dependent

perturbations, which is computationally intractable in long state sequences. They also make an

implicit assumption that the attacker has the ability of manipulating the whole input data. Lastly,

they do not study the vulnerability of DRL interpretations to the security threats.

Interpretation models for deep reinforcement learning. Based on the interpretation stages,

existing DRL interpretation works can be generally divided into the following two categories:

intrinsic and post-hoc. The latter case does not require modifying the model architectures or

parameters, thereby leading to higher prediction accuracy [84]. Motivated by this, considerable

works [59, 62, 63, 61, 64, 65, 66] have been proposed to provide post-hoc explanations for ex-

plaining the model’s output for a given input. For example, [64] takes a closer look at a slightly

modified version of Grad-CAM in the context of deep RL on Atari games. However, all of

these interpretation works assume a secure and reliable environment, and do not consider the

vulnerability of DRL interpretations to the malicious attacks.

Adversarial attacks against deep learning interpretations. Very recently, some works

[67, 68, 69, 70, 71] are beginning to study the vulnerability of the interpretation methods for

deep neural networks. For example, [69] demonstrates that explanation maps can be sensitive to

small perturbations in the image. Their results can be thought of as untargeted manipulations,

i.e., perturbations to the image which lead to an unstructured change in the explanation map.

However, these works only focus on how to design adversarial attacks against supervised deep

neural network interpretations, and cannot be directly applied to DRL due to its unique charac-

teristics (e.g., the sequentiality of decision-making process and the end-goal oriented property).

Furthermore, these works only consider the adversarial attack, and do not consider the poisoning

attack.

66

4.8 Conclusions

To the best of our knowledge, we are the first to study the vulnerability of DRL interpretations

to the malicious attacks. More specifically, in this chapter, we firstly present an universal ad-

versarial attack against DRL interpretations (i.e., UADRLI), from which the attacker can add

the crafted universal perturbation uniformly to the environment states in a maximum number

of steps to incur minimal damage to the agent’s end goal. Then, we design a model poisoning

attack against DRL interpretations (i.e., MPDRLI), based on which the attacker can signifi-

cantly alter the interpretation results while incurring minor damage to the performance of the

original DRL model. To enhance the robustness of DRL interpretations against malicious at-

tacks, we also propose a general defense mechanism to increase the attack resistance of DRL

interpretations against the proposed malicious attacks. Both theoretical analysis and extensive

experimental results are provided to demonstrate the effectiveness of our proposed approaches.

Chapter 5

Robust and Automatic Model
Explanations

5.1 Introduction

Recently, interpreting and understanding the behaviors of black-box machine learning (ML)

models has drawn significant attention [85, 86, 87, 88, 89, 90, 91, 90, 6, 92]. The most commonly-

used explanation method is to explain an ML model’s predictions in terms of the input features

(e.g., pixels and word-vectors) [10, 12, 13, 14, 15, 26, 93, 94]. However, these feature-based

interpretations suffer from several drawbacks [85]. For example, [86] demonstrates that given

identical feature-based explanations, human can confidently find evidence for completely con-

tradicting conclusions. In addition, the feature-based explanation methods are not necessarily

the most intuitive explanations for human understanding, especially when using low-level fea-

tures (e.g., the raw pixels). In contrast, human reasoning often comprises “concept-based think-

ing” by extracting similarities from numerous samples and grouping them semantically based

on their resemblance [95]. As a consequence, recent research has focused on designing concept-

based explanation methods to interpret how ML models use high-level human-understandable

concepts in arriving at decisions [86, 85, 96, 97, 98, 87, 95, 99].

However, an obstacle to the large-scale adoption of these concept-based explanation meth-

ods is that they require significant human effort and resource expenditure. The reason is that

existing concept-based explanation methods implicitly follow a two-stage procedure with man-

ual intervention. Specifically, they first need human to manually define concepts by using a set

of input examples for the ML model under inspection [85, 86, 87], and then manually compute

67

68

the importance score of each pre-defined concept in a post-hoc way. For example, to define the

concept of “curly”, [85] needs a human subject to go over all the given images of this con-

cept and extract meaningful segmentations. Then, [85] manually computes each extracted con-

cept’s importance score via the directional derivative method [86]. However, identifying human-

interpretable concepts and checking for the semantic meaningfulness require a large effort from

human experts due to manual annotations and computation. Thus, how to automatically provide

concept-based explanations without human intervention still remains a fundamental challenge.

Our goal in this chapter is to automatically generate the intrinsic concept-based explana-

tions from the input data without human intervention. To achieve this goal, we propose to inject

the concept-based explanations into the learning loop: whenever asking the user to label an in-

coming sample, the model can simultaneously provide the predicted label for this sample and

the corresponding concept-based explanations on interpreting this predicted label. However,

the challenge here is how to define the units of concept-based explanations from the learn-

ing network structure considering that they are very subjective. If we directly follow existing

concept-based works [86, 85, 96, 97, 98, 87, 95, 99], the human has to be involved in this labo-

rious tuning process. The reason is that ML models usually do not comprehend the way humans

do and cannot guarantee that the extracted concepts are semantically meaningful, which also

violates the fidelity of concept-based explanations. So the method proposed in [85] still needs

human involvement (e.g., removing outliers segments of each concept). In addition, the num-

ber of the interpretability units also determines the construction of the self-explanatory network

architecture based on the desired properties. Hence, instead of manual tuning, we also need to

address how to automatically learn the optimal number of interpretability units.

Furthermore, the concerns regarding the reliability of explanations still exist [100]. In prac-

tice, motivated attackers could generate imperceptible adversarial perturbations to change the

interpretability of the input data while preserving the predicted results [101, 69, 102, 103].

This lack of robustness is problematic in real-world applications where adversarially manip-

ulated explanations could impair safety and trustworthiness. For instance, given a traffic sign

classification, a prediction classifying an input as a stop sign with the explanation that the back-

ground contains a river is unlikely to be trusted by the users. Although there are some works

[104, 100, 105, 106, 107, 108] exploring the robustness of model explanations, they cannot be

certified, which means that no provable guarantees can be given to verify their robustness. In

practice, these uncertified methods become vulnerable under stronger adversarial attacks. Thus,

it is also of great importance to rigorously guarantee robustness of the generated explanations.

With such certifiable robustness guarantees for the generated explanations, we need not worry

69

about an adversary with a stronger optimizer, or a more clever algorithm for choosing adversar-

ial perturbations.

In order to tackle the above challenges, in this chapter, we design a novel automatic and

robust model interpretation method (AutoRMI), a self-explanatory model that can not only au-

tomatically provide the concept-based explanations via units that are more understandable to

humans than individual features (e.g., pixels) but also provide certified robustness guarantees

for the generated explanations. In our proposed method, given that defining the units of concept-

based explanations is very subjective, we first propose an interpretability regularization term

that guides the model to extract the prototype-based concepts from the training data during

the training process. More specifically, each prototype-based concept in our setting is a repre-

sentative instance that best presents a possibly target set and summarizes the underlying data

pattern. Since these prototype-based concepts are extracted in a way that they can represent

a set of particular targets in the training data, we can guarantee that these extracted concepts

have meaningful and relevant information. Hence, we can release the burden of human from

the multifarious manual engagement process. Additionally, to reduce the susceptibility of the

generated explanations to adversarial attacks, we also design a novel interval bound propaga-

tion based regularization term, which is a bounding technique derived from interval arithmetic

[109, 110, 111] and is an incomplete method for training verifiably robust models. Specifically,

this bounding based regularization term minimizes an upper bound on the maximum difference

between any pair of explanation results when the input can be perturbed within a norm-bounded

ball, and is computationally efficient since its computational cost is comparable to two forward

passes through the network. Extensive experiments on real-world datasets demonstrate the ef-

fectiveness of the proposed interpretation method.

5.2 Methodology

Note that our goal is to design a novel self-explaining framework, which can not only auto-

matically provide the concept-based explanations without requiring any human intervention but

also provide certified robustness guarantees for the generated explanations. However, as afore-

mentioned, defining the units of concept-based explanations is very challenging since they are

very subjective. To tackle this challenge, we propose to extract the prototype-based concepts

in the training data to guide the model to explain predictions. These learned prototype-based

concepts are the representative patterns that describe influential data structures in latent repre-

sentations. Specifically, we first build an autoencoder component to find the smallest possible

70
0.55

Figure 5.1: Model structure of the proposed method.

representation of data that it can store, and then design a novel interpretation regularizer to

extract the prototype-based concepts during training. After that, in order to promote certified

robust interpretability, we propose a novel bounding based regularization term. Below, we first

give an overview on the model architecture of the proposed method, and then detail the learning

objective.

Overview. Formally, we denote the training dataset by X = {(xi, yi)}Ni=1, where xi ∈ Rp

and yi ∈ {1, · · · ,K}. The neural architecture of the proposed AutoRMI is presented in Fig-

ure 5.1. The proposed neural architecture includes an autoencoder network, a concept network,

and an importance network. Specifically, the autoencoder network learns a lower-dimension

latent representation of the data with an encoder network, f : Rp → Rq. By using the de-

coder function (g : Rq → Rp), we can project the latent space back to the original dimension.

Then, we can pass the learned latent representation (i.e., f(x)) to the concept network, i.e.,

h : Rq → RK . The concept network first uses several fully connected layers over the latent

space to learn M prototype-based concepts, i.e., {pm ∈ Rq}Mm=1. These prototype-based con-

cepts ({pm ∈ Rq}Mm=1) can provide insight into the representative patterns across the training

data that are utilized by the model for predictions. By using the decoder g, we can decode the

learned prototype-based concepts to examine what the model has learned. After that, for each

pm, the similarity layer computes its distance from the learned latent representation (i.e., f(x))

71

as cm = ||f(x) − pm||22. The smaller the distance value is, the more similar f(x) and pm

are. The importance network (i.e., I : Rq → RM∗K) is trained to quantify the importance

scores (i.e., Φ(x) = [ϕ1(x), ϕ2(x), · · · , ϕM∗K(x)]) of different prototype-based concepts for

the predicted result y(x) = h(f(x)). Finally, the similarity vector (i.e., c(x)) and the impor-

tance vector (i.e., Φ(x)) are aggregated for classification. We use y(x) = h(f(x)) to denote

the predicted classification result for sample x.

The reconstruction error. Note that the autoencoder network here performs data compres-

sion and compresses high dimensional data into latent representations via extracting the most

prominent features of the original data, and consists of an encoder (f : Rp → Rq) and a de-

coder (g : Rq → Rp). The input of the encoder is a data sample and its output is the smallest

possible latent representation of that sample. The decoder (g : Rq → Rp) takes the latent repre-

sentation and can project it back to reconstruct the original sample. Here, we use x̃i to denote

the reconstruction of the original sample xi. The reconstruction loss term for the autoencoder

network can be computed as the following sum of the difference between the original input and

the consequent reconstruction

L1({xi}Ni=1, {x̃i}Ni=1) =
N∑
i=1

||xi − g(f(xi))||22, (5.1)

where x̃i is the reconstruction of xi. In the above, g(·) and f(·) denote the decoder and encoder,

respectively.

The interpretability regularization term. Note that the concept network (i.e., h : Rq →
RK) first learns M concept vectors {pm ∈ Rq}Mm=1 in the latent space during the training

process and then generates a probability distribution over the K classes for each test sample.

Due to the subjectivity of defining the units of concept-based explanations, we propose to learn

a set of prototype-based concepts (i.e., {pm}Mm=1) during model training. These prototype-

based concepts are extracted in a way that they can best represent some specific target sets

and capture the influential data structures in latent representations, which ensures the semantic

meaningfulness of these extracted concepts. With these extracted concepts, we can gain direct

insight into representative patterns that are used by the model for classification tasks. For the

encoded input f(xi), the similarity layer computes its squared ℓ2 distance from each of the

prototype-based concepts as c(xi) = [c1 = ||f(xi)− p1||2, · · · , cM = ||f(xi)− pM ||2]T . To

enable the model to learn representative patterns from the original input data, we formulate the

72

following interpretability regularization loss term

L2({pm}Mm=1, {xi}Ni=1) =
1

M

M∑
m=1

min
i∈[1,N]

||pm − f(xi)||22

+
1

N

N∑
i=1

min
m∈[1,M]

||f(xi)− pm||22 +
2

M(M − 1)

M∑
m=1

M∑
m̃=m+1

max(0, dmin − ||pm − pm̃||2)2, (5.2)

where dmin is a threshold that classifies whether two prototype-based concepts are close or

not. The minimization of the first loss term (i.e., 1
M

∑M
m=1mini∈[1,N] ||pm−f(xi)||22) enforces

each prototype-based concept pm to be as close as possible to at least one of the training ex-

amples in the latent space, which will push each prototype-based concept to learn one of the

encoded training examples. The minimization of the second loss term is utilized to enforce the

encoded training examples in the latent space to be close to one of the concepts, such that the

training examples will be clustered around prototypes in the latent space. The third term is a

diversity regularization term that exerts a larger penalty on smaller pairwise distances between

the prototype-based concepts. By keeping the prototypes distributed in the latent space, it also

helps produce a sparser similarity vector.

The misclassification error. Note that for xi, its learned lower-dimension representation in

the latent space f(xi) is passed to the concept network (i.e., h : Rq → RK) for classification.

Specifically, for xi, its learned importance vector (i.e., Φ(xi) = [ϕ1(xi), · · · , ϕM∗K(xi)])

and similarity vector (i.e., c(x)) are aggregated for classification. Let hk(f(xi)) denote the

probability of xi belonging to class k ∈ [K]. The cross-entropy loss on the training data (i.e.,

{xi}Ni=1) is given as follows

L3 =
1

N

N∑
i=1

K∑
k=1

Ly(hk(f(xi)), yi), (5.3)

where Ly is used for penalizing the misclassification.

The certified robust interpretability regularizer. Here, our goal is to provide certified

robustness guarantees for the generated explanations (i.e., the importance vector Φ(x)). To

achieve this goal, we propose to use interval bound propagation to minimize an upper bound on

the worst-case loss that any adversarial attack can perturb the generated explanations. Note that

the input to the importance network (i.e., I : Rq → RM∗K) is denoted x and its output is an

importance vector which provides concepts’ importance scores. For clarity of presentation, we

assume that the importance network is defined by a sequence of transformations ht for each of

73

its t layers. We use z(t) to denote the output of layer t, where nt is the number of units in the

t-th layer and z(0) stands for the input. Specifically, the network computes

zt = ht−1(z(t−1)),∀t = 1, · · · , T, (5.4)

where zt ∈ RM∗K . Here, we consider the top-k robustness, which requires that the set of con-

cepts with the k highest importance scores remains invariant over small-norm adversarial pertur-

bations. In practice, the top-k attack [69, 102, 112, 113, 114] seeks to perturb the concept impor-

tance map by decreasing the relative importance of the k initially most important concepts. Let

[D] and Sx,k denote the index set of the concepts and the set of concepts that had the top k high-

est importance scores for sample x, respectively. Let S̄x,k = [D]−Sx,k. To produce a certifica-

tion for the generated explanations (i.e., the importance scores Φ(x) = [ϕ1(x), · · · , ϕM∗K(x)])

of sample x, we aim to verify the following condition is true

min
j∈S

z(0),k

ϕ
j
(z(0))− max

j̄∈S̃
z(0),k

ϕ̄j̄(z
(0)) ≥ 0,∀z(0) ∈ B(x),

where z(0) = x. Here, ϕ
j
(·) and ϕ̄j(·) denotes the upper and lower bound, respectively. B(x) =

{x′|||x − x′||∞ ≤ ϵ} is the constraint set over which the adversarial input ranges. Next, we

describe how to produce certificates using interval bound propagation as in [115]. Specifically,

we propose to bound the activation zt of each layer by an axis-aligned bounding box (i.e.,

zt(ϵ) ≤ zt ≤ z̄t(ϵ)1) using interval arithmetic. For each coordinate zt,i of zt, we have

zt,i(ϵ) = min
zt−1(ϵ)≤zt−1≤z̄t−1(ϵ)

eTi ht(zt−1), (5.5)

z̄t,i(ϵ) = max
zt−1(ϵ)≤zt−1≤z̄t−1(ϵ)

eTi ht(zt−1), (5.6)

where z0(ϵ) = x − ϵ1, z̄0(ϵ) = x + ϵ1, and ei is a one-hot vector with 1 in the i-th position.

The above optimization problems can be solved quickly and in closed form for affine layers and

monotonic activation functions. Specifically, for the affine layers (e.g., fully connected layers,

convolutions) that can be represented in the form zt = ht−1(z(t−1)) = W tzt−1 + b(t), we can

get an outer approximation of the tractable interval range of activations by the next layer zt

using the following formula

z̄(t) =W (t) z̄
(t−1) + zt−1

2
+ |W (t)| z̄

(t−1) − zt−1

2
+ b(t), (5.7)

z(t) =W (t) z̄
(t−1) + zt−1

2
− |W (t)| z̄

(t−1) − zt−1

2
+ b(t).

1 For simplicity, we abuse the notation ≤ to mean that all coordinates from the left-hand side need to be smaller
than the corresponding coordinates from the right-hand side.

74

Here, z̄(t−1) denotes the upper bound of each interval, z(t−1) the lower bound, and |W (t)| the

element-wise absolute value. In the similar way, if h(t)(z(t−1)) is an element-wise monotonic

activation (e.g., a ReLU), then we can calculate the outer approximation of the reachable interval

range of the next layer using the following formulas

z̄(t) = h(t)(z̄(t−1)), z(t) = h(t)(z(t−1)). (5.8)

Then, by iteratively applying the above rules, we can propagate intervals through the network

and eventually get z̄(T) and z(T) (i.e., Φ̄(x) and Φ(x)). A certificate can then be given if we

can show that the above verification condition is always true for outputs in the range z̄(T) and

z(T). Based on this, we propose to minimize the following robustness loss during the training

process to provide certified robustness guarantees for the generated explanations

L4 =
1

N

N∑
i=1

max(max
j̄∈S̃xi,k

ϕ̄j̄(xi)− min
j∈Sxi,k

ϕ
j
(xi), 0), (5.9)

where S̄xi,k = [D]− Sxi,k.

Full objective. To summarize, the overall loss that we are minimizing is

L =
1

N

N∑
i=1

K∑
k=1

Ly(hk(f(xi)), yi) + λ1

N∑
i=1

||xi − g(f(xi))||22

+
λ2
M

M∑
m=1

min
i∈[1,N]

||pm − f(xi)||22 +
λ3
N

N∑
i=1

min
m∈[1,M]

||f(xi)−

pm||22 +
2λ4

M(M − 1)

M∑
m=1

M∑
m̃=m+1

max(0, dmin − ||pm − pm̃||2)2

+ λ5
1

N

N∑
i=1

max(max
j̄∈S̃xi,k

ϕ̄j̄(xi)− min
j∈Sxi,k

ϕ
j
(xi), 0), (5.10)

where λ1, λ2, λ3, λ4, and λ5 are the trade-off parameters. When we calculate the third and

fourth loss terms that take the minimum distance over the entire training dataset, the gradient

computation would grow linearly with the size of the training set. However, this would be

impractical during training for a large dataset. To solve this challenge, we propose relaxing

the minimization to be over only the random minibatch used by the adopted gradient descent

algorithm.

Discussion. In Eqn. (5.10), the value of M denotes the number of the considered concepts

and determines the network structure of the model. If we directly follow existing concept-based

explanation works [87, 116, 117] to manually define M , it will require significant human effort

75

and human involvement. Thus, in order to free human from tedious manual finding of a par-

ticular set of concepts (i.e., the value of M) in explaining the model’s prediction behavior, we

can follow the firefly neural architecture descent framework proposed in [118] to automatically

determine the value of M (i.e., the set of satisfactory prototype-based concepts) via the auto-

matic construction of the self-explanatory network architecture based on the desired properties.

In addition, we can also follow the above proposed robust interpretability regularizer to provide

certified robustness guarantees for the generated similarity results (i.e., c(x) = [c1, · · · , cM]T).

5.3 Experiments

In this section, we conduct experiments to verify the effectiveness of the proposed method. Here

we adopt three image datasets: the MNIST [22], CIFAR-10 [119], and AT&T2 datasets. The

statistic information of the adopted datasets is given in Table 5.1.

Table 5.1: The statistic information of the adopted datasets.

MNIST CIFAR-10 AT&T

Dimension 28× 28× 1 32× 32× 3 92× 112× 1

Size 70,000 60,000 400

Classes 10 10 40

#Training 55,000 45,000 250

#Validation 5,000 5,000 50

#Testing 10,000 10,000 100

5.3.1 Visualization

Firstly, we evaluate the performance of the trained autoencoder on the adopted datasets. The de-

rived experimental results are reported in Figure 5.2. Take Figure 5.2a as an example, where the

first line of the images is original images and the second line is the corresponding reconstructed

images. From the reported experimental results in this figure, we can see that the reconstructed

images are perceptually similar to the original images. We also report the derived reconstruction

error and classification accuracy in Table 5.2. For example, in this table, the testing accuracy

of the trained model on the MNIST dataset is 0.9816 and the autoencoder network achieves
2 https://git-disl.github.io/GTDLBench/datasets/att face dataset/

https://git-disl.github.io/GTDLBench/datasets/att_face_dataset/

76

MNIST CIFAR-10 AT&T

Restruction error 2.5851 3.2088 2.2170

Training Accuracy 0.9887 0.7899 0.8907

Validation Accuracy 0.9924 0.7926 0.9053 Spe-ML

Testing Accuracy 0.9816 0.7918 0.8978

Table 5.2: The reconstruction error and classification accuracy on the adopted datasets.

(a) MNIST

(b) CIFAR-10

(c) AT&T

Figure 5.2: Reconstructed images on the adopted datasets.

a reconstruction error of 2.5851, which demonstrates that the proposed AutoRMI can achieve

comparable accuracy performance to existing classification methods. Importantly, the good per-

formance of the autoencoder component allows us to interpret the learned prototype-based con-

cepts during model training.

Next, we visualize the learned prototype-based concepts. The obtained experimental re-

sults on the MNIST dataset are shown in Figure 5.3. In Figure 5.3a, we visualize the learned

prototype-based concepts (learned in-process during model training) when λ2 = λ3 = λ6 =

0.05. Note that these prototype-based concepts are decoded via the decoder. In Figure 5.3a, we

can observe that the prototype-based concepts resemble real-world handwritten digits and give a

high-level overview of the original data, due to the designed interpretability regularization term

77

(i.e., L2 in Eqn. (5.2)). For comparison, we in Figure 5.3b also visualize the learned prototype-

based concepts when we set λ2 = λ3 = λ6 = 0 to remove the interpretability regularization

term (i.e., L2 in Eqn. (5.2)). From the reported experimental results, we can see that when the

interpretability regularizer are removed, the decoded concepts do not look like real-world im-

ages, which verifies that the proposed interpretability regularizer can guide the model to learn

representative patterns during the training process.

(a) λ2 = λ3 = λ6 = 0.05

(b) λ2 = λ3 = λ6 = 0

Figure 5.3: The learned prototype-based concepts on the MNIST dataset where λ2 = λ3 =

λ6 = 0.05 and λ2 = λ3 = λ6 = 0.

(a)

(b)

Figure 5.4: Visualization results for the prediction result.

Then, we discuss how to use the learned prototype-based concepts to explain each predicted

78

classification result. In Figure 5.4, we present the visualization results for explaining the pre-

dicted classification result for a specific testing image of digit 7, which is shown on the left of

Figure 5.4a. In Figure 5.4a, we give the distances (computed by the similarity layer) between

the encoded representation of this testing image and each of the learned prototype-based con-

cepts, and these distance values are shown above the decoded prototype-based concepts. From

Figure 5.4a, we can see that the three prototype-based concepts that mostly resemble the test-

ing image of digit 7 after decoding have the most shortest distances (i.e., 0.8089, 0.5598, and

0.4349). Importantly, the testing image of digit 7 is more closer to the third “7” concept (in the

third line in Figure 5.4a) than the other two prototype-based concepts. From Figure 5.4b, we

can also observe that compared with other concepts, this most closer concept also has the largest

importance score (i.e., 0.999), which verifies that the proposed AutoRMI can capture the subtle

differences within the same class. For this specific testing image, its prediction probability of

class 7 is 99.98%.

Figure 5.5: The retrieved training samples having the smallest distances from the learned con-

cepts on the MNIST dataset.

Finally, for each learned prototype-based concept pm, we want to retrieve a subset of train-

ing samples that have the shortest distances from this prototype-based concept. Specifically,

we aim to represent each learned prototype-based concept pm by finding a subset of the input

training dataset X = argminX̂⊂X ,|X̂|=k
∑

x∈X̂ cm, where k is pre-defined. Note that the the

smaller the value of cm, the more similar the prototype-based concept pm and the retrieved

training sample, the better the retrieved sample can represent this learned prototype-based con-

cept pm. In this experiment, we set k = 7 and select the top-7 closest training examples for each

prototype-based concept. The obtained experimental results on the adopted MNIST dataset are

reported in Figure 5.5. The reported experimental results in this figure show that the learned

79

prototype-based concepts are representative examples. Additionally, from the reported experi-

mental results in this figure, we can also see that the extracted prototype-based concepts and

their corresponding retrieved close trained samples are visually similar, which means that they

have the same patterns.

5.3.2 Robustness

Evaluation metric. Here, we consider one natural metric for quantifying the similarity be-

tween interpretations for two different samples, i.e., the top-k intersection. Specifically, we

aim to see how many of the top-k concepts are no longer the top-k concepts after the ad-

versarial perturbations. In many real-world settings, only the most important concepts are of

explanatory interest. The lower the concepts in the intersection, the better the performance of

the proposed method. In such settings, the adversarial attacker can launch the top-k attacks

[69, 102, 112, 113, 114, 120, 121, 122, 123, 124] to decrease the relative importance of the k

initially most important concepts. Hence, we propose to compute the size of intersection of the

k most important concepts before and after the adversarial perturbations.

MNIST AT&T

Methods ϵ = 0.5 ϵ = 1.0 ϵ = 0.5 ϵ = 1.0

AutoRMI 0.89±0.08 0.85±0.10 0.73±0.08 0.67±0.05

Standard 0.79±0.13 0.70±0.06 0.69±0.09 0.62±0.08

Table 5.3: The change of explanations under different perturbation values.

Performance. To test the empirical robustness of the generated explanations against ad-

versarial perturbations, we here used an ℓ∞ attack. Here, the value of ϵ is varied from 0.5 to

1.0. Since there is no existing certified robustness work, in this experiment, we adopt the stan-

dard baseline (denoted as Standard), where we remove the robustness regularization term (i.e.,

λ5 = 0). In Table 5.3, we report the obtained experimental results. From the reported experi-

mental results in this table, we can observe that models trained with the proposed certified robust

interpretability regularizer in Eqn. (5.9) perform better than the model obtained with standard

training procedure, while the standard model (trained without the certified robust interpretabil-

ity regularization term) is more vulnerable to adversarial perturbations. Additionally, we can

also see that as the severity of adversarial perturbations (the value of ϵ) increases, the networks

trained with the proposed method show significant performance improvement over the model

80

trained with standard training process.

5.3.3 Architecture Search

Here, we evaluate the effectiveness of the proposed AutoRMI on the search of the network

architectures. We also adopt the Wine Quality and Diabetic Retinopathy datasets [125]. We

start with a small initial network with M = 4 and gradually increase the model size. Note that

the value of M̂ is the number of new neurons and hence determines the network structure (e.g.,

the concept and similarity layers). In Figure 5.6, we report the training loss of the proposed

AutoRMI under different numbers of candidate grown neurons (i.e., different values of M̂).

Here, the value of M̂ is varied from 3 to 9 for the adopted datasets. From this figure, we can see

that the objective value gradually converges to 0 when increasing the training epochs, which

also verifies that the convergence of AutoRMI can be guaranteed. In addition, we can also

observe that the performance improves by even adding three new neurons. Furthermore, the

reported experimental results demonstrate that the models trained with the selected network

architectures perform better than that trained only with the initial values of M (i.e., M = 4 and

M̂ = 0).

5.4 Related Work

Concept-based explanations have drawn much attention recently [86, 85, 96, 97, 98, 87, 95, 99].

Although these concept-based explanation methods are promising, their scalability is limited by

the need for “humans-in-the-loop”. The methods proposed in [85, 86, 96, 99] need human to

manually define/extract concepts and quantify the importance score of each pre-defined concept

in a post-hoc way. [97] directly performs the intervention of adding or removing a concept.

[98] explains model decisions in terms of the importance of user-defined concepts. [95, 108]

need human to be involved to manually pre-define the number of concepts. By assuming the

existence of the concept representation, [87, 116, 117] manually define concepts and then use

an intermediate set of human-specified concepts to predict the output task label. However, all

of the above mentioned works heavily rely on experienced human experts who are expensive

and hard to find. Furthermore, the above mentioned works also fail to address the certified

robustness guarantees of the generated model explanations.

Recently, there have been a few efforts [104, 126, 100, 105, 106, 107] that have explored the

robustness of model explanations. The authors in [104] propose a robust post-hoc feature-level

81

0 100 200 300 400 500

Epoches

12

24

36

48

T
ra

in
in

g
 l

o
ss

(a) MNIST

0 100 200 300 400 500

Epoches

50

75

90

T
ra

in
in

g
 l

o
ss

(b) AT&T

0 100 200 300 400 500

Epoches

50

90

110

T
ra

in
in

g
 l

o
ss

(c) Diabetic Retinopathy

0 100 200 300 400 500

Epoches

10

30

50

70

T
ra

in
in

g
 l

o
ss

(d) Wine Quality

Figure 5.6: The training loss of the proposed method under values of M̂ on the adopted datasets.

82

explanation framework for constructing a global explanation. [126, 100, 105, 107] focus on

the post-hoc gradient-based interpretation methods (e.g., Saliency Map) that are popular meth-

ods for deep learning interpretation. [106] interprets intermediate layers and defines robustness

as the ability of an intermediate layer to be consistent in its recall rate for different random

samples. However, their problem settings are significantly different from that of this work, and

hence they cannot be directly applied here. In contrast, in this work, we directly guide mod-

els to automatically provide the concept-based explanations for each predicted decision, while

guaranteeing the robustness of the generated explanations. Although [108] considers the in-

trinsic interpretation model, it only addresses the stability of the relevance scores and fails to

provide robustness guarantees for the obtained interpretable representation. Furthermore, the

robustness improvement of all of the aforementioned works cannot be certified – no provable

guarantees can be given to verify their robustness. In fact, in practice, these uncertified methods

may become vulnerable under stronger adversarial attacks.

5.5 Conclusions

In this chapter, we designed a novel automatic and robust self-explanatory method (AutoRMI)

that can not only automatically provide the concept-based explanations without human inter-

ventions but also provide certified robustness guarantees for the generated concept-based ex-

planations. Specifically, to free human from the tedious manual defining procedure, we first

proposed a novel interpretability regularizer that guides the model to automatically extract the

prototype-based concepts from the training data, which provide insights into representative pat-

terns that are utilized by the model for classification. In addition, to promote certified robust

interpretability, we also proposed a novel interval bound propagation based regularizer, which

minimizes an upper bound on the maximum difference between any pair of explanation results

when the input can be adversarially perturbed to provide verifiable robustness guarantees for

the generated explanations. We also conducted experiments to demonstrate the effectiveness of

the proposed method on real-world datasets and the experimental results show that our method

can consistently achieve good performance.

Part III

Privacy-preserving Sharing of the
Sensitive Information

83

Chapter 6

Pairwise Learning with Differential
Privacy Guarantees

6.1 Introduction

As an important family of learning problems, pairwise learning has drawn much attention re-

cently. Since pairwise learning involves a loss function depending on pairs of samples, it shows

great advantage in modeling the relative relationship between pairs of samples over traditional

pointwise learning (e.g., classification), in which the loss function only takes individual samples

as the input. In practice, many learning tasks can be categorized as pairwise learning problmes.

For instance, metric learning [6, 55, 3, 127, 8, 7] aims to learn a distance metric from a given

collection of pair of similar/dissimilar samples that preserves the distance relation among the

data, which can be formulated as a pairwise learning problem. Apart from metric learning,

many other learning tasks, such as AUC maximization [128, 5] and ranking [9], can also be

categorized as pairwise learning.

Existing pairwise learning algorithms can be roughly divided into two categories: online

and offline. The online pairwise learning algorithms process the input data records in a sequen-

tial manner and iteratively update the model upon the arrival of each sample [128, 129]. In

contrast, the offline pairwise learning algorithms require the entire training dataset ready before

the learning process starts and take it as whole to update the model [56, 55].

Although the importance of pairwise learning has been recognized in many real-world appli-

cations, existing pairwise learning algorithms fail to take into consideration an important issue

in their designs, that is, the protection of sensitive information in the training set. The training

84

85

datasets for pairwise learning are often collected from individual users and thus may contain

private personal information. The models learned by such algorithms can implicitly memorize

some details of the sensitive information, which undesirably offers opportunity for malicious

parties to compromise the users’ privacy. Taking the patient similarity learning task as example,

a hospital may want to train a universal patient similarity learning model from patients (cross-

ing many hospitals) so as to obtain a better understanding of the diseases and diagnoses. Due

to trust to the hospital, patients may be willing to provide necessary information for such a

learning process. However, without a proper mechanism, the patients’ privacy may be breached

when the trained model by the hospital is provided to other parties (such as medical research

institutes or drug makers). This is because these parties can infer patients’ private information

using various attack techniques, such as model inversion attack [130] and membership attack

[131]. Thus, without a convincing privacy-preserving mechanism, the patients may not be will-

ing to participate in such a learning task. Hence, a big challenge facing pairwise learning is how

to learn a model privately such that sensitive information cannot be inferred from the learned

model.

To the best of our knowledge, no existing work has addressed the above challenge. This mo-

tivates us to design, in this chapter, privacy-preserving pairwise learning methods which can not

only keep the sensitive information private but also guarantee good generalization performance.

Among existing privacy-preserving strategies, differential privacy (DP) [132], as a rigorous no-

tion for data privacy, can provide very rigid privacy and utility guarantee. Although various

DP methods exist for (online) pointwise learning, such as objective perturbation or DP-SGD

[133, 134, 135, 136], they cannot be applied to pairwise learning algorithms directly. This is

mainly because the training sample pairs in pairwise learning algorithms are not i.i.d. and the

loss function depends on more than one data records. In the light of the above challenges, in

this chapter, we propose efficient differentially private algorithms for the aforementioned two

types of pairwise learning problems. Our contributions can be summarized as follows:

• Firstly, we consider the pairwise learning problem in the online setting, and propose

an (ϵ, δ)-DP algorithm called online pairwise private GIGA-Strongly convex method

(OnPairStrC). This algorithm achieves a regret upper bound of Õ(
√
d
√
n

ϵ) when the

losses are strongly convex, where d is the feature dimension and n is the data size. We then

extend this algorithm to general convex losses by proposing an algorithm called online

pairwise private GIGA-convex method (OnPairC), which has a regret upper bound of

Õ(
√
dn

3
4

ϵ).

86

• Secondly, we study the pairwise learning problem in the offline setting. We show that

it is possible to achieve generalization errors of Õ(
√
d√
nϵ
) and Õ(

√
d

4√nϵ) for strongly and

general convex loss functions respectively by adopting the results in the online settings.

We then improve these bounds by proposing an offline pairwise private GIGA-Strongly

convex algorithm (OffPairStrC) and an offline pairwise private GIGA-convex algorithm

(OffPairC) for the two types of loss functions. Particularly, in the case of general convex

loss functions, our improved algorithm can achieve a generalization error of Õ(
√
d√
nϵ
).

6.2 Related Work

As mentioned earlier, there is no existing result on pairwise learning under the differential pri-

vacy model. Thus, we only compare ours with those private pointwise learning methods. There

is a long list of papers on differentially private pointwise learning in the last decade which attack

the problem from different perspectives. For DP pointwise learning with convex loss functions,

there are a lot of works on it, such as [133, 137, 134, 138, 136]. However, all of the above results

focus only on pointwise loss functions and cannot be extended to pairwise loss functions.

Differentially private pointwise learning in the online setting has also been studied previ-

ously [135, 139]. The works that are most related to ours are probably [135] and [139], where

the authors gave a general framework for online convex optimization under differential privacy.

However, there are some significant differences from ours. Firstly, [135] and [139] consider only

pointwise loss functions while we study pairwise loss functions. Thus, their methods cannot be

directly extended to pairwise loss functions, making them incomparable with ours; secondly,

due to the differences in the structure of two problems and the definitions of the regret, the

analyses of the upper bounds and the DP guarantees are quite different (see Remark 1 for more

details).

6.3 Preliminaries

We say that two datasets D,D′ are neighbors if they differ by only one entry, which is denoted

as D ∼ D′.

Definition 1 (Differential Privacy [132]). A randomized algorithmA is (ϵ, δ)-differentially pri-

vate (DP) if for all neighboring datasets D,D′ and for all events S in the output space of A,

the following holds

Pr(A(D) ∈ S) ≤ eϵPr(A(D′) ∈ S) + δ.

87

When δ = 0, A is ϵ-differentially private.

In this chapter we focus on (ϵ, δ)-DP and use Gaussian mechanism [132] to guarantee (ϵ, δ)-

DP.

Definition 2 (Gaussian Mechanism). Given any function q : X n → Rd, the Gaussian mech-

anism is defined asMG(D, q, ϵ) = q(D) + Y, where Y is drawn from Gaussian Distribution

N (0, σ2Id) with σ ≥
√

2 ln(1.25/δ)∆2(q)

ϵ . Here ∆2(q) is the ℓ2-sensitivity of the function q, i.e.,

∆2(q) = supD∼D′ ||q(D)−q(D′)||2.Gaussian mechanism preserves (ϵ, δ)-differential privacy.

Additionally, we also use zero Concentrated Differential Privacy (zCDP) [140] and its com-

position property to guarantee (ϵ, δ)-DP. Compared to directly using the composition property

of DP, it has many advantages (see [141, 142] for more details).

Definition 3. A randomized mechanism A is ρ-zCDP if, for all neighboring dataset D,D′ and

all α ∈ (1,∞),

Dα(A(D)||A(D′)) ≤ ρα,

where Dα(·||·) is the α-Rényi Divergence 1 .

Lemma 1. [140] Suppose that two mechanisms satisfy ρ1-zCDP and ρ2-zCDP, respectively.

Then, their composition is (ρ1 + ρ2)-zCDP.

Lemma 2. [140] For a Gaussian mechanism q(D) + Y with Y ∼ N (0, σ2Id), it satisfies

(
∆2

2(q)
2σ2)-zCDP.

Lemma 3. [140] If a mechanism is ρ-zCDP, then it is (ρ+ 2
√
ρ log 1

δ , δ)-DP for any δ > 0.

6.3.1 Private Pairwise Learning

Different from the pointwise loss function ℓ : C ×D 7→ R, a pairwise loss function is a function

on pairs of data records, i.e., ℓ : C ×D×D 7→ R, where D is the data universe. Given a dataset

D = {z1, z2, · · · , zn} ⊆ Dn and a loss function ℓ(·; ·, ·), its empirical risk can be defined as:

L(w;D) =
1

n(n− 1)

n∑
i=1

∑
j ̸=i

ℓ(w; zi, zj). (6.1)

1 For two distributions P and Q on Ω and α ∈ (1,∞), the α-Rényi Divergence between P,Q is defined as
Dα(P ||Q) = 1

α−1
log

∫
Ω
P (x)αQ(x)1−αdx.

88

When the inputs are drawn i.i.d from an unknown underlying distribution P on D, the popula-

tion risk is

LP(w) = Ezi,zj∼P [ℓ(w; zi, zj)]. (6.2)

Similar to the definition of private pointwise learning [134], we can define private pairwise

learning as follows.

Definition 4 (Private pairwise learning). Let C ⊆ Rd be a convex, closed and bounded con-

straint set, D be a data universe, and ℓ : C × D × D 7→ R be a pairwise loss function. Also,

let D = {z1 = (x1, y1), z2 = (x2, y2), · · · , zn = (xn, yn)} ⊆ Dn be a dataset with data

records {xi}ni=1 ⊂ Rd and labels (responses) {yi}ni=1 ⊂ [−1, 1]n. Private pairwise learn-

ing is to find a private estimator wpriv ∈ C so that the algorithm is (ϵ, δ) or ϵ differential

private and the error is minimized, where the error for an estimator w can be measured by

either the optimality gap ErrD(w) = L(w;D) −minw∈C L(w;D) or the generalization error

ErrP(w) = LP(w)−minw∈C LP(w).

In this chapter, we will focus on a special class of pairwise loss functions 2 which contains

the loss functions of metric learning, AUC maximization and bipartite ranking.

Assumption 1. For the loss function, we here assume that it has the form of ℓ(w; z, z′) =

ϕ(Y (y, y′)h(w;x, x′)), and ℓ is a G-Lipschitz and L-smooth convex function over w, where

Y (y, y′) = y − y′ or Y (y, y′) = yy′. In the experimental part, we will let ϕ be the logistic

function, i.e., ϕ(x) = log(1 + e−x).

Example 1: Metric Learning [56] The goal here is to learn a Mahalanobios metricM2
W (x, x′) =

(x − x′)TW (w − x′) using loss function ℓ(W ; z, z′) = ϕ(yy′(1 −M2
W (x, x′)), where y, y′ ∈

{−1,+1}. The constraint set C is C = {W :W ∈ Sd, ∥W∥F ≤ 1}.
Example 2: AUC Maximization [128], Bipartite Ranking [143] The goal here is to maximize

the area under the ROC curve for a linear classification problem with the constraint of ∥w∥2 ≤
1. Here h(w;x, x′) = wT (x − x′) and ℓ(w; z, z′) = ϕ((y − y′)h(w;x, x′)), where y, y′ ∈
{−1,+1}.

6.3.2 Online Private Pairwise Learning

Here we follow online pairwise learning in [129]. An online learning algorithm A is given

sequential access to a stream of elements z1, z2, z3, · · · , zn. At each time step t = 2, 3, · · · , n,
2 We note that all the (ϵ, δ)-DP algorithms in this chapter can be extended to general pairwise loss functions,

although the upper bounds of the generalization errors may differ.

89

the algorithm selects a parameter wt−1 ∈ C upon which the data record zt is revealed, and the

algorithm incurs the following penalty

L̂t(wt−1, Dt) =
1

t− 1

t−1∑
i=1

ℓ(wt−1; zt, zi), (6.3)

where Dt = {z1, · · · , zt}. Thus, the online algorithm A maps a data sequence {z1, · · · , zn}
to a sequence of parameters {w1, · · · , wn−1}. In the non-private case, the goal is to select

{w1, · · · , wn−1} so as to minimize the regret, i.e.,

RA(n,D) =
n∑
t=2

L̂t(wt−1, Dt)−min
w∈C

n∑
t=2

L̂t(w,Dt). (6.4)

Moreover, if all data are chosen i.i.d from the distribution P , we also want to minimize the

generalized regret, i.e.,

RP,A(n) =
n∑
t=2

LP(wt−1)− (n− 1)min
w∈C

LP(w). (6.5)

If ℓ is convex, then from (6.5) we have parameter w̄ = w1+···+wn−1

n−1 satisfies the following

generalization error:

LP(w̄)−min
w∈C

LP(w) ≤
RP,A(n)

n− 1
. (6.6)

However, under the differential privacy model, we need to guarantee that the output sequence

{w1, · · · , wn−1} is DP. Thus, private pairwise learning in the online setting can be defined as

follows:

Definition 5 (Online private pairwise learning). Let Z = {z1, z2, · · · , zn} be any sequence of

data records in the data universe D. Let the sequence of outputs by algorithm A be A(Z) =

{w1, · · · , wn−1}. Then, A is (ϵ, δ)-differentially private if given any other data sequence Z ′

which differs in at most one entry withZ, for all events S, we have Pr[A(Z) ∈ S] ≤ eϵPr[A(Z ′) ∈
S]+δ. The goal of online private pairwise learning is to select private outputs {w1, · · · , wn−1}
that minimizes the (generalized) regret.

From above discussions on (6.5) and (6.6), we know that if the generalized regret is low,

the algorithm will have a good performance on generalization theoretically. From this view, the

online setting is more general. Thus, in the chapter, we will first consider the online private

pairwise learning and provide regrets for both strongly and general convex losses. After that,

we will study the problem in the offline setting.

90

6.4 Online Private Pairwise Learning

We first consider the case that the loss function is strongly convex. After that, we will use the

regularization perturbation strategy in [139] to extend the resulting algorithm to general convex

loss functions.

Our algorithm is inspired by the stability of Generalized Infinitesimal Gradient Ascent

(GIGA) [144, 135], which is a well-known online convex algorithm (see Remark 1 for dis-

cussions on the difference of our algorithm with the previous ones). The main steps are given in

Algorithm 2.

Algorithm 2 Online Pairwise Private GIGA-Strongly Convex (OnPairStrC)

1: Input: Privacy parameters ϵ and δ, sequence of data record {z1, z2, · · · , zn}, constrained

convex set C ⊂ Rd, and pairwise loss function ℓ(·; ·, ·).
2: Parameters: ℓ is G-Lipschitz, L-smooth and α-strongly convex over w. Step time T1 =

max{⌈16L2

α2 ⌉, 7}.
3: Compute ρ which satisfies ρ+ 2

√
ρ log(1δ) = ϵ.

4: for t = 1, · · · , T1 do
5: Receive the data record zt (incurs penalty L̂t(wt−1, Dt) when t ≥ 2).

6: Randomly choose a parameter wt ∈ C.

7: end for
8: for t = T1 + 1, · · · , n do
9: Receive the data record zt (incurs penalty L̂t(wt−1, Dt)).

10: Set step size ηt = t−1
t−2

2
αt

11: wt = ΠC [wt−1 − ηt∇L̂t(wt−1, Dt)], where ΠC is the projection onto the set C.

12: Set σ2t =
32G2(n−T1)

α2t2ρ
. Let w̃t = wt + nt, where nt ∼ N (0, σ2t Id).

13: Output wt = argminw∈C ∥w − w̃t∥22.

14: end for

We call the above algorithm excluding the portion of random perturbation (i.e., steps 12 and

13) Pairwise GIGA. The following lemma gives an upper bound on the ℓ2-norm sensitivity of

the output in the t-th iteration of Pairwise GIGA, which is to ensure (ϵ, δ)-DP of Algorithm 2.

Lemma 4. Let At(Dt) denote the output of Pairwise GIGA in the t-th iteration. Then, under

the assumption of Algorithm 2, for any t ≥ 1 and Dt ∼ D′
t,

∥At(Dt)−At(D′
t)∥2 ≤

8G

αt
.

91

In Algorithm 2, steps 4 to 7 seem weird due to the random sampling of wt−1. However,

as we see from the proof of Lemma 4, this condition is necessary for the stability analysis.

Moreover, the similar steps have also been adopted in some algorithms on DP online learning,

such as [139, 135].

Theorem 6. Under Assumption 1 and the assumption that the loss function ℓ is α-strongly

convex, for any 0 < ϵ, δ ≤ 1, Algorithm 2 is (ϵ, δ)-differentially private.

Note that to guarantee DP, we first transfer (ϵ, δ)-DP to ρ-zCDP by Lemma 3, and then use

composition theorem to make Algorithm 2 be ρ-zCDP (i.e., we make each iteration T1 + 1 ≤
t ≤ n be ρ

n−T1 -zCDP). It is easy to see that in this case the variance of the noise satisfies σ2t =
32G2(n−T1)

α2t2(
√

log(1/δ)+ϵ−
√

log(1/δ))2
. When ϵ

log(1/δ) ≪ 1 (this case will always holds since in practice

we select ϵ = 0.1 ∼ 5 and δ = 1
n), by Taylor expansion of

√
1 + x, we have (

√
log(1/δ) + ϵ−√

log(1/δ))2 ≃ ϵ2

4 log(1/δ) . Thus in total, we have σ2t ≃
128G2(n−T1) log(1/δ)

α2t2ϵ2
.

The following theorem shows an upper bound on the regret of Algorithm 2, which can be

transformed to generalized error (we will show it in the following section).

Theorem 7. Under the assumptions in Theorem 6 and the additional condition of ϵ
log 1

δ

≪ 1,

Algorithm 2 has the following upper bound on the regret of its outputs

RA(n,D) ≤ O(
G2
√
d log1.5 nζ

√
n
√
log 1

δ

αϵ
+

GL2

α2
∥C∥2 +

G2 log n

α
) (6.7)

with probability at least 1− ζ.

Remark 1. We note that [135] used the differentially private version of GIGA and IGD [145]

in their DP pointwise learning. But their Private GIGA or IGD algorithm is quite different from

our method of OnPairStrC (Algorithm 2). Firstly, [135] needs to assume that each loss function

L̂t is independent (see the proofs of Lemma 4 and Lemma 5 in [135]), which means that it is

only applicable to pointwise loss functions. However, in our problem, the penalty function (6.3)

depends on previous data records, which means that it is much more complicated than the case

in [135]. Thus, we need a much finer and more different analysis on the stability of Pairwise

GIGA. Also, the parameters of the step size ηt and time step T1 are quite different from those

in [135]. Additionally, in order to show the power of our method, we also consider the case

with additional finite buffer constraint, which has not been studied in [135]. Thus, our method

is more general.

92

Secondly, the upper bound (6.7) on the regret of our algorithm is less than that in [135] with

a factor of log n
δ . This is due to the fact that we use the composition property of zCDP instead

of advanced composition theorem of DP [146].

Thirdly, since the definition of regret is different from that in pointwise learning [135], the

same upper bound (i.e., Õ(
√
dn
ϵ)) on the regret for strongly convex losses are actually incompa-

rable.

We now use the perturbation strategy in [139] to obtain result for general convex losses.

Algorithm 3 Online Pairwise Private GIGA-Convex (OnPairC)

1: Input: Privacy parameters ϵ and δ, sequence of data records {z1, z2, · · · , zn}, constrained

convex set C, pairwise loss ℓ(·; ·, ·), and a parameter α to be defined later.

2: Parameters: ℓ is G-Lipschitz, L-smooth and convex over w.

3: Randomly select a point w0 ∈ C. Let ℓ̃(w; z, z′) = ℓ(w; z, z′) + α
2 ∥w − w0∥22.

4: Run Algorithm 2 with loss ℓ̃, which is G̃ = G+ α∥C∥2-Lipschitz, L̃ = L+ α-smooth and

α-strongly convex.

Theorem 8. Let ℓ be a pairwise loss function satisfying Assumption 1. Then, for any 0 < ϵ, δ ≤
1, Algorithm 3 is (ϵ, δ)-DP. Moreover, if ϵ

log 1
δ

≪ 1 and take α = O(1
4√n), then with probability

at least 1− ζ, the following upper bound on regret for the outputs holds:

RA(n,D) ≤ O(
L2G2∥C∥22

√
d log1.5 nζ n

3
4

√
log 1

δ

ϵ
). (6.8)

Comparing (6.8) with (6.7), we can see that for strongly convex pairwise loss functions, the

average regret, i.e., RA(n)
n−1 , is upper bounded by Õ(

√
d√
nϵ
), while for general convex ones, it is

Õ(
√
d

4√nϵ). This is the same as in the case of pointwise loss functions [139].

6.5 Offline Private Pairwise Learning

6.5.1 Generalization Error Induced by Generalized Regret

We first observe that Algorithm 2 and 3 preserve (ϵ, δ)-DP in the offline settings. Also, as

discussed in (6.5) and (6.6), if we get the generalized regret for the output {w1, w2, · · · , wn−1},
we can easily obtain a generalization error by (6.6). By a theorem in [129], we can have the

following generalization bounds for w̄ = w1+···+wn−1

n−1 of Algorithm 2 and 3. Before this, we

93

first let the Rademacher averages of the pairwise loss functions class ℓ ◦ C := {(z, z′) 7→
ℓ(w; z, z′), w ∈ C} be denoted by the following [129]:

Rn(ℓ ◦ C) = E[sup
w∈C

1

n

n∑
i=1

ϵiℓ(w; z, zi)], (6.9)

where {ϵi}ni=1 are the Rademacher variables, and the expectation is over {ϵi}ni=1, z, {zi}ni=1.

Theorem 9. Under Assumption 1, the parameter w̄ = w1+···+wn−1

n−1 satisfies the following

generalization error for loss function ℓ with probability at least 1 − 2ζ if ϵ
log 1

δ

≪ 1, where

w1, w2, · · · , wn−1 are the outputs of Algorithm 3 (Algorithm 2 for strongly convex loss func-

tions),

ErrP(w̄) ≤ O
(∑n

t=2Rt−1(ℓ ◦ C)
n− 1

+
L2G2∥C∥22

√
d log1.5 nζ

√
log 1

δ

ϵ 4
√
n

)
. (6.10)

Moreover, if the loss is α-strongly convex, then we have:

ErrP(w̄) ≤O
(1

n− 1

n∑
t=2

Rt−1(ℓ ◦ C) +
G2L2∥C∥2

√
d log1.5 nζ

√
log 1

δ

α2ϵ
√
n

)
. (6.11)

Remark 2. Note that there are many problems whose Rademacher average is Rn(ℓ ◦ C) =

O(
√
d√
n
), e.g. Example 1 and 2 [129]. Thus for Example 1, the generalization error is Õ(d

ϵ 4√n)

for logistic loss while it is Õ(d
ϵ
√
n
) if adding an additional Frobenious regularization to the

losses. Similar result holds for Example 2, where the generalization error is Õ(
√
d

ϵ 4√n) while it is

Õ(
√
d

ϵ
√
n
) in the case with additional ℓ2-norm regularization.

6.5.2 Improved Upper Bounds by Offline Differentially Private Algorithms

Inspired by the sensitivity of Pairwise GIGA in Lemma 4 and Theorem 9, we propose an offline

DP algorithm which has better upper bounds compared to (6.10) and (6.11). The basic idea is

to use output perturbation. Specifically, we first run Pairwise GIGA in the offline settings and

then add some Gaussian noises to w̃ = w1+···+wn
n to keep the algorithm (ϵ, δ)-DP, since the

sensitivity of w̃ is based on each wi, which can be obtained by Lemma 4. For general convex

loss functions, we can still use the perturbation idea, which is the same as in Algorithm 3. See

Algorithm 4 and 5 for details.

The reason that we can improve the generalization error is due to the following fact. From

Algorithms 2 and 3, we can see that the output sequences {w1, w2, · · · , wn−1} satisfy the con-

ditions of (ϵ, δ)-DP in each iteration. However, in the offline setting, we only need to ensure

94

that the final output is DP. Thus, instead of adding noise in each iteration, we can add noises

only once to the final output, meaning that we can add a smaller scale of noises compared to the

online ones.

Theorem 10. For any 0 < ϵ, δ ≤ 1, Algorithm 4 is (ϵ, δ)-DP for any α-strongly convex loss

functions satisfying Assumption 1. Moreover, if ϵ
log 1

δ

≪ 1, then with probability at least 1− 2ζ,

the output ŵ satisfies:

ErrP(ŵ) ≤ O(

√
dG2∥C∥2 log n

ζ

√
log 1

δ

αnϵ
+

1

n

n∑
t=1

Rt(ℓ ◦ C)). (6.12)

Algorithm 5 is (ϵ, δ)-DP for any convex loss functions satisfying Assumption 1 if α =

O(1√
n
). Moreover, if ϵ

log 1
δ

≪ 1, then with probability at least 1− 2ζ, the output ŵ satisfies:

ErrP(ŵ) ≤ O
(√dG2∥C∥22 log n

ζ

√
log 1

δ log n√
nϵ

+
1

n

n∑
t=1

Rt(ℓ ◦ C)
)
. (6.13)

From Theorem 10, we can see that for strongly and general convex loss functions, the

bounds in (6.13) and (6.12) are respectively lower than those in (6.10) and (6.11). Specifically,

for general convex loss functions, we can improve the upper bound from Õ(
√
d

ϵ 4√n) to Õ(
√
d

ϵ
√
n
) if

Rn(ℓ ◦ C) = O(
√
d√
n
).

Algorithm 4 Offline Pairwise Private GIGA-Strongly Convex (OffPairStrC)

1: Input: Privacy parameters ϵ and δ, sequence of data {z1, z2, · · · , zn}, constrained convex

set C, pairwise loss ℓ(·; ·, ·), and step number T1 = max{⌈16L2

α2 ⌉, 7}.
2: Parameters: ℓ is G-Lipschitz, L-smooth and α-strongly convex over w.

3: Randomly sample w1, · · · , wT1 ∈ C.

4: for t = T1 + 1, · · · , n do
5: Set step size ηt = t−1

t−2
2
αt .

6: Update

wt = argmin
w∈C
∥w − (wt−1 − ηt∇L̂t(wt−1, Dt))∥22.

7: end for
8: Let w̃ = w1+···+wn

n .

9: Denote w̄ = w̃ + σ, where σ ∼ N (0, 128G
2 log2 n log(1.25/δ)

α2n2ϵ2
Id).

10: Return ŵ = argminw∈C ∥w − w̄∥22.

95

Algorithm 5 Pairwise Private GIGA-Convex (OffPairC)

1: Input: Privacy parameters ϵ and δ, sequence of data {z1, · · · , zn}, constrained convex set

C, pairwise loss function ℓ(·; ·, ·), and a parameter α to be defined later.

2: Parameters: ℓ is G-Lipschitz, L-smooth and convex over w.

3: Let ℓ̃(w; z, z′) = ℓ(w; z, z′) + α
2 ∥w − w0∥22, w0 is any point in C.

4: Run Algorithm 4 with loss ℓ̃, which is G̃ = G+ α∥C∥2-Lipschitz, L̃ = L+ α-smooth and

α-strongly convex.

6.6 Experiments

In this section, we empirically evaluate the performance of the proposed differentially private

algorithms on real-world datasets. We take two popular pairwise learning tasks, i.e., AUC max-

imization and metric learning, as examples. All of the experiments in this chapter are conducted

over 20 runs of different random permutations for each adopted dataset, and we report the aver-

aged results.

6.6.1 Experimental Setup

Datasets

We use four real-world datasets that are widely adopted in pairwise learning tasks. These

datasets are the Diabetes dataset, the Diabetic Retinopathy dataset, the Hepatitis dataset and

the Cancer dataset [147].

Performance Measures

To evaluate the performance of the proposed algorithms, we use the following measures:

1. AUC: For AUC maximization task, we report the AUC measurement [128] for each of

the proposed algorithms over every adopted dataset. A larger AUC value means that the

corresponding AUC maximization algorithm can generate more accurate results.

2. Classification Accuracy: For metric learning task, we calculate the classification accuracy

that is defined as the percentage of the correctly classified samples in the test set. The less

the classification accuracy, the worse the performance of the proposed algorithm. In this

chapter, the KNN classifier is adopted to assign labels to the test samples. For the KNN

classifier, we set K to be 3.

96

3. Objective function value: For both metric learning task and AUC maximization task, we

also report the objective function value of the proposed differentially private algorithms.

A smaller objective function value means that the original pairwise learning model is less

perturbed.

Baselines

Since there is no existing work that addresses the privacy issue in pairwise learning, in experi-

ments, we take the original pairwise learning algorithms that do not take any actions to protect

the private information as the baselines. We denote the baseline methods as NonPrivate, which

is the GIGA for pairwise loss functions [129].

6.6.2 Experiments for AUC Maximization

We first evaluate the performance of the proposed differentially private pairwise learning al-

gorithms (i.e., OnPairStrC, OnPairC, OffPairStrC and OffPairC) for AUC maximization task

(see Example 2 for the problem formulation). We add additional ℓ2 regularization λ
2∥w∥

2
2 with

λ = 10−3 to loss function for the strongly convex case.

We study the effect of the training size n and the privacy parameter ϵ on the performance of

the proposed OnPairStrC, OnPairC, OffPairStrC and OffPairC algorithms. Here we fix δ = 1
n

and consider three cases where the value of parameter ϵ is set to be 0.5, 1.5 and 2.5, respec-

tively. For OnPairStrC and OffPairStrC, we vary the training size from 40 to 90 and conduct

the experiment on the Hepatitis and Cancer datasets. For OnPairC and OffPairC, the experiment

is conducted on the Diabetes and Diabetic Retinopathy datasets and we vary the training size

from 50 to 350. In Figure 6.1 and Figure 6.2, we respectively report the objective values of

OnPairStrC and OnPairC. The experimental results show that the larger the value of the training

size n, the smaller the objective value. Additionally, when n is fixed, the smaller the value of

ϵ, the larger the objective value is. The performance of the proposed algorithms are comparable

with that of the baseline, which can be observed from Figure 6.2. The results for OffPairStrC and

OffPairC are shown in Figure 6.3 and Figure 6.4, respectively. Figure 6.3 shows the objective

value of OffPairStrC when the training size varies and Figure 6.4 reports the AUC measurement

of OffPairC. The results in the two figures also show that the larger the training size is or privacy

parameter ϵ is, the higher the AUC measurement value is, which means that the proposed algo-

rithm is less perturbed and more accurate. These experimental results verify that the proposed

online differential private algorithms can achieve good utility while guaranteeing strong privacy

97

protection when they are applied to AUC maximization task.

=0.5 =1.5 =2.5
0.68

0.70

0.72

0.74

0.76

O
b

je
ct

iv
e

v
a
lu

e

(a) Hepatitis
=0.5 =1.5 =2.5

0.63

0.73

0.83

0.93

O
b

je
ct

iv
e

v
a
lu

e

(b) Cancer

Figure 6.1: The objective value of OnPairStrC for AUC maximization.

50 100 150 200 250 300 350

Training size

0.4

0.5

0.6

0.7

0.8

0.9

O
b

je
ct

iv
e

v
a
lu

e

(a) Diabetes

50 100 150 200 250 300 350

Training size

0.60

0.65

0.70

0.75

0.80

O
b

je
ct

iv
e

v
a
lu

e

(b) Diabetic Retinopathy

Figure 6.2: The objective value of OnPairC for AUC maximization.

6.6.3 Experiments for Metric Learning

Next, we evaluate the performance of the proposed differentially private pairwise learning al-

gorithms for the metric learning task (see Example 1 for the problem formulation). We add

additional Frobenius norm λ
2∥W∥

2
F to the loss function for the strongly convex case, where

λ = 10−3. Similar to the experiments for AUC maximization, we evaluate the effect of the

privacy parameter ϵ and the training size n. Due to the space limit, in this section, we only re-

port the experimental results for general convex pairwise learning algorithms, i.e., OnPairC and

OffPairC.

98

=0.5 =1.5 =2.5
0.65

0.70

0.75

0.80

0.85

0.90

O
b

je
ct

iv
e

v
a
lu

e

(a) Hepatitis
=0.5 =1.5 =2.5

0.49

0.59

0.69

0.79

0.89

O
b

je
ct

iv
e

v
a
lu

e

(b) Cancer

Figure 6.3: The objective value of OffPairStrC for AUC maximization.

=0.5 =1.5 =2.5

0.45

0.55

0.65

0.75

A
U

C

(a) Diabetes
=0.5 =1.5 =2.5

0.50

0.53

0.56

0.59

0.62

A
U

C

(b) Diabetic Retinopathy

Figure 6.4: The AUC measurement of OffPairC.

99

=0.5 =1.5 =2.5
0.65

0.70

0.75

0.80

0.85

0.90
O

b
je

ct
iv

e
v
a
lu

e

(a) Diabetes
=0.5 =1.5 =2.5

0.65

0.70

0.75

0.80

0.85

O
b

je
ct

iv
e

v
a
lu

e

(b) Diabetic Retinopathy

Figure 6.5: The objective value of OnPairC for metric learning task under different training

sizes.

50 100 150 200 250 300 350

Training size

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

(a) Diabetes

50 100 150 200 250 300 350

Training size

0.55

0.60

0.65

0.70

0.75
A

cc
u

ra
cy

(b) Diabetic Retinopathy

Figure 6.6: The classification accuracy of OffPairC for metric learning task under different

training sizes.

In these experiments, the value of δ is fixed as 1
n , and we consider three cases where the

parameter ϵ is set to be 0.5, 1.5 and 2.5, respectively. We first calculate the objective value

of OnPairC when the training size varies from 50 to 350, and the results on the Diabetes and

Diabetic Retinopathy datasets are shown in Figure 6.5. As for the offline algorithm OffPairC, we

report the classification accuracy in Figure 6.6. As we can see, the derived experimental results

are similar to that for AUC maximization. The proposed algorithms perform competitively with

the baseline when we vary the values of n and ϵ.

100

6.7 Conclusions

In this chapter, we consider the pairwise learning problems in both online and offline set-

tings. For the online setting, we first propose an (ϵ, δ)-DP algorithm (called OnPairStrC) for

the strongly convex loss functions, and then extend this algorithm to general convex loss func-

tions by proposing another differentially private algorithm (called OnPairC). For the offline

setting, we also propose two differentially private algorithms (called OffPairStrC and OffPairC)

for strongly convex loss functions and general convex loss functions, respectively, and then

give their regret upper bounds. The experimental results on real-world datasets not only con-

firm our theoretical analysis but also demonstrate the effectiveness of the proposed algorithms

in real-world applications.

Chapter 7

Privacy-preserving Synthesizing for
Crowdsourced Data

7.1 Introduction

In recent years, crowdsourcing has emerged as a popular and fast paradigm to solve many chal-

lenging data analysis tasks. Through the power of the crowd, the data collectors (e.g., hospitals,

foundations and government agencies) can easily obtain large amounts of useful information.

At the same time, the proliferation of new information techniques enables these data collectors

to easily share their data that are collected from a crowd of users (e.g., patients, customers) with

researchers or data analyzers. From such a wealth of shared data, researchers or data analyzers

can discover useful knowledge or patterns to improve the quality of products, the management

of public health, and so on. For example, in healthcare applications, the adverse events about

a new drug can be easily collected by the hospitals from different patients. If the hospitals are

willing to share these medical data, it would be very useful for the drug makers or medical

research institutions to understand the efficacy of the drug.

Although the sharing of crowdsourced data brings many benefits, it may introduce privacy

issues [148, 149, 150, 151]. Considering the above example, the hospital aims to collect the

adverse events about a new drug from different patients. The patients usually trust the hospital

and are willing to provide all the requested information. But if the hospital directly releases

the patients’ medical data to the drug makers, the private information of patients would be

disclosed. Without effective privacy-preserving mechanisms, the patients may not allow their

data to be released. Thus, it is essential to address how to enable the data collectors to release

101

102

the crowdsourced data without disclosing users’ private information.

Among existing privacy-preserving techniques, differential privacy (DP) has drawn signifi-

cant attention as it can provide very rigorous privacy and utility guarantee [152]. However, this

technique has several practical limitations when it is applied in the setting of releasing crowd-

sourced data. First of all, since the crowdsourced data on an object (e.g., the new drug) are usu-

ally collected from multiple users or sources, there inevitably exist conflicts among these data.

The reasons include incomplete views of observations, environment noise, different knowledge

bases and even the intent to deceive, etc. Directly applying DP on these data can not eliminate

the conflicts, and this will certainly degrade the accuracy of the data analysis results. Addition-

ally, DP is usually achieved by adding noise following the Laplace or exponential mechanisms

[152]. The noise scale introduced by the Laplace mechanism is proportional to the number of

data records, and such noise may make the data useless considering that crowdsourced dataset

usually contains large amounts of data records. Although the noise introduced by the exponen-

tial mechanism does not depend on the number of data records, it depends on the domains of

the input data [153], which may also make the crowdsourced data useless because these data

usually have large domains.

To address the above challenges, in this chapter, we propose a novel sampling-based privacy-

aware synthesizing method for crowdsourced data (PrisCrowd). In this method, the data col-

lector first learns the underlying patterns (i.e., densities) of the data for the objects through

assigning each user a fine grained weight (or reliability degree) on each object. Then, for each

object, the data collector samples a set of candidate synthetic data from the learned density. Fi-

nally, these synthetic data are subjected to our proposed privacy test, and the data collector only

releases the synthetics that can pass the privacy test. The proposed method can not only extract

high quality crowdsourced data via differentiating each user’s fine grained reliability degrees

on different objects but also achieve DP without injecting noise to the data. Both theoretical

analysis and extensive experiments on real-world datasets are provided to verify the desirable

performance of the proposed method.

7.2 Problem Setting

This chapter considers a data releasing scenario, where a crowd of users and a data collector

are involved. The users (or data sources) are the individuals (e.g., patients, customers) who can

observe some objects (e.g., drugs, commodities) and provide claims for them. The data collector

is an individual or institution (e.g., a hospital, an online store) who can collect the claims for

103

these objects from a crowd of users and then release these claims to the public either voluntarily

or for financial incentives. Here, we assume that the collector is trusted and the security threats

mainly come from the public.

Problem formulation. Suppose there are N objects O = {oi}Ni=1 which are observed by M

users U = {1, 2, ...,M}. For each object oi, the claims of users are denoted as Xi = {xi,s}s∈Ui ,

where xi,s represents the claim provided by user s for object oi and Ui represents the set of users

who provide claims for this object. The claims collected by the data collector from all users are

denoted as X = {Xi}Ni=1, which need to be released to the public. Our goal in this chapter is

to design a mechanism based on which the data collector can release users’ claims with strong

privacy protection for their private information, while at the same time, the data analyzer can

achieve good utility from the released data.

7.3 Preliminary

Definition 6 (Differential Privacy [152]). A randomized algorithmA is (ϵ, δ)-differentially pri-

vate if for all neighboring datasets D,D′ ∈ X n and for all events S in the output space of A,

the following holds: Pr(A(D) ∈ S) ≤ eϵ Pr(A(D′) ∈ S) + δ.

The kernel density estimation (KDE) is a statistically-sound method to estimate a contin-

uous distribution. Suppose there are n independent observations X = {x1, ..., xn} ∈ Rd fol-

lowing an unknown true density f∗(x). The standard KDE f̃(x) for the estimation of f∗(x) at

those points is defined as f̃(x) = 1
n

∑n
i=1KH(x, xi). The following assumption will be used

throughout the chapter.

Assumption 2. For a vector xi ∈ Rd, we assume that the kernel function satisfies KH(x, xi) =

KH(x− xi). Furthermore, KH(x− xi) is essentially a bump centered at xi. More specifically,

we take KH(x) = |H|−
1
2K(H− 1

2 z), where the kernel K itself is a probability density with zero

mean and identity covariance and satisfying lim∥x∥→∞ ∥x∥dK(x) = 0.

Common choices for K that satisfy the above assumption include Gaussian and Epane-

chinikov kernels. As an example, Fig. 7.1 visualizes the construction of the standard KDE of 5

data points (black circles) using the well-known Gaussian kernel that is defined asKH(x−xi) =
(1√

2πh
)d exp(−∥x−xi∥2

2h2
), where h is the bandwidth. The red curves are the component densi-

ties, and each red curve is a scaled version of the normal density curve centered at a datum. The

standard KDE is obtained by summing these five scaled components.

104

2 4 6 8 10 12 14

X

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

Components

KDE

Figure 7.1: An example for the standard KDE

7.4 Methodology

7.4.1 Overview

To achieve the goal described in Section 2, we propose a novel privacy-aware synthesizing

method for crowdsourced data (i.e., PrisCrowd), which contains two phases. In the first phase,

we propose to use the weighted KDE as an intermediate representation of the raw data. This

intermediate representation can well capture the statistical properties of the raw data. In the

second phase, we first sample a set of candidate synthetic claims from the learned densities in

the first phase, then each of these candidate claims is subjected to the proposed privacy test. If

the claim passes the privacy test, it will be released, otherwise it will be discarded. The flowchart

of the proposed two-phase method is shown in Fig. 7.2.

Figure 7.2: Privacy-aware synthesizing for crowdsourced data

7.4.2 Weighted KDE-based Data Representation

In order to share “wealth” data with the data analyzer, the data collector first needs to learn the

characteristics or the underlying patterns of original data, i.e., the informative density distribu-

tions of objects. To estimate the density for each object, the standard kernel density estimation

105

(KDE) can be adopted. Additionally, since different users may provide different claims for the

same object, the reliability degrees (or weights) of these users should be taken into account

when estimating the densities [154, 155, 156, 157]. However, the standard KDE cannot differ-

entiate the importance of users (i.e., user reliability degrees). In order to learn users’ reliability

and compute the densities of objects simultaneously, we propose a novel method which can esti-

mate users’ global and local weights, and then combine them to learn objects’ informative den-

sity distributions. A user’s global weight reflects his capability to provide truthful information

for all the objects, and the local weights represent that this user may have different confidence

when providing claims for different objects. The advantage of the proposed method is that it can

estimate reasonable reliability for each user, and in turn, learn the accurate informative density

distributions for objects.

Global Weight Estimation

To evaluate the overall importance of users, the data collector assigns a global weight gs ∈ R
to each user s. Meanwhile, we can obtain a global density fgi for each object oi, which should

be close to the distribution of claims from reliable users. The distribution of the input claims Xi
can be obtained by KHi(x,Xi) (x ∈ R is a variable), i.e., the kernel function associated with

a reproducing kernel Hilbert space Hi. To minimize the weighted deviation from the estimated

density Q = {fgi (x)}Ni=1 to the multi-user input X = {Xi}Ni=1, we propose the following

optimization framework

min
G,Q

∑
s∈U

gs
∑
i∈Es

dHi(KHi(x, xi,s), f
g
i (x)) (7.1)

s.t.
∑
s∈U

exp(gs) = 1,

where Es denotes the set of objects observed by user s, G = {gs}s∈U and the normalized

squared loss dHi(KHi(·, ·), f
g
i (x)) is defined as dHi(KHi(x, xi,s), f

g
i (x)) = ∥KHi(x, xi,s) −

fgi (x)∥2Hi
. The global loss function (i.e., Eqn. (7.1)) extends the framework in [154] from real

space to Hilbert space. We can use an iterative procedure to solve it. Specifically, in the k-th

iteration, gs is updated as

g(k+1)
s = − log

∑
i∈Es dHi(KHi(x, xi,s), f

g(k)
i (x))∑

s′∈U
∑

i∈Es′
dHi(KHi(x, xi,s′), f

g(k)
i (x))

, (7.2)

where fg(k)i (x) =
∑

t∈Ui
g
(k)
t KHi(x, xi,t)/(

∑
t∈Ui

g
(k)
t). Eqn. (7.2) shows that a user’s global

weight is inversely proportional to the distance between its claims and the estimated global

106

densities at the log scale. Users whose claims are close to the derived global densities will have

higher global weights.

Local Weight Estimation

As described above, each user may have different confidence when providing claims for differ-

ent objects. Thus, we need to model the local weight of each user on every object, which will in

turn help to infer the accurate density estimations. A potential way to achieve this is to establish

a square loss function. However, it leads to a problem that each user would receive the same

local weight, and the trustworthiness of the claims provided by different users would be equal.

In order to address this problem, we use Hampel loss function [158]:

ζq1,q2,q3(y) =


y2/2, 0 ≤ y < q1

q1y − q21/2, q1 ≤ y < q2
q1(y−q3)

2

2(q2−q3)
+ q1(q2+q3−q1)

2 , q2 ≤ y < q3

q1(q2 + q3 − q1)/2, q3 ≤ y,

where q1 < q2 < q3 are predefined nonnegative parameters. These parameters allow us to

decrease the trustworthiness of “bad” claims and increase that of “good” ones for each object,

so the importance of users can be well distinguished.

Since we incorporate users’ reliability into estimating the local densities, the local kernel

density of object oi can be defined as f li (x) =
∑

s∈Ui
li,sKHi(x, xi,s), where li,s is the local

weight of the user s on object oi. Thus, the objective function for estimating li = {li,s}s∈Ui is

J(li) = min
li

∑
s′∈Ui

ζ(∥KHi(x, xi,s′)−
∑
s∈Ui

li,sKHi(x, xi,s)∥), (7.3)

where ∥·∥ denotes the difference between users’ claims and the estimated local density f li (x).

This objective function is not convex, i.e., Eqn. (7.3) does not have a closed form solution.

Fortunately, it is possible to approximate li = {li,s}s∈Ui with a standard iteratively re-weighted

least squares (IRWLS) algorithm. The iterative procedure for computing {li,s}s∈Ui is

l
(k+1)
i,s =

ζ(∥KHi(x, xi,s)−
∑

t∈Ui
l
(k)
i,t KHi(x, xi,t)∥)∑

s′∈Ui
ζ(∥KHi(x, xi,s′)−

∑
t∈Ui

l
(k)
i,t KHi(x, xi,t)∥)

,

where k denotes the number of iterations. The above equation shows that the users would receive

lower weights when they provide “bad” claims which deviate largely from the center f li (x) =∑
t∈Ui

li,tKHi(x, xi,t).

107

Combined Weight Estimation

For each user s, to measure the consistency degree of the global and local weights (i.e., gs and

li,s), we define a mixture weight, named combined weight ci,s. To learn the combined weight,

the relative entropy is employed, which minimizes the information loss between user’s global

weight and local weight. The smaller the relative entropy value of those weights, the higher the

degree of their consistency. The objective of the combined model is

min
{ci,s}s∈Ui

∑
s∈Ui

ci,s log
ci,s
li,s

+
∑
s∈Ui

ci,s log
ci,s
gs

.

s.t.
∑
s∈Ui

ci,s = 1, ci,s ≥ 0.
(7.4)

By solving Eqn. (7.4), we can obtain the combined weight ci,s of user s on the object oi
as ci,s =

√
li,sgs/(

∑
t∈Ui

√
li,tgt). Based on the learned combined weights, we can obtain the

density of object oi which is the weighted sum of claims in Hilbert space and is given as

fi(x) =
∑
s∈Ui

√
li,sgs∑

t∈Ui

√
li,tgt

KHi(x, xi,s). (7.5)

7.4.3 Privacy Test-based Synthetics Release

To provide strong privacy protection for users’ private information, in this section, we propose

a privacy test-based synthetics release method, which contains two steps: Candidate synthetics

generation and Privacy test for candidate synthetics. In the first step, we sample a set of syn-

thetic claims from the learned density in Eqn. (7.5) as the candidate data to release. Then, in the

second step, these sampled synthetics are subjected to a privacy test. If a synthetic claim passes

the test, it will be released, otherwise it will be discarded.

Candidate Synthetics Generation

We first discuss how to generate the synthetic claims X̃i for each object oi. Specifically, we

generate each element in X̃i as follows:

1. Select a random integer s ∈ Ui with probability ci,s;

2. Generate a synthetic claim x̃i,s by sampling from the probability distributionKHi(x, xi,s).

Here ci,s can be treated as the sampling probability that determines whether xi,s is selected or

not. In this step, we aim to select some seed data (e.g., xi,s) and then probabilistically transform

them into the synthetic data. The sampling mechanism used here can increase the uncertainty

108

of the adversary about whether a user’s data is in the released dataset or not, and thus it can

help to protect users’ privacy to some extent. However, it is not enough to only use the sampling

mechanism, directly releasing the sampled data can still violate users’ privacy [159]. To tackle

this problem, we design the following privacy test mechanism to further prevent users’ private

information from being disclosed.

Privacy Test for Candidate Synthetics

To prevent an adversary from deducing that a particular claim in Xi is more responsible for

generating the released synthetic data than other claims, the following randomized privacy test

mechanism is proposed. Each candidate synthetic data in X̃i is subjected to the randomized

privacy test, and it is released only when it passes this test.

Suppose k ≥ 1 and γ > 1 are the privacy parameters, and ϵ0 is the randomness parameter.

Let M(·) denote the above synthetic data generation procedure, which samples a candidate

synthetic based on a seed data. Given xi,s ∈ Xi, we use Pr{x̃i,s = M(xi,s)} to denote the

probability that a synthetic data x̃i,s is generated based onM(·). Then the privacy test procedure

for x̃i,s is described as follows:

1. Randomize k by adding a noise: k̃ = k + z, where z ∼ Lap(1/ϵ0) is sampled from the

Laplace Distribution.

2. Let a ≥ 0 be the integer that satisfies the inequalities γ−a−1 < Pr{x̃i,s =M(xi,s)} ≤
γ−a.

3. Let k′ be the number of records xi,s′ ∈ Xi that satisfies γ−a−1 < Pr{x̃i,s =M(xi,s′} ≤
γ−a.

4. If k′ ≥ k̃, x̃i,s passes the test, otherwise it fails.

Note that k′ denotes the number of possible data seeds that can generate x̃i,s with a probabil-

ity value falling into a very stringent interval [γ−a−1, γ−a]. The threshold parameter k̃ prevents

releasing sensitive synthetic data. Under this randomized privacy test, a candidate synthetic data

is released only when there are at least k̃ possible data seeds that can generate x̃i,s. Intuitively,

the larger the value of k, the larger the number of the possible seed data that are indistinguish-

able from xi,s. Also, the less the value of γ, the more difficult to distinguish xi,s from other

possible seed data. Algorithm 6 summarizes the proposed privacy test-based synthetics release

procedure, in whichm denotes the number of synthetic claims that need to be released for object

oi.

109

Algorithm 6 Private test-based synthetics release for oi

Input: {ci,s}s∈Ui , Xi = {xi,s}s∈Ui , k, γ, ϵ0, and m.

Output: The dataset X̃i that can be released.

1: X̃i = ∅
2: while |X̃i| < m do
3: Select a random integer s ∈ Ui with probability ci,s;

4: Generate a synthetic claim x̃i,s based on the probability distribution KHi(x, xi,s);

5: Conduct randomized privacy test for x̃i,s;

6: if x̃i,s passes the privacy test then
7: X̃i = X̃i

⋃
{x̃i,s};

8: end if
9: end while

10: return X̃i;

7.4.4 Theoretical Analysis

Consistency Analysis

In Section 4.3, we generate the synthetic claims for object oi by sampling from the mixture

distribution fi(x), i.e., x̃i,s ∼ fi(x). After obtaining the dataset X̃i = {x̃i,s}ms=1, a basic ques-

tion here is that how well the generated dataset can reflect the original density function fi(x).

Since each x̃i,s is sampled from fi(x) independently, the density function over {x̃i,s}ms=1 can

be denoted as f̃i(x) = 1
m

∑m
s=1KHi(x, x̃i,s). In Theorem 1, we provide the expected squared

L2-norm distance between fi(x) and f̃i(x).

Theorem 11. Under Assumption 1 forKHi with the diagonal bandwidth matrixHi = ĥ2Id, we

further assume that the support of K(z) satisfies ∥z∥ ≤ 1. Then, the expected squared L2-norm

distance between fi(x) and f̃i(x), i.e., J = E[
∫
(fi(x)− f̃i(x))2dx], satisfies

J ≤ 4Aĥ+A2ĥ2V +
B

mĥd
+

ABV

mĥd−1
, (7.6)

where A = supx∈Rd ∥∇fi(x)∥, B =
∫
(K(z))2dz and V is the volume of the support of fi(x).

The expectation is respected to {x̃i,s}ms=1 ∼ fi(x). This theorem is a general result for d dimen-

sional case, in this chapter, the value of d is 1.

110

Privacy Analysis

Next, we conduct privacy analysis for Algorithm 1. Based on Theorem 2, we know that the

proposed algorithm is differentially private.

Theorem 12. Note that the input parameters of Algorithm 1 include {ci,s}s∈Ui , k ≥ 1, γ > 0,

and ϵ0. For any neighboring datasets Xi and X ′
i such that |Xi|, |X ′

i| ≥ k and any integer

1 ≤ t < k, we have that Algorithm 1 is (ϵ, δ)-differentially private, where ϵ = ϵ0 + log(1 +
γ
t

maxs∈Ui
ci,s

mins∈Ui
ci,s

), δ = |Ui|maxs∈Ui ci,se
−ϵ(k−t).

Remark 3. Note that the proposed Algorithm 6 is different from the mechanism in [160]. The

probability of choosing the seed xi,s is non-uniform in Algorithm 6 while that is uniform in

[160]. The non-uniform property may generate different parameters of differential privacy.

When maxs∈Ui ci,s = mins∈Uici,s = 1/|Ui| (i.e., we uniformly sample the seed xi,s), the above

Theorem 12 is actually Theorem 1 in [160]. Thus, Theorem 12 in in this chapter is a generaliza-

tion of Theorem 1 in [160]. Although the main idea of the proof for Theorem 2 is similar to that

in [160], the details are quite different: in [160] the proof consider X ′
i = Xi

⋃
{xi,s′} as the

neighborhood dataset while ours consider X ′
i = {Xi − {xi,s}}

⋃
{xi,s′} as the neighborhood

dataset. That is because if we add one data record, the probability of sampling seeds, i.e., {ci,s},
will be totally changed. So the proof in [160] cannot satisfy our case.

7.5 Experiments

Performance measure. To evaluate the performance of our method, we adopt two measure

metrics: the integrated squared error (ISE) and the squared integrated squared error (SISE). ISE

is defined as:
∑N

i=1

∫ +∞
−∞ (fi − f̃i)2dx, where fi and f̃i are respectively the original density and

the density derived from the synthetic data for object oi. SISE is defined as:
∑N

i=1(
∫ +∞
−∞ (fi −

f̃i)
2dx)2. Compared with ISE, SISE tends to penalize more on the large distance and less on the

small distance. Since the goal of the collector is to release the data whose pattern is similar to

the true underlying pattern for the objects, the lower the ISE or SISE, the better the method.

Datasets. We adopt the following datasets for our experiments: Population Dataset [161,

162], Stock Dataset [163], and Indoor Floorplan Dataset [155]. The statistics of these real-

world datasets are provided in Table 7.1.

111

Dataset # users # objects

Population 2,344 1,124

Stock 55 5,521

Indoor Floorplan 247 129

Table 7.1: The statistics of the adopted datasets.

Baselines. Here, we adopt two baselines, i.e. Basic and Uniform. In the Basic method, the

data collector adds three level noise to the original data: ϵ = 0.1 (Strong), ϵ = 1 (normal) and

ϵ = 10 (Weak). In the Uniform method, the collector treats all users equally and the entities’

densities are learned with the uniformly weighted kernel density estimation. Here, the synthetic

data generation and the privacy tests procedures are the same with those in our proposed method.

Case study. In order to investigate the advantages of the users’ combined weights, we conduct

case studies on the three real-world datasets. For each dataset, we randomly select two objects

as the cases, and then estimate their densities. The estimated densities are shown in Fig. 7.3. The

red line in each subfigure represents the density estimated based on users’ combined weights.

The black line represents the result estimated only based on the global weight of each user. We

also conduct estimations without considering user quality, i.e., treating all users equally, and

the estimated density for each object is represented with the green line. The results in Fig.3

show that the densities estimated based on users’ combined weights are the closest to the true

densities which are represented with the blue lines. Additionally, we show the claims of each

object in this figure with magenta circles and crosses. We can see that some claims (i.e., the

magenta crosses) are far away from others (i.e., the magenta circles). These claims are usually

provided by the users with low weights, and they can be treated as outliers when estimating

each object’s density. The results show that the method based on the combined weight is more

robust to outliers than the methods which only adopt users’ global weights or treat all users

equally. In other words, the estimated density for each object based PrisCrowd can well reflect

the underlying true density of this object.

Accuracy comparison. In this experiment, we evaluate the accuracy (or quality) of the pub-

lished synthetic data and explore whether these data can well reflect the underlying true densities

of the objects. Here we assume that the data collector releases 30 synthetic claims for each ob-

ject to the public. The parameters γ and k are set as 4 and 5 respectively. In order to evaluate

the accuracy of the synthetic claims, we first derive the density (i.e., f̃i) of each object from

112

0 10 20 30 40 50

X

0.00

0.04

0.08

0.12

0.16

0.20
D

en
si

ty
Combined

Global

Uniform

True density

(a)

30 35 40 45 50 55 60

X

0.00

0.04

0.08

0.12

0.16

0.20

D
en

si
ty

Combined

Global

Uniform

True density

(b)

-8 -6 -4 -2 0 2 4 6

X

0.00

0.10

0.20

0.30

0.40

D
en

si
ty

Combined

Global

Uniform

True density

(c)

-8 -6 -4 -2 0 2 4 6

X

0.00

0.10

0.20

0.30

0.40

0.50

D
en

si
ty

Combined

Global

Uniform

True density

(d)

-5 0 5 10 15 20 25

X

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

Combined

Global

Uniform

True density

(e)

-5 0 5 10 15 20 25

X

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
en

si
ty

Combined

Global

Uniform

True density

(f)

Figure 7.3: Case study on real-world datasets. (a) and (b): the two cases for Population dataset.

(c) and (d): the two cases for Stock dataset. (e) and (f): the two cases for Indoor Floorplan

dataset.

the synthetic data, and then calculate ISE and SISE for each dataset. The results are shown in

113

Measure Method Population Stock Indoor

PrisCrowd 0.479 1.699 1.051
Uniform 0.628 17.628 1.220

ISE Basic(Strong) 1.183 12.799 1.943

Basic(Normal) 1.119 9.867 1.937

Basic(Weak) 0.866 2.125 1.882

PrisCrowd 6.209 11.430 8.405
Uniform 8.502 47.217 11.112

SISE Basic(Strong) 12.013 40.420 15.111

Basic(Normal) 11.768 35.391 15.046

Basic(Weak) 10.149 15.412 14.723

Table 7.2: Accuracy comparison on the real-world datasets

Table 7.2, from which we can see the proposed approach performs much better than the base-

line methods on all real-world datasets. That is to say, the synthetic data generated based on

our proposed method could well preserve the characteristics of the underlying pattern for the

objects. Additionally, the results also show that the advantages of our proposed approach on the

Stock dataset is larger than that on the Population and Indoor Floorplan datasets. The reason

is that there are more outlying data points in the Stock dataset, and our proposed approach is

robust to these outliers while the baseline methods are very sensitive to them.

The effect of the number of sampled claims. In this experiment, we evaluate the effect of

the number of sampled claims for each object on the performance of the proposed method. Here

we vary the number of the sampled claims for each object from 1 to 30 and then calculate the

ISE and SISE on the three real-world datasets. The results are shown in Fig. 7.4, from which

we can see the ISE and SISE gradually get flattened with the increase of the number of the

sampled claims for each object. Take the population dataset as an example, when the number

of sampled claims is lager than 10, the values of ISE and SISE are almost the same. That is to

say, the released data generated based on our proposed method could well reflect the underlying

patterns of the objects even only a few claims are sampled for each object.

Computational cost. Next we evaluate the computational cost of the synthetic claims gen-

eration procedure, i.e., the second phase in our proposed method. In this experiment, we only

114

generate synthetic claims for the objects whose ground truths can be achieved from the origi-

nal datasets, and consider two scenarios, i.e., with privacy tests and without privacy tests. Then

we vary the number of the sampled claims for each object from 1 to 30. The running time of

0 5 10 15 20 25 30

Number of Sampled Claims

0.0

0.3

0.6

0.9

1.2

1.5

IS
E

(a)

0 5 10 15 20 25 30

Number of Sampled Claims

1

3

5

7

9

11

13

15

S
IS

E
(b)

0 5 10 15 20 25 30

Number of Sampled Claims

1.60

1.65

1.70

1.75

1.80

1.85

IS
E

(c)

0 5 10 15 20 25 30

Number of Sampled Claims

11.0

11.3

11.6

11.9

12.2

12.5

11.0

S
IS

E

(d)

0 5 10 15 20 25 30

Number of Sampled Claims

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

IS
E

(e)

0 5 10 15 20 25 30

Number of Sampled Claims

6

7

8

9

10

11

12

S
IS

E

(f)

Figure 7.4: Accuracy w.r.t. Number of Sampled Claims. (a) and (b): Population. (c) and (d):

Stock. (e) and (f): Indoor Floorplan.

115

0 5 10 15 20 25 30

Number of Sampled Claims

0

50

100

150

200

250

300

350
R

u
n

n
in

g
 T

im
e

(s
)

With privacy tests

Without privacy tests

(a)

0 5 10 15 20 25 30

Number of Sampled Claims

0

30

60

90

120

R
u

n
n

in
g

 T
im

e
(s

)

With privacy tests

Without privacy tests

(b)

Figure 7.5: Running time vs. number of sampled claims for each object. (a): Population. (b):

Indoor Floorplan.

the synthetic claims generation procedure for the Population and Indoor Floorplan datasets is

shown in Fig. 7.5, from which we can see the running time in the two scenarios is approximately

linear with respect to the number of sampled claims for each object. Additionally, the results

also show that the privacy test step introduce extra computational cost during the released data

generation procedure. This is because each candidate synthetic data record needs to be tested

in the privacy test step. Since good utility can be achieved based on our proposed method even

only a few synthetic claims are generated for each object, the computational cost is tolerable in

practice.

7.6 Related Work

Recently, various differential private data release approaches have been proposed. Those meth-

ods can be roughly partitioned into two categories: the interactive ones and the non-interactive

ones. In an interactive method [164, 165, 166], a data analyzer can pose queries via a private

mechanism, and a dataset owner answers these queries in response. In the non-interactive frame-

work [167, 168, 169, 170, 171], a data owner releases the private version of the original data.

Once data are published, the owner has no further control over the published data.

The method here is non-interactive. The typical approach to protect data privacy in the non-

interactive context is to directly add noise, which is taken by [168, 169]. These works are either

computationally infeasible on high-dimensional data, or practically ineffective because of their

large utility costs. There are also some other works [168] which release private data without

116

adding noise, but they are unsuitable to be used in the newly appearing crowdsourcing setting

considered in this chapter where multi-sources provide multi-observations for multi-objects.

7.7 Conclusions

In this chapter, we propose a novel privacy-aware synthesizing method for crowdsourced data.

Based on this method, the data collector can release the crowdsourced data with strong privacy

protection for users’ private information, while at the same time, the data analyzer can achieve

good utility from the released data. Both theoretical analysis and extensive experiments on real-

world datasets verify the effectiveness of the proposed method.

Chapter 8

Conclusions and Future Directions

In this dissertation, the essential characteristics at the core of trustworthy machine learning (i.e.,

model transparency, security vulnerability and robustness, and privacy preservation) are studied.

Without fully studying the trustworthiness of the deployed machine learning-based systems, we

will face a variety of devastating societal and environmental consequences. For example, attack-

ers may actively manipulate the perceptual systems of autonomous vehicles, which can poten-

tially lead to a multitude of disastrous consequences, ranging from a life-threatening accident

to even a large-scale interruption of transportation services relying on autonomous cars.

On the model transparency aspect, we develop several effective post-hoc interpretation

methods to provide the feature-level explanations for pairwise models, which aim to model the

relative relationship between pairs of samples. Based on the designed pairwise interpretation

methods, we can investigate how the input features contribute to model predictions for patient

similarity learning. In addition, we also interpret the generalization ability of deep metric learn-

ing models to generalize to unseen data by presenting the generalization error bound for deep

metric learning.

On the security aspect, we first investigate the vulnerability of DRL interpretations to ma-

licious attacks. Specifically, we first propose a universal adversarial attack against DRL in-

terpretations, which aims to craft a single universal perturbation that can be applied identi-

cally on every time step. Based on this attack, the attacker can efficiently deceive downstream

DRL interpretation methods via state perturbations. Then, we design a model poisoning attack

against DRL interpretations, based on which the attacker can secretly alter the interpretation re-

sults through providing the agent a strategically poisoned but equally effective pretrained DRL

model. In addition, to reduce the susceptibility of the generated concept-based explanations to

117

118

adversarial attacks, we also design a novel robust and automatic interpretation method, which

can not only automatically provide the prototype-based concept explanations but also provide

certified robustness guarantees for the generated prototype-based explanations.

On the privacy aspect, we first propose several differentially private pairwise learning algo-

rithms for both online and offline settings. Specifically, for the online setting, I first proposed a

differentially private algorithm for the strongly convex loss functions, and then extend this al-

gorithm to general convex loss functions by proposing another differentially private algorithm.

For the offline setting, I also proposed differentially private algorithms for strongly convex loss

functions and general convex loss functions, and then derived their regret upper bounds. In ad-

dition, we also design a novel privacy-aware synthesizing method for crowdsourced data, which

can not only extract high quality crowdsourced data via differentiating each user’s fine grained

reliability degrees on different objects but also achieve differential privacy without injecting

noise to the data.

The development of trustworthy machine learning systems can inspire user trust in the sys-

tem’s trustworthiness compliance, while users’ trust in a machine learning system can assist in

achieving a system’s trustworthy objectives by helping users to take appropriate responses to

untrustworthy issues and to avoid incidental actions. However, existing research works on trust-

worthy machine learning usually only focus on one aspect, and fail to take into consideration

other untrustworthy aspects. For example, by using existing works on counterfactual explana-

tions, we can explain a prediction by calculating a change in a datapoint that would cause the

underlying machine learning model to classify it in a desired class. However, releasing addi-

tional information is a risky prospect from a privacy perspective. The generated counterfactual

explanations, as functions of the model trained on a private dataset, might inadvertently leak

information about the training set, beyond what is necessary to provide useful counterfactual

explanations. In fact, an adversary can leverage model explanations to perform different privacy

attacks to infer private information about the training data. Despite this potential privacy risk,

there has been little effort to analyze and address the data privacy concerns that might arise due

to the release of model explanations. Therefore, one future research direction is about new ways

to design the trustworthy machine learning systems that are trustworthy in all of the desired trust

aspects. Another future research direction is to devise more sophisticated and effective mecha-

nisms to automate the process of designing trustworthy machine learning systems. In practice,

humans are heavily involved in almost every process of building trustworthy machine learning

systems (e.g., model and hyper-parameter selection). For example, existing perturbation-based

robustness techniques usually need particular manual derivations and implementations when

119

extended to different architectures. Thus, to make trustworthy machine learning systems easier

to apply and reduce the demand for experienced human experts, it is important for us to work

on the automatic design of trustworthy machine learning systems.

Chapter 9

Appendix

9.1 Proof of Theorem 1

Proof. The proof of this theorem contains two steps. In the first step, we will verify that the

importance values (i.e., {ϕd(xi,xj , ζ)}Dd=1) calculated by the proposed ASIPair satisfy the four

properties: efficiency, fairness, dummy and additivity. In the second step, we will show that

there exists exactly one solution that has all the four properties.

Step 1: First of all, let us consider the efficiency property. The summation
∑D

d=1 ϕd(xi,xj , ζ)

is calculated as follows

D∑
d=1

ϕd(xi,xj , ζ) =
D∑
d=1

1

D!

∑
O∈π(D)

{E[ζ(xi,xj)|x
P d
O∪{d}
i ,x

P d
O∪{d}
j)]− E[ζ(xi,xj)|x

P d
O
i ,x

P d
O
j)]}

=
1

D!

∑
O∈π(D)

D∑
d=1

{E[ζ(xi,xj)|x
P d
O∪{d}
i ,x

P d
O∪{d}
j)]− E[ζ(xi,xj)|x

P d
O
i ,x

P d
O
j)]}

=
1

D!

∑
O∈π(D)

ζ(xi,xj) = ζ(xi,xj), (9.1)

where π(D) denotes the set of of all possible ordered permutations of the feature indices

{1, 2, ..., D}, and O ∈ π(D) is a random permutation. The last equality is derived based on

that ϕ∅(xi,xj , ζ) = 0.

Secondly, we will verify the fairness property. The difference ϕd1(xi,xj , ζ)−ϕd2(xi,xj , ζ)

120

121

is calculated as follows

ϕd1(xi,xj , ζ)− ϕd2(xi,xj , ζ)

=
∑

T⊂[D]\{d1}

|T |!(D − |T | − 1)!

D!
{E[ζ(xi,xj)|xT∪{d1}i ,x

T∪{d1}
j]− E[ζ(xi,xj)|xTi ,xTj]}−

∑
T⊂[D]\{d2}

|T |!(D − |T | − 1)!

D!
{E[ζ(xi,xj)|xT∪{d2}i ,x

T∪{d2}
j]− E[ζ(xi,xj)|xTi ,xTj]}

=
∑

T⊂[D]\{d1}

|T |!(D − |T | − 1)!

D!
E[ζ(xi,xj)|xT∪{d1}i ,x

T∪{d1}
j]

−
∑

T⊂[D]\{d2}

|T |!(D − |T | − 1)!

D!
E[ζ(xi,xj)|xT∪{d2}i ,x

T∪{d2}
j] = 0, (9.2)

where the first equality is derived based on the definition of ϕd1(xi,xj , ζ) and ϕd2(xi,xj , ζ).

In the above, the last equality is derived based on that for all T ⊂ {1, 2, · · · , D} \ {d1, d2},
E[ζ(xi,xj)|xT∪{d1}i ,x

T∪{d1}
j] = E[ζ(xi,xj)|xT∪{d2}i ,x

T∪{d2}
j].

Next, we will verify the dummy property. By the definition of ϕd(xi,xj , ζ), we have

ϕd(xi,xj , ζ) =
∑

T⊂[D]\{d}

|T |!(D − |T | − 1)!

D!
∆d(xi,xj , T, ζ) =

∑
T⊂[D]\{d}

|T |!(D − |T | − 1)!

D!
{E[ζ(xi,xj)|xT∪{d}i ,x

T∪{d}
j]− E[ζ(xi,xj)|xTi ,xTj]}

=
∑

T⊂[D]\{d}

|T |!(D − |T | − 1)!

D!
∗ 0 = 0, (9.3)

where the third equality is derived based on that for all subset T ⊂ {1, 2, · · · , D} \ {d},
E[ζ(xi,xj)|(xT∪{d}i ,x

T∪{d}
j)] = E[ζ(xi,xj)|(xTi ,xTj)].

122

Finally, we will prove the additivity property. For ϕd(xi,xj , ζ1+ζ2), we have the following

ϕd(xi,xj , ζ1 + ζ2)

=
1

D!

∑
O∈π(D)

(E[(ζ1 + ζ2)(xi,xj)|x
P d
O∪{d}
i ,x

P d
O∪{d}
j]− E[(ζ1 + ζ2)(xi,xj)|x

P d
O
i ,x

P d
O
j])

=
1

D!

∑
O∈π(D)

{E[ζ1(xi,xj) + ζ2(xi,xj)|x
P d
O∪{d}
i ,x

P d
O∪{d}
j]− E[ζ1(xi,xj)

+ ζ2(xi,xj)|x
P d
O
i ,x

P d
O
j]}

=
1

D!

∑
O∈π(D)

E[ζ1(xi,xj)|x
P d
O∪{d}
i ,x

P d
O∪{d}
j +

1

D!

∑
O∈π(D)

E[ζ2(xi,xj)|x
P d
O∪{d}
i ,x

P d
O∪{d}
j

− { 1

D!

∑
O∈π(D)

E[ζ1(xi,xj)|x
P d
O
i ,x

P d
O
j] +

1

D!

∑
O∈π(D)

E[ζ2(xi,xj)|x
P d
O
i ,x

P d
O
j]}

= { 1

D!

∑
O∈π(D)

(E[ζ1(xi,xj)|x
P d
O∪{d}
i ,x

P d
O∪{d}
j]− E[ζ1(xi,xj)|x

P d
O
i ,x

P d
O
j])}

+ { 1

D!

∑
O∈π(D)

(E[ζ2(xi,xj)|x
P d
O∪{d}
i ,x

P d
O∪{d}
j]

− E[ζ2(xi,xj)|x
P d
O
i ,x

P d
O
j])} = ϕd(xi,xj , ζ1) + ϕd(xi,xj , ζ2), (9.4)

where the second equality is derived based on the definition that (ζ1+ζ2)(xi,xj) = ζ1(xi,xj)+

ζ2(xi,xj) for any (xi,xj), and the last second equality is derived based on the definition of

ϕd(xi,xj , ζ1) and ϕd(xi,xj , ζ2).

Step 2: In this step, we provide a proof sketch to show there exists a unique solution that

satisfies the efficiency, fairness, dummy and additivity properties. The uniqueness result can be

derived from the fact that the class of games with D features forms a 2D−1 dimensional vector

space where the set of unanimity games constitutes a basis. For every non-empty T ⊂ [D], we

define ηT (the unanimity game of T) by ηT ([D]) = 1 if T ⊂ [D], otherwise, ηT ([D]) = 0. It is

clear that the dummy and fairness properties together yield a value that is uniquely determined

on unanimity games. Combined with the additivity axiom and the fact the unanimity games

constitute a basis for the vector space of games, this yields the uniqueness result.

9.2 Proof of Theorem 2

Proof. Note that E[Ym,h] =
∑D

d=1Am,dE[∆h
d(xi,xj , P

d
Oh
, ζ)] =

∑D
d=1Am,dϕd(xi,xj , ζ),

where the second equality is derived based on that ϕd(xi,xj , ζ) = E[∆h
d(xi,xj , P

d
Oh
, ζ)]. In

123

fact, for Ym,h, based on the super-additivity, we can then derive that −r/
√
M ≤ Ym,h =∑D

d=1Am,d∆
h
d(xi,xj , P

d
Oh
, ζ) ≤ +r/

√
M . Then, we have the following

P [∥Aϕ− b∥L2 ≥ ϵ] ≤ P [∥Aϕ− b∥L∞ ≥
ϵ√
M

] = P [max
m=1,··· ,M

|Amϕ− bm| ≥
ϵ√
M

]

≤ P [∪m=1,··· ,M |Amϕ− bm| ≥
ϵ√
M

] ≤
M∑
m=1

P [|Amϕ− bm| ≥
ϵ√
M

]

≤ 2M exp(− 2H2(ϵ/
√
M)2∑H

h=1(2r/
√
M)2

) = 2M exp(−Hϵ
2

2r2
), (9.5)

where bm = 1
H

∑H
h=1 Ym,h, Am denotes them-th row of the measurement matrix A ∈ RM×D,

ϕ = (ϕ1(xi,xj , ζ), · · · , ϕD(xi,xj , ζ)) ∈ RD and b ∈ RD is the measurement vector. The

first inequality is derived based on the fact that ∥Aϕ− b∥L2 ≤
√
N∥Aϕ− b∥L∞ . The second

inequality follows the union bound, and the last inequality is derived based on the Chernoff-

Hoeffding inequality. Since ϕ = ϕ̄ID+ϕ̃, we can also derive that the probability that ∥A(ϕ̄ID+
ϕ̃) − b∥L2 ≥ ϵ is no greater than 2M exp(−Hϵ2

2r2
). Now, we want the term 2M exp(−Hϵ2

2r2
) in

Eqn. (9.5) to be bounded by δ/2, we then have the following

2M exp(−Hϵ
2

2r2
) ≤ δ

2
=⇒ 2r2

ϵ2
log

4M

δ
≤ H, (9.6)

where H denotes the number of permutations. Thus, based on the above, with probability (1−
δ/2), we have ∥Aϕ − b∥L2 ≤ ϵ. In the following, we will proceed to bound the number of

measurements M .

The main condition on the measurement matrix A that ensures the exact recovery of the

s-sparse parameter from an underdetermined linear system is the restricted isometry condition.

For the measurement matrix A ∈ RM×D, its s-restricted isometry constant δs is defined as the

smallest quantity such that the matrix AT obeys (1− δs)∥x∥2L2
≤ ∥ATx∥2L2

≤ (1+ δs)∥x∥2L2

for each subset T ⊂ [D] and all x ∈ R|T |, where AT is a M × |T | matrix containing the

columns of A corresponding to T . Based on Theorem 2.7 and 2.12 in [172], we can derive that

if M ≥ C(0.465)−2(2s log(D/(2s)) + log(2/δ)), the restricted isometry constant δ2s of the

measurement matrix A satisfies δ2s < 3
4+

√
6
≈ 0.465 with probability 1− δ/2. Note that C is

a universal constant. Finally, we can derive the following

∥ϕ̃− ϕ∥L2 = ∥ϕ̂∗ − ϕ̂∥L2 ≤ Φ1ϵ+Φ2
σs(ϕ)L1√

s
, (9.7)

where σs(ϕ)L1 := inf{∥ϕ−Ψ∥L1 ,Ψ is s-sparse}, and Φ1 and Φ2 are two constants that depend

only on δs. Note that ϕ̂∗ is the solution of the optimization problem for the proposed RAIPair.

124

9.3 Proof of Theorem 3

Proof. Here, we provide a sketch of the proof for this theorem. For simplicity, we write g(1 +

yij(D(fL(xi,W ,ρ), fL(xj ,W ,ρ)) − γ)) = ΦW (zi, zj) to highlight its dependence on the

two samples zi = (xi, yi) and zj = (xj , yj). The proof contains the following six steps:

Step 1: In this step, we will bound the difference between R(Wz) − Rz(Wz) and its

expectationEz supW∈W [R(W)−Rz(W)], whereEz denotes the expectation with respect to

the dataset z. Let z = {z1, ...,zk−1, zk, zk+1, ...,zn} and z′ = {z1, ...,zk−1, z
′
k, zk+1, ...,zn}

be two sets of training samples that differ in one sample. Then we have the following inequality:

| sup
W∈W

[R(W)−Rz(W)]− sup
W∈W

[R(W)−Rz′(Wz)]|

≤ sup
W∈W

|Rz(W)−Rz′(W)|

=
supW∈W

∑
j ̸=k |ΦW (zk, zj)− ΦW (z′

k, zj)|
n(n− 1)

≤ sup
W∈W

2
∑

j ̸=k |ΦW (zk, zj)|
n(n− 1)

=
2V1
n
,

where |ΦW (zk, zj)| is bounded by V1 and W is the weight space of the neural network. The

above inequality shows that if we change the i-th sample zi = (xi, yi) while keeping all the

others in z fixed, the value of the function
∑

W∈W [R(W)−Rz(W)] does not change by more

than 2V1
n . Applying McDiarmid’s inequality [173] to the term supW∈W [R(W) − Rz(W)],

with probability 1− δ there holds

Pr(| sup
W∈W

[R(W)−Rz(W)]− Ez sup
W∈W

[R(W)−Rz(W)]| > ϵ) ≤ exp(− 2ϵ2

n ∗ (2V1/n)2
),

(9.8)

where ϵ is a constant. Based on the observation thatR(Wz)−Rz(Wz) ≤ supW∈W [R(W)−
Rz(W)], which allows us to go from working with R(Wz) − Rz(Wz) to working with

supW∈W [R(W)−Rz(W)], the quantityR(Wz)−Rz(Wz) can be bounded as

R(Wz)−Rz(Wz) ≤ Ez sup
W∈W

[R(W)−Rz(W)] + V1
√
2 log(1/δ)/n. (9.9)

Step 2: Next, we will bound the expectation Ez supW∈W [R(W)−Rz(W)] in the right-

hand side of Eqn. (9.9). Based on the Lemma 1 in [49], we can derive the inequalityEz supW∈W [R(W)−
Rz(W)] ≤ Ez supW∈W [R(W)− 1

⌊n
2
⌋
∑⌊n

2
⌋

i=1 ΦW (zi, z⌊n
2
⌋+i)], whereRz = 2

n(n−1)

∑
i<j ΦW (zi, zj).

Define R̂z(W) = 1
⌊n
2
⌋
∑⌊n

2
⌋

i=1 ΦW (zi, z⌊n
2
⌋+i). By introducing the ghost sample z̃ = {z̃1, z̃2, ..., z̃n}

125

where z̃i’s are independent of each other and of zi’s and have the same distribution as the lat-

ter, we have Ez supW∈W [R(W) − R̂z(W)] = Ez supW∈W [Ez̃[R̂z̃(W)] − R̂z(W)] ≤
Ez,z̃ supW∈W [R̂z̃(W) − R̂z(W)], where R(W) = Ez[R̂z(W)] = Ez̃[R̂z̃(W)] and the

last inequality is based on Jensen’s inequality. Then, we have

Ez,z̃ sup
W∈W

[R̂z̃(W)− R̂z(W)]

= Ez,z̃
1

⌊n2 ⌋
sup

W∈W

⌊n
2
⌋∑

i=1

[ΦW (z̃i, z̃⌊n
2
⌋+i)− ΦW (zi, z⌊n

2
⌋+i)] (9.10)

= Ez,z̃,ξ
1

⌊n2 ⌋
sup

W∈W

⌊n
2
⌋∑

i=1

ξi[ΦW (z̃i, z̃⌊n
2
⌋+i)− ΦW (zi, z⌊n

2
⌋+i)]

≤ Ez,z̃,ξ
1

⌊n2 ⌋
sup

W∈W

⌊n
2
⌋∑

i=1

ξiΦW (z̃i, z̃⌊n
2
⌋+i)

− Ez,z̃,ξ
1

⌊n2 ⌋
sup

W∈W

⌊n
2
⌋∑

i=1

ξiΦW (zi, z⌊n
2
⌋+i) = 2Ez,ξ

1

⌊n2 ⌋
sup

W∈W

⌊n
2
⌋∑

i=1

ξiΦW (zi, z⌊n
2
⌋+i).

In the second equality of Eqn. (9.10), we introduce the Rademacher random variables {ξi}
⌊n
2
⌋

i=1

[50], and use the fact that multiplying [ΦW (z̃i, z̃⌊n
2
⌋+i) − ΦW (zi, z⌊n

2
⌋+i)] by a Rademacher

variable ξi does not change the expectation of the sum [50]. The first inequality of Eqn. (9.10)

follows from the sub-additivity of the supremum function. For the last equality in Eqn. (9.10),

since z and z̃ have the same distribution, we change the sign to simplify the expression. Then,

Eqn. (9.9) can be rewritten as

R(Wz)−Rz(Wz) ≤ 2Ez,ξ
1

⌊n2 ⌋
sup

W∈W

⌊n
2
⌋∑

i=1

ξiΦW (zi, z⌊n
2
⌋+i) + V1

√
2 log(1/δ)/n. (9.11)

Step 3: Then we bound 2Ez,ξ
1

⌊n
2
⌋ supW∈W

∑⌊n
2
⌋

i=1 ξiΦW (zi, z⌊n
2
⌋+i) in Eqn. (9.11) as fol-

lows

2Ez,ξ
1

⌊n2 ⌋
sup

W∈W

⌊n
2
⌋∑

i=1

ξiΦW (zi, z⌊n
2
⌋+i) ≤ 6

√
1/⌊n

2
⌋

+ 2V1
√

2 log(1/δ)/n+

hL∑
k=1

4Eξ
1

⌊n2 ⌋
sup

W∈W

⌊n
2
⌋∑

i=1

ξi(f
L
k (xi,W ,ρ)− fLk (x⌊n

2
⌋+i,W ,ρ))2,

where fLk (xi,W ,ρ) = EM [(W L
k ⊙ML

k)σ(f
L−1(xi,W

1:L−1,M1:L−1))] and W L
k denotes

the k-th row of W L.

126

Step 4: For the term
∑hL

k=1 4Eξ
1

⌊n
2
⌋ supW∈W

∑⌊n
2
⌋

i=1 ξi(f
L
k (xi,W ,ρ)−fLk (x⌊n

2
⌋+i,W ,ρ))2

in the above equation, we here aim to establish its upper bound. Based on the assumption

∥W L∥2F =
∑hL

k=1∥W L
k ∥2 ≤ (BL)2, we can derive that ∀k ∈ [hL], ∥W L

k ∥2 ≤ (BL)2.

Based on the Cauchy-Schwarz inequality, we have |fLk (xi,W ,ρ)| ≤ supBL∥σ(fL−1(·))∥.
Assume that ∥σ(fL−1(·))∥ is bounded in [0, V L]. Then we can have that (fLk (xi,W ,ρ) −
fLk (xi,W ,ρ)) ∈ [−2BLV L, 2BLV L].

Define the function ϕ(t) = t2(t ∈ [−2BLV L, 2BLV L]) with ϕ(0) = 0. Then, we have

that the defined function ϕ(t) = t2(t ∈ [−2BLV L, 2BLV L]) is Lipschitz continuous with

Lipschitz constant 4BLV L. Then, the first term in the right-hand side of the above equation can

be bounded as

hL∑
k=1

4Eξ
1

⌊n2 ⌋
sup

W∈W

⌊n
2
⌋∑

i=1

ξi(f
L
k (xi,W ,ρ)− fLk (x⌊n

2
⌋+i,W ,ρ))2

≤ 16hLBLV L

⌊n2 ⌋
[Eξ sup

k∈[hL]
sup

W∈W
|
⌊n
2
⌋∑

i=1

ξif
L
k (xi,W ,ρ)|

+ Eξ sup
k∈[hL]

sup
W∈W

|
⌊n
2
⌋∑

i=1

ξif
L
k (x⌊n

2
⌋+i,W ,ρ)|],

where fLk (x⌊n
2
⌋+i,W ,ρ) is the deterministic output on the L-th layer.

Step 5: In this step, for the two terms Eξ supk∈[hL] supW∈W |
∑⌊n

2
⌋

i=1 ξif
L
k (xi,W ,ρ)| and

Eξ supk∈[hL] supW∈W |
∑⌊n

2
⌋

i=1 ξif
L
k (x⌊n

2
⌋+i,W ,ρ)| in the right-hand side of the above equa-

tion, we will bound them in a recursive way. With a previously specified constant λ > 0, the

first term Eξ supk∈[hL] supW∈W |
∑⌊n

2
⌋

i=1 ξif
L
k (xi,W ,ρ)| can be bounded as

Eξ sup
k∈[hL]

sup
W∈W

|
⌊n
2
⌋∑

i=1

ξif
L
k (xi,W ,ρ)|

≤ 1

λ
log[2L ∗ Eξ sup

W∈W
exp((

L∏
l=1

Bl) ∗
L∏
l=1

√
ρl ∗ λ ∗ ∥

⌊n
2
⌋∑

i=1

ξixi∥)].

Similarly, the second term Eξ supk∈[hL] supW∈W |
∑⌊n

2
⌋

i=1 ξif
L
k (xi+⌊n

2
⌋)| can be bounded as

127
1
λ log[2

L ∗Eξ supW∈W exp((
∏L
l=1B

l) ∗
∏L
l=1

√
ρl ∗ λ ∗ ∥

∑⌊n
2
⌋

i=1 ξixi+⌊n
2
⌋∥)]. Thus, we have

R(Wz)−Rz(Wz)

≤ 6

√
1

⌊n2 ⌋
+

16hLBLV L

λ⌊n2 ⌋
[log[2L ∗ Eξ sup

W∈W
exp(λ

L∏
l=1

(Bl
√
ρl) ∗ ∥

⌊n
2
⌋∑

i=1

ξixi∥)]

+ log[2L ∗ Eξ sup
W∈W

exp(λ

L∏
l=1

(Bl
√
ρl) ∗ ∥

⌊n
2
⌋∑

i=1

ξixi+⌊n
2
⌋∥)]] + 3V1

√
2 log(1/δ)

n
.

Step 6: Here, we aim to address how to estimate the two terms in the above equations

(i.e., (log[2L ∗Eξ supW∈W exp((
∏L
l=1B

l) ∗
∏L
l=1

√
ρl ∗λ ∗ ∥

∑⌊n
2
⌋

i=1 ξixi∥)])/λ and (log[2L ∗
Eξ supW∈W exp((

∏L
l=1B

l) ∗
∏L
l=1

√
ρl ∗ λ ∗ ∥

∑⌊n
2
⌋

i=1 ξixi+⌊n
2
⌋∥)])/λ in the right-hand side

of Eqn. (9.12)). Define a random variable Z1 =
∏L
l=1B

l ∗
∏L
l=1

√
ρl ∗ ∥

∑⌊n
2
⌋

i=1 ξixi∥, and then

the first term can be decomposed as

(log[2LEξ sup
W∈W

exp((
L∏
l=1

Bl)
L∏
l=1

√
ρlλ∥

⌊n
2
⌋∑

i=1

ξixi∥)])/λ =

(L log 2)/λ+ (log[Eξ expλ(Z1 − EZ1)])/λ+ EZ1,

where the first term (L log 2)/λ in the right-hand side is a constant. The second and the third

terms in the right-hand side of Eqn. (9.12) can be upper bounded as log[Eξ expλ(Z1−EZ1)]/λ ≤

λ(
∏L−1
l=1 B

l
√
ρl)2

∑⌊n
2
⌋

i=1∥xi∥2/2 and EZ1 ≤
∏L
l=1(B

l
√
ρl)

√
∥
∑⌊n

2
⌋

i=1 xi∥2, respectively.

Next, by setting λ =

√
2 log(2)L∏L

l=1(B
l
√
ρl)

√∑⌊n
2 ⌋

i=1 ∥xi∥2
, the second term in the right-hand side of

Eqn. (9.12) can be bounded as log[2L∗Eξ
1

⌊n
2
⌋ supW∈W exp(λ

∏L
l=1(B

l
√
ρl)∥

∑⌊n
2
⌋

i=1 ξixi∥)]/λ ≤

(
√
2L log 2+1)

∏L
l=1(B

l
√
ρl)

√
⌊n2 ⌋d. In a similar way, we can bound the third term (log[2L ∗

Eξ supW∈W exp((
∏L
l=1B

l) ∗
∏L
l=1

√
ρl ∗ λ ∗ ∥

∑⌊n
2
⌋

i=1 ξixi+⌊n
2
⌋∥)])/λ in the right-hand side

of Eqn. (9.12) as

(log[2L ∗ Eξ
1

⌊n2 ⌋
sup

W∈W
exp(λ(

L∏
l=1

Bl) ∗
L∏
l=1

√
ρl ∗ ∥

⌊n
2
⌋∑

i=1

ξixi+⌊n
2
⌋∥)])/λ ≤

(
√

2L log 2 + 1)

L∏
l=1

(Bl
√
ρl)

√
⌊n
2
⌋d.

Combining the previous results, we complete the proof.

128

9.4 Proof of Theorem 4

Before presenting the proof of Theorem 4, we firstly introduce the assumptions, the definition

and the concept of the attacked MDPs, which are used in the latter proof.

Assumption 3 (MDP Regularity). Suppose MDP M =< S,A,P,R, γ > has finite state

space, finite action space, and bounded reward function, i.e., |S| ≤ ∞, |A| ≤ ∞, and ∥R∥∞ ≤
R, where R is the upper bound of reward function.

Assumption 4 (Transition/Reward Continuity). Suppose two MDPs:M′ =< S,A,P ′,R′, γ >

and M =< S,A,P ,R, γ > share the same state space and action space. P (·|s, a) =

P ′(·|s̃, a) and ∥s − s̃∥ ≤ ϵ. Suppose there exists a constant δ such that for any s ∈ S and

a ∈ A, ∥P ′(·|s, a) − P (·|s, a)∥1 ≤ δ and |R′(s, a) −R(s, a)| ≤ δ. In some literature,M is

also said to be δ-approximation ofM′.

Definition 7 (T -step value function). Suppose MDPM =< S,A,P,R, γ > satisfies Assump-

tion 1. Following the definition of value function under policy π: V π(s) = E[
∑∞

t=0 γ
tR(st, at =

π(st))|s0 = s] in previous section, we define T -step value function to be the truncation of the

first T discounted returns. Specifically, Vπ(s, T) = E[
∑T −1

t=0 γtR(st, π(st))|s0 = s]. Note the

expectation is taken over all possible paths the agent might follow starting from s and of fixed

length T . Further, we define the optimal T -step value function V∗(s, T) = maxπ Vπ(s, T).
The optimal value function could be viewed as the limit case of optimal T -step value function,

i.e., V∗(s) = limT →∞ V∗(s, T). Finally, we denote the maximum possible T -step return by

GT = maxs∈S V∗(s, T).

Definition 8 (The attacked MDPs). Here, we define the following two MDPs, which are differ-

ent from original MDPM =< S,A,P,R, γ > attempted to be attacked in either transition

probability or immediate reward, indicating the new environments under malicious attacks.

• M1 =< S,A,P1,R1, γ >, where P1(·|s, a) = P(·|s̃, a), and R1(·|s, a) = R(·|s, a).
P1 characterizes the system dynamics where the next state follows the distributionP(·|s̃, a)
given the current state is s and the selected action is a, since the current state has been

crafted to s̃.

• M2 =< S,A,P2,R2, γ >, where P2(·|s, a) = P(·|s̃, a), andR2(s, a) = R(s̃, a). The

system transition model P2 is exactly the same as P1, while the immediate reward model

R2 is different. The reward the agent instantaneously collects from the environment is

129

R(s̃, a) in M2 given that the current state is s and the selected action is a. We argue

that both R2 and R1 are ubiquitous in real-world settings, depending on whether the

environment from which the agent collects reward is aware of the state crafting. M1

characterizes the scenario where the attack is imperceptible to the system or the agent

obtains reward based on his own assessment of the current state and action. On the

contrary,M2 describes the setting where the immediate reward is evaluated externally

and the attack is noticeable to the performance evaluation system.

Finding optimal malicious attack is equivalent to solving the optimal policy for M1 and

M2. In Theorem 4, we bound the difference of optimal value functions between Mi and M,

where i = 1, 2. The importance of these bounds is to help us understand, to what extent the

malicious attack affects the long term reward and how perceptible the attack could be to the

participating agent. In Theorem 5, we further study, if the attack takes place only in a finite

number of states, the difference of T -step value functions betweenMi andM, where i = 1, 2.

After introducing the assumptions, the definition and the concept of the attacked MDPs, we

next present the proof of Theorem 4.

Proof. Recall that Bellman’s Equation for the optimal value function is as follows: V ∗(s) =

maxa∈A Es′∼P(·|s,a) [R(s, a) + γV ∗(s′)]. Let F be the function class mapping from S to R.

Define Bellman’s operator B : F → F of MDPM =< S,A,P,R, γ > to be B ◦ V ∗(s) =

maxa∈A Es′∼P(·|s,a) [R(s, a) + γV ∗(s′)].

|V ∗(s)− V ∗
1 (s)| = |B ◦ V ∗(s)− B ◦ V ∗

1 (s)|

= max{B ◦ V ∗(s)− B ◦ V ∗
1 (s),B ◦ V ∗

1 (s)− B ◦ V ∗(s)}

≤
1
max
a∈A
|Es′∼P(·|s,a)[R(s, a) + γV ∗(s′)]− Es′∼P1(·|s,a)[R1(s, a) + γV ∗

1 (s
′)]|.

Here, for â and â1, we suppose that â ≜ argmaxa∈A Es′∼P(·|s,a) [R(s, a) + γV ∗(s′)], and

â1 ≜ argmaxa∈A Es′∼P1(·|s,a) [R1(s, a) + γV ∗
1 (s

′)]. The reason for inequality 1 is: if V ∗(s) ≥
V ∗
1 (s), we can derive that B ◦ V ∗(s) − B ◦ V ∗

1 (s) ≤ Es′∼P(·|s,â) [R(s, â) + γV ∗(s′)] −
Es′∼P1(·|s,â) [R1(s, â) + γV ∗

1 (s
′)]; while if V ∗(s) < V ∗

1 (s), we can then obtain that B ◦
V ∗
1 (s)−B◦V ∗(s) ≤ Es′∼P1(·|s,â1) [R1(s, â1) + γV ∗

1 (s
′)]−Es′∼P(·|s,â1) [R(s, â1) + γV ∗(s′)].

130

In both cases, the inequality 1 holds.

|V ∗(s)− V ∗
1 (s)| ≤ max

a∈A
|Es′∼P(·|s,a)[γV

∗(s′)]− Es′∼P1(·|s,a)[γV
∗
1 (s

′)]|

≤
2
max
a∈A
|Es′∼P(·|s,a)[γV

∗(s′)]− Es′∼P1(·|s,a)[γV
∗(s′)]|︸ ︷︷ ︸

I

+max
a∈A
|Es′∼P1(·|s,a)[γV

∗(s′)]− Es′∼P1(·|s,a)[γV
∗
1 (s

′)]|︸ ︷︷ ︸
II

.

Inequality 2 follows from the triangle inequality. It is easy to get II ≤ γ∥V ∗−V ∗
1 ∥∞. We now

derive the bound for I .

I = max
a∈A
|
∑
s′∈S

(P(s′|s, a)− P1(s′|s, a))V ∗(s′)| · γ

≤
3
max
a∈A
∥P(s′|s, a)− P1(s′|s, a)∥1max

s∈S
V ∗(s) · γ

≤
4
max
a∈A

2 · TV (P(·|s, a),P1(·|s, a)) ·max
s∈S

V ∗(s) · γ

≤
5
max
a∈A

2 · TV (P(·|s, a),P1(·|s, a)) ·
R

1− γ
· γ.

Inequality 3 follows from Hölder’s inequality. Let S0 ≜ {s′ ∈ S : P(s′|s, a) ≥ P1(s′|s, a)}.
We have ∥P(s′|s, a)−P1(s′|s, a)∥1 =

∑
s′∈S0

(P(s′|s, a)−P1(s′|s, a))+
∑

s′∈S\S0
(P1(s′|s, a)−

P(s′|s, a)) = 2P(S0|s, a)−2P1(S0|s, a) ≤ 2 ·TV (P(·|s, a),P1(·|s, a)). Therefore, inequal-

ity 4 holds. Recall V (s) ≜ E[
∑

t≥0 γ
tR(st, at)] ≤ E[

∑
t≥0 γ

tR] ≤ R
1−γ . Hence, inequality 5

holds. With all these combined, we have the following

∥V ∗−V ∗
1 ∥∞ = max

s∈S
|V ∗(s)− V ∗

1 (s)|

≤ max
a∈A,s∈S

2·TV (P(·|s, a),P1(·|s, a)) ·
R

1− γ
· γ + ∥V ∗ − V ∗

1 ∥∞ · γ.

Based on the above, by reorganizing the last inequality, we can have that ∥V ∗ − V ∗
1 ∥∞ ≤

2γR
(1−γ)2 maxs∈S,a∈A TV (P(·|s, a),P1(·|s, a)). Recall thatP andP1 areLϵ approximate. There-

fore, together with inequality 3, we have

I ≤
3
max
a∈A
∥P(s′|s, a)− P1(s′|s, a)∥1max

s∈S
V ∗(s) · γ

≤ Lϵ · R

1− γ
· γ.

131

With II combined, we have ∥V ∗ − V ∗
1 ∥∞ ≤

γRL
(1−γ)2 ϵ, which completes the first part of proof.

|V ∗(s)− V ∗
2 (s)| = |B ◦ V ∗(s)− B ◦ V ∗

2 (s)|

≤
6
max
a∈A
|Es′∼P(·|s,a)[γV

∗(s′)]− Es′∼P2(·|s,a)[γV
∗
2 (s

′)]|

+max
a∈A
|R(s, a)−R2(s, a)|

≤ max
a∈A
|Es′∼P(·|s,a)[γV

∗(s′)]− Es′∼P2(·|s,a)[γV
∗
2 (s

′)]|+ lϵ.

Suppose â ≜ argmaxa∈AR(s, a), and â2 ≜ argmaxa∈AR2(s, a). If maxa∈AR(s, a) ≥
maxa∈AR2(s, a), |maxa∈AR(s, a) − maxa∈AR2(s, a)| ≤ R(s, â) − R2(s, â); otherwise,

|maxa∈AR(s, a)−maxa∈AR2(s, a)| ≤ R(s, â2)−R2(s, â2). In both cases, |maxa∈AR(s, a)−
maxa∈AR2(s, a)| ≤ maxa∈A|R(s, a)−R2(s, a)|. Together with inequality 1 and triangle in-

equality, inequality 6 holds. The rest is the same as the first part of theorem.

9.5 Proof of Theorem 5

Proof. Let ψ be any path of states starting from s under policy π∗ of length T , i.e., ψ =

(sψ0 = s, sψ1 , s
ψ
2 , ..., s

ψ
T −1). Let Ψ be the set of all possible such kind of paths. Further, we

define V π∗
(ψ) =

∑T −1
t=0 γtR(sψt , π∗(s

ψ
t)), and Pπ∗

[ψ] =
∏T −2
t=0 P(s

ψ
t+1|s

ψ
t , π

∗(sψt)). V
π∗
(ψ)

is the total discounted reward the agent could receive along path ψ under policy π∗ inM, and

Pπ∗
[ψ] is the probability of the agent taking path ψ under policy π∗ in M. Analogously, we

have V π∗
i (ψ) and Pπ∗

i [ψ].

The proof is a modification of Lemma 4 in [174]. According to the definition of T -step

value function under policy π∗, we know Vπ∗
(s, T) =

∑
ψ∈Ψ Pπ∗

[ψ]V π∗
(ψ). We define the

set of all θ-small paths, Ψ1 = {ψ ∈ Ψ : ∃t,P(sψt+1|s
ψ
t , π

∗(sψt)) ≤ θ}. Naturally, the set of

paths where all transition probabilities under π∗ is larger than θ is Ψ2 = Ψ \Ψ1. Thus, we have

Vπ∗
(s, T) =

∑
ψ∈Ψ1

Pπ∗
[ψ]V π∗

(ψ) +
∑

ψ∈Ψ2
Pπ∗

[ψ]V π∗
(ψ).

We have |Pi(sψt+1|s
ψ
t , π

∗(sψt)) − P(s
ψ
t+1|s

ψ
t , π

∗(sψt))| ≤ δ, following from the continu-

ity assumption. For any path ψ ∈ Ψ2, for all 0 ≤ t ≤ T − 2, it is not difficult to see

P(sψt+1|s
ψ
t , π

∗(sψt))+
δ
θθ ≤ P(s

ψ
t+1|s

ψ
t , π

∗(sψt))+
δ
θP(s

ψ
t+1|s

ψ
t , π

∗(sψt)), andP(sψt+1|s
ψ
t , π

∗(sψt))−
δ
θθ ≥ P(s

ψ
t+1|s

ψ
t , π

∗(sψt))− δ
θP(s

ψ
t+1|s

ψ
t , π

∗(sψt)). Therefore, we have

(1− δ

θ
)P(sψt+1|s

ψ
t , π

∗(sψt)) ≤ Pi(s
ψ
t+1|s

ψ
t , π

∗(sψt))

≤ (1 +
δ

θ
)P(sψt+1|s

ψ
t , π

∗(sψt)).

132

Furthermore, we can derive that for any ψ ∈ Ψ2, (1− δ
θ)

T Pπ∗
[ψ] ≤ Pπ∗

i [ψ] ≤ (1+ δ
θ)

T Pπ∗
[ψ].

Now let us study the property of path ψ ∈ Ψ1.
∑

ψ∈Ψ1
Pπ∗
i [ψ]V π∗

(ψ) is upper bounded by

θ · |S| · T GT and
∑

ψ∈Ψ1
Pπ∗

[ψ]V π∗
i (ψ) is upper bounded by (θ+ δ) · |S| · T GT . Thus, we have

|
∑

ψ∈Ψ1
Pπ∗
i [ψ]V π∗

i (ψ)−
∑

ψ∈Ψ1
Pπ∗

[ψ]V π∗
(ψ)| ≤ (δ + 2θ)|S|T GT .

For any path ψ, |V π∗
(ψ)− V π∗

i (ψ)| ≤ T δ. With Ψ1 and Ψ2 combined, we have

Vπ∗
i (s, T) ≜

∑
ψ∈Ψ1

Pπ
∗
i [ψ]V π∗

i (ψ) +
∑
ψ∈Ψ2

Pπ
∗
i [ψ]V π∗

i (ψ)

≤ {
∑
ψ∈Ψ1

Pπ
∗
[ψ]V π∗

(ψ) + (δ + 2θ)|S|T GT }+
∑
ψ∈Ψ2

Pπ
∗
i [ψ]V π∗

i (ψ)

≤ {V π∗
Ψ1

(s, T) + (δ + 2θ)|S|T GT }+
∑
ψ∈Ψ2

(1 +
δ

θ
)T Pπ

∗
[ψ](V π∗

(ψ) + T δ)

≤ (1 +
δ

θ
)T (V π∗

Ψ1
(s, T) + V π∗

Ψ2
+ T δ) + (δ + 2θ)|S|T GT

≤ (1 +
δ

θ
)T (Vπ∗

(s, T) + T δ) + (δ + 2θ)|S|T GT .

Similarly, we could also get inequality in the other direction Vπ∗
i (s, T) ≥ (1− δ

θ)
T (Vπ∗

(s, T))−
(δ + 2θ)|S|T GT . Here, V π∗

Ψ1
(s, T) and V π∗

Ψ2
(s, T) denote the part of T -step value function

which only include paths in Ψ1 and Ψ2, respectively.

Let us set θ to be
√
δ. Note that we could assume δ ≤ 1 without loss of generality since

we could always rescale the reward function to [0, 1]. For some ω ≥ 0, if δ ≤ (ω
12|S|T GT

)2,

(1+ δ
θ)

T Vπ∗
(s, T) is no greater than ω

8 +V
π∗
(s, T), and (1+ δ

θ)
T T δ ≤ ω

8 . Combined with (δ+

2θ)|S|T GT ≤ ω
4 , we could get |Vπ∗

(s, T) − Vπ∗
i (s, T)| ≤ ω, where i ∈ {1, 2}, independent

of s ∈ S.

Lemma 5. Let the state and state-action value be V (s) and Q(s, a) respectively, and let the

observed state with higher variance of Q value be state st1 and the observed state with smaller

variance ofQ value be st2 . The variance is taken over different actions. Let π denote the current

policy. Then, we have the following

Eπ[
T∑
t=0

γtrt|do(st1 = ŝt1)] ≤ Eπ[
T∑
t=0

γtrt|do(st2 = ŝt2)],

where do(st1 = s̃t1) means the observed state at time step t1 is perturbed from st1 to s̃t1 by

using the adversarial perturbation, and do(st2 = s̃t2) means that the observed state at time

step t2 is changed from st2 to s̃t2 by utilizing the adversarial perturbation.

133

9.6 Proof of Lemma 4

Proof. For the sake of convenience, we call the non-private version of Algorithm 2 as Pairwise

GIGA and denote by wt = A(D), w′
t = A(D′). Also, we let Dt = {z1, · · · , zt}.

We will show that the sensitivity of the t-th iteration in Pairwise GIGA is at most 8G
αt . We

prove it by induction.

We first consider the case 1 ≤ t ≤ T1. Since w1, · · · , wT1 are selected randomly, their

values do not depend on the underlying dataset. Thus, we have wt = w′
t for all 1 ≤ t ≤ T1.

Next, we consider t > T1. There are two cases, i.e., D − D′ = {zt, z′t} and D − D′ =

{zi, z′i}, where i < t.

For the first case, since D −D′ = {zt, z′t}, we have wt−1 = w′
t−1. Thus

∥wt − w′
t∥2 ≤ ∥wt−1 − ηt∇L̂t(wt−1, Dt)− w′

t−1 + ηt∇L̂t(wt−1, D
′
t)∥2

= ηt∥∇L̂t(wt−1, Dt)−∇L̂t(wt−1, D
′
t)∥2 ≤

t− 1

t− 2

2G

αt
≤ 4G

αt
,

where the last inequality is due to the G-Lipschitz assumption on ℓ and the assumption of t ≥ 3.

For the second case, we have the following

∥wt − w′
t∥22

≤ ∥(wt−1 − ηt∇L̂t(wt−1, Dt))

− (w′
t−1 − ηt∇L̂t(w′

t−1, D
′
t))∥22 (9.12)

≤ ∥wt−1 − w′
t−1∥22

+ η2t ∥∇L̂t(wt−1, Dt)−∇L̂t(w′
t−1, D

′
t)∥22

− 2ηt(wt−1 − w′
t−1)

T (∇L̂t(wt−1, Dt)

−∇L̂t(w′
t−1, D

′
t)). (9.13)

134

For the term ∥∇L̂t(wt−1, Dt)−∇L̂t(w′
t−1, D

′
t)∥22, we have

∥∇L̂t(wt−1, Dt)−∇L̂t(w′
t−1, D

′
t)∥22

= ∥ 1

t− 1

∑
j ̸=i

[∇ℓ(wt−1; zt, zj)−∇ℓ(w′
t−1; zt, zj)]

+
1

t− 1
[∇ℓ(wt−1; zt, zi)−∇ℓ(w′

t−1; zt, z
′
i)]∥22

≤ 2∥ 1

t− 1

∑
j ̸=i

[∇ℓ(wt−1; zt, zj)−∇ℓ(w′
t−1; zt, zj)]∥22

+ 2∥ 1

t− 1
[∇ℓ(wt−1; zt, zi)−∇ℓ(w′

t−1; zt, z
′
i)]∥22

≤ 2L2(
t− 2

t− 1
)2∥wt−1 − w′

t−1∥22 +
8G2

(t− 1)2
, (9.14)

where the last inequality is due to the L-smoothness and G-Lipschitz of the loss function ℓ.

For the term (wt−1 − w′
t−1)

T (∇L̂t(wt−1, Dt)−∇L̂t(w′
t−1, D

′
t)), we have:

(wt−1 − w′
t−1)

T (∇L̂t(wt−1, Dt)−∇L̂t(w′
t−1, D

′
t))

= (wt−1 − w′
t−1)

T [
1

t− 1

∑
j ̸=i

[∇ℓ(wt−1; zt, zj)

−∇ℓ(w′
t−1; zt, zj)]

+
1

t− 1
[∇ℓ(wt−1; zt, zi)−∇ℓ(w′

t−1; zt, z
′
i)]. (9.15)

By the α-strongly convexity of the loss function, we have

(wt−1 − w′
t−1)

T [
1

t− 1

∑
j ̸=i

[∇ℓ(wt−1; zt, zj)−∇ℓ(w′
t−1; zt, zj)]

≥ αt− 2

t− 1
∥wt−1 − w′

t−1∥22. (9.16)

Also due to the G-Lipschitz, we have

|(wt−1 − w′
t−1)

T [
1

t− 1
[∇ℓ(wt−1; zt, zi)−∇ℓ(w′

t−1; zt, z
′
i)]|

≤
2G∥wt−1 − w′

t−1∥2
t− 1

. (9.17)

Plugging (9.16) and (9.17) into (9.15), we have

(wt−1 − w′
t−1)

T (∇L̂t(wt−1, Dt)−∇L̂t(w′
t−1, D

′
t))

≥ αt− 2

t− 1
∥wt−1 − w′

t−1∥22 −
2G∥wt−1 − w′

t−1∥2
t− 1

. (9.18)

135

Plugging (9.18) and (9.14) into (9.13), we get

∥wt − w′
t∥22 ≤ (1 + 2L2η2t (

t− 2

t− 1
)2 − 2ηtα

t− 2

t− 1
)∥wt−1 − w′

t−1∥22

+
8G2η2t
(t− 1)2

+
4ηtG∥wt−1 − w′

t−1∥2
t− 1

. (9.19)

Now taking ηt = t−1
t−2

2
αt and ∥wt−1 − w′

t−1∥2 ≤ 8G
α(t−1) , we have

∥wt − w′
t∥22 ≤ (1 +

8L2

α2t2
− 4

t
)

64G2

α2(t− 1)2
+

32G2

α2t2(t− 2)2
+

64G2

α2t(t− 1)(t− 2)

≤ (1 +
8L2

α2t2
− 4

t
+

1

2(t− 2)2
+

1

(t− 2)
)

64G2

α2(t− 1)2
. (9.20)

What we still need to prove is

(1 +
8L2

α2t2
− 4

t
+

1

2(t− 2)2
+

1

(t− 2)
)

64G2

α2(t− 1)2
≤ 64G2

α2t2
. (9.21)

After simplifying both sides we now need to show

8L2

α2
+

t2

2(t− 2)2
+

t2

t− 2
≤ 2t+ 1. (9.22)

By the assumption on t ≥ T1 = max{16L2

α2 , 7}, we have t
2 ≥

8L2

α2 , 3
2 t ≥

t2

t−2 and 1 ≥ t2

2(t−2)2
.

Thus, (9.22) is true, and we have

∥wt − w′
t∥22 ≤

64G2

α2t2
.

This completes the proof.

9.7 Proof of Theorem 6

Proof. By Lemma 4, we know the ℓ2 norm sensitivity in the t-th iteration is upper bounded by
8G
αt . Now, by Lemma 4 and Lemma 2 we can get that each iteration of Algorithm 2 is ρ

n−T1 -

zCDP for T1 < t ≤ n. Then by Lemma 1 we can see that Algorithm 2 is ρ-zCDP. Thus by

Lemma 3, it is (ϵ, δ)-DP.

9.8 Proof of Theorem 7

For the sake of convenience, we call the non-private version of Algorithm 2 as Pairwise GIGA

and denote by wt = A(D), w′
t = A(D′). Also, we let Dt = {z1, · · · , zt}. As we said earlier,

in the case of ϵ
log 1

δ

≪ 1 we can see σ2t = c
log 1

δ
G2(n−T1)
α2ϵ2t2

= O(
log 1

δ
G2n

α2ϵ2t2
) for c = 128. We first

prove the following lemma:

136

Lemma 6. Let RGIGA(n,D) be the regret of (non-private) Pairwise GIGA on the stream
{z1, z2, · · · , zn}, then the outputs w1, · · · , wn−1 satisfies

n∑
t=2

L̂t(wt−1, Dt)−min
w∈C

n∑
t=2

L̂t(w,Dt)

≤ RGIGA(n,D) +G

T∑
t=T1+1

∥nt−1∥2 +GT1∥C∥2. (9.23)

Proof of Lemma 6. We denote the output of Pairwise GIGA as w̃1, · · · , w̃n−1. Then, by the
G-Lipschitz property of ℓ and L̂t, we get

n∑
t=2

L̂t(wt−1, Dt)−min
w∈C

n∑
t=2

L̂t(w,Dt) ≤
n∑

t=2

L̂t(wt−1, Dt)−
n∑

t=2

L̂t(w̃t−1, Dt) +RGIGA(n,D)

≤ G
n∑

t=2

∥wt−1 − w̃t−1∥2 +RGIGA(n,D) = RGIGA(n,D) +G

n∑
t=T1+1

∥nt−1∥2 +GT1∥C∥2.

Next we bound the term of
∑T

t=T1+1 ∥nt−1∥2. For a Gaussian distribution x ∼ N (0, σ2Id),
with probability at least 1 − ζ we have ∥x − σ∥2 ≤ σ

√
d
√
2 log 2/ζ. Thus, by the above

concentration bound and taking the union, we have the following with probability at least 1− ζ

T∑
t=T1+1

∥nt−1∥2 ≤ O(

n∑
t=T1

√
d
√
log n

ζG
√
n− T1

√
log 1/δ

αϵt
) ≤ O(

G
√
d log1.5 n

ζ

√
n
√
log 1/δ

αϵ
).

(9.24)

Combining this with Lemma 6 and (9.24), we can get the following with probability at least
1− ζ
n∑

t=2

L̂t(wt−1, Dt)−min
w∈C

n∑
t=2

L̂t(w,Dt) ≤ RGIGA(n) +O(
G2
√
d log1.5 n

ζ

√
n
√
log 1/δ

αϵ
+
GL2

α2
∥C∥2).

Using the regret bound analysis of GIGA in [144, 175] on strongly convex functions {L̂t}nt=1

and by the fact that they are α-strongly convex, we can get

RGIGA(n,D) ≤ G2(1 + log n)

2α
.

Thus, in total we have
n∑

t=2

L̂t(wt−1, Dt)−min
w∈C

n∑
t=2

L̂t(w,Dt) ≤ O(
G2
√
d log1.5 n

ζ

√
n
√

log 1/δ

αϵ

+
GL2

α2
∥C∥2 +

G2(1 + log n)

α
).

137

9.9 Proof of Theorem 8

By the perturbation strategy in Algorithm 3 and Theorem 7 we can get the following for the loss
function after perturbation ℓ̃ = ℓ+ α

2 ∥w − w0∥2

RA,ℓ̃(n,D) ≤ O(
(G+ α∥C∥2)2

√
d log1.5 n

ζ

√
n
√
log 1/δ

αϵ

+
(G+ α∥C∥2)(L+ α)2

α2
∥C∥2 +

(G+ α∥C∥2)2(1 + log n)

α
).

SinceRA,ℓ(n,D) ≤ RA,ℓ̃(n,D) + nα∥C∥22, we have

RA,ℓ(n,D) ≤ O(
(G+ α∥C∥2)2

√
d log1.5 nζ

√
n
√

log 1/δ

αϵ

+
(G+ α∥C∥2)(L+ α)2

α2
∥C∥2 +

(G+ α∥C∥2)2(1 + log n)

α
+ nα∥C∥22).

Taking α = O(1
4√n), we get

RA,ℓ(n,D) ≤ O(
L2G2∥C∥22

√
d log1.5 nζ n

3
4

√
log 1/δ

ϵ
).

9.10 Proof of Theorem 9

We first rephrase a lemma in [129]. We denote the Rademacher averages to the pairwise loss

functions class ℓ ◦ C := {(z, z′) 7→ ℓ(w; z, z′), w ∈ C} as the following:

Rn(ℓ ◦ C) = E[sup
w∈C

1

n

n∑
i=1

ϵiℓ(w; , z, zi)]

where {ϵi}ni=1 are Rademacher variables, i.e., ϵ = ±1 with probability 1
2 . And the expectation

is over {ϵi}ni=1, z, {zi}ni=1.

Lemma 7 (Theorem 3 in [129]). Let w1, · · · , wn−1 be an ensemble of parameters generated

by an online learning algorithm working with a B-bounded pairwise loss function ℓ that guar-

antees a regret bound of R(n). Then for any δ > 0, we have the following with probability at

least 1− δ,

LP(w̄) ≤
1

n− 1

n∑
t=2

LP(wt−1) ≤ min
w∈C

LP(w) +
4

n− 1

n∑
t=2

Rt−1(ℓ ◦ C)

+
R(n)
n− 1

+ 6B

√
log n

δ

n− 1
. (9.25)

138

For the strongly convex loss functions, Theorem 7 and Lemma 7, we can get with probability

at least 1− 2ζ,

LP(w̄)−min
w∈C

LP(w) ≤ O
(1

n− 1

n∑
t=2

Rt−1(ℓ ◦ C) +
G2L2∥C∥2

√
d log1.5 nζ

√
log 1/δ

α2ϵ
√
n

)
.

(9.26)

For the general convex ones, we have with probability at least 1− 2ζ

LP(w̄)−min
w∈C

LP(w) ≤ O
(1

n− 1

n∑
t=2

Rt−1(ℓ ◦ C) +G∥C∥2

√
log n

ζ

n− 1

+
L2G2∥C∥22

√
d log1.5 nζ n

3
4

√
log 1/δ

ϵ(n− 1)

)
= O

(1

n− 1

n∑
t=2

Rt−1(ℓ ◦ C) +
L2G2∥C∥22

√
d log1.5 nζ

√
log 1/δ

ϵ 4
√
n

)
.

9.11 Proof of Theorem 10

We first prove Algorithm 4 is (ϵ, δ) differentially private. What we only need to show is the

sensitivity of w̃ is 8G logn
nα . Since by Lemma 4, we know ∥wt − w′

t∥2 ≤ 8G
αt , thus

∥w̄ − w̄′∥2 ≤
∑n

t=1
8G
αt

n
≤ 8G log n

nα
. (9.27)

Thus by Gaussian mechanism we can show it is (ϵ, δ)-differentially private.

Next we analyze the generalization error, we have the following with probability 1− ζ:

LP(ŵ)−min
w∈C

LP(w) ≤ LP(ŵ)− LP(w̃) + LP(w̃)−min
w∈C

LP(w) (9.28)

≤ G∥ŵ − w̃∥2 +
4

n− 1

n∑
t=2

Rt−1(ℓ ◦ C) +
RGIGA(n,D)

n
+ 6G∥C∥2

√
log n

ζ

n
,

≤ G∥ŵ − w̄∥2 +G∥w̄ − w̃∥2 +
4

n− 1

n∑
t=2

Rt−1(ℓ ◦ C)

+
RGIGA(n,D)

n
+ 6G∥C∥2

√
log n

ζ

n
, (9.29)

139

where RGIGA(n,D) is the regret of Pairwise GIGA on the strongly convex loss function

{L̂t}nt=1. The last inequality is by theG-Lipschitz property and Lemma 7 of this supplementary

material.

Also, by [175], the regret of Pairwise GIGA on the strongly convex loss function {L̂t}nt=1

isRGIGA(n,D) ≤ 2G2(1+logn)
α . For the term ∥ŵ − w̄∥2, by definition of ŵ, we have

∥ŵ − w̄∥2 ≤ ∥w̃ − w̄∥2.

For the term ∥w̄ − w̃∥ = ∥σ∥, we have with probability at least 1− ζ,

∥σ∥2 ≤
8G
√
d
√
2
√

log 1/ζ log 1.25/δ log n

αnϵ
.

Thus in total we have:

LP(w̄)−min
w∈C

LP(w) ≤ O
(√dG2

√
log 1/ζ log 1/δ log n

αnϵ
+

1

n

n∑
t=1

Rt(ℓ ◦ C)

+
G2 log n

αn
+G∥C∥2

√
log n

ζ

n

)
.

For the convex loss function, as the same as above, we have

LP(w̄)−min
w∈C

LP(w) ≤ O
(√d(G+ α∥C∥2)2

√
log 1/ζ log 1/δ log n

αnϵ

+
1

n

n∑
t=1

Rt(ℓ ◦ C) +
(G+ α∥C∥2)2 log n

αn
+ (G+ α∥C∥2)∥C∥2

√
log n

ζ

n
+ α∥C∥22

)
.

When we take α = O(1√
n
), we have

LP(w̄)−min
w∈C

LP(w) ≤ O
(√dG2∥C∥22 log n

ζ

√
log 1/δ log n

√
nϵ

+
1

n

n∑
t=1

Rt(ℓ ◦ C)
)
. (9.30)

9.12 Proof of Theorem 11

In this section, we aim to prove Theorem 1, of which the proof procedure will utilize the results

of Lemma 1 and 2. Let T1 =
∫
(f̃i(x) − fi(x))fi(x)dx, and T2 =

∫
(E[f̃2i (x)] − f2i (x))dx.

Then, we have

∆fi = E[
∫
(fi(x)− f̃i(x))2dx]

140

=
∫
f2i (x)dx− 2

∫
E[f̃i(x)]fi(x)dx+

∫
f̃2i (x)dx

=
∫
f2i (x)dx− 2

∫
E([f̃i(x)]− fi(x))fi(x)dx

−2
∫
f2i (x)dx+

∫
(f̃2i (x)− f2i (x))dx+

∫
f2i (x)dx

= −2
∫
E([f̃i(x)]− fi(x))fi(x)dx+

∫
(E[f̃2i (x)]− f2i (x))

= −2T1 + T2,

Since ∆fi = E[
∫
(fi(x) − f̃i(x))2dx] ≥ 0, we have ∆fi = −2T1 + T2 = |−2T1 + T2| ≤

|−2T1|+ |T2| = |2T1|+ |T2|.
Combining the results of Lemmas 1 and 2 which provide the upper bounds for T1 and T2,

gives us the followings result.

∆fi ≤ |2T1|+ |T2| ≤ 2Aih̃i + 2Aih̃i +A2
i h̃

2
iVi +

ρB

|S̃i|h̃di
+ ρAiBVi

|S̃i|h̃d−1
i

= 4Aih̃i +A2
i h̃

2
iVi +

ρB

|S̃i|h̃di
+ ρAiBVi

|S̃i|h̃d−1
i

.

Thus, it is clear that fi and f̃i will be close if |S̃i| is large enough and if h̃i is chosen properly

as a function of |S̃i|.
Below we will denote x̃i,s = 1

|S̃i|
.

Lemma 8. Let T1 be T1 =
∫
E([f̃i(x)]− fi(x))fi(x)dx. Then, |T1| ≤ Aih̃i.

Proof. T1 =
∫
E([f̃i(x)]− fi(x))fi(x)dx

=
∫
(E[

∑
s∈S̃i

l̃i,sKH̃i
(x− x̃i,s)]− fi(x))fi(x)dx

=
∫
(
∑

s∈S̃i
l̃i,s

∫
KH̃i

(x− x̃i,s)fi(x̃i,s)dx̃i,s − fi(x))fi(x)dx
≤

∫
(
∑

s∈S̃i
l̃i,s|

∫
KH̃i

(x− x̃i,s)fi(x̃i,s)dx̃i,s − fi(x)|)fi(x)dx
≤

∫
(
∑

s∈S̃i
l̃i,sAih̃i)fi(x)dx =

∫
(Aih̃i)fi(x)dx = Aih̃i.

Lemma B.3 and that
∫
fi(x)dx = 1 are used in the last line.

Lemma 9. Let T2 be as in above, and let Vi be the volume of the support of fi. Then, T2 ≤
2Aih̃i +A2

i h̃
2
iVi +

ρB

|S̃i|h̃di
+ ρAiBVi

|S̃i|h̃d−1
i

.

Proof. Since f̃i(x) =
∑

s∈S̃i
l̃i,sKH̃i

(x−x̃i,s), then f̃2i (x) =
∑

s ̸=t l̃i,s l̃i,tKH̃i
(x−x̃i,s)KH̃i

(x−
x̃i,t)+

∑
s l̃

2
i,sK2

H̃i
(x−x̃i,s). For convenience, we drop the H̃i subscript and denoteKH̃i

(x−x̃i,s)
as K(x̃i,s), Then, T2 can be simplified as follows:

T2 =
∫
(E[f̃2i (x)]− f2i (x))dx

=
∫
(E[

∑
s ̸=t l̃i,s l̃i,tK(x̃i,s)K(x̃i,t) +

∑
s l̃

2
i,sK2(x̃i,s)]− f2i (x))dx

=
∫
(
∑

s ̸=t l̃i,s l̃i,t
∫ ∫
K(x̃i,s)K(x̃i,t)f(x̃i,s)f(x̃i,t)dx̃i,sdx̃i,t

+
∑

s l̃
2
i,s

∫
K2(x̃i,s)fi(x̃i,s)dx̃i,s −

∑
s ̸=t l̃i,s l̃i,tf

2
i (x)−

∑
s l̃

2
i,sf

2
i (x))dx

=
∫
(
∑

s ̸=t l̃i,s l̃i,t[
∫ ∫
K(x̃i,s)K(x̃i,t)f(x̃i,s)f(x̃i,t)dx̃i,sdx̃i,t

141

−f2i (x)] +
∑

s l̃
2
i,s

∫
K2(x̃i,s)fi(x̃i,s)dx̃i,s −

∑
s l̃

2
i,sf

2
i (x))dx

≤
∫
(
∑

s ̸=t l̃i,s l̃i,t(2Aih̃ifi(x) +A2
i h̃

2
i) +

∑
s l̃

2
i,sB(fi(x) +Aih̃i)h̃

−d
i)dx

= 2Aih̃i +A2
i h̃

2
iVi +

ρB

|S̃i|h̃di
+ ρAiBVi

|S̃i|h̃d−1
i

.

In the above, we have made use of Lemmas B.4 and the fact that
∑

s ̸=t l̃i,s l̃i,t ≤ 1. And,

0 ≤ ρ ≤ |S̃i|.

Lemma 10. ForOi, letAi = supx∈R∥∇fi(x)∥. Then ∥
∫
KH̃i

(x−y)fi(y)dy−fi(x)∥ ≤ Aih̃i.

Proof. The proof of this lemma contains the following two steps. Firstly, let x, y ∈ R such

that ∥x − y∥ ≤ h̃i. And, Ai = supx∈R∥∇fi(x)∥. Define a function β : [0, 1] → R, β(t) =

(1− t)x+ ty. Then, we have

|fi(y)− fi(x)| = |fi(s(1))− fi(β(0))| = |
∫ 1
0

d
dtfi(β(t))dt|

= |
∫ 1
0 ∇fi(β(t)) · β

′(t)dt| = |
∫ 1
0 ∇fi(β(t)) · (y − x)dt|

≤ |
∫ 1
0 ∇fi(β(t)) · (y − x)dt| ≤ |

∫ 1
0 ∇fi(β(t)) · (y − x)dt|

≤
∫ 1
0 Aih̃idt = Aih̃i,

In the above, we have made use of the Holder and Cauchy-Schwarz inequalities. Based on

this, we then have

|
∫
KH̃i

(x− y)fi(y)dy − fi(x)| = |
∫
KH̃i

(x− y)[fi(y)− fi(x)]dy|
≤

∫
KH̃i

(x− y)|fi(y)− fi(x)|dy ≤
∫
KH̃i

(x− y)Aih̃idy = Aih̃i.

In the above, the fact that
∫
KH̃i

(·) = 1 is used. We have also made use of the fact that in

the support of KH̃i
(·), we have that ∥y − x∥ ≤ h̃i and therefore that |fi(y) − fi(x)| ≤ Aih̃i

applies.

Lemma 11. We have

|
∫ ∫

KH̃i
(x − y)KH̃i

(x − z)f(y)f(z)dydz − f2i (x)| ≤ 2Ah̃ifi(x) + Aih̃
2
i , (9.31)

∫
K2

H̃i
(x− y)fi(y)dy ≤ B(fi(x) +Aih̃i)h̃

−d
i . (9.32)

Proof. Firstly, the proof procedure of (9.31) is as follows.

= |(
∫
KH̃i

(x− y)fi(y)dy)(
∫
KH̃i

(x− z)fi(z)dz)− f2i (x)|
= |(

∫
KH̃i

(x− y)fi(y)dy)2 − f2i (x)|
= |(

∫
KH̃i

(x− y)fi(y)dy − fi(x))(
∫
KH̃i

(x− y)fi(y)dy + fi(x))|.
≤ Aih̃i(2fi(x) +Aih̃i) = 2Aih̃ifi(x) +A2

i h̃
2
i .

142

In the above product, the upper bound of the first term is Aih̃i. The second term is upper

bounded by 2fi(x)+Aih̃i since we can get
∫
KH̃i

(x−y)fi(y)dy ≤ fi(x)+Aih̃i from Lemma

3.

Secondly, we will prove (9.32). Based on Lemma 3, we know that within the integrand’s

support, |fi(y)− fi(x)| ≤ Aih̃i, so that fi(y) ≤ fi(x) + Aih̃i. Also, KH̃i
(z) = h̃−1

i K(h̃
−1
i z).

Then, we have∫
K2

H̃i
(x− y)fi(y)dy ≤

∫
K2

H̃i
(x− y)(fi(x) +Aih̃i)dy

= (fi(x) +Aih̃i)
∫
K2(z)dz = (fi(x) +Aih̃i)h̃

−1
i

∫
h̃−1
i K2(h̃−1

i z)dz

= (fi(x) +Aih̃i)h̃
−1
i

∫
K2(w)dw = B(fi(x) +Aih̃i)h̃

−d
i .

In the above, a change of variables is used, i.e., w = h̃−1
i Idz.

9.13 Proof of Theorem 12

We consider two neighbor datasets D and D′ with size n, we assume D = {x1, x2, · · · , xn}
andD′ = {x1, x2, · · · , xn−1, x

′
n}, that isD′ = D−{xn}

⋃
{x′n}. We denote Pd(y) = Pr{y =

M(d)} for data record d and the data universe as Z . Also we denote the Algorithm 1 as F . Our

will show the differential privacy for F following [160].

Now we fix y, where y ∈ Z . The records in a dataset D∗ can be partitioned by Id(y),

where Id(y) is the unique integer which satisfies γ−Id(y)−1 < Pd(y) ≤ γ−Id(y). If Pd(y) = 0,

then we denote Id(y) as ∅, thus we can define the partition set for i as Ci(D∗, y) = {d : d ∈
D∗, Id(y) = i}.

Lemma 12. For any datasetD∗, if the seed is in partition set for i. The the probability of passing

the privacy test is giving by: pt(D∗, i, y) = Pr{L ≥ k − |Ci(D∗, y)|} where L ∼ Lap(1
ϵ0
).

Now we assume xn falls in partition set of j while x′n falls in partition set of k(if either of

them falls into ∅ the proof is the same), W.L.O.G we assume j ̸= k(the same proof for j = k).

We now denote p(s) is the probability we choose the i-th data record, s ∈ D as the seed of

generating the synthetic reord. Thus, it is only depend on the position of the data in D and not

dependent on the data record it self, in Algorithm 1, it is just p(xi,j) = ci,j

Lemma 13. For any dataset D∗ and data record y ∈ Z , we have

Pr{F = y} =
∑
i≥0

(
∑

s∈Ci(D∗,y)

p(s)Ps(y))pt(D
∗, i, y). (9.33)

143

Proof.

Pr{F = y} =
∑
s∈D∗

Pr{s is the seed,F(D∗) = y} (9.34)

=
∑
s

Pr{select s as the seed}Pr{(D∗, s, y) passes the test} (9.35)

=
∑
s

p(s)Ps(y)Pr{y passes the test} (9.36)

=
∑
i≥0

(
∑

s∈Ci(D∗,y)

p(s)Ps(y))pt(D
∗, i, y) (9.37)

We now denote

q(D∗, i, y) = (
∑

s∈Ci(D∗,y)

p(s)Ps(y))pt(D
∗, i, y).

Lemma 14. For D′, D as above,

e−ϵ0pt(D, i, y) ≤ pt(D′, i, y) ≤ eϵ0pt(D, i, y). (9.38)

Proof. If i ̸= j, k, that means Ci(D, y) = Ci(D
′, y), so we have pt(D, i, y) = pt(D′, i, y).

If i = j, that means |Ci(D′, y)| = |Ci(D, y)| + 1(since x′n falls in), by the property of

Laplace distribution we have:

pt(D, i, y) = Pr{L ≥ k − |Ci(D, j)|}

≤ Pr{L ≥ k − |Ci(D, y)| − 1}

≤ eϵ0Pr{L ≥ k − |Ci(D, j)|}

That is pt(D, i, y) ≤ pt(D′, i, y) ≤ eϵ0pt(D, i, y).
If i = k, we have the same e−ϵ0pt(D, i, y) ≤ pt(D′, i, y) ≤ pt(D, i, y). Thus in total we

have

e−ϵ0pt(D, i, y) ≤ pt(D′, i, y) ≤ eϵ0pt(D, i, y).

Lemma 15. For all i ̸= j, k

q(D, i, y) = q(D′, i, y) (9.39)

144

For i = j, we have

q(D, i, y) ≤ q(D′, i, y) (9.40)

Furthermore, if |Cj(D, y)| ≤ t,

q(D′, i, y) ≤ te−ϵ0(k−t)max p(s) (9.41)

Otherwise,

q(D′, i, y) ≤ eϵ0 [1 + rmax p(s)

tmin p(s)
]q(D, i, y) (9.42)

For i = k, we have when |Ck(D, y)| > t

q(D, i, y) ≤ eϵ0 [1 + rmax p(s)

tmin p(s)
]q(D′, i, y) (9.43)

Otherwise q(D, k, y) ≤ te−ϵ0(k−t)max p(s) and also

q(D′, i, y) ≤ q(D, i, y) (9.44)

Proof. (9.39) is oblivious since for i ̸= j, k we have Ci(D, y) = Ci(D
′, y), also by the proof

of Lemma 14 we have ptt(D, i, y) = pt(D′, i, y). When i = j, we have

q(D, i, y)

= pt(D, i, y)
∑

s∈Ci(D,y)

p(s)Ps(y)

≤ pt(D′, i, y)(
∑

s∈Ci(D,y)

p(s)Ps(y) + p(x′n)Px′n(y))

= q(D′, i, y)

If |Ci(D, y)| < t, since pt(D′, i, y) = Pr{L ≥ k − |Ci(D′, y)|} ≤ Pr{L ≥ k − t} =
1
2e

−ϵ0(k−t), we have q(D′, i, y) ≤ e−ϵ0(k−t)
∑

s∈Ci(D′,y) Ps(y)p(s) ≤ te−ϵ0(k−t)max p(s),

which is (9.41). If |Ci(D, y)| ≥ t, then we have

q(D′, i, y)

= pt(D′, i, y)
∑

s∈Ci(D′,y)

p(s)Ps(y)

≤ eϵ0pt(D, i, y)(
∑

s∈Ci(D,y)

p(s)Ps(y) + p(x′n)Px′n(y)) (9.45)

145

By definition, we know Px′n(y) ≤ γPs(y) for every s ∈ Ci(D, y), so we have

Px′n(y) ≤
r

|Ci(D, y)|
∑

s∈Ci(D,y)

γPs(y)

≤ r

t

∑
s∈Ci(D,y)

γPs(y)

Also, by the definition of p(s), we have p(x′n)
p(s) = p(xn)

p(s) ≤
max p(s)
min p(s) . Thus, we have the following

p(x′n)Px′n ≤
γmax p(s)

tmin p(s)

∑
s∈Ci(D,y)

p(s)Ps(y) (9.46)

Take it into (9.45), we have when q(D′, i, y) ≤ eϵ0 [1+γmax p(s)
tmin p(s)]pt(D, i, y)(

∑
s∈Ci(D,y)

p(s)Ps(y)) =

eϵ0 [1 + γmax p(s)
tmin p(s)]q(D, i, y), which is (9.42).

When i = k, it is the same as i = j as we just change the role of D,D′, by assumption we

have Ck(D′, y) = Ck(D, y)− {xn}, so we have when |Ck(D, y)| > t,

q(D, k, y)

= pt(D, k, y)
∑

s∈Ck(D,y)

p(s)Ps(y)

= pt(D, k, y)(
∑

s∈Ck(D′,y)

p(s)Ps(y) + p(xn)Pxn(y))

≤ eϵ0pt(D′, k, y)[1 +
γmax p(s)

tmin p(s)
]

∑
s∈Ck(D′,y)

p(s)Ps(y)

= eϵ0pt(D′, k, y)[1 +
γmax p(s)

tmin p(s)
]q(D′, k, y) (9.47)

When |Ck(D, y)| ≤ t,

q(D, k, y)

= pt(D, k, y)
∑

s∈Ck(D,y)

p(s)Ps(y)

≤ te−ϵ0(k−t)max p(s) (9.48)

Others are the same as i = j, we omit the proof.

The following is the key lemma similar with Lemma 5 in [160].

Lemma 16. For parameters k ≥ 1, γ > 1 and ϵ0 > 0. Take dataset D,D′ as above. Then

for ant integer 1 ≤ t < k and synthetic record y ∈ Z , we have: Pr{F(D)} ≤ eϵ0 [1 +

146
rmax p(s)
tmin p(s)]Pr{F(D

′)}+te−ϵ0(k−t)max p(s), andPr{F(D′)} ≤ eϵ0 [1+ rmax p(s)
tmin p(s)]Pr{F(D)}+

te−ϵ0(k−t)max p(s).

Proof. By definition we have: Pr{F(D)} =
∑

i ̸=j,k q(D, i, y) + q(D, j, y) + q(D, k, y),

and Pr{F(D′)} =
∑

i ̸=j,k q(D
′, i, y) + q(D′, j, y) + q(D′, k, y). Since

∑
i ̸=j,k q(D, i, y) =∑

i ̸=j,k q(D
′, i, y) and also by Lemma 15, we have q(D, j, y) ≤ q(D′, i, y) and q(D, k, y) ≤

eϵ0 [1 + rmax p(s)
tmin p(s)]q(D

′, i, y) + te−ϵ0(k−t)max p(s). Thus, we have the following

Pr{F(D)} ≤ eϵ0 [1 + rmax p(s)

tmin p(s)
]Pr{F(D′)}

+ te−ϵ0(k−t)max p(s).

The later proof of Theorem 2 is the same as in [160], we omit them.

References

[1] Martin Boissier, Siwei Lyu, Yiming Ying, and Ding-Xuan Zhou. Fast convergence of

online pairwise learning algorithms. In Artificial Intelligence and Statistics, pages 204–

212, 2016.

[2] Liuyi Yao, Sheng Li, Yaliang Li, Mengdi Huai, Jing Gao, and Aidong Zhang. Represen-

tation learning for treatment effect estimation from observational data. In Advances in

Neural Information Processing Systems, pages 2633–2643, 2018.

[3] Mengdi Huai, Chenglin Miao, Yaliang Li, Qiuling Suo, Lu Su, and Aidong Zhang. Metric

learning from probabilistic labels. In Proc. of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pages 1541–1550, 2018.

[4] Yiming Ying, Longyin Wen, and Siwei Lyu. Stochastic online auc maximization. In

Advances in neural information processing systems, pages 451–459, 2016.

[5] Michael Natole, Yiming Ying, and Siwei Lyu. Stochastic proximal algorithms for auc

maximization. In Proceedings of the International Conference on Machine Learning,

2018.

[6] Mengdi Huai, Hongfei Xue, Chenglin Miao, Liuyi Yao, Lu Su, Changyou Chen, and

Aidong Zhang. Deep metric learning: the generalization analysis and an adaptive al-

gorithm. In Proc. of the 28th International Joint Conference on Artificial Intelligence,

2019.

[7] Qiuling Suo, Weida Zhong, Fenglong Ma, Yuan Ye, Mengdi Huai, and Aidong Zhang.

Multi-task sparse metric learning for monitoring patient similarity progression. In Pro-

ceedings of the International Conference on Data Mining (ICDM), pages 477–486, 2018.

147

148

[8] Mengdi Huai, Chenglin Miao, Qiuling Suo, Yaliang Li, Jing Gao, and Aidong Zhang.

Uncorrelated patient similarity learning. In Proc. of the 2018 SIAM International Con-

ference on Data Mining, pages 270–278. SIAM, 2018.

[9] Jiaxi Tang and Ke Wang. Ranking distillation: Learning compact ranking models with

high performance for recommender system. In Proc. of the 24th SIGKDD International

Conference on Knowledge Discovery & Data Mining, 2018.

[10] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?:

Explaining the predictions of any classifier. In Proc. of the 22nd ACM SIGKDD interna-

tional conference on knowledge discovery and data mining. ACM, 2016.

[11] Anupam Datta, Shayak Sen, and Yair Zick. Algorithmic transparency via quantitative

input influence: Theory and experiments with learning systems. In 2016 IEEE symposium

on security and privacy (SP), pages 598–617. IEEE, 2016.

[12] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features

through propagating activation differences. In Proceedings of the International Confer-

ence on Machine Learning, pages 3145–3153. JMLR. org, 2017.

[13] Erik Štrumbelj and Igor Kononenko. Explaining prediction models and individual pre-

dictions with feature contributions. Knowledge and information systems, 41(3):647–665,

2014.

[14] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.

In Advances in Neural Information Processing Systems, pages 4765–4774, 2017.

[15] Jianbo Chen, Le Song, Martin J Wainwright, and Michael I Jordan. L-shapley and c-

shapley: Efficient model interpretation for structured data. 2018.

[16] Marco Ancona, Cengiz Öztireli, and Markus Gross. Explaining deep neural networks

with a polynomial time algorithm for shapley values approximation. arXiv preprint

arXiv:1903.10992, 2019.

[17] Igor Kononenko et al. An efficient explanation of individual classifications using game

theory. Journal of Machine Learning Research, 11(Jan):1–18, 2010.

[18] Pengtao Xie, Hongbao Zhang, Yichen Zhu, and Eric P Xing. Nonoverlap-promoting

variable selection. In Proceedings of the International Conference on Machine Learning,

2018.

149

[19] Alfred M Bruckstein, David L Donoho, and Michael Elad. From sparse solutions of

systems of equations to sparse modeling of signals and images. SIAM review, 51(1):34–

81, 2009.

[20] Emmanuel J Candes et al. Compressive sampling. In Proc. of the international congress

of mathematicians, 2006.

[21] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[22] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learn-

ing applied to document recognition. Proc. of the IEEE, 86(11):2278–2324, 1998.

[23] Wei Gao, Rong Jin, Shenghuo Zhu, and Zhi-Hua Zhou. One-pass auc optimization.

In Proceedings of the International Conference on Machine Learning, pages 906–914,

2013.

[24] Majdi Khalid, Indrakshi Ray, and Hamidreza Chitsaz. Confidence-weighted bipartite

ranking. In International Conference on Advanced Data Mining and Applications, pages

35–49. Springer, 2016.

[25] Mengting Zhan, Shilei Cao, Buyue Qian, Shiyu Chang, and Jishang Wei. Low-rank

sparse feature selection for patient similarity learning. In Proceedings of the International

Conference on Data Mining (ICDM), pages 1335–1340. IEEE, 2016.

[26] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence func-

tions. In Proceedings of the International Conference on Machine Learning, 2017.

[27] Felix Grün, Christian Rupprecht, Nassir Navab, and Federico Tombari. A taxonomy and

library for visualizing learned features in convolutional neural networks. arXiv preprint

arXiv:1606.07757, 2016.

[28] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,

Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via

gradient-based localization. In Proc. of the IEEE International Conference on Computer

Vision, pages 618–626, 2017.

[29] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional net-

works. In European conference on computer vision, pages 818–833. Springer, 2014.

150

[30] Xingyu Gao, Steven CH Hoi, Yongdong Zhang, Ji Wan, and Jintao Li. Soml: Sparse

online metric learning with application to image retrieval. In Twenty-eighth AAAI con-

ference on artificial intelligence, 2014.

[31] Yiming Ying, Kaizhu Huang, and Colin Campbell. Sparse metric learning via smooth

optimization. In Advances in neural information processing systems, pages 2214–2222,

2009.

[32] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. Distance metric learning for

large margin nearest neighbor classification. In Advances in neural information process-

ing systems, pages 1473–1480, 2006.

[33] Mengdi Huai, Chenglin Miao, Yaliang Li, Qiuling Suo, Lu Su, and Aidong Zhang. Metric

learning from probabilistic labels. In Proceedings of the ACM SIGKDD international

conference on knowledge discovery & data mining, pages 1541–1550, 2018.

[34] Zhiwu Huang, Ruiping Wang, Shiguang Shan, Xianqiu Li, and Xilin Chen. Log-

euclidean metric learning on symmetric positive definite manifold with application to

image set classification. In Proceedings of International Conference on Machine Learn-

ing, pages 720–729, 2015.

[35] Joseph St Amand and Jun Huan. Sparse compositional local metric learning. In Pro-

ceedings of the ACM SIGKDD international conference on knowledge discovery & data

mining, pages 1097–1104, 2017.

[36] Pourya Zadeh, Reshad Hosseini, and Suvrit Sra. Geometric mean metric learning. In

Proceedings of International Conference on Machine Learning, pages 2464–2471, 2016.

[37] Chen Huang, Chen Change Loy, and Xiaoou Tang. Local similarity-aware deep feature

embedding. In Advances in Neural Information Processing Systems, pages 1262–1270,

2016.

[38] Marc T Law, Raquel Urtasun, and Richard S Zemel. Deep spectral clustering learning. In

Proceedings of International Conference on Machine Learning, pages 1985–1994, 2017.

[39] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learn-

ing via lifted structured feature embedding. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4004–4012, 2016.

151

[40] Jian Wang, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanqing Lin. Deep metric learning

with angular loss. arXiv preprint arXiv:1708.01682, 2017.

[41] Jiazhi Ni, Jie Liu, Chenxin Zhang, Dan Ye, and Zhirou Ma. Fine-grained patient similar-

ity measuring using deep metric learning. In Proceedings of the 2017 ACM on Confer-

ence on Information and Knowledge Management, pages 1189–1198, 2017.

[42] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In

Advances in Neural Information Processing Systems, pages 1857–1865, 2016.

[43] Qi Qian, Juhua Hu, Rong Jin, Jian Pei, and Shenghuo Zhu. Distance metric learning

using dropout: a structured regularization approach. In Proceedings of the ACM SIGKDD

international conference on knowledge discovery & data mining, pages 323–332, 2014.

[44] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang. Deep learning face represen-

tation by joint identification-verification. In Advances in Neural Information Processing

Systems, pages 1988–1996, 2014.

[45] Xuezhe Ma, Yingkai Gao, Zhiting Hu, Yaoliang Yu, Yuntian Deng, and Eduard Hovy.

Dropout with expectation-linear regularization. arXiv preprint arXiv:1609.08017, 2016.

[46] Ke Zhai and Huan Wang. Adaptive dropout with rademacher complexity regularization.

In Proceedings of ICLR, 2018.

[47] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization

of neural networks using dropconnect. In Proceedings of International Conference on

Machine Learning, pages 1058–1066, 2013.

[48] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. The

Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[49] Stéphan Clémençon, Gábor Lugosi, and Nicolas Vayatis. Ranking and scoring using em-

pirical risk minimization. In International conference on computational learning theory,

pages 1–15, 2005.

[50] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From the-

ory to algorithms. Cambridge university press, 2014.

152

[51] Blake Mason, Lalit Jain, and Robert Nowak. Learning low-dimensional metrics. In

Advances in Neural Information Processing Systems, pages 4139–4147, 2017.

[52] Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

[53] Elad Hoffer and Nir Ailon. Deep metric learning using triplet network. In International

Workshop on Similarity-Based Pattern Recognition, 2015.

[54] Henry Gouk, Bernhard Pfahringer, and Michael Cree. Fast metric learning for deep

neural networks. arXiv preprint arXiv:1511.06442, 2015.

[55] Rong Jin, Shijun Wang, and Yang Zhou. Regularized distance metric learning: Theory

and algorithm. In Advances in Neural Information Processing Systems, pages 862–870,

2009.

[56] Qiong Cao, Zheng-Chu Guo, and Yiming Ying. Generalization bounds for metric and

similarity learning. Machine Learning, 102(1):115–132, 2016.

[57] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against ad-

versarial examples. In Proceedings of International Conference on Machine Learning,

2018.

[58] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT

press, 2018.

[59] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Os-

trovski, et al. Human-level control through deep reinforcement learning. Nature,

518(7540):529, 2015.

[60] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust

region policy optimization. In International Conference on Machine Learning, pages

1889–1897, 2015.

[61] Sam Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. Visualizing and under-

standing atari agents. arXiv preprint arXiv:1711.00138, 2017.

[62] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando

De Freitas. Dueling network architectures for deep reinforcement learning. arXiv

preprint arXiv:1511.06581, 2015.

153

[63] Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. Graying the black box: Understanding

dqns. In International Conference on Machine Learning, pages 1899–1908, 2016.

[64] Laurens Weitkamp, Elise van der Pol, and Zeynep Akata. Visual rationalizations in deep

reinforcement learning for atari games. In Benelux Conference on Artificial Intelligence,

pages 151–165. Springer, 2018.

[65] Liu Yuezhang, Ruohan Zhang, and Dana H Ballard. An initial attempt of com-

bining visual selective attention with deep reinforcement learning. arXiv preprint

arXiv:1811.04407, 2018.

[66] Akanksha Atrey, Kaleigh Clary, and David Jensen. Exploratory not explanatory: Coun-

terfactual analysis of saliency maps for deep reinforcement learning. arXiv preprint

arXiv:1912.05743, 2019.

[67] Kaidi Xu, Sijia Liu, Pu Zhao, Pin-Yu Chen, Huan Zhang, Quanfu Fan, Deniz Erdogmus,

Yanzhi Wang, and Xue Lin. Structured adversarial attack: Towards general implementa-

tion and better interpretability. arXiv preprint arXiv:1808.01664, 2018.

[68] Xinyang Zhang, Ningfei Wang, Hua Shen, Shouling Ji, Xiapu Luo, and Ting Wang. In-

terpretable deep learning under fire. In 29th USENIX Security Symposium (USENIX

Security 20), 2020.

[69] Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is

fragile. In Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

[70] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T

Schütt, Sven Dähne, Dumitru Erhan, and Been Kim. The (un) reliability of saliency

methods. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning,

pages 267–280. Springer, 2019.

[71] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been

Kim. Sanity checks for saliency maps. In Advances in Neural Information Processing

Systems, pages 9505–9515, 2018.

[72] Rahul Iyer, Yuezhang Li, Huao Li, Michael Lewis, Ramitha Sundar, and Katia Sycara.

Transparency and explanation in deep reinforcement learning neural networks. In Proc.

of the AAAI/ACM Conference on AI, Ethics, and Society, 2018.

154

[73] Chenglin Miao, Qi Li, Houping Xiao, Wenjun Jiang, Mengdi Huai, and Lu Su. Towards

data poisoning attacks in crowd sensing systems. In Proc. of the Eighteenth ACM In-

ternational Symposium on Mobile Ad Hoc Networking and Computing, pages 111–120,

2018.

[74] Chenglin Miao, Qi Li, Lu Su, Mengdi Huai, Wenjun Jiang, and Jing Gao. Attack under

disguise: An intelligent data poisoning attack mechanism in crowdsourcing. In Proc. of

the 2018 World Wide Web Conference, pages 13–22, 2018.

[75] Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and Jun Zhu.

Defense against adversarial attacks using high-level representation guided denoiser. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages

1778–1787, 2018.

[76] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and

Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint

arXiv:1705.07204, 2017.

[77] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adver-

sarial attacks on neural network policies. arXiv preprint arXiv:1702.02284, 2017.

[78] Léonard Hussenot, Matthieu Geist, and Olivier Pietquin. Targeted attacks on

deep reinforcement learning agents through adversarial observations. arXiv preprint

arXiv:1905.12282, 2019.

[79] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowd-

hary. Robust deep reinforcement learning with adversarial attacks. In Proc. of the 17th

International Conference on Autonomous Agents and MultiAgent Systems, pages 2040–

2042, 2018.

[80] Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement learning to pol-

icy induction attacks. In International Conference on Machine Learning and Data Min-

ing in Pattern Recognition, pages 262–275. Springer, 2017.

[81] Xinghua Qu, Zhu Sun, Pengfei Wei, Yew-Soon Ong, and Abhishek Gupta. Minimalistic

attacks: How little it takes to fool a deep reinforcement learning policy. arXiv preprint

arXiv:1911.03849, 2019.

155

[82] Jianwen Sun, Tianwei Zhang, Xiaofei Xie, Lei Ma, Yan Zheng, Kangjie Chen, and Yang

Liu. Stealthy and efficient adversarial attacks against deep reinforcement learning. arXiv

preprint arXiv:2005.07099, 2020.

[83] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and

Min Sun. Tactics of adversarial attack on deep reinforcement learning agents. arXiv

preprint arXiv:1703.06748, 2017.

[84] Mengdi Huai, Di Wang, Chenglin Miao, and Aidong Zhang. Towards interpretation of

pairwise learning. In Thirty-fourth AAAI Conference on Artificial Intelligence, 2020.

[85] Amirata Ghorbani, James Wexler, James Zou, and Been Kim. Towards automatic

concept-based explanations. Advances in Neural Information Processing Systems, 2019.

[86] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Vie-

gas, et al. Interpretability beyond feature attribution: Quantitative testing with concept

activation vectors (tcav). In Proceedings of the International conference on machine

learning, pages 2668–2677. PMLR, 2018.

[87] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson,

Been Kim, and Percy Liang. Concept bottleneck models. In Proceedings of the Interna-

tional Conference on Machine Learning, pages 5338–5348. PMLR, 2020.

[88] Tejaswini Pedapati, Avinash Balakrishnan, Karthikeyan Shanmugam, and Amit Dhu-

randhar. Learning global transparent models consistent with local contrastive explana-

tions. Advances in Neural Information Processing Systems, 33, 2020.

[89] Jeya Vikranth Jeyakumar, Joseph Noor, Yu-Hsi Cheng, Luis Garcia, and Mani Srivastava.

How can i explain this to you? an empirical study of deep neural network explanation

methods. Advances in Neural Information Processing Systems, 2020.

[90] Tom Heskes, Evi Sijben, Ioan Gabriel Bucur, and Tom Claassen. Causal shapley values:

Exploiting causal knowledge to explain individual predictions of complex models. arXiv

preprint arXiv:2011.01625, 2020.

[91] Matthew O’Shaughnessy, Gregory Canal, Marissa Connor, Mark Davenport, and

Christopher Rozell. Generative causal explanations of black-box classifiers. Advances

in Neural Information Processing Systems, 2020.

156

[92] Liuyi Yao, Yaliang Li, Sheng Li, Mengdi Huai, Jing Gao, and Aidong Zhang. Sci: Sub-

space learning based counterfactual inference for individual treatment effect estimation.

In Proceedings of the 30th ACM International Conference on Information & Knowledge

Management, pages 3583–3587, 2021.

[93] Mengdi Huai, Di Wang, Chenglin Miao, and Aidong Zhang. Towards interpretation of

pairwise learning. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 34, pages 4166–4173, 2020.

[94] Mengdi Huai, Chenglin Miao, Jinduo Liu, Di Wang, Jingyuan Chou, and Aidong Zhang.

Global interpretation for patient similarity learning. In 2020 IEEE International Confer-

ence on Bioinformatics and Biomedicine (BIBM), pages 589–594. IEEE, 2020.

[95] Chih-Kuan Yeh, Been Kim, Sercan O Arik, Chun-Liang Li, Tomas Pfister, and Pradeep

Ravikumar. On completeness-aware concept-based explanations in deep neural net-

works. arXiv preprint arXiv:1910.07969, 2019.

[96] Runjin Chen, Hao Chen, Jie Ren, Ge Huang, and Quanshi Zhang. Explaining neural

networks semantically and quantitatively. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 9187–9196, 2019.

[97] Yash Goyal, Amir Feder, Uri Shalit, and Been Kim. Explaining classifiers with causal

concept effect (cace). arXiv preprint arXiv:1907.07165, 2019.

[98] Weibin Wu, Yuxin Su, Xixian Chen, Shenglin Zhao, Irwin King, Michael R Lyu, and Yu-

Wing Tai. Towards global explanations of convolutional neural networks with concept

attribution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 8652–8661, 2020.

[99] Diana Mincu, Eric Loreaux, Shaobo Hou, Sebastien Baur, Ivan Protsyuk, Martin Senevi-

ratne, Anne Mottram, Nenad Tomasev, Alan Karthikesalingam, and Jessica Schrouff.

Concept-based model explanations for electronic health records. In Proceedings of the

Conference on Health, Inference, and Learning, pages 36–46, 2021.

[100] Ann-Kathrin Dombrowski, Maximilian Alber, Christopher J Anders, Marcel Ackermann,

Klaus-Robert Müller, and Pan Kessel. Explanations can be manipulated and geometry is

to blame. arXiv preprint arXiv:1906.07983, 2019.

157

[101] Xinyang Zhang, Ningfei Wang, Hua Shen, Shouling Ji, Xiapu Luo, and Ting Wang. In-

terpretable deep learning under fire. In 29th {USENIX} Security Symposium ({USENIX}
Security 20), 2020.

[102] Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. Fool-

ing lime and shap: Adversarial attacks on post hoc explanation methods. In Proceedings

of the AAAI/ACM Conference on AI, Ethics, and Society, pages 180–186, 2020.

[103] Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Sai Suggala, David I Inouye, and Pradeep

Ravikumar. On the (in) fidelity and sensitivity for explanations. arXiv preprint

arXiv:1901.09392, 2019.

[104] Himabindu Lakkaraju, Nino Arsov, and Osbert Bastani. Robust and stable black box

explanations. In Proceedings of the International Conference on Machine Learning.

PMLR, 2020.

[105] Puneet Mangla, Vedant Singh, and Vineeth N Balasubramanian. On saliency maps and

adversarial robustness. arXiv preprint arXiv:2006.07828, 2020.

[106] Rahul Soni, Naresh Shah, Chua Tat Seng, and Jimmy D Moore. Adversarial tcav–robust

and effective interpretation of intermediate layers in neural networks. arXiv preprint

arXiv:2002.03549, 2020.

[107] Adam Ivankay, Ivan Girardi, Chiara Marchiori, and Pascal Frossard. Far: A general

framework for attributional robustness. arXiv preprint arXiv:2010.07393, 2020.

[108] David Alvarez-Melis and Tommi S Jaakkola. Towards robust interpretability with self-

explaining neural networks. arXiv preprint arXiv:1806.07538, 2018.

[109] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex:

An efficient smt solver for verifying deep neural networks. In International Conference

on Computer Aided Verification, pages 97–117. Springer, 2017.

[110] Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks.

In International Symposium on Automated Technology for Verification and Analysis,

pages 269–286. Springer, 2017.

[111] Teruo Sunaga. Theory of an interval algebra and its application to numerical analysis.

RAAG memoirs, 2(29-46):209, 1958.

158

[112] Mengdi Huai, Jianhui Sun, Renqin Cai, Liuyi Yao, and Aidong Zhang. Malicious attacks

against deep reinforcement learning interpretations. In Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 472–

482, 2020.

[113] Anindya Sarkar, Anirban Sarkar, and Vineeth N Balasubramanian. Enhanced regularizers

for attributional robustness. arXiv preprint arXiv:2012.14395, 2020.

[114] Alexandros Stergiou. The mind’s eye: Visualizing class-agnostic features of cnns. arXiv

preprint arXiv:2101.12447, 2021.

[115] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin,

Jonathan Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. On the ef-

fectiveness of interval bound propagation for training verifiably robust models. arXiv

preprint arXiv:1810.12715, 2018.

[116] Dmitry Kazhdan, Botty Dimanov, Mateja Jamnik, Pietro Liò, and Adrian Weller. Now

you see me (cme): Concept-based model extraction. arXiv preprint arXiv:2010.13233,

2020.

[117] Max Losch, Mario Fritz, and Bernt Schiele. Interpretability beyond classification output:

Semantic bottleneck networks. arXiv preprint arXiv:1907.10882, 2019.

[118] Lemeng Wu, Dilin Wang, and Qiang Liu. Splitting steepest descent for growing neural

architectures. Advances in Neural Information Processing Systems, 32:10656–10666,

2019.

[119] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny

images. 2009.

[120] Jiefeng Chen, Xi Wu, Vaibhav Rastogi, Yingyu Liang, and Somesh Jha. Robust attribu-

tion regularization. arXiv preprint arXiv:1905.09957, 2019.

[121] Yang Lu, Wenbo Guo, Xinyu Xing, and William Stafford Noble. Robust decoy-enhanced

saliency maps. arXiv preprint arXiv:2002.00526, 2020.

[122] Zhengze Zhou, Giles Hooker, and Fei Wang. S-lime: Stabilized-lime for model explana-

tion. arXiv preprint arXiv:2106.07875, 2021.

159

[123] Zekun Zhang and Tianfu Wu. Learning ordered top-k adversarial attacks via adversarial

distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, pages 776–777, 2020.

[124] Nurislam Tursynbek, Aleksandr Petiushko, and Ivan Oseledets. Geometry-inspired top-k

adversarial perturbations. arXiv preprint arXiv:2006.15669, 2020.

[125] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[126] Alexander Levine, Sahil Singla, and Soheil Feizi. Certifiably robust interpretation in

deep learning. arXiv preprint arXiv:1905.12105, 2019.

[127] Jimeng Sun, Fei Wang, Jianying Hu, and Shahram Edabollahi. Supervised patient simi-

larity measure of heterogeneous patient records. ACM SIGKDD Explorations Newsletter,

14(1), 2012.

[128] Peilin Zhao, Steven CH Hoi, Rong Jin, and Tianbao Yang. Online auc maximization.

In Proceedings of the International Conference on Machine Learning, pages 233–240,

2011.

[129] Purushottam Kar, Bharath Sriperumbudur, Prateek Jain, and Harish Karnick. On the

generalization ability of online learning algorithms for pairwise loss functions. In Pro-

ceedings of the International Conference on Machine Learning, pages 441–449, 2013.

[130] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that ex-

ploit confidence information and basic countermeasures. In Proceedings of the 22nd

ACM SIGSAC conference on computer and communications security.

[131] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership in-

ference attacks against machine learning models. In 2017 IEEE Symposium on Security

and Privacy, 2017.

[132] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise

to sensitivity in private data analysis. In Theory of cryptography conference. Springer,

2006.

[133] Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. In

Advances in Neural Information Processing Systems, 2009.

160

[134] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimiza-

tion: Efficient algorithms and tight error bounds. In 2014 IEEE 55th Annual Symposium

on Foundations of Computer Science (FOCS), 2014.

[135] Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. Differentially private online

learning. In Conference on Learning Theory, 2012.

[136] Di Wang, Changyou Chen, and Jinhui Xu. Differentially private empirical risk minimiza-

tion with non-convex loss functions. In Proceedings of the 36th International Conference

on Machine Learning, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[137] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private

empirical risk minimization. Journal of Machine Learning Research, 2011.

[138] Di Wang, Minwei Ye, and Jinhui Xu. Differentially private empirical risk minimiza-

tion revisited: Faster and more general. In Advances in Neural Information Processing

Systems, 2017.

[139] Abhradeep Guha Thakurta and Adam Smith. (nearly) optimal algorithms for private on-

line learning in full-information and bandit settings. In Advances in Neural Information

Processing Systems, pages 2733–2741, 2013.

[140] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, ex-

tensions, and lower bounds. In Theory of cryptography conference, pages 635–658.

Springer, 2016.

[141] Jaewoo Lee and Daniel Kifer. Concentrated differentially private gradient descent with

adaptive per-iteration privacy budget. In Proceedings of the 24th ACM SIGKDD Inter-

national Conference on Knowledge Discovery & Data Mining, 2018.

[142] Di Wang and Jinhui Xu. Differentially private empirical risk minimization with smooth

non-convex loss functions: A non-stationary view. Thirty-Third AAAI Conference on

Artificial Intelligence, (AAAI-19), Honolulu, Hawaii, USA, January 27-February 1, 2019,

2019.

[143] Stéphan Clémençon, Gábor Lugosi, Nicolas Vayatis, et al. Ranking and empirical mini-

mization of u-statistics. The Annals of Statistics, 2008.

161

[144] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient as-

cent. In Proceedings of the 20th International Conference on Machine Learning (ICML-

03), 2003.

[145] Brian Kulis and Peter L Bartlett. Implicit online learning. In Proceedings of the 27th

International Conference on Machine Learning (ICML-10), pages 575–582, 2010.

[146] Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy.

In FOCS, pages 51–60, 2010.

[147] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[148] Chenglin Miao, Wenjun Jiang, Lu Su, Yaliang Li, Suxin Guo, Zhan Qin, Houping Xiao,

Jing Gao, and Kui Ren. Cloud-enabled privacy-preserving truth discovery in crowd sens-

ing systems. In Proceedings of SenSys, pages 183–196, 2015.

[149] Xinghua Shi and Xintao Wu. An overview of human genetic privacy. Annals of the New

York Academy of Sciences, 1387(1):61–72, 2017.

[150] Chenglin Miao, Lu Su, Wenjun Jiang, Yaliang Li, and Miaomiao Tian. A lightweight

privacy-preserving truth discovery framework for mobile crowd sensing systems. In

IEEE INFOCOM 2017-IEEE Conference on Computer Communications, pages 1–9.

IEEE, 2017.

[151] Wei Feng, Zheng Yan, Hengrun Zhang, Kai Zeng, Yu Xiao, and Y Thomas Hou. A

survey on security, privacy, and trust in mobile crowdsourcing. IEEE Internet of Things

Journal, 5(4):2971–2992, 2017.

[152] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to

sensitivity in private data analysis. In Theory of cryptography conference, pages 265–

284, 2006.

[153] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.

Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

[154] Qi Li, Yaliang Li, Jing Gao, Bo Zhao, Wei Fan, and Jiawei Han. Resolving conflicts in

heterogeneous data by truth discovery and source reliability estimation. In Proceedings of

the 2014 ACM SIGMOD international conference on Management of data, pages 1187–

1198, 2014.

162

[155] Qi Li, Yaliang Li, Jing Gao, Lu Su, Bo Zhao, Murat Demirbas, Wei Fan, and Jiawei Han.

A confidence-aware approach for truth discovery on long-tail data. Proceedings of the

VLDB Endowment, 8(4):425–436, 2014.

[156] Yaliang Li, Qi Li, Jing Gao, Lu Su, Bo Zhao, Wei Fan, and Jiawei Han. Conflicts to

harmony: A framework for resolving conflicts in heterogeneous data by truth discov-

ery. IEEE Transactions on Knowledge and Data Engineering (TKDE), 28(8):1986–1999,

2016.

[157] Chenglin Miao, Wenjun Jiang, Lu Su, Yaliang Li, Suxin Guo, Zhan Qin, Houping Xiao,

Jing Gao, and Kui Ren. Privacy-preserving truth discovery in crowd sensing systems.

ACM Transactions on Sensor Networks (TOSN), 15(1):9, 2019.

[158] Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A Stahel. Robust

statistics: The approach based on influence functions. Wiley Online Library, 2011.

[159] Johannes Gehrke, Michael Hay, Edward Lui, and Rafael Pass. Crowd-blending privacy.

In Annual Cryptology Conference, pages 479–496. 2012.

[160] Vincent Bindschaedler, Reza Shokri, and Carl A Gunter. Plausible deniability for

privacy-preserving data synthesis. Proceedings of the VLDB Endowment, 10(5):481–

492, 2017.

[161] Jeff Pasternack and Dan Roth. Knowing what to believe (when you already know some-

thing). In Proceedings of Coling, pages 877–885, 2010.

[162] Mengting Wan, Xiangyu Chen, Lance Kaplan, Jiawei Han, Jing Gao, and Bo Zhao. From

truth discovery to trustworthy opinion discovery: An uncertainty-aware quantitative mod-

eling approach. In Proceedings of the ACM SIGKDD international conference on knowl-

edge discovery & data mining, pages 1885–1894, 2016.

[163] Xian Li, Xin Luna Dong, Kenneth Lyons, Weiyi Meng, and Divesh Srivastava. Truth

finding on the deep web: Is the problem solved? Proceedings of the VLDB Endowment,

6(2):97–108, 2012.

[164] Chao Li, Michael Hay, Vibhor Rastogi, Gerome Miklau, and Andrew McGregor. Opti-

mizing linear counting queries under differential privacy. In Proceedings of the twenty-

ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,

pages 123–134, 2010.

163

[165] Moritz Hardt and Guy N Rothblum. A multiplicative weights mechanism for privacy-

preserving data analysis. In 2010 IEEE 51st annual symposium on foundations of com-

puter science, pages 61–70, 2010.

[166] Aaron Roth and Tim Roughgarden. Interactive privacy via the median mechanism. In

Proceedings of the forty-second ACM symposium on Theory of computing, pages 765–

774, 2010.

[167] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling

in private data analysis. In Proceedings of the thirty-ninth annual ACM symposium on

Theory of computing, pages 75–84, 2007.

[168] Vincent Bindschaedler and Reza Shokri. Synthesizing plausible privacy-preserving lo-

cation traces. In 2016 IEEE Symposium on Security and Privacy (SP), pages 546–563,

2016.

[169] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to noninterac-

tive database privacy. Journal of the ACM (JACM), 60(2):12, 2013.

[170] Di Wang, Marco Gaboardi, and Jinhui Xu. Empirical risk minimization in non-interactive

local differential privacy revisited. In Advances in Neural Information Processing Sys-

tems, pages 965–974, 2018.

[171] Di Wang, Adam Smith, and Jinhui Xu. Noninteractive locally private learning of linear

models via polynomial approximations. In Algorithmic Learning Theory, pages 897–

902, 2019.

[172] Holger Rauhut. Compressive sensing and structured random matrices. Theoretical foun-

dations and numerical methods for sparse recovery, 9:1–92, 2010.

[173] Colin McDiarmid. On the method of bounded differences. Surveys in combinatorics,

141(1):148–188, 1989.

[174] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial

time. Mach. Learn., 2002.

[175] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online

convex optimization. Machine Learning, 2007.

	doctype: Dissertation
	degree: Doctor of Philosophy
	studentname: Mengdi Huai
	semester: August
	year: 2022
	doctitle: Fostering Trustworthiness in Machine Learning Algorithms

