
Asynchronous Workflow: How to Speed up a Bulky Task

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Thomas Hegerich

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science



Abstract
Capital One’s Data Catalog team found that
internal teams who try to upload a very large
dataset to the Catalog database would timeout on
the Catalog website. The elegant solution my
team and I designed was to break up the
synchronous upload process into an
asynchronous one. By adding a new API call to
the application, AWS S3 and SQS are used
under the hood to facilitate an asynchronous
processing workflow. This transition enabled the
user to upload a dataset of any size and still
process their dataset successfully. Future work
would include adding this feature to the existing
front-end user interface portion of the
application, and additional testing to cover
network and AWS failures.

1 Introduction
“I can’t think about that right now. If I

do, I’ll go crazy. I’ll think about that tomorrow.”
--Scarlett O’Hara, Gone With the Wind.

This quote definitely should not be
something to live by, however it perfectly
encapsulated the problem Capital One’s Data
Catalog team found in its Bulk Utility tool. This
team keeps track of every dataset in the
company, and even those datasets’
data—including permissions, creators, dates and
content—commonly known as metadata. The
Bulk Utility tool is used to take a metadata
dataset, process it to include even more
metadata, and then upload it to an internal
website for future reference (including
regulation). The problem with this tool is that it
could not deal with very large datasets. Once
someone tried to upload a dataset large enough,
the site timed out during processing, and the user
would have to try again, with no success. With
the increased acceptance of Cloud Computing
like tools by AWS within the software industry,
altering the upload from synchronous to
asynchronous can prevent the site from crashing,
by delaying the upload process and shifting the
responsibility to a different domain. Handling
uploads in an asynchronous manner saves time
from re-uploading or communicating with the
Catalog team.

2 Related Works

Alsaqqa, et. al. (2020) define and
analyze Agile Development and its several
methods. They explain that Agile Development
is a conceptual framework for software
engineering that focuses on iterative and
incremental planning and deployment - rather
than the traditional engineering workflow of
planning and then building. This is necessary for
software development because of the constantly
changing requirements from either the customer
or the tools used and the product itself. My
project for Capital One was the first time I have
been a part of a team using Agile Development.

Warski (2017) recounts a test of the
speed of an AWS SQS Instance and describes
the setup of the test, the test itself, and the
results. A number of nodes were set up to send
and receive messages from SQS, and the result
was low latencies for sending, with slightly
higher and more varied latencies for receiving.
This is relevant to my work because of the
utilization of SQS in the Bulk Utility Tool. SQS
was largely used under the hood to facilitate the
asynchronous workflow. This test exhibits that
SQS is an effective instrument to achieve
increased speed and availability compared to the
previous synchronous procedure.

3 Process Design
The process design involves analyzing

the original synchronous upload process, then
designing and transitioning to an asynchronous
upload process. Under an Agile Development
Process, significant testing is necessary from the
design phase all the way to deployment.

3.1 Synchronous Upload Process
The original, synchronous upload

process was straightforward. No external tools
were required since the Data Catalog application
was sufficient to process datasets in a
synchronous manner. A user—any team at
Capital One that wants to record the metadata of
a dataset they own—uploads a metadata dataset
at Capital One’s internal Data Catalog website.
The site uses internal API calls to process the
dataset (some computation to transform the
dataset to be viewable with more features on the
site). Once the dataset is processed, it is
uploaded to the internal website. Finally, the
user can see that the dataset has successfully



uploaded, as the screen they have been on during
the upload process indicates success.

This synchronous upload process
worked for most datasets, however with the
entire process relying on a session between the
user and the internal website, large datasets that
require a longer process time could not be
successfully uploaded. This happens frequently
enough that a different approach is necessary to
cover for these cases.

3.2 Asynchronous Upload Process
The updated asynchronous upload

process is intended to prevent large datasets
from being unable to fully upload to the Data
Catalog. The fault in the synchronous workflow
was the session between the user and the internal
website, and the solution was to use Cloud
Computing tools to remove the necessity for that
session.

From the user perspective, the beginning
of the new workflow is very similar to the old
workflow, except they are required to provide
their email in the upload request. Immediately,
the application uploads the dataset to AWS’ S3,
and sends a message to AWS’ SQS, including
relevant info like user email and the dataset’s S3
location, with the intent of processing the dataset
later. This beginning stage takes only 1-2
seconds, and at this point the user does not need
to continue the session with the internal website.
A separate server, called the “worker” is
continuously polling messages from the SQS.
Once it finds a message, it processes the
corresponding dataset from S3. Then, the worker
uploads the processed dataset back to S3 (and
subsequently the internal website). Finally, using
the email the user provided at the beginning, the
worker emails the user a link to their processed
dataset.

3.3 Testing
With lots of moving parts to this new

tool and an Agile development environment that
values writing code with tests in mind, testing
was a very important part of the development
process. During the completion of each layer of
the tool, unit testing, integration testing, and
acceptance testing needed to all be thorough and
passed 100% of cases before approval.

Unit tests involved simple test cases that
collectively reach each branch in the code.
Integration testing involved creating an
end-to-end simulation of a real use case that
mocks the tools used to make sure the output is
what is expected. Acceptance testing was a more
evolved version of integration testing, using the
actual tools in a testing environment instead of
mock versions. This extensive testing, along
with end-to-end testing with the real internal
API to explore various bugs, yielded confidence
from the Data Catalog team that the new
asynchronous workflow was a sufficient
approach and tool to use for uploading and
processing datasets.

4 Results
Once the new asynchronous

Bulk-Utility tool is fully integrated into the
front-end of the internal Data Catalog website,
teams from across the company will be using it
to keep track of their datasets’ metadata. The
transition into an asynchronous workflow and a
Cloud-based approach to processing datasets
will save time and hassle for teams who cannot
upload their large datasets. Before, teams would
have to communicate with the Data Catalog
team to find out why the upload process would
not complete, then split the dataset into multiple
pieces in order to suffice. Asynchronous
workflow prevents this and increases the
maximum number of datasets processed per day
by 1000%.

5 Conclusion
A smooth transition from the

synchronous upload process to an asynchronous
upload process for the Bulk Utility Tool is
important for the company and as a case study
advocating for asynchronous processes which
utilize Cloud Computing resources from
providers like AWS. Simply by changing the
upload approach and optimizing the usage of
AWS resources, the Bulk Utility Tool was able
to handle larger files, and more files overall.
Other similar tools within the company could be
transformed to use a similar process relative to
their purpose.

6 Future Work



The next phase for the evolution of the
Bulk Utility Tool is to integrate the back-end
API of the asynchronous process to the front-end
of the Catalog Team’s internal website for
processing metadata. Future work related to the
methods and tools used in this project could be
replicated across the company to leverage AWS
resources into more efficient products.

References
Alsaqqa, S & Sawalha, S & Abdel-Nabi, H.
(2020). Agile Software Development:
Methodologies and Trends. International Journal
of Interactive Mobile Technologies (iJIM). 14.
246. 10.3991/ijim.v14i11.13269.

Warski, A. (2017). Amazon’s SQS performance
and latency.
https://softwaremill.com/amazon-sqs-performan
ce-latency/

https://softwaremill.com/amazon-sqs-performance-latency/
https://softwaremill.com/amazon-sqs-performance-latency/

