

Optimizing Convolutional Neural Networks on Processing-in-Memory Architectures:
Implementation, Benchmarking, and Performance Analysis

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Hugo Abbot

Spring, 2025

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Kevin Skadron, Department of Computer Science

Technical Report

I. Introduction

 The increasing demand for high-performance and energy-efficient data processing has

exposed critical limitations in traditional computing architectures, particularly in data-intensive

and increasingly used applications like machine learning and artificial intelligence. Central

processing units (CPUs) and graphics processing units (GPUs) have historically served as the

backbone of computation; however, their reliance on discrete memory access causes significant

data movement overhead (Jacob, 2010). This occurrence – known as the von Neumann

bottleneck – limits system performance and contributes substantially to energy consumption. As

the returns on transistor scaling diminish and Moore’s Law slows down, novel architectural

paradigms have become necessary (Moore, 1998).

One such paradigm is Processing in Memory (PIM), which aims to address the data

movement bottleneck by integrating computational capabilities directly into or near memory. By

eliminating the need to shuttle data back and forth between the processor and memory, PIM

architectures provide significant gains in both performance and energy efficiency for certain

computational capacities (Stone, 1970). Recent research has demonstrated that PIM can achieve

notable speedups in workloads that are memory-bound, such as scientific computing, graph

processing, and increasingly, machine learning (Gómez-Luna, 2023; Blackford, 2002).

Convolutional Neural Networks (CNNs) are a particularly promising application domain

for PIM, due to their widespread use in image recognition, natural language processing, and

autonomous systems. In addition, CNNs’ computational structure, which often includes highly

parallelizable operations such as convolutions and pooling, also provides some promise with

regards to performance when used with PIM. In this project, we explore the feasibility and

2

effectiveness of mapping key CNN kernels – specifically those from the ResNet-18 architecture

– onto PIM systems using a high-level C++ simulator and benchmark suite developed by The

Laboratory for Computer Architecture at Virginia (LAVA Lab).

II. The Problem

 Despite the theoretical advantages of PIM, practical implementation and performance

optimization for specific workloads remain a challenge. For instance, CNNs are composed of a

sequence of diverse computational kernels – including convolutions, activations like ReLU, and

pooling like max and average – each with their own unique memory and computational

requirements. The goal of this project is to evaluate the performance of key CNN kernels when

executed on general-purpose PIM architectures, with a focus on identifying which components

of ResNet-18 can most efficiently be mapped to PIM. This includes the testing of various kernels

using our custom PIM simulation API and benchmarking them against CPU and GPU baselines

using optimized libraries such as PyTorch.

In the latter stages of this work, additional focus has been placed on optimizing

convolution layers, which are among the most computationally intensive components of CNNs.

Using batching strategies and parallelism within our simulator, we aim to assess the performance

scaling of convolution operations on PIM systems, exploring the behavior of end-to-end

implementations like ResNet and VGG for better analysis.

Ultimately, this work contributes to the broader objective of hybrid execution models in

machine learning. By determining which kernels perform best on which type of processor, we

envision a heterogeneous computing approach where models are dynamically partitioned across

compute units for optimal performance. This approach not only advances our understanding of

3

PIM capabilities but also pushes toward more intelligent workload scheduling and resource

utilization in next-generation AI hardware systems.

III. The Novelty

 While prior work has demonstrated speedups for general machine learning operations on

PIM architectures, there is a lack of detailed analysis regarding the granular performance of

individual CNN kernels across different hardware platforms, including PIM (Roy et al., 2021).

This project distinguishes itself by looking into the kernel-level analysis of these components,

finding which operations might benefit most from PIM architectures and which do not.

 By integrating these insights into an end-to-end implementation of ResNet-18, this work

bridges the gap between low-level kernel performance and high-level model behavior. This

layered approach not only enables a deeper understanding of PIM’s strengths and limitations but

also informs hybrid execution strategies based on empirical performance. To our knowledge, this

level of analysis within full model benchmarks on simulated PIM architecture has not been

previously done, making this a valuable contribution to the field of PIM for deep learning.

IV. Our Approach

 The core objective of this project was to design and implement an end-to-end benchmark

of the ResNet-18 model with our custom PIM simulator. While the LAVA Lab’s existing support

for CNN architectures – most notably the VGG13, VGG16, and VGG19 models used in our

IISWC 2024 submission – provided a structural and code-level foundation, ResNet-18

introduced architectural challenges that necessitated significant extensions to the framework

(Siddique et al., 2024).

Unlike the strictly sequential nature of the VGG family, ResNet-18 is characterized by

the use of residual learning through skip connections, a concept introduced in previous work (He

4

et al., 2015). These residual blocks, also called building blocks, allow the network to learn

residual functions relative to the input, which greatly improves gradient flow and model

convergence in deeper networks. Each building block typically consists of one convolution block

and one identity block, each of which with two convolutional layers interleaved with ReLU

activations. The two subset blocks differ in whether the shortcut path that creates the residual

learning does so by directly adding the input after a ReLU activation to the output – as in the

case of the identity block – or applying a 1x1 convolution to the input and then adding it to the

output – as in the case of the convolution block. This architecture is depicted in Figure 1 and

depicts the second building block within the ResNet-18 CNN, with Figure 2 representing the

entire structure of the ResNet-18 model.

Figure 1

Example building block within a ResNet neural network (Modi, 2021)

5

Figure 2

Overall ResNet-18 architecture by layer

Note. There is a ReLU activation after each individual convolution layer

To accurately replicate this architecture within our custom high-level simulator, every

layer of the ResNet-18 model was manually defined using the suite’s C++ API. This involved

implementing convolutional layers, ReLU activations, batch normalization, max pooling, and

global average pooling – each called individually and explicitly, allowing for easier

understanding and better detailed analysis. Most attention during development was given to the

construction of the residual blocks, where conditional logic was introduced to handle identity and

projection shortcuts as required by the model’s topology. Due to this being the first introduction

of the residual mechanism into our benchmarking, much verification was performed to ensure

correct and reliable execution.

The simulator's API abstracts away low-level memory and compute behavior, offering a

high-level interface for performance benchmarking on PIM architectures. Over 1,100 lines of

C++ code were written in order to carefully construct and orchestrate each layer and block

modularly, enabling precise control over execution. This manual, component-by-component

construction not only ensured faithfulness to the original proposed research paper model but also

6

allowed us to isolate and measure the performance and validation of individual kernels under

various simulations. Various performance metrics can be tracked with our simulator, such as

architecture-specific configurations (i.e. PIM core layout, DRAM structure), data movement

metrics, per-operation stats, and total estimated runtime and energy usage. All of this information

is crucial in determining bottlenecks with the current implementation and how future updates,

such as a non-host based convolution, might provide performance improvements.

By extending the benchmarking suite to support ResNet-18, this work not only broadened

the simulator’s coverage of modern CNN architectures but also provided a reusable template for

implementing and evaluating other residual-style or transformer-based models in future research.

The benchmark now serves as both a performance validation tool and an experimental platform

for exploring workload partitioning across heterogeneous systems.

V. Our Findings

The performance evaluation of ResNet-18 across various PIM architectures reveals

notable disparities in runtime and operational efficiency. Among the simulated configurations,

bit-parallel subarray-level PIM demonstrated the best overall performance, followed closely by

bank-level PIM, while bit-serial PIM lagged significantly behind. Bit-serial PIM incurred nearly

a 175x slowdown in total execution time when compared to bit-parallel, largely due to its

bit-by-bit processing approach and its quadratic complexity with respect to operand bit width.

This performance bottleneck became especially evident during convolutional operations, which

are inherently multiplication-heavy and particularly taxing under a bit-serial computation model.

To provide quantitative context, the bit-parallel PIM configuration completed the

ResNet-18 benchmark in 236.38 ms, the bank-level PIM version required 246.17 ms, while the

bit-serial took a much longer time at 3,585.59 ms. However, these runtimes, which are

7

represented in Figure 3, include more than just in-memory computation – they also account for

data movement overhead and host-side execution components, which represent a substantial

fraction of total time for the two fastest configurations. Specifically, only 18.48 ms of the

bit-parallel runtime and 28.27 ms of the bank-level runtime were attributed to PIM-based

computation. The remaining runtime was spent on data transfer between the host and the

memory device, as well as host-based processing tasks that are currently not handled entirely

within the PIM subsystem. These include components of the convolution layers which, in the

present implementation, are split between PIM and the host processor. Unlike the other two,

bit-serial was different as nearly 94% of the total execution time was spent on the PIM

computation, showing how nonoptimal its use is within this current context.

Figure 3

ResNet-18 performance chart with a PIM configuration of 16 ranks, 128 banks per rank, 16

subarrays per bank, 2,048 rows per subarray, and 8,192 columns per subarray.

Note. Fulcrum is a proposed version of bit-parallel subarray-level PIM (Lenjani et al., 2020).

A breakdown of operation-level statistics highlights the computational hotspots within

the model. Shown in Figure 4, both bit-parallel and bank-level PIM most frequently invoke

8

32-bit integer multiplication and addition operations, which were called 38,656 and 35,712 times

respectively. These operations are predominantly tied to the convolution layers, which dominate

the computational cost of CNNs. The high frequency of these calls reinforces the need for

optimizing convolutional routines in order to improve overall performance.

Figure 4

PIM operation breakdown between bit-parallel and bank-level PIM architectures

 In comparison to traditional compute platforms, the current PIM implementations still fall

short. The CPU baseline completed the same benchmark in 231.46 ms, which is slightly faster

than either PIM configuration when total execution time is considered. While bit-parallel PIM

outperforms CPU in raw in-memory compute time, the benefits are effectively neutralized when

the overhead from data transfers and host-side operations is included. The GPU baseline, by

contrast, achieved a significantly lower execution time of 2.50 ms, underscoring the advantage of

highly parallelized hardware and optimized compute pipelines in existing accelerators.

VI. Future Work

To overcome current performance limitations, the lab has begun developing an

optimized, fully in-PIM convolution implementation. Unlike the initial version, which offloads

parts of the convolutional computation to the host, this new design executes 100% of the kernel

9

operations within the PIM object itself using only in-memory operations. Preliminary results

from this new implementation show promising gains, achieving up to 10x speedup over the prior

PIM convolution version. This change significantly reduces data movement and eliminates

host-side overhead, making PIM performance far more competitive – especially when compared

to CPU, though it still falls short of GPU performance.

We expect this optimization to significantly shift the balance in hybrid execution

strategies. With fully in-PIM kernels like convolution, it becomes feasible to delegate larger

portions of the model to PIM and rely less on CPU and GPU interaction. In the future, we also

plan to re-evaluate performance using more sophisticated data batching techniques. These

improvements will not only improve standalone PIM efficiency but also inform intelligent

workload partitioning strategies for heterogeneous ML acceleration platforms.

VII. Conclusion

This project investigated the performance of CNN workloads, specifically ResNet-18, on

a range of simulated Processing-in-Memory architectures. Through detailed kernel-level

benchmarking and analysis, we demonstrated that while PIM offers clear computational

advantages in isolation, real-world performance remains limited by host-side execution and data

movement overhead. Bit-parallel subarray-level and bank-level PIM showed the most promise,

but even these configurations could not outperform CPU baselines when considering total

runtime, and were far outpaced by GPU acceleration.

However, our development of a fully in-PIM convolution kernel suggests a path forward.

Early results indicate substantial speedups by eliminating host interaction, supporting the case

for deeper integration of in-memory compute in ML workloads. These findings lay the

groundwork for future hybrid execution strategies, where intelligently partitioned workloads

10

could leverage the strengths of PIM, CPU, and GPU in tandem to achieve optimal performance

and energy efficiency.

11

References

Blackford, I. S., Petitet, A., Pozo, R., Remington, K., Whaley, R. C., Demmel, J., Dongarra, J.,

Duff, I., Hammarling, S., Henry, G., & et al. (2002). An updated set of basic linear

algebra subprograms (BLAS). ACM Transactions on Mathematical Software (TOMS),

Volume 28, pp. 135-151.

Gómez-Luna, J., Guo, Y., Brocard, S., Legriel, J., Cimadomo, R., & Oliveira, G. F. (2023).

Evaluating Machine Learning Workloads on Memory-Centric Computing Systems. IEEE

International Symposium on Performance Analysis of Systems and Software (ISPASS), pp.

35-49. https://ieeexplore.ieee.org/document/10158216

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition.

https://arxiv.org/pdf/1512.03385

Jacob, B., Wang, D., & Ng, S. (2010). Memory systems: cache, DRAM, disk.

Lenjani, M., Gonzalez, P., Sadredini, E., Li, S., Xie, Y., Akel, A., Eilert, S., Stan, M. R., &

Skadron, K. (2020). Fulcrum: A Simplified Control and Access Mechanism Toward

Flexible and Practical In-Situ Accelerators. 2020 IEEE International Symposium on High

Performance Computer Architecture (HPCA).

https://doi.org/10.1109/hpca47549.2020.00052

Modi, R. (2021, December 1). ResNet — Understand and Implement from scratch. Analytics

Vidhya; Medium.

https://medium.com/analytics-vidhya/resnet-understand-and-implement-from-scratch-d0e

b9725e0db

Moore, G. E. (1998). Cramming more components onto integrated circuits. Proceedings of the

IEEE, Volume 86, pp. 82-85.

12

https://ieeexplore.ieee.org/document/10158216

Roy, S., Ali, M., & Raghunathan, A. (2021). PIM-DRAM: Accelerating Machine Learning

Workloads using Processing in Commodity DRAM. ArXiv.org.

https://arxiv.org/abs/2105.03736

Siddique, F. A., Guo, D., Fan, Z., Gholamrezaei, M., Baradaran, M., Ahmed, A., Abbot, H.,

Durrer, K., Nandagopal, K., Ermovick, E., Kiyawat, K., Gul, B., Mughrabi, A., Venkat,

A., & Skadron, K. (2024). Architectural Modeling and Benchmarking for Digital DRAM

PIM. IEEE International Symposium on Workload Characterization (IISWC).

http://www.cs.virginia.edu/~skadron/Papers/PIMbench_PIMeval_iiswc2024.pdf

Stone, H. S. (1970). A logic-in-memory computer,. IEEE Transactions on Computers (TC),

Volume 100, pp. 73-78.

13

http://www.cs.virginia.edu/~skadron/Papers/PIMbench_PIMeval_iiswc2024.pdf

