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Abstract
As exemplified in the 2010 Stuxnet attack on an Iranian nuclear facility, attackers have the capabilities to
embed infections in equipment that is employed in nuclear power systems. In this thesis, a new systems
engineering focused approach for mitigating such risks is described. This approach involves the
development of a security architectural formulation that integrates a set of reusable security services as
an architectural solution that is an embedded component of the system to be protected. The System-
Aware architectural approach embeds security components into the system to be protected. The
architecture includes services that (1) collect and assess real-time security relevant measurements from
the system being protected, (2) perform security analysis on those measurements, and (3) execute
system security control actions as required. This architectural formulation results in a defense that is
referred to as System-Aware Cyber Security. This includes (1) the integration of a diverse set of
dynamically interchangeable redundant subsystems involving hardware and software components
provided from multiple vendors to significantly increase the difficulty for adversaries by avoiding a
monoculture environment, (2) the development of subsystems that are capable of rapidly changing their
attack surface through hardware and software reconfiguration (configuration hopping) in response to
perceived threats, (3) data consistency checking services (e.g., intelligent voting mechanisms) for
isolating faults and permitting moving surface control actions to avoid operations in a compromised
configuration, and (4) forensic analysis techniques for rapid post-attack categorization of whether a
given fault is more likely the result of an infected embedded hardware or software component (i.e., cyber
attack) or a natural failure. In this thesis we present these key elements of the System-Aware Cyber
Security architecture and show, including an application example, how they can be integrated to
mitigate the risks of insider and supply chain attacks. In addition, this thesis outlines an initial vision for a

security analysis framework to compare alternative System-Aware security architectures. Finally, we



summarize future research that is necessary to facilitate implementation across additional domains

critical to the nation's interest.
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Chapter 1
Introduction

1.1 Motivation

Increasingly systems are being digitized in a drive toward lower costs, improved efficiency, and reduced
time to market. However, this drive to digitization also renders these systems susceptible to an
increasingly sophisticated and debilitating array of cyber attacks. For example, as shown by Karl Koscher
et al. [2010], it is possible for an attacker to embed an infection that is capable of completely disabling
an automobile’s braking system. Further, in the 2010 Stuxnet attack [Falliere, Murchu, and Chien,
2011], an embedded infection was used to successfully damage up to 1000 centrifuges in Iran (10
percent of the available capacity) [Albright, Brannan and Walrond, 2010]. Such attacks cannot be
completely addressed by traditional perimeter security solutions [Wulf and Jones, 2009], as they have
been in the past. A new systems engineering focused approach is introduced, integrating fault-tolerant
system design concepts with advanced cyber security concepts and the methods developed by the
automatic control systems community to address these expanding threats. This involves the
development of a security architectural formulation [Bayuk and Horowitz, 2011] based on reusable
system security services to create a defense that is referred to as System-Aware Cyber Security [Jones

and Horowitz, 2011].

Security services are defined to be security elements that are integrated and embedded as a solution
into a system, providing unique security functionality designed and tailored for the specific application.
The architecture includes services that (1) collect and assess real-time security relevant measurements
from the system being protected, (2) perform security analysis on those measurements, and (3) execute

system security control actions as required. These services include (1) significantly increasing the
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difficulty for adversaries by avoiding a monoculture environment through the integration of a diverse
set of redundant subsystems involving hardware and software components provided by multiple
vendors, (2) the development of subsystems that are capable of rapidly changing their attack surface
through hardware and software reconfiguration (configuration hopping) in response to perceived
threats, (3) data consistency checking services for isolating faults and permitting moving surface control
actions to avoid continuing operations in a compromised configuration, and (4) forensic analysis
techniques for rapid post-attack categorization of whether a given fault is more likely the result of a

cyber attack than other causes (i.e., natural failure).

Integrated solutions would be determined through awareness of what the system applications do, how
they are designed, what they communicate with as well as how they communicate, what their
performance requirements are, what missions they are tied to, what risks are posed through potential
attacks, etc. In addition, System-Aware Cyber Security provides the means to hypothesize specific
threats in relation to specific application functions. When combined with an understanding of the
damage that could occur, this provokes the application of risk sensitive mitigation solutions (i.e.,
appropriate system security services). This enables systems owners, operators, and regulators to directly
link the risk mitigation benefits of specific security services to the cost associated with designing,
implementing, and utilizing them. When designing and implementing security solutions, several high
level design issues emerge, including (1) selection of the subsystems for redundant diversification; (2)
use of moving target solutions for attack avoidance, attack detection, and system restoral functions; (3)
selection of which HW/SW components to protect; (4) selection of virtual and/or physical configuration
hopping solutions; (5) selection of regimes for physical hopping (local and/or remote); (6) selection of
data used to ensure consistency; (7) selection of forensic analysis techniques for rapid categorization of

faults; (8) avoidance of interference with normal functioning of the applications; (9) assurance of

12



appropriate isolation of the security solutions; (10) exploitation of opportunities for reuse of existing
security solution services; and (11) establishment of administration requirements for control of the

security solutions.

System-Aware Cyber Security enhances the security of the system to be protected through the use of
security services embedded at the application layer to significantly increasing the level of effort
required—i.e., complexity, time, energy, and budget needed to design, develop, and deploy exploits—by
an adversary to compromise the system being protected; thereby giving an asymmetric advantage to
the defender. This increased level of effort is relative to both the amount of resources necessary to
design, develop, and deploy and exploit in the absence of a System-Aware solution and the additional
resources necessary to create the System-Aware solution. For example, say that a given System-Aware
solution cost $10,000 to create and will increase the cost to develop and exploit by $1,000 dollars. This
solution would significantly shift the asymmetry from the attacker to the defender if the exploits
defended against had previously been inexpensive (e.g., $100) and the system being protected was
critical (e.g., missile defense system). However, the solution would only offer a minimal shift if the
system being protected was simple (e.g., a personal computer worth $100) and the exploits being

protected against had previously been costly to develop (e.g., $1,000,000).

As System-Aware Cyber Security aims to enhance system security by increasing the complexity and
resources necessary to design, develop, and execute successful attacks, it can be difficult to assess using
more analytical approaches. For example, the integration of System-Aware security solutions can
introduce collateral impacts. These impacts may require additional solutions in order to mitigate their
effects on system performance, thereby complicating the overall design of the system to be protected.
However, these techniques may also potentially increase the complexity to design, develop, and execute

attacks. Is the increased security worth the increased complexity in the system to be protected? This is a
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decision that will be dependent on the community in question. For example, increased complexity in
running a nuclear power plant may be viewed as introducing more risk than the benefits afforded by a
given System-Aware solution, due to the significant loss that could result from a malfunctioning reactor.
Alternatively, increased security in protecting a ships control systems may be viewed as more important
than the increased complexity, due to the potential for an adversary to compromise the ship. In
addition, it is difficult to quantify complexity and security. As a result it is also left up to each community
to determine which solutions are too complex for the security offered. For example, nuclear power
community may decide that the application of moving target solutions for information assurance is too
complex. Alternatively the administrator of a cloud computing infrastructure may decide moving target

solutions offer minimal complexity compared to the potentially large security gains.

1.2 Background

1.2.1 Information Assurance

It is recognized that perimeter security is the mainstay of the current cyber security solution space [Wulf
and Jones, 2009]. This has enabled the system engineering and security communities to respond to
perceived risks and threats through the addition of new perimeter security solutions on a responsive
basis. The most recognizable of these solutions being the firewall, a device utilized in network security to
control access to resources. Another example of perimeter security is utilized to ensure the integrity of
the supply chain against insider attacks. In this case interviews, background checks, and constrained
purchasing from selected suppliers are used to help prevent individuals with malicious intent from
gaining access to resources, facilities, information, etc. In all of these cases the goal of perimeter

security is to strictly control access to and from key components.

However, while the focus on perimeter security has provided some advantages, it has also brought with

it several disadvantages; disadvantages that have become more significant as the cyber threat has
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evolved. In particular, there has not been widespread development and application of reusable
solutions embedded into the system to be protected. The rising threat of successful attacks warrants the
consideration of a top-down systems engineering approach that develops solution strategies regarding
cyber security that go beyond the perimeter model. Furthermore, the systems engineering community
could be considering tightly coupled system security solutions, starting from the time that a new system
architecture is developed and continuing through its entire life cycle. For example, the credit card
community has implemented a wide range of techniques to protect against fraud [Kou et al., 2004].
Several of these techniques rely on solutions that are tightly coupled to user behavior. One such
technique relies upon the knowledge that it is not possible for someone to spend money in two places
at the same time. However, while significant attention has been paid to best practices for dealing with
the bottom-up approach for engineering security solutions, including Webber et al. “Applications That
Participate in Their Own Defense” [2003] and Cai et al. “Honeygames” [2006], the systems engineering
community has yet to develop a corresponding architectural framework for a top-down approach for
addressing cyber security. For example, in 1980 the United State’s intercontinental ballistic missile
warning system falsely indicated to its operators that a full-scale nuclear attack had been initiated
against the U.S. [US Comptroller General, 1981]. After-the-fact analysis revealed that the system was not
designed to recognize a condition where there was no missile-related data being received by the
system’s sensors but, at the same time, there was data indicating an attack on the screens being
observed by operators. Although this event was the result of malfunctioning hardware, it could have just
as well been a Trojan horse inserted through the supply chain [Defense Science Board, 2005; DoD,

2009].
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1.2.2 Fault Tolerance

Fault-tolerant design enables a system to continue operation, possibly at a reduced level (also known as
graceful degradation), rather than failing completely, when some part of the system fails (i.e.,
unintentional failure). This has resulted in the development of techniques for preventing, isolating,
detecting, and restoring systems from faults, including diversity [Avizienis and Kelly, 1984], redundancy,
and reliable voting techniques (e.g., Byzantine voting [Lamport, Shostak, and Pease; 1982]). These
techniques can also be utilized to prevent or recover from a fault caused by an embedded Trojan horse
[Reynolds et al., 2002]. However, the application of fault-tolerant designs to System-Aware Cyber
Security poses unique challenges. First, unlike an unintentional failure, an intelligent adversary can
actively seek out and take advantage of beneficial asymmetries (i.e., attacks that require exploits that
are relatively easy to develop and execute). Thus, rather than simply making a system more resilient,
System-Aware security solutions attempt to shift the asymmetry in favor of the defender (i.e., create
defenses that are relatively easy to develop, but that make exploit development and execution much
more difficult). In addition, analysis efforts traditionally applied in fault-tolerant system design activities
must be modified to address cyber security. For example, an intelligent adversary may execute an
exploit that requires multiple actions related to multiple sub-systems or system components. Such
actions can be viewed as a series of dependent failure events from the perspective of System-Aware
security, but as a sequence of independent failure events from a fault-tolerant perspective. For example,
the Stuxnet attack damaged centrifuges while masking this damage from the operators of those
centrifuges. While such an outcome may also occur as the result of multiple unintentional failures, it
would require several such failures to occur independently and concurrently: damaging commands to be
sent to the centrifuges, faulty information to be sent to control room operators and automated status
monitoring systems, and for that status information to indicate the system is running normally. Thus,

from the System-Aware security perspective, such a sequence of events is dependent on the capabilities
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of an intelligent adversary, while from the fault-tolerant perspective such an outcome is based only on
the likelihood of such a sequence of events occurring. This is further emphasized by the fact that an
attacker can design exploits that operate only under specific conditions in order to make an attack more
difficult to detect. For example, only having an exploit active during a specific time of day or within a
specific geographic region. From the perspective of fault-tolerance, such attacks may be viewed as
transient faults. Thus, once the component(s) have stopped generating faulty information, they are
reintegrated into the system. In contrast, if such faults are the result of a malicious attack, such
reintegration may be undesirable. Furthermore, there may be significant ramifications [US Department

of Defense, 2011]. Thus, the consequences of false alarms can differ significantly as well.

1.2.3 Automatic Control Systems

Automatic control is the application of control theory for regulation of processes without direct human
intervention. System-Aware Cyber Security leverages the methods of this community to provide both
automatic restoration from cyber attacks as well as to aid in the detection and deflection of cyber
attacks. However, two unique challenges must be addressed in order to apply these techniques to
System-Aware security. First, is that reconfiguration must be sensitive to an intelligent adversary. When
the system is automatically restored from an unintentional fault [Lin and Chin, 1998] it is not expected
that the fault will dynamically adjust. In contrast, when restoring the system from a malicious adversary
it is possible that the adversary will continue to actively try and compromise the system. This results in
the need to ensure that an automatic restoration from a cyber attack reconfigures the system to a new
uncompromised configuration. In addition, as the adversary can actively work to compromise this new
configuration, it may be desirable to continue to reconfigure the system in order to prevent the system
from being compromised again. This can potentially result in a higher rate of reconfiguration. In

addition, as discussed by Horowitz and Pierce [Horowitz and Pierce, 2012] in order to declare that a

17



cyber attack has occurred, there must be a significant enough difference between damaging commands
and normal operations. As discussed in section 1.2.2, this is made all the more important due to the
differences in responding to a cyber attack then an unintentional fault. This difference in responding
also carries through to how reconfiguration happens. For example, when an unintentional fault occurs it
is desirable to take action to correct the fault. In contrast, if a cyber attack is detected, it may be
desirable to automatically reconfigure; however, it may also be desirable to allow the attack to
continue. For example, if it is suspected that an attack has been initiated by an insider, then immediate
reconfiguration could alert the insider that she has failed. The insider may then initiate steps to try and
cover her tracks. Thus, it might be desirable to delay reconfiguration to allow time to track down said

insider.

1.3 System-Aware Solution

System-Aware Cyber Security is aimed at protecting systems whose perimeters have been breached, by
providing additional cyber security capabilities to deter possible attackers, detect when the system has
been compromised, isolate the sub-systems that have been compromised, and restore the system to an
uncompromised state. This makes System-Aware Cyber Security capable of potentially enhancing the
overall security of a system over a wide range of threats. In particular, this makes System-Aware Cyber

Security well suited to addressing cyber attacks stemming from the supply chain and insiders:

* Supply chain attack scenario — A supply chain attack occurs when the hardware or software that
composes a system has been embedded with a malicious defect designed to prevent or hinder
that system from being able to carry out its stated objectives. In this attack scenario, these
components can be compromised at any point before they are integrated into the system. Such
attacks can range in complexity from taking over entire sub-systems to simply changing a few

critical parameters. In addition, such attacks may be triggered by a variety of mechanisms,
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including, time, system state, or remote activation. Figure 1 presents a sample supply chain
attack scenario for a simplified turbine control systems. For this example, the turbine controller
has been embedded with a Trojan horse that simply sends misleading information about the
state of the system to the human operators in the main control room and the automated
monitoring functions (Health Status Station in Figure 1). This is done to cause inappropriate
action to be taken that could potentially result in significant damage to the turbine as well as
economic loss.

Insider threat — All systems need to be managed and maintained to ensure both availability and
proper functionality. However, this often requires granting the personnel that manage and
maintain such systems elevated privileges; privileges that can also be used to deliberately
tamper with the hardware or software, inject malicious code into the system, or grant access to
unauthorized and external users. An insider attack occurs when a user is able to use their
privileges to compromise the security of the system they are managing and maintaining. This
compromise can either be triggered immediately or lie dormant until a specific triggering
condition is reached; e.g., receiving a specific command, reaching a specific date and time, or
the system’s entering a particular state. For example, the supply chain attack scenario shown in
Figure 1 could have been embedded by an operator at the nuclear power plant. To avoid
getting caught the operator might have configured the embedded Trojan horse to only activate

after she had left the facility.

As discussed in section 1.2, part of securing a system against supply chain and insider attacks is through

a variation of perimeter security solutions. This includes interviews, background checks, purchasing from

a limited set of suppliers, and performing analysis on the supplier-provided hardware and software.

However, it is not always possible to implement these measures; sometimes system components may

need to be purchased from less trusted suppliers (e.g., foreign suppliers) due to a variety of factors,
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including costs and availability. Furthermore, specific mission objectives may require that systems
constructed utilizing rigorous security and oversight may need to be connected with systems
constructed with little to no security and oversight. In addition, as these attacks can potentially cause
serious damage through very small changes (e.g., changing a single parameter) they can be extremely
difficult to detect. Finally, once these systems have been successfully compromised, such methods do

not afford any means for restoring the system to an uncompromised state.
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Figure 1. lllustration of a hypothetical supply chain based cyber attack on a turbine control system. The
controller is embedded with a Trojan horse that can modify, nullify, or replace information sent to the operators
in the Main Control Room and the automatic monitoring station. The intended consequence of the attack would
be to have the operator(s) believe that the turbine is operating sufficiently outside of specification so as to
warrant a procedural action (e.g., shutdown of the turbine), which would induce a plant trip.

The remainder of this section introduces the System-Aware Cyber Security Architecture used to protect

systems whose perimeter has been breached, including measurement features for attack detection and
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tactical forensic analysis, decision functions for system control, and signaling functions for managing
system restoration and configuration hopping. These capabilities can be integrated in a variety of ways
so as to provide several features for enhancing the security of a system. These features can be designed
to deter attackers from exploiting a system; avoid attempts to compromise a system; identify when a
system has been compromised, prevent the system from being damaged, isolate the compromised
components, and enable restoration of the system to a non-compromised state; and enable operators
and administrators to confirm that an event has been caused by a cyber attack and to take the
appropriate action(s). Such security solutions will generally require system-specific custom design,
resulting in higher costs than off-the-shelf security solutions. This situation calls for architectures that
are focused on protecting what are considered to be the most critical system functions. As a result, the
combination of perimeter security solutions that aims to protect an entire system combined with
System-Aware solutions that provide a second-layer of protection for critical system functions. Several
such security features are described below, and three examples integrating these features are outlined
in Chapter 3. In addition, several of these security features have been composed into reusable design
patterns (see Chapter 2). These design patterns are intended to facilitate in the development of System-
Aware solutions across a wide range of domains. Furthermore, it provides a method for documenting
and sharing new System-Aware solutions as they are created. Finally, the repository can be continually

updated and enhanced as these design patterns are utilized to develop System-Aware architectures.

1.3.1 Diversity

Diverse hardware/software system implementations enhance security by creating distinct, dynamically
interchangeable redundant functions in a system (thereby avoiding a monoculture environment). While
added redundancy potentially provides additional opportunities for attackers to exploit specific

implementations, together, the combination of diversely redundant subsystems potentially deters
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attackers by increasing the necessary effort that is required to compromise all of the implementations.
There are many variations of diversity, each providing a different form of security. For example, having a
subsystem assembled by two different vendors makes it more difficult for an attacker to inject a
hardware or software Trojan horse during assembly, by forcing the attacker to have insiders at two
different companies. As another example, utilizing multiple operating systems can complicate an
attacker’s activities by requiring the utilization of multiple exploits: one for each operating system. The
amount of security gained is directly dependent on the amount and form of diversity integrated into the
system. However, while diversity reduces the risk of an attacker being able to compromise a system, as
a biproduct, it complicates the design and maintenance for the system. This requires the systems
engineer to conduct the necessary tradeoff assessments regarding how and where to best apply

diversity.

Diversity can be used in conjunction with configuration hopping (section 1.3.2) and data consistency
checking (section 1.3.3) to facilitate in the restoration of a compromised system. Specifically, by having
multiple diverse redundant components, a system can be restored to a different configuration than the
one that it was in during the time it was compromised. This prevents the attacker from repeating the

same exploit and increases the difficulty of completely bringing down the system.

1.3.2 Configuration Hopping

Configuration hopping is a security service that, on a randomized basis within scheduled intervals,
enables the dynamic modification of an overall system configuration. This is accomplished through
interchanging the modes of operation among diversely implemented redundant components while
executing their specified system functions. Interchanges can be accomplished virtually across multiple
operating systems, as well as physically across machines that can be either co-located or located over a
geographic region (e.g., such as can be employed in cloud computing [Vaquero et al., 2009]). This
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dynamic interchange provides defense by forcing an attacker to operate within time interval constraints
while using a family of coordinated exploits that addresses the complications introduced through
diversity. In order to provide this security service, an interchange capability must be developed that
does not unacceptably degrade desired system operation. For example, the rate of hopping may have to
be constrained due to specific system characteristics that may demand stability. The selection of the
specific subsystems to interchange would be determined based upon security and economic

considerations.

To offer configuration hopping as a security service to users, two capabilities are needed: tools to
configure selected application functions for interchange and tools for controlling interchange subject to
specified design criteria. Solutions for a specific system will be derived from (1) the unique system
design attributes and estimates of the significance of time constraints on complicating attacker exploits,
(2) mission objectives, (3) resource requirements related to making interchanges, (4) system

performance costs, and (5) the security risks surrounding the system.

1.3.3 Data Consistency Checking

Data consistency checking is a service that, for the purposes of data integrity, compares data at different
points in a system for logical consistency. Consistency violations can be employed in a variety of ways,
ranging from informing system operators of a potential problem to stimulating the automatic
reconfiguration of a system so as to avoid operating in a compromised state. For example, in the case of
a command and control decision support system, inconsistency of internal system measurements, as
determined by security-aware decision support applications, can be used as a basis for recognizing a
cyber attack, and potentially isolating which subsystems are most likely to have been affected. Isolating
faulty components can also be accomplished through the use of voting [Clarkson, Chong, and Myers,
2008; Fujioka and Okamoto, 1992] across a diverse set of redundant components. For example, an
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automobile brake control system can be diversely and redundantly replicated and the outputs
automatically compared as the basis for determining which of the configurations is at fault. This fault
isolation also permits restoration control actions to avoid operations in a compromised system
configuration. The data consistency checking service should include evaluations of those data elements
embedded in operations that impact system functions that are deemed to be related to the critical
operation of those applications being secured. It is envisioned that this function would be designed as
an agent that interacts with system application functions to query, collect, and analyze required
information, and should interact with other System-Aware security services, such as configuration

hopping, to provide capabilities designed to avoid operating in a compromised state.

1.3.4 Tactical Forensics

Traditionally, in the context of cyber security, forensics has often been associated with attacks with
significant consequences and obtaining legal evidence to present in a court of law [Noblett, Pollitt, and
Presely, 2000]. However, in the context of System-Aware Cyber Security, forensics are intended to
provide tactical analysis which enables system operators and administrators to rapidly distinguish
between those faults caused by a compromised component (i.e., cyber attack) and those resulting from
other causes (i.e., natural failure). This distinction is critical, as it can have a significant influence on how
system administrators and operators should proceed post-attack. For example, assume that a system
utilizes both diversity and data consistency checking to secure a vehicle’s braking system. Also assume
that, in a particular instance, the System-Aware security system successfully detects and averts a fault
that would have disabled the brakes from working. The fault is reported to the owner of the vehicle who
now needs to know whether the fault was a result of a failing component or the result of an embedded
Trojan horse. If it was a failing component, the owner can have the faulty part replaced. However, if it is

the result of a Trojan horse, the owner must report the problem to the relevant parties, for the
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possibility that many vehicles with the same component are potentially at risk. In the latter case, a
forensic investigation is required in order to determine the restoration solution and possibly aid in

identifying the culprit.

To separate cyber attacks from other causes of faults, System-Aware Cyber Security architects can
utilizes a variety of tools, including decision aids based upon proactive analysis methods, such as Fovino,
Masera, and Cian’s work [2009] on integrating cyber attacks into fault trees; software and/or hardware
embedded in the system specifically designed to identify malicious actions (e.g., a radio frequency
spectrum analyzer embedded in a subsystem’s hardware chassis, and listening for a wireless triggering
command at the time of an actual attack); and application of decision theory to relate evidence to

alternative causes.

Finally, it is emphasized that tactical forensics is focused upon rapid attribution and restoration, and

would serve to complement traditional forensic analysis techniques, not replace or replicate them.
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Chapter 2
System-Aware Design Patterns

2.1 Introduction

One of the strengths of the perimeter security approach is that it offers a set of standardized
commercially available products. In contrast, as discussed in sections 3.2, 3.3, and 3.4, System-Aware
security solutions are highly customized to the applications to which they are embedded. Thus, there is
a need to facilitate reuse of System-Aware security solutions across a diverse set of applications. One
approach is to create security design patterns. These security patterns could facilitate the reuse of
System-Aware security solutions across additional systems by drawing on the consensus of engineers
engaged in building these systems—similar to how they have aided in object-oriented projects [Gamma
et al., 1995] and more traditional security technologies [Schumacher et al., 2006]. In addition, these
patterns would provide documentation characterizing the sufficient conditions for application as well as
suggestions for additional synergistic patterns to enable the engineering community to apply them to

new and existing systems.

In order to provide a starting point for the exploration and development of new secure design patterns,
three patterns are presented based upon the work outlined in this thesis. The format for these patterns
is based upon those used for traditional perimeter security as presented by Schumacher in his book on
“Security Patterns: Integrating Security and Systems Engineering” [2006]. However, unlike the patterns
presented by Schumacher, these patterns are not based upon implemented solutions but on research
cases. Research cases were chosen as, “Patterns support the understanding of problems and their
solutions,” [Schumacher, 2006] and, “Patterns are generic—as independent of or dependent on a

particular implementation technology as need be.” [Schumacher, 2006]. Thus, design patterns provide
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not only a means for recording implemented solutions, but a method for recording research cases so
that they can be applied to problems across a wide set of domains. As System-Aware security aims to
provide cyber security solutions that are applicable to many domains, design patterns provide an ideal

means of recording and presenting such solutions for reuse.

2.2 Diverse Redundancy

Name: Diverse Redundancy

Example of Need: Figure 2 presents a high-level system diagram for a typical steam fed nuclear reactor
powered turbine control system. As indicated in Figure 2, the turbine receives actuation commands
from a controller, currently available from a variety of vendors (e.g., the GE Mark VI, and Triconex
Tricon). Operators located in the main control room of the power plant are responsible for controlling
the turbine. These individuals receive status information from the controller that influences their
operational actions, which can include stopping the turbine and correspondingly tripping the reactor to
stop steam flow into the turbine. In addition to operator actions, the controller receives sensor
information (listed in Figure 2) that together influences its automatic control actions. In situations where
the turbine operation is such that it is of immediate importance to stop steam flow, the reactor is

automatically stopped (i.e., scrammed), with a reactor shutdown process that is supported by the sensor
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information related to turbine operation.

Main
Control
Room
Vendorl Sensor Inputs
Controller Sensors*

() Health Reactor

K Status Turbine Trip
Station

Real Time

| IS S A E———
Turbine I&C Controller
Status**

Control

Actuation

Resolution
Voter

* .
Real **Controller Status Measurements Turbine Safety Measurements
Time *Hardware and System Health Status *Speed and load (RPM and Torque)
Turbine Failures detected. * Inlet and outlet pressures (PSIG)

* Redundancy status sTemperature ( C)
* SW Execution * Vibration ( Peak and RMS)

* Exceptions

Figure 2. A high-level system diagram for a typical steam fed nuclear reactor powered turbine control system.
The turbine controller is designed to meet high reliability and safety standards by employing redundancy and a
resolution voter.

Figure 2 also highlights the fact that nuclear power plant turbine controllers are designed to meet high
operational reliability and safety standards, and accordingly often employ various types of redundancy.
However, there has recently been a rash of insider attacks where a Trojan horse was found to be
embedded into the equipment of the supplier of the reactor’s controllers. Given the significant
economic consequences resulting from serious damage to the turbine, and the need to shut down (trip)
the nuclear reactor in the event of a turbine shut-down, how can the reactor’s owner continue to

maintain high reliability while ensuring her system against a possible supply chain attack?
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Context: Ensure that system functions critical for achieving mission objectives and high reliability
requirements will be available even if one or more the components that support those functions have
been compromised by a cyber attack.

Problem to be Solved: While the use of redundant components in systems is a common way to assure
continuity of operation, the use of components that are susceptible to a common source of failure does
not provide assurance against a cyber attack that affects all of the common components.

Solving this problem requires one to resolve the following forces:

* For a cyber attack, a single exploit can be developed and used to compromise all of the
identically redundant components that might otherwise provide enhanced continuity of
operation

* The cyber attack can be embedded into the redundant components through the supply chain or
an insider attack, making it difficult to ensure that a cyber attack has not compromised all of the
components

* The single exploit may be an extremely minor change (e.g., the change of a single parameter)
and triggered remotely or based on a certain condition (e.g., time). As a result detecting that a

component or components have been compromised can be extremely difficult.

Solution: Solutions for ensuring that the success of a cyber attack on a critical system function(s) does
not result in mission failure can be based upon protection approaches developed by the fault-tolerance
systems community. One such technique is to utilize diversely redundant components to ensure that a
system is able to carry out its mission objectives even when one of those components breaks down. This
assumes that each of the diversely redundant failures is independent; i.e., no common source exists to
cause the same fault in all of the components. A cyber attack is one such common source that could put

all redundant components at risk, and prevent a system from completing its mission objectives. This
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solution mitigates the capacity for a cyber attack to successfully compromise all redundant components
by utilizing diverse components with a different set of attributes.

Structure:
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v Vv ¥
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Figure 3. A simple illustration of the structure of Diverse Redundancy. In this instance three different controllers
are used to receive inputs from a set of sensors and issue inputs to control a platform. Furthermore, each of the
controllers is utilizes a diverse set of protocols. Thus, communication translators are included (i.e., the Comm

Translators).

Diverse Redundancy requires the following elements:

* Two or more diversely redundant components. These components must be diverse with regards

to the common source of the cyber attack. For example, if the common source is a Trojan horse
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injected via the supply chain, then the common source is the supplier and the components
should be procured from independent suppliers.

* Special hardware may be needed to integrate the diverse components into the system. For the
structure shown in Figure 3, the diverse components use special communication translators as

each of the diverse controllers employs a different communication protocol.

Dynamics: As seen in Figure 3, the diverse components will possibly need to be able to receive input,
generate output, and exchange information with other diverse components. Depending on whether the
original system employed redundancy or not, additional infrastructure may be needed to transmit
information to and from the diversely redundant components, as well as between the diversely
redundant components. For example, an additional mechanism might need to be integrated into the
system which is used to ensure that only one of the diversely redundant controllers is sending its
information along and that the remaining are serving as backups. Alternatively, in order to avoid
disturbances in output when it is required to switch components due to a failure, a mechanism could be
employed to average or filter the outputs of the diversely redundant components. This result is then
utilized as the output of the diversely integrated components.

Implementation: Diversity can encompass a large set of parameters, including hardware, software,
vendor, geographical location, administrator(s), etc. Thus, it is important to consider the type(s) of
diversity that will be needed to prevent an attack. For example, utilizing multiple diverse operating
systems will force an adversary to develop cyber attacks for each of the operating systems, but could
leave them vulnerable to an attack embedded in a common hardware component. Diverse components
may require special hardware and/or software to ensure interoperability.

Example of Need Resolved: The owner of the nuclear reactor decides to integrate two additional
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turbine controllers along with Verifiable Voting and Physical Configuration Hopping (see Figure 4). As the
reactor owner was worried about compromised components originating from the supplier, she has
decided to integrate three turbine controllers from different vendors. As each of these vendors employs
its own communication protocol, additional communication translators are needed to ensure
interoperability. Verifiable Voting has been utilized to detect and isolate a controller issuing potentially
damaging information, as well as to ensure that only one of the controller’s command signal reaches the
turbine. Finally, Physical Configuration Hopping is utilized to both enhance security and select which of
the diversely redundant controller’s data will be passed to the turbine and which are serving as backups.
For a more complete discussion of this example the reader is referred to section 3.2. Additional

examples employing diverse redundancy are discussed in section 3.3 and 3.4.
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Figure 4. Resolved solution for Diverse Redundancy. In this instance, diver redundancy and Verifiable Voting
have been employed to protect the turbine controller and ensure protection against a supply chain attack.
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Variants: A variation includes utilizing redundant components that possess reduced or different
capabilities. For example, a GPS-based navigation system can utilize an inertial navigation system as a
redundant backup.

Known Uses: [Jones and Horowitz, 2011, Jones, Nguyen, and Horowitz, 2011; Jones and Horowitz, 2012;
Babineau, Jones, and Horowitz, 2012]

Consequences: The following benefits may be expected from applying this pattern:

* Diverse Redundancy can serve to increase the complexity of an attack that would attempt to
compromise all components by forcing the need for cyber attacks with specific capabilities to
address each of the diversely redundant components

* Insystems without redundant components, Diverse Redundancy can potentially increase the
systems robustness to faults

* Some systems may already possess diverse components and can possibly make implementation

easier

The following potential liabilities may arise from this pattern:

* Diverse Redundancy may require additional infrastructure to ensure interoperability with all
components

* In systems without redundant components, Diverse Redundancy may require new infrastructure
to ensure all components receive the appropriate input and that the proper output signals are

sent
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* As Diverse Redundancy requires the components to be diverse with regards to the common
source of failure, the amount of commercial off the shelf (COTS) solutions for providing diversity
may be limited

* Life cycle costs and training of support staff could increase due to the requirement to service

diversely redundant components

Related Design Patterns: Verifiable Voting is a mechanism that can be combined with Diverse
Redundancy to help detect and isolate which of the diversely redundant components have been
compromised. Diverse Redundancy can also be combined with Physical or Virtual Configuration Hopping
to dynamically switch which component is engaged in the operational system at any given time in order
to both detect a compromised component and minimize the time available for an exploit to affect the

system.

2.3 Verifiable Voting

Name: Verifiable Voting

Example of Need: A museum has recently installed a video surveillance system to protect its collection
of rare and valuable artifacts. As shown in Figure 5, this system consists of a series of security cameras
that transmit their data to a media server and its hot shadowed backup. Security personnel can pull the
video streams from the media server to their mobile devices to observe the rooms remotely. In addition,
when the museum is closed, the media servers scan all of the incoming video streams for unauthorized
personnel. If the servers detect any unauthorized access an alert is sent to the security personnel. The
security personnel can then decide to pull the video stream to determine the situation and take
appropriate action to apprehend the intruder.

Recently the primary employee responsible for managing and maintaining the media servers was fired
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under the suspicion that she was planning a heist on the museum. Given the access this employee was

afforded to the media servers, the owner of the museum is concerned that the employee may have

already tampered with the media servers as part of the planned heist. As a result, the museum owner

wishes to employ additional security to protect against a possibly malicious server.
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Figure 5. A high-level system diagram of a video surveillance system for a museum. The security cameras send
the video surveillance to media servers that distribute the information wireless to security personnel.

Context: Systems often produce information that is critical in determining the appropriate set of actions

to be taken to ensure the desired outcome. However, this can potentially result in a significant decline in

system performance when there is reason to suspect that the source of information may not always be

producing reliable information. This decline can potentially lead to undesired or inferior outcomes

35



whenever the source is producing valid information, but nonetheless is not trusted, or the source is
trusted, but producing bad information—such as due to a cyber attack. Thus, a method is needed to be
able to detect and/or isolate those components that may be compromised and may be producing faulty
information.

Problem to be Solved: How can one continue to utilize (i.e., trust) the outcomes of a critical system
when one suspects that the system has been compromised?

Solving this problem requires one to resolve the following forces:

* If the system were compromised by a cyber attack, it could cause considerable damage.
However, simply disabling the system is undesirable, as the support it affords is critical to
achieving the desired outcomes. Thus, a method is needed to detect when the output of the
system is valid and when it is misleading.

* It may be possible to restore a system to working order once a compromise has been detected;
however, to do so, it may be necessary to isolate the component responsible for producing the
faulty output

* To protect against a cyber attack, the mechanism employed to detect and isolate systems
producing faulty information must also be secured. In addition, this mechanism must not impact

system performance to the point of preventing the system from functioning properly.

Solution: A voting scheme is typically used to detect and isolate systems that are producing faulty
outputs. Voting can also be utilized to detect misleading outputs. However, if the misleading
information is being produced as a result of a cyber attack, it is possible that the attack may have been
embedded into the component through the supply chain or from an insider. As a result, it is possible
that the mechanism used to carry out the voting may be compromised. Verifiable Voting is utilized to

provide voting in a secure manner. It is based on providing a hierarchy of voters tailored to the specific
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needs of the system to ensure that components acting maliciously are identified, while not significantly
impacting system performance. Each of the voters in the hierarchy is designed based upon a trade-off
analysis regarding ease of verifiability—i.e., confidence that it has not been compromised—and ability
to perform timely and complex comparisons.

Structure: Verifiable Voting is composed of one or more voting mechanisms (e.g., the Byzantine fault-
tolerant voter [Lamport, Shostak, and Pease, 1982] or Civitas [Clarkson, Chong, and Myers, 2008])
implemented in hardware or software. This includes an extremely simple voting mechanism,
implemented in hardware or software, which is easily verifiable; i.e., known to be secure. However, such
a simple mechanism may only be capable of implementing a simple voting scheme. This may result in
voting rules that do not include all available information, resulting in an unacceptable degradation of
performance compared to a voting scheme that uses more information. Alternatively, using more
information may make the voting logic too complex to sufficiently verify its implementation from a
security standpoint. As a result, in addition to using the less sophisticated, but more verifiable voters to
validate simple, but mission critical machine generated outputs (e.g., fire the gun), they can also be used
periodically, as a coarse check on whether a less verifiable voter has been compromised. Finally,
Verifiable Voting requires that there be multiple redundant systems producing output. The amount of
redundancy determines how many of the redundant systems can be compromised before it becomes
impossible to detect and isolate potentially compromised components. Figure 6 illustrates one possible
hierarchy of voters that assumes only a single redundant system will be compromised at a given

moment.
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Verified Simple

Hardware Voter

Figure 6. A simple example of Verifiable Voting. This includes three complex intelligent voters that are used to
evaluate the information from the system. These results are fed to a simple hardware voter that can be easily
verified.

Dynamics: All voters need to be able to receive the necessary outputs for comparison from the multiple
redundant systems. It is important that the most verifiable (i.e., secure) of the hierarchy of voters be

able to override the decisions of the less secure voters.

Verifiable Voting requires replication of the outputs of the system in order to carry out the vote. If the
system already carries the necessary redundancy or the output of the system is small (e.g., a true or
false value) then the cost of this replication can be negligible. However, when the outputs being voted

on are large (e.g., the output of diversely redundant video streams received over a wireless network for
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voting) then such voting can add significant overhead. While, this overhead can potentially be mitigated
through the use of additional resources, it may also be possible to mitigate it through the use of
customized system designs. For example, in Figure 6 each of the three complex intelligent voters is
receiving the three inputs simultaneously. However, it is possible to stagger the voting across each
voter; i.e., complex intelligent voter 1 receives the three inputs and votes, than complex intelligent voter
2 receives the three inputs and votes, and finally complex intelligent voter 3 receives the three inputs
and votes. Once this is done each of the complex intelligent voters can send its simplified results to the
simple hardware voter for a final decision (see Figure 6). For the case of a wireless network
communicating the information, this scheme of staggered voting can result in a reduction in bandwidth
utilization, while also potentially delaying the detection of any modification of data in one of the
streams.

Implementation: When implementing Verifiable Voting it necessary to determine an appropriate
scheme for voting as well as the input that will be voted on. Given this information, it is possible to
determine the desired number of redundant system components to achieve detection and isolation. It is
also possible to develop an appropriate hierarchy of voters. This hierarchy will depend on the type of
information used in voting, the frequency of voting, and the desired security of the Verifiable Voting
scheme itself. Finally, additional resources or techniques may be needed to ensure that the desired level

of system performance is achieved.

Example of Need Resolved: To defend the museums rare artifacts against a possible cyber attack
embedded in the media server, the owner decides to implement Verifiable Voting. As there are only two
media servers, Verifiable Voting is only able to provide detection. As the museum has security guards on

patrol and possesses the capacity to rapidly lock down the artifacts, it is decided that isolation is not
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necessary. If the Verifiable Voter detects a problem (i.e., cannot reach consensus) it will alert the

security personnel who can then place the museum on lockdown.

To ensure that the Verifiable Voter will be secured against cyber attacks, it is decided that the Verifiable
Voter will be deployed onto mobile devices used by the security personnel for alerts. While it is possible
that a single guard’s device could be compromised, there would still be several additional security
guards capable of receiving the information. Thus, an attacker would have to compromise all of the
mobile devices used by personnel. From the perspective of the museum owner, this is deemed an

unlikely event and thus an acceptable risk.

Finally, each of the guard’s devices will perform Verifiable Voting on the information coming from the
media servers, including the video stream. Due to both the large bandwidth consumed by video and the
limited bandwidth available for wireless communications, it is decide to implement a duty cycle voting
scheme (see section 3.4) to mitigate the bandwidth cost. See sections 3.2, 3.3, and 3.4 for more detailed
examples utilizing Verifiable Voting.

Variants: None.

Known Uses: [Jones and Horowitz, 2011, Jones, Nguyen, and Horowitz, 2011; Jones and Horowitz, 2012;
Babineau, Jones, and Horowitz, 2012]

Consequences: The following benefits may be expected from applying this pattern:

* Can both detect misleading output as well as isolate the offending component

* Voting mechanism can be implemented in a more secure manner

¢ Offers a flexible implementation to trade off desired level of security with cost, complexity, and

performance impacts
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The following potential liabilities may arise from this pattern:

* Detection and isolation require the introduction of multiple redundant components with the

attendant liabilities (see the design pattern for Diverse Redundancy in section 2.2)

* Depending on the information being voted upon, it can result in an increase in complexity and

cost to ensure that solution meets the desired goal

* Can be defeated if enough of the redundant devices are compromised to form a majority (what

constitutes a majority will depend on the voting scheme utilized)

Related Patterns: This pattern can be combined with Diverse Redundancy to potentially increase the

difficulty in compromising all redundant components—e.g., through an insider or supply chain attack.
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2.4 Physical Configuration Hopping

Name: Physical Configuration Hopping

Example of Need: Modern ships are equipped with a wide set of systems to monitor and control (e.g.,
engine, propulsion, fire suppression, and climate control). A company wishes to produce a lower cost
ship by consolidating the network between the monitoring consoles and the physical systems into a
single COTS network switch. To improve the reliability of the design, a redundant network switch is
installed to resume operations in the event the primary switch fails. However, consolidating all network
connections also leaves the entire ship vulnerable to any cyber attacks embedded into the primary

network switch:
* Send potentially misleading information to the monitoring systems
* Could disable the ship through a denial of service attack by dropping all communications

* Modify or inject commands to the physical systems in order to damage, disable or misdirect the

ship

Context: Ensure that critical system components that have been infected with a cyber attack will be
unable to actively disrupt, damage, or misdirect systems operations.

Problem to be Solved: Techniques exist to detect, isolate, and disable system components that are
behaving in a manner to cause harm to the system. However, a system component compromised by a
cyber attack has the potential to disrupt and possibly damage critical system components before such
methods are successfully able to disable the offending component. In addition, such methods may be
unable to prevent cyber attacks aimed at passive monitoring or more sophisticated attacks that attempt

to cause disruptions and damage more subtly (e.g., Stuxnet attack).
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Solving this problem requires one to resolve the following forces:

* Ensure that a cyber attack is not given enough time to cause damage or disrupt system
operations; this time may be less than the time needed to detect and isolate the compromised

component

* Prevent a cyber attack exploit from reading enough information to form a coherent data set for

use by the attacker

* Security solution must not compromise the systems mission objectives by significantly impacting

system performance

Solution: Solutions for preventing compromised system components from taking potentially malicious
action can be based on techniques developed by the cyber security community. One such technique is
moving target defense; a technique that aims to dynamically switch functionality across multiple
resources. Physical Configuration Hopping builds on this technique by continuously shifting control
between multiple redundant physical system components in order to disrupt a cyber attack before it can
cause permanent damage.

Structure: As seen in Figure 7, Physical Configuration Hopping requires multiple redundant components
to be dynamically interchanged (two in Figure 7). This dynamic reconfiguration determines which
component(s) is in control at any given time. In addition, there is a mechanism to the control the
frequency of the dynamic readjustment as well as determine which component is in control—in Figure 7
it is the configuration hop manager. Finally, their needs to be a mechanism in place to control the

switching between components; this includes the frequency of hopping, as well as the order of hopping
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from one component to another (pertinent to cases of higher orders of redundancy).

Sensors

I

v

Controller A

Redundant
Controller B

Configuration
Hop Manager

—

Platform

Figure 7. A simple Physical Configuration Hopping setup. This instance includes dynamic reconfiguration across
two redundant controllers. Controller A is currently set to the active controller.

Dynamics: Physical Configuration Hopping requires that all redundant components be able to receive
and generate output to the appropriate systems, as control will need to be dynamically switched
between those components. In addition, it may be necessary to ensure that the dynamic switching
between components is bumpless. For example at the time of switching the multiple redundant

components may be in different states; thus, the switch between components results in an unintended

switching of states.

Implementation: When implementing Physical Configuration Hopping it is important to consider the
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time it will take for a compromised component to cause damage. For example, a turbine in a nuclear
reactor can potentially be damaged in a matter of seconds. Alternatively, it may take several minutes or
even hours to steer a ship far enough off course to be considered damaging. In addition, the
sophistication involved in switching between redundant system components depends on the
sophistication of the cyber attack to be prevented. For example, switching between redundant
components in a round robin fashion may disrupt a cyber attack that is just trying to transmit damaging
commands quickly. However, a more sophisticated attack may be able to detect the switching patterns.
This information could then potentially be used to issue commands that ultimately cause damage
through controlled thrashing that occurs every time a switch from the compromised component to a
non-compromised component occurs. It is also important to decide how much control is given to
administrators to change the frequency of hopping as well as alter the algorithm used to control the
switching order and specific, perhaps pseudo-randomized, timing.

Example of Need Resolved: The ship building company decides to combine Physical Configuration
Hopping with Diverse Redundancy in order to protect the ship from a compromised network switch. The
company decides to purchase two switches from different vendors in order to help prevent a scenario
where both switches are compromised via the supply chain. The company then determines that it is not
worried about a Trojan horse being embedded in the new system component used for monitoring the
information, as control and status information between systems is not of direct value to an attacker;
however, it is worried about a compromised switch causing denial of service or injecting false and/or
damaging commands. It is then determined that it would take at least five minutes before a
compromised network switch could cause any permanently damaging actions. Finally, the dynamic
switching has the potential to cause some status information to be lost; however, the amount of
information lost is small relative to the frequency of updates; i.e., no additional resources are needed

for bumpless control. See sections 3.2 and 3.3 for more complete examples involving Physical
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Configuration Hopping.

Variants: Virtual Configuration Hopping

Known Uses: [Jones and Horowitz, 2011, Jones, Nguyen, and Horowitz, 2011; Jones and Horowitz, 2012;
Babineau, Jones, and Horowitz, 2012]

Consequences: The following benefits may be expected from applying this pattern:

* Prevent a system component compromised by a cyber attack from being able to compromise
the mission objectives; prevention can occur independently, and faster than methods used for

detection, isolation, and restoration
* Makes the development of cyber attacks more difficult by introducing time as an element
The following potential liabilities may arise from this pattern:

* Requires multiple redundant components with the attendant liabilities of the Diverse

Redundancy design pattern
* Introduce the need for methods to ensure bumpless control
* Defeated if the frequency of hopping is too slow, or the algorithm for switching is predictable

Related Patterns: Can be combined with Diverse Redundancy to potentially mitigate the risk that

multiple redundant components will be compromised.

2.5 Virtual Configuration Hopping

Name: Virtual Configuration Hopping
Example of Need: An e-commerce business stores customer credit card information in a secure facility
equipped with a video surveillance system. This video surveillance is maintained and routinely inspected

by a private contractor to ensure that it is operating properly. Recently the company has learned that
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several of the companies that also use this private contractor have been the victims of theft. An
investigation of each of the sites has revealed that each of the systems responsible for receiving and
displaying the streams to security personnel was infected with a Trojan horse to perform a simple replay
attack. Furthermore, it is suspected that an employee of the private contractor did the theft. The e-
commerce site has invested significant resources in building the secure facility as well as the video
surveillance system and desires a solution to secure the video surveillance system against a possible
insider attack.

Context: Ensure that critical system functions that have been infected with a cyber attack will be unable
to actively disrupt, damage, or misdirect systems operations.

Problem to be Solved: Techniques exist to detect, isolate, and disable system functions that are
behaving in a manner to cause harm to the system. However, a system function compromised by a
cyber attack has the potential to disrupt and possibly damage critical system functions before such
methods are successfully able to disable the offending functions. In addition, such methods may be
unable to prevent cyber attacks aimed at passive monitoring or more sophisticated attacks that attempt

to cause disruptions and damage more subtly (e.g., Stuxnet attack).

Solving this problem requires one to resolve the following forces:

* Ensure that a cyber attack is not given enough time to cause damage or disrupt system
operations; the time to cause damage or disruption may be less than the time needed to detect

and isolate the compromised function

* Prevent a cyber attack exploit from reading enough information to form a data set for use by

the cyber attack
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* Security solution must not compromise the systems mission objectives by significantly impacting

system performance parameters

Solution: Solutions for preventing compromised system functions from taking potentially malicious
action can be based on the techniques developed by the cyber security community. One such technique
is moving-target defense that aims to dynamically switch functionality among multiple resources. Virtual
Configuration Hopping builds on this technique by continuously shifting control between multiple
redundant virtualized system functions in order to disrupt a cyber attack before it can cause permanent
damage.

Structure: As seen in Figure 8, Virtual Configuration Hopping requires multiple redundant functions to
be dynamically interchanged (two in Figure 8). This dynamic reconfiguration determines which
function(s) is in control at any given time. In addition, there is a mechanism utilized to the control the
frequency and exact timing of the dynamic readjustment as well as determine which function is in
control—in Figure 8 it is the configuration hop manager. Finally, their needs to be a mechanism in place

to control the switching between function; this includes the frequency of hopping, as well as the order

48



of hopping from one function to another (pertinent to cases of higher orders of redundancy).

Sensors

Configuration
_____ F—1————-1—-——1 Hop Manager

. A Redundant !
Virtual Machine . ; |

Virtual Machine
Controller A |
Controller B I

|
|
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|
st i s it =N
Physical Controller

Platform
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Figure 8. A simple Virtual Configuration Hopping setup. This instance includes dynamic reconfiguration across
two virtually redundant controllers located on the same physical platform. Controller A is currently set to the
active controller.

Dynamics: Virtual Configuration Hopping requires that all redundant functions will be able to receive
and generate output to the appropriate systems, as control will need to be dynamically switched
between those functions. In addition, it may be necessary to ensure that the dynamic switching
between functions is bumpless. For example at the time of switching the multiple redundant functions
may be in different states; thus, the switch between functions results in an unintended switching of
states.

Implementation: When implementing Virtual Configuration Hopping it is important to consider the time
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it will take for a compromised function to cause damage. For example, a turbine in a nuclear reactor can
potentially be damaged in a matter of seconds. Alternatively, it may take several minutes or even hours
to steer a ship far enough off course to be considered damaging. In addition, the sophistication involved
in switching between redundant system functions depends on the sophistication of the cyber attack to
be prevented. For example, switching between redundant functions in a round robin fashion may
disrupt a cyber attack that is just trying to transmit damaging commands quickly. However, a more
sophisticated attack may be able to detect the switching patterns. This information could then
potentially be used to issue commands that ultimately cause damage through controlled thrashing that
occurs every time a switch from the compromised function to a non-compromised component occurs. It
is also important to decide how much control is given to administrators to change the frequency of
hopping as well as alter the algorithm used to control the switching order and specific, perhaps pseudo-
randomized, timing.

Example of Need Resolved: The concerned e-commerce business determines that the system
responsible for receiving and displaying information can be virtualized quickly at minimal costs and
decides to use Virtual Configuration Hopping. The e-commerce site sets up a virtualized environment to
run multiple copies of the system. In addition, the e-commerce site obtains a video surveillance
application from another vendor and adds that into its virtual environment. Once this has been set up,
the e-commerce business determines that it should be concerned regarding the possibility of the credit
card information stored at the protected site being stolen. It then determines that it would take an
intruder at least 10 minutes to download all of the credit card information. The system is then set-up to
hop between the virtualized system functions every 5 minutes. However, during switching the video
feed appears to exhibit some slight distortions (i.e., it is bumby). To mitigate this effect, Virtual
Configuration Hopping system is updated to provide a smooth (i.e., bumpless) stream. See section 3.4

for more detailed examples utilizing Virtual Configuration Hopping.
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Variants: Physical Configuration Hopping.

Known Uses: [Jones and Horowitz, 2011, Jones, Nguyen, and Horowitz, 2011; Jones and Horowitz, 2012;

Babineau, Jones, and Horowitz, 2012]

Consequences: The following benefits may be expected from applying this pattern:

Prevent a system component compromised by a cyber attack from being able to compromise

the mission objectives; prevention can occur independently, and faster than methods used for

detection, isolation, and restoration

Makes the development of cyber attacks more difficult by introducing time as an element

The following potential liabilities may arise from this pattern:

Requires multiple redundant functions with the attendant liabilities of the Diverse Redundancy

design pattern

Introduce the need for methods to ensure bumpless control

Defeated if the frequency of hopping is too slow, or the algorithm for switching is predictable

Related Patterns: Can be combined with Diverse Redundancy to potentially mitigate the risk that

multiple redundant functions will be compromised.
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Chapter 3
Applications of System-Aware Cyber Security

3.1 Background

Three example systems were developed to explore the development of the design patterns in Chapter 2,
as well as evaluate how a System-Aware security architecture utilizing those design pattern solutions
would deter and/or defend against potential cyber attacks. While the integration of a set of security
services is a general solution approach, these examples serve to illustrate the genesis for potential

architectures to establish specific solutions.

3.2 Nuclear Power Plant

This section provides examples of potential cyber attacks on a nuclear power plant, and illustrates how a
System-Aware Cyber Security architecture would potentially deter and/or defend against such attacks.
While the integration of a set of security services is a general solution approach, the examples serve to
illustrate the genesis for potential architectures to establish specific solutions. For the examples, the
turbine control subsystem for the power plant is selected as the target for cyber attacks. This selection is
based on the significant economic consequences of serious damage to the turbine, and the need to shut
down (trip) the nuclear reactor in the event of a turbine shut-down. It is assumed that the attacking
mechanism to be defended against is embedded in the equipment that is part of the turbine control
subsystem. Furthermore, it is assumed that the actual attack may either be triggered through a pre-
established protocol that is built into the infected equipment and deployed through the maintenance
process, or through a power plant insider communicating the attack initiation in real time via a built-in
communications channel, which is part of the infected equipment. The projected solutions have impacts
in the pre-attack stage (deterrence), trans-attack stage (defense and temporary restoral), and the post-
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attack phase (longer-term restoral and threat reduction for power plants with similar equipment to the
attacked plant) of a cyber attack. Each of these phases of attack is discussed for each of the attack

scenarios.

Representative Model of a Turbine Control Subsystem

This section describes a model of a turbine control system that is used as the basis for postulating
specific supply chain related cyber attacks on such a system, and to address both the potential impacts
of attacks and possible System-Aware Cyber Security architectures to either reduce the consequences or

possibly eliminate the attacks.

Figure 9 presents a high-level system diagram for a typical steam fed nuclear reactor powered turbine
control system. As indicated in Figure 9, the turbine receives actuation commands from a controller,
currently available from a variety of vendors (e.g., the GE Mark VI, and Triconex Tricon). Operators
located in the main control room of the power plant are responsible for controlling the turbine. These
individuals receive status information from the controller that influences their operational actions,
which can include stopping the turbine and correspondingly tripping the reactor to stop steam flow into
the turbine. In addition to operator actions, the controller receives sensor information (listed in Figure
9) that together influences its automatic control actions. In situations where the turbine operation is
such that it is of immediate importance to stop steam flow, the reactor is automatically stopped (i.e.,
scrammed), with a reactor shutdown process that is supported by the sensor information related to

turbine operation.
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Figure 9. A high-level system diagram for a typical steam fed nuclear reactor powered turbine control system.
The turbine controller is designed to meet high reliability and safety standards by employing redundancy and a
resolution voter.

Figure 9 also highlights the fact that nuclear power plant turbine controllers are designed to meet high
operational reliability and safety standards, and accordingly often employ various types of redundancy.
Controller replication is a prevalent application for redundancy, and is depicted in Figure 9 as channels
A, B, and C. In this example, the employment of a distributed voting scheme among control elements
provides fault tolerance against randomly occurring hardware faults in the redundant controllers. The
distributed voters typically exchange and vote on how to utilize the individually derived input sensor
information, internal controller state information, and output commands. The results of the distributed

voting process are forwarded to a master voter that resolves the output controller commands to the
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actuation system in the turbine. The master voter function is typically integrated as part of the vendor
provided controller platform design. While the system diagram in Figure 9 is representative of a typical
fault-tolerant controller, different vendors may employ different architectural principles and

implementation strategies to manage redundancy and realize the desired level of fault tolerance.

Potential Supply Chain Related Cyber Attacks

This section describes two hypothetical cyber attacks that relate to current turbine control systems.
Both attacks could result in the turbine operation being halted and the reactor being tripped. The

attacks are structured along similar lines as the Stuxnet attack referred to earlier in the paper.

Figure 10 provides a diagrammatic representation of an attack where the turbine controller is infected
with a Trojan horse. The Trojan horse implementation can involve a mixture of hardware and software
manipulations. The Trojan horse is designed such that it can modify, replace, or nullify information that
is forwarded to control room operator(s). The intended consequence of the attack would be to have the
operator(s) believe that the turbine is operating sufficiently outside of specification so as to warrant a
procedural action (e.g., shutdown of the turbine), which would induce a plant trip. The success of this
attack depends on the attacker having knowledge of those operator procedures that demand rapid
shutdown decisions. In general, this information is known to experienced nuclear power plant designers,
integrators, and operators, and is thus likely to be readily available to attack designers. Furthermore, the
attack demands that the Trojan horse be designed to circumvent the controller’s security processes and
internal voting process for fault tolerance. This could occur if the redundant elements all contain the
same technology infection across all channels, which could occur if the Trojan horse were to be

embedded by a common supplier of the hardware and/or software for the turbine controller.
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Figure 10. lllustration of a hypothetical cyber attack on a turbine control system. The controller is embedded
with a Trojan horse that can modify, nullify, or replace information sent to the operators in the Main Control
Room and the automatic monitoring station. The intended consequence of the attack would be to have the
operator(s) believe that the turbine is operating sufficiently outside of specification so as to warrant a
procedural action (e.g., shutdown of the turbine), which would induce a plant trip.

Figure 11 provides a diagrammatic representation of a more aggressive attack, based on a more
sophisticated Trojan horse than the one required for the attack represented earlier. The intended
consequence of the attack would be to create severe damage to the turbine, as well as to trip the
reactor. For this case, the Trojan horse sends disruptive control signals to damage the turbine (e.g.,
misguided oil or temperature control commands), as well as manipulating attack-revealing information
being sent to the control room operators. This would need to include sensor and feedback information

regarding turbine status. The success of the attack depends on the assumption that the control room
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operator(s) would not be able to recognize, in a short period (1’s of seconds), through independent

means of the normal data paths that the turbine must be brought to a fail safe stop.
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Figure 11. lllustration of a hypothetical cyber attack on a turbine control system. The controller is embedded
with a Trojan horse that can modify, nullify, or replace information sent to the operators in the Main Control
Room, Health Status Station, and the actuation commands sent to the Turbine. The consequence of a successful
attack would be to create severe damage to the turbine, as well as to trip the reactor by sending disruptive
control signals to damage the turbine and manipulating control information sent to the Main Control Room.

System-Aware Cyber Security Architecture

To address attacks of the nature described in the previous section, a System-Aware security solution is
embedded within the infected turbine control system. Figure 12 represents the turbine control system

integrated with the four System-Aware Cyber Security design patterns outlined in Chapter 2.
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Figure 12. Possible System-Aware security architecture to address the threats illustrated in Figure 10 and Figure

11. This includes three controllers in the system architecture and an intelligent voting process to rapidly disable

a differentiated controller from carrying out its turbine actuation functions.

Diversely Implemented Redundancy of Subsystems and Components

For each of the previously outlined examples, an attacker must be able to embed a Trojan horse in the

turbine control system. As outlined in the Diverse Redundancy design pattern (see section 2.2), this

threat can be addressed by the turbine system integrator selecting diverse vendors to supply multiple

controllers; the underlying principle being that attackers would find it increasingly difficult to design and

embed coordinated Trojan horses into diverse controllers. In addition, the overall control system can be

designed to integrate the outputs from these diverse controllers through a cyber security sensitive

intelligent voter.
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Figure 12 presents one possible implementation. This includes three controllers in the system
architecture and an intelligent voting process to rapidly disable a differentiated controller from carrying
out its turbine actuation functions. During turbine operation, should a specific controller be discovered
as a potential source of a cyber attack, the remaining controllers could continue to operate utilizing a
new logic to assure that the two controllers’ outputs are compatible. If the outputs are not compatible,
because of the ambiguity regarding which is the flawed controller, the turbine would need to be shut
down, and the reactor would need to be tripped. Figure 12 also includes two communication translator
subsystems providing communications between elements of the secured turbine control system. The
purpose of these subsystems is to perform the necessary protocol translations that enable
communications from the diverse controllers to be integrated for voting or other system related
purposes. Currently, a variety of products exist to perform integration across different communication
buses; products of this sort would be required as part of the overall turbine control system as a

response to introducing diversity for cyber security.

Returning to Figure 9, it is useful to note that an alternate security architecture from the architecture in
Figure 12, but one that also builds on diversity, would incorporate diversity within a particular vendor’s
controller. While it is likely that organizing for a single vendor with diverse components would provide

less difficulty to an attacker, an assessment of the cost and risk reduction differences would be required

in order to draw a conclusion regarding architecture selection.

Physical Configuration Hopping

As shown in Figure 12, Physical Configuration Hopping (see section 2.4) would be managed within the
configuration hopping manager subsystem. For this security service the turbine control system
dynamically switches among controllers, during normal operations, so as to time-vary which controller
would actually be sending its actuation outputs to the turbine at a given time. The hopping would occur
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in a randomized manner so as to create uncertainty for attackers about when the infected controller
might actually be designated to control the turbine. As a result, during a given time interval, the
remaining two controllers would only be used for voting purposes until called upon by the configuration
hopping manager to take physical control of the turbine. The hopping process would need to be
designed to assure that none of the controllers had physical control of the turbine for a sufficient time
so as to be able to cause significant damage (i.e., 1’s of seconds). When combined with Diverse
Redundancy, Physical Configuration Hopping would serve to complicate matters for the attacker
regarding the best time to initiate a desired attack, because the infected controller might not ever have
the opportunity to actually control the turbine post-attack initiation. This complication occurs because
the infected controller is likely not to be in control of the turbine at the time of attack initiation;
enabling the diversity voting process, which is continuously searching for anomalies, to enable the
security system to take action(s)—after attack initiation—to prevent the infected controller from taking
control of the turbine. Note that this approach treats an infected controller in much the same way as a

failed controller. This means that the additional costs for this form of protection are mitigated.

Data Consistency Checking

The application of data consistency checking, as suggested earlier, is that while an in-progress cyber
attack can be successfully masked by manipulating the most prominent data, it would be extraordinarily
difficult for an attacker to adjust all system data that might give indication of the attack in progress. The
use of Verifiable Voting, as described in section 2.3, is the most direct application of data consistency
checking. However, there could be checks across a broader set of system components that would also
be revealing, and could become part of the dynamic management of system configuration. For example,
in a nuclear power plant there are numerous measurements that occur for safety and operational

reasons. It is possible to combine these measurements with turbine system measurements to reveal
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discontinuities, contributing to a more robust basis for signaling a cyber attack. The application of
System-Aware security to a nuclear power plant would need to include an exploration of this

opportunity as part of the system design process.

Tactical and Strategic Forensics

Should a subsystem in the turbine control system fail (i.e., be voted out of operation), the question
would remain for the system owner as to whether the differentiation from its diversified peers was
purposefully caused as part of a cyber attack, or was the result of a natural fault. This question must be
addressed for cases where the consequences are limited (e.g., a component being voted out of service
with no impact on turbine operation) as well as for cases where the consequences are much more
significant (e.g., the turbine being damaged). There are three time constants associated with receiving
answers to this question. One time constant is relatively short, and relates to the processes for
immediate restoration of the failed component(s) or subsystem. This short period is referred to as
tactical. Another time constant relates to management strategies for sustaining operations at other
nuclear power plants that are using the same equipment as the potentially compromised system. A
third time constant relates to issues surrounding the supplier and the use of equipment containing

components from the supplier in question. These latter two cases are referred to as strategic.

This use case focuses on the tactical case addressing a turbine control system. For this case, one can
implement specific hardware and software forensic capabilities that can be brought to bear quickly for
restoral decisions. Normally, in current operations, a technician would find the part of the system that
failed and, when needed, would take immediate action(s) to return the system to its normal operational
mode. However, in the event that the failure was actually caused by a cyber attack, such action(s) might
not be desirable. Instead, one might choose to restore the system by using one of the other vendors’
controllers. This would reduce diversity, but would increase security during a period required for deeper
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analysis. In any event, one can develop a logical decision process for forensic analysis that could work as
follows: (1) if a subsystem is voted out of operation, and (2) if at the time of the vote that component
was producing signals that were within the normal specifications for equipment performance (i.e., the
component was not “broken”), and (3) if the voted out signals had been applied to the turbine at the
time of the vote they would have caused significant consequences, then a forensic analysis supporting
the hypothesis of a cyber attack would be considered as conceivable. Specific forensic tools could
provide additional information confirming that the software in operation at the time of the failure was
identical to the software that was believed to be in operation. Another forensic tool could look for
external signaling from an attacker to initiate the attack. This could potentially be accomplished by
embedding a radio spectrum frequency analyzer into the hardware for the controller for the purpose of
observing wireless communications signals. It may also be possible to discover data insertions into the
protected hardware through the various data entry ports that are part of the hardware (e.g., serial
ports, USB ports). Regardless of the mechanism, forensic tools can provide a useful contribution by

adding confirming evidence in a situation that has the potential for being a cyber attack.

Solution Assessment

This section summarizes the benefits and cost of the overall System-Aware security solution for turbine

control during pre-attack, trans-attack, and post-attack phases.

Pre-Attack

The usage of Diverse Redundancy as part of the System-Aware security architecture forces an attacker to
create a network involving a larger number of suppliers than otherwise would be called for. It also
requires the attacker to learn about more subsystem designs than otherwise would be necessary in
order to design a successful attack. The usage of Physical Configuration Hopping as part of the solution

requires the attacker to consider the impact of timing on the attack. This requires the attacker to
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possess greater knowledge about the influence of system dynamics on the technique employed for
attack. It also points to the need for managing the attack initiation with greater precision than otherwise
called for. Utilizing techniques such as Verifiable Voting as part of data consistency checking across
broad segments of the entire system forces the attacker to consider more sophisticated data
manipulation designs. Finally, the tactical forensic analysis for restoration support raises concerns about
being detected even when the cyber attack fails. Together these elements could serve as a significant
deterrent to attacks being directed at, in this case, the turbine control system. In addition to the cyber

security benefits, the power system would be more reliable due to the added redundancy and diversity.

Negative consequences include an increase in system costs (one-time and life cycle), added complexity
in system validation, and the possible need for more skilled technical support staff at the plant. In
addition, design and evaluation for achieving “bumpless” performance for a turbine control system that
incorporates diverse controllers will require design and evaluation activities before incorporating this

approach.

Trans-Attack

The various elements of the System-Aware security architecture together increase the likelihood of
identifying and disabling an attack. The suggested architecture can also provide the basis for post-attack
forensics to play a role, by time stamping voting results and storing information that can help identify

when a cyber attack has occurred.

Negative consequences could include the complications of keeping plant operators sufficiently informed
about the system configuration and security outputs both in normal operation and during a possible

attack.
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Post-Attack

The application of tactical forensic information would guide system restoration actions so as to avoid a
follow up attack. It would also influence strategic decision-making regarding the supplier and other on-

going use of the problematic equipment.

Negative consequences include the development of confident methods for tactical forensic analysis that

can be used by technicians at the plant, and could require significant training time and effort.

3.3 System-Security Aware Network Switch

This section introduces a possible System-Aware architectural solution for protecting a communications
switch. This solution both explores how System-Aware security could be utilized to provide protection, as

well as serves as a basis to explore the potential impacts of Physical and Virtual Configuration Hopping.

For a substantial number of ships, a communications network switch is central to the ship control system
design. Networks offer the ability to easily distribute feedback measurements and control signals among
diverse elements of the overall system, including Navigation, Steering, Propulsion, Electrical Power
Distribution, Fire Detection, and Fire Suppression. However, the use of networks has created a potential
vulnerability associated with automated control systems. For example, a denial of service attack on the
network could result in the inability to control the engine or rudder, endangering the vessel and
preventing mission essential functions. Such denial of service attacks are frequently levied against other

systems [Lennon, 2011].

Potential Cyber Attacks Against Control Networks

As a preamble to discussing specific cyber attack scenarios, a simplified representation of a ship control
system, including its embedded network, is introduced. Consider a system consisting of two operator
control stations, two network switches, two propulsion controllers, and two engines under control. This

simplified control system representation consists of eight components and is illustrated in Figure 13.
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Figure 13. Simplified representation of a ship control system. This includes two operators controlling two
engines over a network. For this simplified example, the network is composed of two a network switches to
provide fault tolerance; i.e., on of the switches is acting solely as a backup.

For this simplified system, the propulsion controller provides local control of each engine. It acts upon
commands from the network switch to change speed or perform other high level functions such as start
or stop. Once the controller receives a command from the network, it performs the detailed control of
the engine to achieve the command. Furthermore, it is assumed that Network Switch 2 will assume the

roles of Network Switch 1 in the event of a failure to that switch.

Now consider that the network switch has been subjected to a cyber attack, disabling the ability to
communicate control requests for changes to engine speed. Since the system has been designed with a
second switch, Network Switch 2, if uncompromised, would take over, thereby avoiding immediate
adverse impacts to system performance. However, in redundant designs the replicated components
usually have the same design, implementation, and supplier. This provides economic advantages for the
purchase and integration of a control system, and also results in reduced spares and training for
maintenance personnel. However, in this example, it becomes possible for both switches to be
successfully attacked with a single exploit, resulting in a situation where the control system would be
disabled and no further control actions could be performed. In addition, it is possible that the switches

have been compromised in such a way that the operator is unaware of the failure. The result to the ship
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might be increased uncertainty and result in a longer time to address the issue, putting the ship at

greater risk.

A System-Aware Cyber Security Solution

To address this class of vulnerabilities, a System-Aware Cyber Security solution is suggested. For the
purposes of this example, the design patterns of Diverse Redundancy (section 2.2) and Physical

Configuration Hopping (section 2.4) are utilized in the suggested architectural solution.

The suggested architectural solution is shown in Figure 14. In order to make it more difficult for the
attacker to compromise all of the network switches, Diverse Redundancy is introduced by substituting
an alternate implementation for Network Switch 2. This configuration requires an attacker to develop
separate exploits to accomplish the same result as discussed earlier. In addition to Diverse Redundancy,
Physical Configuration Hopping is introduced into the security design through the implementation of a
supervisory process which causes the active communication switch to be dynamically hopped between
Network Switch Model A to Network Switch Model B. However, as approximately two-thirds of all
communication is done via UDP, there exists the possibility that this dynamic hopping will result in
information being lost. If enough information is lost it could adversely impact system performance.
Thus, the frequency of hopping is a balance between the overhead and dropped messages from hopping

too frequently and the risk exposure to not hopping fast enough.
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Figure 14. Simplified network switch configuration shown in Figure 13, augmented with a System-Aware
architectural solution. This solution includes the usage of Diverse Redundancy and Physical Configuration
Hopping applied to the network switches. Physical Configuration Hopping is controlled via the Hopper.

Impact of Physical Configuration Hopping on the Performance of the Network

To determine the feasibility of the architectural solution, analysis was performed to address whether
the hopping between switches would have an adverse impact on system performance. System
performance would be adversely impacted if the control functions were disrupted to the point that they
were compromised. To establish whether control functions were compromised, the following criteria
were developed, including (1) critical messages could not be lost, (2) information critical for control
functions could not be delayed beyond the point that the control function was adversely impacted
(<25ms), (3) message loss be limited (<1%), and (4) information critical for review by an operator could
not be delayed beyond the point that the operator would lose confidence in the control system
(<1000ms). Furthermore, in order to provide additional security to the system it is desirable that

configuration hopping be as fast as possible while sustaining control over the system.

To ensure that critical messages are not lost, one can consider the fact that message loss can occur even
in a configuration where no hopping is occurring due to normal network activity such as message

collision. For this reason, control systems are designed to ensure that critical messages are
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retransmitted. Therefore, it was determined that the first criteria would not be impacted by hopping

unless the messages were also delayed; i.e., the second criteria.

To address the second criteria, one can consider the types of systems to be controlled over the network
and the typical rates at which they operate. Consider the example of a ships heading which is used in a
closed loop control by the autopilot to control the rudder for steering. The commercial specification for
ships heading only requires heading to be updated at 1-10 HZ for large vessels and 40 HZ for a high
speed craft [International Maritime Organization, 1995]. Thus, in the worst case (High Speed Craft)

messages could not be delayed beyond 25ms.

To address the third criteria, one can considered that systems are designed to handle loss of messages.
For non-critical messages such as those containing information about continuous measurements, such
as temperature, the loss of a single message is not critical. In fact, implementations often use a non-
guaranteed method of delivery for these types of messages such as UDP. For messages like temperature
measurement, using something similar to UDP, we considered losses up to 1% to be acceptable. For the
messages requiring ensured receipt, such as offered by Transmission Control Protocol (TCP), any

message loss will be automatically handled by the transmission protocol and resent.

To address the fourth criteria, one can consider that in multiple systems, the operator interface was only
updated at a 1 HZ rate. Therefore information for the operator cannot be delayed more than 1 second.
This is a relatively slow rate for the systems controlling ships and is not a major factor since the

automatic control requires much smaller delays.

Experimental Results

To explore the relationships between hopping, lost data, and delayed data, a laboratory experiment was

conducted using a combination of emulation and simulation to model a simple ship control system. The
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decision to focus on the messages of the automated control functions and operator messages was due
to the use of UDP to transmit information. As explained above, the UDP protocol does not ensure
delivery, and thus carries the potential for packet loss. In addition, the vendors of network switches can
employ a variety of hardware, software, and configuration settings to optimize the performance of their
product offerings. This can possibly result in different rates of forwarding packets. Thus, when the
system dynamically reconfigures from one switch to another, this can result in packets being dropped
and information being lost. This can possibly lead to negative impacts on the performance of the
automated control systems and operator interfaces as messages are lost, which, in turn, can lead to

updated status information being delayed.

Emulation was used to analyze the performance of diversely redundant network switches while
simulation was used to model the traffic generated by the automated control subsystems and operator
messages. The network switches were emulated to capture all of the possible effects due to a vendor’s
design choices. Simulation was used to generate the network traffic as it was not necessary to
accurately model the specific information sent in each packet nor emulate the actual control actions

taken by the automated control systems or operator interfaces.

For this experiment, a typical traffic load for an automated ship control system operating under normal
conditions was generated. This involved the simulation of 100 separate channels of information, each
generating traffic at a rate of 250 Kbps and sending data packets of 1KB in size; i.e., a total traffic load of
~25 Mbps. In addition, approximately one third of the traffic is TCP and two thirds of the traffic load is
UDP. Thus, 33 of the 100 channels sent their information using the TCP, and 67 of the 100 channels sent
their information using the UDP. This traffic load of ~25 Mbps was sent over two diversely redundant
gigabit network switches for one hour (i.e., network switch one had a load of ~25 Mbps and network

switch two had a load of ~25 Mbps). It is noted that these switches are over specified for the traffic load;
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however, this is typically the case for automated ship control systems. Over the course of the hour the
sending and receiving time of every packet was recorded. This information was then used to estimate
the number of packets that would have been lost if various configuration hopping rates had been

applied.

Figure 15 shows the number of UDP packets lost per 10,000 for a series of ten separate experimental
runs for configuration hopping at rates of five, ten and twenty seconds. A reconfiguration rate of five
seconds was chosen as being sufficiently fast enough to detect the erroneous behavior of a network
switch before permanent damage could be caused to the ships systems. Ten and twenty second
reconfiguration rates were selected to assess the relationship between performance impact of

reconfiguration and its impact on performance.
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Figure 15. UDP packets lost per 10,000 sent due to configuration hopping for a set of 10 experiments. The packet
losses for each experiment are shown for reconfiguration rates of five, ten, and twenty seconds.

As seen in Figure 15, the number of packets lost due to configuration hopping is minimal. Thus, the

impact of packet loss on operator messages and its corresponding affect on the delay of automated
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control system messages is minimal. In addition, it can be observed that the number of packets
decreases approximately linearly as the rate of reconfiguration increases. This linear relationship is
expected, as the rate of reconfiguration is relatively large compared to the rate at which information is
being generated, and the traffic load is low compared to the network switch capacity. As a result, each
instance in which the system reconfigures can be considered independent of the last. Finally, it is noted

that the average packet delay is ~10ms across all experiments.

3.4 Facility Protection Surveillance System

To provide a proof of concept of the System-Aware security solutions introduced in Chapter 2, a flexible
prototype system was developed. As seen in Figure 16, this prototype system was designed to provide
surveillance for a given region through the use of distributed sensors that provided continuous
monitoring. The data collected by the sensors is streamed to a server that analyzes the data and
automatically determines whether an unauthorized intrusion has occurred. Furthermore, when the
server detects an unauthorized intrusion it issues an alert to security personnel, as well as directs the
sensors’ data stream to the appropriate security personnel over a wireless communication network. The
security personnel can then utilize this information to make decisions about how to best respond to deal

with the possible intruder.
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Figure 16. An architectural diagram for a prototype surveillance system. The surveillance system is composed of
M streaming sensors sending data to a set of redundant servers. This data is analyzed, augmented, and
forwarded to mobile clients via a wireless communications network.

For this prototype system, it was assumed that an adversary was attempting to circumvent the system’s
security through the usage of an embedded Trojan horse that was capable of performing a replay attack.
Specifically, it was assumed that the Trojan horse could be embedded into any one of the subsystems;

i.e., the distributed sensors; the servers used for receiving information from the sensors, detecting
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unauthorized access, issuing alerts to security personnel, and forwarding the sensors data to the
security personnel; or the end user devices used by security personnel to receive alerts and view the
information sent by the distributed sensors. The assumed exploit would be able to perform a replay
attack; i.e., take previously recorded sensor information and resend it in place of the live stream. For
example, the attack could continuously send a thirty-second loop of video of an empty region in order to
make that region appear as if there were no intrusions in progress. In addition, for the prototype

system, it was assumed that an attacker could activate the Trojan horse remotely.

To protect the prototype system from an embedded Trojan horse, a System-Aware security solution was
integrated into each of the subsystems. This included the introduction of multiple redundant (i.e., three
or more) diverse streaming sensors and servers, as well as diversifying the client devices. Diverse
Redundancy (see section 2.2) forces an attacker to create a network involving a larger number of
suppliers than otherwise would be called for. It also requires the attacker to learn about more each of
the subsystems designs than otherwise would be necessary in order to design a successful exploit. An
intelligent Verifiable Voting (see section 2.3) process was integrated into the client devices as well as the
streaming servers in order to detect any misleading information. Voting at the client devices was utilized
to detect a compromised streaming server. Voting at the streaming server was utilized to detect a
compromised streaming sensor. Physical Configuration Hopping (see section 2.4) was integrated into
the streaming sensors to time-vary which of the streaming sensors would be sending its information to
the servers at a given time. Virtual Configuration Hopping (see section 2.5) was integrated into the
streaming servers to time-vary which of the servers would be sending information to the client devices
at any given time. Configuration hopping was utilized in order to require the attacker to consider the

impact of timing on the attack, as well as force the attacker to possess greater knowledge about the
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influence of system dynamics on the technique required for a successful attack. The integrated solution

design can be seen in Figure 17.
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Figure 17. An example System-Aware architectural solution for protecting the system shown in Figure 16. This
solution includes Diverse Redundancy, Configuration Hopping (Physical and Virtual), and Verifiable Voting.

In order to explore the potential collateral impacts of such a solution, an instantiation of the prototype
system was implemented. This system utilized live video surveillance in order to provide security for a
facility; i.e., two web cameras for the streaming sensors, two virtual media servers for the steaming
servers, and a combination of laptops and cell phones for the client devices. The web cameras were

connected to the media servers over a wired network, while the media servers were connected to the
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client devices via a standard 802.11g wireless network. The decision to utilize live video as the streaming
data was made due to its potentially demanding resource requirements on the handheld devices carried

by the responders.

During the testing of the implementation, the System-Aware security solution was able to successfully
detect when the Trojan horse (i.e., replay attack) was activated and hop to a new configuration.
However, testing also revealed that the Verifiable Voting has the potential to have a significant impact
on system performance; in order to ensure that a client device was able to detect a media server
transmitting a misleading stream(s), each responder’s handheld device had to receive at least two
streams simultaneously. As shown in Figure 18, this requirement to send multiple video streams to each
user device can result in a significant amount of bandwidth consumption. This in turn, can lead to a
drastic reduction in either the number of regions that can be observed or the quality of the video sent to

each user device.
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Figure 18. Shows the number of regions that can be observed for a given sensor stream fidelity with voting and
without voting.

For the prototype system, it was decided that the extra bandwidth needed between the streaming
servers and the responders’ devices was deemed unacceptable due to the limited bandwidth available
over the wireless network (11 Mbps)—the wired network provided more then sufficient bandwidth for
Verifiable Voting between the sensors and the streaming servers. Furthermore, it was desirable to
provide a solution that did not rely on the usage of additional hardware to provide more bandwidth or
segregate the devices among multiple channels. This was due to the fact that, it may not always be
possible to integrate additional hardware to increase the bandwidth, and a solution not dependent on
specific hardware has the potential to be applicable to wide range of systems that could potentially
benefit from Verifiable Voting. To mitigate the impact of Verifiable Voting, a modified voting scheme
was introduced. This scheme aimed to limit the bandwidth consumed due to the introduction of
Verifiable Voting by only allowing a sub-set of the client devices to perform Verifiable Voting for a fixed

amount of time; i.e., separate voting among the devices in a time division multiple access (TDMA)
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manner. An example of this duty cycle voting scheme is shown in Figure 19, where only one device is
allocated to perform Verifiable Voting at a time (client device one in Figure 19). Once the time allocated
for voting had expired, a different set of devices could be selected to perform Verifiable Voting. As seen
in Figure 19, the division of time among the client devices is managed by introducing a new Duty Cycle
Manager. This manager is responsible for deciding both when a specific device will be allowed to vote,
as well as for the amount of time available for collecting the streaming data that will be voted on. The
amount of time available for collecting information is important as the data is being streamed; thus, as
the amount of time allocated to collection of information is increased, so is the amount of data available
for voting on the streams in order to detect and isolate a misleading stream. Streams of longer duration
potentially make the detection of a corrupted stream more likely, while simultaneously reducing the
likelihood of a false alarm. However, as the amount of time allocated to each device to collect
information is increased, so is the amount of time it will take to rotate through all of the devices. For
example, if there are 10 devices and each device is given 1 second to collect information, it will take 10
seconds before every device has gathered the necessary information to perform Verifiable Voting.
Alternatively, if there are 10 devices and each device is given 6 seconds to collect information, it will
take 1 minute before each of the devices has collected enough information to perform Verifiable Voting.
Thus, while such a scheme can potentially result in a significant amount of bandwidth saving (see Figure

20), it also introduces the need for additional analysis:

* How many devices should be allowed to perform verifiable voting at once
* What length of time should be allocated to perform verifiable voting
* Does this amount of time yield a desirable detection rate

* Does ityield a desirable false alarm rate
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* Whatis longest duration of time before a device will have the opportunity to detect a

misleading stream
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Figure 19. Shows the System-Aware solution shown Figure 17 augmented with a duty cycle voting scheme. For
this particular example, the duty cycle voting is done only between the streaming servers and the client devices.
In addition, this process is managed by a special Duty Cycle Manager.

78



100

90

80

70

60

50

40

30

20

Max Possible # of Observable Regions

10

—

100 150 200 250 500
Stream Fidelity (Kbps)

No Voting/Single Stream
== Continuous 3 Stream Voting

Duty Cycle Voting

Figure 20. Shows the number of regions that can be observed for a given sensor stream fidelity with

voting, without voting, with a duty voting scheme where only one device is voting at any given

instant.
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Chapter 4
Metrics

4.1 Introduction

Chapter 1 and Chapter 2 discussed how System-Aware Cyber Security can address the threats of
infections embedded in mission critical systems. This was illustrated in Chapter 3 through the use of
three examples showing how System-Aware security services could be used to mitigate specific threats
in a nuclear power plant turbine control system, network switch, and surveillance system for protecting
facilities. This included a discussion of how these security services would increase the difficulty to an
adversary and provide the basis for a high-level assessment of the benefits and cost. However, as
detailed in Chapter 2, multiple System-Aware security design patterns could be candidates for an
integrated security system architecture for addressing threats. Thus, there is a call for security analysis
methodologies that are able to compare alternative system security architectures accounting for the
selection and integration of security design patterns as well as the details of specific implementations.
The desired methodology must include an array of methodological elements for assessing: (1) the level
of security afforded by a given System-Aware security architecture (e.g., how much more difficult has
this solution made an adversary's task and how rapidly can system restoration be accomplished); (2) the
collateral impacts on the system as a whole (e.g., performance, ease of operation, and cost); (3)
identifying those system functions that warrant the most protection from a risk perspective; (4)
evaluating, from a security perspective, the hardware/software implementation of the System-Aware
security architecture (e.g., avoidance of buffer overflow opportunities in the implementing software);
and (5) evaluating the life-cycle management plan for the System-Aware security architecture, including

approaches for responding to discovered security solution design flaws and to overall system design
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enhancements that occur over the life cycle. With regard to risk based security protection, standards
exist for conducting risk based security analysis [ISO/IEC, 2009; Stoneburner, Goguen, and Feringa,
2002]. Similarly, industrial methodologies exist for software implementation and software patching over
the life-cycle of a security solution [Howard, 2002; Stackpole and Hanrion, 2007]. However, to
completely address the five elements outlined above, the System-Aware security approach requires a
supporting methodology for the assessment of the level of security potentially afforded by a given
security solution. This section presents an initial outline for a scoring methodology to assess and

compare System-Aware security architectures, building upon existing work in the field of safety.

4.2 Background

Just as digitization has created new challenges in the field of cyber security, it has also created new
challenges in the field of safety systems. One such challenge is causally related failures of redundant or
separate equipment. When systems were analog, these common-cause failures (CCFs) were typically
caused by slow moving processes such as corrosion. However, as systems increasingly became digital,
software design flaws and bugs arose as a new source for CCFs. The nuclear safety community mitigated
the risk posed by this increasing threat by employing multiple types of diverse redundancy, including
design diversity, human diversity, and software diversity. This new solution created a call for a
methodology for comparing alternative designs and assessing the level of CCF risk mitigation provided

by a given design.

One methodological solution is employed by the Nuclear Regulatory Commission (NRC), as documented
in NUREG/CR-6303. This methodology provides system designers and implementers with a guide to
achieve resilience to CCFs through use of a procedure related to mitigation of consequences. This is

achieved by assessing the amount of diversity offered by a particular system's design—based on the
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principle that more diversity in a system results in less susceptibility to CCFs. A system's diversity is
evaluated through the application of a weighted rank ordering process that utilizes a wide range of
criteria, such as differing technologies, similar technologies within different architectures, and different

manufacturers of fundamentally different designs.

A weighting scheme has been determined based upon assumptions and principals derived from
designers' experiences with avoiding CCFs. While the method is not supported by an underlying
mathematical theory, the results permit the NRC and system designers to engage in a constructive

dialogue regarding the attention paid in a specific design regarding the avoidance of CCFs.

4.3 Unique Challenge Posed by Cyber Security

As shown in section 1.3.1, security solutions must address cyber attacks that can concurrently exploit
common redundant components, leading to diverse redundancy as one of the security services
employed by System-Aware Cyber Security. Recognizing the employment of diverse redundancy utilized
by safety engineers for addressing CCFs, one can look to the significant efforts of the safety community
as a source for an initial scoring methodology that can be enriched for cyber security application.
However, there are several critical challenges unique to cyber security that requires a CCF-based
foundation for scoring to be enriched before it can be effective. First, while CCFs can be addressed solely
through diverse redundancy, as indicated earlier in the discussion of design patterns, security solutions
must include additional solution components, that go beyond the application of diversity, in order to
fulfill its functions. Second, unlike CCF solutions, cyber security solutions attempt to deter, deflect, and
restore a system against an intelligent adversary exploiting available vulnerabilities, including the
capability to assess the cause of failure indeed being a cyber attack. Finally, a variety of design patterns,

including Diverse Redundancy, can be integrated into solutions, thereby requiring a scoring methodology
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that establishes criteria for assessing and comparing the value contributed by the individual elements of

the broader solution space.

4.4 Outline for a Possible Scoring Model

Using NUREG/CR-6303 (outlined in section 4.2) as a starting point, and given the unique challenges
outlined in section 4.3, this section provides an outline of an initial methodology for developing scores
for comparing and assessing System-Aware security architectures. This scoring methodology involves
addressing three key factors: (1) for each of the individual security services within a System-Aware
security architecture, identifying the potential contribution and its importance to the overall security
being offered, (2) determining the potential effectiveness of each security service within a particular
System-Aware security architecture, and (3) evaluating the cost and collateral impacts of the solution
services on the system's normal operations. Multiple methods can be utilized to evaluate the resulting
value of an integrated set of security services combined into a System-Aware architecture. For the
purposes of this thesis, a simple linear model is introduced for combining the values of individual

security services into a resulting score.

4.4.1 Identifying the Security Contribution of Individual System-Aware

Security Services

Every System-Aware security architecture is composed of an integrated set of design patterns. Each of
these patterns enhances the security of the system being protected by (1) deterring the attacker (pre-
attack); (2) identifying, isolating, and preventing malicious attacks (trans-attack); and/or (3) aiding in the
restoration of the system to a non-compromised state (post-attack). For example, in the turbine control
example outlined in section 3.2, Physical Configuration Hopping is a pre-attack, trans-attack, and post-
attack design pattern that contributes to restoration, deflects attacks by preventing them from taking
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potentially damaging action(s), and deters an attacker by making the attack more complex to design and
develop. Diverse Redundancy is a pre-attack and post-attack pattern that deters an attacker by making
the attack more difficult to design and execute, and also aids in restoration through the employment of
diverse elements that have not been compromised. The desired methodology should include the
classification of every design pattern in a given System-Aware security implementation in terms of its
contribution to security and the stage(s) of attack for which it is designed to operate. This enables
system owners and operators to analyze the tradeoff between the type of security offered by a given
System-Aware security architecture, and the impacts this has on their system. For example, a system
owner concerned about interfering with the normal performance of their system may select a given
System-Aware security architecture that provides a significant amount of low interfering post-attack
capabilities and no high interfering pre-attack and trans-attack capabilities. In addition to providing
restoration, this solution provides a higher likelihood that an attacker will be caught and potentially a
significant amount of deterrence, while maintaining a minimum impact on the system's performance. In
contrast, the architects and operators of a more mission critical system may choose an implementation
that offers a significant number of pre-attack, trans-attack, and restoration services to ensure maximum
availability, even if this somewhat degrades or increases the cost of the normal operations of the

system.

4.4.2 Assessing the Potential Effectiveness of Individual Security Services

As shown above, it is possible to evaluate a given System-Aware security architecture in terms of the
contribution to security offered by a particular design pattern, as well as which phases of the attack it is
effective. However, there still remains the issue of assessing the efficacy of a particular architecture.

One possible means for achieving this objective proceeds as follows. First, it would be necessary to
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determine the mission critical functions to be protected in a particular system. One such method is

discussed in section 4.5.

However, it is not enough to ensure that a particular System-Aware security architecture would provide
some amount of defense; it is also necessary to evaluate the potential efficacy of particular solutions.
For example, as described in section 2.4, Physical Configuration Hopping forces an attacker to operate
within a given time interval. This could add value to security whether or not other security services are
employed by a particular System-Aware security architecture. However, the efficacy of Physical
Configuration Hopping in the absence of other security services depends upon the predicted attack
execution difficulties imposed on an adversary. If it is believed that a principal difficulty to an adversary
is the exact timing of the attack, then implementation of Physical Configuration Hopping as an isolated
security service might prove to be highly effective. However, if triggering the potential attack(s) is
predicted to be simple, and does not include stringent timing requirements, then configuration hopping

will be less effective and contribute most to system restoration functions.

4.4.3 Impacts

It is generally expected that security solutions will increase the implementation and life cycle cost of a
system. It is also expected that security solutions will require additional resources—CPU, memory,
bandwidth, etc.—and in some cases could potentially degrade the overall performance and ease of
operation of the system to be protected. In addition, since System-Aware security architectures provide
solutions embedded into the system to be protected, they may also introduce intricate collateral
impacts on the system. For example, as outlined in section 3.2, a potential solution to protect a nuclear
power plant turbine control system involved dynamically switching control between a diverse set of
vendor controllers. This solution improves the security of the system by making it harder for an

adversary to gain control of the system, but also introduces the need to make the handoff between
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controllers bumpless in order to ensure the proper functioning of the turbine. Another example of the
possible collateral impacts introduced by a System-Aware security architecture was illustrated in section
3.3, where Physical Configuration Hopping was performed between communication switches. As in the
case of the turbine controller, hopping across diverse communication switches reduces the possibility
that an attacker will gain control of the system; however, it can also result in information loss if the
switches being hopped are not synchronized. This loss of information is a collateral impact that requires
additional analysis—how much information is expected to be lost and how important is that
information—and a solution—should the system owners and operators just accept the loss of

information or implement solutions that better ensure switch synchronization.

Collateral damage need not be purely technical. In the turbine control example tactical forensics were
utilized to help technicians distinguish faults from malicious attacks (see section 3.2). This not only
requires new tools and techniques, but also requires the introduction of new policies and procedures.
This in turn, introduces the need for additional training for technicians on how to properly utilize these

new tools, techniques, policies, and procedures to distinguish faults from malicious attacks.

4.4.4 Architectural Scoring Framework

Figure 21 is a possible representation of what an architectural scoring framework containing the
elements outlined in section 4.4 would produce: a table where each row contains a score regarding the
value of a design pattern and each column a specific value factor. As outlined in Chapter 2, each of these
design patterns enhances the overall security of the system, while also affecting the system's
performance and cost to a varying degree. These effects are represented in the table as value factors.
For example, Figure 21 utilizes four System-Aware design patterns: diversity, configuration hopping,
data consistency checking, and tactical forensics. Each of these patterns can enhance the system’s

security through increased deterrence, greater real-time defense (i.e., deflection), and/or improved
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restoration capabilities. In contrast, each design pattern may negatively affect a system through

collateral impacts, increased implementation cost, and/or increased life cycle cost. Finally, each pattern

may provide positive collateral impacts, such as reduced CCFs and improved reliability.
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Figure 21. A possible representation of the scoring elements outlined in 4.4. Table composed of System-Aware
design patterns and value factors. Each pattern-value factor pair is given an assurance level, s, based upon how

the service level effects the given value factor.

To assess how design patterns affect value factors, a security assurance level, s, is assigned to every

design pattern, i, based upon its contribution to a given value factor, j, yielding specific service

assurance scores s, . Recognizing that System-Aware security architectures offer security values and

unavoidable disvalues (e.g., increased cost), scores can be provided related to system impacts as well as
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security. Larger scores can be used to represent greater security value added or less collateral disvalue
added, depending on the value factor being scored. It is noted that alternative scoring means could be
utilized. For example, these scores could be represented as negative values. The assurance score is a
discrete value selected from a range (0 to M inclusive) determined by a desired level of granularity. For
example, an assurance level s could take on the value 0 or 1. This has the benefit of making a given
solution easy to evaluate, but it would only be possible to compare alternative solutions based upon
whether or not a given benefit or cost was offered by a given solution. However, if s could be a varying
value, for example between 0 and 5, then it would be possible to compare the level of security offered
by alternative solutions. This would require a more complete analysis to assign a given assurance score.
For example, in the turbine control example outlined in section 3.2, there were two possible ways to
provide diversity; one through controllers purchased from separate vendors and one through diverse
components within a single vendor’s controller. If s could only take on a value of 0 or 1, then both
solutions would result in the same score, since the diversity affects the same value factors. However, if
s could be any value from 0 to 5, the two solutions could score differently as the level of assurance

provided by the differing diversity methods could be different.

Assuming a method for deriving individual scores, S several pieces of information can be derived from
this scoring methodology. First, it is possible to derive a single security score for a given
solution, 2 zsij, and compare it to a theoretical maximum score ( 2 zsij <i* j*M). Second, it is

possible to evaluate the strengths and shortfalls of a given security solution. For example, it is possible
to evaluate whether a given solution is more effective in addressing real-time defense or restoration.
Finally, recognizing that different combinations of value and disvalue scores require a multi-objective
solution selection approach, it is possible to compare scores across alternative security solutions

addressing a specific security need.
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In addition to providing a method for scoring and evaluating multiple System-Aware architectural
designs for securing a given system, the methodology can be augmented to also recognize that every
system owner and operator may have a different perspective on the importance of different factors
when securing their system. For example, some owners and operators may desire solutions that
minimize the collateral impacts to the system, while others may seek solutions that maximize the
security. To take these differences into account, system owners and operators can adjust scored
System-Aware architectures to account for their individual assessments of which factors are most

important by providing a set of relative value weights. A relative value weight, k£, can be assigned to

each value factor, j, such that Ekj = 1. Figure 22 provides a representation of a scored architecture

filtered by a set of relative weights. As illustrated in the figure, it is still possible to derive a single

security score for a given solution, 2 Ekjs[j, and compare it to a theoretical maximum score

( E Ekjsij <i* M ). Furthermore, it is still possible to evaluate the strengths and shortfalls of a given

security solution.
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Figure 22. An extension of the scoring representation shown in Figure 21. This extended table is composed of
System-Aware design patterns and weighted value factors. Each pattern-value factor pair is given an assurance
level, s, based upon how the pattern level effects the given value factor. Furthermore, each value factor is
assigned a weight, k, based upon its importance to a given system owner and operator.

To illustrate how such a scoring methodology could be used to evaluate a given System-Aware security

solution, the methodology is utilized to evaluate the example outlined in section 3.2. For this example,

several assumptions were made. First, §;can be assigned discrete scores between 0 and 5 inclusive (5

representing the best score and 0 representing the worst score). Second, system owners are concerned
about six value factors: deterrence, real-time defense, restoration, collateral system impacts,
implementation cost, and life-cycle cost. Third, four design patterns are available for utilization: diversity
(Diverse Redundancy), configuration hopping (Physical Configuration Hopping), data consistency
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checking, and tactical forensics. Finally, the scored system was filtered by a set of weighting factors, kj,

which, for this example, were selected by the authors, weighted to emphasize security—deterrence
(0.30), real-time defense (0.20), and restoration (0.10)—over cost—collateral system impacts (0.20),

implementation cost (0.05), and life cycle cost (0.15). Finally, given these assumptions, the maximum

possible score is 20 ( E Ekjsij <i*M).

In the absence of a needed methodology for deriving assurance scores, ;s the assurance scores were

chosen by the authors based on the rationale provided in section 3.2. For example, tactical forensics was
noted to be a security service that provided significant capabilities to aid in the proper restoration of a
given system. Assuming, that the specific suggested tactical forensic solution is judged as providing a
significant contribution towards restoration, the maximum score, 5 is assigned. Furthermore, tactical
forensics did provide some deterrence by increasing the likelihood that an attacker would be caught. For
the purpose of this example, this leads to a score of a 3 out 5 related to deterrence. On the other hand,
tactical forensics does require that every failure go through additional testing before a given component
can be replaced. This would results in increased life cycle cost and hence tactical forensics is assigned a
low value of 2 out 5 for the life cycle cost. This same process was repeated to provide a complete table
of assurance levels. Finally, the authors created a set of relative weights emphasizing the security of the
system over the cost. Overall, utilizing the judgments of the authors for scoring and the authors’
preference for security over cost, the security architecture scored an 11.5 out of a possible 20.
Furthermore, the architecture was evaluated as being strongest in the area of restoration and weakest

in the area of life cycle cost.
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4.4.5 Structured Arguments for Architectural Scoring

Section 4.4.4 outlined a possible scoring framework that could be utilized to evaluate System-Aware
security architectures. Key to the framework was the ability to assign assurance scores to each design
pattern based upon its contribution to a given value factor; however, no formal method for assurance
score evaluation was provided. As part of introducing a formal method for assigning assurance scores
for cyber security, one must recognize the need to rely on the judgments of experts in providing
supporting rationale. This includes making judgments regarding the deterrence values for solutions, and
the potential for adversaries to discover alternate attacks that could circumvent the defense. One
possible approach for determining assurance scores could be derived from the use of Goal Structuring
Notation (GSN) [Kelly, 2004] to communicate logically structured arguments in support of security claims
in a clear and repeatable manner, utilizing rigorous evidence where it exists. Such an approach has been
utilized by the UK Ministry of Defence [Menon, Hawkins, and McDermid, 2009; MoD, 2007] and the
Food and Drug Administration (FDA) [FDA, 2009; FDA, 2010] for safety case evaluation. In the case of the
FDA, safety cases (i.e., structured arguments) are starting to be used for the purpose of evaluating the
safety of medical devices. A specific example is the case of approving new infusion pumps before they
are certified for public use [FDA, 2010]. New infusion pumps may possess different technological
characteristics—new implementations of software, hardware, and/or changes in material, design,
and/or performance—that are both different from the existing approved infusion pumps and existing
tools and methods of development, but are intended to provide similar functionality. In addition, in
order to demonstrate the safety of these pumps, a large number of claims must be substantiated by a
significant body of evidence and numerous arguments. This can result in a complex web of claims,
arguments, sub-claims, and evidence that can potentially obscure relationships and makes the overall

safety of the medical device difficult to assess. To address these issues, the FDA has called for
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manufacturers of medical devices to present safety cases that demonstrate that their devices meet
certain claims about safety in a clear, traceable, structured manner. Safety cases force manufacturers to
provide their reasoning at a level of granularity that clearly separates claims from arguments and
supporting evidence. Furthermore, properly structured safety arguments make the underlying context
and relationships between claims, arguments, and evidence explicit. The UK Ministry of Defense has also
utilized safety cases for submarine propulsion system and air traffic management systems safety

justifications.

Utilization of the GSN for evaluating System-Aware security architectures is based on the principle that
the security architects should have a rational conceptual basis for their architectures (i.e., structured
argument), and furthermore, these architectures should address a vast set of possible future attacks
involving situations that have yet to occur, thus negating experimental validation. Where possible and
worthwhile, solution architects should be required to gather or develop existing evidence to support
their claims. One would anticipate that architects would rely upon support from expert testimony,

analytical assessments, experimental data, and historical information. The set of claims, logical

arguments, and evidence, could provide a basis for determining each of the assurance scores, S -

It is important to note that in order to develop security claims, formulate rigorous arguments, and
gather available evidence, a scoring team possessing a variety of skills would be required. For example,
the skills required to determine scores related to the level of deterrence are different from those
required for scoring restoration. To score deterrence, one would need to employ the experience and
skills of a cyber security red team, as they would be most capable of providing the knowledge and
perspective necessary to assert that a given solution would make attackers more hesitant to attempt an
attack. However, a red team would not necessarily provide the skills and knowledge related to restoring

a system. Rather, restoration assessment would likely be best served by a team of system architects and
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forensic analysts. Forensic analysts would likely know what tools exist or could be developed for
obtaining information that would reveal a cyber attack in a timely manner. System architects could
apply their knowledge of system architecture toward the evaluation of security solutions that could

restore the system to a non-compromised state, and the amount of time that this would likely take.

It is recognized that the application of the GSN would not necessarily provide repeatability of results
from one scoring team to another. Differences would arise regarding the claims, the corresponding
arguments, and the supporting evidence. In addition, differences would arise regarding the translation
of results into numeric scores. An approach for addressing these differences is to parallel what is
occurring in the regulation of safety related systems. In the case of security scoring, the evaluation of a
given system would rely on the owners and operators to supply an appropriate context, including an
available risk analysis for the system being protected and scoring guidelines. Assuming that such an
approach were accepted, one would expect the safety certification and security communities to share

experiences and improve the methodologies surrounding the employment of GSNs for decision making.

4.5 Extending the Proposed Scoring Model

Section 4.4 introduced a framework for evaluating the possible effectiveness, from a cyber security
viewpoint, of a given System-Aware architecture, and comparing the security afforded to alternative
System-Aware architectural candidates. However, the proposed framework outlined in section 4.4 did
not provide a method for designing and selecting architectural candidates to be evaluated. Supporting
the design and selection of architectural candidate solutions is a non-trivial task, as the selection of an
architecture is closely tied to how it is evaluated; i.e., it is desirable to present those candidate
architectures that will evaluate well rather than those that will evaluate poorly. As a result, it is

necessary that the scoring framework proposed in section 4.4 be extended.
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4.5.1 Enhanced Architectural Scoring Framework

Figure 23 shows a flowchart detailing how the architectural scoring framework discussed in section 4.4
has been enhanced. As can be seen, the scoring method outlined in section 4.4 (black boxes with white
text numbered 12, 13, & 14) has been extended to include a process to design and select architectural
candidates for evaluation (white boxes with black text numbered 1 thorough 11). This process includes
the selection of critical system functions to be protected using System-Aware security, identification of
asymmetric attack vectors, selection of design patterns to protect those system functions from potential
cyber attacks, the integration of those system functions and System-Aware design patterns into
candidate architectures, a separate evaluation process to determine which of those candidate
architectures should be evaluated using the rigorous scoring and GSN processes discussed in section 4.4,
and finally an evaluation of how the architecture affects the asymmetry between potential attackers

and the system being protected. Each of these steps is to be carried out by one of three teams:

* System design (Blue) team — Members of this team includes those that understand how the

system was designed, implemented, and operates

*  (Cyber attack (Red) team — Members of this team are knowledgeable about the resources

necessary to create and design exploits

* Cost Analysis (Green) team — Members of this team are responsible for determining the costs of

designing, implementing, and integrating the selected System-Aware security services

The remainder of this section details how steps 1 through 11 of Figure 23 (i.e., selection of suitable
architectural candidates to be evaluated using the more rigorous methodology discussed in section 4.4)
is accomplished. Appendix A outlines a prototype implementation for the selection of suitable

architectural candidates, as well as discusses its application to a use case.
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Figure 23. Flowchart illustrating the enhanced architectural framework. The initial more rigorous method

detailed in section 4.4 is shown as black boxes with white text (numbered 12, 13, and 14). This method has been

enhanced by including a process to help design and select one or more architectural candidates from the

potentially vast set of possible System-Aware architectures (shown as white boxes with black text numbered 1

through 11). Each step is also marked with the team(s) designated to perform that step.

96



Selection of System Functions for Protection

The first step in designing a System-Aware architecture is to identify which of the system functions will
be protected using System-Aware Cyber Security. This includes, (1) identifying those system functions
that could possibly benefit from System-Aware Cyber Security, and (2) determining the relative
importance—from a cyber security viewpoint—of protecting those functions from a cyber attack. This
importance is relative because it is based on a comparison of every system function to every other
system function. Furthermore, as the importance is relative, it enables the ability for all system functions
to be ranked. As discussed in Selecting Architectural Candidates in section 4.5.1, this ranking will be used
to compose a subset of all identified system functions into a set of the most important functions to
protect. It is emphasized that the relative importance assigned to protecting a system function is based
on its contribution to achieving the mission objectives of the system and not on its susceptibility to

attack.

Both the identification of system functions and the ranking of their security importance should be
performed by the system design team (i.e., Blue Team), as it possess the knowledge necessary to
determine functions are exposed to types cyber attacks System-Aware security is designed to address

and how those functions are used to achieve the system’s mission objectives.

Identification of Asymmetric Attack Vectors

After the system functions to be protected have been identified, each of those functions is assessed to
determine possible asymmetric threats. An asymmetric threat is one that, with only a minimal analysis
of the system function to be exploited, could be designed, developed, and maintained utilizing a small
amount of resources, and has the potential to severely compromise or damage the system to be

protected. In the absences of System-Aware security, such threats are potentially difficult to detect and
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deflect. This step is to be performed by a red team, as such an evaluation requires knowledge about the

resources necessary to design and develop exploits.

Selection of System-Aware Design Patterns

Once all of the system functions that could benefit from System-Aware security have been identified, it
is then necessary to select System-Aware design patterns to be considered for protecting those

functions. A design pattern is selected if it provides one or more of the following

1. Makes it significantly more difficult for the compromised system function to cause damage to

the system or compromise the system’s ability to complete its designated mission objective

2. Improves the robustness of the system function by either

a. Preventing a compromised system function from taking certain damaging actions

b. Allowing for the restoration of a compromised system function into a non-

compromised—and possibly less capable—state

3. Increases the likelihood of identifying when the system function has been compromised and/or

information about the source of compromise (i.e., identifying attributes about the adversary)

Since determining the efficacy of applying a System-Aware design pattern to a given system function
requires knowledge of how that function operates, as well as how it integrates into the overall system
design, the selection of System-Aware design patterns is performed by the system design team (i.e.,
Blue Team). Note that this selection does not consider issues associated with attackers’ developing and

executing exploits. This is deferred for a subsequent stage in the analysis process.

98



Determining the Security Effectiveness

Given a set of system functions, each with a set of System-Aware design patterns, it is then necessary to
determine the potential efficacy (i.e., the effective security) each System-Aware design pattern affords
to the function it has been selected to protect. One such method was outlined in section 4.4; this
method relied upon the use of structured arguments to organize a large body of evidence into well
structured rigorous arguments about the effectiveness—from a cyber security viewpoint—of a proposed
solution. However, such a process has the potential to require a significant effort to accomplish. In the
scoring framework outlined in section 4.4, this level of effort was acceptable as it was assumed that this
was being performed for the evaluation of only a small subset of the possible System-Aware
architectural candidates. However, as there could potentially exists a vast number of possible
architectural candidates, a more streamlined process is needed for creating a manageable set System-
Aware architectural candidates to be evaluated using the method outlined in section 4.4. This screening
process involves the identification and evaluation of all system functions that could benefit from
System-Aware cyber security, as well as all possible System-Aware design patterns that could be utilized
to protect those functions. This is accomplished by assigning an integer valued score to a single System-

Aware design pattern protecting a single system function based upon two criteria

1. The System-Aware design pattern’s ability to increase the complexity, cost, and time for a

hypothetical adversary to develop an exploit for the system function being protected

2. The ability to decrease the probability that an attack against the system function being

protected will be successful

This simplified analysis assumes that every combination of System-Aware design pattern and system
function provides the system with its own independent effective security; i.e., there are no

(dis)economies of scale exist. In addition, this method assumes that the security effectiveness of a given
99



System-Aware architecture is simply the sum of the security effectiveness scores for all of the included

combinations of System-Aware design patterns and system functions.

Such an evaluation requires knowledge about the resources necessary to design and develop exploits; as
such, this step is to be performed by a cyber attack (i.e., Red team). In addition, the cyber attack team
should perform its evaluation without knowing the relative rank ordering of system functions performed

by the system design team or the reasoning behind the selection of System-Aware design patterns.

Determining the Resources Necessary to Develop the System-Aware
Architecture

As outlined in section 4.4, System-Aware architectures are evaluated in terms of their security
effectiveness, collateral impacts on system performance, and costs to design, implement, and maintain.
Thus, candidate System-Aware architectures cannot be designed or evaluated without a method for
estimating their potential costs. For the enhanced scoring framework outlined in section 4.5.1, these
costs are to be estimated by a special cost analysis team (i.e., Green Team) for all of the System-Aware
design patterns proposed for all of the identified system functions. As was the case for security
effectiveness, these costs represent the costs of designing, implementing, and maintaining a single
design pattern for a single system function. This analysis assumes that no (dis)economies of scale exist,
and the total cost of a System-Aware architecture is simply the sum of the cost for each of the selected
combinations of System-Aware design pattern and system function. This analysis is to be performed by a

specialized cost analysis team.

It is observed that the costs analysis team can also evaluate the costs for an adversary to analyze,
design, implement, and maintain counter measures to the proposed System-Aware security measures.
This information can be utilized to assess the amount of asymmetry, if any, between the costs to

implement System-Aware security measures and the costs to overcome those measures. In turn, the
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relative levels of asymmetry can then be used to help evaluate the security effectiveness of the
candidate architectures. It is noted that this asymmetry is dependent on the perceived resources of the
adversary versus the system being defended; e.g., assume there is an adversary with a small amount of
resources and a System-Aware architecture is being designed to protect a critical large system that was
expensive to design and maintain. In this circumstance the adversary only has a small amount of
resources to overcome any System-Aware defensive measures that are developed. However, the
System-Aware architecture can consume a larger amount of resources, but this can still be relatively
small compared to resources being protected. Thus, it is the costs relative to the resources available that

determine the asymmetry.

For the purposes of designing System-Aware architectural candidates to be evaluated with the more
rigorous methods outlined in section 4.4, collateral impacts on system performance is a rough estimate
provided by the system design team and are used solely to eliminate System-Aware design patterns that
would unacceptably degrade system performance. Collateral impacts are not used more extensively for
the purposes of designing candidate architectures as only the system owner can decide whether the
potential security benefits outweigh the loss in system performance, and due to the potential for
mitigating solutions (e.g., increasing the system’s processor speeds or the amount of available memory).
During architectural evaluation, collateral impacts can be estimated using the more rigorous methods

described in section 4.4.

Selecting Architectural Candidates

Once all of the system functions that could benefit from System-Aware Cyber Security have been
identified, System-Aware design patterns have been selected and their potential security effectiveness
have been evaluated, and their costs and impacts have been assessed, it is then necessary to select

architectural candidates for evaluation. However, as noted in section 4.5, while selection and evaluation
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can be treated as separate activities, it can be beneficial to combine these steps. In the architectural
scoring framework this is accomplished through a combination of automated decision tools and user
interaction. Automation is utilized to generate a small set of candidate architectures. User input is
utilized to provide constraints and to create candidate architectures by modifying the candidate
architectures with the support of automation tools. The candidate architectures are created by utilizing
the relative importance of system functions, as determined by the system design team, the potential
security effectiveness afforded by applying System-Aware design patterns to system functions, and the
costs of implementing the selected System-Aware design patterns. In addition, these criteria can be
used to help users modify these architectures; e.g., users could replace a subset of System-Aware design
patterns chosen by the automated system with more expensive System-Aware design patterns that
offer a greater degree of effective security. Appendix A provides a discussion of a prototype architecture
that illustrates one approach to using automation and user interaction to generate candidate

architectures.

The result of this process is a set of suitable architectural candidates that can be evaluated using the
more rigorous methods discussed in section 4.4. Alternatively, if the cost or time needed to perform the
more rigorous analysis is deemed unacceptable, this process can be utilized to select a particular
System-Aware architectural candidate to be implemented. Finally, all architectural candidates are
evaluated to determine the resulting shift in asymmetry between developing exploits and protecting the
system. This final step is performed regardless of whether or not the more rigorous GSN methodology is

utilized.

Limitations of the Proposed Enhanced Architectural Scoring Framework

While the decision support system outlined in section 4.5 provides several enhancements to the System-

Aware architectural evaluation process, it still offers room for improvement
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The enhanced scoring framework assumes that no relationship exist among the System-Aware
design patterns applied to protect the system function; i.e., no conflicts or redundancies are

present

The security effectiveness and resource cost only apply to a single System-Aware design pattern
applied to a single system function this allows them to be assessed independently and can be
combined in a simple additive manner (i.e., linear) with the security effectiveness and resource
cost of other design patterns to obtains the security effectiveness and resource cost of the final

architecture; i.e., no economies—or diseconomies—of scale exist

System-Aware architectures that have the same costs and security effectiveness are equally
desirable to a decision maker regardless of the number and particular System-Aware design
patterns implemented and system functions protected; i.e., an architecture with a single highly
secured system function based on the integration a number of design patterns, can be as
valuable as an architecture with several system functions protected, but with fewer design

patterns utilized to protect each function.
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Chapter 5
Conclusion and Future Work

5.1 Conclusion

This dissertation presents System-Aware Cyber Security, a new systems engineering approach for
addressing the threat of cyber attacks that have breached the perimeter—particularly supply chain and
insider attacks. It also outlines a security analysis framework for designing, selecting, and comparing
System-Aware security architectures. It describes several example security services, discusses how these
services can be converted into reusable design patterns for implementation across multiple domains,
and illustrates how each of these services can be utilized to enhance the security of a system. Through
the use of three examples, it is shown how System-Aware Cyber Security can enhance pre-attack, trans-
attack, and post-attack security by deterring attackers, preventing damage, isolating compromised
components and enabling restoration to a non-compromised state. In addition, a methodology for
selecting system functions for protection, selecting System-Aware design patterns to protect those
functions, and generating candidate architectures from those selections is suggested. This included a
description of a possible prototype implementation and its usage in designing a particular System-Aware
architecture. It also involved the use of a structured argument methodology utilizing GSN as a means for

rigorously evaluating those architectural candidates.

5.2 Future Work

Future work to further develop the System-Aware Cyber Security methodology includes,

1. Exploring a broader set of applications for System-Aware Cyber Security. This broader set of
applications can help to develop additional design patterns, as well as to refine both those

design patterns that have been presented and the architectural scoring framework.
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Expanding the set of System-Aware design patterns based upon the expanded set of
applications. A larger pool of design patterns will help extend System-Aware security to a

broader range of fields.

Extending System-Aware security to protect against additional attack scenarios. The greater the
range of threats that can potentially be addressed with System-Aware security the greater its

potential cyber security value.

The development of policies, techniques, and technologies to ensure the proper
implementation and integration of System-Aware services. While design patterns have proven
to be a helpful tool in the development of software [Gamma et al., 1995], they are certainly not
the only one. Likewise, while design patterns play an important role in development and
implementation of System-Aware security, there still remains room for the creation of
additional tools and technologies to further reduce the resources needed for the creation,
development, and implementation of System-Aware security services. For example, in the
design pattern Physical Configuration Hopping it is noted that the rate of hopping must be set in
relation to the time it would take an attack to cause damage. Thus, possessing tools that would
allow system designers and owners to more easily and quickly analyze their systems to

determine this value could prove extremely effective.

Methods for minimizing the costs and collateral impacts of integrating System-Aware services.
For example, in the design pattern Physical Configuration Hopping it is noted that one of the
possible collateral impacts is bumpless control. Thus, it would be beneficial to have methods

readily available to aid in the design and development of such bumpless control mechanisms.
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10.

Processes for integrating System-Aware Cyber Security into the system design process. Just as
traditional cyber security should not be seen as an after thought in the design and development
of a system, nor should System-Aware cyber security. This is particular true of System-Aware

security as it makes use of application specific knowledge.

Enhancing the suggested System-Aware Cyber Security scoring framework to generate
architectural candidates more aligned with stake holder values. The better a stake holder’s

values are known the easier it is to develop suitable architectural candidates.

Relax the assumptions in the suggested System-Aware scoring framework to provide a more
accurate assessment of architectural candidates. Relaxing these assumptions can potentially
improve the selection of suitable architectural candidates and reduce the number of candidates

that need to be analyzed using the more rigorous GSN method.

Extend the suggested System-Aware cyber security scoring framework to further facilitate user
exploration of the architectural design space. The easier it is for stake holder’s to explore the

space of possible architectural candidates the easier it will be to find suitable candidates.

Further exploration of the utilization of structured arguments using GSN as a method for
deriving specific assurance scores for suggested architectures. It may be possible to incorporate
aspects of the GSN earlier in the selection and evaluation of architectural candidates. In

addition, it may be possible to mitigate the costs of utilizing the GSN.
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Appendix A

To help in the creation of the enhanced architectural scoring framework described in section 4.5, a
prototype decision support system was constructed using Microsoft Excel. There were two principle
goals in developing this prototype system. First, was to develop algorithms for automatically generating
architectural candidates. Second, was the creation of tools to help users explore the set of all candidate
architectures by making adjustments to the automatically generated architectures. This also included
the creation of tools and visualization aids to help users compare and contrast the candidate
architectures. Finally, while these make up the main contribution of the prototype decision support
system, it is noted that the prototype is fully functional; i.e., it supports all of the steps laid out in section

4.5.1.

Selection of System Functions for Protection

Figure 24 shows how the prototype system supports the selection of system functions for protection for
a simple example system. As can be seen, three system functions have been identified and assigned a
relative ranking according to their importance to protect by the Blue Team. For the system shown in
Figure 24, the System Control function has been designated the most important system function to
protect, and the User Display the least; i.e., a higher ranked function is more important then a lower
ranked function. It is noted that while only three system functions are shown here, the prototype

system can support any number of functions.
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Figure 24. Represents the prototype decision support system’s support for selecting system functions to protect
and assigning them a relative rank ordering. In this case three system functions have been identified by a Blue
Team for protection and ranked. A higher rank signifies a system function that is more important to protect;
e.g., in this instance the most important function to protect is the one responsible for System Control.

Selection of System-Aware Design Patterns

After the system functions that would benefit from System-Aware security solutions have been selected,
System-Aware design patterns are chosen by the Blue Team to protect these functions. Figure 25 shows
this for the System Functions identified in Figure 24. As can be seen, the user first selects one of the
identified system functions from a drop down list. After selecting a function for security consideration, a
System-Aware design pattern is chosen for that system function. Finally, each combination of system

function and System-Aware design pattern is assigned a unique identifier.

The prototype system offers two methods for creating this identifier. The method illustrated in Figure 25
uses the previously designated relative rank combined with a short acronym of the System-Aware
design pattern. This method is intended to produce an identifier that would allow the user to intuitively
recognize the relative importance of the system function as well as the method used to protect it.
However, this scheme requires all available System-Aware design patterns to be assigned a unique short
hand identifier before the process is started. Depending on the number of design patterns available, this
may not be practical. To address this potential pitfall, a second method is available. This method

recognizes that a System-Aware design pattern can only be applied to a system function once; i.e., each

108



combination of system function and design pattern should be unique. A unique identifier is generated
by hashing these unique combinations. This has the benefit of generating unique identifiers without
requiring additional information from the user; however, unlike the former method, the identifiers will

not have intuitively derived meaning.

D | E ' F

Evaluation Criteria

ID System Function Design Pattern
3--VCH System Control Virtual Configuration Hopping
3--DR System Control Diverse Redundancy
3--SV System Control Secure Voting
2--PCH Sensing Physical Configuration Hopping
2--DR Sensing Diverse Redundancy
2--SV Sensing Secure Voting
2--CBH Sensing Control Based Hopping
1--DR User Display v Diverse Redundancy

Séstem Control ~

User Di'splay

Figure 25. lllustrates how the prototype system is used to support the selection of System-Aware design
patterns. For this instance the available system functions are assumed to be those presented in Figure 24. As can
be seen, only those functions previously selected for protection can be selected in this step. Also note that every
combination of system function and System-Aware design pattern is assigned a unique identifier. For this
instance, the identifier is composed a combination of the relative rank of the system function and the first letter
of every word of the System-Aware design pattern.

Determining the Resources Necessary to Develop the System-Aware
Architecture

As discussed in section 4.5.1, every combination of system function and System-Aware design pattern
should be evaluated independently to determine its costs and collateral impacts on the system. For the

prototype architecture, it is assumed that all resources can be represented by a single monetary cost.
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This is more restrictive then outlined section 4.5.1, where there can be multiple costs represented in
different units (e.g., money, power, and space). The decision to reduce this to a single monetary cost
was made to both support a more robust set of algorithms for automatically generating architectural
candidates, and to make it easier for a user to compare and contrast competing architectural

candidates.

Figure 26 builds upon Figure 25 to illustrate how this is done in the prototype system. As can be seen,
every combination of system function and System-Aware design pattern is assigned a single monetary

cost. For the prototype system, these costs are considered to be independent.

D E ' F ' G

Evaluation Criteria

ID System Function Design Pattern Cost

3--VCH System Control Virtual Configuration Hopping  $3,000.00
3--DR System Control Diverse Redundancy $2,000.00
3--SV System Control Secure Voting $2,500.00
2--PCH Sensing Physical Configuration Hopping  $3,000.00
2--DR Sensing Diverse Redundancy $4,900.00
2--SV Sensing Secure Voting $1,150.00
2--CBH Sensing Control Based Hopping $2,400.00
1--DR User Display Diverse Redundancy $1,000.00

Figure 26. lllustrates how the prototype system supports the assessment of the necessary resources needed to
implement a given System-Aware architecture. In this instance every combination of System-Aware design
pattern and system function generated in Figure 25 is assigned a monetary cost.

Determining the Security Effectiveness

Figure 27 illustrates how the prototype system supports the evaluation of the security potentially
afforded by each combination of system function and System-Aware design pattern to be evaluated. In
the prototype evaluation system the ID, System Function, and Design Patterns, fields are automatically
populated based on the inputs received in the previous steps The Deterrence Score is used to represent

the security effectiveness potentially afforded by each combination of system function and design
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pattern. As noted in section 4.5.1, the security effectiveness score can be any integer value; however,
for the prototype system, this score is limited to 1, 2, 3, or 4, with higher scores relating to more value.
This limitation is not imposed by the evaluation system, but rather stems from the criteria used to

determine the effective security score

* Score =4, Complexity, cost, and time to develop exploits are high and the probability of a

successful exploit is low

* Score = 3, Complexity, cost, time to develop exploits are high and the probability of a success

exploit is high

* Score =2, Complexity, cost, time to develop exploits are low and the probability of a success

exploit is low

* Score =1, Complexity, cost, time to develop exploits are low and the probability of a success

exploit is high

The particular system in Figure 27 is built using those combinations illustrated in Figure 25.
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Figure 27. lllustrates how the prototype supports the assigning of security effectiveness scores to all

combinations of system function and design pattern. This instance assigns scores for those combinations

identified in Figure 25.

Selecting Architectural Candidates

As discussed in section 4.5.1, the selection of architectural candidates is performed through a

combination of automation tools and user input. The user provides constraints that are used to guide

the automated execution of algorithms in the creation of a subset of candidate System-Aware

architectures. In addition, the user is then able to modify one or more of these candidate architectures

to generate additional candidate architectures. This process can result in one of two outcomes

1. A set of candidate architectures to be evaluated using a more rigorous criteria

2. Select the architecture that will be implemented

The prototype system can support both outcomes; however, the prototype only supports the creation of

candidate architectures and does not provide any additional support to perform a more rigorous

evaluation.
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User Constraints

The prototype decision support system accepts user constraints on the total amount of resources that
are available for implementing System-Aware design patterns to protect system functions. Since the
prototype system assumes that only one monetary resource exist, this step is presumed to be the user
allocating a budget. Figure 28 illustrates the options available to the user (it assumes the resources

shown in Figure 26).

* Useris allowed to set a value between 0 and the sum total of the resource costs of selecting

every combination of system function and design pattern (this is 19,950 in Figure 28)

e User can move a slider between the values of 0 and the sum total of the resource costs of

selecting every combination of system function and design pattern (this is 19,950 in Figure 28)

The maximum budget value is automatically computed based on the inputs supplied. Furthermore, the
budget values are always integer—the maximum value is always rounded up to ensure that is can cover

the difference. This is done to support the automatic generation of candidate architectures.

A B C D E F
Budget
Min Max
0 19950 Value
. | » | 10000

Figure 28. lllustration of the budget slider used in the prototype system. This slider is currently set to a budget of
$10,000, has a maximum possible value of $19,950, and a minimum value of $0.

Automated Support to Generate Candidate Architectures

After a maximum budget has been set and System-Aware design patterns have been selected, their
security effectiveness evaluated, and their cost determined for each of the system functions identified
as possibly benefiting from System-Aware security, an automated decision support system is then

utilized to generate two exemplar System-Aware architectures
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Blue Perspective — The prototype decision support system will select a system function to
protect based upon the importance placed on protecting that system function by the system
design team. First, the prototype system will select the highest ranked (i.e., most important)
system function. Next, System-Aware design patterns will be selected to maximize the
protection of the chosen system function. Design patterns will be selected until either the costs
meet the available budget or all available patterns have been selected. In the former case,
design patterns will be selected to maximize the total security effectiveness offered (the sum of
the selected combinations of system functions and design patterns) within the user defined
budget. This process will be repeated until either all of the identified system functions have
been protected by all available System-Aware design patterns or the total cost meets the
maximum user defined budget. As discussed in section 4.5, it is assumed that the costs and
security effectiveness scores for each combination are independent of all other combinations;
thus, the total cost and security effectiveness of the candidate architectures can be computed

through a simple summation of the individual values.

Red Perspective — The prototype decision support system will select system functions and
corresponding System-Aware design patterns in order to maximize the security effectiveness of
the final System-Aware architecture. To do so the prototype decision support system makes the
same assumptions as the Blue Perspective: that the individually assigned scores for security
effectiveness and the costs can be computed from a simple summation in order to derive the
values for the candidate architecture. In the event that two or more System-Aware design
patterns consume the same amount of resources and afford the same security effectiveness for

different system functions, and only one of those functions can be protected, the importance
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placed upon protecting the system function by the system design team will be used to

determine which of the functions is protected.

For both of these cases, it is recognized that the maximization of the security effectiveness subject to a
budget constraint is an instance of the knapsack problem [Martello and Toth, 1990]. As a result, the
prototype decision support system has been designed to try and take advantage of this fact. First, it is
known that the knapsack problem can be solved in pseudo polynomial if all of the weights (i.e., resource
costs associated with each combination of system function and design pattern) are non-negative
integers. As discussed earlier, the weights are monetary cost estimates. This means that all of the
weights are nonnegative. In addition, the maximum budget is an integer value. Finally, the prototype
system will round up all of the individual weights to integer values before trying to maximize the
security effectiveness. This last step ensures that all of the weights (i.e., costs) are integers. This last step
is deemed acceptable as the costs of each of the proposed solutions (i.e., combinations of system
functions and design patterns) are considered to be large enough that the change can be safely ignored.
Of course, it is still possible that the time required to determine the optimal solution is unacceptable. As
a result the prototype systems allows user to use a heuristic algorithm in place of the optimal solution.

This algorithm is not guaranteed to find the optimal solution, but it will run in polynomial time.

These candidate architectures are meant to represent two edge cases, thus providing a starting point for

user the exploration of the available design

* Blue Perspective — Protects the system by protecting system functions according to the system

design teams evaluations

* Red Perspective — Protects the system by maximizing the security effectiveness of the final

architecture based upon the evaluations of the cyber attack assessment team
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Tools to Support User Exploration

After the prototype decision support system has generated the two candidate architectures, the user is
then able to adjust those architectures to generate additional candidates. The prototype decision

support system offers several tools to support the user in this given task

* Overview and summary statistics describing the candidate architecture generated using the Blue
Perspective approach. As seen in Figure 29, this includes a list detailing which combinations of
system functions and design patterns were selected and summary information about this

architecture

o Deterrence Score: The sum of the deterrence scores of the selected combinations as

well as the deterrence score of summing all possible combinations

o Cost: The sum of the costs of the selected combinations as well as the costs of selecting

all combinations

o Higher Ranked Blue: Represents the number of important system functions that were
included in the candidate architecture. A system function is important if its relative

ranking is greater than or equal to the maximum ranked function divided by half

o Lower Ranked Blue: Represents the number of less critical system functions that were
included in the candidate architecture. A system function is less critical if its relative

ranking is less than half the maximum ranked function

o Bigger Det Red: Represents the number of design patterns included in the candidate
architecture that contributed a significant amount of effective security. A significant

amount of effective security is a security effectiveness score greater than or equal to
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half the maximum possible score. For the prototype decision support system this is a

score of 4 or 3

o Smaller Det Red: Represents the number of design patterns included in the candidate
architecture that contributed a small amount to the effective security. A small amount
of effective security is a security effectiveness score less than half the maximum

possible score. For the prototype decision support system this is a score of 2 or 1

Overview and summary statistics describing the candidate architecture generated using the Red
Perspective approach. As seen in, this includes a list detailing which combinations of system
functions and design patterns were selected and summary information about this architecture.

This information is exactly same as that discussed earlier for the Blue Perspective

Two quad charts representing the summary statistics of the candidate architectures. The first
chart, seen in Figure 31, shows all of the combinations including in the candidate architectures
(Blue Perspective and Red Perspective). This information includes the relative importance of the
system function being protected and its contribution to the effective security of the candidate
architecture. This also includes the amount the combination contributes to the overall costs of
architecture (this is represented by the size of the glyph). The second chart, seen in Figure 32,
shows the same information as the first; however, the combinations plotted are those NOT

included in the candidate architecture

As discussed in section 4.5.1, the user should be able to create additional architectural
candidates by adjusting those generated through more automated means. In the prototype
architecture this is done by allowing the user to select a candidate architecture and add or
remove combinations of system functions and design patterns. This interface is shown in Figure
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33. In addition, the prototype decision support system highlights how these changes affect the
selected architecture. These include highlighting which combinations have been added and
removed, as well as highlighting any positive or negative changes in the summary statistics. An

example of this can be seen in Figure 34

* When the user creates a new architectural candidate, the prototype decision support system
allows the user to save that candidate so it can be compared to all other candidate architectures
created. The prototype system provides tools to allow for the user to compare candidates in
terms of their security effectiveness, costs, and selected combinations of system functions and

design patterns in a pair wise manner

* The prototype decision support allows the user to keep a history of all candidate architectures
created, the steps (i.e., adjustments to the automatically generated architectures) that were

taken to create those candidates, and a history of the reasoning behind those changes

8 Deterrence Score (Blue) Cost (Blue)

9 14--23 9650 -- 19950

0 Higher Ranked Blue Lower Ranked Blue Bigger Det Red Smaller Det Red

1 4 1 3 2

2 Included Swaped Out

3 Hierarchical Goal Ranking (Blue)

4 ID System Function Design Pattern Rank Deterrence Score Cost Value Factors

5 3--VCH System Control Virtual Configuration Hopping 3 3 3000 Deterrence; Restoration
6 3--DR System Control Diverse Redundancy 3 3 2000 Restoration

2 3--SV System Control Secure Voting 3 2 2500 Deflection; Restoration
3 PO Cane : X AN

0 2--SV Sensing Secure Voting 2 2 1150 Deflection; Restoration
1 -CE ! . a2 A

2 1--DR User Display Diverse Redundancy 3 4 1000 Deterrence

Figure 29. The architecture candidate created automatically using the Blue Perspective. The top displays
summary information, including deterrence score, total costs, and rough break down of the importance of the
system functions protected and the effectiveness of the design patterns chosen to protect those functions. The
bottom shows which combination of system functions and design patterns were selected. This instance was
generated using the information shown in Figure 26 and Figure 27.
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Deterrence Score (Red) Cost (Red)

15--23 9650 -- 19950
Higher Ranked Blue Lower Ranked Blue Bigger Det Red Smaller Det Red
4 1 3 2

Maximize Deterrence Architecture (Red)

ID System Function Design Pattern Rank Deterrence Score Cost Value Factors
3--DR System Control Diverse Redundancy 3 3 2000 Restoration
3--SV System Control Secure Voting 3 2 2500 Deflection; Restoration
2--PCH Sensing Physical Configuration Hopping 2 4 3000 Deterrence; Restoration
2--SV Sensing Secure Voting 2 2 1150 Deflection; Restoration
1--DR User Display Diverse Redundancy 1 4 1000 Deterrence

Figure 30. The architecture candidate created automatically using the Red Perspective. The top displays
summary information, including deterrence score, total costs, and rough break down of the importance of the
system functions protected and the effectiveness of the design patterns chosen to protect those functions. The
bottom shows which combination of system functions and design patterns were selected. This instance was
generated using the information shown in Figure 26 and Figure 27.

HigherRanking Lower Ranking
® 3-DR
+ 1--DR
Bigger 3--VCH * 1--DR
DetScore FER
Lower Rankings - Bigger Det Scores
¢ 3--DR Higher Rankings - Bigger Det Scores
Lower Rankings - Smaller Det Scores
Higher Rankings - Smaller Det Scores
Baseline
Smaller Sl Values
Det Score # Hierarchical Goal Ranking (Blue)
+ 2-5V @ 3-8V ® Maximize Det Score (Red)
* 3-8V

Figure 31. Quad chart displaying all of the selected combinations of system functions and design patterns in the
candidate architectures generated by the prototype decision support system for the Blue Perspective and the
Red Perspective. Those combinations selected as part of the Blue Perspective are represented by blue diamonds.
Those combinations selected as part of the Red Perspective are represented by red circles. The size of the glyph
(diamond or circle) represents that combinations relative contribution to the overall cost (bigger glyph
represents a larger contribution). This instance represents the candidate architecture shown in Figure 29.
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Figure 32. Quad chart displaying all of the combinations of system functions and design patterns not included in
the candidate architectures generated by the prototype decision support system for the Blue Perspective and
the Red Perspective. Those combinations not selected as part of the Blue Perspective are represented by blue
diamonds. Those combinations not selected as part of the Red Perspective are represented by red circles. The
size of the glyph (diamond or circle) represents that combinations costs compared to the costs of the other
combinations not included in that perspective. This instance represents the candidate architecture shown in
Figure 30.

.. Herarchica ~ Wax Det
Geoal Scere

Figure 33. Set of tools the user can use to adjust the candidate architectures generated by the prototype
decision support system (Blue Perspective and the Red Perspective). This includes the ability to select an
architecture to modify—Hierarchical Goal (Blue Perspective) or Max Det Score (Red Perspective)—a selected
combination of system function and design pattern to remove (left of the Swap button), and a combination not
included in the candidate architecture to add (right of the swap button). This instance represents the
information show in Figure 29.
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System Control Virtual Configuration Hopping 3 3 3000 Deterrence; Restoration
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3--SV System Control Secure Voting 3 2 2500 Deflection; Restoration
2--SV Sensing Secure Voting 2 2 1150 Deflection; Restoration
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Figure 34. lllustrates how the prototype decision support system supports the user as they adjust the candidate
architectures into new architectures. In this instance the combination of system function and design pattern
with ID 3—VCH was removed and the combination with ID 2—CBH was added. The changes to the effectiveness
and costs of the architectures are show in summary statistics. Furthermore, these changes have been
highlighted to indicate (potentially) positive (green) or negative (red) changes.

Use Case

During the course of developing the prototype decision support system, the authors were fortunate
enough to have the opportunity to be able to use the prototype to aid in the design of a System-Aware
architecture for an unmanned aerial vehicle (UAV). This afforded the opportunity to learn more about
the benefits and limitations of both the prototype system and the enhanced scoring framework
approach generally. However, before discussing the lessons learned several important limitations should
be noted. First, the entire process was condensed into a short 5 hour window. This means that the
process had to be simplified in order to fit into the allotted time. This led to the aggregation of system
functions so as to create fewer categories for ranking. Second, due to the short window and small
number of participants, separate teams could not be created for each of the steps as outlined in section
4.5. Instead all of the steps were performed by having all participants serve as the members for each

team.

Despite the limitations of the meeting’s setting, the proposed decision support was able to provide the

group with a useful way of designing and selecting a System-Aware architecture. This included the ability
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to aid in the identification of important system functions as well in the selection—and creation—of
System-Aware design patterns to protect those system functions. In addition, several additional areas
for improvement were suggested. First, the prototype system currently assumes that all system
functions are prioritized only according to the possible consequences that could result from a cyber
attack; however, initial usage suggest that the prioritization of a system’s functions is, in fact, a
combination of multiple factors. For example, during the discussion all system functions were found to
classified into three broad categories, (1) functions related to the system’s operations (e.g., navigation),
(2) functions used to carry out the system’s specific mission objectives (e.g., radar), and (3) functions
related to the system operators ability to control the system (e.g., the ability to set way points). Some
members considered those functions related to the performance of the system as most critical:
believing that these functions could be used to cause catastrophic damage to the entire system and
compromise the mission. Other members disagreed with this assessment. They believed that such
attacks could be easily identified and deflected by other means—such as operator intervention—and,
furthermore, may degrade the system’s functionality but not prevent it from accomplishing its mission.
Instead, these members advocated that those system functions that were directly related to the mission
and could be compromised in ways that were difficult to detect were most important to protect, as the
consequences of such an attack might not result in catastrophic losses, but could result in mission
failure. In addition, as these attacks would be difficult to detect, they could persist for multiple missions.
For example, a cyber attack against a UAV’s engine could result in the aircraft crashing—a catastrophic
loss. However, the loss of an engine might be detected by the operator who could possibly take action
to ensure the UAV’s mission was completed before it crash landed. Alternatively, if the cyber attack
compromised the UAV’s radar system and resulted in it reporting misleading information, the UAV
would be in no danger of loss, but its mission of detection and scouting might be compromised. In

addition, as the radar is reporting realistic, and false information, such tampering may not produce any
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obvious signs and be difficult to detect; thus, persisting for an extended time frame. Finally, all members
noted that those system functions that would be built from more stable components should be ranked
higher; i.e., some system functions may be built using components that will be in service for years, while
others may be built from components that will be upgraded frequently. Those system functions that will
be upgraded frequently should receive a lower priority as the constant upgrading would provide a

certain degree of protection by possibly deterring an adversary.

Currently the prototype system only provides the cyber attack assessment (red) team with the ability to
assign an integer value of one to four to the security afforded by each system function design pattern
solution. During the discussion, it was suggested that a larger range of values be available to allow the

red team to more accurately assess the security offered by a given solution.
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