
Big Bank Technology: My Experience Interning at a Big Bank

CS4991 Capstone Report, 2023

Sam Harless
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
sdh7ksu@virginia.edu

ABSTRACT
My team at Wells Fargo used a time-
consuming manual process in order to turn
jobs on/off ice in Autosys when maintenance
needed to be done on our servers. To
streamline this proccess, I created a function
to send API requests to Autosys, then created
a web page to access this function. To make
the function, I utilized C# and .NET to first
draw server information and job names from
a database, and then sent API requests to
Autosys based on the information retrieved. I
then added a page to my team’s web
application so that they and other teams could
access this function and turn the jobs on/off
ice for maintenance. I created the front end of
this website using Angular, which was able to
communicate with the function built into the
back end of the application. I successfuly
completed this project, and now my team and
others can turn jobs on/off ice for different
servers with ease. The only future work
needed is to add the option to select
individual jobs for a specific server to turn
on/off ice.

1. INTRODUCTION
Wells Fargo has over 230,000 employees,
serving over 70 million customers worldwide.
In terms of technology, much of the banks
focus is on data. There are many teams whose
main responsibility is a certain database. This
work involves pipelining data into the
database, cleaning and processing the data in
the database, and finally pipelining the data

out of the database. Since they had so many
database teams, our team existed, which was
in charge of the servers that hosted the
plethora of databases.

One of the pain points was turning all of a
server’s jobs on ice, which basically pauses a
job, whenever maintenance needed to be done
on a server. Sometimes this prompt would
come from within the team, but we also dealt
with a constant stream of requests from other
teams for the jobs on their database’s server
to be turned on ice so that they could do their
own maintenance. My manager wanted to
solve this pain point, so she assigned me a
project to use the AutoSYS API to turn jobs
on ice. The AutoSYS API allowed a user to
send an API request containing credentials, a
server/job, and action to take.

2. RELATED WORKS
One of the main concepts that inspired this
project was self-service. Self-service
technologies have become increasingly
pivotal in the landscape of enterprise
technology teams. These systems empower
team members to perform tasks that would
traditionally require manual intervention,
thereby accelerating workflows and reducing
operational bottlenecks. A study by the
Harvard Business Review found that “81% of
all customers attempt to take care of matters
themselves before reaching out to a live
representative” (Dixon, 2020). Though this
statistic is about customers, it shows the same

sentiment, that people will try to solve their
own problems before reaching out for help if
they have that option.

In the context of enterprise technology, the
significance of user-friendly websites extends
beyond customer engagement to internal
operational efficiency. As one industry expert
notes: “If corporate software is easy-to-use, it
helps employees perform their routine tasks.
Consequently, their productivity is higher”
(Miller, 2021). For teams within an
organization, a well-designed internal website
or portal is not just a luxury but a necessity
for streamlined workflows and effective
information dissemination. A user-friendly
interface minimizes the learning curve and
enables employees to quickly access the tools
and information they need. Therefore,
investing in user-friendly website design for
internal enterprise applications is not just
about aesthetics but also about optimizing
performance and resource utilization.

3. PROJECT DESIGN
I followed an iterative design process when
making my solution. I first worked on the
functionality to ice one job on one server by
sending an API request to the AutoSYS API.
This functionality was built using a C#/.NET
function. Once I had this functionality
working, I extended the solution to loop over
all of the jobs on a server, turning them all
on/off ice. Each server required a different
endpoint and credentials, so I next worked on
pulling the server information (including a list
of jobs on the server) from my teams internal
application database using SQL. Once I was
able to pull from the database, I could choose
a server as a parameter, which would pull the
endpoint, needed credentials, and a list of
jobs. Then I could send API requests for each
of the jobs using the endpoint and credentials.

Now that I had the functionality of the
AutoSYS API working, I needed to create an
easy way for my team members and others to

access the functionality. My team already had
a web application with a good deal of
functionality packed in it, including a
database and login features. Therefore, all I
needed to do was add a page to the
application, and it would have access to the
database and login features. Before starting to
code the user interface of the application, I
designed templates showing what the user
interface should look like. I used Axure,
following the proper user interface
guidelines; then presented these three options
to my manager, got feedback, and started
coding the web page.

I used Angular/TypeScript to develop the
front end of the web page. This web page first
checked to make sure the user was logged in,
and if not sent them to a login page. If the
user was logged in, the web page would
query the database, pulling a list of the
servers the user had access to put on/off ice.
Then, a dropdown menu would be populated
with the retrieved list, so that a user could
choose a server. Once the user had chosen a
server, they could click the submit button,
which triggered the API functionality
described above, passing in the selected
server as a parameter. Finally, the API
function returned a success/error message,
which I displayed on the webpage, so that the
user could see the results of their action.

4. RESULTS
Immediatly after I finished, my team started
using the solution instead of manually turning
the jobs on/off ice, which saved a lot of time.
A monotonous task that ussually took 2-3
minutes could now be done with the push of a
button. When I left, my team was beginning
to tell other teams about the functionality,
which would mean our team no longer had to
deal with these requests. This saved an
estimated 20 minutes per day because other
teams could now do self-service instead of
needing help.

5. CONCLUSION
The project undertaken during my internship
at Wells Fargo represents a significant leap in
operational efficiency and user autonomy. By
leveraging the capabilities of the AutoSYS
API, C#, .NET, and Angular, I was able to
transform a tedious, manual process of
managing server maintenance tasks into a
streamlined, automated system. This
development not only saved valuable time for
our team—reducing a 2-3 minute task to a
mere button push—but also empowered other
teams with the ability to manage their server
maintenance autonomously. The introduction
of this tool marks a notable advancement in
internal technological capabilities, aligning
with the broader trend in the industry towards
self-service technologies.

The successful implementation of this project
underscores the importance of user-friendly,
self-service technologies within enterprise
environments. As organizations continue to
evolve, the ability to quickly adapt and
provide efficient, automated solutions to
operational challenges becomes paramount.
My experience at Wells Fargo has highlighted
the impactful role that thoughtful software
development can play in enhancing
productivity and operational efficiency. This
project not only served as a valuable learning
experience but also contributed meaningfully
to the bank's ongoing efforts to optimize its
technological infrastructure. The potential for
further enhancements, such as the ability to
select individual jobs for specific servers,
offers an exciting avenue for future work,
promising even greater efficiency and
customization in server management
processes.

6. FUTURE WORK
The server job management tool developed
during my internship at Wells Fargo offers
numerous opportunities for further
enhancement and expansion. The immediate

next step is to enable the selection of
individual jobs for specific servers. This
feature will allow users to have more granular
control over the jobs they wish to turn on/off
ice, tailoring the process to their specific
needs and reducing the risk of affecting
unintended jobs during maintenance. Some
other possible areas for future work include
integration with other servers and systems,
customization, and mobile application
development.

REFERENCES
Dixon, M. (2020, September 15). Kick-Ass

Customer Service.
https://hbr.org/2017/01/kick-ass-
customer-service

Miller, A. (2021, July 28). Enterprise UX:

The value of usability for enterprise
software. UX Magazine.
https://uxmag.com/articles/enterprise-
ux-the-value-of-usability-for-enterprise-
software

