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Technical Report 

I.   Introduction 

 The increasing demand for high-performance and energy-efficient data processing has 

exposed critical limitations in traditional computing architectures, particularly in data-intensive 

and increasingly used applications like machine learning and artificial intelligence. Central 

processing units (CPUs) and graphics processing units (GPUs) have historically served as the 

backbone of computation; however, their reliance on discrete memory access causes significant 

data movement overhead (Jacob, 2010). This occurrence – known as the von Neumann 

bottleneck – limits system performance and contributes substantially to energy consumption. As 

the returns on transistor scaling diminish and Moore’s Law slows down, novel architectural 

paradigms have become necessary (Moore, 1998). 

One such paradigm is Processing in Memory (PIM), which aims to address the data 

movement bottleneck by integrating computational capabilities directly into or near memory. By 

eliminating the need to shuttle data back and forth between the processor and memory, PIM 

architectures provide significant gains in both performance and energy efficiency for certain 

computational capacities (Stone, 1970). Recent research has demonstrated that PIM can achieve 

notable speedups in workloads that are memory-bound, such as scientific computing, graph 

processing, and increasingly, machine learning (Gómez-Luna, 2023; Blackford, 2002). 

Convolutional Neural Networks (CNNs) are a particularly promising application domain 

for PIM, due to their widespread use in image recognition, natural language processing, and 

autonomous systems. In addition, CNNs’ computational structure, which often includes highly 

parallelizable operations such as convolutions and pooling, also provides some promise with 

regards to performance when used with PIM. In this project, we explore the feasibility and 
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effectiveness of mapping key CNN kernels – specifically those from the ResNet-18 architecture 

– onto PIM systems using a high-level C++ simulator and benchmark suite developed by The 

Laboratory for Computer Architecture at Virginia (LAVA Lab). 

II.   The Problem 

 Despite the theoretical advantages of PIM, practical implementation and performance 

optimization for specific workloads remain a challenge. For instance, CNNs are composed of a 

sequence of diverse computational kernels – including convolutions, activations like ReLU, and 

pooling like max and average – each with their own unique memory and computational 

requirements. The goal of this project is to evaluate the performance of key CNN kernels when 

executed on general-purpose PIM architectures, with a focus on identifying which components 

of ResNet-18 can most efficiently be mapped to PIM. This includes the testing of various kernels 

using our custom PIM simulation API and benchmarking them against CPU and GPU baselines 

using optimized libraries such as PyTorch. 

In the latter stages of this work, additional focus has been placed on optimizing 

convolution layers, which are among the most computationally intensive components of CNNs. 

Using batching strategies and parallelism within our simulator, we aim to assess the performance 

scaling of convolution operations on PIM systems, exploring the behavior of end-to-end 

implementations like ResNet and VGG for better analysis.  

Ultimately, this work contributes to the broader objective of hybrid execution models in 

machine learning. By determining which kernels perform best on which type of processor, we 

envision a heterogeneous computing approach where models are dynamically partitioned across 

compute units for optimal performance. This approach not only advances our understanding of 
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PIM capabilities but also pushes toward more intelligent workload scheduling and resource 

utilization in next-generation AI hardware systems. 

III.   The Novelty 

 While prior work has demonstrated speedups for general machine learning operations on 

PIM architectures, there is a lack of detailed analysis regarding the granular performance of 

individual CNN kernels across different hardware platforms, including PIM (Roy et al., 2021). 

This project distinguishes itself by looking into the kernel-level analysis of these components, 

finding which operations might benefit most from PIM architectures and which do not. 

 By integrating these insights into an end-to-end implementation of ResNet-18, this work 

bridges the gap between low-level kernel performance and high-level model behavior. This 

layered approach not only enables a deeper understanding of PIM’s strengths and limitations but 

also informs hybrid execution strategies based on empirical performance. To our knowledge, this 

level of analysis within full model benchmarks on simulated PIM architecture has not been 

previously done, making this a valuable contribution to the field of PIM for deep learning. 

IV.   Our Approach 

 The core objective of this project was to design and implement an end-to-end benchmark 

of the ResNet-18 model with our custom PIM simulator. While the LAVA Lab’s existing support 

for CNN architectures – most notably the VGG13, VGG16, and VGG19 models used in our 

IISWC 2024 submission – provided a structural and code-level foundation, ResNet-18 

introduced architectural challenges that necessitated significant extensions to the framework 

(Siddique et al., 2024). 

Unlike the strictly sequential nature of the VGG family, ResNet-18 is characterized by 

the use of residual learning through skip connections, a concept introduced in previous work (He 
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et al., 2015). These residual blocks, also called building blocks, allow the network to learn 

residual functions relative to the input, which greatly improves gradient flow and model 

convergence in deeper networks. Each building block typically consists of one convolution block 

and one identity block, each of which with two convolutional layers interleaved with ReLU 

activations. The two subset blocks differ in whether the shortcut path that creates the residual 

learning does so by directly adding the input after a ReLU activation to the output – as in the 

case of the identity block – or applying a 1x1 convolution to the input and then adding it to the 

output – as in the case of the convolution block. This architecture is depicted in Figure 1 and 

depicts the second building block within the ResNet-18 CNN, with Figure 2 representing the 

entire structure of the ResNet-18 model. 

Figure 1 

Example building block within a ResNet neural network (Modi, 2021) 
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Figure 2 

Overall ResNet-18 architecture by layer 

 

Note. There is a ReLU activation after each individual convolution layer 

To accurately replicate this architecture within our custom high-level simulator, every 

layer of the ResNet-18 model was manually defined using the suite’s C++ API. This involved 

implementing convolutional layers, ReLU activations, batch normalization, max pooling, and 

global average pooling – each called individually and explicitly, allowing for easier 

understanding and better detailed analysis. Most attention during development was given to the 

construction of the residual blocks, where conditional logic was introduced to handle identity and 

projection shortcuts as required by the model’s topology. Due to this being the first introduction 

of the residual mechanism into our benchmarking, much verification was performed to ensure 

correct and reliable execution.  

The simulator's API abstracts away low-level memory and compute behavior, offering a 

high-level interface for performance benchmarking on PIM architectures. Over 1,100 lines of 

C++ code were written in order to carefully construct and orchestrate each layer and block 

modularly, enabling precise control over execution. This manual, component-by-component 

construction not only ensured faithfulness to the original proposed research paper model but also 
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allowed us to isolate and measure the performance and validation of individual kernels under 

various simulations. Various performance metrics can be tracked with our simulator, such as 

architecture-specific configurations (i.e. PIM core layout, DRAM structure), data movement 

metrics, per-operation stats, and total estimated runtime and energy usage. All of this information 

is crucial in determining bottlenecks with the current implementation and how future updates, 

such as a non-host based convolution, might provide performance improvements. 

By extending the benchmarking suite to support ResNet-18, this work not only broadened 

the simulator’s coverage of modern CNN architectures but also provided a reusable template for 

implementing and evaluating other residual-style or transformer-based models in future research. 

The benchmark now serves as both a performance validation tool and an experimental platform 

for exploring workload partitioning across heterogeneous systems. 

V.   Our Findings 

The performance evaluation of ResNet-18 across various PIM architectures reveals 

notable disparities in runtime and operational efficiency. Among the simulated configurations, 

bit-parallel subarray-level PIM demonstrated the best overall performance, followed closely by 

bank-level PIM, while bit-serial PIM lagged significantly behind. Bit-serial PIM incurred nearly 

a 175x slowdown in total execution time when compared to bit-parallel, largely due to its 

bit-by-bit processing approach and its quadratic complexity with respect to operand bit width. 

This performance bottleneck became especially evident during convolutional operations, which 

are inherently multiplication-heavy and particularly taxing under a bit-serial computation model. 

To provide quantitative context, the bit-parallel PIM configuration completed the 

ResNet-18 benchmark in 236.38 ms, the bank-level PIM version required 246.17 ms, while the 

bit-serial took a much longer time at 3,585.59 ms. However, these runtimes, which are 
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represented in Figure 3, include more than just in-memory computation – they also account for 

data movement overhead and host-side execution components, which represent a substantial 

fraction of total time for the two fastest configurations. Specifically, only 18.48 ms of the 

bit-parallel runtime and 28.27 ms of the bank-level runtime were attributed to PIM-based 

computation. The remaining runtime was spent on data transfer between the host and the 

memory device, as well as host-based processing tasks that are currently not handled entirely 

within the PIM subsystem. These include components of the convolution layers which, in the 

present implementation, are split between PIM and the host processor. Unlike the other two, 

bit-serial was different as nearly 94% of the total execution time was spent on the PIM 

computation, showing how nonoptimal its use is within this current context.  

Figure 3 

ResNet-18 performance chart with a PIM configuration of 16 ranks, 128 banks per rank, 16 

subarrays per bank, 2,048 rows per subarray, and 8,192 columns per subarray.  

 

Note. Fulcrum is a proposed version of bit-parallel subarray-level PIM (Lenjani et al., 2020).  

A breakdown of operation-level statistics highlights the computational hotspots within 

the model. Shown in Figure 4, both bit-parallel and bank-level PIM most frequently invoke 
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32-bit integer multiplication and addition operations, which were called 38,656 and 35,712 times 

respectively. These operations are predominantly tied to the convolution layers, which dominate 

the computational cost of CNNs. The high frequency of these calls reinforces the need for 

optimizing convolutional routines in order to improve overall performance. 

Figure 4 

PIM operation breakdown between bit-parallel and bank-level PIM architectures 

 

 In comparison to traditional compute platforms, the current PIM implementations still fall 

short. The CPU baseline completed the same benchmark in 231.46 ms, which is slightly faster 

than either PIM configuration when total execution time is considered. While bit-parallel PIM 

outperforms CPU in raw in-memory compute time, the benefits are effectively neutralized when 

the overhead from data transfers and host-side operations is included. The GPU baseline, by 

contrast, achieved a significantly lower execution time of 2.50 ms, underscoring the advantage of 

highly parallelized hardware and optimized compute pipelines in existing accelerators. 

VI.   Future Work 

To overcome current performance limitations, the lab has begun developing an 

optimized, fully in-PIM convolution implementation. Unlike the initial version, which offloads 

parts of the convolutional computation to the host, this new design executes 100% of the kernel 
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operations within the PIM object itself using only in-memory operations. Preliminary results 

from this new implementation show promising gains, achieving up to 10x speedup over the prior 

PIM convolution version. This change significantly reduces data movement and eliminates 

host-side overhead, making PIM performance far more competitive – especially when compared 

to CPU, though it still falls short of GPU performance. 

We expect this optimization to significantly shift the balance in hybrid execution 

strategies. With fully in-PIM kernels like convolution, it becomes feasible to delegate larger 

portions of the model to PIM and rely less on CPU and GPU interaction. In the future, we also 

plan to re-evaluate performance using more sophisticated data batching techniques. These 

improvements will not only improve standalone PIM efficiency but also inform intelligent 

workload partitioning strategies for heterogeneous ML acceleration platforms. 

VII.   Conclusion 

This project investigated the performance of CNN workloads, specifically ResNet-18, on 

a range of simulated Processing-in-Memory architectures. Through detailed kernel-level 

benchmarking and analysis, we demonstrated that while PIM offers clear computational 

advantages in isolation, real-world performance remains limited by host-side execution and data 

movement overhead. Bit-parallel subarray-level and bank-level PIM showed the most promise, 

but even these configurations could not outperform CPU baselines when considering total 

runtime, and were far outpaced by GPU acceleration. 

However, our development of a fully in-PIM convolution kernel suggests a path forward. 

Early results indicate substantial speedups by eliminating host interaction, supporting the case 

for deeper integration of in-memory compute in ML workloads. These findings lay the 

groundwork for future hybrid execution strategies, where intelligently partitioned workloads 
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could leverage the strengths of PIM, CPU, and GPU in tandem to achieve optimal performance 

and energy efficiency. 

 

 

 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

11 



 

References 

Blackford, I. S., Petitet, A., Pozo, R., Remington, K., Whaley, R. C., Demmel, J., Dongarra, J., 

Duff, I., Hammarling, S., Henry, G., & et al. (2002). An updated set of basic linear 

algebra subprograms (BLAS). ACM Transactions on Mathematical Software (TOMS), 

Volume 28, pp. 135-151. 

Gómez-Luna, J., Guo, Y., Brocard, S., Legriel, J., Cimadomo, R., & Oliveira, G. F. (2023). 

Evaluating Machine Learning Workloads on Memory-Centric Computing Systems. IEEE 

International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 

35-49. https://ieeexplore.ieee.org/document/10158216 

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. 

https://arxiv.org/pdf/1512.03385 

Jacob, B., Wang, D., & Ng, S. (2010). Memory systems: cache, DRAM, disk. 

Lenjani, M., Gonzalez, P., Sadredini, E., Li, S., Xie, Y., Akel, A., Eilert, S., Stan, M. R., & 

Skadron, K. (2020). Fulcrum: A Simplified Control and Access Mechanism Toward 

Flexible and Practical In-Situ Accelerators. 2020 IEEE International Symposium on High 

Performance Computer Architecture (HPCA). 

https://doi.org/10.1109/hpca47549.2020.00052 

Modi, R. (2021, December 1). ResNet — Understand and Implement from scratch. Analytics 

Vidhya; Medium. 

https://medium.com/analytics-vidhya/resnet-understand-and-implement-from-scratch-d0e

b9725e0db 

Moore, G. E. (1998). Cramming more components onto integrated circuits. Proceedings of the 

IEEE, Volume 86, pp. 82-85. 

12 

https://ieeexplore.ieee.org/document/10158216


 

Roy, S., Ali, M., & Raghunathan, A. (2021). PIM-DRAM: Accelerating Machine Learning 

Workloads using Processing in Commodity DRAM. ArXiv.org. 

https://arxiv.org/abs/2105.03736 

Siddique, F. A., Guo, D., Fan, Z., Gholamrezaei, M., Baradaran, M., Ahmed, A., Abbot, H., 

Durrer, K., Nandagopal, K., Ermovick, E., Kiyawat, K., Gul, B., Mughrabi, A., Venkat, 

A., & Skadron, K. (2024). Architectural Modeling and Benchmarking for Digital DRAM 

PIM. IEEE International Symposium on Workload Characterization (IISWC). 

http://www.cs.virginia.edu/~skadron/Papers/PIMbench_PIMeval_iiswc2024.pdf 

Stone, H. S. (1970). A logic-in-memory computer,. IEEE Transactions on Computers (TC), 

Volume 100, pp. 73-78. 

13 

http://www.cs.virginia.edu/~skadron/Papers/PIMbench_PIMeval_iiswc2024.pdf

