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Abstract

As an effort to establish a stability and performance metric for adaptive control

systems and an attempt to expand nonlinear system operating range with linearization-

based designs in the presence of uncertainties, this dissertation focuses on the gain

margin (GM) of adaptive control systems and the development of novel adaptive con-

trol schemes for piecewise linear systems. The contributions are a systematic gain

margin analysis for a variety of adaptive control systems, and a framework of solutions

to the open problems in adaptive control of uncertain piecewise linear systems.

The gain margin of adaptive control systems is defined as the specification of

the parameter range of a control gain matrix in a designed adaptive control system

for maintaining the desired closed-loop signal boundedness and asymptotic tracking

performance. A systematic gain margin analysis is conducted for continuous- and

discrete-time, direct and indirect model reference adaptive control (MRAC) systems,

adaptive state feedback control systems, and sampled-data adaptive control systems.

The derived gain margin results are applicable to systems with adaptive nonlinear or

pole placement control designs. Methods for enlarging the GM by proper choices of

design parameters are presented. This gain margin study has established guidelines

for designing control systems with stability and tracking guarantees in the presence

of uncertain control gain variations. Furthermore, the derived gain margin results

are applied to solve the problem of system performance robustness with respect to

reduced actuator effectiveness.

The adaptive control approach to piecewise linear systems is largely unexploited,

despite the tremendous growth of research interest in stability analysis and control

design for such systems over the past two decades. This dissertation focuses on the de-

velopment of model reference adaptive control designs for piecewise linear systems to



II

achieve closed-loop stability (signal boundedness) and system state or output tracking

as close as possible, in the presence of structural and parametric uncertainties and

repetitive system mode switches. State feedback for state tracking (SFST), state feed-

back for output tracking (SFOT), and output feedback for output tracking (OFOT)

MRAC designs are presented. It is shown that under a slow system mode switching

condition, closed-loop stability and a small tracking error in the mean-square sense

are achieved. For the SFST design, asymptotic state tracking performance is restored

under certain persistency of excitation (P.E.) condition, and the slow switching con-

dition can be relaxed to arbitrary system mode switches, when a common Lyapunov

function exists for the constituent system modes. For the SFOT design, asymptotic

tracking performance is ensured for arbitrary system mode switches, in addition to

closed-loop stability, under an additional plant-model matching condition. Effective-

ness of the proposed adaptive control schemes are demonstrated by simulation studies

on linearized and nonlinear aircraft models (NASA generic transport model (GTM)).
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Chapter 1

Introduction

The design of control systems for performance-critical systems, such as aircraft flight

control systems, to make the controlled outputs track desired trajectories despite para-

metric, structural, or environmental uncertainties, is of both theoretical and practical

interests. Their ability to automatically adjust a controller by adaptive laws to deal

with such uncertainties to achieve desired system performance makes adaptive con-

trol designs attractive for performance-critical system applications. Recently there

has been considerably increased effort in research on adaptive control for aircraft

flight systems in the presence of uncertainties and failures. As a main and matured

approach of adaptive control, model reference adaptive control (MRAC) is capable

of making the outputs of the controlled system to track the outputs of a reference

model system in addition to closed-loop stability. The study of multivariable MRAC

systems expands to some important new research topics including gain margin (G-

M) specification and adaptive control of piecewise linear systems, of interest to such

applications.

The gain margin concept, originally defined for linear time-invariant (LTI) control

systems to specify a necessary and sufficient range (relative to a chosen value) of a

control gain for stability, is also important for adaptive control systems to charac-



3

terize their relative stability and performance robustness properties with respect to

control gain uncertainties. In this dissertation, the study of gain margin for MRAC

systems is initialized based on their stability properties, and the research effort has

been extended to a systematic investigation of the gain margins for commonly used

adaptive control systems, including some popular adaptive nonlinear control designs

such as those using feedback linearization or backstepping.

By a piecewise linear system (also called a “switched linear system” in the liter-

ature by many researchers), we mean a dynamical system whose dynamics switches

among a set of continuous-time subsystems according to certain switching criteria.

For instance, the continuous state space (e.g., Rn) is partitioned by some hyperplanes

into several operating regions, each corresponding to a subsystem describing the sys-

tem dynamics when the state falls into that region, and the system dynamics switches

when its state trajectory crosses the hyperplane that separates two adjacent operat-

ing regions (“state-dependent switch”); the system dynamics switches according to

a certain time sequence, which may or may not be known a priori (“time-dependent

switch”). There has been increased research effort in the stability analysis and con-

trol design of such systems over the past two decades (see [1, 2] and the references

therein). Although the stability conditions derived and control designs developed

have inherent robustness to a certain extent with regard to system parameter uncer-

tainties, precise knowledge of each constituent subsystem is usually assumed to be

available, and the tracking control problem in the presence of system structural and

parametric uncertainties is rarely dealt with explicitly in the literature. The goals

of this dissertation are to develop novel adaptive control designs that can effectively

handle large structural and parametric uncertainties and repetitive switches in piece-

wise linear systems, and to establish a systematic framework of the adaptive control
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approach to piecewise linear systems. The key feature of such an adaptive control

approach is for piecewise linear systems to achieve desired state or output tracking

performance, in addition to closed-loop stability (signal boundedness).

In the reminder of this chapter, the motivation for this research is discussed,

followed by an overview of the related work in the existing literature. The organization

of this dissertation is outlined at the end of the chapter.

1.1 Research Motivation

Adaptive control theory and its application to aircraft flight control has been a focus

in the study of control systems. A major advantage of the adaptive control approach

over classical control and gain-scheduling techniques is its capability of effectively

accommodating large system parametric and structural uncertainties. Despite the

remarkable advances in adaptive control theory and successful experience in its ap-

plications to aircraft flight control, the lack of verification and validation methods

has been a major obstacle to the implementation of adaptive control on performance-

critical systems. The development of a suitable, quantitative stability and perfor-

mance metric for adaptive control systems motivates this study of gain margin for

adaptive control systems.

Gain margin (GM) is a well accepted quantitative metric of relative stability for

classical control systems, and has been extensively studied in the literature. It is de-

fined for linear time-invariant systems as a range of a forward-loop control gain within

which the closed-loop system is stable. For adaptive control systems, a suitable metric

for stability and performance such as gain margin is desirable as a performance mea-

sure useful in evaluating and comparing adaptive controllers and maturing adaptive

control approaches for implementation on performance-critical systems. Typical con-
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trol objectives for an adaptive control system are closed-loop stability (signal bound-

edness) and asymptotic tracking performance. Therefore, in the context of adaptive

control and resembling its counterpart in classical linear control theory, the GM is de-

fined as the specification of the parameter range of a control gain matrix in a designed

adaptive control system for maintaining the desired asymptotic tracking performance,

in addition to closed-loop signal boundedness.

A second motivation for this research on the gain margin concept of adaptive

control systems lies in its applicability to the investigation of robustness properties

of the system closed-loop stability and asymptotic tracking performance with respect

to reduced actuator effectiveness in aircraft flight control systems. Actuators are

driven by control signals to move the control surfaces (ailerons, rudders, elevators,

etc.) to generate aerodynamic forces and moments on the aircraft so as to achieve

the desired control objectives. Uncertain actuator failures and damages can occur,

including reduction in effectiveness (“loss-of-effectiveness,” in some research papers),

floating, lock-in-place, and hard-over. Lack of appropriate compensation can severely

deteriorate system performance, or even lead to instability and cause catastrophic

accidents. Reduction in actuator effectiveness is the type of actuator failure in which

partial control surface is damaged and the effectiveness reduces to an uncertain frac-

tion of the normal level (that without reduction in effectiveness). It is modeled in the

literature as an (uncertain) actuator effectiveness matrix at the system control inputs,

based on which several adaptive control designs have been proposed for compensa-

tion. However, no investigation has been conducted into the inherent performance

robustness properties of adaptive control systems to such actuator failures. It is clear

that such a problem formulation fits in the context of the gain margin study, so that

the derived gain margin results for adaptive control systems can be directly applicable
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to its solution.

The gain margin study is meaningful in establishing guidelines for designing con-

trol systems with stability and tracking guarantees in the presence of uncertain control

gain variations.

The motivation to study the adaptive control problem for piecewise linear systems

is two-fold. On the one hand, as will be presented in Chapter 2, a nonlinear system

may be modeled as a piecewise linear system for control design, which is expected to

be capable of expanding the system operating range. A common practice in control of

a nonlinear system is to consider its linearized model at some operating point, within

a neighborhood of which it can accurately describe the nonlinear system behavior,

and a wealth of linearization-based design techniques can be applied to achieve the

control objective. This linearized model is often taken to be time-invariant, and the

neighborhood may be small, thus the applicability of a linearization-based design may

be limited. This limitation motivates a piecewise linear system model as an approx-

imation of the nonlinear system for control design, which consists of a set of linear

time-invariant (LTI) subsystems, each being a valid model of the nonlinear system

within a neighborhood of an operating point. These neighborhoods are pieced togeth-

er such that the operating range of interest is covered, and transitions of operating

points are modeled as “switches” between the corresponding subsystems.

On the other hand, the research motivation to study piecewise linear systems

comes from the fact that many practical systems are of a hybrid nature and require

several dynamical subsystems to describe their behavior [3], e.g., the motion of an

automobile subject to a manual or an automatic transmission [4], biological systems

and chemical processes [5], and power electronics [6].

The challenge in control of piecewise linear systems lies in the fact that prop-
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erties of each individual subsystem are not necessarily inherited by the piecewise

linear system, such that traditional control theory developed for continuous-time lin-

ear time-invariant or time-varying systems may not be directly applicable to piecewise

linear systems [1]. For example, it is well known that the stability of an autonomous

piecewise linear system is not guaranteed under fast subsystem switches in spite of

the fact that each subsystem is asymptotically stable. The control task is even more

challenging in the presence of large system structural and parametric uncertainties.

Therefore, it is of both theoretical and practical value to develop effective control

schemes for piecewise linear systems such that desired objectives and stability prop-

erties can be ensured. For such a control problem, the adaptive control approach is a

suitable solution with its capacity to effectively accommodate large system parametric

and structural uncertainties.

1.2 Literature Overview

Relative stability, i.e., the gain margin (GM) and phase margin (PM) concepts, is an

important issue and has been studied extensively for classical control systems [7, 8].

Although the stability properties of a wide class of adaptive control systems have been

studied and analyzed extensively [9–15], there is a lack of literature about stability

margins for adaptive control systems. Stability margins in the existing literature

are either defined for certain specific adaptive control systems, or the results are

conservative as compared with those obtained from numerical simulations [16–18].

The challenge to the study of a time-delay margin (phase margin) is the lack of

an analytical tool to perform such an analysis. In this dissertation, the focus is

on the characterization of the relative stability of adaptive control system by gain

margin, which specifies a sufficient parameter range of a control gain matrix at the
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inputs of the controlled system for maintaining closed-loop stability and asymptotic

tracking performance. Such a characterization is general enough so that various

MRAC systems, adaptive state feedback control systems, and nonlinear adaptive

control systems using feedback linearization or backstepping designs can be studied.

The study of piecewise linear systems has attracted increasing research effort s-

ince the 1990s and the field has witnessed a tremendous growth of interest, as can

been seen from the monographs [1, 2], the survey papers [19–24], special issues of

major journals [25–28], and the references therein. It is well known that a piecewise

linear system may not necessarily inherit stability properties from its constituent

subsystems. For instance, fast subsystem switches can destabilize the system even

if all subsystems are asymptotically stable. On the other hand, a piecewise linear

system may be stabilized under certain switching sequences even if all subsystems are

unstable. Based on these observations, two problems are of great interest and of par-

ticular relevance to the research task in this dissertation: (1) Under what conditions is

asymptotic (or exponential) stability of the piecewise system guaranteed for arbitrary

system subsystem switches? (2) What conditions are needed for ensuring asymptotic

(or exponential) stability of the piecewise linear system if it cannot be guaranteed for

arbitrary subsystem switches? The work in [29–37] was devoted to the former ques-

tion by searching for a common Lyapunov function for the piecewise linear system,

while [19,38] proposed the so-called “dwell-time” switching strategy to characterize a

sufficient, slow-switching condition for asymptotic stability of piecewise linear system,

which was then extended to the “average dwell-time” conditions [39–44].

Considerable research effort has been devoted to developing analysis tools and

control strategies for stability and stabilization of piecewise linear systems [43–54].

However, not much effort has been made in the adaptive control literature to address
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parametric and structural uncertainties in piecewise linear systems. When adaptive

control schemes designed for LTI systems are applied to piecewise linear systems,

in addition to degraded tracking performance, closed-loop stability may be lost for

fast subsystem switches. Some modifications are made to the standard adaptive

control schemes, aiming at an improved tracking performance of piecewise linear

system. In [55], a switching control scheme is presented to deal with control of systems

with abruptly jumping parameters, and a stability condition on the frequency of the

parameter discontinuities is derived. A multiple model switching and tuning approach

is considered in [56] which is effective in reducing transient tracking error of a piecewise

linear system. The adaptive control scheme proposed in [57] for piecewise linear

systems achieved closed-loop stability and small tracking error in the mean-square

sense provided that switches occur over sufficiently large time intervals. However,

for all these designs, asymptotic tracking performance cannot be achieved due to

repetitive system switches. An adaptive control scheme was presented in [58, 59] for

bimodal piecewise linear systems, but the assumption of canonical forms limits its

applicability to system with more general structures.

An effective adaptive state feedback control scheme that achieves closed-loop sta-

bility and asymptotic state tracking was proposed in [60], where the reference model

is chosen to be LTI. Such a choice imposes stringent structural requirements on the

constituent subsystems; that is, each constituent subsystem has to match the same

LTI reference model through some (unknown) nominal controller parameters, which

may not be feasible in practical applications. In this dissertation (see Chapter 5), we

will present a reference model system which is also piecewise linear and study the re-

lated stability problems. Such a time-varying reference model system is investigated

based on the properties of piecewise linear systems [1, 19,39].
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While the gain margin study is initialized on MRAC systems, a systematic gain

margin analysis is conducted on various adaptive control systems, direct and indirect,

continuous-time and discrete-time, also including sampled-data adaptive control sys-

tems and some adaptive nonlinear control systems. In the research of the adaptive

control approach to piecewise linear systems, the focus is placed on continuous-time

direct MRAC designs in the presence of structural and parametric uncertainties.

1.3 Dissertation Outline

This dissertation establishes the gain margin concept, and conducts a thorough inves-

tigation of the gain margins for a wide variety of adaptive control systems. The results

are then applied for a solution of the performance robustness problem of MRAC under

reduction in actuator effectiveness. For adaptive control of piecewise linear system-

s, the dissertation presents the design conditions, adaptive control designs, stability

properties and tracking performance evaluations with simulation studies for effective-

ness demonstration. The major results in this dissertation have been published in the

following journal and conference papers: [61–63] (Chapter 3), [64] (Chapter 4), [65–68]

(Chapter 5), [69–71] (Chapter 6), [72] (Chapter 7).

The dissertation is organized as follows.

In Chapter 2, the basic problems considered in this dissertation are formulated.

Some background on the adaptive control methodology and multivariable adaptive

control is briefly reviewed.

In Chapter 3, a systematic gain margin study is presented for many commonly

used adaptive control systems, including continuous- and discrete-time direct MRAC

schemes applied to multi-input, multi-output (MIMO) linear time-invariant (LTI)

systems, some indirect multivariable MRAC systems, and systems with adaptive non-
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linear or pole placement control designs. Methods for enlarging the GM by proper

choices of design parameters are presented. Moreover, the effect of sample time on

the GM of sampled-data adaptive control systems is studied, which establishes the

relationship between the continuous-time and discrete-time GM results. Simulation

examples are provided to illustrate some of the theoretical results.

In Chapter 4, the problem of performance robustness of MRAC schemes with

respect to reduction in actuator effectiveness (loss-of-effectiveness) is studied for di-

rect multivariable MRAC, as well as indirect MRAC, for both continuous-time and

discrete-time schemes. The reduction is modeled by an uncertain gain matrix repre-

senting the actuator effectiveness at the control inputs. MRAC systems are analyzed

to determine the robustness of the desired closed-loop performance of stability and

asymptotic tracking with respect to such reductions.

In Chapter 5, direct adaptive state feedback for state tracking (SFST) MRAC

designs for piecewise linear systems are developed. Piecewise linear reference model

systems are used for generating desired state trajectories and their stability properties

are studied. It is shown that exponential tracking performance can be achieved if

the reference input is sufficiently rich and subsystem switches are sufficiently slow.

Simulation results with the proposed adaptive SFST scheme applied to the linearized

and the nonlinear NASA generic transport model (GTM) are presented.

In Chapter 6, direct adaptive state feedback for output tracking (SFOT) MRAC

designs are presented for piecewise linear systems to achieve closed-loop stability and

a small output tracking error (in the mean square sense). Asymptotic tracking perfor-

mance is shown to be achievable under additional plant-model matching conditions.

Simulation results on linearized NASA GTM models are presented to demonstrate

the substantial performance improvement by the proposed schemes, over conventional
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MRAC schemes.

In Chapter 7, the study of adaptive control of piecewise linear systems is further

applied to output feedback designs for output tracking (OFOT). An existing MRAC

controller structure in the literature for such systems is reparameterized, and a new

adaptive control scheme is proposed. A distinguishing feature of this scheme is the

avoidance of controller parameter swapping, which is undesirable because of the ad-

ditional modeling error introduced in the estimation error signal, used for adaptive

law design. Effectiveness of the proposed scheme is validated by simulation results

on linearized NASA GTM models.

Chapter 8 concludes the dissertation, and recommendations for future research

topics are provided.



Chapter 2

Basic Problem Formulation and
Background

2.1 Basic Problem Formulation

In this chapter, the basic problems considered in this dissertation are formulated,

including the gain margins of adaptive control systems, the performance robustness

of model reference adaptive control (MRAC) systems with respect to reduced actuator

effectiveness, and adaptive control of piecewise linear systems. Some background on

the adaptive control methodology and multivariable adaptive control is provided.

2.1.1 Gain Margins of Adaptive Control Systems

The gain margin (GM) concept was originally defined for linear time-invariant (LTI)

control systems to specify a necessary and sufficient range (relative to a chosen value)

of a control gain for stability [7,8]. As a suitable metric for stability and performance,

it is also important for adaptive control systems, useful in evaluating and comparing

adaptive controllers and maturing adaptive control designs for implementation on

performance-critical systems.

Consider an M -input, M -output linear time-invariant system with a transfer ma-
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trix representation as follows:

y(t) = G(D)[u](t) (2.1.1)

where u(t),y(t) ∈ RM are the system input and output vectors,G(D) = Z(D)P−1(D)

is strictly proper and full rank, andZ(D),P (D) ∈ RM×M are right coprime polynomi-

al matrices with P (D) being column proper. The symbolD is used, in the continuous-

time case, as the time-differentiation operator: D[x](t) = ẋ(t), t ∈ [0,+∞), or in the

discrete-time case, as the time-advance operator: D[x](t) = x(t+1), t ∈ {0, 1, 2, . . .}.

Figure 2.1 depicts the scenario we are considering in the gain margin study of

adaptive control systems. An uncertain positive definite and diagonal gain matrix

K = diag{k1, k2, . . . , kM}, ki > 0, i = 1, 2, . . . ,M (2.1.2)

is present in the forward loop between the controlled plant G(D) and the adaptive

controller, denoted as the blocks C1(D) and C2(D). The adaptive controller is de-

signed forK = IM (theM×M identity matrix) to ensure closed-loop stability (signal

boundedness) and asymptotic output tracking performance; that is, y(t) asymptoti-

cally tracks a desired trajectory ym(t) generated from a reference model system

ym(t) = Wm(D)[r](t) (2.1.3)

where Wm(D) ∈ RM×M is a rational transfer matrix and r(t) ∈ RM is a bounded,

piecewise continuous reference input signal.

The gain margin problem for adaptive control systems is formulated as the problem

of specifying the stability ranges of ki in (2.1.2), such that under any initial conditions,

the designed adaptive control scheme still ensures the closed-loop signal boundedness

and output tracking when K is within this range.
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Figure 2.1: Adaptive control system with a gain matrix K.

In this dissertation, the gain margins of adaptive control systems with a constant

positive definite gain matrix K are studied. The gain margin problem is addressed

in Chapter 3.

2.1.2 Performance Robustness of MRAC with respect to Re-
duced Actuator Effectiveness

In the study of the performance robustness properties of MRAC, the reduction in

actuator effectiveness is modeled by an uncertain gain matrix K representing the

actuator effectiveness at the control inputs.

Consider Figure 2.1, where G(D) is the controlled plant (2.1.1), for which an

adaptive controller (C1(D),C2(D)) has been designed for the plant output y(t) to

asymptotically track a reference trajectory ym(t) generated from (2.1.3), for K = IM ,

i.e., without reduction in actuator effectiveness.

Our objective is to study whether or not the designed adaptive controller still

ensures the desired closed-loop performance in the presence of reduction in actuator

effectiveness, i.e., in the presence of

K = diag{k1, . . . , kM}, 0 < ki ≤ 1, i = 1, 2, . . . ,M

It is clear that the gain margin (GM) problem formulation in Section 2.1.1 is

similar to that of the performance robustness problem considered here, with the
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difference in that the control gain variations are not bounded from top by 1, i.e.,

ki > 0, i = 1, 2, . . . ,M in (2.1.2). In Chapter 4, the gain margin results are applied

to address the performance robustness problem.

2.1.3 Adaptive Control of Piecewise Linear Systems

To motivate the adaptive control problem for piecewise linear systems, we first present

the linearization and approximation of a nonlinear system at multiple operating points

by a piecewise linear system.

Consider a nonlinear system

ẋ(t) = f(x(t),u(t)) (2.1.4)

where x(t) ∈ Rn is the state vector, u(t) ∈ RM is the control input vector, and

f(·) is an n-dimensional nonlinear vector function. Let Ω ⊂ Rn+m be the operating

region of interest for all possible system state and control vector (x,u), and denote

x0i and u0i, i ∈ I , {1, 2, . . . , l}, as a set of equilibrium operating points located

at some representative (and properly separated) points inside Ω. Introduce a set

of l regions Ωi centered at the chosen operating points (x0i,u0i), and denote their

interiors as Ωi0, i ∈ I, such that Ωj0 ∩ Ωk0 = {∅} for all j ̸= k, and ∪li=1Ωi = Ω.

With xi(t) = x(t) − x0i and ui(t) = u(t) − u0i, a set of LTI subsystem models can

be obtained, i.e., for i ∈ I, we have

ẋi(t) = Aixi(t) +Biui(t), (x(t),u(t)) ∈ Ωi (2.1.5)

with Ai =
∂f
∂x

∣∣
(x0i,u0i)

, Bi =
∂f
∂u

∣∣
(x0i,u0i)

. Note that at each time instant t, (x(t),u(t))

belongs to one and only one Ωi.

To formulate a piecewise linear system model for the nonlinear system (2.1.4), we

rewrite (2.1.5) as

ẋ(t) = Aix(t) +Biu(t)−Aix0i −Biu0i
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for (x(t),u(t)) ∈ Ωi, leading to

ẋ(t) = A(t)x(t) +B(t)u(t)−A(t)x0(t)−B(t)u0(t) (2.1.6)

where A(t) = Ai, B(t) = Bi, x0(t) = x0i, u0(t) = u0i for (x(t),u(t)) ∈ Ωi. Note

that x(t) is a “global” (instead of perturbed) state vector which is continuous and

u(t) is a control input signal to be generated from a control law based on the piecewise

linear system model (2.1.6). It can be seen that the parameters in A(t), B(t), and the

dynamics offset term f0(t) = −A(t)x0(t) − B(t)u0(t) vary in a piecewise constant

pattern; that is, depending on (x(t),u(t)) ∈ Ωi, they take on different values as

specified by the parameter matrix sets (Ai,Bi) and operating points (x0i,u0i), where

Ai and Bi are unknown but constant parameter matrices representing the controlled

system dynamics at the operating point (x0i,u0i).

To use a linearization-based method for controlling the nonlinear system (2.1.4),

it is crucial to design effective control schemes for the piecewise linear system model

(2.1.6). Note that every possible state trajectory of the piecewise linear system with

state-dependent subsystem switches in (2.1.6) is also a solution of the piecewise linear

system in the form of (2.1.6) with time-dependent subsystem switches for a certain

switching time sequence [1], such that the latter can be regarded as more generalized

than the former in this sense. Furthermore, in the context of model reference adap-

tive control, the piecewise constant dynamics offset term f0(t) can be taken care of

under certain matching conditions with modifications to the adaptive control scheme.

Therefore, in this dissertation we will focus on the development of MRAC designs for

the following piecewise linear system with time-dependent subsystem switches:

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0

y(t) = CTx(t)
(2.1.7)
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where x(t) ∈ Rn is the state vector, y(t) ∈ RM is the system output, u(t) ∈ RM is

the control input to be specified by an adaptive control law, and A(t) ∈ Rn×n and

B(t) ∈ Rn×M are unknown time-varying parameter matrices that vary in a piecewise

constant pattern; that is, during different time periods, (A(t),B(t)) take on different

values as specified by the parameter matrix sets (Ai,Bi), where Ai, Bi are unknown

but constant parameter matrices, and l is the total number of subsystems. The

indicator functions are introduced to characterize such a time-varying behavior of the

system.

Indicator functions. The indicator functions χi(t), which contain the knowledge

of the system parameter discontinuities, are assumed to be known and defined as

χi(t) =

{
1, if (A(t),B(t)) = (Ai,Bi)
0, otherwise

(2.1.8)

Since at each specific time instant t, only one subsystem is active, the indicator

functions defined as above have the following properties:

l∑
i=1

χi(t) = 1, χj(t)χk(t) = 0, j ̸= k, j, k ∈ I (2.1.9)

The indicator functions contain knowledge of the durations of time the system

resides in each subsystem and the time instants at which subsystem switches occur,

which is useful for adaptive control design. It is assumed that the switches can be

detected instantaneously; that is, although χi(t) may not be known a priori, they are

available during system operation.

With the indicator functions, the system parameter matrices can be expressed as

A(t) =
l∑

i=1

Aiχi(t), B(t) =
l∑

i=1

Biχi(t) (2.1.10)

The control objective is to design an adaptive state (or output) feedback control

law u(t) for closed-loop stability and state (or output) tracking by the piecewise linear
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system state x(t) (output y(t)) of a reference trajectory xm(t) (ym(t)), generated from

a reference model system.

In Chapters 5–7, adaptive state feedback for state tracking, state feedback for out-

put tracking, and output feedback for output tracking MRAC designs are developed

for piecewise linear systems.

2.2 Background

A brief introduction to the adaptive control methodology is presented in this sec-

tion, followed by some background on gain matrix decompositions for multivariable

adaptive control designs.

2.2.1 Adaptive Control Methodology

Motivated by the autopilot design for high performance aircraft systems in the 1950s,

the research in adaptive control has experienced significant theoretical advances and

achieved remarkable successes in its application to process control, aircraft control,

vehicle control, power systems, and robotic manipulators [9–15]. Adaptive control

methodology provides adaptation mechanisms that automatically adjust controller

parameters based on closed-loop system performance for a system under parametric,

structural, or environmental uncertainties to achieve desired system stability and

tracking performance.

An adaptive controller structure is motivated from the nominal control law with

parameters of the controlled system assumed to be known. A parameter estimator

(called adaptive laws) provides the estimates of the unknown parameters to replace

the (unknown) nominal parameters for online control implementation. Depending on

what parameter estimates are generated, adaptive control designs can be classified

into direct adaptive control and indirect adaptive control. The difference lies in that
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the estimated parameters are either those of the controller (direct) or those of the

controlled system (indirect). The way the nominal control law is designed gives rise

to two different control design methods: model reference adaptive control (MRAC)

and adaptive pole placement control (APPC). The APPC is derived based on the reg-

ulation problem and pole placement control, and is applicable to nonminimum-phase

systems. As a main and matured approach of adaptive control, the MRAC is used for

minimum-phase systems, in which a reference model system is specified that gener-

ates desired system output trajectories, and the controller parameters are adaptively

updated so that the closed-loop system outputs follow the reference trajectories.

To help understand the basic ideas and the typical design procedure of a model

reference adaptive control system, we consider a first-order linear time-invariant sys-

tem

ẏ(t) = ay(t) + u(t), y(0) = y0 (2.2.1)

where a, y(t), u(t) ∈ R are respectively an unknown constant parameter, the con-

trolled output, and the system input. The control objective is to design a feedback

control law u(t) such that y(t) tracks a reference trajectory ym(t) ∈ R asymptotically,

which is generated by the reference model system

ẏm(t) = amym(t) + r(t), ym(0) = ym0 (2.2.2)

where am < 0 is a known constant and r(t) ∈ R is a piecewise continuous and bounded

reference input, i.e., r(t) ∈ L∞. With am < 0, the reference model system (2.2.2) is

stable and represents the desired dynamic behavior for the controlled system (2.2.1)

to follow. Note that (2.2.1) may be unstable.

Nominal control design. If the system parameter a were known, the nominal

control law

u(t) = k∗y(t) + r(t), k∗ = am − a (2.2.3)
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will result in the closed-loop system

ẏ(t) = amy(t) + r(t) (2.2.4)

The equation k∗ = am − a is called a matching condition, because under such a

condition the closed-loop system (2.2.4) is “matched” to the reference model system

(2.2.2). With the definition of the tracking error e(t) = y(t) − ym(t) and its initial

value e(0) = y0 − ym0, subtracting (2.2.2) from (2.2.4) leads to the error dynamics:

ė(t) = ame(t), e(0) = y0 − ym0

whose solution is e(t) = eamte(0). We can see that the tracking error decays to zero

exponentially.

Adaptive control design. Since the parameter a is unknown, the nominal control

law (2.2.3) cannot be implemented because the feedback gain k∗ is not available. In

adaptive control, an estimate k(t) is used to replace k∗ in (2.2.3) to form the adaptive

control law

u(t) = k(t)y(t) + r(t) (2.2.5)

which results in the closed-loop system

ẏ(t) = amy(t) + r(t) + k̃(t)y(t), k̃ = k(t)− k∗ (2.2.6)

where k̃(t) is the parameter estimation error. Subtracting (2.2.2) from (2.2.6) leads

to the closed-loop error dynamics

ė(t) = ame(t) + k̃(t)y(t) (2.2.7)

which is linear in the tracking error e(t) and parameter estimation error k̃(t). The

task now is to choose an adaptive law to update k(t) online such that closed-loop
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stability (signal boundedness) and asymptotic tracking are ensured with a unknown.

For this purpose, consider a Lyapunov function

V (t) = e2(t) +
1

γ
k̃2(t), γ > 0

whose time-derivative along the error dynamics (2.2.7) is

V̇ (t) = 2e(t)ė(t) +
2

γ
k̃(t) ˙̃k(t)

= 2ame
2(t) + 2e(t)k̃(t)y(t) +

2

γ
k̃(t)k̇(t) ( ˙̃k(t) = k̇(t)− k̇∗ = k̇(t))

To make V̇ (t) ≤ 0 for t ≥ 0, we choose the following adaptive law to update k(t) in

(2.2.5):

k̇(t) = −γe(t)y(t) (2.2.8)

where γ > 0 is the adaptation gain and may be chosen arbitrarily. Such an adaptive

law leads to

V̇ (t) = 2ame
2(t) ≤ 0 (2.2.9)

since am < 0. It follows that V (t) ∈ L∞, which implies that e(t), k(t) ∈ L∞. Since

the reference trajectory ym(t) is bounded due to the stability of the reference model

system (2.2.2), we can conclude that y(t) = ym(t) + e(t) ∈ L∞. Thus all closed-

loop signals y(t), ym(t), k(t), and u(t) are bounded, such that the closed-loop system

stability is ensured. Furthermore, integrating both sides of (2.2.9) from t = 0 to

t = ∞, we have ∫ ∞

0

e2(t)dt =
1

2am
(V (∞)− V (0))

which is finite because of V (t) ∈ L∞, ∀t ≥ 0. Thus e(t) ∈ L2, which together with the

fact that ė(t) ∈ L∞ (see (2.2.7)), results in asymptotic tracking, i.e., limt→∞ e(t) = 0

[15, Lemma 2.14].
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Compared with exponential tracking of the nominal case (in which precise knowl-

edge of system parameters is required), the MRAC scheme achieves asymptotic track-

ing but effectively deals with system parametric uncertainties.

2.2.2 LDU and LDS Decompositions of a Gain Matrix Kp

Suppose that Kp ∈ RM×M is a nonsingular matrix, and its leading principle minors

are denoted as ∆i, i = 1, 2, . . . ,M . With ∆i ̸= 0 and the sign information of ∆i,

sign[∆i], available, the LDU decomposition [15, 73] of Kp is Kp = LD∗U for some

M × M unity lower triangular matrix L, unity upper triangular matrix U , and

diagonal matrix

D∗ = diag{d∗1, d∗2, . . . , d∗M} = diag

{
∆1,

∆2

∆1

, . . . ,
∆M

∆M−1

}
(2.2.10)

Its LDS decomposition, Kp = LsDsS, follows with Ls = LDs(U
T)−1D−1

s , S =

UTD−1
s D∗U , and

Ds = diag

{
sign[∆1]γ1, sign

[
∆2

∆1

]
γ2, . . . , sign

[
∆M

∆M−1

]
γM

}
(2.2.11)

with γi > 0, i = 1, 2, . . . ,M , which can be arbitrary.

In this chapter, we have formulated the basic control problems to be addressed in

this dissertation. Some preliminaries are reviewed for a better understanding of the

content in subsequent chapters.



Chapter 3

Gain Margins of Adaptive Control
Systems

This chapter presents a systematic study of the gain margins for many commonly

used adaptive control schemes, based on their stability properties [9–15]. Before

presenting the analytical results, it is important to note the difference between the GM

of adaptive control systems and that of classical control systems. Adaptive control

systems are nonlinear in essence, and the required control performance is asymptotic

tracking in addition to stability (signal boundedness). For adaptive control systems,

the gain margin defines a range of a control gain variation with which both asymptotic

tracking and stability are ensured under any initial conditions. For some values of the

gain variation outside the range, the system may still have the desired properties for

some initial conditions. While in a non-adaptive control system, a gain variation in

the gain margin range can lead to deterioration of system tracking performance, and

a gain variation outside the range can make the control system unstable for almost

all initial conditions.

This chapter is organized as follows. In Section 3.1, the gain margin problem

for adaptive control systems is stated, and a summary of analytical GMs for various

adaptive control systems is given. In Sections 3.3 and 3.4, the GM problem is studied
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for direct MRAC schemes, for the continuous-time case and the discrete-time case,

respectively, applied to single input, single output (SISO) and multiple input, multiple

output (MIMO) systems. As an extension, the GM results of adaptive state feedback

control schemes and some adaptive control schemes applied to nonlinear plants are

given. The GM of indirect MRAC systems is presented in Section 3.5, and sampled-

data adaptive control systems are considered in Section 3.6. An illustrative simulation

study is provided in Section 3.7.

3.1 Problem Statement

The gain margin problem is stated in this section, followed by a summary of the

analytical GM results for different adaptive control designs. The standard multivari-

able MRAC assumptions, including those based on the high frequency gain matrix

decompositions, are also presented.

Consider Figure 3.1, in which G(D) is the transfer matrix of the M -input, M -

output linear time-invariant controlled system:

y(t) = G(D)[u](t) (3.1.1)

where u(t),y(t) ∈ RM are the system input and output vectors,G(D) = Z(D)P−1(D)

is strictly proper and full rank, andZ(D),P (D) ∈ RM×M are right coprime polynomi-

al matrices with P (D) being column proper. The symbolD is used, in the continuous-

time case, as the time-differentiation operator: D[x](t) = ẋ(t), t ∈ [0,+∞), or in the

discrete-time case, as the time-advance operator: D[x](t) = x(t+1), t ∈ {0, 1, 2, . . .}.

An uncertain constant, positive definite and diagonal gain matrix

K = diag{k1, k2, . . . , kM}, ki > 0, i = 1, 2, . . . ,M (3.1.2)

is present in the forward loop between the controlled plant G(D) and the adaptive
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controller, denoted as the blocks C1(D) and C2(D). The adaptive controller is de-

signed forK = IM (theM×M identity matrix) to ensure closed-loop stability (signal

boundedness) and asymptotic output tracking performance; that is, y(t) asymptoti-

cally tracks a desired trajectory ym(t) generated from a reference model system

ym(t) = Wm(D)[r](t) (3.1.3)

where Wm(D) ∈ RM×M is a rational transfer matrix and r(t) ∈ RM is a bounded,

piecewise continuous reference input signal.

f- - - - -
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�
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Figure 3.1: Adaptive control system with a gain matrix K.

The gain margin problem for adaptive control systems is formulated as the problem

of specifying the stability ranges of ki in (3.1.2), such that under any initial conditions,

the designed adaptive control scheme still ensures the closed-loop signal boundedness

and output tracking when K is within this range.

The analytical gain margin results are summarized in Table 3.1 for both continuous-

time (CT) and discrete-time (DT) cases. The results of multivariable direct MRAC

are derived for the designs based on the LDS decomposition of the system high fre-

quency gain matrix Kp, and those of multivariable state feedback for state tracking

(SFST) scheme are for the design based on the LDU parametrization. For GM results

of single input, single output (SISO) cases with K = k, k0p and kp0 are the upper and

lower bounds of the magnitude of system high frequency gain kp, respectively, used

in the design of the adaptive control schemes [15,62].
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Table 3.1: Gain margins of adaptive control systems

Adaptive control scheme Gain margin

CT MIMO direct MRAC ki ∈ (0,+∞), i = 1, 2, . . . ,M

CT SISO direct MRAC k ∈ (0,+∞)

DT MIMO direct MRAC ki ∈ (0, k0i ]
a, i = 1, 2, . . . ,M

DT SISO direct MRAC k ∈
(
0,

k0p
|kp|

]
, 0 < |kp| ≤ k0p

MIMO indirect MRAC ki ∈ [ki0,+∞) b, i = 1, 2, . . . ,M

SISO indirect MRAC k ∈
[
kp0
|kp| ,+∞

)
, 0 < kp0 ≤ |kp|

CT MIMO SFST ki ∈ (0,+∞), i = 1, 2, . . . ,M

CT SISO SFST k ∈ (0,+∞)

CT SISO SFOT k ∈ (0,+∞)

DT SISO SFOT k ∈
(
0,

k0p
|kp|

]
, 0 < |kp| ≤ k0p

a The stability ranges of the gains ki, i = 1, 2, . . . ,M , have some
finite upper bounds which depend on some upper bounds of
the system high frequency gain matrix (used in adaptive laws
for parameter adaptation), as well as on some coupling terms
of Kp.

b The stability ranges of the gains ki, i = 1, 2, . . . ,M , have some
positive lower bounds which depend on some lower bounds of
the system high frequency gain matrix Kp (used in adaptive
laws for plant identification).

The high frequency gain matrix of the controlled system is defined as

Kp = lim
D→∞

ξm(D)G(D)

with ξm(D) being the modified interactor matrix of G(D). For MRAC designs based

on decompositions of Kp, the reference model transfer matrix Wm(D) in (3.1.3) is

chosen to be Wm(D) = ξ−1
m (D).

MRAC Assumptions. For MRAC designs, the standard assumptions are:

(A3.1-1) All zeros of G(D) are stable;

(A3.1-2) The observability index ν of G(D) is known;
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(A3.1-3) A modified interactor matrix ξm(D), which has a stable inverse, of G(D)

is known; and

(A3.1-4) All leading principal minors of Kp, ∆i, i = 1, 2, . . . ,M , are nonzero with

known signs.

Besides, for discrete-time designs, we assume:

(A3.1-4D) The upper bounds d0i of |d∗i | = |∆i/∆i−1| with ∆0 = 1, such that 0 <

|d∗i | ≤ d0i , i = 1, 2, . . . ,M , are known.

3.2 LDU Decomposition of KpK

With Assumption (A3.1-4), the LDU decomposition of Kp, Kp = LD∗U and its

LDS decomposition, Kp = LsDsS, have been presented as in Section 2.2.2. In the

presence of K ̸= IM , the controlled system becomes

y(t) = G(D)K[u](t)

and its high frequency gain matrix is KpK. The following lemma establishes the

connection between the LDU decomposition of Kp and that of KpK, which is key

to the gain margin analysis for both continuous-time and discrete-time multivariable

MRAC systems designed based on the LDS decomposition of Kp.

Lemma 3.2.1. The gain matrix KpK ∈ RM×M , where Kp is nonsingular with nonze-

ro leading principle minors and K = diag{k1, k2, . . . , kM} > 0, has a unique LDU

decomposition

KpK = L̄D̄∗Ū , L̄ = L, D̄∗ = D∗K, Ū = K−1UK (3.2.1)

where Kp = LD∗U is the LDU decomposition of Kp.
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Proof: Suppose the matrix Kp is represented as Kp = [kpij], i, j = 1, 2, . . . ,M , and

its nonzero leading principle minors are ∆i, i = 1, 2, . . . ,M . With the diagonal and

positive definite gain matrix K in (3.1.2), we have the leading principle minors of

KpK as:

∆̄i = ∆i

i∏
j=1

kj, i = 1, 2, . . . ,M (3.2.2)

from which and D∗ in (2.2.10), we can obtain

D̄∗ = diag

{
∆̄1,

∆̄2

∆̄1

, . . . ,
∆̄M

∆̄M−1

}
= D∗K (3.2.3)

Therefore, based on the fact that

KpK = LD∗UK = L̄D∗KŪ

we conclude that L̄ = L and Ū = K−1UK, where L̄ and Ū are unity lower triangular

and unity upper triangular matrices, respectively. Furthermore, this decomposition

is unique because of the uniqueness of matrix LDU decomposition. �

From Lemma 3.2.1, we conclude that the leading principle minors of KpK are

also nonzero, and their sign information is the same as that of the leading principle

minors of Kp. This result will be useful in clarifying the GM of both continuous-time

and discrete-time multivariable MRAC systems.

In the reminder of this chapter, the gain margins of various adaptive control sys-

tems are analyzed. We first show by proof that the GM for continuous-time direct

MRAC systems is infinity. While this GM result is intuitively understandable in

the sense that MRAC can handle large parameter uncertainties, the GM analysis of

discrete-time direct MRAC systems is technically more involved and provides more

insight into the gain margin concept for adaptive control systems; in particular, the

GM for such systems is finite with an upper bound. These GM results are applicable
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to both output feedback and state feedback designs for output tracking (for state

tracking as well in the continuous-time case). They are also applicable to nonlinear

adaptive control systems using feedback linearization designs [74] or backstepping

designs [13]. In addition, by considering the GM for sampled-data systems, we in-

vestigate the effect of sample time on GM, and we will show that as the sample

time approaches zero, the GM tends to infinity, which relates the GM results for

both continuous-time and discrete-time MRAC systems. For indirect MRAC of mul-

tivariable systems, the gain margin problem is formulated in terms of the nonsingular

estimation problem of a system high frequency gain matrix using system input and

output measurements. The GM for such adaptive control systems turns out to have

a lower bound. This situation is also true for an indirect adaptive pole placement

design. As it will be shown later, the upper or lower bound for the GM depends on

some design parameters in the adaptive control scheme, and thus can be enlarged by

a proper choice of these design parameters.

3.3 Gain Margins of Continuous-TimeMRAC Sys-

tems

For a continuous-time direct MRAC system, its gain margin can be derived based

on the adaptive control scheme applied. We will present the GM results for MRAC

designs for both SISO and MIMO controlled systems. The result of the multivariable

case is for the design based on the LDS decomposition of Kp. As a comparison, the

non-adaptive multivariable model reference control problem and the corresponding

GM analysis are presented first.
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3.3.1 Model Reference Control System

When the parameters of the plant in (3.1.1) are known, the above stated MRAC

problem reduces to model reference control (MRC), i.e., the non-adaptive control

problem.

The model reference controller

u(t) = Θ∗T
1 ω1(t) +Θ∗T

2 ω2(t) +Θ∗
20y(t) +Θ∗

3r(t) (3.3.1)

with controller parameters computed from the plant-model transfer matrix matching

equation

Θ∗T
1 A(D)P (D) + (Θ∗T

2 A(D) + Λ(D)Θ∗
20)Z(D) = Λ(D)(P (D)−Θ∗

3ξm(D)Z(D))

(3.3.2)

achieves closed-loop signal boundedness and asymptotic output tracking, where

ω1(t) = F (D)[u](t), ω2(t) = F (D)[y](t)

F (D) =
A(D)

Λ(D)
, A(D) = [IM , DIM , . . . , D

ν−2IM ]T

for a stable monic polynomial Λ(D) of degree ν − 1, and Θ∗
i , i = 1, 2, 20, 3, are of

appropriate dimensions.

With Θ∗
3 = K−1

p and Kp = LsDsS, (3.3.2) leads to

DsS
(
u(t)−Θ∗T

1 ω1(t)−Θ∗T
2 ω2(t)−Θ∗

20y(t)−Θ∗
3r(t)

)
= L−1

s ξm(D)[y − ym](t)

(3.3.3)

Hence, by applying the model reference control (3.3.1) to the plant (3.1.1), we

obtain ξm(D)[y − ym](t) = 0; that is, limt→∞(y(t)− ym(t)) = 0 exponentially.

We briefly study the gain margin problem for this MRC design. When the gain

matrix K ̸= IM , the new controlled plant in Fig. 3.1 becomes

y(t) = G(D)K[u](t), G(D) = Z(D)P−1(D) (3.3.4)
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After multiplying both sides of (3.3.2) by 1
Λ(D)

P−1(D)K and applying it on u(t), we

obtain ((
KΘ∗T

1 F (D)K−1 −Θ∗T
1 F (D)

)
P (D)Z−1(D)

+
(
K − IM

)(
Θ∗T

2 F (D) +Θ∗
20

)
−Θ∗

3W
−1
m (D)

)
[y](t)

=−KΘ∗
3W

−1
m (D)[ym](t)

(3.3.5)

As can be seen from (3.3.5), the mismatch between the plant (3.3.4) and the reference

model (3.1.3) for all K ̸= IM results in the loss of the asymptotic output tracking

property. Therefore, the gain margin is 1 for closed-loop tracking; that is, for any

gain matrix K ̸= IM , asymptotic output tracking cannot be achieved with a model

reference controller designed for K = IM . However, if the gain matrix K is such

that the left-hand-side operator on y(t) in (3.3.5) is stable, we have y(t) ∈ L∞, and

by (3.3.4) and (3.3.5), u(t) ∈ L∞, thus ω1(t) ∈ L∞ and ω2(t) ∈ L∞. In other words,

all signals in the closed-loop system are bounded, and the system is stable.

Remark 3.3.1. For non-adaptive control systems, closed-loop stability is robust with

respect to some gain variations. However, tracking requires exact knowledge of the

plant parameters, any variations of which can corrupt the desired tracking perfor-

mance. In other words, in terms of tracking, non-adaptive control systems are not

robust with regard to gain parameter changes. In contrast, MRAC systems can deal

with this kind of changes, not surprisingly. More specifically, a continuous-time MI-

MO direct MRAC system has an infinite gain margin, while its discrete-time coun-

terpart has a finite gain margin, to be specific, it has an upper bound for gain margin.

Furthermore, indirect MRAC systems have lower bounds for their gain margins.
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3.3.2 Design for SISO Systems

The continuous-time plant model is (3.1.1) with D replaced by s, i.e.,

y(t) = G(s)[u](t), G(s) = kp
Z(s)

P (s)
(3.3.6)

where kp is the plant high frequency gain, y(t) ∈ R is the plant output, u(t) ∈ R is

the plant input, and

Z(s) = sm + zm−1s
m−1 + · · ·+ z1s+ z0, P (s) = sn + pn−1s

n−1 + · · ·+ p1s+ p0

are polynomials in s with zi, i = 0, 1, . . . ,m − 1, and pj, j = 0, 1, . . . , n − 1, n > m,

being unknown but constant parameters.

The reference model system is (3.1.3), where the stable transfer functionWm(s) =

P−1
m (s) with Pm(s) being a monic stable polynomial, ym(t) ∈ R is the desired reference

output, and r(t) ∈ R is an external reference input signal.

MRAC Assumptions. For continuous-time SISO MRAC designs, Assumptions

(A3.1-1)–(A3.1-4) reduce to:

(A3.3-1) Z(s) is a stable polynomial;

(A3.3-2) An upper bound n̄ ≥ n for the degree n of P (s) is known;

(A3.3-3) The degree of Pm(s) is n
∗ = n−m > 0; and

(A3.3-4) The sign of kp is known.

Controller Structure. The following adaptive control law is applied:

u(t) = θT
1 (t)ω1(t) + θT

2 (t)ω2(t) + θ20(t)y(t) + θ3(t)r(t) (3.3.7)

with θ1(t),θ2(t) ∈ Rn̄−1, θ20(t), θ3(t) ∈ R to be updated from an adaptive law, and

ω1(t), ω2(t) defined as

ω1(t) =
a(s)

Λ(s)
[u](t), ω2(t) =

a(s)

Λ(s)
[y](t)
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where a(s) = [1, s, . . . , sn̄−2]T and Λ(s) is a monic stable polynomial of degree n̄− 1.

If the plant parameters were known, the control objective can be achieved by

implementing (3.3.7) with θi(t) = θ∗
i , i = 1, 2, 20, 3, where θ∗

i are computed from the

plant-model matching equation [15]:

θ∗T
1 a(s)P (s) + (θ∗T

2 a(s) + θ∗20Λ(s))kpZ(s) = Λ(s)(P (s)− kpθ
∗
3Z(s)Pm(s)) (3.3.8)

On the other hand, with plant parameters unknown, adaptive laws are designed to

update θi(t), the time-varying estimates of θ∗
i , and the adaptive control law (3.3.7)

is applied to the plant (3.3.6).

By applying both sides of (3.3.8) on y(t), and substituting (3.3.6) into the resulting

equation, after ignoring the initial condition related exponentially decaying term, we

can express (3.3.7) as

u(t) = θ∗T
1 ω1(t) + θ∗T

2 ω2(t) + θ∗20y(t) + θ∗3Pm(s)[y](t)

In view of the adaptive control law (3.3.7), the tracking error equation follows:

e(t) = y(t)− ym(t) =
kp

Pm(s)
[θ̃Tω](t)

= −kp
(
θ∗T 1

Pm(s)
[ω](t)− 1

Pm(s)
[θTω](t)

) (3.3.9)

where θ(t) = [θT
1 (t),θ

T
2 (t), θ20(t), θ3(t)]

T is the time-varying estimate of the nominal

controller parameter vector θ∗ = [θ∗T
1 ,θ∗T

2 , θ∗20, θ
∗
3]

T, θ̃(t) = θ(t) − θ∗, and ω(t) =

[ωT
1 (t),ω

T
2 (t), y(t), r(t)]

T.

Error Model. Motivated by the tracking error equation (3.3.9), the estimation

error signal is defined as

ϵ(t) = e(t) + ρ(t)ξ(t), ξ(t) = θT(t)ζ(t)− 1

Pm(s)
[θTω](t), ζ(t) =

1

Pm(s)
[ω](t)
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where ρ(t) is the estimate of ρ∗ = kp. By substituting (3.3.9) into the above equation,

we can obtain the estimation error model as follows:

ϵ(t) = ρ̃(t)ξ(t) + ρ∗θ̃T(t)ζ(t), ρ̃(t) = ρ(t)− ρ∗, θ̃(t) = θ(t)− θ∗

Adaptive Law. In view of the estimation error model and by introducing a

normalizing signal m(t) =
√

1 + ζT(t)ζ(t) + ξ2(t), the gradient adaptive laws are

applied to update θ(t) and ρ(t):

θ̇(t) = −sign[kp]Γϵ(t)ζ(t)

m2(t)
, Γ = ΓT > 0

ρ̇(t) = −γϵ(t)ξ(t)
m2(t)

, γ > 0

(3.3.10)

For k = 1, the adaptive control law (3.3.7) with parameters updated by the adap-

tive laws (3.3.10) ensures that all the signals in the closed-loop system are bound-

ed, and the tracking error reduces to zero asymptotically with time: limt→∞(y(t) −

ym(t)) = 0 [15].

Gain Margin Analysis. The same closed-loop stability properties and asymp-

totic tracking performance also hold for any control gain variation k > 0; that is, we

have the following gain margin result:

Proposition 3.3.2. A continuous-time SISO direct MRAC system has gain margin

(0,+∞).

Proof: To see this result, we can absorb the gain k into the high frequency gain of the

plant, which in this case is a scalar kp, and the high frequency gain becomes kpk. The

parameter ρ(t) becomes the estimate of ρ∗ = kpk when k deviates from 1. The only

assumption on kp is the known sign[kp], and k > 0 does not violate this assumption.

Due to the fact that the adaptive laws (3.3.10) allow any initial estimates of θ∗ and

ρ∗, the desired closed-loop performance (signal boundedness and output tracking) is
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still ensured for any constant gain k > 0; that is, the adaptive control system’s GM

is (0,+∞). �

3.3.3 LDS Decomposition Based Design for MIMO Systems

If the parameters of system G(s) in (3.1.1), i.e.,

y(t) = G(s)[u](t), G(s) = Z(s)P−1(s)

are known, the model reference controller

u(t) = Θ∗T
1 ω1(t) +Θ∗T

2 ω2(t) +Θ∗
20y(t) +Θ∗

3r(t) (3.3.11)

with Θ∗
i , i = 1, 2, 20, 3, computed from the plant-model matching equation

Θ∗T
1 A(s)P (s)+

(
Θ∗T

2 A(s) + Λ(s)Θ∗
20

)
Z(s) = Λ(s) (P (s)−Θ∗

3ξm(s)Z(s)) (3.3.12)

achieves closed-loop signal boundedness and asymptotic output tracking, where

ω1(t) = F (s)[u](t), ω2(t) = F (s)[y](t)

F (s) = A(s)/Λ(s), A(s) = [IM , sIM , . . . , s
ν−2IM ]T

for a stable monic polynomial Λ(s) of degree ν − 1, and Θ∗
i , i = 1, 2, 20, 3, are of

appropriate dimensions.

With Θ∗
3 = K−1

p and Kp = LsDsS, (3.3.12) leads to

DsS
(
u(t)−Θ∗T

1 ω1(t)−Θ∗T
2 ω2(t)−Θ∗

20y(t)−Θ∗
3r(t)

)
= L−1

s ξm(s)[y − ym](t)

(3.3.13)

Hence, by applying the model reference control (3.3.11) to the system (3.1.1), we

obtain ξm(s)[y − ym](t) = 0; that is, limt→∞(y(t)− ym(t)) = 0 exponentially.

Controller Structure. When the plant parameters are unknown, the following

MRAC control law is applied:

u(t) = ΘT
1 (t)ω1(t) +ΘT

2 (t)ω2(t) +Θ20(t)y(t) +Θ3(t)r(t) (3.3.14)
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where Θi(t) are the time-varying estimates of Θ∗
i in (3.3.11), i = 1, 2, 20, 3, to be

updated from some adaptive laws.

Error Model. As in [73], substituting (3.3.14) into (3.3.13) yields

ξm(s)[y − ym](t) +Θ∗
0ξm(s)[y − ym](t) = DsSΘ̃

T(t)ω(t)

where Θ∗ = [Θ∗T
1 ,Θ∗T

2 ,Θ∗
20,Θ

∗
3]

T, Θ(t) = [ΘT
1 (t),Θ

T
2 (t),Θ20(t),Θ3(t)]

T, Θ̃(t) =

Θ(t)−Θ∗, ω(t) = [ωT
1 (t),ω

T
2 (t),y(t), r(t)]

T, and Θ∗
0 = L−1

s − IM has a special form:

Θ∗
0 =



0 0 0 · · · 0
θ∗21 0 0 · · · 0
θ∗31 θ∗32 0 · · · 0
...

...
...

...
...

θ∗M−11

... θ∗M−1M−2 0 0
θ∗M1 0 θ∗MM−2 θ∗MM−1 0


Denote the parameter vectors consisting of the nonzero parameters in each row of Θ∗

0

as θ∗
i = [θ∗i1, . . . , θ

∗
ii−1]

T ∈ Ri−1, and their estimates as θi(t) = [θi1(t), . . . , θii−1(t)]
T ∈

Ri−1, i = 2, 3, . . . ,M . Introduce the estimation error as

ϵ(t) = ē(t) + [0,θT
2 (t)η2(t), . . . ,θ

T
M(t)ηM(t)]T +Ψ(t)ξ(t)

where ē(t) = ξm(s)
1

f(s)
[y − ym](t) = [ē1(t), . . . , ēM(t)]T with f(s) being a chosen

stable monic polynomial of the same degree as the maximum degree of ξm(s), ηi(t) =

[ē1(t), . . . , ēi−1(t)]
T, i = 2, 3, . . . ,M , Ψ(t) is the estimate of Ψ∗ = DsS, and ξ(t) =

ΘT(t)ζ(t) − h(s)[ΘTω](t) with ζ(t) = h(s)[ω](t). The following error equation is

obtained

ϵ(t) = [0, θ̃T
2 (t)η2(t), . . . , θ̃

T
M(t)ηM(t)]T +DsSΘ̃

T(t)ζ(t) + Ψ̃(t)ξ(t) (3.3.15)

with θ̃i(t) = θi(t)− θ∗
i and Ψ̃(t) = Ψ(t)−Ψ∗.
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Adaptive Law. Based on the error model (3.3.15), the following gradient adap-

tive laws are chosen to update θi(t), Θ(t), and Ψ(t):

θ̇i(t) = −Γθiϵi(t)ηi(t)

m2(t)
, Γθi = ΓT

θi > 0, i = 2, 3, . . . ,M

Θ̇T(t) = −Dsϵ(t)ζ
T(t)

m2(t)

Ψ̇(t) = −Γϵ(t)ξT(t)

m2(t)
, Γ = ΓT > 0

(3.3.16)

where ϵ(t) = [ϵ1(t), ϵ2(t), . . . , ϵM(t)]T and m2(t) is the normalizing signal

m2(t) = 1 + ζT(t)ζ(t) + ξT(t)ξ(t) +
M∑
i=2

ηT
i (t)ηi(t)

For K = IM , the adaptive controller (3.3.14) with the adaptive laws (3.3.16)

ensures closed-loop signal boundedness and asymptotic output tracking [15], i.e.,

lim
t→∞

(y(t)− ym(t)) = 0

Gain Margin Analysis. The desired closed-loop properties of signal bounded-

ness and asymptotic output tracking hold for K = diag{k1, k2, . . . , kM} ̸= IM with

ki > 0 being constant; that is, we have the gain margin result:

Proposition 3.3.3. A continuous-time multivariable direct MRAC system, designed

based on the LDS decomposition of Kp, has gain margins (0,+∞) for ki of the input

control gain variation matrix K in (3.1.2).

Proof: To prove that the closed-loop system with the adaptive controller designed

for K = IM retains the desired performance for K ̸= IM , we need to prove that the

assumptions under which the adaptive controller is designed for K = IM are satisfied.

Since ki > 0, from (3.2.2), we have ∆̄i ̸= 0, and sign[∆̄i] = sign[∆i]; that is,

the presence of K does not violate the assumptions of nonzero leading principle
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minors and the knowledge of their signs of the high frequency gain matrix, based

on which the MRAC scheme is designed for K = IM . To be precise, the design

parameter Ds in (3.3.16) is not affected by a gain matrix K ̸= IM . Therefore, for

ki ∈ (0,+∞), i = 1, . . . ,M , the controller (3.3.14) with the adaptive laws (3.3.16)

still ensures the desired system performance, and the MRAC system has gain margin

(0,+∞). �

Remark 3.3.4. The conclusion in Proposition 3.3.3 reduces to the SISO case when

M = 1 (see Proposition 3.3.2); that is, a continuous-time SISO direct MRAC system

has gain margin (0,+∞).

3.3.4 Extensions to Other Adaptive Control Systems

A similar analysis procedure can be applied to other continuous-time direct adaptive

control schemes such as state feedback MRAC and nonlinear adaptive control, for

either state tracking or output tracking.

State Feedback Designs. For state feedback MRAC designs, the system state

variables are used for feedback control and the controlled system (3.1.1) is in the

state-space form
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

with unknown parameter matrices A ∈ Rn×n, B ∈ Rn×M and C ∈ RM×n, and the

state vector x(t) ∈ Rn is available for measurement. The state feedback controller

structure is

u(t) = KT
1 (t)x(t) +K2(t)r(t)

where K1(t) ∈ Rn×M and K2(t) ∈ RM×M are updated from some adaptive laws.

For a state tracking MRAC design, the system state vector signal x(t) is to be

controlled to asymptotically track a reference signal xm(t) generated from a chosen



40

reference system

ẋm(t) = Amxm(t) +Bmr(t)

with Am ∈ Rn×n being stable and Bm ∈ Rn×M . Under the restrictive matching

conditions that

A+BK∗T
1 = Am, BK∗

2 = Bm

for some constant matrices K∗
1 ∈ Rn×M and K∗

2 ∈ RM×M , such an adaptive control

problem can be solved [15].

For an output tracking design [75], the matching conditions are relaxed to

C(sI −A−BK∗T
1 )−1BK∗

2 = Wm(s), K∗−1
2 = Kp

for some constant matrices K∗
1 ∈ Rn×M and K∗

2 ∈ RM×M , which can be satisfied

under the same assumptions as those needed for the output feedback MRAC design.

It can be seen that a state feedback for output tracking MRAC design has a much

simpler controller structure than the output feedback controller structure (3.3.14).

It can also be verified that the gain margin result of Proposition 3.3.3 holds for the

mentioned state feedback MRAC designs as well (for either state or output tracking);

that is, the GM is (0,+∞) for such MRAC systems.

Nonlinear Feedback Designs for Nonlinear Systems. Furthermore, the

above gain margin results can be extended to adaptive nonlinear control systems

with the controlled systems being nonlinear:

ẋ = f(x) + g(x)u

y = h(x)

Some popular adaptive nonlinear control designs have been developed over the past

years, such as those using feedback linearization [74] or backstepping [13], for state

tracking or output tracking. Such adaptive control systems can also handle parameter
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uncertainties including control gain variations, to ensure the desired closed-loop sys-

tem stability and tracking properties in the presence of a positive gain k (or a positive

definite diagonal gain matrix K for some special multivariable cases) at input; that

is, their gain margin is (0,+∞).

Remark 3.3.5. If a parameter projection algorithm using the knowledge of either an

upper bound or a lower bound of the plant high frequency gain matrix Kp, then the

GM has either an upper bound or a lower bound, different from the above GM results

derived for MRAC systems designed using an output error method, in which such an

upper or lower bound of Kp is not used. For a MRAC system designed using an input

error method [10,76], an upper bound of Kp is used, while for a prediction model based

adaptive control system [77] (developed mainly in discrete time; see next subsection),

a lower bound of Kp is used, with an advantage that both have less parameters to

estimate. This clarification also applies to nonlinear adaptive control systems.

While the above GM results (that the GM is (0,+∞) for continuous-time adap-

tive control systems) are understandable in the sense that MRAC can handle large

parameter uncertainties, the multivariable GM results are derived based on Lemma

3.2.1 (for multivariable nonlinear dynamic systems, adaptive control designs have not

been developed as thoroughly as that for multivariable linear systems, so that more

work is needed for adaptive control of multivariable nonlinear systems). We should

note that the GM analysis of discrete-time MRAC systems is more involved than that

for continuous-time systems, as shown next.
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3.4 Gain Margins of Discrete-Time MRAC Sys-

tems

Discrete-time multivariable MRAC shares the same controller structure and matching

conditions as its continuous-time counterpart. However, it has different stability

characterization, leading to different signal filters, adaptation gains, design conditions,

as well as stability and robust analysis. For a comparison with the GM analysis of

the continuous-time design, we present the GM result for the discrete-time MRAC

design based on the LDS decomposition of Kp, in the presence of a diagonal gain

matrix K at the control input.

3.4.1 Design for SISO Systems

The discrete-time plant model is (3.1.1) with D replaced by z, i.e.,

y(t) = G(z)[u](t), G(z) = kp
Z(z)

P (z)
(3.4.1)

where kp is the plant high frequency gain, y(t) ∈ R is the plant output, u(t) ∈ R is

the plant input, and

Z(z) = zm + zm−1z
m−1 + · · ·+ z1z + z0, P (z) = zn + pn−1z

n−1 + · · ·+ p1z + p0

are polynomials in z with zi, i = 0, 1, . . . ,m − 1, and pj, j = 0, 1, . . . , n − 1, n > m,

being unknown but constant parameters.

MRAC Assumptions. For discrete-time SISO MRAC designs, the Assumptions

(A3.1-1)–(A3.1-3) and (A3.1-4D) reduce to:

(A3.4-1) Z(z) is a stable polynomial;

(A3.4-2) The degree n of P (z) is known;

(A3.4-3) The relative degree n∗ = n−m > 0 is known; and
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(A3.4-4) The sign of kp is known, and |kp| ≤ k0p for some constant k0p > 0.

The reference model transfer function in (3.1.3) is chosen as Wm(z) = z−n
∗
, such

that ym(t+ n∗) = r(t).

Controller Structure. The following adaptive control law is applied:

u(t) = θT
1 (t)ω1(t) + θT

2 (t)ω2(t) + θ3(t)ym(t+ n∗) (3.4.2)

where θ1(t) ∈ Rn−1, θ2(t) ∈ Rn, θ3(t) ∈ R are controller parameters to be updated

from an adaptive law, and the filtered vector signals are defined as

ω1(t) = aλ(z)[u](t), ω2(t) = bλ(z)[y](t)

with aλ(z) = [z−n+1, . . . , z−1]T, and bλ(z) = [aTλ(z), 1]
T.

If the plant parameters are known, the control objective can be achieved by im-

plementing the control law (3.4.2) with θi(t) = θ∗
i , i = 1, 2, 3, where θ∗

1 and θ∗
2 are

computed from the plant-model matching equation:

θ∗T1 aλ(z)P (z) + θ∗T2 bλ(z)kpZ(z) = P (z)− Z(z)zn
∗
, θ∗3 = k−1

p (3.4.3)

This implementation ensures closed-loop signal boundedness and exact output track-

ing after n∗ steps, i.e., y(t+ n∗)− ym(t+ n∗) = 0 for t = 0, 1, 2, . . ..

For plant with unknown parameters, adaptive laws are developed to update the

time-varying estimates of θ∗
i , θi(t), i = 1, 2, 3. Multiplying both sides of (3.4.3) by

1
P (z)

, and applying the equation on u(t) yields

u(t) = θ∗T
1 ω1(t) + θ∗T

2 ω2(t) + θ∗3y(t+ n∗) (3.4.4)

By introducing ρ∗ = kp, ω(t) = [ωT
1 (t),ω

T
2 (t), ym(t+n

∗)]T, θ(t) = [θT
1 (t),θ

T
2 (t), θ3(t)]

T,

θ∗ = [θ∗T
1 ,θ∗T

2 , θ∗3]
T, e(t) = y(t) − ym(t), θ̃(t) = θ(t) − θ∗, and substituting (3.4.4)

into (3.4.2), the tracking error equation follows

e(t) = −ρ∗(θ∗Tω(t− n∗)− θT(t− n∗)ω(t− n∗)) (3.4.5)
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Error Model. Define the estimation error as

ϵ(t) = e(t) + ρ(t)ξ(t), ξ(t) = θT(t)ω(t− n∗)− θT(t− n∗)ω(t− n∗)

where ρ(t) is an estimate of ρ∗. In view of (3.4.5), we can obtain the error model

ϵ(t) = ρ∗θ̃T(t)ω(t− n∗) + ρ̃(t)ξ(t)

where ρ̃(t) = ρ(t)− ρ∗.

Adaptive Law. The gradient adaptive laws are applied to update θ(t) and ρ(t):

θ(t+ 1) = θ(t)− sign[kp]Γϵ(t)ω(t− n∗)

m2(t)
, 0 < Γ = ΓT <

2

k0p
I2n

ρ(t+ 1) = ρ(t)− γϵ(t)ξ(t)

m2(t)
, 0 < γ < 2

(3.4.6)

where m(t) =
√

1 + ωT(t− n∗)ω(t− n∗) + ξ2(t).

For k = 1, the controller (3.4.2) with the adaptive laws (3.4.6) ensures that for

any bounded initial conditions, all signals in the closed-loop system are bounded and

the output y(t) tracks the reference signal ym(t) asymptotically, i.e., limt→∞(y(t) −

ym(t)) = 0 [15].

Gain Margin Analysis. The same stability properties and asymptotic tracking

performance hold for any constant k within a specified range; that is, we have the

gain margin result:

Proposition 3.4.1. A discrete-time SISO direct MRAC system has gain margin(
0,

k0p
|kp|

]
, where |kp| ≤ k0p such that 0 < Γ = ΓT < 2

k0p
I2n for the adaptive laws (3.4.6).

Proof: The adaptive laws (3.4.6) are designed for the plant when the constant gain

is k = 1. When k ̸= 1, the system high frequency gain becomes kpk, ρ(t) becomes

the estimate of ρ∗ = kpk, and the controller parameter θ(t) is adjusted accordingly.
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For k = 1, the design condition is 0 < Γ = ΓT < 2
k0p
I2n, where |kp| ≤ k0p, while the

stability condition is 0 < Γ = ΓT < 2
|kp|I2n which is implied by the design condition.

For k ̸= 1, the adaptive controller (3.4.2) still ensures desired closed-loop system

performance if |kpk| ≤ k0p, that is, k ∈
(
0,

k0p
|kp|

]
, because the stability condition now

is 0 < Γ = ΓT < 2
|kp|kI2n which is still ensured by the design condition. Therefore,

the adaptive control system has gain margin
(
0,

k0p
|kp|

]
. �

Remark 3.4.2. The specified range of the constant gain k in Proposition 3.4.1 is a

sufficient condition for ensuring desired closed-loop system performance; that is, there

may exist some k ∈
(
k0p
|kp| ,+∞

)
that results in a stable closed-loop system under some

initial conditions, whereas as long as k falls into
(
0,

k0p
|kp|

]
, the system is stable for

any initial conditions and the plant output asymptotically follows a desired trajectory

generated by the reference model system.

Remark 3.4.3. With the conclusion that the discrete-time SISO direct MRAC scheme

has a finite gain margin, the question how to increase the gain margin is of interest.

From Proposition 3.4.1 , one way we can increase the gain margin is to increase k0p,

i.e., in the system design process, assume a higher upper bound on |kp|. However,

from the constraint on the adaptive law (3.4.6), the adaptation gain matrix Γ has to

satisfy 0 < Γ = ΓT < 2
k0p
I2n for closed-loop signal boundedness and output tracking.

This constraint will result in a slower adaptation speed for θ(t). Therefore, to increase

the gain margin of the system, we assume a higher k0p, while choosing the adaptation

gain matrix Γ such that 0 < Γ = ΓT < 2
k0p
I2n.

3.4.2 LDS Decomposition Based Design for MIMO Systems

As described in Section 3.3, for K = IM , when the system parameters in P (z) and

Z(z), the polynomial Λ(z), and the modified interactor matrix ξm(z) are known, the
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controller (3.3.11) with parameters Θ∗
i , i = 1, 2, 20, 3, computed from the matching

equation (3.3.12) with s = z, can be applied to achieve the control objective.

Without knowledge of the plant parameters, by following a similar procedure of

development as in Section 3.3 with s = z, we can obtain the estimation error model

(3.3.15), based on which the following gradient adaptive laws are chosen:

θi(t+ 1)− θi(t) = −Γθiϵi(t)ηi(t)

m2(t)
, i = 2, . . . ,M

ΘT(t+ 1)−ΘT(t) =
Dsϵ(t)ζ

T(t)

m2(t)

Ψ(t+ 1)−Ψ(t) = −Γϵ(t)ξT(t)

m2(t)

(3.4.7)

where 0 < Γθi = ΓT
θi < 2Ii−1, 0 < Γ = ΓT < 2IM , and

Ds = diag

{
sign[∆1]γ1, sign

[
∆2

∆1

]
γ2, . . . , sign

[
∆M

∆M−1

]
γM

}
with γi > 0, is chosen to satisfy

0 <DsU
TD−1

s D∗UDs < 2IM (3.4.8)

that is, γi ∈ (0, γ0i ) for some γ0i > 0, i = 1, 2, . . . ,M .

Remark 3.4.4. The choice of the design parameters γi is not straightforward from

(3.4.8). To proceed, we propose a numerical method. The adaptation gain matrix Ds

in (3.4.7) is first decomposed as Ds = LdD
∗ for some positive definite and diagonal

matrix Ld. Then (3.4.8) is equivalent to

0 < LdD
∗UTL−1

d ULdD
∗ < 2IM

which by Schur complement results in[
2IM LdD

∗UT

UD∗Ld Ld

]
> 0 (3.4.9)
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Thus the problem is converted to the solution of an LMI problem for a diagonal matrix

Ld, which can be handled numerically, e.g., by MATLAB. Note that knowledge of D∗

and U are required.

If γ0i is needed for a choice of γi such that γi ∈ (0, γ0i ), a linear cost function can

be constructed and optimized subject to the LMI constraints (3.4.9) and Ld > 0.

For K = IM , the adaptive control law (3.3.14) with the adaptive laws (3.4.7)

ensures closed-loop signal boundedness and asymptotic output tracking [15], i.e.,

lim
t→∞

(y(t)− ym(t)) = 0

Gain Margin Analysis. In the presence of K = diag{k1, k2, . . . , kM} ̸= IM

with ki > 0 being constant, the same desired closed-loop system performance holds

if ki ≤ k0i for some k0i > 0; that is, we have the gain margin result:

Proposition 3.4.5. A discrete-time multivariable direct MRAC system, designed

based on the LDS decomposition of Kp, has gain margins (0, k0i ] for ki of the input con-

trol gain variation matrixK = diag{k1, k2, . . . , kM}, whereK0 = diag{k01, k02, . . . , k0M}

satisfies

0 <DsK
0UT(K0)−1D−1

s D∗UK0Ds < 2IM (3.4.10)

for Ds chosen to meet the condition (3.4.8).

Proof: From Lemma 3.2.1, the presence of a gain matrix K ̸= IM leads to the new

high frequency gain matrix KpK with its LDU decomposition as KpK = L̄D̄∗Ū for

D̄∗ = D∗K from the LDU decomposition of Kp, Kp = LD∗U . We can see that the

sign information of the leading principle minors of KpK is the same as that of Kp

so that the adaptive law with Ds chosen for K = IM can still be used for K ̸= IM .

However, to ensure the closed-loop signal boundedness and asymptotic output

tracking, the new condition for K ̸= IM , similar to (3.4.8) for K = IM , is 0 <
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DsŪ
TD−1

s D̄∗ŪDs < 2IM , which needs to be satisfied for the chosen Ds for (3.4.8).

From Lemma 3.2.1, this condition is equivalent to

0 <DsKUTK−1D−1
s D∗UKDs < 2IM (3.4.11)

It can be seen that for ki, there is an upper bound k0i > 0, which depends on γj,

kj, j = 1, 2, . . . , i − 1, d∗j , d
0
j , j = 1, 2, . . . , i, and the nonzero elements of U , with

K0 = diag{k01, k02, . . . , k0M} satisfying (3.4.10) such that the closed-loop performance

is still achieved with the MRAC design for K = IM . In other words, the gain margins

are (0, k0i ], i = 1, 2, . . . ,M . �

It is desirable to have an explicit expression for K0 in (3.4.10). The results for

M = 2 are presented later in this subsection. For a more general case, such an explicit

solution may not exist because of the coupling of γi with each other and the unknown

form of U . A numerical method is proposed as follows.

With Ds chosen to satisfy (3.4.8), to derive the GM, we need to solve (3.4.11) for

a range of K. With Ds = LdD
∗ for some Ld > 0 and by the Schur Complement,

(3.4.11) is equivalent to [
2IM LdD

∗KUT

UKD∗Ld KLd

]
> 0 (3.4.12)

We can then construct a linear cost function, and optimize it subject to the LMI

constraints (3.4.12) and K > 0. The range of K can thus be obtained.

Remark 3.4.6. The gain margin result in Proposition 3.4.5 reduces to the SISO case

when M = 1, that is, a discrete-time SISO direct MRAC system has gain margin(
0,

k0p
|kp|

]
, where k0p is known such that 0 < |kp| ≤ k0p (see Proposition 3.4.1). This

result can be shown briefly as follows.

For M = 1, the high frequency gain matrix Kp becomes a scalar kp, D
∗ = kp,

L = U = 1, and Ds = sign[kp]γ. The design condition (3.4.8) yields 0 < γ <
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2
sign[kp]kp

= 2
|kp| , which is satisfied if 0 < γ < 2

k0p
. When the gain K = k ̸= 1, due to the

fact D̄∗ = kpk and sign[∆̄] = sign[kp], it follows that (3.4.11) yields 0 < k|kp|γ < 2,

which is satisfied if 0 < k|kp|γ < k|kp| 2
k0p

≤ 2, from which we obtain the gain margin(
0,

k0p
|kp|

]
for SISO direct MRAC systems.

Remark 3.4.7. When Kp is lower triangular, from its LDU decomposition, Kp =

LD∗U , we have U = IM , and (3.4.8) is equivalent to 0 < D∗Ds < 2IM , that is,

0 < diag {|d∗1|γ1, |d∗2|γ2, . . . , |d∗M |γM} < 2IM . It is satisfied if

diag {γ1, γ2, . . . , γM} < diag

{
2

d01
,
2

d02
, . . . ,

2

d0M

}
(3.4.13)

For K ̸= IM , the stability condition in (3.4.11) yields

0 < diag {|d∗1|k1γ1, |d∗2|k2γ2, . . . , |d∗M |kMγM} < 2IM

which, from (3.4.13), is satisfied if

0 < diag {k1, k2, . . . , kM} ≤ diag

{
d01
|d∗1|

,
d02
|d∗2|

, . . . ,
d0M
|d∗M |

}
Therefore, we have the gain margin result

ki ∈
(
0,

d0i
|d∗i |

]
, i = 1, 2, . . . ,M, (3.4.14)

where d0i , i = 1, 2, . . . ,M , are from Assumption (A3.1-4D).

Remark 3.4.8. For a discrete-time direct MRAC system, the GM is (0, k0i ], where k
0
i

can be made large by reducing the adaptation gain. This can been seen from (2.2.11)

and (3.4.11). As D∗ and U are constant matrices, we can increase k0i by reducing

the design parameters γi > 0, which reduces the adaptation speed for Θ(t) in (3.4.7).

Therefore, the GM can be enlarged by assuming larger d0i , i = 1, 2, . . . ,M , in the

system design process, while at the same time maintaining the inequality in (3.4.11).

This becomes straightforward for the case when U = IM .
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The same results can be derived for a discrete-time version of the state feedback

for output tracking MRAC system [75]; that is, the GM is: ki ∈ (0, k0i ] for some

k0i > 0. For the SISO case, its GM is finite with a finite upper bound, i.e.,
(
0,

k0p
|kp|

]
,

where k0p is the known upper bound of |kp|. An input error MRAC design can also

be derived for a discrete-time multivariable LTI system. For such an adaptive control

system, some upper bound information of Kp is used, so that the GM also has an

upper bound which directly depends on the upper bound used in parameter projection

for the adaptive law. A prediction model based adaptive control design [77] uses a

lower bound of Kp, and its GM has a lower bound (instead of an upper bound for

the above output error method based MRAC systems).

3.4.3 Gain Margin Bounds for M = 2

The explicit GM bounds for M = 2 are provided here as a demonstration of the GM

result in Proposition 3.4.5, and the derivation is included in Section 9.1.

Denote the (1, 2) element of the 2× 2 unity upper triangular matrix U as a. For

a = 0, the design parameters γ1 and γ2 must be chosen to satisfy

0 < γ1 <
2

d01
, 0 < γ2 <

2

d02
(3.4.15)

For a ̸= 0, the same range for γ1 in (3.4.15) holds, and

0 < γ2 <
α(γ1)d

0
2 +

√
α(γ1)β(γ1)

4a2d01
(3.4.16)

where d01 and d02, assumed to be known, are the upper bounds of |d∗1| and |d∗2|, and

α(γ1) = γ1(d
0
1γ1 − 2), β(γ1) = α(γ1)(d

0
2)

2 − 16a2d01.

The gain margin results for a = 0 are:

0 < k1 ≤
d01
|d∗1|

, 0 < k2 ≤
d02
|d∗2|

(3.4.17)
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For a ̸= 0, the same range for k1 in (3.4.17) holds, and

0 < k2 ≤
d01
|d∗1|

ᾱ(k1γ1)|d∗2|+
√
ᾱ(k1γ1)β̄(k1γ1)

α(γ1)d02 +
√
α(γ1)β(γ1)

(3.4.18)

where ᾱ(k1γ1) = k1γ1(|d∗1|k1γ1−2), and β̄(k1γ1) = ᾱ(k1γ1)|d∗2|2−16a2|d∗1| (see Section

9.1 for details).

3.5 Gain Margins of Indirect MRAC Systems

Indirect multivariable MRAC schemes are of interest because there are less parameters

to be estimated and less filters to be implemented than direct MRAC. Moreover, the

system parameters carry more physical meanings than controller parameters, and it is

more natural and practical to expect a priori knowledge about system parameters than

controller parameters, which further reduces computational burden. Next, we present

the design of continuous-time and discrete-time indirect MRAC schemes applied to

SISO systems, followed by the GM analysis. A multivariable design for a class of

MIMO systems with its GM analysis is presented in a unified framework for both

continuous- and discrete-time cases.

3.5.1 Design for Continuous-Time SISO Systems

Consider the continuous-time plant model (3.3.6), i.e.,

y(t) = G(s)[u](t), G(s) = kp
Z(s)

P (s)
(3.5.1)

where kp is the plant high frequency gain, y(t) ∈ R is the plant output, u(t) ∈ R is

the plant input, and

Z(s) = sm + zm−1s
m−1 + · · ·+ z1s+ z0, P (s) = sn + pn−1s

n−1 + · · ·+ p1s+ p0

are polynomials in s with zi, i = 0, 1, . . . ,m − 1, and pj, j = 0, 1, . . . , n − 1, n > m,

being unknown but constant parameters. It can be parameterized as follows by
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choosing stable polynomials Λe(s) = sn + λen−1s
n−1 + · · · + λe1s + λe0 and Λn−1(s) =

λen−1s
n−1 + · · ·+ λe1s+ λe0:

y(t)− Λn−1(s)

Λe(s)
[y](t) = θ∗T

p ϕ(t) (3.5.2)

where θ∗
p = [kpz0, . . . , kpzm−1, kp,−p0, . . . ,−pn−1]

T is the parameter vector, and

ϕ(t) =[
1

Λe(s)
[u](t),

s

Λe(s)
[u](t), . . . ,

sm

Λe(s)
[u](t),

1

Λe(s)
[y](t),

s

Λe(s)
[y](t), . . . ,

sn−1

Λe(s)
[y](t)]T

is the regressor vector.

MRAC Assumptions. The indirect MRAC schemes share the same design

assumptions as their continuous-time direct MRAC counterparts (see Section 3.3.2)

except for

(A3.5-1) The lower bound kp0 of |kp|, such that 0 < kp0 ≤ |kp|, is known, and so is

sign[kp], the sign of kp.

The transfer function of the reference model (3.1.3) is chosen to be Wm(s) =

P−1
m (s) with the monic stable polynomial Pm(s) of degree n−m.

Error Model and Adaptive Law. Denoting θp(t) as the estimate of θ∗
p, we

define the estimation error

ϵ(t) = θT
p (t)ϕ(t)− y(t) +

Λn−1(s)

Λe(s)
[y](t), t ≥ t0 (3.5.3)

based on which the gradient adaptive law with parameter projection is applied to

update θp(t):

θ̇p(t) = −Γϕ(t)ϵ(t)

m2(t)
+ f(t), θp(t0) = θ0, t ≥ t0 (3.5.4)

where Γ = diag{Γ1, γm+1,Γ2} with Γ1 ∈ Rm×m, Γ1 = ΓT
1 > 0, γm+1 > 0, and Γ2 ∈

Rn×n, Γ2 = ΓT
2 > 0, θ0 is an initial estimate of θ∗

p, and m(t) =
√

1 + κϕT(t)ϕ(t) with
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κ > 0. The parameter projection term is f(t) = [01×m, fm+1(t),01×n]
T with fm+1(t)

designed to ensure |θpm+1(t)| = |k̂p| ∈ [kp0,+∞), where θpm+1(t) is the (m + 1)th

component of θp(t), and kp0 ∈ (0, |kp|] is a constant which is assumed to be known

for implementing a parameter projection algorithm.

Controller Structure. The following control law

u(t) = θT
1 (t)ω1(t) + θT

2 (t)ω2(t) + θ20(t)y(t) + θ3(t)r(t) (3.5.5)

is applied to the plant with the controller parameters θ1,θ2 ∈ Rn−1, θ20, θ3 ∈ R

calculated from the design equation

θT
1 a(s)P̂ (s, p̂) + (θT

2 a(s) + θ20Λc(s))k̂pẐ(s, ẑ) = Λc(s)(P̂ (s, p̂)− k̂pθ3Ẑ(s, ẑ)Pm(s)),

(3.5.6)

where P̂ (s, p̂) = sn + p̂n−1s
n−1 + · · · + p̂0, and Ẑ(s, ẑ) = sm + ẑm−1s

m−1 + · · · + ẑ0

are constructed from θT
p (t) = [k̂pz0(t), . . . , k̂pzm−1(t), k̂p(t),−p̂0(t), . . . ,−p̂n−1(t)], and

ẑi(t) =
k̂pzi(t)

k̂p(t)
, i = 0, 1, . . . ,m − 1, and Λc(s) is a monic stable polynomial of degree

n− 1.

For k = 1, the controller (3.5.5) with θi(t) = θi, i = 1, 2, 20, 3, adaptive law (3.5.4)

and the design equation (3.5.6) for the plant (3.5.1) ensures that all signals in the

closed-system are bounded and limt→∞(y(t)− ym(t)) = 0 [15].

Gain Margin Analysis. The same closed-loop stability properties and asymp-

totic tracking performance hold for any constant k > 0 within a specified range; that

is, we have the gain margin result:

Proposition 3.5.1. A continuous-time SISO indirect MRAC system has gain margin[
kp0
|kp| ,+∞

)
, where kp0 > 0 is the lower bound of |kp|, used in the adaptive law (3.5.4).

Proof: When the constant gain k is different from 1, the plant’s high frequency gain

becomes kpk, and the parameter θp(t) from the adaptive law (3.5.4) becomes the
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estimate of the new parameter vector

θ∗
pk = [kpkz0, . . . , kpkzm−1, kpk,−p0, . . . ,−pn−1]

T (3.5.7)

The controller (3.5.5) with the controller parameters computed from (3.5.6) still en-

sures desired closed-loop performance if |kpk| ≥ kp0 > 0, i.e., k ≥ kp0
|kp| , which is derived

from the assumption based on which (3.5.4) is designed for k = 1. Therefore, the

continuous-time indirect MRAC design has gain margin
[
kp0
|kp| ,+∞

)
. �

3.5.2 Design for Discrete-Time SISO Systems

Consider the discrete-time plant model (3.3.6), i.e.,

y(t) = G(z)[u](t), G(z) = kp
Z(z)

P (z)
(3.5.8)

where kp is the plant high frequency gain, y(t) ∈ R is the plant output, u(t) ∈ R is

the plant input, and

Z(z) = zm + zm−1z
m−1 + · · ·+ z1z + z0, P (z) = zn + pn−1z

n−1 + · · ·+ p1z + p0

are polynomials in z with zi, i = 0, 1, . . . ,m − 1, and pj, j = 0, 1, . . . , n − 1, n > m,

being unknown but constant parameters. It can be parameterized as y(t) = θ∗T
p ϕ(t),

t ∈ {0, 1, . . .} where θ∗
p is as in (3.5.2), and the regressor vector is

ϕ(t) = [u(t− n), u(t− n+ 1), . . . , u(t− n+m), y(t− n), y(t− n+ 1), . . . , y(t− 1)]T

Similar to the continues-time design, Assumption (A3.5-1) is needed, in addition

to the standard MRAC assumptions (see Section 3.4.1). The reference model transfer

function in (3.1.3) is taken to be Wm(z) = z−n
∗
such that ym(t+ n∗) = r(t).

Error Model and Adaptive Law. Let θp(t) be the estimate of θ∗
p, based on

the estimation error model

ϵ(t) = θT
p (t)ϕ(t)− y(t) (3.5.9)



55

the following adaptive law is applied to update θp(t):

θp(t+ 1) = θp(t)−
Γϕ(t)ϵ(t)

m2(t)
+ f(t), θp(0) = θ0, t ∈ {0, 1, . . .} (3.5.10)

where the adaptation gain matrix Γ = diag{Γ1, γm+1,Γ2} with Γ1 ∈ Rm×m, 0 <

Γ1 = ΓT
1 < 2Im, 0 < γm+1 < 2, and Γ2 ∈ Rn×n, 0 < Γ2 = ΓT

2 < 2In, θ0 is an initial

estimate of θ∗
p, and m(t) =

√
κ+ ϕT(t)ϕ(t) with κ > 0. The parameter projection

term is f(t) = [01×m, fm+1(t),01×n]
T with fm+1(t) designed to ensure |θpm+1(t)| =

|k̂p| ∈ [kp0,+∞) (using the knowledge of kp0 ≤ |kp|), where θpm+1(t) is the (m+ 1)th

component of θp(t).

Controller Structure. The control law (3.4.2), i.e.,

u(t) = θT
1 (t)ω1(t) + θT

2 (t)ω2(t) + θ3(t)ym(t+ n∗) (3.5.11)

is applied to the plant (3.5.8) with the controller parameters θi(t) = θi, i = 1, 2, 3,

computed from the design equation

θT
1 aλ(z)P̂ (z, p̂) + θT

2 bλ(z)k̂pẐ(z, ẑ) = P̂ (z, p̂)− k̂pθ3Ẑ(z, ẑ)z
n∗

where P̂ (z, p̂) and Ẑ(z, ẑ) are in the same form as in (3.5.6) with s replaced by z.

For k = 1, the controller (3.5.11) with the design equation (3.5.6) and the adaptive

law (3.5.10) ensures closed-loop signal boundedness and limt→∞(y(t)−ym(t)) = 0 [15].

Gain Margin Analysis. The same properties hold for any constant k within a

specified range; that is, we have the gain margin result:

Proposition 3.5.2. A discrete-time SISO indirect MRAC system has gain margin[
kp0
|kp| ,+∞

)
, where kp0 > 0 is the lower bound of |kp|, used in the adaptive law (3.5.10).

Proof: When the positive constant gain k is not equal to 1, the high frequency gain of

the plant becomes kpk, and θp(t) becomes the estimate of the new parameter vector
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as in (3.5.7). The control law (3.5.11) still ensures desired closed-loop performance if

|kpk| ≥ kp0 > 0, i.e., k ≥ kp0
|kp| , which is derived from the assumption based on which

(3.5.10) is designed for k = 1. Therefore, the discrete-time indirect MRAC design

has gain margin
[
kp0
|kp| ,+∞

)
. �

Remark 3.5.3. Comparing the conclusion with that of the discrete-time SISO direct

MRAC design, we can claim that if a larger system gain margin is desired, indirect

MRAC scheme can be considered as an alternative.

Remark 3.5.4. Similar to Remark 3.4.2, some k ∈
(
0, kp0|kp|

)
may result in a stable

system under some initial conditions, and the range of k in Propositions 3.5.1 and

3.5.2 are only sufficient conditions for closed-loop stability and asymptotic output

tracking of the adaptive control systems.

3.5.3 Design for A Class of Multivariable Systems

Elliott and Wolovich’s Algorithm. In [78], Elliott and Wolovich used the left

coprime polynomial matrix decomposition of the system transfer matrix in developing

indirect adaptive control strategies, because this parametrization can be estimated

by input and output data. In this case, the system is expressed as

y(t) = G(D)[u](t), G(D) = P−1
l (D)Zl(D) (3.5.12)

where Zl(D) and Pl(D) are left coprime polynomial matrices in D with Pl(D) being

row reduced.

Assume the observability indices of G(D), denoted as νi, i = 1, 2, . . . ,M , are

known, and let ν = max1≤i≤M νi, the observability index of G(D). Without loss of

generality, assume the row degrees of P T
l (D) are ∂ci(P

T
l (D)) = νi, and the matrix

Pν ∈ RM×M , containing the coefficients of the Dνi term in each column of Pl(D), is
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unity lower triangular. By filtering the input-output equation of the system model,

a parametrization linear in the unknown plant parameters contained in Zl(D) and

Pl(D) can be obtained, based on which standard adaptive estimation techniques can

be used for estimation of the plant parameters.

The transfer matrix Wm(D) of the reference model is chosen to be Wm(D) =

ξ−1
m (D), and the controller structure is in the form of (3.3.14), i.e.,

u(t) = ΘT
1ω1(t) +ΘT

2ω2(t) +Θ20y(t) +Θ3r(t) (3.5.13)

with the parameters obtained from the design equation:

IM −ΘT
1F (D)− (ΘT

2F (D) +Θ20)Ĝ(D) = Θ3ξm(D)Ĝ(D) (3.5.14)

where Ĝ(D) = P̂−1
l (D)Ẑl(D) with P̂l(D) and Ẑl(D) being the estimates of Pl(D)

and Zl(D), and F (D) is defined as in Section 3.1 together with ω1(t) and ω2(t).

To solve the plant-model matching equation (3.5.14) online, we need to assume

that Ĝ(D) at each time instant t has the same interactor matrix ξm(D), and the

corresponding estimated high frequency gain matrix K̂p is nonsingular. However,

since it is a row-by-row estimation, an algorithm ensuring a nonsingular K̂p is not

available. Thus here we consider a special case, which is an expansion from the SISO

indirect MRAC algorithms (see Sections 3.4.1 and 3.4.2).

Design for A Class of Multivariable Systems. We make the assumptions

that the highest order coefficient matrix of Pl(D) is the identity matrix IM , and that

of Zl(D) is lower triangular with nonzero diagonal elements; that is,

Pl(D) = diag{Dν1 , . . . , DνM}Pν + lower degree terms

Zl(D) = diag{Dν1−1, . . . , DνM−1}Zν−1 + lower degree terms
(3.5.15)

where Pν = IM , and Zν−1 is lower triangular with the diagonal elements zdi ̸= 0,

i = 1, . . . ,M . Therefore, the plant transfer matrix G(D) has an interactor matrix

ξm(D) = D · IM , and the plant high frequency gain matrix is Kp = Zν−1.
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Note that det(Zν−1) =
∏M

i=1 zdi. To ensure a nonsingular estimation of Kp =

Zν−1, we need to make the following assumption for zdi, i = 1, 2, . . . ,M :

(A3.5-2) the sign of zdi, sign[zdi], is known, and so is the lower bound zdi0 of |zdi|

such that 0 < zdi0 ≤ |zdi|.

Plant model parametrization. To obtain a parametrization of the plant model

(3.5.12) with parameter matrices in (3.5.15), we filter both sides of (3.5.12) with 1
Λe(D)

for a chosen monic stable polynomial Λe(D) of degree ν. After ignoring exponentially

decaying terms, we can obtain

ȳ(t) , diag{Dν1 , . . . , DνM} 1

Λe(D)
[y](t)

= (−Pl(D) + diag{Dν1 , . . . , DνM}) 1

Λe(D)
[y](t) +Zl(D)

1

Λe(D)
[u](t)

= [θ∗T
1 ζ1(t), . . . ,θ

∗T
M ζM(t)]T

where θ∗
i ∈ RM(2νi−1)+i contains the plant parameters; that is, the constant coeffi-

cients from the polynomial matrices Pl(D) and Zl(D), and ζi(t) ∈ RM(2νi−1)+i are the

filtered vector signals of u(t) and y(t). Letting θi(t) be the estimate of θ∗
i , and intro-

ducing the estimation errors ϵi(t) = θT
i (t)ζi(t) − ȳi(t) for ȳ(t) = [ȳ1(t), . . . , ȳM(t)]T ,

we have the error equations

ϵi(t) = θ̃T
i (t)ζi(t), θ̃i(t) = θi(t)− θ∗

i (3.5.16)

Error model and adaptive law. Based on the error equations (3.5.16), we choose

the gradient adaptive laws with parameter projection to update θi(t):

θ̇i(t)
θi(t+ 1)− θi(t)

}
= −Γiζi(t)ϵi(t)

m2(t)
+ fi(t), i = 1, 2, . . . ,M (3.5.17)

wherem2(t) = 1+
∑M

i=1 ζ
T
i (t)ζi(t), and the adaptive gain matrix Γi = diag{Γi1, γi,Γi2}

with Γi1 ∈ RMνi×Mνi , γi ∈ R, Γi2 ∈ R(M(νi−1)+i−1)×(M(νi−1)+i−1). For continuous-

time case, Γi1 = ΓT
i1 > 0, Γi2 = ΓT

i2 > 0, γi > 0, while for discrete-time case,
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0 < Γi1 = ΓT
i1 < 2IM , 0 < Γi2 = ΓT

i2 < 2Iν , and 0 < γi < 2. The parameter

projection term fi(t) has the form fi(t) = [01×Mνi , fi,Mνi+1(t),01×M(νi−1)+i−1]
T with

fi,Mνi+1(t) designed to ensure the estimate of the (Mνi+1)th component of θi(t), ẑdi,

to be away from zero; that is, |θi,Mνi+1(t)| = |ẑdi| ∈ [zdi0,+∞) (using the knowledge

of zdi0 ≤ |zdi|, i = 1, 2, . . . ,M).

With the adaptive laws (3.5.17), the design equation (3.5.14), the control law

(3.3.14) applied to the system (3.5.12) can achieve closed-loop signal boundedness

and asymptotic output tracking.

Remark 3.5.5. With some minor modifications to the system parametrization, the

indirect MRAC design presented above can be readily extended to the case when Zν−1

in (3.5.15) is upper triangular. A similar design follows as well if (3.5.15) is modified

based on some knowledge of the highest row degrees of Zl(D), if available. Further

extensions to the cases when the parameter matrices Zν−1 and Pν are of a more

general form requires an adaptive estimation scheme that can ensure a nonsingular

estimation of Kp, which is still an open issue to be addressed.

Gain Margin Analysis. The same desired closed-loop performance holds for

the case when a positive definite gain matrix K > 0 as in (3.1.2) is present at the

control input, as long as the gains ki are within some lower-bounded ranges; that is,

we have the GM result:

Proposition 3.5.6. The closed-loop system, consisting of the system (3.5.12) and

the controller (3.5.13) with the adaptive laws (3.5.17) and design equation (3.5.14),

in either continuous or discrete time, has gain margins
[
zdi0
|zdi|

,+∞
)

for ki of K =

diag{k1, k2, . . . , kM}, where zdi0, used in the adaptive law (3.5.17), are the known

lower bounds f |zdi| such that 0 < zdi0 ≤ |zdi|, i = 1, 2, . . . ,M .
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Proof: In the presence of K, the controlled system is y(t) = G(D)K[u](t), and its

high frequency gain matrix isKpK = Zν−1K, which needs to satisfy the assumptions

under which the adaptive laws (3.5.17) are designed for K = IM , in order for closed-

loop stability and asymptotic tracking to be achieved. That is, for K ̸= IM , the

diagonal entries of Zν−1K must be greater than the assumed lower bounds zdi0, i.e.,

|zdiki| ≥ zdi0, from which we can obtain ki ∈
[
zdi0
|zdi|

,+∞
)
, i = 1, 2, . . . ,M . Therefore,

we have the stated GM result. �

Remark 3.5.7. WhenM = 1, the MIMO system (3.5.12) reduces to the SISO system

P (D)[y](t) = kpZ(D)[u](t). For indirect SISO MRAC design, we make the assump-

tion that the lower bound kp0 of |kp| such that 0 < kp0 ≤ |kp| is known, and have

derived the gain margin for k to be
[
kp0
|kp| ,+∞

)
(see Sections 3.4.1 and 3.4.2). We

can see that the GM result in Proposition 3.5.6 is a direct extension from the SISO

result.

Remark 3.5.8. This result is similar to that for the prediction model based adaptive

(one-step-ahead) control scheme [77] (see Section 3.4.2), whose gain margin has an

infinite upper bound but with a finite lower bound determined by the lower bound

on |kp| (for the SISO case) used in parameter projection for ensuring a nonsingular

control implementation.

Remark 3.5.9. For both continuous-time and discrete-time indirect MRAC design-

s, the gain margin is [ki0,+∞), where ki0 > 0 can be made small by reducing the

parameter lower bound used in parameter projection of the adaptive laws (for plant

identification) for avoiding control singularity.
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3.6 Gain Margins of Sampled-Data Adaptive Con-

trol Systems

Sampled-data systems are a special class of discrete-time systems in that their dynam-

ics is obtained by discretizing continuous-time system dynamics with sample-and-hold

devices operating on the inputs. It is thus of interest to study the effect of sample

time on the gain margin.

3.6.1 MRAC of Sampled-Data Systems

Consider a strictly proper continuous-time system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(3.6.1)

with unknown parameter matrices A ∈ Rn×n, B ∈ Rn×M and C ∈ RM×n, and the

system input and output vectors u(t),y(t) ∈ RM . Its transfer matrix representation

is G(s) = C(sI −A)−1B. The solution to the state equation in (3.6.1) is

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ) dτ, t > t0 ≥ 0 (3.6.2)

To find a discrete-time model for this system, we consider the state transition within

one sample period T . When the plant inputs are preceded by samplers and zero-order

holds (ZOH), we have u(τ) = u(kT ), kT ≤ τ < (k+1)T , where k is any nonnegative

integer. Setting t = (k+1)T and t0 = kT in (3.6.2) leads to the sampled-data system

in the state space form:

x((k + 1)T ) = Adx(kT ) +Bdu(kT )

y(kT ) = Cdx(kT ), k = 0, 1, 2, . . .
(3.6.3)

with Ad = eAT , Bd =
∫ T
0
eAτdτB, and Cd = C; furthermore, the transfer matrix of

the system is

G(z) = Cd(zI −Ad)
−1Bd (3.6.4)
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To apply MRAC schemes to the sampled-data system (3.6.3), the respective design

conditions in discrete time must be satisfied after sampling of the system (3.6.1), then

direct (Section 3.4) or indirect (Section 3.5) designs can be applied. Note that for

direct MRAC, a minimum-phase condition is required; however, it is well known that

some minimum-phase continuous-time systems may become nonminimum-phase after

sampling, especially when T is small [79]. Moreover, the zero structure at infinity,

characterized by the modified interactor matrix ξm(z), for choosing the reference

model system, may not be fixed; that is, it depends on the sample time T and may

change for different T .

3.6.2 Gain Margin Analysis

For each value of T , the GM of the sampled-data adaptive control system can be

computed based on Propositions 3.4.5 and 3.5.6. Here we explore the effect of sample

time T on the GM.

Direct MRAC. Recall that the GM for discrete-time direct MRAC systems is

finite with upper bounds: ki ∈ (0, k0i ], where k
0
i depend on the system high frequency

gain matrix Kp, as well as some upper bounds of Kp that are used for parameter

adaptation. In particular, the GM result reduces to k ∈ (0,
k0p
|kp| ] in the SISO case,

where k0p is the known upper bound of |kp| such that 0 < |kp| ≤ k0p. For sampled-data

systems, Kp depends on T , and to study its effect on the GM, we focus on such

systems with the minimum-phase property invariant under sampling with sample

time T . Sufficient stability conditions exist for zeros of SISO [80] as well as MIMO

sampled-data systems [81].

For simplicity we may assume a uniform modified interactor matrix, i.e., ξm(z) =

zn
∗
IM , where n∗ is the uniform vector relative degree of G(z) in (3.6.4). The high
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frequency gain matrix Kp can then be computed as

Kp = lim
z→∞

ξm(z)G(z) = CdA
n∗−1
d Bd (3.6.5)

Since Bd =
∫ T
0
eAτdτB, it is obvious that ∥Bd∥ decreases when T is reduced. When

T becomes small, from (3.6.5) we can see that ∥Kp∥ decreases, which leads to an

enlarging GM. In the limiting case, we have limT→0∥Kp∥ = 0, resulting in the GM

being infinity, which can be readily verified by (3.4.14) for the case when Kp is lower

triangular, and by (3.4.17) and (3.4.18) for the M = 2 case. Note, however, the GM

may not increase monotonously with decreasing T .

To illustrate the effect of T on the GM, we consider a second-order SISO continuous-

time system in (3.6.1) with transfer function G(s) = (3s+ 1)/[(s+ 4)(s+ 5)]. It can

be verified by (3.6.4) that after sampling, we have

G(z) =
kp(z + z0)

(z − e−4T )(z − e−5T )

kp = −8

3

(
1− e−3T

)
+

11

4

(
1− e−4T

)
> 0

z0 =
1

kp

(
−8

3
e−4T +

11

4
e−3T − 1

12
e−7T

)
< 1

(3.6.6)

for all T > 0; that is, the sampled-data system is minimum-phase with relative degree

n∗ = 1. Thus kp is the high frequency gain with sign[kp] > 0, and a modified interactor

is ξm(z) = z. For direct MRAC design, the upper bound of |kp| is assumed to be

known. If we pick k0p = 0.5 in the design, the GM of the closed-loop system is (0, 0.5
|kp| ].

The magnitude of kp and the upper bound of the GM are plotted in Fig. 3.2. Clearly,

limT→0 |kp| = 0, and the upper bound on GM tends to ∞, which is exactly the GM

for the corresponding continuous-time MRAC system. Note that the GM does not

increase monotonously with decreasing T .

Indirect MRAC. Unlike direct MRAC, the GM for discrete-time indirect M-

RAC systems is infinite for upper bound but with finite lower bounds, that is,
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Figure 3.2: High frequency gain kp and GM upper bound k0 versus T .

ki ∈ [ki0,+∞), where ki0 > 0 depend on the system high frequency gain matrix

Kp, as well as some lower bounds of Kp that are used for plant identification. In

particular, the GM result reduces to k ∈ [ kp0|kp| ,+∞) in the SISO case, where kp0 is the

known lower bound of |kp| such that 0 < kp0 ≤ |kp|. Since an algorithm for ensuring

nonsingular estimation of Kp of a general plant in (3.5.12) is complicated, to show

the effect of T on the GM, we consider the class of sampled-data systems that can be

represented by (3.5.15). Furthermore, we need to assume that the design conditions

such as knowledge of the observability indices and the lower bound information stated

in Assumption (A3.5-2) are invariant under sampling. For a system whose modified

interactor matrix is ξm(z) = zIM , the high frequency gain matrix is

Kp = lim
z→∞

ξm(z)G(z) = CdBd = Zν−1 (3.6.7)

where Zν−1 is the highest order coefficient matrix of the numerator polynomial matrix
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in a left coprime decomposition of G(z). From (3.6.7) we can see that a decreasing

T causes ∥Kp∥ to decrease, and when T becomes sufficiently small, the magnitude of

the diagonal elements of Kp, |zdi|, i = 1, 2, . . . ,M , decrease with T . This leads to a

shrinking GM (its lower bounds are increasing), which vanishes in the limiting case

as T → 0.

The effect of T on the GM can also be illustrated with the sampled-data system

(3.6.6) if indirect MRAC is applied. The GM of this system is [ kp0|kp| ,∞). Figure 3.2

shows that kp decreases when T becomes small, and the GM shrinks and vanishes as

T → 0.

3.7 Simulation Study

In this section we present anM = 2 example to illustrate the gain margins of discrete-

time direct MRAC design.

We consider a controlled plant (3.1.1) with u(t),y(t) ∈ R2, and the transfer matrix

G(z) =

[
1

z−0.5
0.6
z+0.3

1
z+0.5

1
z+0.7

]
which can be expressed as G(z) = Z(z)P−1(z), where

Z(z) =

[
z + 0.5 0.6(z + 0.7)
z − 0.5 z + 0.3

]
, P (z) = diag{(z+0.5)(z−0.5), (z+0.3)(z+0.7)}

with observability index ν = 2. It can be verified that G(z) is minimum-phase, and

Z(z) and P (z) are right coprime with P (z) column proper.

The modified interactor matrix and the associated high frequency gain matrix are

ξm(z) =

[
z 0
0 z

]
, Kp =

[
1 0.6
1 1

]
from which we have d∗1 = 1, d∗2 = 0.4, sign[d∗1] > 0 and sign[d∗2] > 0. With d01 = 1.2

and d02 = 1.0, the standard MRAC Assumptions (A3.1-1)–(A3.1-4D) are all satisfied.
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Moreover, the unique LDU decomposition of Kp is

L =

[
1 0
1 1

]
, D∗ =

[
1 0
0 0.4

]
, U =

[
1 0.6
0 1

]
The reference model is chosen to be (3.1.3) with the transfer matrix Wm(z) =

ξ−1
m (z) and the reference input r(t) = 10[cos(0.15t), sin(0.1t) + 2 sin(0, 2t)]T.

The controller structure is (3.3.14). With the specifications of Λ(z) = z, ξm(z),

P (z), and Z(z) as above, its nominal parameter matrices Θ∗
1, Θ

∗
2, Θ

∗
20, Θ

∗
3 = K−1

p

can be computed from (3.3.2).

The adaptive laws are (3.4.7) with the adaptation gain (matrix) chosen as Γθ2 = 1

and Γ = I2. From (3.4.15) and (3.4.16), γ1 and γ2 must be chosen such that γ1 ∈

(0, 5/3) and γ2 ∈ (0, 0.9745). In the simulation, we pick γ1 = 1 and γ2 = 0.8, and thus

we can obtain Ls = LDs(U
T)−1D−1

s , S = UTD−1
s D∗U , and Ψ∗ = DsS. Besides,

θ∗2 can obtained from Θ∗
0 = L−1

s − I2. The initial parameter estimates θ2(0), Θ(0),

and Ψ(0) are chosen as

θ2(0) = 0.95θ∗2, Θ(0) = 0.95Θ∗, Ψ(0) = 0.8Ψ∗.

Note that the nominal parameters θ∗2, Θ
∗, and Ψ∗ are obtained for K = IM and

depend on the design parameters in Ds. For the gain matrix variations K ̸= IM , the

transfer matrices of the plant and the reference model do not match each other with

these parameters.

From the gain margin results in (3.4.17) and (3.4.18), we can obtain k1 ∈ (0, 1.2];

the GM range of k2 depends on k1. With k1 = 0.9, we have k2 ∈ (0, 1.4427]. Simu-

lations are performed for three cases, depending on different scenarios of gain matrix

variation: (1) K = diag{k1, k2} = diag{0.9, 1.3}; (2) K = diag{0.9, 1.8}; and (3)

K = diag{0.9, 1.5}. The output tracking error is plotted in Figures 3.3–3.5, respec-

tively.
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Figure 3.3: Output tracking error e(t) = [e1(t), e2(t)]
T for k1 = 0.9 ∈ (0, 1.2] and

k2 = 1.3 ∈ (0, 1.4427].
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Figure 3.4: Output tracking error e(t) = [e1(t), e2(t)]
T for k1 = 0.9 ∈ (0, 1.2] and

k2 = 1.8 ̸∈ (0, 1.4427].
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Figure 3.5: Output tracking error e(t) = [e1(t), e2(t)]
T for k1 = 0.9 ∈ (0, 1.2] and

k2 = 1.5 ̸∈ (0, 1.4427].

From the simulation results, we can see that closed-loop signal boundedness and

asymptotic tracking performance are achieved for gain matrix variation K inside the

GM under any initial conditions (Fig. 3.3). For K outside the GM, the closed-loop

system becomes unstable (Fig. 3.4), but if K is close to the GM upper bounds, the

system can be stable under some initial conditions (Fig. 3.5). This example illustrates

the main features of the gain margin of adaptive control systems: it is a sufficient range

for control gain variation in which stability and asymptotic tracking performance

can be maintained by the adaptive control design; when all initial conditions are

considered, it is necessary as well.

In this chapter, the gain margin problem has been studied for several model refer-

ence adaptive control (MRAC) systems: those with direct or indirect, continuous-time

or discrete-time designs. The obtained analytical gain margin results are also applica-
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ble to other adaptive control systems such as adaptive state feedback control systems

and adaptive nonlinear control systems. For a direct continuous-time MRAC design,

the gain margin is (0,+∞), while for a direct discrete-time design, the gain margin is

finite with an upper bound that can be made large by reducing the adaptation gain.

For indirect MRAC designs, in either continuous time or discrete time, the gain mar-

gin is infinity with a lower bound that can be made small by reducing the parameter

lower bound used in parameter projection of adaptive laws (for plant identification)

for avoiding control singularity. In other words, the gain margins of MRAC systems

can be readily enlarged by choosing proper design parameters, while ensuring both

signal boundedness and asymptotic tracking. The effect of sample time T on the

gain margin of sampled-data adaptive control systems is studied. It is shown that

as T → 0, for direct MRAC designs, the gain margin increases and coincides with

the continuous-time result, while for indirect MRAC designs, the gain margin shrinks

and vanishes. The gain margin results indicate that the use of a MRAC scheme has

a significant advantage over a non-adaptive control scheme whose gain margin for

signal boundedness may be limited and for asymptotic tracking may shrink to a fixed

point (that is, any K ̸= IM leads to a non-zero tracking error). On the other hand, it

is interesting to compare the GM of adaptive control systems (especially those with

a bounded GM range) with some non-adaptive control systems with well-developed

control designs such as LQR, for the study of robustness of system stability (signal

boundedness) with respect to control gain variations.



Chapter 4

Performance Robustness of MRAC
with respect to Reduced Actuator
Effectiveness

In this chapter, the problem of performance robustness of model reference adap-

tive control (MARC) schemes with respect to reduced actuator effectiveness (loss-of-

effectiveness) is studied. Reduced actuator effectiveness is modeled by an uncertain

gain matrix at the control inputs. MRAC systems are analyzed to determine the ro-

bustness of the desired closed-loop performance of stability and asymptotic tracking

with respect to such reductions.

This chapter is organized as follows. In Section 4.1, the performance robustness

problem is stated. We will show in Section 4.2 that the closed-loop performance of

direct continuous-time multivariable MRAC designs is robust to arbitrary reduction

in actuator effectiveness, while as proved in Section 4.3, that of their discrete-time

counterparts is design-based. Indirect MRAC schemes are considered in Section 4.4.

The main features of the performance robustness properties of the LDS based MRAC

design are illustrated by simulation results in Section 4.5.
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4.1 Performance Robustness Issue for MRAC with

respect to Reduced Actuator Effectiveness

Consider theM -inputM -output linear time-invariant plant with transfer matrix rep-

resentation:

y(t) = G(D)[up](t) (4.1.1)

where up(t),y(t) ∈ RM are the plant input and output vectors,G(D) = Z(D)P−1(D)

is strictly proper and full rank, and Z(D), P (D) ∈ RM×M are right coprime poly-

nomial matrices with P (D) being column proper. As in Chapter 3, the symbol D is

used, in the continuous-time case, as the time-differentiation operator: D[x](t) = ẋ(t),

t ∈ [0,+∞); or in the discrete-time case, as the time-advance operator: D[x](t) =

x(t+ 1), t ∈ {0, 1, 2, 3, . . .}.

Denoting u(t) ∈ RM as the control signal generated from an adaptive controller,

and K ∈ RM×M as the actuator effectiveness matrix that assumes the following form

K = diag{k1, . . . , kM}, 0 < ki ≤ 1, i = 1, 2, . . . ,M (4.1.2)

we have

up(t) = Ku(t) (4.1.3)

In the absence of reduction in actuator effectiveness, K is an identity matrix IM ∈

RM×M , and up(t) = u(t).

Figure 4.1 depicts the scenario we are considering in this chapter. The adap-

tive controller, denoted by C1(D) and C2(D), has been designed for K = IM , and

ensures closed-loop stability (signal boundedness) and asymptotic output tracking

performance; that is, y(t) asymptotically tracks a desired trajectory ym(t) generated

from a reference model system

ym(t) = Wm(D)[r](t) (4.1.4)
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Figure 4.1: Adaptive control system with reduction in actuator effectiveness.

where Wm(D) ∈ RM×M is a rational transfer matrix and r(t) ∈ RM is a bounded,

piecewise continuous reference input signal. Our objective is to study whether or not

the designed adaptive controller still ensures the desired closed-loop performance in

the presence of reduction in actuator effectiveness, i.e., when 0 <K < IM .

The high frequency gain matrix is defined as Kp = limD→∞ ξm(D)G(D) with

ξm(D) being the modified interactor matrix of G(D). For MRAC designs based on

decompositions ofKp, the reference model transfer matrixWm(D) in (4.1.4) is chosen

to be Wm(D) = ξ−1
m (D).

MRAC Assumptions. For MRAC designs, the standard assumptions are (A3.1-

1)–(A3.1-4) for continuous-time designs, with an additional Assumption (A3.1-4D)

for discrete-time designs (see Section 3.1).

Under these design conditions, we have presented in Chapter 3 direct and indi-

rect MRAC schemes applied to both single-input, single-output (SISO) and multi-

input, multi-output (MIMO) plants, in continuous time, as well as discrete time. The

desirable closed-loop stability properties and asymptotic tracking performance are

achieved for K = IM .

For multivariable MRAC an important design condition is given for Kp in As-

sumption (A3.1-4). In the presence of reduction in actuator effectiveness, the high

frequency gain matrix becomes KpK with K in (4.1.2). We note that Lemma 3.2.1
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(Section 3.1) is crucial for the performance robustness analysis of matrix decomposi-

tion based multivariable MRAC designs, as it relates the LDU decomposition of Kp

with that of KpK. From this lemma, we can conclude that the leading principle mi-

nors of KpK are also nonzero, and their sign information is the same as that of Kp.

In other words, the design conditions stated in Assumption (A3.1-4) are invariant

in the presence of reduction in actuator effectiveness. Furthermore, Lemma 3.2.1 is

crucial for obtaining the performance robustness conditions for direct discrete-time

MRAC designs.

The GM results can be directly applied for solutions of the performance robustness

problem with respect to reduced actuator effectiveness. As shown in the following

sections, by comparing the GM results with the range of actuator effectiveness matrix

defined in (4.1.2), we can determine whether or not the performance of an MRAC

design is robust to and to what extent it can handle the reduction in actuator effec-

tiveness.

4.2 Continuous-Time MIMO Direct MRAC

There are some well-known direct multivariable MRAC designs based on decomposi-

tions of Kp [15,73] (the LDS decomposition based design is presented in Section 3.3).

To study their performance robustness with respect to reduced actuator effectiveness,

the actuator effectiveness matrix K, together with the plant (4.1.1) is treated as the

new controlled plant.

The gain margins of continuous-time MRAC designs are infinity; that is, the

closed-loop performance remains for any control gain at the control inputs, thus we

have:

Proposition 4.2.1. The performance of direct continuous-time multivariable MRAC
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designs based on high frequency gain matrix decompositions is robust with respect to

arbitrary reduction in actuator effectiveness.

Proof: From (4.1.1) and (4.1.3), we have

y(t) = G(s)K[u](t)

as the new controlled plant, and its high frequency gain matrix isKpK. From (2.2.10)

and (3.2.1), we can see that the presence of reduction in actuator effectiveness, i.e.,

0 < K < IM does not violate the assumptions of nonzero leading principle minors

of the high frequency gain matrix under (A3.1-4), and their sign information is the

same as that of Kp. Therefore, the adaptive law for K = IM can still be used

for 0 < K < IM to achieve closed-loop performance of signal boundedness and

asymptotic tracking. This is also true for direct continuous-time SISO MRAC designs.

�

The gain matrix decomposition based continuous-time MRAC designs can adap-

tively compensate for arbitrary reduction in actuator effectiveness to ensure desired

closed-loop performance. However, for discrete-time designs, although the perfor-

mance of SISO MRAC systems is robust with respect to reduction in actuator ef-

fectiveness, the performance robustness of multivariable MRAC systems are design-

based, which is shown in the next section.

4.3 Discrete-Time MIMO Direct MRAC

We will first analyze the performance robustness properties of the MRAC design

based on the LDS decomposition of Kp in this section. As a comparison, the LDU

based design is analyzed to show that the performance robustness of the discrete-time

MRAC systems under reduction in actuator effectiveness is design-based.
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4.3.1 Performance Robustness of the LDS Based Design

Among the gain matrix decomposition based MRAC designs, the LDS based design

assumes a simple adaptive controller structure, and its error model parametrization

and the auxiliary signal structures are simple for implementation, as shown in Section

3.4.2.

Similar to the analysis in Section 4.2 for continuous-time designs, the presence of

reduction in actuator effectiveness does not violate the assumption of nonzero leading

principle minors of the high frequency gain matrix, and their sign information is

invariant with 0 < K < IM . However, for the aforementioned LDS based design to

ensure the closed-loop signal boundedness and asymptotic tracking performance, the

new condition for 0 <K < IM , similar to (3.4.8) for K = IM , is

0 <DsŪ
TD−1

s D̄∗ŪDs < 2IM

which needs to be satisfied for the chosen Ds in (3.4.8). With (3.2.1), this new

condition is equivalent to

0 <DsKUTK−1D−1
s D∗UKDs < 2IM (4.3.1)

from which it can be seen that for ki of K, there is an upper bound which depends

on γj, kj, j = 1, . . . , i − 1, d∗j , d
0
j , j = 1, . . . , i and the nonzero elements of U , such

that the closed-loop performance is still achieved. Thus we have:

Proposition 4.3.1. The stability and asymptotic tracking performance of direct discrete-

time multivariable MRAC designs based on the LDS decomposition of Kp may not be

robust with respect to some reduction in actuator effectiveness.

Proof: For clarity of presentation and without loss of generality, we consider the

case for M = 2. For K = I2, to ensure the desired closed-loop performance, Ds =
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diag {sign[d∗1]γ1, sign[d∗2]γ2} in (3.4.7) is chosen to satisfy (3.4.8); that is, γ1 and γ2

are chosen such that

0 < γ1 <
2

d01
(4.3.2)

0 < γ2 <
4√

(d02)
2 +

16a2|d01|
α(γ1)

+ |d02|
(4.3.3)

with α(γ1) = −γ1(d01γ1−2) and the constant a being the nonzero off-diagonal element

of the 2× 2 unity upper triangular matrix U 1.

In the presence of reduction in actuator effectiveness, the performance robustness

condition (4.3.1) yields

|d∗1|k1γ1 − 2 < 0

(|d∗1|k1γ1 − 2)(|d∗2|k2γ2 − 2) > 2a2|d∗1|
k22γ

2
2

k1γ1

which, together with 0 < ki ≤ 1, i = 1, 2, leads to

k1 ∈ (0, 1] (4.3.4)

k2 ∈
{

(0, k02) , if 0 < k1 ≤ k10
(0, 1] , if k10 < k1 ≤ 1

(4.3.5)

k02 =
4(√

(d∗2)
2 +

16a2|d∗1|
ᾱ(k1γ1)

+ |d∗2|
)
γ2

(4.3.6)

with ᾱ(k1γ1) = −k1γ1(|d∗1|k1γ1 − 2), and

k10 =
1−

√
1− 2(|d∗1|aγ2)2

2−|d∗2|γ2

γ1|d∗1|
(4.3.7)

We can conclude from (4.3.4)–(4.3.7) that there exists an actuation level k10 such

that if k10 < k1 ≤ 1, the LDS based design can handle arbitrary actuator effective-

ness reduction in k2. However, for 0 < k1 ≤ k10, an upper bound k02 < 1 depending

1The inequalities (4.3.2) and (4.3.3) can be obtained by solving (3.4.8) with the facts that D∗ =
diag{d∗1, d∗2}, sign[d∗i ]d∗i = |d∗i |, and the knowledge of d0i such that 0 < |d∗i | ≤ d0i , i = 1, 2, from
Assumption (A3.1-4D).
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on k1, in addition to other design and plant parameters, is imposed on k2 to ensure

closed-loop performance. Moreover, both k10 and k
0
2 depend on the unknown param-

eters a in U , and d∗1, d
∗
2 in D∗ given in (2.2.10). In other words, the reduction in

actuator effectiveness the LDS based design can handle, depends on the knowledge

of the leading principle minors of Kp and the nonzero elements of U . When the

needed condition (4.3.1) is violated, the adaptive control system may become unsta-

ble. Therefore, the performance of the LDS based design may not be robust to some

patterns of reduction in actuator effectiveness. �

Remark 4.3.2. In general, explicit ranges of ki in which the LDS based design can

still ensure the desired performance is difficult to derive from (4.3.1). Numerical

methods can be used. By the Schur complement, (4.3.1) is equivalent to[
2IM LdD

∗KUT

UKD∗Ld KLd

]
> 0 (4.3.8)

with Ds = LdD
∗ chosen to satisfy (3.4.8). A linear cost function can then be con-

structed, and the problem is converted to the optimization of the cost function subject

to the LMIs in (4.3.8) and 0 <K < IM .

Remark 4.3.3. The performance robustness properties of the LDS based design be-

comes manifest when U = IM , i.e., Kp is lower triangular. The matrix inequalities

in (3.4.8) and (4.3.1) can thus be decomposed into simple scalar inequalities decoupled

in γi and ki, i = 1, 2, . . . ,M , respectively. To be specific, with (2.2.10) and (2.2.11),

the condition in (3.4.8) leads to 0 < γi <
2
d0i
. In the presence of reduction in actuator

effectiveness, the condition in (4.3.1) yields 0 < ki <
2

|d∗i |γi
, and we have

2

|d∗i |γi
>

d0i
|d∗i |

≥ 1, i = 1, 2, . . . ,M

from which we conclude that the performance of the LDS based design is robust with

respect to arbitrary reduction in actuator effectiveness if Kp is lower triangular.
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Remark 4.3.4. The advantage of online computational efficiency of the LDS based

design is at the expenses of much design effort, as the adaptation gain matrix Ds for

(3.4.7) should be carefully chosen such that (3.4.8), which is not in explicit form of

γi and requires knowledge of U , is satisfied. The choices of the adaptation gains, γi,

are not straightforward even for M = 2, as shown in (4.3.2) and (4.3.3), and require

the knowledge of the off-diagonal element a of U . Furthermore, the choices affect the

performance robustness properties of the design.

4.3.2 Performance Robustness of the LDU Based Design

The controller structure based on an LDU decomposition of Kp is derived from

(3.3.14) based on an LDS based design.

With Θ∗
3 = K−1

p and Kp = LD∗U , the matching equation (3.3.12) leads to

D∗(u−Φ∗
0u−Φ∗T

1 ω1 −Φ∗T
2 ω2 −Φ∗

20y −Φ∗
3r) = L−1ξm(z)[y − ym] (4.3.9)

with Φ∗
0 = I−U , Φ∗

20 = UΘ∗
20, Φ

∗
i = UΘ∗

i , i = 1, 2, 3, which motivates the controller

structure

u(t) = Φ0u(t) +ΦT
1ω1(t) +ΦT

2ω2(t) +Φ20y(t) +Φ3r(t)

where Φi, i = 0, 1, 2, 20, 3, is the estimate of Φ∗
i .

Error Model. Denoting Φ̃(t) = Φ(t) − Φ∗ with Φ = [Φ0,Φ
T
1 ,Φ

T
2 ,Φ20,Φ3]

T

being the estimate of Φ∗ = [Φ∗
0,Φ

∗T
1 ,Φ∗T

2 ,Φ∗
20,Φ

∗
3]

T, we have from (4.3.9) that

ξm(z)[y − ym](t) +Θ∗
0ξm(z)[y − ym](t) = D∗Φ̃T(t)ω̄(t)

whereΘ∗
0 = L−1−I, and ω̄(t) = [uT(t),ωT(t)]T with ω(t) = [ωT

1 (t),ω
T
2 (t),y(t), r(t)]

T.

Introducing the filters hi(z) = 1
fi(z)

, i = 1, 2, . . . ,M , with fi(z) being a stable

polynomial of degree equal to the maximum degree of the polynomials in the first i

rows of ξm(z) and containing di(z) (the polynomial at the (i, i) position of ξm(z)) as
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a factor, letting ϕT
i (t) contain the nonzero elements of the ith row of Φ(t), ϕ∗T

i (t)

contain those of Φ∗, and χi(t) be the parts of the regressor ω̄(t) such that Φ̃Tω̄ =

[(ϕ1 − ϕ∗
1)

Tχ1, . . . , (ϕM − ϕ∗
M)TχM ]T, denoting the parameter vectors consisting of

the nonzero parameters in each row of Θ∗
0 to be θ∗

i = [θ∗i1, . . . , θ
∗
ii−1]

T and letting

their estimates to be θi(t) = [θi1(t), . . . , θii−1(t)]
T, i = 2, 3, . . . ,M , we define the

auxiliary signals ζi(t) = hi(z)[χi](t), ξi(t) = ϕT
i (t)ζi(t) − hi(z)[ϕ

T
i χi](t), and the

estimation errors to be ϵ1(t) = ē1(t) + d1ξ1(t), and ϵi(t) = ēi(t) + θT
i (t)ηi(t) + diξi(t),

i = 2, 3, . . . ,M , where ēi is from the filtered tracking error vector signal ē(t) =

H(z)ξm(z)[y−ym](t) = [ē1(t), . . . , ēM(t)]T, di(t) is the estimate of d∗i , i = 1, 2, . . . ,M ,

and ζi(t) = hi(z)[eθi](t) with eθi(t) = [eξ1(t), . . . , eξi−1(t)]
T and eξ(t) = ξm(z)[y −

ym](t) = [eξ1, . . . , eξM(t)]T, i = 2, 3, . . . ,M .

We can obtain the following error model for i = 2, 3, . . . ,M :

ϵ1(t) = d∗1(t)(ϕ1(t)− ϕ∗
1)

Tζ1(t) + (d1(t)− d∗1)ξ1(t)

ϵi(t) = (θi(t)− θ∗
i )

Tηi(t) + d∗i (ϕi(t)− ϕ∗
i )

Tζi(t) + (di(t)− d∗i )ξi(t)
(4.3.10)

Adaptive Law. Based on the error model (4.3.10), the following adaptive laws

are applied to update θi(t), ϕi(t), and di(t):

θi(t+ 1)− θi(t)−
Γθiϵi(t)ηi(t)

m2(t)
, i = 2, 3, . . . ,M

ϕi(t+ 1)− ϕi(t) = −sign[d∗i ]Γϕiϵi(t)ζi(t)

m2(t)

di(t+ 1)− di(t) = −γiϵi(t)ξi(t)
m2(t)

, i = 1, 2, . . . ,M

(4.3.11)

where 0 < Γθi = ΓT
θi < 2IM , 0 < Γϕi = ΓT

ϕi <
2
d0i
IM , and 0 < γi < 2, with d0i as in

Assumption (A3.1-4D).

The adaptive controller (4.3.9) with the adaptive laws (4.3.11) ensures closed-loop

signal boundedness and asymptotic output tracking, i.e., limt→∞(y(t) − ym(t)) = 0

[15, 73].
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For this LDU based design, the sign and upper bound information stated in As-

sumptions (A3.1-1)–(A3.1-4) and (A3.1-4D) are used explicitly for the choice of adap-

tation gains, in contrast to the LDS based design. The parametrization of the error

dynamics and the adaptation mechanism of the LDU based design are an expansion

in dimension from the well-known SISO MRAC design (see Section 3.4.1), and it

shares the same performance robustness property with its SISO counterpart.

Proposition 4.3.5. The stability and tracking performance of direct discrete-time

multivariable MRAC designs based on the LDU decomposition of high frequency gain

matrix is robust with respect to reduction in actuator effectiveness.

Proof: According to (3.2.1) and D̄∗ = diag{d̄∗1, . . . , d̄∗M}, we have d̄∗i = d∗i ki. It can

be seen that d̄∗i ̸= 0 and sign[d̄∗i ] = sign[d∗i ]. For the LDU based design for K = IM

to ensure stability and asymptotic tracking performance under reduction in actuator

effectiveness, |d̄∗i | needs to satisfy |d̄∗i | ≤ d0i (to ensure the stability condition on the

adaptation gain matrix), so we have ki ∈
(
0,

d0i
|d∗i |

]
, i = 1, 2, . . . ,M . Noting that

d0i ≥ |d∗i | from Assumption (A3.1-4D), the above range for ki contains (0, 1], which

implies that the closed-loop performance of the LDU based design is robust with

respect to reduced actuator effectiveness. �

Compared with the LDS based design, the auxiliary signal structures for the LDU

based design are more complex, which need extra signal manipulations and regroup-

ing. This effort, however, eases the design procedure, especially for the discrete-time

cases, in which the choices of adaptation gains are straightforward. Besides, as an

extension from the SISO discrete-time MRAC design, the LDU based design can

accommodate reduced actuator effectiveness while the LDS based design cannot, in

general.
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4.4 Indirect MRAC Designs

For indirect multivariable MRAC, the problem of nonsingular estimation of a general

plant high frequency gain matrix using system input and output measurements is

still a problem to be solved. Thus, we consider the indirect MRAC design for SISO

systems (see Sections 3.5.1).

One key assumption in indirect SISO MRAC design is the knowledge of the sign

information of the plant high frequency gain kp, sign[kp], and a lower bound kp0 of

|kp| such that 0 < kp0 ≤ |kp|, for avoiding singularity estimation of the unknown

plant parameters. Based on this assumption, we obtain the following performance

robustness properties:

Proposition 4.4.1. The performance of indirect MRAC designs for SISO systems

may not be robust with respect to some reduction in actuator effectiveness in the

sense that for the reduction greater than some level, stability and asymptotic tracking

performance may no longer hold.

Proof: In the presence of reduction in actuator effectiveness, i.e., with an actuator

effectiveness gain k ∈ (0, 1] at the control input, the plant high frequency gain be-

comes kpk. The indirect MRAC design for k = 1 still ensures desired closed-loop

performance if the lower bound of |kpk| is no less than kp0, i.e., k ≥ kp0
|kp| , which is

derived from the assumption based on which a parameter projection law is designed

for k = 1. Therefore, the indirect SISO MRAC design may not be able to compensate

for the reduction in actuator effectiveness with k ∈
(
0, kp0|kp|

)
. �

Remark 4.4.2. The performance robustness result in Proposition 4.4.1 applies di-

rectly to the class of indirect multivariable MRAC systems presented in Section 3.5;

that is, lower bounds exist for the effectiveness gains of each control channel such
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that the indirect MRAC design can adaptively compensate for reduced effectiveness

not below these bounds.

4.5 Simulation Study

In this section we present anM = 2 example to illustrate the performance robustness

properties of the discrete-time LDS based direct MRAC design.

We consider a controlled plant (4.1.1) with up(t),y(t) ∈ R2, and

G(z) =

[
1

z−0.5
0.6
z+0.3

1
z+0.5

1
z+0.7

]
which can be expressed as G(z) = Z(z)P−1(z), where

Z(z) =

[
z + 0.5 0.6(z + 0.7)
z − 0.5 z + 0.3

]
, P (z) = diag{(z+0.5)(z−0.5), (z+0.3)(z+0.7)}

with observability index ν = 2. It can be verified that G(z) is minimum-phase, and

Z(z) and P (z) are right coprime with P (z) column proper.

The modified interactor matrix and the associated high frequency gain matrix are

ξm(z) =

[
z 0
0 z

]
, Kp =

[
1 0.6
1 1

]
from which we have d∗1 = 1, d∗2 = 0.4, sign[d∗1] > 0 and sign[d∗2] > 0. With d01 = 1.2

and d02 = 1.0, the standard MRAC Assumptions (A3.1-1)–(A3.1-4D) are all satisfied.

Moreover, the unique LDU decomposition of Kp is

L =

[
1 0
1 1

]
, D∗ =

[
1 0
0 0.4

]
, U =

[
1 0.6
0 1

]
(4.5.1)

The reference model is chosen to be (4.1.4) with the transfer matrix Wm(z) =

ξ−1
m (z) and the reference input r(t) = [10 cos(0.15t), 10 sin(0.1t) + 20 sin(0.2t)]T.

The controller structure is in (3.3.14). With the specifications of Λ(z) = z, ξm(z),

P (z), and Z(z) as above, its nominal parameter matrices Θ∗
1, Θ

∗
2, Θ

∗
20, Θ

∗
3 = K−1

p
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can be computed from (3.3.2):

Θ∗
1 =

[
0.3 −1
1.5 −2

]
, Θ∗

2 =

[
−0.375 0.375
−0.525 0.875

]
Θ∗

20 =

[
−0.5 −1.8
0.5 3

]
, Θ∗

3 =

[
2.50 −1.5
−2.5 2.5

]
With (4.5.1), Ds = I2, Ls = LDs(U

T)−1D−1
s , and S = UTD−1

s D∗U , we have

Ψ∗ = DsS =

[
1 0.6
0.6 0.76

]
, θ∗2 = −0.4

The adaptive laws are (3.4.7) with Ds chosen to be Ds = diag[γ1, γ2] = I2 satis-

fying the design condition (3.4.8), and in the estimation error model, f(z) is chosen

as f(z) = z. The initial estimates of θ∗2, Θ
∗, Ψ∗ are taken to be θ2(0) = 0.95θ∗2,

Θ(0) = 0.95Θ∗, and Ψ(0) = 0.8Ψ∗.

From (4.3.7) we obtain k10 = 0.2584, and by (4.3.5), we know that for a reduction

in actuator effectiveness of the first control channel such that k1 > k10, the perfor-

mance is robust with respect to arbitrary k2 ∈ (0, 1]. This is shown in Fig. 4.2 where

the tracking error approaches zero asymptotically for K = diag{0.4, 0.6}. Further-

more, for a k1 ≤ k10, the stability and asymptotic tracking performance may not hold

for some k2. As is shown in Fig. 4.3, with k1 = 0.1 < k10, for k2 = 1.0, the asymptotic

tracking performance is lost (simulation was performed for a much longer time, and

only the first 1000 steps are shown here for clarity). However, as shown in Fig. 4.4,

asymptotic tracking is achieved for K = diag{0.25, 0.65}, as 0.65 < k02 = 0.8043 from

(4.3.6).

The simulation results illustrate the main features of the performance robustness

of the LDS based design.

This chapter focuses on the performance robustness properties of MRAC with

respect to reduced actuator effectiveness, the type of actuator failure in which par-

tial control surface is damaged and the actuator effectiveness reduces to a fraction
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Figure 4.2: Tracking error e(t) for K = diag{0.4, 0.6}.

of the normal level (that without reduction in effectiveness). We conduct the perfor-

mance robustness analysis of some MRAC schemes with respect to reduced actuator

effectiveness, which can be represented by an actuator effectiveness matrix at the

control inputs. We determine whether or not an MRAC scheme designed for the

normal case, i.e., that without reduction in actuator effectiveness, can still achieve

the desired closed-loop stability and asymptotic tracking performance in the presence

of reduction in effectiveness. The analytical gain margin results of MRAC systems

in Chapter 3 are applied for solutions of the performance robustness problem in the

presence of reduced actuator effectiveness.
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Figure 4.3: Tracking error e(t) for K = diag{0.1, 1.0}.
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Figure 4.4: Tracking error e(t) for K = diag{0.25, 0.65}.



Chapter 5

Adaptive Control of Piecewise
Linear Systems with State
Feedback for State Tracking

In this chapter, the adaptive state feedback for state tracking (SFST) control problem

is studied for piecewise linear systems. Piecewise linear reference model systems are

used for generating desired state trajectories and their stability properties are inves-

tigated. Adaptive state feedback control schemes are developed, and their stability

and tracking performance are analyzed and evaluated by simulation examples.

The chapter is organized as follows. The state tracking control problem for piece-

wise linear systems is stated in Section 5.1. Stability properties of piecewise linear

reference model systems are studied in Section 5.2. Adaptive control designs for single-

input systems are proposed and analyzed in Section 5.3, and multivariable designs

are presented in Section 5.4. Illustrative examples to demonstrate the effectiveness

of the proposed adaptive control schemes are provided in Section 5.5.
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5.1 Problem Statement

Consider the piecewise linear system:

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0

y(t) = CTx(t)
(5.1.1)

where x(t) ∈ Rn is the state vector, y(t) ∈ RM is the system output, u(t) ∈ RM is the

control input to be specified by an adaptive control law. The plant parameter matrices

A(t) ∈ Rn×n and B(t) ∈ Rn×M are unknown, time-varying (piecewise constant) that

can be expressed as

A(t) =
l∑

i=1

Aiχi(t), B(t) =
l∑

i=1

Biχi(t) (5.1.2)

where the unknown parameter matrix set (Ai,Bi) describes the ith subsystem, and

χi(t), i = 1, 2, . . . ,M , are the indicator functions that characterize subsystem switches

and are defined as

χi(t) =

{
1, if (A(t),B(t)) = (Ai,Bi)
0, otherwise

(5.1.3)

Since at each specific time instant t, only one subsystem is active, the indicator

functions defined as above have the following properties

l∑
i=1

χi(t) = 1, χj(t)χk(t) = 0, j ̸= k, j, k ∈ I (5.1.4)

Control Objective. The control objective is to design an adaptive state feedback

control law u(t) for closed-loop stability and asymptotic tracking by the piecewise

linear system state x(t) of a reference trajectory xm(t), generated from a reference

model system. In this case, the system state x(t) is assumed to be available for

measurement.

Next, we will first present in Section 5.3 a SFST MRAC design for the piecewise

linear systems (5.1.1) with single input, i.e., u(t) = u(t) ∈ R. We then propose
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a multivariate adaptive state feedback design for the piecewise linear systems with

dynamics offsets (2.1.6) in Section 5.4.

5.2 Time-Varying Reference Model Systems

A reference trajectory xm(t) should be specified representing the desired system be-

haviors for each subsystem and the transitions in between. Such a reference trajectory

may be specified locally for each subsystem, which is then pieced together to form

xm(t). Here, we present a reference model system which is also piecewise linear, for

the single-input case. Conditions for its stability are also applicable to the multivari-

able case.

5.2.1 Piecewise Linear Reference Model System

We consider a piecewise linear reference model system

ẋm(t) = Am(t)xm(t) + bm(t)r(t)

Am(t) =
l∑

i=1

Amiχi(t), bm(t) =
l∑

i=1

bmiχi(t)
(5.2.1)

where Ami ∈ Rn×n are stable, bmi ∈ Rn, i ∈ I, and r(t) ∈ R is a bounded, piecewise

continuous reference input signal. When the ith subsystem, (Ami, bmi), is active, as

indicated by χi(t) = 1, the state trajectory xm(t) is desirable for x(t) to follow.

5.2.2 Stability of Piecewise Linear Systems

The boundedness of xm(t) is a prerequisite in a tracking problem. Let the increasing

sequence {tk}∞k=1 denote the time instants at which subsystem switches. To generate

xm(t), the reference model system (5.2.1) switches at the same time, while in between

two successive switches, it is governed by a time-invariant parameter set (Ami, bmi).
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Exponential stability of its homogeneous system,

ż(t) = Am(t)z(t), Am(t) =
l∑

i=1

Amiχi(t) (5.2.2)

is sufficient for stability of (5.2.1), which has been studied in [19, 29, 39, 47]. It

is well known that for the homogeneous system (5.2.2) with each Ami stable to

be exponentially stable, the time interval between two consecutive switches should

be long enough. Let T0 denote the minimum switching time interval, i.e., T0 =

mink∈Z+{tk − tk−1}, where Z+ stands for all positive integers, and Pmi, Qmi ∈ Rn×n

be symmetric, positive definite satisfying

AT
miPmi + PmiAmi = −Qmi, i ∈ I (5.2.3)

Due to the stability of Ami, there exist ami, λmi > 0 such that ∥eAmit∥ ≤ amie
−λmit.

Define am = maxi∈I ami, λm = mini∈I λmi, and with λmin[·] and λmax[·] denot-

ing the minimum and maximum eigenvalues of a matrix, α = maxi∈I λmax[Pmi],

β = mini∈I λmin[Pmi]. The following lemma gives a lower bound on T0 that ensures

exponential stability of the homogeneous system, thus the stability of (5.2.1):

Lemma 5.2.1. The system (5.2.2) is exponentially stable with decay rate σ ∈ (0, 1/2α)

if T0 satisfies

T0 ≥
α

1− 2σα
ln(1 + µ∆Am), µ =

a2m
λmβ

max
i∈I

∥Pmi∥ (5.2.4)

where ∆Am stands for the largest difference between any two subsystem matrices of

Am(t), i.e., ∆Am = maxi,j∈I∥Ami −Amj∥.

Proof: The proof of this lemma is provided in the Appendix (see Section 9.2). �

Remark 5.2.2. Unlike typical slow-switching conditions in the literature (cf. [38,

Lemma 2]), (5.2.4) relates a lower bound of the minimum switching time interval
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required for the stability of (5.2.1) to the largest difference between any two subsystems,

i.e., ∆Am. As ∆Am reduces to zero, this lower bound decreases and approaches zero as

well, which as shown next reverts to the results in [60]; that is, for arbitrary subsystem

switches, the closed-loop stability and asymptotic state tracking performance follow,

when all subsystem are matched to a linear time-invariant reference model system.

The same conclusion can be drawn when there exists a common Lyapunov matrix Pm

such that AT
miPm + PmAmi < 0.

5.3 Design for Single-Input Systems

A new adaptive state feedback controller structure is proposed for the piecewise linear

system (5.1.1) with single input, i.e.,

ẋ(t) = A(t)x(t) + b(t)u(t), u(t) ∈ R

A(t) =
l∑

i=1

Aiχi(t), b(t) =
l∑

i=1

biχi(t)
(5.3.1)

where Ai and bi are unknown, and χi(t) are the indicator functions, taking values of

either 1 or 0 independent of x(t), u(t), and defined to satisfy (5.1.3) and (5.1.4).

5.3.1 Controller Structure

The following adaptive state feedback controller structure is applied:

u(t) = kT
x (t)x(t) + kr(t)r(t) (5.3.2)

where r(t) is the reference input signal as defined in (5.2.1), and the parameter vectors

kx(t) =
∑l

i=1 kxi(t)χi(t), kr(t) =
∑l

i=1 kri(t)χi(t) are the time-varying estimates of

the nominal controller parameters k∗
x(t) =

∑l
i=1 k

∗
xiχi(t) and k∗r(t) =

∑l
i=1 k

∗
riχi(t),

with k∗
xi, k

∗
ri, i ∈ I, defined to satisfy the following assumption:
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(A5.3-1) Nominal parameter vectors k∗
xi, k

∗
ri exist such that

Ami = Ai + bik
∗T
xi , bmi = bik

∗
ri (5.3.3)

With (5.3.2) in (5.3.1) under Assumption (A5.3-1), the closed-loop system be-

comes

ẋ = Amx+ bmr +
l∑

i=1

bik̃
T
xiχix+

l∑
i=1

bik̃riχir (5.3.4)

where k̃x(t) = kx(t)− k∗
x(t), k̃r(t) = kr(t)− k∗r(t), k̃xi(t) = kxi(t)− k∗

xi, and k̃ri(t) =

kri(t)− k∗ri.

The equations in (5.3.3) are the plant-model matching conditions; that is, if the

plant parameter matrices Ai, bi are known, the nominal control law

u(t) = k∗T
x (t)x(t) + k∗r(t)r(t)

leads to

ė(t) = Am(t)e(t), e(t) = x(t)− xm(t)

with e(t) approaching zero exponentially, as a result of Lemma 5.2.1. In addition, all

the signals are bounded, so that the control objective is achieved.

5.3.2 Adaptive Laws

To develop adaptive laws for updating the parameter estimates kx(t), kr(t), an error

equation in terms of e(t), k̃x(t), and k̃r(t) is needed. In view of (5.2.1) and (5.3.4),

we have

ė =
l∑

i=1

[
Amiχie+

1

k∗ri
bmi

(
k̃T
xiχix+ k̃riχir

)]
(5.3.5)

based on which parameter projection adaptive laws are proposed next with stability

and tracking performance analyzed.
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With the knowledge of lower and upper bounds of the parameters in k∗
xi, k

∗
ri, the

parameter projection adaptive laws

k̇xi(t) = −sign[k∗ri]Γix(t)e
T(t)Pmibmiχi(t) + fxi(t)χi(t)

k̇ri(t) = −sign[k∗ri]γir(t)e
T(t)Pmibmiχi(t) + fri(t)χi(t)

(5.3.6)

are applied to update the controller parameters in (5.3.2), where Γi > 0 and is

diagonal, γi > 0, and Pmi = P T
mi > 0, i ∈ I, satisfy (5.2.3) for some Qmi = QT

mi > 0.

Here we assume:

(A5.3-2) sign[k∗ri], the sign of k∗ri, i ∈ I, are known.

The initial estimate of each element in kx(t), kr(t) is chosen to be within its

known bounds. The projection terms fxi(t), fri(t) are so defined as to confine the

parameter estimates inside these bounds for all time: parameter adaptation is active

(i.e., fxi(t) = 0, fri(t) = 0) when the estimates are within those bounds, while

it is deactivated otherwise, and the estimates are left unchanged (i.e., k̇xi(t) = 0,

k̇ri(t) = 0).

5.3.3 Stability and Tracking Properties

Let {tk}∞k=1 denote the time instants at which (5.3.1) switches, and T0 = mink∈Z+{tk−

tk−1} be the minimum switching time interval. With the definitions of am, λm, α, β,

µ, ∆Am in Lemma 5.2.1, we have the following stability and tracking properties:

Theorem 5.3.1. Consider the closed-loop system consisting of the piecewise linear

system (5.3.1), the reference model system (5.2.1), and the controller (5.3.2) updated

by the adaptive laws (5.3.6). If

T0 ≥ Td = α(1 + κ) ln(1 + µ∆Am), κ > 0



93

then all closed-loop signals are bounded, and the tracking error e(t) is small in the

sense that ∫ t+T

t

eT(τ)e(τ)dτ ≤ µ∆Amc0
T

T0
+ c1, ∀t ≥ t0, ∀T > 0 (5.3.7)

with c1 = (1 + µ∆Am)c0, for some c0 > 0.

Proof: The proof of this theorem is given in Section 9.3. �

The parameter projection adaptive control scheme ensures signal boundedness

and small tracking error in the mean-square sense provided that the switching time

interval is large enough. Asymptotic tracking performance is restored if ∆Am = 0, as

stated in the following corollary:

Corollary 5.3.2. When ∆Am = 0, that is, all subsystems are matched to an LTI

reference model system according to (5.3.3) for Ami = Am, i ∈ I, closed-loop stability

and asymptotic tracking are achieved for arbitrary subsystem switches.

Proof: Closed-loop stability follows directly from Theorem 5.3.1 for Td = 0, i.e.,

arbitrary subsystem switches. As a result of (5.3.7),
∫∞
0

eT(τ)e(τ)dτ ≤ c1 < ∞,

i.e., e(t) ∈ L2. From (5.3.5) and signal boundedness, it follows that ė(t) ∈ L∞, and

therefore, limt→∞ e(t) = 0. �

Subsystem switches lead to instantaneous increases (jumps) in the Lyapunov func-

tion V : V (tk) − V (t−k ). To ensure that they do not lead to instability, parameter

projection is indispensable in the adaptive laws (5.3.6). With parameter projection,

a uniform bound cp (see Section 9.3), together with a sufficiently large switching time

interval (T0 ≥ Td), ensures V be below lcp(1 + µ∆Am)(1 + κ)/κ or V (tk−1), before

a subsequent switch occurs. A bound c0 on V can be established, and closed-loop

stability follows. However, it is not necessary when additional conditions (persistency
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of excitation) are imposed on the system (studied in the next subsection), or when

subsystem switches do not cause jumps in V , as summarized below:

Corollary 5.3.3. If a common Lyapunov matrix Pm exists for Ami, i ∈ I, of the

reference model system (5.2.1) such that

AT
miPm + PmAmi < −Qm, QT

m = Qm > 0

then the closed-loop system with (5.3.2) updated by the adaptive laws

k̇xi(t) = −sign[k∗ri]Γix(t)e
T(t)Pmbmiχi(t)

k̇ri(t) = −sign[k∗ri]γir(t)e
T(t)Pmbmiχi(t)

ensures closed-loop signal boundedness and asymptotic state tracking performance,

i.e., limt→∞ e(t) = 0, for arbitrary subsystem switches.

Proof: With a common Lyapunov matrix Pm, the piecewise Lyapunov function (9.3.1)

reduces to

V = eTPme+
l∑

i=1

1

|k∗ri|

(
k̃T
xiΓ

−1
i k̃xi + γ−1

i k̃2ri

)
which is continuous, and its time derivative satisfies

V̇ ≤ −eTQme

Hence e(t) ∈ L2 and closed-loop stability can be concluded for arbitrary subsys-

tem switches. From (5.3.5) and signal boundedness, it follows that ė(t) ∈ L∞, and

therefore, limt→∞ e(t) = 0. �

Remark 5.3.4. The case for an LTI reference model system (Corollary 5.3.2) is a

special case of the existence of a common Pm matrix for a piecewise linear reference

model system (Corollary 5.3.2) with ∆Am = 0, such that the parameter projection

terms in (5.3.6) may be removed without affecting the closed-loop stability and tracking

performance.
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It is known that only Ami with special structures, e.g., those commuting pairwise

[30] or being simultaneously transformable into triangular form [31], have a common

Pm matrix. When no such Pm exists, additional conditions are needed to achieve

asymptotic tracking performance, as studied next.

5.3.4 Adaptation with Sufficiently Rich Reference Input

The control law (5.3.2) with nominal parameters defined to satisfy the matching

condition (5.3.3) results in exponential convergence of e(t) for subsystem switches that

are sufficiently slow, due to the fact that each subsystem in closed loop is exponentially

stable. In the adaptive control problem, if some of the subsystem with indices i ∈

I∗ ⊂ I are no longer active after a finite time Ti ≥ t0, while other subsystem are

active intermittently over infinitely many intervals, then under the persistency of

excitation (P.E.) condition, the following stability and tracking properties follow for

t ≥ T ∗ = maxi∈I∗{Ti}:

Theorem 5.3.5. Consider the closed-loop system consisting of the piecewise linear

system (5.3.1), the piecewise linear reference model system (5.2.1), and the controller

(5.3.2) updated by the adaptive laws:

k̇xi(t) = −sign[k∗ri]Γix(t)e
T(t)Pmibmiχi(t)

k̇ri(t) = −sign[k∗ri]γir(t)e
T(t)Pmibmiχi(t)

(5.3.8)

Suppose the reference input signal r(t) is sufficiently rich of order n + 1 (i.e., r(t)

has at least n+ 1 different frequencies) and (Ami, bmi) are controllable, i ∈ I. If the

switching time intervals are sufficiently large, then all closed-loop signals are bounded

for t ≥ t0; e(t), k̃xi(t), k̃ri(t) converge to zero exponentially, i ∈ I − I∗, t ≥ T ∗; and

kxi(t) = kxi(Ti), kri(t) = kri(Ti), i ∈ I∗, t ≥ Ti.

Proof: The proof of Theorem 5.3.5 is provided in Section 9.4. �
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Remark 5.3.6. If the parameter projection adaptive laws (5.3.6) are applied instead

of (5.3.8), the time derivative of the Lyapunov-like function in (9.3.1) becomes

V̇ = zT(AT
0P0 + P0A0)z +

1

∥bi∥2|k∗ri|

(
n∑
j=1

γ−1
ij k̃

T
xijfxij + γ−1

i k̃rifri

)

Since k̃xij(t)fxij(t) ≤ 0 and k̃ri(t)fri(t) ≤ 0, the condition (9.4.5) is satisfied, and

conclusions of Theorem 5.3.5 are still valid. See Section 9.4 for details.

5.3.5 Simulation Study

Simulations are performed to demonstrate the system stability and tracking perfor-

mance with the proposed adaptive control schemes applied to the piecewise linear

system model of the longitudinal dynamics of the NASA GTM [82] at multiple oper-

ating points.

For simplicity of presentation, we choose l = 2, and trim the GTM at steady-

state, straight, wings-level flight conditions at 70 knots and 80 knots at 800 ft.,

respectively, for a piecewise linear longitudinal model in the form of (5.3.1), where

x = [u,w, q, θ]T with the elements being the perturbed aircraft velocity component

along the x- and z-body-axis (fps), angular velocity along the y-body-axis (rad/s),

and pitch angle (rad), respectively, and u(t) is the perturbed elevator deflection δe.

The reference model system (5.2.1) is chosen to be the nominal closed-loop system

with poles placed at −1,−2,−3,−4, such that the plant-model matching condition

(5.3.3) is satisfied, and bmi = bi, i = 1, 2. The matrices Pmi are then obtained by

solving the Lyapunov equations (5.2.3) with Qmi = I4, i = 1, 2.

Simulations are performed for two cases, for the reference input signal r(t) not

sufficiently rich and sufficiently rich, respectively. In each case, the initial conditions

are xm(0) = [7,−4, 0.1, 0.5]T, x(0) = 0, and the initial parameter estimates are 90%

of their nominal values.
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Figure 5.1: State tracking error e(t) for r(t) = 2 sin(0.01πt) and T0 = 1000s.

Case I: r(t) = 2 sin(0.01πt), T0 = 1000s (Fig. 5.1). It can be seen that the closed-

loop system is stable, but whenever a system model switch occurs, e(t) deviates from

zero, and asymptotic tracking is not achieved.

Case II: r(t) = 2 sin(0.01πt) + 2 sin(0.02πt) + 2 sin(0.005πt), T0 = 1000s (Fig.

5.2). The state tracking error e(t) is plotted in Figure 5.2. With a sufficiently rich

reference input signal and sufficiently large switching time interval, it can be seen

that both closed-loop stability and asymptotic tracking performance are achieved.

5.4 Design for Multiple-Input Systems

In this section, we consider the multiple-input piecewise linear systems with dynamics

offset (2.1.6), i.e.,

ẋ(t) = A(t)x(t) +B(t)u(t) + c(t) (5.4.1)
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Figure 5.2: State tracking error e(t) for r(t) = 2 sin(0.01πt) + 2 sin(0.02πt) +
2 sin(0.005πt) (sufficiently rich) and T0 = 1000s.

where A(t) =
∑l

i=1Aiχi(t), B(t) =
∑l

i=1Biχi(t), c(t) =
∑l

i=1 ciχi(t) with unknown

Ai, Bi, ci = −Aix0i−Biu0i, and x(t), u(t), x0i, u0i are defined as in Section 2.1.3.

The triple (Ai,Bi, ci) represents a subsystem of (5.4.1). For a basic study of the

adaptive control problem for (5.4.1), it is assumed that there are no internally forced

subsystem switches, i.e., χi(t) do not depend on (x(t),u(t)):

χi(t) =

{
1, if (A(t),B(t), c(t)) = (Ai,Bi, ci)
0, otherwise

and satisfy (5.1.4).

The control objective is to develop a state feedback control law for the plant

(5.4.1) such that all the signals in the closed-loop system are bounded, and x(t)

asymptotically track a reference trajectory xm(t), i.e., limt→∞(x(t) − xm(t)) = 0,

where xm(t) is generated from a reference model system.
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5.4.1 Reference Model System

A reference model for each subsystem is specified, resulting in a set of linear time-

invariant reference systems

ẋmi(t) = Amixmi(t) +Bmir(t)

where r(t) ∈ Rm is a bounded, piecewise continuous reference input signal, and the

parameter matrices Ami ∈ Rn×n, Bmi ∈ Rn, i ∈ I, are chosen with Ami stable. When

the ith subsystem is active, the state trajectory xmi(t) is desirable for the perturbed

state xi(t) to follow. To form a “global” reference trajectory for x(t) to track, with

xm(t) , xmi(t) + x0i for χi(t) = 1, the piecewise linear reference model system for

(5.4.1) is

ẋm(t) = Am(t)xm(t) +Bm(t)r(t) + cm(t) (5.4.2)

where Am(t) =
∑l

i=1Amiχi(t), Bm(t) =
∑l

i=1 Bmiχi(t), and cm(t) =
∑l

i=1 cmiχi(t)

with cmi = −Amix0i. Note here xm(t) is required to be continuous, which is a

meaningful reference trajectory for the continuous state vector x(t) to follow. This

implies a (perturbed) reference state resetting whenever a subsystem switch from the

ith to the jth occurs at a time instant t such that xmj(t) + x0j = xmi(t
−) + x0i.

Stability of the Reference Model System (5.4.2). The stability properties

of the reference model system in (5.4.2) have been studied in [1, 19, 39] without con-

sidering the dynamics offset term cm(t). Following a similar line of arguments and

derivations, it can be proved that the exponential stability of its homogeneous system

implies stability of (5.4.2). In view of Lemma 5.2.1, this implies that the stability

(signal boundedness) of (5.4.2) is ensured if the minimum switching time interval

T0 = mink∈Z+{tk − tk−1} between consecutive subsystem switches satisfies (5.2.4).

MRAC Assumptions. To meet the control objective, the following assumptions
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are made for i ∈ I:

(A5.4-1) There exist constant matrices K∗
xi ∈ Rn×m and K∗

ri ∈ Rm×m with K∗
ri

nonsingular such that

Ami = Ai +BiK
∗T
xi , Bmi = BiK

∗
ri

(A5.4-2.a) There are known matrices Si ∈ Rm×m such that K∗
riSi are symmetric

and positive definite.

5.4.2 Controller Structure

A new state feedback controller structure is proposed, and adaptive laws are developed

for control of the piecewise linear plant (5.4.1) to achieve the control objective of

closed-loop stability (signal boundedness) and state tracking.

If the plant parameter matrices Ai and Bi are known, the nominal control law

u(t) = u0(t) +K∗T
x (t)∆x(t) +K∗

r (t)r(t) (5.4.3)

where K∗
x(t) =

∑l
i=1K

∗
xiχi(t), K

∗
r (t) =

∑l
i=1 K

∗
riχi(t), ∆x(t) = x(t) − x0(t) with

x0(t) =
∑l

i=1 x0iχi(t) and u0(t) =
∑l

i=1 u0iχi(t), leads to the tracking error dynamics

ė(t) = Am(t)e(t) with e(t) = x(t) − xm(t) converging to zero exponentially if T0

satisfies (5.2.4).

However, Ai and Bi are unknown in many practical applications, and (5.4.3)

cannot be implemented. The following adaptive controller structure is applied

u(t) = u0(t) +KT
x (t)∆x(t) +Kr(t)r(t) (5.4.4)

where Kx(t) =
∑l

i=1Kxi(t)χi(t), Kr(t) =
∑l

i=1Kri(t)χi(t) are the time-varying

estimates of the nominal controller parameters K∗
x(t) and K∗

r (t), respectively. This
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control law leads to the error model

ė =
l∑

i=1

(
Amiχie+BmiK

∗−1
ri χi

(
K̃T

xi∆x+ K̃rir
))

(5.4.5)

with K̃xi(t) = Kxi(t)−K∗
xi, K̃ri(t) = Kri(t)−K∗

ri, i ∈ I.

5.4.3 Adaptive Laws

Adaptive laws are developed based on the error model (5.4.5). The case when a com-

mon Lyapunov matrix exists for the constituent reference models Ami is considered

first.

5.4.3.1 Adaptation when a common Lyapunov matrix Pm exists

If for the stable reference model state matrices Ami, i ∈ I, there exists a common

Lyapunov matrix Pm = P T
m > 0 such that

AT
miPm + PmAmi < 0 (5.4.6)

the following adaptive laws are proposed:

K̇T
xi(t) = −ST

i B
T
miχi(t)Pme(t)∆xT(t)

K̇ri(t) = −ST
i B

T
miχi(t)Pme(t)r

T(t)
(5.4.7)

Such an adaptive control scheme has the following stability and tracking properties:

Theorem 5.4.1. If Ami, i ∈ I, of the reference model system (5.4.2) satisfy (5.4.6)

for some Pm = P T
m > 0, then all signals in the closed-loop system are bounded, and

the state tracking error e(t) = x(t) − xm(t) converges to zero asymptotically, for

arbitrary subsystem switches.

Proof: Let AT
miPm +PmAmi = −Qmi for some Qmi = QT

mi > 0, i ∈ I. Consider the
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Lyapunov function candidate

V = eTPe+
l∑

i=1

(
n∑
j=1

k̃T
xijM

−1
si k̃xij +

m∑
j=1

k̃T
rijM

−1
si k̃rij

)

= eTPe+
l∑

i=1

(
tr[K̃xiM

−1
si K̃

T
xi] + tr[K̃T

riM
−1
si K̃ri]

)
where Msi = K∗

riSi, K̃
T
xi(t) = [k̃xi1, k̃xi2 . . . , k̃xin], K̃ri(t) = [k̃ri1, k̃ri2, . . . , k̃rim], and

tr[·] denotes the trace of a square matrix. Under Assumption (A5.4-2.a) and with the

facts that tr[M1M2] = tr[M2M1], tr[M3] = tr[MT
3 ] for any matrices Mi, i = 1, 2, 3,

of compatible dimensions, its time derivative along (5.4.7) is

V̇ ≤ −
(
min
i∈I

λmin[Qmi]

)
∥e∥2 (5.4.8)

It follows that e(t) ∈ L2∩L∞,Kxi(t),Kri(t) ∈ L∞, and with xm(t) ∈ L∞, u(t), ė(t) ∈

L∞. Therefore, all signals in the closed-loop system are bounded, and according to

Barbǎlat Lemma [15], limt→∞ e(t) = 0. �

Only a set of matrices in certain special structures is known to have a common Pm

matrix, hence such a design cannot be extended to a general set of reference system

matrices Ami. Next, adaptive laws are presented and studied for the case when no

such common Pm exists.

5.4.3.2 Adaptation when a common Pm does not exist

When no common Lyapunov matrix Pm satisfying (5.4.6) exists for the set of sta-

ble matrices Ami, i ∈ I, the parameter projection adaptive laws are applied, with

the assumption of certain knowledge of lower and upper bounds on the controller

parameters, as follows:

K̇T
xi(t) = −ST

i B
T
miχi(t)Pmie(t)∆xT(t) + Fxi(t)

K̇ri(t) = −ST
i B

T
miχi(t)Pmie(t)r

T(t) + Fri(t)
(5.4.9)
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to update the controller parameters in (5.4.4), where Pmi = P T
mi > 0, i ∈ I, satisfy

the Lyapunov equations

AT
miPmi + PmiAmi = −Qmi, Qmi = QT

mi > 0

For such an adaptive control design with parameter projection to be effective, a

further assumption based on Assumption (A5.4-2.a) is made:

(A5.4-2.b) The known matrix Si in Assumption (A5.4-2.a) is such that K∗
riSi is

diagonal and positive definite.

The initial estimate of each element in Kxi(t), Kri(t) is chosen to be within its

known bounds. The projection terms Fxi(t), Fri(t) are so defined as to confine the

parameter estimates inside these bounds for all time: parameter adaptation is active

(i.e., Fxi(t) = 0, Fri(t) = 0) when the estimates are within those bounds, while

it is deactivated otherwise, and the estimates are left unchanged (i.e., K̇xi(t) = 0,

K̇ri(t) = 0).

With the definitions of am, λm, α, β, µ, ∆Am in Lemma 5.2.1, the following

stability and tracking properties follow:

Theorem 5.4.2. Consider the closed-loop system with the plant (5.4.1), the reference

model (5.4.2), and the controller (5.4.4) updated by the adaptive laws (5.4.9). If

T0 ≥ Td = α(1 + κ) ln(1 + µ∆Am), κ > 0

then all closed-loop signals are bounded, and the tracking error e(t) is small in the

sense that ∫ t+T

t

eT(τ)e(τ)dτ ≤ µ∆Amc0
T

T0
+ c1, ∀t ≥ t0, ∀T > 0

with c1 = (1 + µ∆Am)c0, for some c0 > 0.
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Proof: The proof follows the same line as the proof of Theorem 5.3.1 by considering

the piecewise continuous Lyapunov function

V = eT
l∑

i=1

Pmiχie+
l∑

i=1

(
n∑
j=1

k̃T
xijM

−1
si k̃xij +

m∑
j=1

k̃T
rijM

−1
si k̃rij

)

with Msi = K∗
riSi = diag[msi1, . . . ,msim] > 0, K̃T

xi = [k̃xi1, . . . , k̃xin], K̃ri =

[k̃ri1, . . . , k̃rim], and the details are omitted. �

5.4.3.3 Adaptation with sufficiently rich reference input r(t)

If some of the subsystems with indices i ∈ I∗ ⊂ I are no longer active after a finite

time Ti ≥ t0, while other subsystems are active intermittently over infinitely many

intervals, then under the persistency of excitation condition, the following stability

and tracking properties for t ≥ T ∗ = maxi∈I∗{Ti} follow:

Theorem 5.4.3. Consider the closed-loop system with the plant (5.4.1), the reference

model (5.4.2), and the controller (5.4.4) updated by the adaptive laws

K̇T
xi(t) = −ST

i B
T
miχi(t)Pmie(t)∆xT(t)

K̇ri(t) = −ST
i B

T
miχi(t)Pmie(t)r

T(t)
(5.4.10)

Suppose each element ri(t), i = 1, 2, . . . ,m, of the reference input r(t) is sufficiently

rich of order n + 1 and uncorrelated, and (Ami,Bmi), i ∈ I, are controllable. If the

switching time intervals are sufficiently large, then all closed-loop signals are bounded

for t ≥ t0; e(t), K̃xi(t), K̃ri(t) converge to zero exponentially, i ∈ I − I∗, t ≥ T ∗;

and Kxi(t) = Kxi(Ti), Kri(t) = Kri(Ti), i ∈ I∗, t ≥ Ti.

Proof: The proof follows the same line as the proof of Theorem 5.3.5, and is thus

omitted. �
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5.4.4 Simulation on NASA GTM

Simulations are performed to demonstrate the system stability and tracking perfor-

mance with the proposed adaptive control schemes applied to the piecewise linear

system model of the longitudinal dynamics of the NASA GTM at multiple operating

points, as well as the nonlinear GTM [82].

Linearized Aircraft Longitudinal Model and Reference Model System.

An operating point for a nonlinear aircraft system is specified by (V, h), with V and

h denoting the vehicle speed and altitude, respectively. At a specific operating point

(Vi, hi), a trim point (equilibrium) (x0i,u0i) may be found, where x0i is the nominal

state vector, and u0i is the nominal input vector to the system. In steady-state,

straight, level flight, the longitudinal and lateral-directional dynamics of an aircraft

are decoupled from each other, and the linearized longitudinal model of an aircraft

around (x0i,u0i) can be represented by (2.1.5), i.e.,

ẋi = Aixi +Biui, xi = [u,w, q, θ]T, ui = [δe, δT ]
T (5.4.11)

where u, w, q, θ are the perturbed aircraft velocity components along the x- and

z-body-axis (fps), angular velocity along the y-body-axis (crad/s), and pitch angle

(crad), respectively; that is, xi(t) = x(t) − x0i with x(t) being the aircraft longitu-

dinal state vector. The control input vector ui(t) consists of the perturbed elevator

deflection δe and throttle input δT , i.e., ui(t) = u(t) − u0i with u(t) being the to-

tal control applied to the aircraft. In terms of the original state and control vector

x(t) and u(t), the linearized longitudinal model is ẋ(t) = Aix(t) +Biu(t) + ci with

ci = −Aix0i −Biu0i.

The desired longitudinal behavior of the aircraft within a neighborhood of (x0i,u0i)

is specified by a reference model in the form ẋmi = Amixmi + Bmir, where r(t) is
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the reference input vector that can generate the desired (perturbed) state trajectory

xmi(t). Here xmi(t) is defined with regard to x0i. In terms of a “global” reference

trajectory xm(t) = xmi(t) + x0i, with cmi = −Amix0i, the reference model system is

obtained as follows:

ẋm(t) = Am(t)xm(t) +Bm(t)r(t) + cm(t)

In this simulation study, LQ controllers in the form unom(t) = u0i(t)+K∗T
xi ∆x(t)+r(t)

are designed based on (Ai,Bi) (not used in adaptive control design), and the reference

model systems are chosen such that Assumption (A5.4-1) is satisfied with K∗
ri = In.

In other words, the nominal linearized closed-loop system dynamics are chosen as the

reference model system. Note that with such a choice, Assumptions (A5.4-2.a) and

(A5.4-2.b) are satisfied as well. In particular, Si can be any positive definite diagonal

matrix.

Switches of Operating Points. Extensive simulations are performed to de-

termine the valid linearization regions around the trim points and decent switching

surfaces in between. In particular, for each trim point (x0i,u0i), a reference input vec-

tor signal r(t) relatively small in magnitude is chosen such that the GTM longitudinal

states x(t) stay within Ωi. A r(t) with relatively large magnitude is also determined

which can drive x(t) to cross the switching surface, corresponding a desired change

of operating point.

Remark 5.4.4. In the piecewise linear system framework, the closed-loop stability and

tracking performance are guaranteed for arbitrary Si satisfying Assumption (A5.4-

2.b). The diagonal, positive definite matrices Si are in essence the adaptation gain

matrices that can be adjusted for desirable adaptation rate. In general, large Si leads

to fast adaptation and better performance. However, this may not be true when such a
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linearization-based design is applied to the nonlinear GTM, in which fast adaptation

may destabilize the system due to high frequency transients and unmodeled system

dynamics. In this simulation study, Si is chosen based on the system performance

observed in the simulations.

Design and Simulation Parameters. For simplicity of presentation, the num-

ber of subsystems is chosen to be l = 2, and the GTM is trimmed at steady-state,

straight, wings-level flight condition at 75 knots and 85 knots at 800 ft., respectively,

to obtain a piecewise linear longitudinal system model; to be specific,

x01 = [127.6597, 10.3615, 0, 8.0987]T, u01 = [1.3109, 14.1457]T

x02 = [144.9022, 8.5931, 0, 5.9234]T, u02 = [2.3649, 14.8592]T

A1 =


−0.0190 0.0825 −0.1005 −0.3206
−0.2154 −2.7859 1.2031 −0.0271
3.2527 −30.7871 −3.5418 0

0 0 1.0000 0



B1 =


0.0065 0.0534

−0.6103 0.0020
−74.6355 0.5431

0 0

 , c1 =


3.4011
57.3601
−6.0836

0



A2 =


−0.0312 0.1095 −0.0938 −0.3210
−0.1057 −3.2245 1.3765 −0.0217
3.9602 −33.8308 −4.0756 0

0 0 1.0000 0



B2 =


0.0032 0.0534

−0.7821 0.0020
−96.0149 0.5431

0 0

 , c2 =


4.6742
44.9782

−64.1394
0


The reference model system is specified by LQ designs with Q = I4, R = 10I2; in
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particular, Bm1 = B1, Bm2 = B2,

Am1 =


−0.0215 0.0810 −0.0988 −0.3180
−0.0706 −2.6377 1.0345 −0.2636
20.9585 −12.6579 −24.1637 −28.9269

0 0 1.0000 0



Am2 =


−0.0328 0.1088 −0.0930 −0.3196
0.0753 −3.0601 1.1577 −0.3276
26.1845 −13.6389 −30.9393 −37.5452

0 0 1.0000 0


thus K∗

r1 = K∗
r2 = I2, and

K∗
x1 =

[
−0.2374 −0.2429 0.2763 0.3876
−0.0178 0.0009 −0.0018 0.0011

]T
(5.4.12)

K∗
x2 =

[
−0.2316 −0.2103 0.2798 0.3910
−0.0173 0.0002 −0.0015 0.0020

]T
(5.4.13)

It is found that a common Lyapunov matrix exists such that (5.4.6) is satisfied, thus

the adaptive design in Section 5.4.3.1 may be applied. The matrices Si are chosen

based on the observed closed-loop GTM system performance. Here, S1 = 0.05I4 and

S2 = 0.05I4. The reference input signal r(t) is selected as r(t) = [2 sin(0.02πt), 0]T

to specify a longitudinal reference state trajectory for the GTM at each operating

point; in the nonlinear simulations, it is set to be r(t) = [5, 0]T whenever there is

a desired transition from the first operating point (75 knots, 800 ft.) to the second

(85 knots, 800 ft.), and r(t) = [−5, 0]T, otherwise. Since the parameter matrices of

the linearized longitudinal model of the GTM are not sensitive to altitude variations

within a relatively small range (±100 ft.), as can be verified by linearizing the GTM

at the same airspeed but different altitudes, the switching plane is specified by V

only. In this simulation study, V is chosen to be V = 80 knots.

For all the simulations, the GTM is initially trimmed at 75 knots, 800 ft., steady-

state, straight, wings-level flight. A switch of operating point is commanded through

the setting of r(t) every 100s. The initial tracking error is e(0) = [7, −4, 0, 50]T,

and the initial parameter estimates are set as 60% of their nominal values.
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Simulation Results. Figure 5.3 shows the state tracking error e(t) for the

adaptive control scheme in Section 5.4.3.1 applied to the piecewise linear model of

the GTM. A convergence of the state tracking error e(t) to zero is observed. The

tracking performance with the fixed control scheme in the form of (5.4.3) with con-

troller parameters to be 60% of their nominal values is shown in 5.3 (bottom). It can

be seen that whenever there is a subsystem switch, the tracking error deviates from

zero.

To show the effectiveness of the proposed adaptive control scheme on system

performance improvement, the nonlinear GTM system response is shown next, along

with one obtained by applying the 60% fixed control scheme. Figure 5.4 shows the

state tracking error e(t) when the adaptive control designs in Section 5.4.3.1 (above)

and the 60% fixed control (bottom), respectively, are applied to the nonlinear GTM.

All other system signals are bounded. The corresponding control input signals are

shown in Fig. 5.5.

From the simulation results, it can be seen that the closed-loop stability is achieved

for all the simulations. As for the state tracking, the proposed adaptive control

schemes provide substantially improved performance over the fixed control law under

the same flight conditions. The simulation results demonstrate the effectiveness of the

proposed linearization-based adaptive control designs applied to the nonlinear GTM

system.

5.5 Extensions to State-Dependent Switches

In this section, the adaptive state feedback control problem is considered for a single-

input, bimodel piecewise linear system with dynamic offsets and state-dependent sub-

system switches. The desired state trajectory for the plant state to track is generated
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Figure 5.3: Simulations for linear system: state tracking error e(t) for the proposed
control scheme (above) and for the 60% fixed control law (below).
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Figure 5.4: GTM simulation: e(t) for the proposed control scheme in Section 5.4.3.1
(above) and for the 60% fixed control law (below).



112

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10

δ
e
(t

)

0 100 200 300 400 500 600 700 800 900 1000
10

12

14

16

18

20

δ
T
(t

)

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10

δ
e
(t

)

0 100 200 300 400 500 600 700 800 900 1000
10

12

14

16

18

20

δ
T
(t

)

Figure 5.5: GTM simulation: control input u(t) = [δe, δT ]
T for the control scheme in

Section 5.4.3.1 (above) and for the 60% fixed control law (below).
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from a reference model system in a similar form. When the state matrices of each

subsystem of the reference model system share a common Lyapunov matrix, closed-

loop signal boundedness and asymptotic state tracking performance can be achieved

under certain plant-model matching conditions. Although only the bimodal case is

considered here, straightforward modifications can be made such that the scheme be-

comes applicable to systems with more than two subsystems to achieve the desired

stability properties and tracking performance.

5.5.1 Problem Statement

Consider a bimodel piecewise linear system described by:

ẋ = Aix+ biu+ b0i , x ∈ Ωi, i ∈ {1, 2} (5.5.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ R is the control input, and Ai, bi, b
0
i , i =

1, 2, are unknown constant parameter matrices (vectors) of appropriate dimensions.

The system state space is partitioned into two polyhedral cells defined as follows:

Ω1 = {x ∈ Rn|HTx+ h ≤ 0}

Ω2 = {x ∈ Rn|HTx+ h > 0}

It is assumed that the hyperplane, HTx + h = 0, defining the polyhedral cells is

known; that is, H ∈ Rn, h ∈ R are known.

The reference model system to generate the desired state trajectory xm(t) for the

system state x(t) to track is

ẋm = Amixm + bmir + b0mi, xm ∈ Ωmi, i ∈ {1, 2} (5.5.2)

whereAmi is stable, and r(t) is a bounded, piecewise continuous reference input signal.

The reference model state space is partitioned by a known hyperplane, HT
mx+hm = 0,
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into two polyhedral cells defined by

Ωm1 = {xm ∈ Rn|HT
mxm + hm ≤ 0}

Ωm2 = {xm ∈ Rn|HT
mxm + hm > 0}

Note thatHT
mx+hm = 0 may not be the same asHTx+h = 0; that is, the subsystem

and that of the reference model system may not switch at the same time.

Control objective. The control objective is to develop a state feedback MRAC

scheme for the system (5.5.1) such that all signals in closed loop are bounded, and

the plant state x(t) asymptotically tracks the reference trajectory xm(t) generated

from (5.5.2), i.e.,

lim
t→∞

(x(t)− xm(t)) = 0. (5.5.3)

5.5.2 Adaptive Control Design

A state feedback MRAC scheme is proposed in this section. Indicator functions are

defined to characterize the switching behavior of the system (5.5.1) as well as that

of the reference model (5.5.2). As a motivation to the adaptive control design, the

model reference control problem is considered first.

5.5.2.1 Indicator Functions

We define the indicator functions χσ(t), σ ∈ {1, 2, 3, 4}, as follows:

χσ(t) = 1, if x(t) ∈ Ωi and xm(t) ∈ Ωmj (5.5.4)

σ =


1, iff i = 1, j = 1
2, iff i = 2, j = 1
3, iff i = 2, j = 2
4, iff i = 1, j = 2

(5.5.5)

χσ(t) = 0, otherwise
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Since the system or the reference model state at a specific time instant can only

belong to one and only one polyhedral cell, it follows for i, j ∈ {1, 2, 3, 4} that

χi(t)χj(t) = 0, i ̸= j

χi(t)χi(t) = 1, if χi(t) = 1
4∑
i=1

χi(t) = 1

(5.5.6)

With the definition of the indicator functions χσ(t), the system dynamics in (5.5.1)

can be rewritten as
ẋ = A(t)x+ b(t)u+ b0(t)

A(t) = A1(χ1 + χ4) +A2(χ2 + χ3)

b(t) = b1(χ1 + χ4) + b2(χ2 + χ3)

b0(t) = b01(χ1 + χ4) + b02(χ2 + χ3)

(5.5.7)

and similarly for the reference model system (5.5.2):

ẋm = Am(t)xm + bm(t)r + b0m(t)

Am(t) = Am1(χ1 + χ2) +Am2(χ3 + χ4)

bm(t) = bm1(χ1 + χ2) + bm2(χ3 + χ4)

b0m(t) = b0m1(χ1 + χ2) + b0m2(χ3 + χ4)

(5.5.8)

Assumptions. For adaptive control design, we make the following assumptions:

(A5.5-1) There exists symmetric, positive definite matrices Pm ∈ Rn×n such that

AT
miPm + PmAmi = −Qmi, i = 1, 2 (5.5.9)

for some Qmi ∈ Rn×n, Qmi = QT
mi > 0;

(A5.5-2) There exist k∗
xσ, k

∗
rσ, k

0∗
σ , σ = 1, 2, 3, 4, such that

Ai + bik
∗T
xσ = Amj, bik

∗
rσ = bmj, bik

0∗
σ + b0i = b0mj (5.5.10)

with σ, i, j being related as in (5.5.5); and

(A5.5-3) sign[k∗rσ], the signs of k∗rσ, are known.
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5.5.2.2 Model Reference Control

When the system parameter matrices Ai, bi, b
0
i , i = 1, 2, are all known, the following

model reference controller is applied to achieve the control objective:

u(t) = k∗T
x (t)x(t) + k∗r(t)r(t) + k0∗(t)

k∗
x(t) =

4∑
σ=1

k∗
xσχσ(t), k∗r(t) =

4∑
σ=1

k∗rσχσ(t), k0∗(t) =
4∑

σ=1

k0∗σ χσ(t)
(5.5.11)

where k∗
xσ, k

∗
rσ, k

0∗
σ , σ = 1, 2, 3, 4, are defined to satisfy Assumption (A5.5-2).

The equations in (5.5.10) are called the plant-model matching conditions, under

which with (5.5.11) in (5.5.7) and the indicator function properties (5.5.6), the closed-

loop system matches the reference model system, leading to the closed-loop error

dynamics as

ė(t) = Am(t)e(t), e(t) = x(t)− xm(t)

With the Lyapunov function candidate V = eT(t)Pme(t), it follows that V̇ ≤ −λeTe,

where λ is the minimum eigenvalue of the matrices Qmi, i = 1, 2, in (5.5.9). It can

be concluded that e(t) ∈ L2 and all closed-loop signals are bounded. In addition,

ė(t) ∈ L∞ so that limt→∞ e(t) = 0.

5.5.2.3 Adaptive Control Design

In general the system parameter matrices are unknown so that the model reference

controller (5.5.11) cannot be implemented. To deal with system parameter uncertain-

ties, an adaptive control approach is proposed.

Controller Structure. The following adaptive controller structure is applied:

u(t) = kT
x (t)x(t) + kr(t)r(t) + k0(t) (5.5.12)

with kx(t), kr(t), k
0(t) being the time-varying estimates of k∗

x(t), k
∗
r(t), k

0∗(t) and
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assuming the form:

kx(t) =
4∑

σ=1

kxσ(t)χσ(t), kr(t) =
4∑

σ=1

krσ(t)χσ(t), k0(t) =
4∑

σ=1

k0σ(t)χσ(t)

Here kxσ(t), krσ(t), k
0
σ(t) are respectively the estimates of k∗

xσ, k
∗
rσ, k

0∗
σ , defined in

(5.5.10).

Error Model. With the control law (5.5.12) applied to the system (5.5.7), and

from the reference model system (5.5.8), the closed-loop error dynamics is obtained

as follows:
ė = Ame+ bk̃T

xx+ bk̃rr + bk̃0

= Ame+
4∑

σ=1

bmj
k∗rσ

(
k̃T
xσχσx+ k̃rσχσr + k̃0σχσ

) (5.5.13)

where j is defined through (5.5.5), and k̃xσ(t) = kxσ(t) − k∗
xσ, k̃rσ(t) = krσ(t) − k∗rσ,

k̃0σ(t) = k0σ(t)− k0∗σ .

Adaptive Laws. We propose to apply the following adaptive laws to update the

controller parameters in (5.5.12):

k̇xσ(t) = −sign[k∗rσ]Γσx(t)e
T(t)Pmbmjχσ(t)

k̇rσ(t) = −sign[k∗rσ]γσr(t)e
T(t)Pmbmjχσ(t)

k̇0σ(t) = −sign[k∗rσ]γ
0
σe

T(t)Pmbmjχσ(t)

(5.5.14)

where Γσ = ΓT
σ > 0, γσ > 0, γ0σ > 0 are the adaptation gain matrices (gains), j is

related to σ through (5.5.5), and the initial parameter estimates kxσ(0), krσ(0), k
0
σ(0)

may be chosen arbitrarily.

The following closed-loop stability properties and tracking performance follow:

Theorem 5.5.1. Consider the closed-loop system with the controlled plant (5.5.7),

the reference model system (5.5.8), the adaptive control law (5.5.12) with parameters

updated from the adaptive laws (5.5.14). All signals in the closed-loop system are
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bounded and asymptotic state tracking is achieved, i.e.,

lim
t→∞

(x(t)− xm(t)) = 0

Proof: Consider the continuous Lyapunov function candidate

V = eTPme+
4∑

σ=1

1

|k∗rσ|

(
k̃T
xσΓ

−1
σ k̃xσ +

1

γσ
k̃2rσ +

1

γ0σ
k̃02σ

)
Its time derivative along (5.5.13) and (5.5.14) is

V̇ =eT(AT
mPm + PmAm)e+

4∑
σ=1

2

k∗rσ
eTPmbmj

(
k̃T
xσχσx+ k̃rσχσr + k̃0σχσ

)
+

4∑
σ=1

2

|k∗rσ|

(
k̃T
xσΓ

−1
σ k̇xσ +

1

γσ
k̃rσk̇rσ +

1

γ0σ
k̃0σk̇

0
σ

)
≤− λeTe

where λ is the minimum eigenvalue of the matrices Qmi, i = 1, 2, in (5.5.9). It can

be concluded that e(t) ∈ L2 and e(t),kxσ(t), krσ(t), k
0
σ(t) ∈ L∞. From e(t) = x(t)−

xm(t) and (5.5.12), we have x(t), u(t) ∈ L∞. Furthermore, it follows from (5.5.13)

that ė(t) ∈ L∞. Therefore, all closed-loop signals are bounded and asymptotic state

tracking is achieved: limt→∞ e(t) = 0. �

5.5.2.4 Simulation Study

Simulations are performed to demonstrate the system stability and tracking perfor-

mance with the proposed adaptive control schemes applied to a mass-spring-damper

system as shown in Fig. 5.6.

Assume that all elements are linear, and there is no friction between the cart with

mass m and the ground. Choose a reference point as the right tip of the one-sided

spring with spring constant k2 when it is relaxed (as shown by the leftmost vertical

dotted line in Fig. 5.6). Suppose that the relaxed position of the right tip of the

spring with constant k1 is d units of length to the right of the reference point. Let
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Figure 5.6: Mass-spring-damper system with a one-sided spring.

x1 denote the displacement of the cart from this reference point, and F an external

force.

The system dynamics can be described by the following differential equation:

F + k1(−x1 + d)− bẋ1 + k2max{−x1, 0} = mẍ1

With x2 , ẋ1 and x = [x1, x2]
T, the state space model of the system is in the form

of (5.5.1); in particular,

ẋ =


[

0 1
−k1
m

− b
m

]
x+

[
0
1
m

]
F +

[
0
k1d
m

]
, x1 ≥ 0[

0 1
−k1+k2

m
− b
m

]
x+

[
0
1
m

]
F +

[
0
k1d
m

]
, x1 < 0

The switching hyperplane is thus defined with H = [1, 0]T and h = 0.

Due to the fact that Ai, bi, b
0
i , i = 1, 2, are all in controllable canonical form, it is

straightforward to verify that nominal parameters k∗
xσ, k

∗
rσ, k

0∗
σ , σ = 1, 2, 3, 4, always

exist such that the matching condition (5.5.10) is satisfied.

Two simulation studies are performed based on the choices of two different ref-

erence model systems and the plant parameters: m = 1, k1 = 1, k2 = 0.5, b = 0.2,

d = 0.5. The initial plant state is x(0) = [−2, 2]T. The adaptive control scheme
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is configured with the initial parameter estimates being 90% of their nominal values

and Γσ = 0.5I2, γσ = γ0σ = 0.5, σ = 1, 2, 3, 4.

Simulation I. The reference model system is chose to be linear time-invariant as

follows:

ẋm =

[
0 1

−0.5 −1

]
xm +

[
0
1

]
r, xm(0) =

[
−3
−3

]
(5.5.15)

where the reference input signal is r(t) = 2 sin(2π0.1t). The Pm matrix in the adaptive

laws (5.5.14) is

Pm =

[
47.1825 23.5913
23.5913 47.1825

]
With such a reference model system, the objective is to make the closed-loop system

behave as if the cart is attached to a damper with damping constant 1 and a single

spring with constant 0.5, whose relaxed position is the same as the chosen reference

point in Fig. 5.6. The state tracking error e(t) is plotted in Fig. 5.7. It is clear

that asymptotic state tracking is achieved. In addition, all closed-loop signals are

bounded.

Simulation II. The reference model system is chose to be piecewise linear with

dynamic offsets as in (5.5.2) with

Am1 =

[
0 1

−0.5 −1

]
, bm1 =

[
0
1

]
, b0m1 =

[
0

−0.5

]
Am2 =

[
0 1
−1 −5

]
, bm2 =

[
0
1

]
, b0m2 =

[
0
2

] (5.5.16)

The switching hyperplane is defined with Hm = [1, 0]T, hm = 0, and the Pm matrix

used in the adaptive laws is

Pm =

[
6.3849 1.9503
1.9503 4.5967

]
which can be verified to satisfy Assumption (A5.5-1). As for Simulation I, closed-loop

signal boundedness and asymptotic state tracking performance are achieved.
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Figure 5.7: State tracking error e(t) for Simulation I: the LTI reference model system
in (5.5.15).
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Figure 5.8: State tracking error e(t) for Simulation II: the piecewise linear reference
model system (5.5.2) with parameter matrices as in (5.5.16).



Chapter 6

Adaptive Control of Piecewise
Linear Systems with State
Feedback for Output Tracking

In this chapter, we study the adaptive state feedback for output tracking control prob-

lem for piecewise linear systems. Direct model reference adaptive control (MRAC)

schemes are developed for both single-input, single-output (SISO) and multiple-input,

multiple-output (MIMO) piecewise linear systems. It is shown that with such MRAC

schemes, closed-loop stability (signal boundedness) and small output tracking error

are achieved, if the occurrence frequency of parameter discontinuities is sufficiently

low. The desired asymptotic tracking performance is achieved for arbitrarily frequen-

t parameter discontinuities under certain matching conditions, e.g., piecewise linear

systems in controllable canonical form (CCF). As compared to the designs in Chapter

5 for state tracking, we will present state feedback for output tracking designs which

has a less restrictive plant-model matching condition. Their stability and tracking

performance are analyzed and evaluated by simulation examples.

This chapter is organized as follows. The adaptive SFOT control designs for

SISO piecewise linear systems are proposed and analyzed in Section 6.1. Multivari-

able designs are presented in Section 6.2. Illustrative examples to demonstrate the
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effectiveness of the proposed adaptive control schemes are provided in Section 6.3.

6.1 Design for SISO Piecewise Linear Systems

The adaptive state feedback control problem is studied in this section for a SISO

piecewise linear system to make its output track a desired trajectory generated from

a linear time-invariant (LTI) reference model system.

6.1.1 Problem Statement

Consider a SISO piecewise linear system:

ẋ(t) = A(t)x(t) + b(t)u(t)

y(t) = cTx(t), x(0) = x0

(6.1.1)

where x(t) ∈ Rn is the state vector and is available for measurement, u(t) ∈ R is

the control input, y(t) ∈ R is the controlled output, A(t) ∈ Rn×n and b(t) ∈ Rn

are unknown time-varying system parameter matrices, and c ∈ Rn is an unknown

constant parameter vector. The parameters matricesA(t) and b(t) vary in a piecewise

linear pattern; that is, during different time periods, (A(t), b(t)) take on different

values as specified by the parameter matrix sets (Ai, bi), called a subysystme of (6.1.1),

i ∈ I , {1, 2, . . . , l}, where Ai and bi are unknown but constant parameter matrices,

and l is the total number of subsystems. To characterize such time-varying behaviors

of the system, the indicator functions are introduced.

Indicator Functions. The knowledge of the durations of time of the ith subsys-

tem that the system assumes and the time instants at which it switches to the jth,

i, j ∈ I, is crucial for adaptive control design. The indicator functions χi(t), which

contain such knowledge of the system parameter discontinuities, are assumed to be
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known and defined as

χi(t) =

{
1, if (A(t), b(t)) = (Ai, bi)
0, otherwise

(6.1.2)

It follows that
l∑

i=1

χi(t) = 1 χj(t)χk(t) = 0, j ̸= k

With the indicator functions χi(t), the time-varying plant parameter matrices A(t)

and b(t) can be expressed as

A(t) =
l∑

i=1

Aiχi(t), b(t) =
l∑

i=1

biχi(t) (6.1.3)

Control Objective. The control objective is to develop a feedback control law

u(t) for the system (6.1.1) with parameter variations characterized as in (6.1.3) such

that all the signals in the closed-loop system are bounded, and the plant output y(t)

tracks a reference signal ym(t) as closely as possible, with ym(t) generated from a

reference model system

ym(t) = Wm(s)[r](t), Wm(s) =
1

Pm(s)
(6.1.4)

where Pm(s), independent of the system parameters, is a desired stable closed-loop

characteristic polynomial of degree n∗, and r(t) is an external reference input signal

which is bounded and piecewise continuous.

MRAC Assumptions. Suppose the transfer function for the ith subsystem is

Gi(s) = cT(sI −Ai)
−1bi =

kpiZi(s)

Pi(s)
(6.1.5)

with kpi ̸= 0 a constant and Pi(s) = det(sI − Ai), Zi(s) being monic polynomials

with unknown constant coefficients and of degrees n and m, respectively. To design

an adaptive state feedback control law for output tracking, the following assumptions

are made for i ∈ I:
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(A6.1-1) (cT,Ai, bi) is stabilizable and detectible;

(A6.1-2) The zeros of Zi(s) are stable with their real parts less than −δ for some

known δ > 0;

(A6.1-3) The degree m of Zi(s) is known;

(A6.1-4) The degree of Pm(s) is n
∗ = n−m; and

(A6.1-5) The sign of kpi, sign[kpi], is known.

Remark 6.1.1. The knowledge of δ in Assumption (A6.1-2) is required such that a

suitable dynamic normalizing signal can be designed, and the boundedness property of

the normalized system state vector can be used in concluding the closed-loop stability

properties [11].

Next, the non-adaptive nominal model reference control problem is considered

first, which motivates the adaptive control scheme presented in Section 6.1.3.

6.1.2 Nominal Control Scheme

Controller Structure. With complete knowledge of plant parameter matrices Ai

and bi, i ∈ I, the following state feedback controller structure is applied

u(t) = k∗T
x (t)x(t) + k∗r(t)r(t) (6.1.6)

with the time-varying nominal controller parameters defined as

k∗
x(t) = k∗

x1χ1(t) + k∗
x2χ2(t) + · · ·+ k∗

xlχl(t)

k∗r(t) = k∗r1χ1(t) + k∗r2χ2(t) + · · ·+ k∗rlχl(t)

and constant vectors k∗
xi ∈ Rn and k∗ri ∈ R computed from the piecewise plant-model

matching condition:

det(sI −Ai − bik
∗T
xi ) = Pm(s)Zi(s), k∗ri =

1

kpi
(6.1.7)
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It is “piecewise” in the sense that when the ith subsystem is active (as indicated by

χi(t) = 1), the controller (6.1.6) leads to an input/output transfer function matching

of the closed-loop system (cT,Ami, bmi) with

Ami , Ai + bik
∗T
xi , bmi , bik

∗
ri (6.1.8)

to the reference model system, i.e.,

cT(sI −Ami)
−1bmi =

kpiZi(s)k
∗
ri

det(sI −Ami)
= Wm(s) (6.1.9)

The existence of such k∗
xi and k

∗
ri is guaranteed by Assumptions (A6.1-1) and (A6.1-

2). Furthermore, the matrices Ami, i ∈ I, are all stable, since both Pm(s) and Zi(s)

are stable polynomials by assumption.

Let the increasing sequence {tk}∞k=1 denote the time instants at which subsystem

switches occur. With (6.1.6) in (6.1.1), the closed-loop system becomes

ẋ(t) =
l∑

i=1

[Amiχi(t)x(t) + bmiχi(t)r(t)], y(t) = cTx(t) (6.1.10)

It is worth noting that unlike conventional state feedback MRC developed for LTI

systems for output tracking [15], the nominal control law (6.1.6) designed based on

the piecewise matching equations (6.1.7) may not ensure stability without imposing

additional conditions on subsystem switches (e.g., the minimum switching time in-

terval requirement on T0 in (5.2.4) of Lemma 5.2.1. Even if the closed-loop system is

stable, we cannot expect asymptotic tracking performance. This is because the piece-

wise matching equation (6.1.7) does not incorporate the boundary conditions at each

subsystem switching time instant, determined by the internal state of the closed-loop

system. The closed-loop stability properties and the output tracking performance of

the nominal closed-loop system are summarized next.
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Stability Properties. Let (cT,Am(k−1), bm(k−1)) ∈ {(cT,Ami, bmi)}li=1 denote

the active subsystem over [tk−1, tk), k ∈ Z+, Φ(t, τ) the state transition matrix asso-

ciated with the homogeneous system

ż(t) = Am(t)z(t), Am(t) =
l∑

i=1

Amiχi(t)

and (cTm,Am, bm) a state space realization of the reference model system (6.1.4) with

the associated state transition matrix Φm(t, τ). For the nominal closed-loop system,

consisting of the plant (6.1.1), the reference model (6.1.4), and the controller (6.1.6),

we have the following results:

Theorem 6.1.2. All signals in the nominal closed-loop system are bounded if the

minimum switching time interval T0 satisfies (5.2.4). The output tracking error e(t) =

y(t)− ym(t) is

e(t) = η0(t) + ε0(t)

with ε0(t) an initial condition related term

ε0(t) = cTΦ(t, t0)x(t0)− cTmΦm(t, t0)xm(t0) (6.1.11)

which is exponentially decaying, and for t ∈ [tk−1, tk),

η0(t) =
k∑
j=2

∫ tj−1

tj−2

[
cTΦ(t, τ)bm(j−2) − cTmΦm(t, τ)bm

]
r(τ)dτ (6.1.12)

which is small in the mean square sense, under the slow switching condition (5.2.4).

Furthermore, there exist positive constants C1 and K1, such that e(t) satisfies∫ t+T

t

e2(τ) dτ ≤ C1 +K1nT , ∀t ≥ t0, ∀T ≥ 0 (6.1.13)

where nT is the total number of subsystem switches over [t, t+ T ].
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Proof: The signal boundedness properties of the closed-loop system can be proved

following Lemma 5.2.1. Consider the state evolution inside a switching time interval

[tk−1, tk), k ∈ Z+, over which we have

y(t) =cTΦ(t, tk−1)x(tk−1) + cT
∫ t

tk−1

Φ(t, τ)bm(k−1)r(τ)dτ

ym(t) =cTmΦm(t, tk−1)xm(tk−1) + cTm

∫ t

tk−1

Φm(t, τ)bmr(τ)dτ

From (6.1.9) we can see that (cT,Am(k−1), bm(k−1)) is a non-minimal realization of

Wm(s) = 1/Pm(s), so that

cT
∫ t

tk−1

Φ(t, τ)bm(k−1)r(τ)dτ = cTm

∫ t

tk−1

Φm(t, τ)bmr(τ)dτ

It then follows that

e(t) =cTΦ(t, tk−1)x(tk−1)− cTmΦm(t, tk−1)xm(tk−1)

=cT[Φ(t, tk−2)x(tk−2) +

∫ tk−1

tk−2

Φ(t, τ)bm(k−2)r(τ)dτ ]

− cTm[Φm(t, tk−2)xm(tk−2) +

∫ tk−1

tk−2

Φm(t, τ)bmr(τ)dτ ]

...

=η0(t) + ε0(t)

(6.1.14)

with ε0(t) and η0(t) in (6.1.11) and (6.1.12), respectively.

From Lemma 5.2.1, the state transition matrix Φ(t, τ) associated with the ho-

mogeneous system is exponentially stable under (5.2.4). We can conclude that ε0(t)

decays exponentially. The smallness of η0(t) in the mean square sense can be estab-

lished by dividing the integration interval into corresponding switching time intervals,

and noting the exponential stability of Φ(t, τ), Φm(t, τ) and the boundedness of sys-

tem parameters and r(t). The mean square tracking performance (6.1.13) can be

established in a similar way. �
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Remark 6.1.3. Due to the exponential stability of Φ(t, τ) and Φm(t, τ), each integral

under the summation in η0(t) decays exponentially. Therefore, if the system ceases to

switch after some time, the output tracking error decays to zero exponentially fast, and

e(t) ∈ L2 (let t = 0 and T = ∞ in (6.1.13), and the number of subsystem switches

over [0,∞), n∞, is finite).

Remark 6.1.4. As a part of the tracking error e(t), η0(t) in (6.1.12) captures the

deviations of y(t) from ym(t) caused by subsystem switches. In particular, for each

integral under the summation, the first term can be rewritten as cTΦ(t, tj−1)x̄(tj−1),

with x̄(tj−1) =
∫ tj−1

tj−2
Φ(tj−1, τ)bm(j−2)r(τ)dτ denoting the part of the closed-loop sys-

tem state at the switching time instant tj−1, generated by the reference input r(t)

over [tj−2, tj−1). This term represents the contribution of x̄(tj−1) to the system

output y(t) at time t. Due to a subsystem switch at tj−1, it is not matched by a

counterpart in ym(t), i.e., the second term, cTmΦm(t, tj−1)x̄m(tj−1) with x̄m(tj−1) =∫ tj−1

tj−2
Φm(tj−1, τ)bmr(τ)dτ . The difference is the deviation in output tracking error

due to the switch at tj−1.

6.1.3 Adaptive Control Design

Since the plant parameter matrices Ai and bi, i ∈ I, are unknown, the nominal

controller (6.1.6) cannot be implemented. An adaptive controller structure with its

parameters updated by some adaptive laws is proposed in this section.

Controller Structure. The adaptive controller structure is proposed as follows:

u(t) = kT
x (t)x(t) + kr(t)r(t) (6.1.15)

where kx(t) ∈ Rn and kr(t) ∈ R are defined as

kx(t) =
l∑

i=1

kxi(t)χi(t), kr(t) =
l∑

i=1

kri(t)χi(t)
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The parameter vectors kxi(t) ∈ Rn and kri(t) ∈ R are the estimates of k∗
xi and k

∗
ri,

respectively, defined to satisfy (6.1.7), and they are updated by some adaptive laws

to be developed next.

By applying the control law (6.1.15) to the plant (6.1.1) and denoting the controller

parameter error vectors as k̃x(t) = kx(t) − k∗
x(t), k̃r(t) = kr(t) − k∗r(t), k̃xi(t) =

kxi(t)− k∗
xi, and k̃ri(t) = kri(t)− k∗ri, we can obtain the closed-loop system

ẋ =
l∑

i=1

Amiχix+
l∑

i=1

bmiχir +
l∑

i=1

bmiχi

l∑
i=1

1

k∗ri

(
k̃T
xiχix+ k̃riχir

)
y =cTx

(6.1.16)

In view of (6.1.4) and (6.1.9), the tracking error equation follows:

e(t) = Wm(s)

[
l∑

i=1

1

k∗ri

(
k̃T
xiχix+ k̃riχir

)]
(t) + η(t) + η0(t) + ε0(t) (6.1.17)

where η0(t) and ε0(t) are as in (6.1.12) and (6.1.11), respectively, and η(t) is in the

same form of η0(t):

η(t) =
k∑
j=2

∫ tj−1

tj−2

[
cTΦ(t, τ)bm(j−2) − cTmΦm(t, τ)bm

]
∆(τ)dτ (6.1.18)

∆(τ) =
1

k∗r(j−2)

(
k̃T
x(j−2)(τ)x(τ) + k̃r(j−2)(τ)r(τ)

)
(6.1.19)

with (j − 2) in the subscript denoting the active subsystem over [tj−2, tj−1).

Remark 6.1.5. Similar to η0(t), η(t) captures the unparameterized part of the output

tracking error e(t) due to controller parameter errors, in the presence of subsystem

switches. They are treated as perturbations to the parameterizable part of e(t) in sub-

sequent analysis. A property of η(t) is that with the controller parameter estimates

generated by parameter projection adaptive laws (developed next), a normalized ver-

sion of η(t) is small in the mean square sense, which is critical to closed-loop system

stability analysis.
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Error Model. To derive an estimation error model for adaptive law design,

we denote θi(t) = [kT
xi(t), kri(t)]

T, θ∗
i = [k∗T

xi , k
∗
ri]

T, and define the auxiliary signals

ω(t) = [xT(t), r(t)]T, ζi(t) = Wm(s)[ωχi](t), ξi(t) = θT
i (t)ζi(t) − Wm(s)[θ

T
i ωχi](t)

and the estimation error signal

ϵ(t) = e(t) +
l∑

i=1

ρi(t)ξi(t) (6.1.20)

where ρi(t) is an estimate of ρ∗i = 1/k∗ri. With (6.1.17) in (6.1.20) we have the

estimation error model

ϵ(t) =
l∑

i=1

(
ρ∗i θ̃

T
i (t)ζi(t) + ρ̃i(t)ξi(t)

)
+ η(t) + η0(t) + ε0(t) (6.1.21)

where the parameterized part of ϵ(t) is linear in parameter errors θ̃i(t) = θi(t)− θ∗
i ,

ρ̃i(t) = ρi(t) − ρ∗i . For the rest part of ε(t), η(t) + η0(t) is due to the presence of

subsystem switches, while ϵ0(t) is related to system initial conditions. They are not

parameterizable and are thus treated as perturbations. Parameter projection adaptive

laws are proposed next, which are robust to such perturbations under additional slow

switching conditions.

Adaptive Laws. Based on the error model (6.1.21), we propose the following

gradient adaptive laws with parameter projections to update θi(t) and ρi(t), i ∈ I:

θ̇i(t) = −sign[kpi]Γiζi(t)ϵ(t)

m2(t)
+ fi(t), Γi = ΓT

i > 0

ρ̇i(t) = −γiξi(t)ϵ(t)
m2(t)

+ gi(t), γi > 0, t ≥ 0

(6.1.22)

assuming certain knowledge of the bounds on the nominal controller parameters θ∗
i

and ρ∗i , where fi(t) and gi(t) are the projection terms so designed as to confine the

parameter estimates within their respective known bounds at all time. The initial

estimates θi(t0) = θi0 and ρi(t0) = ρi0 are chosen to be within these bounds. The
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adaptation gains are Γi ∈ R(n+1)×(n+1), γi ∈ R, and the normalizing signal is m2(t) =

1 +ms(t) with ms(t) generated from

ṁs(t) = −2δ0ms(t) + u2(t) + y2(t), ms(0) = 0 (6.1.23)

where δ0 < δ for δ in Assumption (A6.1-2).

Stability Properties. The closed-loop stability and tracking performance of the

the proposed adaptive control scheme are summarized in the following theorem:

Theorem 6.1.6. Consider the closed-loop system consisting of the plant (6.1.1), the

reference model (6.1.4), and the adaptive controller (6.1.15) updated by the adaptive

laws (6.1.22). There exist T ∗
0 > 0 such that for T0 = mink∈Z+{tk − tk−1} ≥ T ∗

0 , all

signals in the closed-loop system are bounded, and for some positive constants C2, K2,

the output tracking error e(t) = y(t)− ym(t) satisfies∫ t+T

t

e2(τ)dτ ≤ C2 +K2nT , ∀t ≥ t0, ∀T ≥ 0 (6.1.24)

where nT is the total number of subsystem switches over [t, t+ T ].

For closed-loop stability, we first note that the parameter estimates from the

adaptive laws (6.1.22) have the desired properties that they are bounded and within

their respective parameter bounds, and the normalized estimation error ϵ(t)/m(t),

θ̇(t), and ρ̇(t) are small in the mean square sense, as long as the truncated system

input and output signals are bounded. In particular, consider the positive definite

function

V (θ̃i, ρ̃i) =
l∑

i=1

(
|ρ∗i |θ̃T

i Γ
−1
i θ̃i + γ−1

i ρ̃2i

)
(6.1.25)

whose time derivative along the trajectories of (6.1.22) is

V̇ =− ϵ2(t)

m2(t)
+ 2

(
η(t) + η0(t)

m(t)

)2

+ 2
ε20(t)

m2(t)
+ 2

l∑
i=1

(
|ρ∗i |θ̃T

i Γ
−1
i fi(t) + γ−1

i ρ̃igi(t)
)

≤− ϵ2(t)

m2(t)
+ 2

(
η(t) + η0(t)

m(t)

)2

+ 2
ε20(t)

m2(t)
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The last inequality is due to the fact that θ̃T
i Γ

−1
i fi(t) < 0 and ρ̃igi(t) < 0. It then

follows that∫ t+T

t

ϵ2(τ)

m2(τ)
dτ ≤ c1 + 2

∫ t+T

t

[(
η(τ) + η0(τ)

m(τ)

)2

+
ε20(τ)

m2(τ)

]
dτ

for some c1 > 0, and the same properties apply to θ̇(t) and ρ̇(t) as well.

Closed-loop signal boundedness can be proved by first using a reduced-order state

observer design of the piecewise linear system (6.1.1) to parameterize the state feed-

back controller structure in (6.1.6) into an output feedback form. A fictitious signal is

then defined in a similar way as m(t), such that the various signals in the closed-loop

systems when normalized by this fictitious signal are either bounded or small in the

mean square sense. A filtered version of the system output y(t) is then expressed in

a feedback framework that is suitable for the application of the small gain theorem.

Under sufficiently slow subsystem switches (T0 ≥ T ∗
0 for some T ∗

0 > 0) and with

the signal properties as stated above, the boundedness of the fictitious signal can be

concluded, and the closed-loop signal boundedness is established.

The mean square tracking performance can be obtained by first dividing the inte-

gration time interval [t, t+T ] into corresponding switching time intervals. The integral

of e2(t)/m2(t) over each interval is upper bounded by a sum of those of ϵ2(t)/m2(t),

∥θ̇(t)∥, and |ρ̇2(t)|. With their respective mean square properties, it can be shown

for some c2, c3 > 0 that∫ t+T

t

e2(τ)dτ ≤ c2 + c3

∫ t+T

t

(η(τ) + η0(τ))
2 dτ (6.1.26)

Note that with sufficiently slow switches, ε0(t) is exponentially stable and thus belongs

to L2. The tracking performance (6.1.24) can then be established from (6.1.26) as in

Theorem 6.1.2, with the fact that η(t) and η0(t) are small in the mean square sense.
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Remark 6.1.7. If the system ceases to switch after some time, η(t) and η0(t) will

decay to zero exponentially. We can conclude from (6.1.24) that limt→∞ e(t) = 0 and

e(t) ∈ L2.

6.1.4 Recovery of Asymptotic Tracking Performance

Conditions under which the asymptotic tracking performance is achieved with the

proposed adaptive control scheme are of interest. The following theorem gives such

a condition:

Theorem 6.1.8. Suppose there exist nominal controller parameters k∗
xi ∈ Rn and

k∗ri ∈ R, such that in addition to (6.1.8) and (6.1.9),

Ami = A∗
m, bmi = b∗m, i ∈ I, (6.1.27)

for some constant matrices A∗
m ∈ Rn×n and b∗m ∈ Rn. Then all signals in the

closed-loop system, consisting of the plant (6.1.1), the reference model (6.1.4), and

the adaptive controller (6.1.15) updated by

θ̇i(t) = −sign[kpi]Γiζi(t)ϵ(t)

m2(t)
, Γi = ΓT

i > 0

ρ̇i(t) = −γiξi(t)ϵ(t)
m2(t)

γi > 0, t ≥ 0

(6.1.28)

are bounded, and the output tracking error e(t) = y(t) − ym(t) satisfies e(t) ∈ L2

and converges to zero asymptotically, i.e., limt→∞ e(t) = 0, for arbitrary subsystem

switches.

Proof: Under (6.1.27), the matching condition (6.1.7) reduces to cT(sI−A∗
m)

−1b∗m =

Wm(s), hence η(t) = η0(t) = 0 in (6.1.17), and ε0(t) is an initial condition related

term that decays to zero exponentially. The estimation error ϵ(t) defined by (6.1.20)

can thus be fully parameterized as in (6.1.21) with η(t) = η0(t) = 0, and no parameter

projections are needed in the adaptive laws.
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Consider the positive definite function in (6.1.25). Its time derivative along the

trajectories of (6.1.28) is V̇ (θ̃i, ρ̃i) ≤ −ϵ2(t)/m2(t). Hence θi(t), ρi(t) ∈ L∞, ϵ(t)
m(t)

∈

L2∩L∞. From (6.1.28) and ζi(t)
m(t)

, ξi(t)
m(t)

∈ L∞, we have θ̇i(t), ρ̇i(t) ∈ L2∩L∞. With these

desired signal properties, closed-loop stability and asymptotic tracking performance

can be established by the standard stability analysis procedure, after using a reduced-

order state observer design of (6.1.1) to parameterize the state feedback controller

structure in (6.1.6) into an output feedback form [15]. �

Remark 6.1.9. Compared with (6.1.8) and (6.1.9), the condition of (6.1.27) is re-

strictive: each subsystem is required to be matched via the model reference controller

(6.1.6) to the same linear time-invariant closed-loop system (cT,A∗
m, b

∗
m). In prac-

tice, this may not be satisfied. However, systems in certain canonical forms fit in this

context. A simulation example is shown in Section 6.3 for systems in controllable

canonical forms.

6.1.5 Advantages over Conventional MRAC

If conventional SISO state feedback for output tracking MRAC design were to be

applied to the piecewise linear system (6.1.1), the controller structure will be in the

same form as (6.1.15), i.e.,

u(t) = kT
x (t)x(t) + kr(t)r(t) (6.1.29)

However, as estimates of the nominal controller parameters k∗
x(t) and k∗r(t) defined

as in (6.1.6), kx(t) and kr(t) are directly updated by some adaptive laws.

Since the nominal parameters θ∗(t) , [kT∗
x (t), k∗r(t)]

T and ρ∗(t) , 1/k∗r(t) are time-

varying (piecewise constant), and only one set of parameters θ(t) , [kT
x (t), kr(t)]

T is

updated for control implementation, additional modeling error will be introduced in
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the error model, compared with the proposed adaptive scheme. To be specific, the

tracking error with the application of such a control law is

e(t) = Wm(s)[ρ
∗θ̃Tω](t) + η(t) + η0(t) + ε0(t)

where θ̃(t) = θ(t)− θ∗(t), η0(t) and ε0(t) are as in (6.1.12) and (6.1.11), and η(t) is

as in (6.1.18) with ∆(τ) = ρ∗(τ)θ̃T(τ)ω(τ). By defining the estimation error signal

ϵ(t) = e(t)+ ρ(t)ξ(t) with ξ(t) = θT(t)ζ(t)−Wm(s)[θ
Tω](t) and ζ(t) = Wm(s)[ω](t),

it follows that

ϵ(t) =ρ∗(t)θ̃T(t)ζ(t) + ρ̃(t)ξ(t) + εa(t) + η(t) + η0(t) + ε0(t)

εa(t) =Wm(s)[ρ
∗θ̃Tω](t)− ρ∗(t)Wm(s)[θ̃

Tω](t)

+ ρ∗(t)
(
θ∗T(t)ζ(t)−Wm(s)[θ

∗Tω](t)
) (6.1.30)

With the knowledge of lower and upper bounds on system parameters, the follow-

ing parameter projection adaptive laws can be applied to update θ(t) and ρ(t):

θ̇(t) = −sign[ρ∗(t)]Γζ(t)ϵ(t)

m2(t)
+ f(t), Γ = ΓT > 0

ρ̇(t) = −γξ(t)ϵ(t)
m2(t)

+ g(t), γ > 0, t ≥ 0

where the projection terms f(t) and g(t) are designed to confine the parameter esti-

mates to be within their respective bounds at all time.

To implement this design, we need to assume that ρ∗(t) has a known and constant

sign; that is, sign[kpi] is known and constant. Then with sufficient slow subsystem

switches, closed-loop stability can be established.

The advantages of the proposed adaptive control scheme in Section 6.1.3 over this

conventional MRAC design are: i) it has reduced modeling errors in the error model

(there is an extra εa(t) term in (6.1.30), as compared with (6.1.21)); ii) asymptotic

tracking performance is recovered, when all subsystems can be matched to an LTI
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system with the same transfer function as the reference model system (see Theorem

6.1.8), while this cannot be archived by the conventional MRAC design; and iii)

sign[kpi] of each system model is not required to be the same. The price paid, on the

other hand, is the knowledge of the indicator functions χi(t), i ∈ I.

6.2 Design for MIMO Piecewise Linear Systems

In this section, the adaptive control scheme proposed in Section 6.2 is extended to

multivariable MRAC schemes applicable to MIMO piecewise linear system. A direct

state feedback MRAC scheme is developed based on the LDS decomposition of high

frequency gain matrices of such systems.

6.2.1 Problem Statement

Consider an M -input, M -output piecewise linear system:

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = CTx(t), x(0) = x0

(6.2.1)

where x(t) ∈ Rn is the state vector and is available for measurement, u(t) ∈ RM is the

control input, y(t) ∈ RM is the controlled output, A(t) ∈ Rn×n and B(t) ∈ Rn×M

are unknown time-varying system parameter matrices, and C ∈ Rn×M is an un-

known constant parameter matrix. Similar to the SISO case, the parameter matrices

A(t), B(t) vary in a piecewise linear pattern; that is, during different time peri-

ods, (A(t),B(t)) take on different values as specified by the parameter matrix sets

(Ai,Bi), where Ai, Bi are unknown but constant parameter matrices, and l is the

total number of subsystems. The indicator functions are introduced to characterize

such a time-varying behavior of the system.

Indicator Functions. The indicator functions χi(t) are assumed to be known
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and defined as

χi(t) =

{
1, if (A(t),B(t)) = (Ai,Bi)
0, otherwise

The have the following properties

l∑
i=1

χi(t) = 1, χj(t)χk(t) = 0, j ̸= k

The time-varying parameter matrices A(t), B(t) can then be expressed as

A(t) =
l∑

i=1

Aiχi(t), B(t) =
l∑

i=1

Biχi(t) (6.2.2)

Control Objective. The control objective is to develop a state feedback control

law u(t) for the piecewise linear system (6.2.1) with parameter variations character-

ized as in (6.2.2) such that all the signals in the closed-loop system are bounded,

and y(t) tracks a reference signal ym(t) as close as possible. The reference trajectory

ym(t) is generated from a reference model system

ym(t) = Wm(s)[r](t), Wm(s) = ξ−1
m (s) (6.2.3)

where ξm(s) is a common modified left interactor matrix for the transfer matrix of

each subsystem, i.e.,

Gi(s) = CT(sI −Ai)
−1Bi (6.2.4)

of the piecewise linear system (6.2.1), and r(t) ∈ RM is a bounded, piecewise contin-

uous external reference input signal.

MRAC Assumptions. Suppose for the ith subsystem the transfer matrix of

the system is (6.2.4). To design an adaptive state feedback control law for output

tracking, the following assumptions are made for i ∈ I:

(A6.2-1) (CT,Ai,Bi) is stabilizable and detectible;



139

(A6.2-2) All zeros of Gi(s) are stable with their real parts less than −δ for some

known δ > 0;

(A6.2-3) Gi(s) are strictly proper, have full rank and their modified left interactor

matrix ξm(s) is known;

(A6.2-4) All leading principle minors ∆ij, j = 1, 2, . . . ,M , of the high frequency

gain matrices, Kpi = lims→∞ ξm(s)Gi(s), are nonzero with known signs; and

(A6.2-5) The LDS decompositions of Kpi [73] are such that

Kpi = LsDsiSi (6.2.5)

whereLs ∈ RM×M is unity lower triangular, Si ∈ RM×M are symmetric, positive

definite, and

Dsi = diag{sign[∆i1]γi1, . . . , sign[
∆iM

∆iM−1

]γiM}

with γij > 0, j = 1, 2, . . . ,M .

Remark 6.2.1. The assumed knowledge of δ in Assumption (A6.2-2) is for the de-

sign of a suitable dynamic normalizing signal, such that the boundedness property of

the normalized system state vector can be used in concluding the closed-loop stability

properties [11].

Under Assumption (A6.2-4), a gain matrixKp ∈ RM×M with nonzero leading prin-

ciple minors ∆j, j = 1, 2, . . . ,M , has a unique LDU decomposition [15,73] (see Section

2.2), i.e.,Kp = LD∗U , whereL is unity lower triangular, U is unity upper triangular,

and D∗ = diag{∆1,
∆2

∆1
, . . . , ∆M

∆M−1
}. Note that its LDS decomposition, Kp = LsDsS,

is not unique in that it follows from the unique LDU decomposition with Ls =

LDs(U
−1)TD−1

s , S = UTD−1
s D∗U , and Ds = diag{sign[∆1]γ1, . . . , sign[

∆M

∆M−1
]γM},

whose diagonal elements γj > 0 may be chosen arbitrarily.
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Remark 6.2.2. Assumption (A6.2-5), that is, the high frequency gain matrix Kpi of

each subsystem is assumed to have a common Ls matrix in their LDS decompositions

(6.2.5), is essential in the derivation of the error model for adaptive control design

to avoid differentiation operations on the output tracking error signal e(t), which

is undesirable in practical applications with the presence of noises in signals. This

assumption is trivial and automatically satisfied for SISO case (see Section 6.1). For

a set of high frequency gain matrices Kpi ∈ RM×M with M > 1, such Ls may exist for

a specific choice of Ds. This is shown by an illustrative example in Section 6.3.

6.2.2 Nominal Control Scheme

Controller Structure. If the system parameter matrices Ai and Bi, i ∈ I, are

known, the following state feedback control law is applied

u(t) = K∗T
x (t)x(t) +K∗

r (t)r(t) (6.2.6)

with the controller parameter matrices

K∗
x(t) = K∗

x1χ1(t) +K∗
x2χ2(t) + · · ·+K∗

xlχl(t)

K∗
r (t) = K∗

r1χ1(t) +K∗
r2χ2(t) + · · ·+K∗

rlχl(t)

where K∗
xi ∈ Rn×M and K∗

ri ∈ RM are computed from the piecewise plant-model

matching condition:

CT(sI −Ai −BiK
∗T
xi )BiK

∗
ri = Wm(s), K∗−1

ri = Kpi (6.2.7)

When the ith subsystem is active (as indicated by χi(t) = 1), the controller (6.2.6)

leads to an input/output transfer matrix matching of the closed-loop system (CT,Ami,Bmi)

with

Ami , Ai +BiK
∗T
xi , Bmi , BiK

∗
ri (6.2.8)
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to the reference model system, i.e.,

CT(sI −Ami)
−1Bmi = Wm(s) (6.2.9)

The existence ofK∗
xi,K

∗
ri is guaranteed by Assumption (Achap:sfot.2-1) and (Achap:sfot.2-

2) [75]. Furthermore, the matrices Ami are all stable.

With (6.2.6) in (6.2.1), the closed-loop system becomes

ẋ(t) =
l∑

i=1

(Amiχix(t) +Bmiχir(t)) , y(t) = CTx(t) (6.2.10)

Similar to the SISO case, with the results of Lemma 5.2.1, we can establish the

stability properties of the nominal closed-loop system 6.2.10 as follows.

Stability Properties. Let (CT,Am(k−1),Bm(k−1)) ∈ {(CT,Ami,Bmi)}li=1 de-

note the active subsystem over [tk−1, tk), k ∈ Z+, Φ(t, τ) the state transition matrix

associated with the homogeneous system of (6.2.10), and (CT
m,Am,Bm) a state space

realization of the reference model system (6.2.3) with the associated state transition

matrix Φm(t, τ). For the nominal closed-loop system, consisting of the plant (6.2.1),

the reference model (6.2.3), and the controller (6.2.6), we have the following results:

Theorem 6.2.3. All signals in the nominal closed-loop system are bounded if the

minimum switching time interval T0 satisfies (5.2.4). The output tracking error e(t) =

y(t)− ym(t) is

e(t) = η0(t) + ε0(t)

with ε0(t) an initial condition related term

ε0(t) = CTΦ(t, t0)x(t0)−CT
mΦm(t, t0)xm(t0) (6.2.11)

which is exponentially decaying, and for t ∈ [tk−1, tk),

η0(t) =
k∑
j=2

∫ tj−1

tj−2

[
CTΦ(t, τ)Bm(j−2) −CT

mΦm(t, τ)Bm

]
r(τ)dτ (6.2.12)



142

which is small in the mean square sense, under the slow switching condition (5.2.4).

Furthermore, there exist positive constants C1 and K1, such that e(t) satisfies∫ t+T

t

∥e(τ)∥2 dτ ≤ C1 +K1nT , ∀t ≥ t0, ∀T ≥ 0 (6.2.13)

where nT is the total number of subsystem switches over [t, t+ T ].

Proof: The proof follows the same line as in the SISO case (see Section 6.1.2), thus

the details are omitted. �

Similar to the SISO case, the comments made in Remarks 6.1.3 and 6.1.4 also

apply here. In particular, if the system stops switching after some time, the output

tracking error decays to zero exponentially. Furthermore, η0(t) in (6.2.12) captures

the deviations of y(t) from ym(t) caused by subsystem switches at tk, k ∈ Z+.

6.2.3 Adaptive Control Scheme

Since the plant parameter matrices Ai and Bi, i ∈ I, are unknown, an adaptive

control law with its parameters updated by some adaptive laws is needed.

Controller Structure. The adaptive version of (6.2.6) is proposed as follows:

u(t) = KT
x (t)x(t) +Kr(t)r(t) (6.2.14)

where Kx(t) ∈ Rn×M and Kr(t) ∈ RM×M are defined as

Kx(t) =
l∑

i=1

Kxi(t)χi(t), Kr(t) =
l∑

i=1

Kri(t)χi(t)

The parameter matrices Kxi(t) ∈ Rn×M and Kri(t) ∈ RM×M are the adaptive es-

timates of K∗
xi and K∗

ri, defined to satisfy the matching condition (6.2.7), and are

updated from some adaptive laws to be developed as follows.

By applying the adaptive control law (6.2.14) to the plant (6.2.1), and defining

K̃x(t) = Kx(t)−K∗
x(t), K̃r(t) = Kr(t)−K∗

r (t)

K̃xi(t) = Kxi(t)−K∗
xi, K̃ri(t) = Kri(t)−K∗

ri
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we obtain the closed-loop system

ẋ(t) =
l∑

i=1

(Amiχi(t)x(t) +Bmiχi(t)r(t))

+
l∑

i=1

BmiK
∗−1
ri

(
K̃T

xi(t)χi(t)x(t) + K̃ri(t)χi(t)r(t)
)

y(t) = CTx(t)

(6.2.15)

In view of (6.2.3) and (6.2.7), the tracking error equation is

e(t) = Wm(s)

[
l∑

i=1

KpiΘ̃
T
i χiω

]
(t) + η(t) + η0(t) + ϵ0(t)

Θ̃i(t) = Θi(t)−Θ∗
i (t), Θi(t) = [KT

xi(t),Kri(t)]
T

Θ∗
i = [K∗T

xi ,K
∗
ri]

T, ω(t) = [xT(t), r(t)]T

(6.2.16)

where η0(t) and ε0(t) are as in (6.2.12) and (6.2.11), respectively, and η(t) is in the

same form of η0(t):

η(t) =
k∑
j=2

∫ tj−1

tj−2

[
CTΦ(t, τ)Bm(j−2) −CT

mΦm(t, τ)Bm

]
∆(τ)dτ

∆(τ) = Kp(j−2)Θ̃(j−2)(τ)ω(τ)

(6.2.17)

with (j − 2) in the subscript denoting the active subsystem over [tj−2, tj−1).

Remark 6.2.4. Similar to η0(t), η(t) captures the unparameterized part of the output

tracking error e(t) due to controller parameter errors, in the presence of subsystem

switches. They are treated as perturbations to the parameterizable part of e(t) in sub-

sequent analysis. A property of η(t) is that with the controller parameter estimates

generated by parameter projection adaptive laws (developed next), a normalized ver-

sion of η(t) is small in the mean square sense, which is critical to closed-loop system

stability analysis.

Error Model. With (6.2.3) and (6.2.16), it follows that

ξm(s)[e](t) =
l∑

i=1

KpiΘ̃
T
i (t)χi(t)ω(t) + ξm(s)[η + η0 + ϵ0](t) (6.2.18)



144

To deal with the parametric uncertainties in Kpi, their LDS decompositions are used

under Assumption (A6.2-5). With (6.2.5) substituted into (6.2.18), we have

L−1
s ξm(s)[e](t) =

l∑
i=1

DsiSiΘ̃
T
i (t)χi(t)ω(t) +L−1

s ξm(s)[η + η0 + ϵ0](t) (6.2.19)

By introducing Θ∗
0 = L−1

s − I, which is lower triangular with zero diagonal elements,

we obtain

Θ∗
0ξm(s)[e](t) + ξm(s)[e](t) =

l∑
i=1

DsiSiΘ̃
T
i (t)χi(t)ω(t) +L−1

s ξm(s)[η + η0 + ϵ0](t)

(6.2.20)

Operating both sides of (6.2.20) by h(s)I, where h(s) = 1/f(s) with f(s) a monic

stable polynomial of degree equal to the maximum degree of ξm(s), leads to

[0,θ∗T
2 η2(t),θ

∗T
3 η3(t), . . . ,θ

∗T
M ηM(t)]T + ē(t) =

l∑
i=1

DsiSih(s)[Θ̃
T
i χiω](t) + d(t)

(6.2.21)

where θ∗
j ∈ Rj−1, j = 2, . . . ,M , denotes the jth row elements (non-zero part) of Θ∗

0,

ē(t) = ξm(s)h(s)[e](t) = [ē1, ē2 . . . , ēM ]T, ηj(t) = [ē1, ē2 . . . , ēj−1]
T ∈ Rj−1

d(t) = L−1
s ξm(s)h(s)[η + η0 + ϵ0](t)

Define the estimation error signal

ϵ(t) = [0,θT
2 (t)η2(t),θ

T
3 (t)η3(t), . . . ,θ

T
M(t)ηM(t)]T + ē(t) +

l∑
i=1

Ψi(t)ξi(t) (6.2.22)

where θj(t), j = 2, 3, . . . ,M , are the estimates of θ∗
j , and Ψi(t) are the estimates of

Ψ∗
i = DsiSi, and

ξi(t) = ΘT
i (t)ζi(t)− h(s)[ΘT

i χiω](t), ζi(t) = h(s)[χiω](t)

Based on (6.2.21), we can obtain the following error model:

ϵ(t) =[0, θ̃T
2 (t)η2(t), θ̃

T
3 (t)η3(t), . . . , θ̃

T
M(t)ηM(t)]T

+
l∑

i=1

(
Ψ̃i(t)ξi(t) +DsiSiΘ̃

T
i (t)ζi(t)

)
+ d(t)

(6.2.23)
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where θ̃j(t) = θj(t) − θ∗
j , Ψ̃i(t) = Ψi(t) − Ψ∗

i (t) are the parameter errors. The

unparameterized part of ϵ(t), d(t), is due to the presence of subsystem switches and

initial conditions, and is treated as a perturbation. Parameter projection adaptive

laws are proposed next, which are robust to such a perturbation under additional

slow switching conditions.

Adaptive Laws. Based on the error model (6.2.23), we propose the following

gradient adaptive laws to update θj(t), Θi(t), and Ψi(t), i ∈ I, j = 2, 3, . . . ,M :

θ̇j(t) = −
Γθjηj(t)ϵj(t)

m2(t)
+ fj(t)

Θ̇T
i (t) = −Dsiϵ(t)ζ

T
i (t)

m2(t)
+ Fi(t)

Ψ̇i(t) = −Γiϵ(t)ξ
T
i (t)

m2(t)
+Hi(t)

(6.2.24)

assuming certain knowledge of the bounds on the nominal controller parameters,

where ϵ(t) = [ϵ1(t), ϵ2(t), . . . , ϵM(t)]T, fj(t), Fi(t), and Hi(t) are the projection terms

so designed as to confine the parameter estimates within their respective known

bounds at all time. The initial parameter estimates are chosen to be within these

bounds. The adaptation gain matrices Γθj and Γi are positive definite and diagonal,

and the normalizing signal is m2(t) = 1 +ms(t) with ms(t) generated from

ṁs(t) = −2δ0ms(t) + ∥u(t)∥2 + ∥y(t)∥2, ms(0) = 0, δ0 < δ (6.2.25)

where δ0 < δ for δ in Assumption (A6.2-2).

Along the line of derivations in this section, LDU and SDU decomposition based

designs can be developed for adaptive state feedback control of piecewise linear sys-

tems for output tracking. Similar to Assumption (A6.2-5), the controlled subsystems

in these designs need to share certain common structural characteristics (a common

L matrix in the LDU based design, or a common S matrix in the SDU based design).



146

Stability Properties. With the adaptive controller (6.2.14), updated by (6.2.24),

applied to the plant (6.2.1), we have the closed-loop stability properties and tracking

performance as stated in the following theorem:

Theorem 6.2.5. Consider the closed-loop system consisting of the plant (6.2.1), the

reference model (6.2.3), and the adaptive controller (6.2.14) updated by the adaptive

laws (6.2.24). There exist T ∗
0 > 0 such that for T0 = mink∈Z+{tk − tk−1} ≥ T ∗

0 ,

all closed-loop signals are bounded, and for some positive constants C2 and K2, the

output tracking error e(t) = y(t)− ym(t) satisfies∫ t+T

t

∥e(τ)∥2dτ ≤ C2 +K2nT , ∀t ≥ t0, ∀T ≥ 0 (6.2.26)

where nT is the total number of subsystem switches over [t, t+ T ].

For closed-loop stability, we first note that the parameter estimates from the

adaptive laws of (6.2.24) have the desired properties that they are bounded and within

their respective parameter bounds. By considering the positive definite function

V =
1

2

M∑
j=2

θ̃T
j Γ

−1
θj
θ̃j +

l∑
i=1

(
tr[Ψ̃T

i Γ
−1
i Ψ̃i] + tr[Θ̃iSiΘ̃

T
i ]
)

(6.2.27)

and its time derivative along (6.2.24), together with the fact that θ̃T
j Γ

−1
θj
fj ≤ 0,

tr[Ψ̃T
i Γ

−1
i Hi] ≤ 0, and tr[Θ̃iSiFi] ≤ 0, we can obtain that for some c, k > 0 and

z(t) = ϵ(t)
m(t)

, θ̇j(t), Θ̇i(t), Ψ̇i(t)∫ t+T

t

∥z(τ)∥2dτ ≤ c+ k

∫ t+T

t

∥d(τ)∥2

m2(τ)
dτ, ∀t ≥ t0, ∀T ≥ 0

Closed-loop signal boundedness can then be established following the same line of

arguments as in Section 6.1.3 for SISO piecewise linear systems.

The mean square tracking performance can be obtained by first dividing the in-

tegration time interval [t, t + T ] into corresponding switching time intervals. The



147

integral of ∥e(t)∥2/m2(t) over each interval is upper bounded by a sum of those of

∥ϵ(t)∥2/m2(t), ∥θ̇j(t)∥, ∥Θ̇i(t)∥, and ∥Ψ̇i(t)∥. With their respective mean square

properties, it can be shown that∫ t+T

t

∥e(τ)∥2dτ ≤ c2 + c3

∫ t+T

t

∥d(τ)∥2dτ (6.2.28)

for some c2, c3 > 0. Note that with sufficiently slow subsystem switches, the tracking

performance (6.2.26) can be established from (6.2.28) as in Theorem 6.1.6.

Remark 6.2.6. In the state feedback state tracking design for piecewise linear systems

(Sections 5.3–5.4), a plant-model matching condition in the form of

Ai +BiK
∗T
xi = Ami, BiK

∗
ri = Bmi

is crucial and certain structural information about the plant parameter matrices Ai,

Bi are needed for the specification of Ami, Bmi in the piecewise linear reference

model system. In the output tracking case, such restrictive matching conditions are

relaxed; in particular, the triple (Ai +BiK
∗T
xi ,BiK

∗
ri,C

T) here is only a state space

realization of the transfer matrix Wm(s), to ensure input-output, piecewise plant-

model matching, which can always be satisfied under the stated assumptions. In other

words, the existence of the parameter matrices K∗
xi, K

∗
ri is guaranteed.

Remark 6.2.7. If the system ceases to switch after some time, η(t) and η0(t) will

decay to zero exponentially. We then conclude from (6.2.26) that limt→∞ e(t) = 0

and e(t) ∈ L2.

6.2.4 Recovery of Asymptotic Tracking Performance

Similar to the results stated in Theorem 6.1.8, asymptotic output tracking perfor-

mance is achieved with the proposed adaptive control design under the following

condition:



148

Theorem 6.2.8. Suppose there exist nominal controller parameters K∗
xi ∈ Rn×M and

K∗
ri ∈ RM×M , such that in addition to (6.2.8) and (6.2.9),

Ami = A∗
m, Bmi = B∗

m, i ∈ I, (6.2.29)

for some constant matrices A∗
m ∈ Rn×n and B∗

m ∈ Rn×M . Then all signals in the

closed-loop system, consisting of the plant (6.2.1), the reference model (6.2.3), and

the adaptive controller (6.2.14) updated by

θ̇j(t) = −
Γθjηj(t)ϵj(t)

m2(t)

Θ̇T
i (t) = −Dsiϵ(t)ζ

T
i (t)

m2(t)

Ψ̇i(t) = −Γiϵ(t)ξ
T
i (t)

m2(t)

(6.2.30)

are bounded, and the output tracking error e(t) = y(t) − ym(t) satisfies e(t) ∈ L2

and converges to zero asymptotically, i.e., limt→∞ e(t) = 0, for arbitrary subsystem

switches.

Proof: Under (6.2.29), the matching condition (6.2.7) reduces toCT(sI−A∗
m)

−1B∗
m =

Wm(s), hence η(t) = η0(t) = 0 in (6.2.16), and ε0(t) is an initial condition related

term that decays to zero exponentially. The estimation error ϵ(t) defined by (6.2.22)

can thus be completely parameterized as in (6.2.23) with η(t) = η0(t) = 0, and no

parameter projections are needed in the adaptive laws.

Consider the positive definite function in (6.2.27). Its time derivative along the
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trajectories of (6.2.30) is

V̇ =
M∑
j=2

θ̃T
j Γ

−1
θj
θ̇j +

l∑
i=1

(
tr[Ψ̃T

i Γ
−1
i Ψ̇i] + tr[Θ̃iSiΘ̇

T
i ]
)

= −
M∑
j=2

θ̃T
j ηj(t)ϵj(t)

m2(t)
−

l∑
i=1

tr

[
Ψ̃T
i ϵ(t)ξ

T
i (t)

m2(t)

]
−

l∑
i=1

tr

[
Θ̃iSiDsiϵ(t)ζ

T
i (t)

m2(t)

]

= −
M∑
j=2

θ̃T
j ηj(t)ϵj(t)

m2(t)
−

l∑
i=1

ξTi (t)Ψ̃
T
i ϵ(t)

m2(t)
−

l∑
i=1

ζT
i (t)Θ̃iSiDsiϵ(t)

m2(t)

≤ −ϵT(t)ϵ(t)

m2(t)
≤ 0

This implies that θj(t),Θi(t),Ψi(t) ∈ L∞, ϵ(t)
m(t)

∈ L2∩L∞, and from (6.2.24) and the

boundedness of
ηj(t)

m(t)
, ζi(t)
m(t)

, ξi(t)
m(t)

, we also have θ̇j(t), Θ̇i(t), Ψ̇i(t) ∈ L2∩L∞. With these

desired signal properties, closed-loop stability and asymptotic tracking performance

can be established by the standard stability analysis procedure, after using a reduced-

order state observer design of (6.2.1) to parameterize the state feedback controller

structure in (6.2.6) into an output feedback form [15]. �

6.2.5 Advantages over Conventional MRAC

If conventional MIMO state feedback for output tracking MRAC design were to be

applied to the piecewise linear system (6.2.1), the following controller structure (in

the same form as (6.2.14)) is used

u(t) = KT
x (t)x(t) +Kr(t)r(t)

where Kx(t) is an estimate of K∗
x(t) =

∑l
i=1K

∗
xiχi(t), and Kr(t) is an estimate of

K∗
r (t) =

∑l
i=1K

∗
riχi(t). They are directly updated by some adaptive laws.

The tracking error with the application of such a control law is

e(t) = Wm(s)
[
KpΘ̃

Tω
]
(t) + η(t) + η0(t) + ε0(t) (6.2.31)
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where Kp(t) =
∑l

i=1K
∗−1
ri χi(t), ω(t) = [xT(t), r(t)]T, Θ̃(t) = Θ(t) −Θ∗(t), Θ(t) =

[KT
x (t),Kr(t)]

T, Θ∗(t) = [K∗T
x (t),K∗

r (t)]
T, η0(t) and ε0(t) are as in (6.2.12) and

(6.2.11), and η(t) is as in (6.2.17) with ∆(τ) = Kp(τ)Θ̃(τ)ω(τ).

By defining the estimation error signal

ϵ(t) = [0,θT
2 (t)η2(t), . . . ,θ

T
M(t)ηM(t)]T + ē(t) +Ψ(t)ξ(t)

where θj(t), j = 2, 3, . . . ,M , are the estimates of θ∗
j , and Ψ(t) is the estimate of

Ψ∗(t) = L−1
s Kp(t), and

ξ(t) = ΘT(t)ζ(t)− h(s)[ΘTω](t), ζ(t) = h(s)[ω](t)

ē(t) = ξm(s)h(s)[e](t) = [ē1, ē2 . . . , ēM ]T, ηj(t) = [ē1, ē2 . . . , ēj−1]
T

An estimation error model can be obtained as

ϵ(t) = [0, θ̃T
2 (t)η2(t), . . . , θ̃

T
M(t)ηM(t)]T + Ψ̃(t)ξ(t) +Ψ∗(t)Θ̃T(t)ζ(t) + εs(t) + d(t)

(6.2.32)

where εs(t) is a swapping term due to parameter discontinuities:

εs(t) = h(s)[Ψ∗Θ̃ω](t)−Ψ∗(t)h(s)[Θ̃ω](t) +Ψ∗(t) (Θ∗(t)ζ(t)− h(s)[Θ∗ω](t)) .

With the knowledge of lower and upper bounds on system parameters, the fol-

lowing parameter projection adaptive laws can be applied to update the controller

parameters:

θ̇j(t) = −
Γθjηj(t)ϵj(t)

m2(t)
+ fj(t)

Θ̇T(t) = −Dsϵ(t)ζ
T(t)

m2(t)
+ F (t)

Ψ̇(t) = −Γϵ(t)ξT(t)

m2(t)
+H(t)

where ϵ(t) = [ϵ1(t), . . . , ϵM(t)]T, Γθj and Γ are diagonal, positive definite adaptation

gain matrices, and fj(t), F (t), H(t) are the projection terms designed to confine the

parameter estimates to be within their respective bounds at all time.
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To implement this design, we need to assume for ∆ij, the leading principle minors

of Kpi, that

(A6.2-4.a) sign[∆ij] = sign[∆kj], i, k ∈ I, j = 1, 2, . . . ,M

in addition to Assumption (A6.2-4). Then with sufficient slow subsystem switches,

closed-loop stability can be established.

The advantages of the proposed adaptive control scheme over this conventional

MRAC design are: i) it has reduced modeling errors in the error model (there is

an extra term εs(t) in (6.2.32), as compared with (6.2.23)); ii) asymptotic tracking

performance is recovered, when all subsystem can be matched to an LTI system

with the same transfer function as the reference model system (see Theorem 6.2.8),

while this cannot be archived by the conventional MRAC design; and iii) Assumption

(A6.2-4a) is not necessary.

In general, we can expect an improved tracking performance by the proposed adap-

tive control scheme over this conventional MRAC design, as shown by the illustrative

examples given next.

6.3 Simulation Study

In this section a simulation study is first performed for the output tracking problem

of a SISO piecewise linear system in controllable canonical form (CCF), then the

proposed multivariable MRAC design in Section 6.2 is applied to the linearized lateral-

directional model of the NASA GTM to demonstrate its effectiveness in performance

improvement, as compared with the conventional MRAC design.
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6.3.1 SISO Piecewise Linear Systems in CCF

Consider a piecewise linear system (6.1.1) of third order with three subsystems; that

is, n = 3 and l = 3 in (6.1.1)–(6.1.3). In particular,

A1 =

 0 1 0
0 0 1
2 −3 −5

 , A2 =

 0 1 0
0 0 1
−2 0 1

 , A3 =

 0 1 0
0 0 1
0 1 −2


b1 =

 0
0
1

 , b2 =

 0
0
2

 , b3 =

 0
0
0.5

 , cT =
[
1 1 0

]
It can be verified that all three subsystems are open loop unstable and minimum

phase with a single zero at s = −1. Their respective high frequency gains are all

positive. With m = 1, the relative degree of the system is n∗ = n −m = 2, thus we

choose the reference model system transfer function as

Wm(s) =
1

s2 + 2s+ 1

Matching Condition and Nominal Parameters. The plant-model matching

condition (6.1.7) can be satisfied with the nominal controller parameters

k∗
x1 = [−3, 0, 2]T, k∗

x2 = [0.5,−1.5,−2]T, k∗
x3 = [−2,−8,−2]T

k∗r1 = 1, k∗r2 = 0.5, k∗r3 = 2

In fact, for i = 1, 2, 3,

Ami = A∗
m =

 0 1 0
0 0 1
−1 −3 −3

 , bmi = b∗m =

 0
0
1


and cT(sI −A∗

m)
−1b∗m = Wm(s), so that the condition of Theorem 6.1.8 is satisfied.

Simulation Results. In this simulation, a change of subsystem occurs in se-

quence among the three subsystems every 10 seconds, i.e., T = 10. The initial

parameter estimates θi(0), ρi(0) in the adaptive laws (6.1.22) are chosen as 80% of
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their nominal values; that is, θi(0) = 0.8θ∗
i , ρi(0) = 0.8ρ∗i . The adaptation gain-

s are Γi = 3I, γi = 3 for i = 1, 2, 3. The initial state vector of the system is

x(0) = [4,−5, 3]T, and that for the reference model is zero. To generate the normal-

izing signal m(t) from ms(t) in (6.1.23), δ0 is chosen to be −0.5.

Simulations are performed for the reference input signal r(t) being constant and

sinusoidal, i.e., r(t) = 2 and r(t) = 2 sin(0.5t), respectively, and the time history of

the tracking error e(t) is plotted in Figures 6.1–6.2 (top). As a comparison, the track-

ing performance with the conventional SISO state feedback output tracking MRAC

scheme under the same conditions is also shown in Figures 6.1–6.2 (bottom).
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2

Figure 6.1: Tracking error e(t) with r(t) = 2: the proposed scheme (top) vs. the
conventional MRAC scheme (bottom).

As can be seen from the simulation results, with the proposed adaptive control

scheme, both closed-loop signal boundedness and asymptotic tracking are achieved,

which is a significant performance improvement compared with the conventional adap-
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Figure 6.2: Tracking error e(t) with r(t) = 2 sin(0.5t): the proposed scheme (top) vs.
the conventional MRAC scheme (bottom).

tive control scheme that does not take into account the parameter discontinuities.

6.3.2 Linearized Lateral-Directional NASA GTM Model

Simulations are performed to demonstrate the system stability and tracking perfor-

mance with the proposed multivariable adaptive control scheme in Section 6.2 applied

to a piecewise linear system model of the NASA GTM [82] at multiple operating

points. It is to be noted that in the simulations, switches between the chosen lin-

earized GTM models are time-dependent for illustration purposes, while transitions

of operating points of the nonlinear GTM system are state-dependent.

Linearized Model and Reference Model System. For simplicity of presenta-

tion, we choose l = 2, and trim the GTM at steady-state, straight, wings-level flight

conditions at 80 knots and 90 knots at 800 ft., respectively, to obtain a piecewise
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linear lateral system model in the form of (6.2.1), where x = [v, p, r, ϕ, ψ]T with the

elements being the perturbed aircraft velocity component along the y-body-axis (fp-

s), angular velocity along the x- and z-body-axis (crad/s), roll angle (crad), and yaw

angle (crad), respectively. The outputs are chosen as y = [v, ψ]T, while the control

inputs are chosen as the perturbed aileron deflection δa and rudder deflection δr, i.e.,

u = [δa, δr]
T, and the nominal parameter matrices are

A1 =


−0.6137 0.0959 −1.3454 0.3210 0
−66.3000 −6.7565 1.8813 0 0
24.1200 −0.3162 −1.4992 0 0

0 1.0000 0.0691 0.0002 0
0 0 1.0000 0 0



A2 =


−0.6870 0.0801 −1.5153 0.3213 0
−72.9200 −7.5625 1.8623 0 0
27.3600 −0.3078 −1.6865 0 0

0 1.0000 0.0513 0.0001 0
0 0 1.0000 0 0



B1 =


−0.0274 0.4892
−90.0900 29.6300
−2.5200 −46.8300

0 0
0 0

 , B2 =


−0.0396 0.6160

−116.5300 38.2700
−3.1300 −59.5300

0 0
0 0

 , C =


1 0
0 0
0 0
0 0
0 1


It is clear that M = 2, n = 5, and with the choice of the modified left interactor

matrix as

ξm(s) =

[
s+ 1 0

0 (s+ 1)2

]
we obtain the high frequency gain matrices

Kp1 =

[
−0.0274 0.4892
−2.5200 −46.8300

]
, Kp2 =

[
−0.0396 0.6160
−3.1300 −59.5300

]
It then follows that sign[∆11] = −1, sign[∆12] = 1, sign[∆21] = −1, sign[∆22] = 1, and

with the choice of Ds1 = −100I, Ds2 = diag{−100,−197.8998}, we have

Ls1 =

[
1 0

109.8248 1

]
, S1 =

[
0.0003 −0.0049

−0.0049 1.0056

]
Ls2 =

[
1 0

109.8248 1

]
, S2 =

[
0.0004 −0.0062

−0.0062 0.6427

]
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With ξm(s) as above, the reference model system is specified by

ym(t) =

[ 1
s+1

0

0 1
(s+1)2

]
[r](t)

where r(t) is a bounded, piecewise continuous reference input vector signal.

Matching Condition and Nominal Parameters. It can be verified that the

plant model matching condition (6.2.7) for i = 1, 2, is satisfied with

K∗
x1 =


11.8803 −0.1242
1.7235 −0.0995

−24.9447 1.3530
5.9744 −0.3215
0.1944 0.0109

 , K∗
x2 =


8.2807 0.0242
1.0678 −0.0613

−21.0040 1.1096
4.4635 −0.2347
0.1437 0.0092


K∗

r1 =

[
−18.6134 −0.1944

1.0016 −0.0109

]
, K∗

r2 =

[
−13.8911 −0.1437

0.7304 −0.0092

]
and we have θ∗2 = −109.8248, Ψ∗

i = DsiSi, i = 1, 2.

Simulation Parameters. In this simulation, we choose a switching time interval

T = 200s. The initial plant state is x0 = [2, 0, 0, 0,−10]T with zero reference model

initial condition, and the initial parameter estimates are chosen to be 90% of their

nominal values; that is, for i = 1, 2:

θ2(0) = 90%θ∗2, Θi(0) = 90%Θ∗
i , Ψi(0) = 90%Ψ∗

i

The adaptation gains are chosen as Γθ2 = 103, Γ1 = Γ2 = 105I. The parameters of

the signal filter h(s) are chosen such that f(s) = (s+ 6)2.

Simulation I: r(t) = [1, 10]T. Figure 6.3 shows the output tracking error e(t)

with the constant reference input r(t) = [1, 10]T, corresponding to a desired steady-

state lateral velocity of 1 fps and a yaw angle of 5.73◦ (dashed), despite the switches of

operating points every 200s. The aileron and rudder deflections are plotted in Figure

6.4. They are within their respective limits (±20◦ and ±30◦). As a comparison,
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simulations are run for the conventional MRAC scheme applied to the same system

under the same conditions. The output tracking performance and control inputs are

plotted in Figures 6.5–6.6.
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Figure 6.3: Simulation I: tracking performance of the proposed scheme.

Simulation II: r(t) = sin(0.014t)[1, 10]T. Figure 6.7 shows the output tracking

error e(t) with the sinusoidal reference input r(t) = sin(0.014t)[1, 10]T, corresponding

to desired fluctuations of the lateral velocity in between ±1 fps and of the yaw angle

in between ±5.73◦ (dashed), despite the switches of operating points every 200s.

The aileron and rudder deflections are plotted in Figure 6.8. They are within their

respective limits. The simulation results for the conventional MRAC scheme under

the same conditions are plotted in Figures 6.9–6.10.

It can be seen from the simulation results that although closed-loop stability is

achieved by both adaptive control schemes and the control inputs are within the
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Figure 6.4: Simulation I: control input u(t) of the proposed scheme.
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Figure 6.5: Simulation I: tracking performance of the conventional MRAC scheme.
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Figure 6.6: Simulation I: control input u(t) of the conventional MRAC scheme.
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Figure 6.7: Simulation II: tracking performance of the proposed scheme.
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Figure 6.8: Simulation II: control input u(t) of the proposed scheme.
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Figure 6.9: Simulation II: tracking performance of the conventional MRAC scheme.
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Figure 6.10: Simulation II: control input u(t) of the conventional MRAC scheme.

required limits, the proposed design outperforms the conventional MRAC design in

tracking performance.

In this chapter, direct model reference adaptive control (MRAC) schemes are de-

veloped for both SISO and MIMO piecewise linear systems. Closed-loop signal bound-

edness and small output tracking error in the mean square sense are achieved via state

feedback for sufficiently slow subsystem switches. Simulation results demonstrate the

effectiveness of the proposed adaptive control scheme in performance improvement,

as compared with conventional MRAC schemes.



Chapter 7

Adaptive Control of Piecewise
Linear Systems with Output
Feedback for Output Tracking

In this chapter, the adaptive output feedback control problem is studied for single-

input, single-output (SISO) piecewise linear systems with switched parameters. By

employing the knowledge of the time instant indicator functions of system parameter

switching, a new controller structure parametrization is proposed for the development

of a stable adaptive control scheme which is capable of reducing the modeling error

in the estimation error signal used for parameter adaptive laws. This key feature is

achieved by the new controller scheme’s ability to avoid a major parameter swapping

term in the error model, with the help of indicator functions whose knowledge is avail-

able in many applications. It is shown that under the usual slow system parameter

switching condition, the closed-loop stability (signal boundedness) and small output

tracking error in the mean square sense are achieved. Simulation results on linearized

NASA GTM models are presented, demonstrating the effectiveness and performance

improvement of the proposed adaptive control scheme.
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7.1 Problem Statement

Consider a single-input, single-output (SISO) piecewise linear system

ẋ(t) = A(t)x(t) + b(t)u(t), x(t0) = x0

y(t) = cT(t)x(t)
(7.1.1)

where x(t) ∈ Rn is the state vector, and u(t) ∈ R and y(t) ∈ R are the control

input and the controlled output, respectively, which are the only signals available for

measurement. The system parameter matrices (vectors) A(t) ∈ Rn×n, b(t) ∈ Rn and

c(t) ∈ Rn are unknown, and vary in a piecewise constant pattern; that is, during

different time periods, (cT(t),A(t), b(t)) take on different values as specified by the

parameter matrix sets (cTi ,Ai, bi), i ∈ I , {1, 2, . . . , l}, where Ai, bi, and ci are

unknown but constant parameter matrices, and l is the total number of subsystems.

To characterize such time-varying behaviors of the system, we introduce the indicator

functions as follows.

Indicator Functions. The indicator functions χi(t) are assumed to be known

and defined as

χi(t) =

{
1, if (cT(t),A(t), b(t)) = (cTi ,Ai, bi)
0, otherwise

(7.1.2)

It follows that
∑l

i=1 χi(t) = 1, χj(t)χk(t) = 0, j ̸= k. With the indicator functions

χi(t), the time-varying plant parameter matrices A(t), b(t), c(t) can be expressed as

A(t) =
l∑

i=1

Aiχi(t), b(t) =
l∑

i=1

biχi(t), c(t) =
l∑

i=1

ciχi(t) (7.1.3)

Control Objective. The control objective is to develop an output feedback

control law u(t) for the piecewise linear system (7.1.1) with parameter variations

characterized as in (7.1.3) such that all the signals in the closed-loop system are
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bounded, and the system output y(t) tracks as close as possible a reference trajectory

ym(t), which is generated from a reference model system

ym(t) = Wm(s)[r](t), Wm(s) =
1

Pm(s)
(7.1.4)

where Pm(s), independent of the system parameters, is a desired closed-loop charac-

teristic polynomial of degree n∗, and r(t) is an external reference input signal which

is bounded and piecewise continuous.

MRAC Assumptions. Let the strictly increasing sequence {tk}∞k=1 denote the

time instants at which subsystem switches occur. Within each switching time interval

[tk−1, tk), the system input/output (I/O) mapping, u(t) 7→ y(t), can be described by

the following transfer function (supposing the ith subsystem is active over this time

interval)

Gi(s) =
kpiZi(s)

Pi(s)
(7.1.5)

where Pi(s) = sn+pn−1is
n−1+· · ·+p1is+p0i and Zi(s) = sm+zm−1is

m−1+· · ·+z1is+z0i

are monic polynomials with unknown constant coefficients, and kpi ̸= 0.

To design an adaptive output feedback control law for output tracking, the fol-

lowing assumptions are made for i ∈ I:

(A7.1-1) (Ai, bi) is controllable and (cTi ,Ai) is observable;

(A7.1-2) The zeros of Gi(s) are stable with their real parts less than −α for some

known α > 0;

(A7.1-3) The degree of Pi(s), deg[Pi(s)] = n, is known;

(A7.1-4) The degree of Pm(s), deg[Pm(s)] = n∗ = n−m, is known;

(A7.1-5) The sign of kpi, sign[kpi], is known; and



165

(A7.1-6) There exists positive constants C and µ such that the number N(T ) of

subsystem switches within any time interval (t, t+T ) satisfies N(T ) ≤ C+µT ,

∀t ≥ t0, T ≥ 0.

Remark 7.1.1. The I/O description (7.1.5) is not a complete characterization of the

plant behavior, because it does not include the boundary conditions at the switching

time instants; that is, the output y(t) also depends on the internal system states at

{tk}∞k=1, due to the presence of system parameter discontinuities. Nevertheless, such

a piecewise I/O description is useful when studying the piecewise system matching

condition for the adaptive control design and stability analysis.

Remark 7.1.2. The requirement of each subsystem being controllable and observable

in Assumption (A7.1-1) is to ensure that the state-space description of the system

is minimal and any transients appearing in the closed-loop system dynamics due to

subsystem switches can be fully characterized by the zeros of Zi(s), Pm(s), and Λ(s)

(characterizing filter dynamics used for control implementation).

Remark 7.1.3. As will be shown later, subsystem switches lead to the appearance

of the internal system state at switching time instants in the output signal y(t). The

knowledge of α in Assumption (A7.1-2) is required such that a suitable dynamic nor-

malizing signal can be designed, and the boundedness property of the normalized state

vector can be used in concluding the closed-loop stability properties.

Remark 7.1.4. Inherent in Assumptions (A7.1-3) and (A7.1-4) is that the system

order n in each subsystem is a known constant, so is the relative degree n−m, which

is the same as that (n∗) of the reference model system.

Remark 7.1.5. The constant µ in Assumption (A7.1-6) is to characterize the average

frequency of subsystem switches over a time interval of length T . It is used mainly for
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two purposes: for the nominal part of the closed-loop system, there exists an upper

bound of µ which ensures that piecewise exponential stability (over each switching

time interval) implies exponential stability. Further, the effects of subsystem switches

can be characterized by µ in a mean square sense, and sufficiently small µ ensures

the smallness of the loop gain of the closed-loop system, thus leading to closed-loop

stability.

7.2 Nominal Control Design

The model reference control problem is considered in this section for the case when

the plant parameter matrices are known exactly.

7.2.1 Controller Structure

If the plant parameter matrices were known, the following nominal control law was

proposed in [83]:

u(t) =
aT(s)

Λ(s)
[θ∗

1u](t) +
aT(s)

Λ(s)
[θ∗

2y](t) + θ∗20(t)y(t) + θ∗3(t)r(t) (7.2.1)

where the controller parameter vectors θ∗
1(t),θ

∗
2(t) ∈ Rn−1, θ∗20(t), θ

∗
3(t) ∈ R are piece-

wise continuous, and are computed from some design equations, Λ(s) is a chosen monic

stable polynomial of degree n− 1, e.g., Λ(s) = sn−1 + λn−2s
n−2 + · · ·+ λ1s+ λ0, and

a(s) = [1, s, . . . , sn−2]T. The nominal control law (7.2.1) may be implemented as

u(t) = bTλω1(t) + bTλω2(t) + θ∗20(t)y(t) + θ∗3(t)r(t) (7.2.2)

with ω1(t) and ω2(t) generated from

ω̇1(t) = AT
λω1(t) + θ∗

1(t)u(t), ω1(t0) = 0

ω̇2(t) = AT
λω2(t) + θ∗

2(t)y(t), ω2(t0) = 0
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and (Aλ, bλ) is in controllable canonical form, i.e.,

Aλ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

−λ0 −λ1 −λ2 · · · −λn−2

 , bλ =


0
0
...
1

 (7.2.3)

such that bTλ(sIn −AT
λ)

−1 = aT(s)/Λ(s).

This control law was originally proposed in [83] in the context of linear time-

varying systems with smooth parameter variations. It is motivated by and reduces in

the time-invariant case to the standard output feedback control law [9,15]:

u(t) = θ∗T
1

a(s)

Λ(s)
[u](t) + θ∗T

2

a(s)

Λ(s)
[y](t) + θ∗20y(t) + θ∗3r(t)

with constant parameter vectors θ∗
i , i = 1, 2, 20, 3. Its structural advantage, however,

is the placement of parameter vectors, θ∗
i , i = 1, 2, with u(t) and y(t), before going

through the filtering process aT(s)/Λ(s), which is key to a perfect closed-loop plant-

model matching in the time-varying case. The model reference controller (7.2.1) was

later applied to plants with non-smooth and “jump” parameter variation cases [57],

for which the nominal controller parameters are computed in a piecewise sense, that

is, from a matching condition over each time interval without subsystem switch. In

particular, for the piecewise linear system (7.1.1) with the I/O description of each

subsystem in (7.1.5), the controller parameter vectors of (7.2.1) are expressed as

θ∗
1(t) =

l∑
i=1

θ∗
1iχi(t), θ∗

2(t) =
l∑

i=1

θ∗
2iχi(t)

θ∗20(t) =
l∑

i=1

θ∗20iχi(t), θ∗3(t) =
l∑

i=1

θ∗3iχi(t)

(7.2.4)

where the indicator functions χi(t) are defined in (7.1.2), and the constant parameter

vectors θ∗
1i,θ

∗
2i ∈ Rn−1, θ∗20i, θ

∗
3i ∈ R are computed from the plant-model matching
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equations:

θ∗T
1i a(s)Pi(s) +

(
θ∗T
2i a(s) + θ∗20iΛ(s)

)
kpiZi(s) = Λ(s) (Pi(s)− kpiθ

∗
3iZi(s)Pm(s))

(7.2.5)

7.2.2 Stability Properties

It is worth noting that unlike conventional MRAC developed for LTI systems, the

control law (7.2.1) designed based on the piecewise matching equations may not

ensure stability without imposing additional conditions on the frequency of subsystem

switches (e.g., µ in Assumption (A7.1-6) is sufficiently small). Even if the closed-loop

system is stable, we cannot expect asymptotic tracking performance. This is because

the piecewise matching equations (7.2.5) do not incorporate the boundary conditions

at each subsystem switching time instant tk, determined by the internal state of the

closed-loop system:

ẋc(t) = Ac(t)xc(t) + bc(t)r(t), y(t) = cTc (t)xc(t) (7.2.6)

where Ac(t), bc(t), and cc(t) vary in a piecewise constant pattern among the l close-

loop subsystems, denoted by (cTci,Aci, bci), according to the indicator functions χi(t),

and xc(t) , [x(t),ω1(t),ω2(t)]
T ∈ R3n−2.

Under restrictions on the frequency of subsystem switches, however, we can ex-

pect closed-loop system stability (signal boundedness) and the output tracking per-

formance as summarized in the following theorem:

Theorem 7.2.1. Consider the closed-loop system consisting of (7.1.1) and (7.2.2) un-

der Assumptions (A7.1-1)–(A7.1-6) with controller parameters computed from (7.2.5)

in a piecewise sense. Then there exists µ0 > 0 such that ∀µ ∈ [0, µ0), all signals in

the closed-loop system are bounded, and∫ t+T

t

(y(τ)− ym(τ))
2 dτ ≤ C1 +K1µT, ∀t ≥ t0, ∀T > 0
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for some C1, K1 > 0.

Proof: Let (cTc(k−1),Ac(k−1), bc(k−1)) ∈ {(cTci,Aci, bci)}li=1 denote the subsystem over

[tk−1, tk), k ∈ Z+, and Φc(t, τ) be the state transition matrix associated with (7.2.6).

Based on the matching equation (7.2.5), it follows that Ac(k−1) is exponentially sta-

ble over [tk−1, tk), with the decay rate depending on Pm(s), Z(s) and Λ(s), and

(cTc(k−1),Ac(k−1), bc(k−1)) is a non-minimal realization of Wm(s) = 1/Pm(s). There-

fore, we have

cTc(k−1)

∫ t

tk−1

Φc(t, τ)bc(k−1)r(τ)dτ = cTm

∫ t

tk−1

Φm(t, τ)bmr(τ)dτ

where (cTm,Am, bm) is a state space realization of the reference model system (7.1.4)

with obvious notational meaning, and Φm(t, τ) is the associated state transition ma-

trix: Φm(t, τ) = eAm(t−τ).

The output tracking error e(t) = y(t)− ym(t) is

e(t) =cTc(k−1)Φc(t, tk−1)xc(tk−1)− cTmΦm(t, tk−1)xm(tk−1)

=η0(t) + ε0(t)
(7.2.7)

where ε0(t) is an initial condition related term, i.e.,

ε0(t) = cTc(k−1)Φc(t, t0)xc(t0)− cTmΦm(t, t0)xm(t0) (7.2.8)

and η0(t) is a sum of k − 1 terms:

η0(t) =

tk−1∑
t1<tk−1≤t

∫ tk−1

tk−2

[cTc(k−1)Φc(t, τ)bc(k−1) − cTmΦm(t, τ)bm]r(τ)dτ (7.2.9)

each corresponding to a subsystem switch. Clearly, whenever there is a subsystem

switch, a deviation of y(t) from the reference output trajectory ym(t) appears due to

the η0(t) component in e(t).

There exist µ0 > 0 such that ∀µ ∈ [0, µ0) (see Assumption (A7.1-6)), Φc(t, τ) is

exponentially stable, thus all signals in the system are bounded [11,39]. The result of
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the small-in-the-mean-square output tracking performance follows by dividing [t, t+T ]

into a sum of switching time intervals within [t, t+T ], and conducting and combining

the integrations inside each of them. �

The piecewise matching equation (7.2.5) does not imply perfect plant-model match-

ing, and subsystem switches lead to the appearance of η0(t) in e(t). For adaptive

control design, such a term is treated as a perturbation to the parameterized part of

an appropriately defined estimation error signal, and its impact on the closed-loop

system is addressed by robust adaptive laws, e.g., those with parameter projection

and σ-modification [11], to ensure bounded controller parameter estimates.

7.3 Adaptive Control Design

In this section, an output feedback controller structure with adaptive laws to update

its parameters are presented for the piecewise linear system (7.1.1) to achieve the

control objective.

7.3.1 Controller Structure

In practice the system parameters are rarely known exactly, therefore the nominal con-

trol law (7.2.2) cannot be implemented, as its parameter vectors θ∗
i (t), i = 1, 2, 20, 3,

cannot be computed from the matching equations (7.2.5). In an adaptive control

design, their estimates, generated from an adaptive law, are used for control imple-

mentation. Although at this point, an attractive adaptive controller structure appears

to be (7.2.2) with the (unknown) nominal parameters replaced by their estimates, it

will inevitably introduce “swapping” terms when we want to obtain an estimation

error model for adaptive law design, by expressing an appropriately defined estima-

tion error signal into the desired inner product of the parameter error vector and a
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regressor vector. The adaptive controller structure used in [11] cannot circumvent

this issue, either. With the definition of the indicator functions (7.1.2) and to avoid

introducing extra uncertainties in the estimation error model used for adaptive law

design, the nominal control law is reparameterized, and a new adaptive controller

structure is proposed as follows.

Reparameterization of the Nominal Control Law. By employing the nom-

inal controller parameter vectors in terms of indicator functions as in (7.2.4), we can

rewrite the nominal control law (7.2.1) as follows:

u(t) =
l∑

i=1

ϕ∗T
i ωi(t)

ϕ∗
i = [θ∗T

1i ,θ
∗T
2i , θ

∗
20i, θ

∗
3i]

T, ωi(t) = [ωT
1i(t),ω

T
2i(t), χi(t)y(t), χi(t)r(t)]

T

(7.3.1)

with a little abuse of notation for ωi(t), i ∈ I (cf. ωj(t), j = 1, 2, in (7.2.2)), where

ω1i(t) = a(s)
Λ(s)

[χiu](t) and ω2i(t) = a(s)
Λ(s)

[χiy](t) can be generated in a similar way as

(7.2.2), e.g.,
ω̇1i(t) = Aλω1i(t) + bλχi(t)u(t), ω1i(t0) = 0

ω̇2i(t) = Aλω2i(t) + bλχi(t)y(t), ω2i(t0) = 0

where (sIn −Aλ)
−1bλ = a(s)/Λ(s) with Aλ and bλ defined as in (7.2.3).

Adaptive Controller Structure. We replace the nominal controller parameter

vectors ϕ∗
i of (7.3.1) by their estimates ϕi(t) and propose the adaptive controller

structure as follows:

u(t) =
l∑

i=1

ϕT
i (t)ωi(t), ϕi(t) = [θT

1i(t),θ
T
2i(t), θ20i(t), θ3i(t)]

T (7.3.2)

where for i ∈ I, θ1i(t), θ2i(t), θ20i(t), θ3i(t) are the estimates of θ∗
1i, θ

∗
2i, θ

∗
20i, θ

∗
3i,

respectively, to be updated by some adaptive laws.
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7.3.2 Adaptive Law Design

For the design of adaptive laws to update the controller parameters, an error model is

needed. We first note that with (7.3.2) in (7.1.1) and noting the piecewise matching

equation (7.2.5), the output tracking error e(t) is

e(t) = Wm(s)

[
1

θ∗3

l∑
i=1

ϕ̃T
i ωi

]
(t) + η(t) + ε0(t) (7.3.3)

where ϕ̃i(t) = ϕi(t)−ϕ∗
i , ε0(t) is an initial condition related term, and η(t) is a sum

of k− 1 terms (for t ∈ [tk−1, tk)), each determined by the internal closed-loop system

state at tj, j = 1, 2, . . . , k − 1.

The presence of η(t) is due to (7.2.5), which only ensures input/output matching

in a piecewise sense. Whenever a subsystem switch occurs at tj, the part of internal

system state, contributed by input over the past switching time interval [tj−1, tj), is

not matched by ym(t) at the system output y(t). This mismatch appears as a new

term in η(t) for t ≥ tj. Neither η(t) nor ε0(t) is parameterizable, and both are treated

as perturbations to the parameterized part of e(t): Wm(s)
[

1
θ∗3

∑l
i=1 ϕ̃

T
i ωi

]
(t).

Error Model. For the the derivation of an error model suitable for adaptive law

design, and considering the fact that θ∗3(t) =
∑l

i=1 θ
∗
3iχi(t) and θ

∗
3i = 1/kpi, the output

tracking error e(t) in (7.3.3) can be further expressed as

e(t) =
1

θ∗3(t)
Wm(s)

[
l∑

i=1

ϕ̃T
i ωi

]
(t) + η1(t) + η(t) + ε0(t)

where η1(t) is a swapping term, i.e.,

η1(t) = Wm(s)

[
1

θ∗3

l∑
i=1

ϕ̃T
i ωi

]
(t)− 1

θ∗3(t)
Wm(s)

[
l∑

i=1

ϕ̃T
i ωi

]
(t)

=
∑
tj≤t

cTm

∫ tj

t0

eAm(t−τ)bm

l∑
i=1

ϕ̃T
i (τ)ωi(τ)dτ

(
1

θ∗3(tj−1)

− 1

θ∗3(tj)

)
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Here, (cTm,Am, bm) is a minimal state space realization of Wm(s), i.e.,

cTm(sI −Am)
−1bm =Wm(s)

and θ∗3(tj) ∈ {θ∗3i}li=1 denotes the constant value θ∗3(t) assumes over the switching

time interval [tj, tj+1). A key property of η1(t) is that with the controller parame-

ter estimates generated by parameter projection adaptive laws (developed next), a

normalized version of η1(t) is small in the mean square sense, which is critical to

closed-loop system stability analysis.

It follows that

θ∗3(t)e(t) = Wm(s)

[
l∑

i=1

ϕ̃T
i ωi

]
(t) + θ∗3(t)(η(t) + ε0(t) + η1(t))

l∑
i=1

θ∗3iχi(t)e(t) = Wm(s)

[
l∑

i=1

ϕ̃T
i ωi

]
(t) + θ∗3(t)(η(t) + ε0(t) + η1(t))

By treating d(t) , θ∗3(t)(η(t)+ ε0(t)+ η1(t)) as unmodeled dynamics, and defining an

estimation error signal

ϵ(t) =
l∑

i=1

(θ3i(t)χi(t)e(t) + ξi(t))

ξi(t) = ϕT
i (t)ζi(t)−Wm(s)[ϕ

T
i ωi](t), ζi(t) = Wm(s)[ωi](t)

we have

ϵ(t) =
l∑

i=1

(
θ̃3i(t)χi(t)e(t) + ϕ̃T

i (t)ζi(t)
)
+ d(t)

θ̃3i(t) = θ3i(t)− θ∗3i, ϕ̃i(t) = ϕi(t)− ϕ∗
i

(7.3.4)

The estimation error model (7.3.4) is in a form suitable for adaptive law design

to update the controller parameters.

Adaptive Laws. In the presence of the unmodeled dynamics d(t), we propose

the following parameter projection adaptive laws to update ϕi(t), θ3i(t), i ∈ I, for
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the implementation of the adaptive controller (7.3.2):

ϕ̇i(t) = −Γiζi(t)ϵ(t)

m2(t)
+ fi(t)

θ̇3i(t) = −γiχi(t)e(t)ϵ(t)
m2(t)

+ gi(t)

(7.3.5)

where Γi > 0 is diagonal, γi > 0, and fi(t) and gi(t) are parameter projection terms

so designed as to confine the parameter estimates within some bounds assumed to be

known. The initial estimates ϕi(t0) = ϕi0 and θ3i(t0) = θ3i0 are chosen to be within

these bounds. The normalizing signal is m2(t) = 1+ms(t) with ms(t) generated from

ṁs(t) = −2δ0ms(t) + u2(t) + y2(t), ms(0) = 0 (7.3.6)

where δ0 < α for α in Assumption (A7.1-2).

7.3.3 Stability Properties

The proposed adaptive control scheme has the following stability properties:

Theorem 7.3.1. Consider the closed-loop system consisting of the piecewise lin-

ear system (7.1.1), the reference model system (7.1.4), and the adaptive control law

(7.3.2) with parameters updated from the adaptive laws (7.3.5). There exists µ0 > 0

such that ∀µ ∈ [0, µ0), all signals in the closed-loop system are bounded, and∫ t+T

t

e2(τ)dτ ≤ C2 +K2µT, ∀t ≥ t0, ∀T > 0

for some C2, K2 > 0.

The proof of Theorem 7.3.1 can be conducted in two main steps. In the first step,

some desired properties of the parameter estimates from the adaptive laws (7.3.5)

are established; that is, ϕi(t), θ3i(t), ϕ̇i(t), and θ̇3i(t) are bounded and within their

respective bounds, and the normalized estimation error ϵ(t)/m(t) is µ-small in the
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mean square sense, for as long as the truncated plant input and output signals u(t)

and y(t) are bounded under sufficiently slow subsystem switches (characterized by all

µ such that µ ∈ [0, µ0) for some µ0 > 0). This can be proved by considering the closed-

loop system inside each switching time interval [tk−1, tk) as in the state space form

(cTci,Aci, bci) (see the proof of Theorem 7.2.1) with reference input r(t) and an input

perturbation 1
θ∗3i

ϕ̃i(t)ωi(t) due to controller parameter uncertainties. It can be shown

that for sufficiently slow subsystem switches and provided that the truncated u(t)

and y(t) are bounded, the plant state x(t) is bounded by the normalizing signal m(t),

so are the regressor vector signals ωi(t), since they are obtained by a stable filtering

of u(t) and y(t). For the small-in-the-mean-square property of ϵ(t)/m(t), we consider

V = ϕ̃T
i (t)Γ

−1
i ϕ̃i(t) + γ−1

i θ̃23i(t) and its derivative over [tk−1, tk), and integrating over

the same interval. Then by combining the integrals for these switching time intervals

over an interval of interest within which u(t) and y(t) are bounded, such a property

of ϵ(t)/m(t) can be established (the effects of the discontinuities in V and d(t) in

ϵ(t) due to subsystem switches are both characterized by µ and the length of the

integration interval).

The second step is to establish closed-loop signal boundedness, ∀t ≥ t0, and to

evaluate the tracking performance, based on the signal properties derived in the first

step. A fictitious signal mf (t) is first defined in a similar way as m2(t) with mf (t) ≥

m2(t) over the interval [tk−1, tk), and the various signals in the closed-loop system,

when normalized by mf (t), are either bounded or small in the mean square sense.

The key part is then to establish the boundedness of mf (t). For such a purpose, the

system I/O vector [u(t), y(t)]T is expressed naturally as the output of an L2,δ-stable

operator on r(t)+r̃(t), perturbed by a term dependent on the closed-loop system state

at tk−1. Such an expression can then be used, with operator inversion lemma and the
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definitions of the estimation error ϵ(t), to write the closed-loop system in a feedback

framework suitable for the application of small gain arguments. In particular, the

closed-loop system is expressed, over each switching time interval, as an exponentially

stable system perturbed by outputs of operators of small L2,δ gain, signals that have

small normalized mean square values, and a signal that appears due to the subsystem

switch at tk−1 and whose normalized version is bounded by an exponentially decaying

signal. Under sufficiently slow subsystem switches (µ ∈ [0, µ0)), the last term is small

in the mean square sense, and the system loop gain is small, such that mf (t) is

bounded, and closed-loop signal boundedness can be concluded.

7.4 Advantages over Conventional MRAC

If a conventional SISO output feedback for output tracking MRAC design were to be

applied to the piecewise linear system (7.1.1), the controller structure will be in the

following form

u(t) = θT(t)ω(t)

θ(t) = [θT
1 (t),θ

T
2 (t), θ20(t), θ3(t)]

T, ω(t) = [
aT(s)

Λ(s)
[u](t)

aT(s)

Λ(s)
[y](t), y(t), r(t)]T

where a(s) and Λ(s) are defined as in (7.2.1). Here, as estimates of the nominal

controller parameters θ∗
1(t), θ

∗
2(t), θ

∗
20(t), θ

∗
3(t) defined in (7.2.4), θ1(t), θ2(t), θ20(t),

θ3(t) are directly updated by some adaptive laws.

Since the nominal controller parameter vector θ∗(t) , [θ∗T
1 (t),θ∗T

2 (t), θ∗20(t), θ
∗
3(t)]

T

is time-varying (piecewise constant), and only one set of controller parameter esti-

mates θ(t) , [θT
1 (t),θ

T
2 (t), θ20(t), θ3(t)]

T is updated for control implementation, ad-

ditional modeling error will be introduced in the error model, compared with the

proposed scheme in Section 7.2. To be specific, the tracking error with the applica-
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tion of such a control law is

e(t) =Wm(s)[
1

θ∗3
θ̃Tω](t) + es(t) + ηs(t) + η(t) + η0(t) + ε0(t) (7.4.1)

where θ̃(t) = θ(t)− θ∗(t), η0(t) and ε0(t) are as in (7.2.9) and (7.2.8), es(t) and ηs(t)

are contributed by a swapping term ∆s(t), to parameterize the control input error

signal in terms of parameter error vector, i.e.,

∆s(t) = θ∗T
1 (t)

a(s)

Λ(s)
[u](t) + θ∗T

2 (t)
a(s)

Λ(s)
[y](t)− aT(s)

Λ(s)
[θ∗T

1 u](t)− aT(s)

Λ(s)
[θ∗T

2 y](t)

es(t) = Wm(s)[
1

θ∗3
∆s](t)

and ηs(t), η(t) are in the form of η0(t) in (7.2.9) with r(τ) replaced by 1
θ∗3(τ)

∆s(τ),

1
θ∗3(τ)

θ̃T(τ)ω(τ), respectively.

Define the estimation error signal ϵ(t) = e(t) + ρ(t)ξ(t), where ξ(t) = θT(t)ζ(t)−

Wm(s)[θ
Tω](t), ζ(t) = Wm(s)[ω](t), and ρ(t) is an estimate of ρ∗(t) = 1/θ∗3(t). It

follows that

ϵ(t) =ρ∗(t)θ̃T(t)ζ(t) + ρ̃(t)ξ(t) + εa(t) + es(t) + ηs(t) + η(t) + η0(t) + ε0(t)

εa(t) =Wm(s)[ρ
∗θ̃Tω](t)− ρ∗(t)Wm(s)[θ̃

Tω](t)

+ ρ∗(t)
(
θ∗T(t)ζ(t)−Wm(s)[θ

∗Tω](t)
) (7.4.2)

With the knowledge of lower and upper bounds on system parameters, the follow-

ing parameter projection adaptive laws can be applied to update θ(t) and ρ(t):

θ̇(t) = −sign[ρ∗(t)]Γζ(t)ϵ(t)

m2(t)
+ f(t), Γ = ΓT > 0

ρ̇(t) = −γξ(t)ϵ(t)
m2(t)

+ g(t), γ > 0, t ≥ 0

(7.4.3)

where the projection terms f(t) and g(t) are designed to confine the parameter esti-

mates to be within their respective bounds at all time, and m(t) is the normalizing

signal generated in the same way as in (7.3.6).
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To implement this design, we need to assume that ρ∗(t) has a known and constant

sign; that is, sign[kpi] is known and constant. Then with sufficient slow subsystem

switches, closed-loop stability can be established.

The major advantage of the proposed adaptive control scheme over this conven-

tional MRAC design is the effective use of the knowledge of the indicator functions

to improve the parameterization of the estimation error signal for reduced unmodeled

dynamics. It is obvious that extra unmoldeled dynamics terms εa(t), es(s), and ηs(t),

due to swapping, exist in (7.4.2), as compared with (7.3.4). Furthermore, for control

implementation, sign[kpi] of each system model is not required to be the same.

7.5 Simulation Study

In this section a simulation study is presented to demonstrate the system stability

and tracking performance with the proposed adaptive control scheme applied to the

piecewise linear system model of the longitudinal dynamics of the NASA GTM [82]

at multiple operating points.

Linearized Aircraft Longitudinal Model and Reference Model System.

For simplicity of presentation, we choose l = 2, and trim the GTM at steady-state,

straight, wings-level flight condition at 80 knots and 90 knots at 800 ft., respectively,

to obtain a piecewise linear longitudinal system model in the form of (7.1.1), where

x = [u,w, q, θ]T with the elements being the perturbed aircraft velocity components

along the x- and z-body-axis (fps), angular velocity along the y-body-axis (rad/s), and

pitch angle (rad), respectively. The control input is the perturbed elevator deflection
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δe, and the parameter matrices are

A1 =


−0.0293 0.2460 −8.9936 −32.0974
−0.2611 −3.0403 129.7255 −2.2189
0.0175 −0.3202 −3.8364 0

0 0 1.0000 0



A2 =


−0.0380 0.2786 −7.5029 −32.1318
−0.2440 −3.4119 146.2253 −1.6482
0.0136 −0.3581 −4.4019 0

0 0 1.0000 0



b1 =


0.0031

−0.6953
−0.8526

0

 , b2 =


−0.0010
−0.8703
−1.0866

0

 , c =


0
0
0
1


with the corresponding transfer functions:

G1(s) =
−85.26s2 − 239.4s− 12.66

s4 + 6.906s3 + 53.62s2 + 2.324s+ 4.375

G2(s) =
−108.7s2 − 343.7s− 20.63

s4 + 7.852s3 + 67.85s2 + 3.157s+ 4.286

where we have chosen the pitch angle θ as the output, i.e., y = θ. It can be veri-

fied that all design assumptions are satisfied: i) system zeros for G1(s) are z11,12 =

−2.7544,−0.0539, and those for G2(s) are z21,22 = −3.1019,−0.0612, so that δ0

in (7.3.6) can be chosen as δ0 = 0.05; ii) for i = 1, 2, (cT,Ai) is observable and

(Ai, bi) is controllable; iii) n = 2 and m = 2, thus n∗ = n − m = 2; and iv)

sign[kp1] = sign[kp2] = −1. The reference model system transfer function is thus

chosen as

Wm(s) =
1

(s+ 1)(s+ 2)

Matching Condition and Nominal Parameters. It can be verified that the

piecewise plant-model matching equation (7.2.5) is satisfied with the following nomi-
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nal controller parameter vectors:

θ∗
11 = [0.5936, 2.1631, 0.4073]T, θ201 = 5.2687

θ∗
21 = [−2.3997, 1.0295, 0.6537]T, θ31 = −1.1729

θ∗
12 = [0.3042, 1.9939,−0.1729]T, θ202 = 4.3689

θ∗
22 = [−1.5750, 0.6965, 0.4984]T, θ32 = −0.9200

Simulation Results. In this simulation, we choose a switching time interval

T = 400s. The initial plant state is [5, 2, 0, 0.1]T with zero reference model initial

condition, and the initial parameter estimates are chosen to be 90% of their nominal

values. The adaptation gains are Γi = 150, and γi = 100, i = 1, 2.

Figure 7.1 shows the output tracking performance with a sinusoidal reference

input r(t) = 0.2 sin(πt/200), corresponding to a desired fluctuation of the pitch angle

in between ±5.73◦. The elevator deflection δe(t) is shown at the bottom of Figure

7.1. As a comparison, the tracking performance with the conventional SISO output

feedback for output tracking MRAC scheme under the same conditions is plotted in

Fig. 7.2, together with δe(t).

Simulations are performed under the same conditions for a constant reference

input r(t) = 0.2, corresponding to a desired constant pitch angle of 5.73◦. The

tracking performance is plotted in Figures 7.3 and 7.4, respectively, for the proposed

scheme and the conventional MRAC scheme.

From the simulation results, we can see that the elevator deflections are within

reasonable limits (±20◦), and closed-loop stability is achieved for both cases. Howev-

er, there is an obvious improvement in output tracking performance by the proposed

adaptive control scheme, as compared with the conventional MRAC scheme under

the same conditions.

In this chapter, an output feedback MRAC scheme is presented for SISO piecewise
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Figure 7.1: Output tracking performance and the control input δe with r(t) =
0.2 sin(πt/200): the proposed scheme.
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Figure 7.2: Output tracking performance and the control input δe with r(t) =
0.2 sin(πt/200): the conventional MRAC scheme.
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Figure 7.3: Output tracking performance and the control input δe with r(t) = 0.2:
the proposed scheme.

0 500 1000 1500 2000 2500 3000 3500 4000
−5

0

5

e
(t
)
[d
eg
]

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

y
(t
)
v
s.

y
m
(t
)
[d
eg
]

0 500 1000 1500 2000 2500 3000 3500 4000
−20

0

20

δ
e
[d
eg
]

t [sec]

Figure 7.4: Output tracking performance and the control input δe with r(t) = 0.2:
the conventional MRAC scheme.



183

linear systems. The results presented in this chapter rely on the analysis method

used in [11,57], where the authors generalized their previous results in [83] to include

parameter discontinuities and time variations inside intervals of continuity (the latter

not considered in the context of piecewise linear systems) through robustness analysis.

It is shown that with the proposed MRAC scheme, closed-loop stability and small-

in-the-mean-square output tracking performance are achieved, if the frequency of

parameter discontinuities is sufficiently low on average. The contribution of this

chapter is a reparametrization of the model reference controller structure [83] and the

proposal of a new adaptive control design. A feature of our design is the avoidance

of additional modeling errors in the closed-loop system due to controller parameter

swapping. The price paid is the assumption of the knowledge of the time instants at

which plant parameters switch. This is not a restrictive assumption in many practical

applications. For example, for an aircraft in a typical straight, wings-level, steady-

state flight condition, its velocity and altitude can be used as an indicator of operating

points.



Chapter 8

Conclusions

Adaptive control, which automatically updates controller parameters by adaptive

laws to accommodate system uncertainties, is an attractive and promising approach

to the design of control systems for performance-critical systems, such as aircraft flight

control systems. For adaptive control systems, a suitable stability and performance

metric such as gain margin is desirable in evaluating and comparing adaptive con-

trollers and maturing adaptive control designs for implementation on performance-

critical systems. On the other hand, adaptive control designs for piecewise linear

systems are expected to be capable of expanding nonlinear system operating range

in the presence of uncertainties. This dissertation focuses on the gain margin (GM)

of adaptive control systems and the development of novel adaptive control schemes

for piecewise linear systems. The contributions of this dissertation are a systematic

gain margin analysis for commonly used adaptive control designs, and a framework

of solutions to the open problems in adaptive control of uncertain piecewise linear

systems.

The work presented in this dissertation is summarized as follows:

• The basic problems considered in this dissertation are formulated in Chapter 2,

including the gain margins of adaptive control systems, the performance robust-
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ness issue of model reference adaptive control (MRAC) systems with respect to

reduced actuator effectiveness, and adaptive control of piecewise linear systems.

• In Chapter 3, the gain margin problem has been studied for various MRAC

systems: those with direct or indirect, continuous-time or discrete-time designs.

The analytical gain margin results are summarized in Table 3.1. These GM

results are also applicable to other adaptive control systems such as adaptive

state feedback control systems and adaptive nonlinear control systems.

• Based on the derived analytical gain margin results in Chapter 3, MRAC

schemes are studied for their inherent performance robustness properties with

regard to reduced actuator effectiveness in Chapter 4.

• The theoretical gain margin results and performance robustness properties of

MRAC have been demonstrated by simulation studies.

• The adaptive control problem is studied for piecewise linear systems.

– In Chapter 5, adaptive state feedback schemes are designed for piecewise

linear systems to achieve state tracking performance. The reference tra-

jectory is specified by a piecewise linear reference model system, and its

stability properties are investigated.

– Adaptive state feedback schemes are designed for piecewise linear systems

to achieve output tracking in Chapter 6.

– Adaptive output feedback schemes are designed for piecewise linear sys-

tems to achieve output tracking in Chapter 7.

• Key issues to adaptive control of piecewise linear systems, such as controller
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structure, matching conditions, error models, adaptive laws, closed-loop stabil-

ity and tracking performance evaluation, have been investigated.

• The proposed adaptive control designs have been applied to some aircraft system

models with simulation results to demonstrate their effectiveness in tracking

performance improvement.

As future research topics in this area, the results reported in this dissertation can

be extended in a few directions.

• In the multivariable state feedback for output tracking design for piecewise

linear systems (Section 6.2), Assumption (A6.2-5) is made; that is, the high

frequency gain matrix Kpi of each subsystem is assumed to have a common Ls

matrix in their LDS decompositions. Such an assumption facilitates the deriva-

tion of an error model to avoid differentiation operations on the tracking error

signal. The relaxation of this assumption is desirable for practical implementa-

tion of the proposed design. The task is to study the properties of a swapping

term introduced due to the difference in Ls matrices for each subsystem and its

impact on closed-loop stability and tracking performance.

• The successful relaxation of Assumption (A6.2-5) is also critical for extending

the output feedback for output tracking design presented in Chapter 7 to handle

multi-input, multi-output (MIMO) controlled systems, based on high frequency

gain matrix decompositions.

• In the proposed adaptive control designs, indicator functions are assumed to be

known; that is, subsystem switches are not known a priori, but assumed to be

detected instantaneously. It is interesting to investigate the system performance
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robustness with regard to delay in subsystem switch detection. In particular,

supposing that subsystem switches can be detected τ units of time after the

switching time instant tk, whether or not and to what extent closed-loop sta-

bility and tracking performance are still achievable are of interest.

• In this dissertation, the attention is focused on piecewise linear systems. Feed-

back linearization and backstepping have been powerful tools in adaptive non-

linear control. How to effectively employ these tools in the development of

adaptive control designs for piecewise nonlinear systems is of major interest.



Chapter 9

Appendix

9.1 Derivations of (3.4.15)–(3.4.18)

This section contains a guideline for the choice of γ1 and γ2 in the discrete-time

MIMO direct MRAC design for M = 2, based on which an explicit gain margin

result is derived in Section 3.4.3.

When the constant gain matrix K = I2, we have

D∗ = diag{d∗1, d∗2} = diag

{
∆1,

∆2

∆1

}
from (2.2.10), and Ds = diag {sign[d∗1]γ1, sign[d∗2]γ2} from (2.2.11). Substituting D∗,

Ds, and U =

[
1 a
0 1

]
into (3.4.8) yields

0 <

[
|d∗1|γ1 ad∗1sign[d

∗
2]γ2

ad∗1sign[d
∗
2]γ2 a2|d∗1|

γ22
γ1

+ |d∗2|γ2

]
< 2I2 (9.1.1)

The right inequality is equivalent to[
|d∗1|γ1 − 2 ad∗1sign[d

∗
2]γ2

ad∗1sign[d
∗
2]γ2 a2|d∗1|

γ22
γ1

+ |d∗2|γ2 − 2

]
< 0

which requires γ1 and γ2 to satisfy:

|d∗1|γ1 − 2 < 0 (9.1.2)
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det

[
|d∗1|γ1 − 2 ad∗1sign[d

∗
2]γ2

ad∗1sign[d
∗
2]γ2 a2|d∗1|

γ22
γ1

+ |d∗2|γ2 − 2

]
> 0 (9.1.3)

The inequality (9.1.2) is satisfied if the range for γ1 as in (3.4.15) is satisfied. The

inequality (9.1.3) yields

(|d∗1|γ1 − 2)(|d∗2|γ2 − 2) > 2a2|d∗1|
γ22
γ1

(9.1.4)

which can be satisfied if

(d01γ1 − 2)(d02γ2 − 2) > 2a2d01
γ22
γ1

(9.1.5)

where d02 is the upper bound of |d∗2| assumed to be known.

After choosing a γ1 satisfying (3.4.15), we have to choose a γ2 satisfying (9.1.5).

Note that in (9.1.5), d01γ1 − 2 < 0 and the right-hand-side term is nonnegative, thus

d02γ2 − 2 must be negative, which requires 0 < γ2 < 2/d02. Besides, (9.1.5) can be

rewritten as

2a2d01γ
2
2 − γ1(d

0
1γ1 − 2)d02γ2 + 2γ1(d

0
1γ1 − 2) < 0 (9.1.6)

from which, if we let α(γ1) = γ1(d
0
1γ1 − 2), β(γ1) = α(γ1)(d

0
2)

2 − 16a2d01, and assume

a ̸= 0, we can obtain

α(γ1)d
0
2 −

√
α(γ1)β(γ1)

4a2d01
< γ2 <

α(γ1)d
0
2 +

√
α(γ1)β(γ1)

4a2d01
(9.1.7)

Therefore, a γ2 has to be chosen to satisfy

max

{
0,
α(γ1)d

0
2 −

√
α(γ1)β(γ1)

4a2d01

}
< γ2 < min

{
2

d02
,
α(γ1)d

0
2 +

√
α(γ1)β(γ1)

4a2d01

}
(9.1.8)

Note that α(γ1) < 0, β(γ1) < 0, and
√
α(γ1)β(γ1) > −α(γ1)d02, we have

max

{
0,
α(γ1)d

0
2 −

√
α(γ1)β(γ1)

4a2d01

}
= 0 (9.1.9)
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Furthermore, from the expressions of α(γ1) and β(γ1), we can derive

2

d02
−
α(γ1)d

0
2 +

√
α(γ1)β(γ1)

4a2d01
≥ 0 (9.1.10)

From (9.1.8), (9.1.9) and (9.1.10), we have the range of γ2 for a ̸= 0 in (3.4.16).

The equal sign in (9.1.10) is satisfied if and only if
√

−α(γ1)d02 =
√
−β(γ1), which

requires a = 0, or U = I2. This results in γ1 and γ2 satisfying (3.4.15).

When the gain matrix K = diag {k1, k2} is not equal to the identity matrix I2,

by following a similar procedure as in (9.1.1)–(9.1.4), (3.4.11) yields

|d∗1|k1γ1 − 2 < 0 (9.1.11)

(|d∗1|k1γ1 − 2)(|d∗2|k2γ2 − 2) > 2a2|d∗1|
k22γ

2
2

k1γ1
(9.1.12)

where γ1 satisfies (3.4.15), and γ2 satisfies (3.4.15) for U = I2 and (3.4.16) for U ̸= I2.

From (3.4.15), (9.1.11) is satisfied if 0 < k1 ≤ d01
|d∗1|

.

Similar to the above analysis, assuming a ̸= 0, we obtain

0 < k2γ2 <
ᾱ(k1γ1)|d∗2|+

√
ᾱ(k1γ1)β̄(k1γ1)

4a2|d∗1|

From (3.4.16), the above inequality is satisfied if

0 < k2
α(γ1)d

0
2 +

√
α(γ1)β(γ1)

4a2d01
≤ ᾱ(k1γ1)|d∗2|+

√
ᾱ(k1γ1)β̄(k1γ1)

4a2|d∗1|

Therefore, we have k2 satisfying (3.4.18) for a ̸= 0. For the case a = 0, (9.1.11)

and (9.1.12) lead to |d∗2|k2γ2 − 2 < 0, which, from (3.4.15), is satisfied if k2 satisfies

(3.4.17). �

9.2 Proof of Lemma 5.2.1

Let Am(k−1) ∈ {Am1, . . . ,Aml} denote the subsystem of Am(t) over [tk−1, tk), k ∈ Z+.

Consider a subsystem switch at t = tk. Due to the stability of Am(k−1), Am(k) and
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without loss of generality, there exist symmetric, positive definite Pm(k−1), Pm(k) ∈

Rn×n such that
AT
m(k−1)Pm(k−1) + Pm(k−1)Am(k−1) = −In

AT
m(k)Pm(k) + Pm(k)Am(k) = −In

where In ∈ Rn×n is the identity matrix. With ∆Am(k) = Am(k) −Am(k−1), ∆Pm(k) =

Pm(k) − Pm(k−1), we have

AT
m(k)∆Pm(k) +∆Pm(k)Am(k) = −S(k) (9.2.1)

S(k) = ∆AT
m(k)Pm(k−1) + Pm(k−1)∆Am(k) (9.2.2)

thus ∥S(k)∥ ≤ 2∥Pm(k−1)∥∥∆Am(k)∥. Since Am(k) is stable, the solution of (9.2.1) is

∆Pm(k) =
∫∞
0
eA

T
m(k)

tS(k)e
Am(k)tdt. With ∥eAm(k)t∥ ≤ ame

−λmt, we have

∥∆Pm(k)∥ ≤ ∥S(k)∥
∫ ∞

0

∥eA
T
m(k)

t∥∥eAk
mt∥dt

≤ a2m
λm

∥Pm(k−1)∥∥∆Am(k)∥
(9.2.3)

Consider the piecewise continuous Lyapunov function

V = zT(t)
l∑

i=1

Pmiχi(t)z(t)

with Pmi satisfying (5.2.3) for Qmi = In so that Pm(k−1) and Pm(k) ∈ {Pm1, . . . ,Pml}.

At t = tk, (9.2.3) and the fact that β∥z(t)∥2 ≤ V lead to

V (tk)− V (t−k ) = zT(tk)∆Pm(k)z(tk) ≤
a2m
λmβ

∥Pm(k−1)∥∥∆Am(k)∥V (t−k )

With µ = a2m
λmβ

maxi∈I∥Pmi∥, we have

V (tk) ≤ (1 + µ∆Am)V (t−k )

In addition, with V ≤ α∥z(t)∥2, the time derivative of V over [tk−1, tk) satisfies

V̇ ≤ −V/α, and

V (t) ≤ e−
1
α
(t−t0) (1 + µ∆Am)

k−1 V (t0), t ∈ [tk−1, tk)
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which leads to

∥z(t)∥ ≤
(
α

β

) 1
2

e−
1
2α

(t−t0)+ k−1
2

ln(1+µ∆Am )∥z(t0)∥

Furthermore, with T0 being the minimum switching time interval, we have t − t0 ≥

(k − 1)T0 for t ∈ [tk−1, tk), which together with the condition (5.2.4), leads to

− 1

2α
(t− t0) +

k − 1

2
ln(1 + µ∆Am) ≤ −σ(t− t0)

and exponential stability can thus be concluded. �

9.3 Proof of Theorem 5.3.1

Due to the fact Td > α ln(1+µ∆Am), it follows from Lemma 5.2.1 that T0 ≥ Td ensures

stability of (5.2.1), i.e., xm(t) ∈ L∞. Consider the piecewise continuous Lyapunov

function

V = eT
l∑

i=1

Pmiχie+
l∑

i=1

1

|k∗ri|

(
k̃T
xiΓ

−1
i k̃xi + γ−1

i k̃2ri

)
(9.3.1)

Suppose that χi(t) = 1 for t ∈ [tk−1, tk), then over this time interval the derivative of

V along (5.3.5)–(5.3.6) is

V̇ = −eTe+
1

|k∗ri|

(
k̃T
xiΓ

−1
i fxi + γ−1

i k̃rifri

)
Here, without loss of generality, we consider the case Qmi = In, i ∈ I. It can

be verified that (kxij(t)− k∗xij)fxij(t) ≤ 0, (kri(t)− k∗ri)fri(t) ≤ 0. Furthermore, with

the parameter projection adaptive laws, the parameter estimates kxi(t), kri(t) are

bounded, thus there exists a cp > 0, defined as

cp = max
i∈I

(
1

|k∗ri|
k̃T
xiΓ

−1
i k̃xi +

1

|k∗ri|
γ−1
i k̃2ri

)
such that

V̇ ≤ − V

(1 + κ)α
− κV − (1 + κ)lcp

(1 + κ)α
, κ > 0
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that is, for V > lcp(1+ κ)/κ, V decays faster than exponentially at the rate −1/(1+

κ)α, and is non-increasing otherwise.

When a subsystem switch occurs at t = tk, following the proof of Lemma 5.2.1,

we have

V (tk) ≤ (1 + µ∆Am)V (t−k )

and the slow switching condition T0 ≥ Td ensures that

V (tk) ≤
{
lcp(1 + µ∆Am)

1+κ
κ
, V (t−k ) ≤ lcp

1+κ
κ

V (tk−1), V (t−k ) > lcp
1+κ
κ

Therefore, V (t) ≤ c0 , max{lcp(1+µ∆Am)(1+κ)/κ, V (t0)}, and closed-loop stability

can be concluded.

For evaluating the tracking performance, there are four possible cases depending

on the integration interval [t, t+ T ].

(i) T ≤ T0, tk−1 ≤ t ≤ t + T < tk. There is no subsystem switch over [t, t + T ], and

we have ∫ t+T

t

eT(τ)e(τ)dτ ≤ c0

(ii) T ≤ T0, t < tk ≤ t+ T . There is one and only one switch at t = tk. We have

V̇ ≤ −eT(t)e(t) + eT(t)∆Pm(k)δ(t− tk)e(t)

with δ(t) being the unit impulse function, and∫ t+T

t

eT(τ)e(τ)dτ ≤ V (t)− V (t+ T ) + eT(tk)∆Pm(k)e(tk)

≤ (1 + µ∆Am)c0

(iii) T > T0, t < tk, t + T < tk+N , where N is the largest integer less than or equal

to T/T0. There are at most N subsystem switches at t = tk, tk+1, . . . , tk+N−1,
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respectively, and∫ t+T

t

eT(τ)e(τ)dτ ≤ V (t)− V (t+ T ) +
N−1∑
j=0

eT(tk+j)∆P k+j
m e(tk+j)

≤ µ∆Amc0
T

T0
+ c0

(iv) T > T0, t < tk, t + T ≥ tk+N . There are at most N + 1 subsystem switches at

t = tk, tk+1, . . . , tk+N , respectively, so that∫ t+T

t

eT(τ)e(τ)dτ ≤ µ∆Amc0
T

T0
+ (1 + µ∆Am)c0

It can be concluded from (i)–(iv) that (5.3.7) is satisfied. �

9.4 Proof of Theorem 5.3.5

Suppose that χi(t) = 1 for t ∈ [tk−1, tk), i ∈ I, k ∈ Z+. Let k̃xi(t) , kxi(t) − k∗
xi =

[k̃xi1(t), . . . , k̃xin(t)]
T, k̃ri(t) , kri(t)−k∗ri, and denote x(t) = [x1(t), . . . , xn(t)]

T. Then

over [tk−1, tk), the error equation (5.3.5) can be rewritten as

ė(t) = Amie(t)− F T(t)θ̃bi (t) (9.4.1)

with θ̃bi = −[bTi k̃xi1, b
T
i k̃xi2 . . . , b

T
i k̃xin, b

T
i k̃ri]

T and F T(t) = [x1In, x2In, . . . , xnIn, rIn].

For simplicity of presentation, let Γi = diag{γi1, . . . , γin}, then the adaptive laws in

(5.3.8) lead to

˙̃θbi (t) = P̄i1F (t)P̄i2e(t) (9.4.2)

with P̄i1 = sign[k∗ri]diag{γi1In, γi2In, . . . , γinIn, γiIn} and P̄i2 = bib
T
miPmi. The

closed-loop system error dynamics over [tk−1, tk) can be expressed as[
ė
˙̃θbi

]
= A0i

[
e

θ̃bi

]
, A0i =

[
Ami −F T(t)

P̄i1F (t)P̄i2 0

]
(9.4.3)
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Consider the Lyapunov-like function

V = zT
0iP0iz0i, z0i = [eT, θ̃bTi ]T

P0i = diag

{
Pmi,

1

∥bi∥2|k∗ri|
diag

{
1

γi1
In, . . . ,

1

γin
In,

1

γi
In

}}
(9.4.4)

Along (5.3.8) and (9.4.3), its time derivative is

V̇ = zT
0i(A

T
0iP0i + P0iA0i)z0i ≤ −νizT

0iC0C
T
0 z0i

with νi = λmin[Qmi] and CT
0 = [In,0]; that is,

AT
0iP0i + P0iA0i + νiC0C

T
0 ≤ 0 (9.4.5)

Since r(t) is sufficiently rich of order n+1 and (Ami, bmi) is controllable, it follows

that ϕm(t) , [xT
m(t), r(t)]

T is P.E. [14], hence ϕ(t) , [xT(t), r(t)]T is P.E. [84], which

together with (9.4.5) results in the exponential stability of the closed-loop system [14,

Lemma 5.6.3]; that is, for zi(t) = [eT(t), θ̃T
i (t)]

T = [eT(t), k̃T
xi(t), k̃ri(t)]

T and χi(t) = 1

over [tk−1, tk), there exist positive constants ai and λi such that

∥zi(t)∥ ≤ aie
−λi(t−tk−1)∥zi(tk−1)∥, t ∈ [tk−1, tk)

Consider the Lyapunov-like function in (9.3.1). It follows with

αi = λmax[Pmi,Γ
−1
i , γ−1

i ], βi = λmin[Pmi,Γ
−1
i , γ−1

i ]

and for χi(t) = 1 over [tk−1, tk) that

V (t−k )−B(k−1) ≤ αi∥zi0(t−k )∥
2

≤ αia
2
i e

−2λi(t−tk−1)∥zi0(tk−1)∥2

≤ αi
βi
a2i e

−2λi(t−tk−1)
(
V (tk−1)−B(k−1)

)
where B(k−1) =

∑
j∈I,j ̸=i

1
|k∗rj |

(k̃T
xjΓ

−1
j k̃xj + γ−1

j k̃2rj) is constant over [tk−1, tk), since

χj(t) = 0. Following the proof in Lemma 5.2.1, when a subsystem switch occurs at
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t = tk, we have V (tk)− V (t−k ) ≤ µ∆Am

(
V (t−k )−B(k−1)

)
; that is,

V (tk)−B(k−1) ≤ (1 + µ∆Am)
(
V (t−k )−B(k−1)

)
If tk − tk−1 > ln[(αi/βi)a

2
i (1 + µ∆Am)]/2λi, then V (tk) < V (tk−1). Therefore, for

T0 = mink∈Z+{tk − tk−1} > Td = max{α ln(1 + µ∆Am), ln[(ᾱ/β̄)a
2(1 + µ∆Am)]/2λi}

with ᾱ = maxi∈I αi, β̄ = mini∈I βi, and as = maxi∈I ai, we have stability of the

reference model system. Furthermore, the values of the Lyapunov function at the

switching time instants form a strictly decreasing sequence.

If some of the subsystems with index i ∈ I∗ ⊂ I are no longer active after a finite

time Ti ≥ t0, then

V (∞) =
∑
i∈I∗

1

|k∗ri|

(
k̃T
xi(Ti)Γ

−1
i k̃xi(Ti) + γ−1

i k̃2ri(Ti)
)

that is, e(t), k̃xi(t), and k̃ri(t) converge to zero asymptotically for i ̸∈ I∗. On the

other hand, kxi(t) = kxi(Ti), kri(t) = kri(Ti), i ∈ I∗, t ≥ Ti, due to the fact that

χi(t) = 0.

In addition, with T ′
d , supi∈I{ln ai/λi}, λ = infi∈I{λi − ln ai/T

′
d}, it follows

that λτ ≤ λiτ − ln ai, i.e., aie
−λiτ ≤ e−λτ , τ ≥ T ′

d; on the other hand, we have

aie
−λiτ ≤ ase

−λτ , τ < T ′
d. Suppose T ∗ = tj−1 for some j ∈ Z+, then with the fact

that ∥e(t)∥, ∥θ̃i(t)∥ ≤ ∥zi(t)∥ ≤ ∥e(t)∥+ ∥θ̃i(t)∥, i ∈ I −I∗, we have for t ∈ [tk−1, tk)

and T0 ≥ Td that

∥zi(k)(t)∥ ≤ase−λ(t−tk−1)∥zi(k)(tk−1)∥

≤ase−λ(t−tk−2)∥zi(k−1)
(tk−2)∥+ ase

−λ(t−tk−1)∥zi(k)(tk−2)∥
...

≤asF (k − j + 1)e−
λ
N
(t−tj−1)∥zi(j)(tj−1)∥

+
∑
i

asF (k − j)e−
λ
N
(t−tj−1)eλ(tj−tj−1)∥zi(tj−1)∥
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where i(·) ∈ I − I∗, i ∈ I − I∗ but i ̸= i(j) in the summation, N is the number of

different subsystems in I − I∗, and F (m) denotes the sum of the first m Fibonacci

numbers, i.e.,

F (m) =
1√
5
[ψm − (1− ψ)m] , ψ =

1 +
√
5

2

Furthermore, we have

ψk−j+1e−
λ
N
(t−tj−1) ≤ e

λ
4N

T0e−
λ
2N

(t−tj−1)

ψk−je−
λ
N
(t−tj−1) ≤ e−

λ
2N

(t−tj−1)

if T0 > 2N lnψ/λ, and

−(1− ψ)k−j+1e−
λ
N
(t−tj−1) ≤ e−

λ
2N

(t−tj−1)

(similarly for −(1 − ψ)k−j). Therefore, with the minimum switching time interval

T0 > max{Td, T ′
d,

2N lnψ
λ

}, we have

∥zi(k)(t)∥ ≤
∑

i∈I−I∗

cie
− λ

2N
(t−T ∗)∥zi(T ∗)∥, t ≥ T ∗

for ci(k) =
as√
5
(e

λ
4N

T0 − 1+ψ), ci =
as√
5
eλ(tj−tj−1)ψ, i ∈ I −I∗, i ̸= i(k), and e(t), k̃xi(t),

and k̃ri(t) converge to zero exponentially, i ∈ I − I∗, t ≥ T ∗. �
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