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Abstract 

 

For homes to become active participants in a smart grid, intelligent control algorithms are 

needed to facilitate autonomous interactions that take homeowner preferences into 

consideration. Many control algorithms for demand response have been proposed in the 

literature. Comparing the performance of these algorithms has been difficult because each 

algorithm makes different assumptions or considers different scenarios, e.g., reducing the peak 

load, minimizing cost in response to the variable price of electricity, minimizing energy, or 

achieving a balance between overall energy savings, ensuring comfort, and minimizing cost. 

A comprehensive framework for assessing the performance of these algorithms that 

considering simultaneously considers multiple objectives and users’ subjective preferences has 

not previously been studied and it is necessary to be able to compare their performances. To 

overcome these limitations, a flexible assessment framework using the Analytical Hierarchy 

Process was developed to compare and rank residential energy management control 

algorithms. The framework is a hybrid mechanism that derives a ranking from a combination 

of subjective user inputs, representing preferences, and objective data from the algorithm 

performance related to energy consumption, cost and comfort. The Analytical Hierarchy 

Process results in a single overall score used to rank the alternatives. Testing and validation of 

the assessment framework is illustrated by applying the assessment process to six residential 

energy management control algorithms. The control algorithms were developed and tested 

using a simulation model of the Net-Zero Energy Residential Test Facility located on the 

campus of the National Institute of Standards and Technology in Gaithersburg, MD. The Net-

Zero Energy Residential Test Facility is a research house that is comparable in size and 

aesthetics to the houses in the greater Washington DC metro area. One algorithm was designed 

to match a real heat pump controller used in the house model. A second was the same as the 

first with relaxed comfort deadbands. Four others used linear integer optimization with varying 

optimization objectives to generate forecasted heat pump control actions. The algorithms were 

compared by analyzing their performance over a year based on energy consumption, cost, and 

comfort as measured by predicted mean vote and predicted percentage of dissatisfied. 

Successful implementation of the assessment framework produces a figure of merit that 

enables policy makers, control algorithm engineers, and other stakeholders to compare the 

performance of residential energy management control algorithms. 
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Chapter 1 

 

1. Introduction and Motivation 

The current electric grid is under stress from increasing demand and aging infrastructure. A 

significant component of the demand is residential heating and cooling. In 2016, residential 

buildings consumed 38 % of all electricity sold in the U.S. [1] with space heating and cooling 

accounting for 24 % of the electricity consumption [2]. The Energy Independence and Security 

Act of 2007 (EISA) established a national policy to support the modernization of the national 

electric grid to maintain a reliable and secure electricity infrastructure that can meet future 

growth [3]. The vision of a modern electric grid, a smart electric grid, is “a modernized grid 

that enables bidirectional flows of energy and uses two-way communication and control 

capabilities that will lead to an array of new functionalities and applications” [4].       

According to Title XIII of EISA [3] a few key characteristics of a smart grid include: 

1. “Increased use of digital information and controls technology to improve reliability, 

security, and efficiency of the electric grid; 

2. Development and incorporation of demand response, demand-side resources, and 

energy-efficiency resources; 

3. Deployment of “smart” technologies (real-time, automated, interactive technologies 

that optimize the physical operation of appliances and consumer devices) for metering, 

communications concerning grid operations and status, and distribution automation; 

and 

4. Integration of “smart” appliances and consumer devices.” 

The new smart electric grid paradigm creates a complex environment that requires decision 

making, developing and deploying advanced technologies, and facilitating the exchange of 

energy and information between interested parties. A conceptual model of the interaction 

between different smart electric grid domains, which was developed by the National Institute 

of Standards and Technology (NIST) is shown in Figure 1[4].  
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Figure 1. The NIST conceptual model representing the interaction of different smart electric 

grid domains 

The conceptual model divides the smart electric grid into seven major domains, each consisting 

of many applications and roles. A brief description of each domain is provided in Table 1 and 

further details are given in [4]. 

Table 1. A description of various domains of a smart electric grid 

Domain Description 

Customer The end users of electricity. May also 

generate, store, and manage the use of 

energy. Traditionally, three customer types 

are discussed, each with its own sub-domain: 

home, commercial/building, and industrial. 

Markets The operators and participants in electricity 

markets. 

Service Provider The organization providing services to 

electricity customers and utilities. 

Operations The managers of the movement of electricity. 

Generation The generators of electricity. May also store 

energy for later distribution. 

Transmission The carriers of bulk electricity over long 

distances. May also store and generate 

electricity. 

Distribution The distributors of electricity to and from 

customers. May also store and generate 

electricity. 
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The focus of the research in this dissertation is the home (residential) subcategory of the 

Customer domain. According to the U.S. Department of Energy (DOE), consumers can play a 

significant role in the operation of the electric grid by shifting or reducing their electricity use 

to off-peak times in response to time-based electric rates or other financial incentives [5]. One 

of the ways that users (customers) could interact with a smart electric grid is through demand 

response (DR), a process by which electric power consumption (demand) is moderated to 

support grid needs. DR is commonly used to reduce peaks, but can also be used to increase 

consumption when the total demand on the grid is low, to support voltage regulation, or for 

other grid needs. DR can be implemented using dynamic prices or other signals from the grid. 

Some methods for implementing DR and the possible benefits are described in [6]. 

Realizing a smart electric grid requires intelligent control algorithms to facilitate autonomous 

interaction between homeowners and the grid. Many optimization models and control 

algorithms for DR have been proposed in the literature to achieve this goal. Comprehensive 

reviews of utility DR programs, approaches, and optimization techniques are presented in [7]–

[9]. Common optimization objectives include cutting cost, reducing energy consumption, or 

both, while trying to maintain thermal comfort. The actions resulting from the optimization 

include controlling appliances, performing temperature setbacks, and preheating or precooling. 

However, it has been difficult to compare these approaches because they rely on different 

assumptions and consider different objectives. Furthermore, they may consider the perspective 

of the utility (cost, profit, peak load shaving, capacity, etc.), but often fail to consider that the 

perspective of the homeowner whose needs or interests (energy, cost, comfort, etc.) may differ. 

A user may also have conflicting goals such as reducing cost and maintaining comfort. 

Therefore, an assessment framework is needed that can evaluate the impact of control actions 

on multiple and potentially conflicting objectives such as minimizing cost or energy, while 

maintaining thermal comfort or other user preferences. 

1.1. Thesis Statement 

 This thesis statement summarizes the main objective of this dissertation research that:  

 

Until now, it was not known if an effective comparison (ranking) between the control 

algorithms can be performed.   

1.2. Research Contributions 

Realizing this research objective requires an assessment framework that can handle multiple 

performance criteria, capture user’s subjective preferences and realistic objective performance 

data for testing the validation. Considering these objectives, the assessment framework must 

also enable a direct comparison of the performance of residential energy management control 

algorithms (EMCA) and effectively rank them. Figure 2 shows a schematic representation of 

this assessment framework that was developed for to meet the objectives of this dissertation 

It is possible to rank (using key performance criteria such as energy 

consumption, cost, and comfort) the performance of control algorithms 

managing residential energy use in a smart electric grid. 
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research outlined above. This assessment framework is titled the Residential Energy Control 

Algorithm Assessment Tool (reCAAT).  

 

Figure 2. The reCAAT architecture showing the interaction of the components and the 

assessment engine (AE) 

The reCAAT architecture describes the interaction of user preferences, residential EMCAs, a 

residential simulation model, and the assessment engine (AE). The reCAAT architecture is 

separated into two distinct implementations: The Simulation Manager (SM) and the AE. The 

AE is responsible for ranking the performance of residential EMCAs using subjective 

judgments for pairwise comparisons of energy consumption, cost, and comfort criteria; and 

objective performance data for pairwise comparisons of residential EMCAs. This is a multi-

criteria decision-making problem that requires both qualitative and quantitative analyses. A 

widely used multi-criteria decision-making framework, the Analytical Hierarchy Process 

(AHP), was used to solve this problem. The AE uses a hybrid mechanism that derives a ranking 

from a combination of subjective user inputs, representing preferences, and objective data from 

the algorithm performance related to energy consumption, cost and comfort. The SM facilitates 

the loosely-coupled integration of residential EMCAs with a residential simulation model 

while capturing user preferences such as heating and cooling setpoints. A residential simulation 

model is used because it is impractical to conduct reproducible experiments in a real house. 

This provides the ability to substitute a simulation model for any house, which can also be 

tested in different climate zones by only changing the weather file. This loosely-coupled 

architecture provides an efficient mechanism for evaluating different types of residential 

EMCAs and simulation models without changing the core functionality of the SM for 

exchanging data. 

The implementation of the architecture shown in Figure 2 meets the following requirements: 

1. Supports a wide range of tariff structures and DR signals; 

2. Accommodates customer preferences and constraints; 

3. Accommodates different climate zones; 

4. Accommodates simulation models for different types of residences; 

5. Accommodates different residential energy management control algorithms; 
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6. Provides interfaces that loosely-couple components to accommodate a wide range of 

user input, residential EMCAs, and residential simulation model without impacting the 

core functionality of the AE; and 

7. Allows bi-directional flow of information between an EMCA and residential 

simulation model. 

Testing and validation of the AE is illustrated by applying the assessment process to six 

residential EMCAs. One algorithm was designed to match a real heat pump controller used in 

the house model. A second was the same as the first with relaxed comfort deadbands. Four 

others used linear integer optimization with varying optimization objectives to generate 

forecasted control actions. The algorithms were compared by analyzing their performance over 

a year based on energy consumption, cost, and comfort as measured by predicted mean vote 

(PMV) and predicted percentage of dissatisfied (PPD). The control algorithms were developed 

and tested using a simulation model of the Net-Zero Energy Residential Test Facility 

(NZERTF) located on the campus of the National Institute of Standards and Technology 

(NIST) in Gaithersburg, MD. A simulation model of this house was developed in Transient 

System Simulation Tool (TRNSYS) [10] and adopted for this study. The model was verified 

using measurement data from the NZERTF. The NZERTF is a research house that is 

comparable in size and aesthetics to the houses in the greater Washington DC metro area.  

Successful implementation of the AE produces a figure of merit that enables policy makers, 

customers, and other stakeholders to compare the performance of residential energy 

management control algorithms. 

A summary of the research contributions is listed below: 

1. Implementation of the SM; 

2. Development of the AE; 

3. Development of a mapping algorithm; 

4. Development of a new TRNSYS component (Type277); 

5. Development of six residential EMCAs; and  

6. Development of a learning algorithm. 
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Chapter 2 

 

2. Simulation Manager 

This chapter describes the development of a co-simulation environment that enables a model 

of a residential home to exchange data with residential EMCAs while otherwise operating 

autonomously. Ideally, the EMCAs would interact with a real house to generate realistic 

operating conditions such as energy consumption and thermal comfort. However, it is 

impractical to conduct reproducible experiments in a real house and; therefore, a basic 

requirement for this study was to use a simulation model of a residential home. This provides 

the ability to substitute a simulation model for any house. Therefore, a TRNSYS based model 

is used to simulate the behavior of a residential home. TRNSYS is a FORTRAN-based whole 

building transient system simulation tool [11]. 

 

The methodology for coupling the residential model with a Java server (Server) using socket 

communication is also discussed. The Server enables the residential model to be loosely-

coupled with residential EMCAs developed in Matrix Laboratory (MATLAB). An 

implementation of the co-simulation environment needs to support the following requirements: 

1. Accommodate user preferences and constraints; 

2. Accommodate loosely-coupling of residential EMCAs with simulation models for 

different types of residences; 

3. Enable bi-directional flow of information between residential EMCAs and the 

simulation model; and 

4. Accommodate different software environments for developing residential EMCAs. 

To satisfy these requirements, Figure 3 shows the schematic representation of the co-

simulation environment, describing the interaction of the user preferences, residential EMCAs 

and the simulation model.  

 

 
 

Figure 3. Schematic representation of the co-simulation environment 
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The implementation of the co-simulation environment captures user preferences, launches 

MATLAB, executes the TRNSYS model, and enables bi-directional flow of data between 

residential EMCAs and the simulation model. A user interface, the SM, was developed to 

provide the necessary foundation for implementing the co-simulation environment.  

 

The SM facilitates the loosely-coupled integration of residential EMCAs and the residential 

model. The key idea behind this approach is to enable TRNSYS based simulation models to 

interact with components that are likely to be written in other software languages. For example, 

the SM is developed in Java, while residential EMCAs are written in MATLAB, and the 

residential model is developed in TRNSYS. The loosely-coupled architecture provides an 

efficient mechanism for evaluating different types of residential EMCAs and simulation 

models without changing its core functionality for exchanging data.  A schematic 

representation of the SM architecture that facilitates these interactions is given in Figure 4. The 

TRNSYS simulation model, as a Client, sends and receives serialized data to the Server using 

socket communication. The Server and Client communicate over an arbitrary port (1345). The 

MATLAB environment exchanges data with the Server through a proxy, using the 

matlabcontrol Java application programming interface [12].    

 

 
 

Figure 4. A schematic representation of the SM, facilitating loosely-coupled integration of 

TRNSYS and MATLAB 



8 

 

2.1. Net-Zero Energy Residential Test Facility 

 

The residential simulation model used in this study is a model of the Net-Zero Energy 

Residential Test Facility (NZERTF) [10]. The detailed model of the NZERTF was developed 

in TRNSYS and validated using measurement data [10]. The NZERTF is a research house that 

is comparable in size and aesthetics to the houses in the greater Washington DC metro area 

[13]. NZERTF is located on the campus of the National Institute of Standards and Technology 

(NIST) in Gaithersburg, Maryland [2, 3]. The NZERTF is a 251 m2 (2700 ft2) four-bedroom 

house with a detached garage built entirely with commercially available products. It was 

designed to demonstrate the feasibility of achieving net-zero energy operation (energy 

generated using photovoltaic modules and solar hot water heaters equals the total energy 

consumed) over the course of one year, and test existing and new energy efficient technologies.  

The exterior of the NZERTF is shown in Figure 5.  

 

 
 

Figure 5. The NZERTF house exterior 

 

2.2. The User Interface 

 

Realizing the SM involved developing a user interface (UI), shown in Figure 6, that 

encapsulates the requirements of the co-simulation environment described in Sec. 2. The UI is 

implemented in Java. It captures a user’s preferences such as heating and cooling setpoints as 

well as the length of time, in minutes, for running the simulation. It also enables users to choose 

a desired TRNSYS model. A TRNSYS model is stored in a text file commonly known as the 

deck file, which contains all the information on the simulation model. The SM enables a user 

to choose a TRNSYS model by selecting the corresponding deck file. As schematically 

represented in Figure 4, the UI stores the path to the deck file, which is then used by the 

Simulation Wrapper to launch TRNSYS and simulate the model. The UI also creates the Server 
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which launches MATLAB and listens for a client request on a socket. A socket is bound to a 

port and it is an endpoint for linking two programs that are sending and receiving data over a 

network or within the same computer. The client, in this case, is the TRNSYS model. 

 

 

 
 

Figure 6. The simulation manager user interface 

 

2.3. Simulation Wrapper 

 

The Simulation Wrapper uses a FORTRAN subroutine compiled into a Dynamic Link Library 

(DLL) to cause the TRNSYS model to run. The Simulation Wrapper handles data exchange 

between Java and FORTRAN and runs the TRNSYS model. Figure 7 shows a schematic 

representation of the Simulation Wrapper.  



10 

 

 
 

Figure 7. The Simulation Wrapper flowchart 

 

The Start Simulation button utilizes the Java Native Access (JNA) library [15] to load the 

Simulation Wrapper. JNA is developed and maintained by a community of developers to 

provide easy access to the native libraries. Immediately after being loaded, the Simulation 

Wrapper makes special calls to TRNSYS, directing its main subroutine to find all other DLLs 

and load the deck file selected by the user. Next, the Simulation Wrapper starts the main 

simulation routine, which is implemented in a control flow (for-loop) to iteratively execute 

each time step of the TRNSYS model. The simulation terminates upon receipt of a special call 

to TRNSYS’s main subroutine, which occurs when the loop counter exceeds the length of the 

simulation run specified by the user.  

 

2.4. Type277 

 

TRNSYS is a modular and extendable simulation environment that consists of a suite of 

software tools designed to accommodate transient simulation of multi-zone buildings and other 

thermal systems. The main user interface is Simulation Studio, in which users can setup 
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projects by graphically connecting model components. Each component is mathematically 

described in the TRNSYS simulation engine and has a corresponding graphical representation 

(proforma) in the Simulation Studio. A proforma is a black-box description of inputs, outputs, 

and parameters. TRNSYS components are commonly referred to as Types and are identified 

by a number which relates a component to the model of that component written as a subroutine.  

An advantage of TRNSYS’s modular architecture is its ability to support the integration of 

user-defined types. In this study, a new type (Type277) was developed to enable a TRNSYS 

model to exchange data with the Server. The type number 277 was arbitrarily selected from a 

range of 200 – 299 which are reserved for user written components. Type277 is written in C++ 

and compiled as a 32-bit Windows DLL. It is compiled in 32-bit because the NZERTF model 

was developed and tuned using the 32-bit version of the TRNSYS simulation software. 

Type277 is responsible for exchanging data between a TRNSYS model and the Server. Like 

all standard types in TRNSYS, Type277 has a proforma that defines its inputs and outputs. 

The inputs of Type277 are sent to the Server and its outputs, the returned values from the 

Server, are connected to other TRNSYS types.  Figure 8  shows Type277’s proforma and a 

few of its connections with other types. 

 

 

Figure 8. Type277’s proforma 

 

Using Type277 effectively turns a TRNSYS model into a Client. To ensure a reliable exchange 

of information between the Server and the Client, the data is serialized on both ends using 

Google’s protocol buffers [16]. Protocol buffers are efficient, language and platform neutral, 

and expandable mechanism for serializing structured data. The current implementation of 

Type277 supports the exchange of double precision data type in a 1xn dimensional vector form, 

where n is the number of inputs or outputs.  
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Chapter 3 

 

Disclaimer: The material presented in this chapter has previously been published in: 

 

1. F. Omar and S. T. Bushby, “A Self-Learning Algorithm for Temperature Prediction 

in a Single Family Residence,” NIST Tech. Note 1891, 2015. 

2. F. Omar, S. T. Bushby, and R. D. Williams, “A self-learning algorithm for estimating 

solar heat gain and temperature changes in a single-Family residence,” Energy Build., 

vol. 150, 2017. 

 

Credit to my co-authors:  

1. Steven T. Bushby, National Institute of Standards and Technology, 

steve.bushy@nist.gov 

2. Ronald D. Williams, University of Virginia, rdw@virginia.edu 

 

3. Learning Algorithm 

Developing effective control strategies to manage residential electricity consumption in a smart 

grid environment requires predictive algorithms for all significant electrical loads that are 

simple to implement, minimize custom configuration, and provide enough accuracy to enable 

meaningful control decisions. In a smart grid environment, time-varying prices, demand 

response agreements, or possibly market-based transactions to buy or sell electricity, may 

significantly influence the cost of electricity consumption.  Other key inputs to control 

decisions include weather and occupant choices. 

 

Heating, ventilating, and air-conditioning (HVAC) is one of the largest electrical loads in a 

typical house. To evaluate control strategies that might involve preheating or precooling, 

temperature setbacks, or letting the temperature drift during peak price periods, it is important 

to be able to predict the resulting indoor air temperature changes. Many tools to simulate 

building energy use and comfort conditions have been developed that have this capability [17]. 

Although details vary, these tools require information about the location, orientation, windows, 

and other construction details of the house. They also require expertise in crafting a simulation. 

A simpler approach is needed to develop control strategies that might be used in a typical 

home. 

 

In this chapter, a self-learning algorithm for temperature prediction in a single-family residence 

was developed. The approach taken was to define a simple lumped capacitance model where 

key parameters for the model can be learned through observation instead of derived from in 

depth knowledge of the construction details. The algorithm was validated using performance 

measurements from the NZERTF [13], [14].  

 

3.1. Lumped Capacitance Model 

 

In order to predict the interior air temperature of a house, a first order lumped capacitance 

model described in [18] is utilized. The house is assumed to be a single control volume with a 

mailto:steve.bushy@nist.gov
mailto:rdw@virginia.edu
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uniform interior temperature. Figure 9 shows a schematic of the overall energy balance on a 

house.  

 

 

 

 
 

Figure 9. A house thermal energy balance 

 

The energy balance equation as a rate of change of energy is given by: 

 

 st solar G out
Q Q Q Q
• • • •

   ,  (1.1) 

where: 

 

st
pst

dQ dT
Q Vc

dt dt


•

   is the rate of the thermal energy stored in the house; 

  is the density; 

pc is the specific heat; 

V  is the volume; 

 solSolar
Q q
•

  is the total solar heat gain added to the house; 

 hp lG
Q q q
•

  is the internal heat generated inside the house by the heat pump (qhp), and 

plug-loads (ql) including sensible heat generated by the occupants; and   

 Out
Q UA T T
•

   is the heat loss to the environment due to the temperature difference 

between the inside and the outside. UA is the overall heat transfer coefficient, T is the 

indoor dry-bulb and T∞ is the outside ambient dry-bulb temperatures, respectively. Note 

that radiation heat losses are neglected.  

 

Applying these definitions, Eq. (1.1) can be rewritten as follows: 

 

  p sol hp l

dT
Vc q q q UA T T

dt
      .  (1.2) 
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If we let  T T   , then 
dT d

dt dt


  and Eq. (1.2) becomes: 

 

 
p sol hp l

d
Vc q q q UA

dt


     .  (1.3) 

 

Dividing both side of Eq. (1.3) by
pVc  we obtain the following first-order differential 

equation: 

  

 
sol hp l

p p

q q qd UA

dt Vc Vc

 

 

 
  .  (1.4) 

Re-writing Eq. (1.4): 

  

 
d

b a
dt


  ,  (1.5) 

where: 

,  and  
sol hp l

p p

q q qUA
a b

Vc Vc 

 
  . 

 

Multiplying both sides of Eq. (1.5) by an integrating factor eat and rearranging gives: 

 

 
 

 at at at
d t

e e a t e b
dt


  .  (1.6) 

Using the product rule, the left hand side of Eq. (1.6) can be written as: 

 

   at atd
e t e b

dt
  .  (1.7) 

Integrating both sides of Eq. (1.7) with respect to t gives: 

 

 

  

 
1

.

at at

at at

d e t e bdt

e t b e C
a







 

 
  (1.8) 

Dividing both sides of Eq. (1.8) by eat gives: 

 

   atb
t Ce

a
   ,  (1.9) 

when 0t  ,  0
b

C
a

   then Eq. (1.9) becomes: 

 



15 

 

    0 atb b
t e

a a
   

   
 

.  (1.10) 

 

Substituting the values for a, b, ψ back into the Eq. (1.10) results in the first order lumped 

capacitance model. If we let (0) iT T    where Ti  is the initial temperature of the house and 

T∞ is the ambient temperature then Eq. (1.10) becomes 

 

 exp
sol hp l sol hp l

i

p

q q q q q q UA
T T T T t

UA UA Vc
 

     
         

   

.  (1.11) 

Defining the thermal time constant τ such that: 

 
1

pVc
UA

 
 

  
 

, 

 where: 

 
1

UA

 
 
 

is the overall-lumped thermal resistance; and 

  pVc is the lumped thermal capacitance.  

 

Re-writing and re-arranging Eq. (1.11) gives the first order model to predict the interior 

temperature: 

 

 exp
sol hp l sol hp l

i

q q q q q q t
T T T T

UA UA 
 

      
        

  
,  (1.12) 

where: 

T∞ is the outside ambient dry-bulb temperatures, °C; 

qsol is the total solar heat gain added to the house, W; 

qhp is the rate of heat generated inside the house by the heat pump, W; 

ql is the rate of heat generated inside the house by the internal loads, W; 

Ti is the initial indoor temperature, °C; 

UA is Overall heat transfer coefficient, W/K; and 

τ is the building time constant, h. 

 

The value of (qsol) can be estimated from measurements of solar irradiance using methods 

discussed later in this document. The value of (ql) is also known through a fixed occupancy 

schedule described in [14].  However, the values of UA and τ are not known a priori. A learning 

algorithm is used to estimate these values from measured data. In this paper they are denoted 

as effective quantities (UAe, τe) to acknowledge the fact that the values are not the true UA and 

τ of the NZERTF but an approximation that will enable us to predict the indoor temperature.  

 

A discrete form of Eq. (1.12) is developed by defining t as Δt = tk+1- tk where k = 1,2,…,n are 

the discrete time steps and n is the number of data points. Let (Qh = qsol + qhp + ql) represent 

the total heat gain inside the NZERTF in every time step. Let Ti represent the indoor 
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temperature. Applying these concepts to Eq. (1.12) gives the one-step learning/prediction 

model:  

 

 
, ,

, 1 , , , exp
h k h k

i k k i k k

e e e

Q Q t
T T T T

UA UA 
  

   
        

   
.  (1.13) 

 

 

3.2. Learning the Overall Heat Transfer Coefficient and Thermal Time Constant 

 

Estimates for the UAe and τe are needed to use Eq. (1.13) to predict the indoor temperature. 

Since both UAe and τe are mainly driven by the temperature difference between the inside and 

outside, a single test was conducted in the NZERTF on a cold winter night. Testing at night 

eliminated the impact of direct solar heat gain into the interior space. During the test, the 

house’s main thermostat setpoint was lowered to approximately 15.6 °C (60 °F), and the heat 

recovery ventilation unit was turned off. The first floor and outdoor dry-bulb temperatures 

were measured throughout the night. The first-floor temperature is an average of measurements 

made in all the rooms on the first floor. Figure 10 shows the results of the test. The uncertainty 

in measuring the indoor and outdoor dry-bulb temperature described in [19], with a confidence 

level of 95 %, is ± 0.2 °C (0.4 °F) and ± 0.6 °C (1.0 °F), respectively.    
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Figure 10. Results from a night temperature decay test 

 

Because the heat pump energy and solar heat gain to the house are equal to zero in this test, 

Eq. (1.13) is reduced to the following: 

 

 

 
l, l,

, 1 , , , exp
k k

i k k i k k

e e e

q q t
T T T T

UA UA 
  

   
        

   
.  (1.14) 

 

In order to estimate UAe and τe using an optimization technique, an objective function is 

defined as the sum of squared error (SSE) between the measured average first floor temperature 

(Tm) and the predicted temperature (Tp) obtained from Eq. (1.14). The objective function is 

 

  
2

2
,e e m pf UA T T   ,  (1.15) 

 

and, the optimization problem is: 
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 
,

min      ,

              1

              60 ,

e e
e e

UA

e

e

f UA

UA






  

  

  (1.16) 

 

where, the units for upper and lower bounds of the UAe are in W/K and τe are in minutes. For 

numerical stability, the lower bound of UAe was set to 1; however, the upper bound was 

allowed to float because it was not known a priori. Similarly, the lower bound of τe was set to 

1 hour and the upper bound was allowed float as well.  A Matlab non-linear optimization 

function (fmincon) with its default interior-point algorithm was used to minimize Eq. (1.16) 

subject to the upper and lower bound constraints. The result of the optimization is shown in 

Figure 11. 

 

 
 

Figure 11. Comparison of predicted and measured first floor temperatures during a night test 

 

Figure 11 shows the predicted and measured first floor temperature, for the test period, and 

statistics describing the goodness of fit. The resulting learned parameters are, UAe = 172 W/K 

and τe = 104 h. 

 

To verify the value of UAe an alternative method was used to provide a comparison estimate. 

Daily heat pump thermal energy output for the period of October 2014 – May 2015 were 

plotted with respect to the indoor/outdoor temperature difference as shown in Figure 12.  The 
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uncertainty in measuring Toutdoor and Thermal Energy described in [19], with a confidence level 

of 95 %, is ± 0.2 °C (0.4 °F) and ± 9.4 %, respectively.  Assuming that internal loads and solar 

gain are small compared to the conductive and convective heat losses, 

 

 outdoor setpointhpQ UA T T
•

  . 

 

Thus the slope of linear fit to the data provides an estimate for UA. From these data it was 

found that UA = 180  ±  8 W/K with a confidence of 95 %. This result confirms that learned 

value of UAe = 172 W/K is a reasonable estimate.  

 

 

Figure 12. Heat pump load vs. temperature difference, courtesy of William V. Payne 

 

3.3. Estimating Solar Gain 

 

An estimate of solar heat gain is needed to apply Eq. (1.13). Detailed procedures for estimating 

solar heat gain are provided in [20]. Modeling solar heat gain is a complex process that involves 

many details about window size, orientation, shading, and materials along with estimates of 

direct and indirect solar radiation. For the application intended in this work, these details are 

not likely to be available and the custom configuration needed to use them is not practical to 

obtain. The solution proposed is to develop a mathematical representation for solar heat gain 

with a small number of parameters that capture the unknown details, and then learn those 

parameter values by observation. One representation for solar heat gain is adapted from [21].   

 

   cossol DN Aq E T NA W  ,  (1.17) 

where: 

 qsol is the total solar heat gain; 
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EDN is the direct normal irradiance per unit area;  

θ is the incidence angle;  

T is the transmittance; 

A is the absorptance; 

N is the inward-flowing fraction; and 

WA is the window area.  

 

The quantity (T – NA) is the solar heat gain coefficient (SHGC).  Because the optical properties 

of T and A varies as a function of incidence angle (θ) and wavelength (λ) the SHGC is [21] 

 

      , , ,SHGC T NA       ,  (1.18) 

and Eq. (1.17) can be written as 

 

    cos ,sol DN Aq E SHGC W   .  (1.19) 

 

In residential buildings we can assume that the windows are of the clear glass type and 

therefore not strongly spectrally selective so that the wavelength dependence of SHGC can be 

neglected. Thus, Eq. (1.19) can be re-written as 

 

    cossol DN Aq E SHGC W  .  (1.20) 

 

Eq. (1.20) is the total solar heat gain, at every time step, added to a house and the SHGC (as 

function of the incidence angle) is given in [21] 

      
1

L

k k

k

SHGC T N A  


  ,  (1.21) 

where, L is the number of glazing layers, Nk and Ak are the inward-flowing fraction and 

absorptance of layer k, respectively. Assuming a single layer window, a modified version of 

Eq. (1.21) is 

      SHGC T NA    .  (1.22) 

 

Since the type of the windows installed in a house is not known a priori; therefore, Eq. (1.22) 

becomes 

      e eSHGC T N A    ,  (1.23) 

 

where, Ne (effective N) is an approximation of N and SHGCe (effective SHGC) is an 

approximation of the SHGC. Normally, in order to convert beam radiation measured on one 

surface to another (i.e., on a tilted surface to that on a horizontal surface) a dimensionless 

geometric factor; that is, a ratio between the two surfaces is computed and the beam radiation 

is multiplied by that ratio. For further description of calculating this ratio see [22]. It is further 

assumed that the orientation and size of the windows is unknown. The objective is to modify 

Eq. (1.20) such that the details of window size and orientation, shading effects, and the fraction 

of direct or diffuse solar radiation are represented by parameters that can be learned by 

observation. This eliminates the need for detailed custom configuration by the user. The 

modified solar heat gain Eq. is 
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  sol e eq I SHGC AR   ,  (1.24) 

where: 

I is the solar irradiance in W/m2; and 

ARe is an approximation (effective) window area and the ratio of solar irradiance to the 

vertical surfaces of the windows in units of m2.  

 

We utilize a moving window optimization technique, described later, to learn the Ne and ARe 

parameters. 

 

In order to calculate SHGCe given in Eq. (1.23) the transmittance and absorptance must be 

calculated based on the angle of incidence. The angle of incidence is calculated using Eq. (1.25) 

described in [22]. 

 

 

               

                 

       

cos sin sin cos sin cos sin cos

             cos cos cos cos cos sin sin cos cos

             cos sin sin sin ,

       

        

   

 

 



 (1.25) 

 where:  

δ is the declination, the angular position of the sun at solar noon; 

ϕ is the latitude, the angular location north or south of the equator; 

β is the slope,  the angle between the plane of the surface in question and the horizontal 

(windows or solar radiation measuring angle);  

γ is the surface azimuth angle, the deviation of the projection on a horizontal plane of 

the normal to the surface from the local meridian; 

ω is the hour angle, the angular displacement of the sun east or west of the local 

meridian due to rotation of the earth on its axis at 15  per hour; and 

θ is the angle of incidence, the angle between the beam radiation on a surface and the 

normal to that surface. 

 

For a detailed explanation of computation of the values δ, ω, and θ see [22].  While the latitude, 

slope, longitude, local meridian, local time zone, surface azimuth angle are inputs and based 

on the geographical location of the NZERTF in Gaithersburg Maryland. The list of inputs and 

their associated values are given in Table 2. 
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Table 2. List of inputs and their associated values to calculate the angle of incidence 

Inputs Values based on location of NZERTF 

  39.14  
  (windows tilt  ) 90  
Longitude 77.2  
Local Meridian 75  
Local Time Zone Eastern 
  0  

  

In this application, the incidence angle is computed based on the timestamp associated with 

the measured data. According to [23], the transmittance and absorptance of a variety of window 

types can be computed using Eq.s (1.26) and (1.27). 

 

    
3

0

cosi

i

i

T c 


 ,  (1.26) 

     
3

0

cos j

j

j

A c 


 .  (1.27) 

The coefficients ci and cj for a single layer glass, 3.2 mm (1 8 )inch , double strength float are 

adopted from Table I of [23] and reported in Table 3.  

 

Table 3. Coefficients of a glass window used to calculate transmittance and absorptance 

Windows 

Structure 

Solar 

Properties 
c0 c1 c2 c3 

Glass 
( )T   -0.0372 3.0392 -3.6360 1.4784 

( )A   0.0738 0.2370 -0.4364 0.2168 

 

With the transmittance and absorptance calculated, the two unknown parameters are the 

inward-flowing fraction Ne (from Eq. (1.23)) and ARe (from Eq. (1.24)). The total heat gain 

(Qh = qsol + qhp + ql) inside the NZERTF with qsol given by Eq. (1.24) is 

 

   h e e hp lQ I SHGC AR q q     .  (1.28) 

 

To calculate Ne and ARe a moving window optimization algorithm was developed and 

implemented. 

 

3.4. Moving Window Prediction Algorithm 

 

The moving window algorithm utilizes Eq. (1.13) and Eq. (1.28) to learn the Ne and ARe 

parameters from measured data over a training window, the size of which is discussed later. 

These parameters are then used to predict the next day’s indoor temperature. Training is 

repeated daily using a fixed-size sliding window of data. This approach allows any shading 

effects and the seasonal variation in sun position to be accounted for. The moving window 
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prediction approach is illustrated in Figure 13. The red rectangles depict the sliding training 

data window. The green rectangles depict the corresponding prediction horizon.   

 

 

 
 

Figure 13. The concept of the moving window prediction algorithm, note that the sizes of the 

windows are not to scale  

 

The objective function for the moving window algorithm is defined as the SSE between the 

measured average first floor temperature (Tm) and the predicted temperature (Tp) obtained from 

Eq. (1.13).  This can be expressed as 

 

  
2

2
,e e m pf N AR T T   . (1.29) 

  

The optimization problem is defined as 
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  (1.30) 

 

where, the Ne is a unitless quantity, and the ARe is in units of m2. The upper and lower bounds 

of the Ne is between [0, 1] because it only represents the fraction of the solar irradiance 

absorbed into the interior spaces. The lower bound of the ARe is set to1 for numerical stability. 

The upper bound is allowed to float because it is not known a priori.  

 

In order to find Ne and ARe a Matlab non-linear optimization function (fmincon) with its default 

interior-point algorithm was used to minimize Eq. (1.30). Initially the algorithm was trained 

on one day of data and predicted the next day’s temperature. But since the Ne and especially 
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ARe parameters greatly affect the total solar heat gain of the model, the prediction accuracy 

was highly influenced by the variability of the solar irradiance from one day to the next due to 

cloud cover. For example, if the parameters were learned on a cloudy day and applied to a day 

that was sunny the model over predicted the temperature. The model under predicted when the 

opposite was true. Figure 14 shows the measured solar irradiance for a cloudy training day 

followed by measured solar irradiance on the prediction day. Figure 15 shows the impact of 

this situation on predicting the next day’s temperature.  

 

 
Figure 14. Available solar irradiance – training and prediction days 
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Figure 15. Learning parameters on a cloudy day and applying it to a sunny day (1-day training 

window)  

 

There is a good agreement between the predicted and measured temperatures, shown in the top 

plot of Figure 15, because, by adjusting the Ne and ARe parameters, the learning algorithm 

minimizes the SSE between the model and the measured data. The second plot shows the 

model’s predicted indoor temperature at the beginning of the day and the third plot shows the 

comparison between the predicted and the actual measured temperatures for the same day.  

 

It was found that if the parameters were learned on a cloudy or a sunny day and applied to a 

day with a similar solar condition, the predicted and measured temperatures were close. Figure 

16 shows the solar irradiance for the training and prediction days while Figure 17 shows the 

influence of learning a parameter on such a day and applying it to a day with a similar solar 

condition.  
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Figure 16. Available solar irradiance – training and prediction days 
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Figure 17. Learning parameters on a sunny day and applying it to a sunny day (1-day training 

window)  

 

These results clearly indicate that a larger training window is required. In order to evaluate the 

merit of various training window sizes two statistical measures (relative root mean square error 

(% RMSE) [24] and mean absolute percentage error (MAPE) given in [25] are defined as 

follows 
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where: 

n  is the number of samples; 
i

mT  is the ith measured temperature; 

mT  is the mean of the measured temperature; and 
i

pT  is the ith predicted temperature.  

 

Both % RMSE and MAPE are dimensionless quantities, and a measure of closeness of the 

predicted and measured temperatures. The output of Eq. (1.31) and (1.32), reported in Table 

4, confirms the observation that the prediction accuracy of the model is significantly improved 

when the training and prediction days had identical solar conditions.  

 

Table 4. Prediction horizon % RMSE and MAPE (1-day training window) 

Figure # % RMSE MAPE 

Figure 15 29 23 

Figure 17 0.4 0.4 

 

Using these metrics an optimal window size can be determined. The prediction algorithm was 

tested for various training window sizes over the 85-days data set.  The average % RMSE, for 

each training window size, was calculated and reported in Figure 18. Figure 18 also shows the 

average elapsed time (in minutes) that the optimization algorithm took while learning the Ne 

and ARe parameters. It is noted that the elapsed time is specific to our implementation of the 

algorithm. Faster times may be possible but in general the larger the training window the slower 

the optimization.   

  

Figure 18 shows that there is large reduction in % RMSE when the size of the training window 

is increased from 1 to 3 days. The error is further reduced, gradually, until the size of the 

training window is 7 days long. There is a slight increase in the error for the 14 and 21 days of 

training, however the increase is minimal. Even though the 42 days training window has the 

lowest % RMSE, the time that the optimization requires to learn Ne and ARe is significantly 

larger compared to the rest of the training windows.  Considering the elapsed times, number 

of training data required, and smaller prediction error, it was decided that the 7-day training 

window was an appropriate size.    
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Figure 18. Average % RMSE for various training window sizes (UAe = 172 W/K and 

τe = 104 h)  

 

The impact of using the seven-day vs. one-day of training is shown for the same days, 

previously depicted in Figure 15 and Figure 10, are given in Figure 19 and Figure 20, 

respectively.  

 

The % RMSE and MAPE shown in Figure 19 have significantly improved over the values 

reported, for the same days, in Figure 15. However, the % RMSE and MAPE shown in Figure 

20 have slightly increased over the same days reported in Figure 17. The slight increase in 

% RMSE and MAPE were expected because the Ne and ARe parameters were effectively 

average values vs. a day where the solar conditions were similar to the conditions of the day 

being predicted.  
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Figure 19. Learning parameters over a 7-day training window and applying to a sunny day 
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Figure 20. Learning parameters over a 7-day training window and applying it to a sunny day 

 

The % RMSE and MAPE, for the temperature prediction algorithm, and their average errors 

are shown for the entire data set in Figure 21. The maximum % RMSE and MAPE errors over 

the 362-day data set are 12 % and 10 %, respectively. The 95 % confidence interval on the 

mean of % RMSE and MAPE errors are 2.24 ± 0.17 and 1.86 ± 0.14, respectively.   
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Figure 21. The % RMSE, MAPE and the average error for both metrics (7-day training 

window)  

 

In order to visually depict the behavior of the learning algorithm and its prediction capabilities, 

three different prediction scenarios were identified to represent the worst (Figure 22), a typical 

(Figure 23), and the best case (Figure 24).  
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Figure 22. The worst-case prediction scenario (7-day training window) 
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Figure 23. A typical case prediction scenario (7-day training window) 
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Figure 24. The best-case prediction scenario (7-day training window) 
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Chapter 4 
 

 

4. Energy Management Control Algorithms 

Realizing a smart electric grid requires intelligent control algorithms to facilitate autonomous 

interaction between a homeowner and the grid. Common optimization objectives include 

cutting cost, reducing energy consumption, or both while trying to maintain thermal comfort. 

The actions resulting from the optimization include controlling appliances, performing 

temperature setbacks, and preheating or precooling residential buildings. This chapter 

describes the development and performance of six residential EMCAs with different 

performance characteristics that were developed to control a residential heat pump and test the 

assessment framework described in Chapter 5. Each algorithm was integrated with the 

TRNSYS model of the NZERTF. The HVAC system of the NZERTF consists of an air-source 

heat pump with a dedicated dehumidification function and a heat recovery ventilator (HRV) 

[19]. The heat pump provides space conditioning while the HRV provides ventilation by 

bringing fresh air into the NZERTF. In this study, only options for controlling the heat pump 

were considered.   

Selecting the appropriate stage for operating the heat pump depends on the deviation of the 

indoor temperature from the setpoint and the time-out associated with each stage.  The heating 

and cooling setpoint temperatures are 20.5 °C and 23.89 °C, respectively. In the heating 

season, the 1st Stage is turned on when the indoor temperature, as measured by the thermostat 

in the living room, drops 0.1 °C below the heating setpoint. The 2nd Stage turns on when either 

the 1st Stage has been running for 10 min or the indoor temperature falls 1.1 °C below the 

heating setpoint. The 3rd Stage turns on when either the 2nd Stage has been running for 40 min 

or the indoor temperature drops 3.3 °C below the heating setpoint.   

In the cooling season, the 1st Stage is turned on when the indoor temperature rises 0.2 °C above 

the cooling setpoint. The 2nd Stage turns on when either the 1st Stage has been running for 40 

min or the indoor temperature rises 2.8 °C above the cooling setpoint. A TRNSYS model of 

the NZERTF was developed that implemented this control logic using several differential 

controllers [10]. The model is shown schematically in Figure 25 with the differential 

controllers highlighted. 
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Figure 25. Schematic of the TRNSYS heat pump model for the NZERTF 

Although, minor parameter adjustments can be made with the differential controllers, future 

research requirements for residential EMCAs necessitate the use of software tools that are 

flexible for developing, testing, debugging, and integrating complex and sophisticated learning 

and optimization techniques to control the operation of the heat pump. All residential EMCAs, 

for this study, were developed using a 64-bit version of MATLAB software. Using Type277 

described in Chapter 2, the NZERTF model was linked with MATLAB environment. TRNSYS 

simulated the dynamics of the NZERTF in response to the control actions generated in 

MATLAB. Figure 26 shows an instance of using Type277 replacing the differential controllers 

used in the simulation model of the NZERTF.  
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Figure 26. Schematic of the modified TRNSYS heat pump model for the NZERTF 

 

As previously mentioned, six residential EMCAs with different performance characteristics 

and control objectives were developed for use in testing a performance the AE. One algorithm 

was designed to match a real heat pump controller used in the NZERFT. A second was the 

same as the first with relaxed comfort deadbands. Four others use linear integer optimization 

with varying optimization objectives. The algorithms were compared by analyzing their 

performance over a year based on energy consumption, cost, and comfort as measured by 

predicted mean vote and percentage of dissatisfied occupants.  

 

A summary of important characteristics and parameters for the six residential EMCAs is 

presented in Table 5. The (✓,Yes) and (, No) markers are used to indicate whether an 

algorithm is single-objective, multi-objective, or limited by the upper or lower bound 

constraints. For example, residential EMCA3 used optimization, was not limited by upper and 

lower bound constraints and was multi-objective. 
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Table 5. Summary Description of Residential EMCAs 
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4.1. Default Controller 

 

In this work the logic of a Default Controller is defined. This controller is the basis for EMCA 5 

and, with relaxed deadband constraints, EMCA 6. The Default Controller is designed to 

replicate an actual controller used in the NZERTF. The optimization algorithms in the other 

cases also use this controller during learning periods and if the optimization fails to find a better 

solution. Table 6 defines key input parameters used by the Default Controller.    

 

Table 6. Default Controller Input Parameters 

Input Data Description Value [unit] Source of Data 

First floor drybulb indoor temperature (Tind) Variable [°C] Simulation Model 

Heating temperature setpoint (HSp) 20.5 [°C] User preference 

Cooling temperature setpoint (CSp) 23.9 [°C] User preference 

Heat to cooling season deadband 

(heatToCool) 

1.67 [°C] Differential controller setting 

Cool to heating season deadband 

(coolToHeat) 

1.67 [°C] Differential controller setting 

Heating 1st Stage deadband (hLSD) 0.1 [°C] Differential controller setting 

Heating 2nd Stage deadband (hHSD) 1.1 [°C] Differential controller setting 

Heating 3rd Stage deadband (hASD) 3.3 [°C] Differential controller setting 

Heating 1st Stage time-out (hLSTO) 10 [min] Differential controller setting 

Heating 2nd Stage time-out (hHSTO) 40 [min] Differential controller setting 

Cooling 1st Stage deadband (cLSD) 0.2 [°C] Differential controller setting 

Cooling 2nd Stage deadband (cHSD) 2.8 [°C] Differential controller setting 

Cooling 1st Stage time-out (cLSTO) 40 [min] Differential controller setting 

 

Figure 27 is a flowchart depicting a high-level overview of the process for selecting heat pump 

control actions 
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Figure 27. Overview of the heat pump control action selection process  

As can be seen from Figure 27, there are three main functions that enables the Default 

Controller to make heat pump control decisions. These functions are the Season Mode, Heating 

Control Decisions (HCD), and Cooling Control Decisions (CCD). At the first stage, the Season 

Mode function determines the operating season (heating or cooling). The Default Controller 

then calls either the HCD function of the CCD function to determine the next appropriate 

operating stages. 

  

The HCD function is designed to maintain the Tind close to the HSp by choosing from the three 

heating stages or turning the heat pump off. The CCD function is designed to maintain the Tind 

close to the CSp by choosing from the two cooling stages or turning the heat pump off.    

 

4.1.1. Season Mode Function 

 

The Season Mode function determines the operating season of the Default Controller. Figure 

28 is a flowchart describing the decision process.  
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Figure 28. The Season Mode function flowchart used for determining the operating season 

Figure 29 shows the resulting temperature regions. If Tind is less than the HSp or if Tind is greater 

than the HSp by an amount less or equal to the heatTtoCool deadband, then the output of the 

Season Mode function is the heating season (shaded in blue). If Tind is above the CSp or if it is 

less than the CSp by an amount less than the coolToHeat deadband, then the output of the 

Season Mode function is the cooling season (shaded in green).   

If neither of these conditions are true, there is some ambiguity about whether heating or cooling 

season is appropriate and there may be a transition between seasons. This ambiguity is resolved 

by selecting Cooling Season if Tind is closer to the Cooling Season boundary and selecting 

Heating Season if Tind is closer to the Heating Season boundary. Figure 29 depicts this 

ambiguous region (shaded in oragne).    
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Figure 29. The heating (blue), ambiguous (orange), and cooling (green) regions 

 

4.1.2. Heating Control Decision 

 

The HCD function is used to determine appropriate heat pump control actions during the 

heating season. Figure 30 is a finite state diagram that describes the behavior of the heat pump 

operation in the heating season. Using the information provided in Table 6, the HCD function 

determines the current state of the system by choosing from the three heating stages or turning 

the heat pump off. Each arrow shows the direction of transition from one state to another or to 

itself, provided that the logical condition alongside the arrow is true. TimerLow and TimerHigh 

are simple counters. They keep track of the elapsed time in 1st Stage and 2nd Stage states, 

respectively.  
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Figure 30. Finite state diagram for determining heating control actions 

 

4.1.3. Cooling Control Decisions 

 

The CCD function is used to determine appropriate heat pump control actions during the 

cooling season. Figure 31 is a finite state diagram that describes the behavior of the heat pump 

operating in the cooling season. Using the information provided in Table 6, the CCD function 

determines the current state of the system by choosing from the two cooling stages or turning 

the heat pump off. Each arrow shows the direction of transition from one state to another or to 

itself, provided that the logical condition alongside the arrow is true. TimerLow is a simple 

counter that keeps track of the elapsed time in the 1st Stage state. 
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Figure 31. Finite state diagram for determining cooling control actions 

 

4.2. Control Optimization Framework 

 

The control optimization framework realization involved developing and integrating three 

components: A Default Controller, a learning algorithm, and an optimization algorithm to 

generate heat pump control actions. These components were selected to perform specific tasks, 

but collectively they form the foundation for residential EMCA1 through residential EMCA4. 

The optimization algorithm uses indoor temperature forecast models (ITFM) to predict Tind in 

response to heat pump control actions for a given forecast horizon. The mathematical 

descriptions of the ITFMs for heating and cooling seasons are given in Sec. 4.2.1.1 and Sec. 

4.2.1.2, respectively. Application of the ITFM requires estimated values of key parameters of 

a residential house that must be learned from observation. The control optimization framework 

utilizes a learning algorithm to update these parameters using historical data.  

 

The learning algorithm is a sliding-window algorithm that was derived to forecast the next 

day’s indoor temperature profile [26], [27]. It is formulated in such a way that key design 

details of a residential house such as window size and configuration, thermal insulation, and 

airtightness that effect heat loss and solar heat gain are combined into effective parameters that 

can be learned from observation. The sliding-window of learning data accounts for both 

seasonal variations in the sun position and daily cloud cover fluctuations. Using measurement 

data from the NZERTF, it was determined that a training window size of seven days produced 

good results for forecasting Tind [26], [27]. Therefore, during the first week of the simulation, 

the Default Controller is used to generate heat pump control actions, while data needed for the 

learning algorithm is being stored. The Default Controller is also used for one week before the 

end of the simulation to prevent abrupt termination of the simulation for not having sufficient 
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data to accommodate the learning algorithm’s sliding-window requirement. Once the 

simulation time step moves beyond the first week but has not reached the week before the end 

of the simulation, the control optimization framework immediately runs the learning algorithm. 

The learning algorithm is triggered because sufficient data has been collected to satisfy the 

seven-days requirement. After the initial run, the learning algorithm is triggered only once 

every day at the beginning of the day to update parameters with the data from the new seven-

day window. This continues until the simulation time step reaches the one week before the end 

of the simulation when there is no longer seven days of data to process. 

 

The optimization algorithm uses the ITFMs to forecast the indoor temperature for a given 

forecast horizon. The optimization algorithm is only triggered based on the size of the forecast 

horizon. For example, if the size of the forecast horizon is 60 min, then the optimization 

algorithm is triggered at every hour. The number of forecasted control actions are also 

determined by the length of the forecast horizon. The control optimization framework is 

designed to account for situations where the optimization algorithm cannot find a feasible 

solution. If the solution is infeasible, then the control reverts to the Default Controller. This 

condition persists until the optimization algorithm runs again.  If the solution is feasible, it 

outputs the forecasted control actions for the current simulation time step and stores the 

remaining forecasted control actions for subsequent calls to the framework. In subsequent time 

steps before the optimization algorithm runs gain, previously found forecasted control actions 

are used. Figure 32, is a flowchart depicting this process graphically. 

 

Residential EMCA1 though residential EMCA4 are modeled as pure integer optimization 

problems and implemented in YALMIP [28], a modeling and optimization toolbox developed 

for MATLAB.  The optimization problems were solved by applying the linear integer 

programming algorithm (intlinprog) from MATLAB’s optimization toolbox [29]. The 

intlinprog algorithm is simulated with its default settings except for the MaxTime, which is the 

maximum time that intlinprog runs to find a solution. The default value for MaxTime is 7200 s, 

which can prohibit a year-long simulation to complete in a reasonable time. In this study, the 

value for MaxTime was set to 300 s.   
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Figure 32. The control optimization framework flowchart, describing the process of obtaining 

heat pump control actions 

 

The following subsections involve describing the development process of the optimization 

algorithm. A description of the optimization algorithm falls into two main categories: the single 

objective and multi-objective optimization problems. Detailed description of the Default 

Controller was provided in Sec. 4.1 of this document. Detailed description of the learning 

algorithm is given in Ch. 3 and published in [26], [27].  

 

4.2.1. Optimization Algorithms 

 

Realization of the optimization algorithm involved developing a common structure for solving 

both single and multi-objective optimization problems. The common structure implementation 

involves two main functions: the optimization heating controller (OHC) and the optimization 

cooling controller (OCC). Figure 33 describes the process of generating forecasted heat pump 

control actions.    
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Figure 33. The process for obtaining forecasted heat pump control actions in both heating and 

cooling seasons 

 

The OHC and OCC functions utilize the ITFMs, objective function and constraints, and the 

intlinprog solver to obtain forecasted heat pump control actions. The optimization problem is 

formulated in such a way that the solver is selecting control actions such that the overall value 

of the objective function is minimized while constraints are satisfied. The selected operating 

state is used in the ITFMs to forecast Tind. The output of the OHC and OCC functions is a 

vector of forecasted heat pump control actions for the forecast horizon. In addition, the 

application of OHC and OCC functions also require forecasted data to predict heat pump 

control actions (Table 7).  
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Table 7. Forecasted Data Needed for Predicting the Indoor Temperature 

Forecasted Data Description 

Solar irradiance (W/m2) Derived from an hourly 2013 typical 

meteorological year (TMY3) weather data 

file collected at the Dulles International 

Airport. 

Plug-loads (W) The values for forecasted plug-loads were 

known through a fixed occupancy schedule 

used in the operation of the NZERTF and 

described in [14]. 

Ambient outside dry-bulb temperature, 

T∞ (°C) 

Derived from the hourly 2013 TMY3 

weather data file collected at the Dulles 

International Airport. The same TMY3 

weather file was used for simulating the 

NZERTF model in TRNSYS [10]. 

Real-time price (RTP) The RTP tariff was derived from the 

day-ahead wholesale hourly price of 

electricity from a regional transmission 

organization, the Pennsylvania-New Jersey-

Maryland Interconnection (PJM). The RTP 

tariff data was from January 2013 to 

December 2013. The day-ahead wholesale 

price was scaled to generate a forecasted 

retail RTP tariff, resulting in an average of 

15 ¢/kWh. The average cost of consuming 

energy in a residential home in Gaithersburg, 

Maryland is approximately 15 ¢/kWh (that 

includes the transmission, distribution, taxes, 

and fees). 

Heat pump thermal capacity (E) and 

electrical power (P) 

The values of E (Btu/h) and P (W) for 

heating and cooling seasons are obtained 

from equations in Sec. 4.2.1.1 and Sec. 

4.2.1.2, respectively. The E and P equations 

used in this study were derived from 

measurement data obtained from the 

operation of the NZERTF [30]. In general, 

the capacity of a heat pump to deliver 

thermal energy and electrical power is a 

strong function of T∞. The association 

between T∞ and the output of an E and P 

equations can be characterized by a linear 

relationship. 

 

The ITFMs use linear correlations of heat pump thermal capacity and power consumption as 

a function of outdoor temperature to predict Tind and to account for the power consumption in 

the objective function of the optimization algorithms. 
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4.2.1.1. Components of OHC 

The heat pump thermal capacity and electrical power consumption for the 1st Stage and 

2nd Stage operation during the heating season are defined as 
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  (1.33) 

where: 

Eh1 and Eh2 are thermal capacities in (Btu/h);  

Ph1 and Ph2 are electrical power in (W); and 

T∞ is in °F. 

 

Note that, because the correlations were developed using degrees Fahrenheit and Btu/h, some 

unit conversions are necessary to apply the result in the IFTM. 

 

The ITFM utilizes a discrete form of the first order lumped capacitance model for forecasting 

Tind given in Eq. (1.13). The value of qhp in Eq. (1.13) is the sum of the three heat pump stages 

(qhp = Eh1 + Eh2 + Eh3). Recall that the 3rd Stage heating capacity (Eh3) is a 10 kW electric 

resistance element. Substituting the heat pump stages for qhp in Eq. (1.13) gives the one-step 

ITFM for the heating season, expressed as 
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  (1.34) 

 

 

4.2.1.2. Components of OCC 

 

The E and P equations and the ITFM used in the cooling season are described below. The heat 

pump thermal capacity and electrical power for the 1st Stage and 2nd Stage are Ec1, Ec2, Pc1, and 

Pc2, respectively. These equations are expressed as 

 

 
1

2

1

2

79.593 25259

94.151 32471

16.32 105.6

19.331 438.57,

c

c

c

c

E T

E T

P T

P T









   

   

  

  

 (1.35) 

where: 

Ec1 and Ec2 are thermal capacities in (Btu/h); 

Pc1 and Pc2 are electrical power in (W); and 

T∞ is in °F. 
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To forecast the indoor air temperature of the NZERTF, the OCC function utilizes the modified 

version of Eq. (1.34) because in the cooling season thermal energy is removed from the model 

instead of added. The one-step ITFM for the cooling season is expressed as 
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The information obtained from Sec. 4.2.1.1 and Sec. 4.2.1.2 are used to develop the objective 

functions and constraints describing the single-objective optimization problems for residential 

EMCAs in Sec. 4.2.1.3 and multi-objective optimization problems in Sec. 4.2.1.4. 

 

 

4.2.1.3. Single objective Optimization 

Residential EMCA1 and residential EMCA2 are single-objective optimization problems. The 

optimization objectives are to minimize energy consumption and cost, respectively.  

 

4.2.1.3.1. Optimization Problem for Residential EMCA1 

 

The objective function of the residential EMCA1 is formulated in such a way that it attempts 

to minimize energy consumption of the heat pump over the forecast horizon given in Table 5. 

The objective function for residential EMCA1 is expressed by  
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where:  

m represents the number of stages of the heat pump, (m = 3) in the heating and (m = 2) 

in the cooling season [unit less]; 

k represents the discrete simulation time steps [min]; 

n represents the forecast horizon given in Table 5 [min]; 

u represents the binary decision variable [unit less], and at each simulation time step it 

is defined as  

 
1,  if a heat pump stage is selected

0,  otherwise;
u





  

P represents the electrical power associated with each stage of the heat pump [W]; and 

w represents heat pump stage weight factors [1/W]  described in Sec. 4.2.1.3.1.1. 

 

Practical implementation of Eq. (1.37) requires a set of constraints, enabling the optimization 

solver to minimize energy consumption, maintain thermal comfort, and consider equipment 

efficiency and longevity.  These constraints are described below. 
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Only one stage of the heat pump to be activated at a time. This constraint is given by 

 

 , 1

1

1, [2, ]
m

i k

i

u k n



   .  (1.38) 

 

The solver must not be allowed to arbitrarily cycle the heat pump on and off at each simulation 

time step because it can adversely affect its efficiency and longevity. To prevent such cycling, 

each stage i of the heat pump has a minimum on-time Ui and a minimum off-time Di constraint. 

Thus, if stage i is off at k-1 and turned on in time step k, then it must remain on until time step 

k + Ui – 1 [28]. Similarly, if stage i is on at k-1 and turned off in time step k, then it must 

remain off until time step k + Di – 1 [28].  The minimum on-time constraint is given by the 

following linear inequalities 
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where: 

 u, m, n, and k were described in Eq. (1.37); and 

 U represents the vector of minimum on-times for each stage of the heat pump [min]. 

 

The minimum off-time constraint is given by the following linear inequalities 
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 (1.40) 

where: 

D represents the vector of minimum off-times for each stage of the heat pump [min]. 

 

The minimum on-time and off-time constraints of residential EMCA1 in the heating season 

are U = [10, 10, 5] and D = [5, 5, 5], and in the cooling season are U = [10, 10] and D = [5, 

5] minutes. The entries in U and D vectors correspond to the first, second, and third (heating 

only) stages of the heat pump, respectively.  

 

The optimization problem is further constrained such that the forecasted Tind must remain 

between an arbitrary defined lower bound and the HSp in the heating season, and the CSp and 

an arbitrary selected upper bound in the cooling season. The values for HSp and CSp as well as 

the upper and lower bounds are given in Table 5. These constrains are given by 
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,
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CS T ub
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 
 (1.41) 

where: 

lb represents the Tind lower bound [°C]; and 

ub represents the Tind upper bound [°C]. 

 

 

4.2.1.3.1.1. Weight Factors 

 

The weight factors are applied to Eq. (1.37) to reduce the average solution time of the 

optimization solver. The optimization solver time is the amount of time in seconds that the 

intlinprog algorithm, on average, used to solve the optimization problems and generate heat 

pump control actions. The weight factors are formulated in such a way that using the 2nd Stage 

of heat pump is prioritized over the 1st Stage in both heating and cooling seasons. In the heating 

season, the 3rd Stage is prioritized the least because it is the least efficient mode of operation.  

 

For the heating season, at each simulation time step they are defined as  
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  , where w1 is the weight factor for the 1st Stage [1/W]; 
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 , where w2 is the weight factor for the 2nd Stage [1/W];  

 3
1 2 3

1
min , ,h h h

w
P P P

 , where w3 is the weight factor for the 3rd Stage [1/W]; and  

 

for the cooling season, they are defined as 

 

 1
1 2

1
,c c

w
mean P P

  , where w1 is the weighting factor for the 1st Stage [1/W]; and 

 2
1 2

1
max ,c c

w
P P

 , where w2 is the weighting factor for the 2nd Stage [1/W]. 

 

 

4.2.1.3.2. Optimization Problem for Residential EMCA2 

 

The objective function of the residential EMCA2 is formulated in such a way that it attempts 

to minimize the cost of energy consumption of the heat pump over a forecast horizon of one 

day. The objective function for residential EMCA2 is expressed by 
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where: 
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 m, k, n, u, and P are previously defined in Eq. (1.37); and 

x represents the vector of normalized values of the price of electricity [unit less], and is 

given by  

 
, [ , ]

max
e

e
e

p
x p k n

p
   , where pe is a vector of price of electricity in [¢/kWh]; 

w represents heat pump stage weight factors [1°C/W]. 

 

In the heating season the weight factors are defined as 
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  , where w1 is the weigh factor for the 1st Stage; 
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 , where w2 is the weight factor for the 2nd Stage; and 
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1 2 3

1
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 , where w3 is the weight factor for the 3rd Stage.  

 

In the cooling season the weight factors are defined as 
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1
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Cw
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  , where w1 is the weighting factor for the 1st Stage; and 

 
 2

1 2

1
max ,c c

Cw
P P

 , where w2 is the weighting factor for the 2nd Stage. 

 

Unlike residential EMCA1, no preferential treatment for a particular stage was considered in 

Eq. (1.42). Normalizing the price and power consumption stages of the heat pump are not 

necessary to solve the optimization problem. It is an implementation preference to obtain 

unitless objective function and create a common structure for reusability in multi-objective 

optimization algorithms.   

 

Practical implementation of Eq. (1.42) requires a set of constraints, enabling the optimization 

solver to minimize the cost of energy consumption, maintain thermal comfort, and consider 

equipment efficiency and longevity.  Mathematical descriptions of these constraints are 

identical to the descriptions given for the residential EMCA1 in Eq. (1.38) to Eq. (1.41).  

 

The objective or residential EMCA2 is to minimize the cost of operating the heat pump using 

the RTP tariff. A forecast horizon of one day was chosen for this algorithm to take advantage 

of the full range of variability in the structure of the RTP tariff. Since the optimization problem 

is defined over one day, it is computationally difficult for the optimization solver to forecast 

heat pump control actions for each simulation time step in a reasonable amount of time. 

Therefore, the forecast horizon was divided into 60 bins, each bin holding 24 min of data. 

Average values of all forecasted variables in each bin was computed and used as a 

representative sample. This effectively reduced the forecast horizon to 60 min, which is 

computationally less time consuming.  Since the new forecast horizon is 60 min, the output of 

the optimization solver is also a vector of length sixty.  Each element of the vector represents 

24 forecasted control actions. For example, if the first element of the output vector is the 2nd 
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Stage, then in the 2nd Stage is simulated for the next 24 min. For this reason, the values for the 

minimum on-time and off-time constraints in residential EMCA2 are set to unity. More 

explicitly, in both heating and cooling seasons the values for minimum on-time and off-time 

constraints are U = [1, 1, 1] and D = [1, 1, 1], and U = [1, 1] and D = [1, 1] minutes, 

respectively.  

 

4.2.1.4. Multi-Objective Optimization 

Residential EMCA3 and residential EMCA4 are multi-objective optimization problems. The 

objectives of these control algorithms are to maintain a balance between thermal comfort and 

minimize the cost of energy consumption of the heat pump over a forecast horizon of 4 h. The 

following subsections discuss the objective functions and constraints of residential EMCA3 

and residential EMCA4. 

 

4.2.1.4.1. Optimization Problem for Residential EMCA3 

 

The objective function of the residential EMCA3 is expressed by 
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Note that the objective function defined in Eq. (1.43) contains a non-linear term, the absolute 

value of Tind minus the indoor temperature setpoint. In its current form, it cannot be solved 

using linear optimization methods. Application of linear programming requires that the 

objective function and all its constraints are expressed in a linear form. To linearize the 

objective function given in Eq. (1.43), the absolute value term is replaced with a variable Z in 

the objective function and adding two additional linear constraints to the problem definition. 

The linear form of the objective function is given by  
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where: 

m, k, n, u, and P are previously defined in Eq. (1.37); 

λ is a value between 0 and 1 that represents the relative dominance between comfort 

and cost [unit less, fixed at 0.45]; 

x is previously defined in Eq. (1.42); 

w represents heat pump stage weight factors described in Sec. 4.2.1.3.1.1 with one 

minor difference of having units of [°C/W] similar to the residential EMCA2. 

 

The linear constraints replacing the absolute value term of the objective function are expressed 

as 
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where Z has a unit of [°C].  
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Together with linear constraints of Eq. (1.45), practical implementation of Eq. (1.43) requires 

a set of constraints, enabling the optimization solver to minimize energy consumption, 

maintain thermal comfort, and consider equipment efficiency and longevity.  Mathematical 

descriptions of these constraints are identical to the descriptions given for the residential 

EMCA1 in Eq. (1.38) to Eq.(1.40). In residential EMCA3, there are no upper and lower bound 

constraints because the thermal comfort term is explicitly defined in the objective function. 

The values for U and D vectors in residential EMCA3 are identical to values given for 

residential EMCA2. 

 

4.2.1.4.2. Optimization Problem for Residential EMCA4 

 

The mathematical description of the optimization problem of residential ECMA4 is identical 

to the formulation of residential EMCA3 including all constraints. The only difference is the 

value of the dominance factor λ = 0.55 instead of λ = 0.45 given for residential EMCA3.  

 

The results of applying residential EMCA1 through residential EMCA6 for managing the heat 

pump operation of the NZERTF are presented in Appendix A through Appendix G.  
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Chapter 5 

 

Disclaimer: The material presented in this chapter has previously been published in: 

 

1. F. Omar, S. T. Bushby, and R. D. Williams, “Assessing the Performance of 

Residential Energy Management Control Algorithms: Muti-Criteria Decision Making 

Using the Analytical Hierarchy Process,” NIST Tech. Note 2017, 2018. 

 

Credit to my co-authors:  

1. Steven T. Bushby, National Institute of Standards and Technology, 

steven.bushby@nist.gov 

2. Ronald D. Williams, University of Virginia, rdw@virginia.edu 

 

5. Assessment Engine 

The assessment framework realization is the core of this research project. Every component of 

the reCAAT was developed to support this process. The main challenge in creating the 

assessment framework is developing a methodology that can effectively compare different 

residential EMCAs and rank them with respect to a set of user defined preferences and goals. 

This chapter discusses the development of the assessment methodology and its implementation 

in the AE.   

 

There is an extensive literature describing approaches for comparing residential EMCAs. A 

unifying theme throughout the literature is centered on comparing the performance of proposed 

residential EMCAs on energy cost savings [31]–[36], energy savings [33], [35], [37], [38], 

peak load reduction [31], [32], [35], [39], and thermal comfort [33], [35], [37] to an established 

baseline. In [40] the authors proposed a data-driven framework for comparing the energy 

performance of residential thermostats controlling central HVAC systems. Using thermostat 

field data, the proposed framework applied different assessment techniques to separately 

consider behavioral attributes (setpoint-related) from non-behavioral attributes such as HVAC 

control strategies and fault detection and diagnostics (FDD). Setpoint-related energy impacts 

were evaluated from a data-driven method using a building simulation model, while HVAC 

and FDD control impacts were determined using traditional testing methods such as field 

experiments. The results were integrated to determine typical energy performance of 

residential thermostats relative to a specified baseline. The baseline was a fixed seasonal 

temperature that a typical homeowner would prefer to maintain if setbacks were not available. 

Using historical data, a user’s preferred baseline was determined from seasonal hourly 

setpoints by calculating the 90th percentile value for heating season and 10th percentile value 

for the cooling season. 

However, little has been reported on a comprehensive framework for assessing the 

performance of residential EMCAs considering multiple objectives and users’ subjective 

preferences simultaneously. Developing a comprehensive framework requires the use of a 

multi-criteria decision-making mechanism that can handle both subjective preferences from 

users and objective analyses from performance data generated because of using residential 

EMCAs. A few examples of using such a hybrid mechanism (subjective and objective 

mailto:steven.bushby@nist.gov
mailto:rdw@virginia.edu
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analyses) have been given in the literature. The authors in [41], [42] presented an assessment 

framework based on the Analytical Hierarchy Process (AHP) that combines subjective 

analyses from expert judgments with objective data derived from analytical methods to rank 

alternatives. The assessment framework in [41] was used to choose the best sustainable 

building envelope design among alternatives, while in  [42] a case study was presented for 

choosing the best HVAC system design for a building. The decision was informed by 

incorporating uncertainty analysis into selecting building design parameters.  

Although the frameworks presented in [41], [42], in concept, are similar to the work described 

in this study, the domain of the problems are fundamentally different. The objective of [41], 

[42] was to make design decisions, but the main objective of this study is to develop an 

assessment framework capable of comparing and ranking different residential EMCAs. 

Assessing the performance of residential EMCAs is a multi-criteria decision making problem 

because multiple and conflicting objectives (such as minimizing cost while maintaining 

comfort or other user preferences) apply simultaneously.  

Unlike prior studies, the proposed framework will: 

1. Provide a systematic mechanism for comparing the overall performance of residential 

EMCAs in terms of energy consumption, cost, and comfort while actively allowing 

users to interact with the framework to capture the impact of their preferences on the 

ranking and decision making; 

2. Provide an algorithm for mapping quantitative performance data to the comparison 

scale of the AHP and consequently creating a matrix of pairwise comparison (MPC); 

and 

3. Calculate all relative weights (priorities) for both subjective (user’s preferences) and 

objective performance data using the methodology described in the AHP framework.  

To implement the proposed framework, an AE was developed as shown schematically in 

Figure 34. The AE incorporates subjective and objective analyses, deriving priorities from 

user’s input and performance data resulting from different residential EMCAs. It performs the 

evaluation and ranking of residential EMCAs using AHP. A case study of the proposed AE, 

applied to six residential EMCAs described in Chapter 4, is presented. 
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Figure 34. A schematic representation of the assessment process 

 

5.1. Analytical Hierarchy Process 

 

AHP is a multi-criteria decision-making (MCDM) method developed by Saaty [43]. It has been 

commonly used in solving decision-making problems that consider both quantitative and 

qualitative analysis [41], [42], [44], [45].  A comprehensive review of the application of AHP 

to planning, choosing among alternatives, allocating resource, etc., is presented in [46]. The 

American Society for Testing and Materials (ASTM) Standard E1765 documents a procedure 

for applying AHP to investments related to buildings and building systems [47]. The main 

principles of the AHP are hierarchy, pairwise comparison, and principle eigenvector. AHP 

decomposes a MCDM problem into a hierarchy to handle its numerous or multi-faceted criteria 

and to keep the number of pairwise comparisons manageable [45]. The goal (objective) of the 

problem is placed at the top of the hierarchy. The alternatives are positioned at the bottom of 

the hierarchy, while the criteria and sub-criteria occupy the intermediate levels. To illustrate 

this, consider a hypothetical example of a couple that is purchasing a house. The couple 

decided to use the AHP and follow its prescribed steps to achieve their goal. At the first step, 

they have determined their goal. The goal is to find the house that best suits their needs. At the 

second step, they have identified the three most important criteria (building size, location, and 

price) for selecting their desired home. At the third step, they identified three existing homes 

(alternatives) labeled as H1, H2, and H3.  Figure 35 shows the decomposition of this 

hypothetical problem into a hierarchical arrangement. Each line shows a relationship between 

an alternative and the criterion above it, or the relationship between the criterion and the goal. 

These relationships are mathematically represented by priorities, for example, PH1,Size is the 

priority of the alternative H1 with respect to the criterion Size and PSize,Goal represents the 

priority of the criterion Size to the Goal. 
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Figure 35. Decomposition of the hypothetical problem of purchasing a house into a hierarchy 

 

At the fourth step, the couple needs to build an MPC (decision matrix) for comparing criteria 

to each other with respect to the goal of purchasing a house. Each element of an MPC is created 

by comparing one criterion with another criterion i.e., Size (activity i) is compared with 

Location (activity j). To create an MPC, the couple must first judge which criterion is more 

desirable with respect to reaching their goal. After much discussion, the couple expresses their 

subjective judgments (expert knowledge) as follows: 

 

1. Location of the house is strongly preferred over the size of the house because of a desire 

to be near schools and shopping centers; 

2. Price of the house is slightly preferred over the size of the house because the budget is 

fixed; and 

3. Location of the house is slightly preferred over the price of the house because of a 

desire to be near schools and shopping centers.  

 

AHP enables the couple (decision makers) to translate their preferences (subjective judgments) 

into precise numbers using a 1-9 numerical scale shown in Table 8.    

  



61 

 

Table 8. The AHP Fundamental Scale, Adapted from Table 3-1 p. 54 of [43]  

The Fundamental Scale for Pairwise Comparisons 
Intensity of 

Importance 
Definition Explanation 

1 Equal importance 
Two activities contribute equally to the 

objective 

3 
Weak importance of 

one over another 

Experience and judgment slightly favor 

one activity over another 

5 
Essential or strong 

importance 

Experience and judgment strongly favor 

one activity over another 

7 

Very strong or 

demonstrated 

importance 

An activity is favored very strongly over 

another; its dominance demonstrated in 

practice 

9 Absolute importance 

The evidence favoring one activity over 

another is of the highest possible order of 

affirmation 

2,4,6,8 

Intermediate values 

between adjacent scale 

values 

When compromise is needed 

 

Using AHP’s fundamental scale, the couple translated their subjective preferences into 

numeric values as shown in Table 9. For example, since the location of the house is strongly 

preferred over its size, the table entry for the intersection of the Location row and Size column 

is assigned the value 5, indicating that location is five times more important than size. The 

inverse value, 1/5, is assigned to the table entry for the intersection of the Size row and 

Location column. The couple translates all preferences to numerical values in a similar manner. 

 

Table 9. Criteria compared with respect the Goal for purchasing a house  
Size Location Price 

Size 1 1/5 1/3 

Location 5 1 3 

Price 3 1/3 1 

 

At the fifth step, the couple needs to build an MPC for comparing alternatives to each other 

with respect to each criterion. Each element of an MPC is created by comparing one alternative 

with another alternative i.e., H1 (activity i) is compared with H2 (activity j). To create an MPC, 

the couple must first judge which alternative is more desirable with respect to the criterion that 

is being considered i.e., Size. After much discussion, the couple expresses their subjective 

judgments as follows: 

 

1. H1 is very strongly preferred over H2 because it meets the space requirement of our 

family; 
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2. Although H1 and H3 meets the space requirement, the bathroom in H3 is somewhat 

smaller so H1 is strongly preferred over H3; and 

3. H3 is slightly preferred over H2 because the kitchen is somewhat bigger.  

 

Using the procedure highlighted in the step four, the couple forms the following MPC for 

comparing alternatives with respect to the criterion Size: 

 

Table 10. Alternatives compared with respect the criterion Size  
H1 H2 H3 

H1 1 7 5 

H2 1/7 1 1/3 

H3 1/5 3 1 

 

The MPCs for comparing alternatives with respect to Location and Price criteria are obtained 

in a similar manner. In general, the result of pairwise comparisons between activity i and 

activity j are stored in an MPC (n-by-n matrix) of the form 
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where aij is the numerical representation of the quantified judgments on pairs (activity i, 

activity j) for all activities (i, j = 1, 2, …, n) [43] where i denotes a row and j denotes a column 

entry of the matrix A. The diagonal of the matrix A is equal to one because activity i is always 

as important as itself. The activities below the diagonal are the reciprocal values of the 

corresponding activities above the diagonal because if activity i is four times as important as 

activity j, then activity j is one fourth as important as activity i. More explicitly, the following 

rules adapted from [43] define the aij entries: 

 

Rule 1. If aij = σ then aji = 1/ σ, σ ≠ 0; and 

Rule 2. If activity i is judged to be of equal relative importance as activity j, then aij = 1, aji = 1, 

and aii = 1 for all i. 

 

Once the judgments are recorded in the matrix A, AHP uses the principle eigenvector method 

to derive priorities or weights (normalized to sum to one) for the criteria and alternatives. It 

also uses the principle eigenvalue, λmax, to check for consistency between pairwise 

comparisons. The eigenvalue/eigenvector in matrix notation is given by 

 

 maxAw w ,  (1.46) 

where: 

A is the reciprocal matrix with entries aij for all (i, j = 1,2, …, n); 

w is the eigenvector; and  
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λmax is the principle eigenvalue. 

 

If the judgments in the matrix A are perfectly consistent, then the value of λmax is equal to n 

(number of activities). In AHP, the deviation from consistency is a violation of proportionality 

[43] and shows an inherent possibility of bias and errors in the judgements [45]. Two metrics 

are recommended in [43] as measure of the consistency of pairwise comparisons, the 

consistency index (CI) and consistency ratio (CR). CI is the difference between the principle 

eigenvalue and n, and is mathematically defined as (λmax -n)/(n-1). CR is a measure of the 

goodness of CI and it is defined as CI/RI. The random index RI, is an average CI of randomly 

generated reciprocal matrices [43] as shown in Table 11. A CR of 10 % or less is desirable, 

indicating good judgments when activities are pairwise compared. 

     

Table 11. The Average RI for Matrices of Order 1-15, Adopted from p. 21of [43] 

Matrix 

Order 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Average 

RI 
0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59 

 

The final step in AHP is to calculate the overall score for each alternative with respect to the 

goal. Consider the hierarchical arrangement of the hypothetical problem of purchasing a house 

with three levels: the goal, criteria, and alternatives. Let wg represent the vector of priorities 

derived for each criterion with respect to the goal (that is, the principal eigenvector of the MPC 

for the goals), and m be the number of criteria. Let pa represent the vector of priorities derived 

for an alternative with respect to criteria in the level above it (that is, the principal eigenvector 

of the MPC for each of the criteria). The overall score for alternative a (Sa) with respect to the 

goal is computed by 

 
1

( ) ( )
m

a a

k

S p k wg k


 .  (1.47) 

Using Eq. (1.47), the overall scores for all alternatives are computed. The sum of priorities at 

each level of the hierarchy must equal one. The alternative with the highest score is the most 

desirable one. Applying these definitions to the hypothetical problem of purchasing a house, 

give us the following results: 

 
[0.11,0.63,0.26]

[0.73,0.08,0.19],size

wg

p




   

where: 

wg is the vector of priorities derived for each criterion with respect to the Goal and is 

computed from the MPC shown in Table 9; and 

psize is the vector of priorities derived for each alternative with respect to the criterion 

Size from the MPC shown in Table 10. 

 

The vector of priorities for each alternative with respect to the criteria Location and Price are 

obtained in a similar manner as psize. These priorities are given below: 
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[0.16,0.59,0.25]

[0.25,0.50,0.25],

location

price

p

p




  

where: 

plocation is the vector of priorities derived for each alternative with respect to the criterion 

Location; and 

pprice is the vector of priorities derived for each alternative with respect to the criterion 

Size. 

 

Therefore, the vector of priorities for each alternative with respect to the criteria is given by 

 

 

H1

H2

H3

[0.73,0.16,0.25]

[0.08,0.59,0.50]

[0.19,0.25,0.25],

p

p

p







  

 

The relationship between alternative houses, criteria, and the goal of purchasing a house are 

shown in Figure 36.  

 

 
 

Figure 36. Summary figure showing the relationship between alternatives, criteria, and the 

goal using priorities for one alternative 

 

Applying Eq. (1.47) to the derived priorities, the overall scores for each alternative with respect 

to the Goal is given in Table 12.  For example, the overall score for H1 is computed by 
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Table 12. The overall scores of alternatives for purchasing a house 

Alternatives Overall Score (Sa) 

H1 0.25 

H2 0.51 

H3 0.24 

 

Based on the overall scores in Table 12, the most desirable outcome for the couple is to 

purchase the second house (H2).  
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5.2. Problem Hierarchy Assessing EMCAs 

 

The proposed AE splits the problem of assessing the performance of residential EMCAs into 

a three-level hierarchy: the goal, criteria, and alternatives as shown in Figure 37. 

 

 
 

Figure 37. The assessment problem hierarchy showing the relationship of the alternatives to 

the criteria and the goal 

 

The goal is to identify the best alternative given the user’s preferences and the performance 

data resulting from the use of residential EMCAs. Energy, cost, and comfort were selected as 

the criteria because they can be controlled by a residential EMCA and have a significant impact 

on the overall well-being of the occupants and because they can help utilities with peak demand 

reduction. The main objective of developing the residential EMCAs was to create a diverse set 

of realistic operating scenarios for the AE to evaluate and rank. 

 

5.3. The AE User Interface 

 

The AE utilizes subjective preferences (inputs from a user) and objective performance data 

(generated in response to the use of a residential EMCA) to perform pairwise comparisons and 

ultimately help users select the best alternative among all alternatives. The AE user interface 
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(AEUI), shown in Figure 38, was developed to capture user’s preferences and obtain/process 

performance data. In its current form, users can perform the following tasks:  

 

1. Import up to six hourly and minutely performance data files;  

2. Solicit a user’s preferences (expert knowledge or judgments) for pairwise comparison 

of energy, cost, and comfort; and 

3. Perform an overall ranking of the residential EMCAs with respect to the goal. 

 

Additionally, the AEUI provides a set of diagnostic analyses and plots comparing the 

residential EMCAs with respect to a base case. Any residential EMCA can be used as a base 

case. The diagnostic analyses can be used as a benchmarking tool, independent of the 

assessment and ranking.   

 

 
 

Figure 38. The AE user interface captures user's input, loads performance data, and performs 

ranking 

 

5.4. Priorities from User’s Judgments 

 

Using a user’s input, the AE computes the relative priorities of the criteria with respect to the 

goal. A user uses the AHP’s fundamental scale shown in Table 8 to express his/her desire (or 

expert judgment) for comparing two criteria in pairs. For example, when the cost criterion is 

favored very strongly over the energy criterion, the user would enter 0.1429 (1/7) in the Energy 
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vs. Cost input field. However, if the cost criterion is slightly favored over the comfort criterion, 

the user would enter 3 in the Cost vs. Comfort input filed. The User’s Input fields shown in 

Figure 39 captures these preferences.  

 

 
 

Figure 39. User's Input fields capturing preferences between criteria 

 

Using the provided preferences, the AE forms the corresponding MPC for pairwise 

comparisons between selected criteria as shown in Table 13. 

 

Table 13. MPC between Criteria 
  Energy Cost Comfort 

Energy 1 0.1429 0.2 

Cost 7 1 3 

Comfort 5 0.3333 1 

 

From this user input, the AE uses the AHP’s principle eigenvector method to compute the 

relative priorities of each criterion with respect to the goal and the consistency of a user in 

judging the intensity of importance when the criteria were compared in pairs. The results from 

the user input shown in Table 13 are summarized in Table 14. 

 

Table 14. Priorities and Consistency metrics 

Criteria and consistency metrics Priorities and consistency 

Energy 0.07 

Cost 0.65 

Comfort 0.28 

λmax 3.07 

CI 0.03 

CR 0.06 

 

For this example, cost is the most important factor for the decision maker followed by comfort 

and energy. Recall from Table 11 that for a matrix of order 3, the CR value of 6 % indicates 

that the decision maker was consistent in providing subjective judgments. 
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5.5. Calculating Energy, Cost, and Comfort 

 

Using the performance data, the AE calculates the total energy consumption, total cost, and a 

discomfort index for each residential EMCA. These calculations, collectively, form the basis 

for computing the relative priorities of each alternative EMCA with respect to each criterion.   

 

5.5.1. Energy 

 

The total energy consumption is computed by 

 

 
,

1

for 1,...,
H

total k h

h

E e k n


  ,  (1.48) 

where:  

n is the number of alternatives (six residential EMCAs in this case); 

H is the number of hours (i.e., 8760 h for one year); and  

eh is the energy consumed by the HVAC unit in hour h [kWh].  

 

 

5.5.2. Cost 

 

The cost of consuming energy is computed by 

 

 
,

1

 for 1,...,
H

total k h h

h

C e p k n


   ,  (1.49) 

where: 

H, eh and n are the same as described in Eq. (1.48); and  

ph is the RTP tariff in hour h [¢/kWh]. 

 

The RTP tariff was derived from the day-ahead wholesale hourly price of electricity from PJM. 

The data is from January 2013 to December 2013. The day-ahead wholesale price, shown in 

Figure 40, was scaled to generate a forecasted retail RTP structure, resulting in an average of 

15 ¢/kWh. The average cost of consuming energy in a residential home in Gaithersburg, 

Maryland is approximately 15 ¢/kWh (including transmission, distribution, taxes, and fees). 
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Figure 40. The hourly RTP tariff used to compute the cost of energy consumption 

 

5.5.3. Comfort 

 

Many long-term discomfort indices that evaluate the thermal response of humans to changes 

in indoor climatic conditions have been reported in the literature and standards. A review of 

these indices, their strengths and weaknesses are documented in [48]. In this study, a 

discomfort index was chosen that produced a single value, was based on well-known thermal 

comfort standards, and considered both the duration and severity of the thermal discomfort. 

The AE computes the long-term discomfort index using a methodology that is based on 

predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD). The methodology 

for computing the long-term index is the PPD-weighted criterion (PPDwc)  documented in 

Method C of International Organization for Standardization standard 7730 (ISO 7730) [49] 

and summarized in [48]. This measure of discomfort index is described as “the time during 

which the actual PMV exceeds the comfort boundaries is weighted with a factor that is a 

function of the PPD” [49].  

 

5.5.3.1. Calculating PMV and PPD 

The PMV index is the mean value that predicts the response of a large group of people on the 

seven-point thermal sensation scale defined in [49], [50] and shown in Table 15. 
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Table 15. Seven-point Thermal Sensation Scale 

+3 Hot 

+2 Warm 

+1 Slightly warm 

  0 Neutral 

-1 Slightly Cool 

-2 Cool 

-3 Cold 

 

Using heat balance principles, the PMV index relates key primary thermal factors such as 

metabolic rate, clothing insulation, air temperature, radiant temperature, air speed, and 

humidity to the thermal sensation scale in Table 15. Many assumptions must be made about 

some of the inputs for calculating PMV, including that the difference between Tair and Tmrt is 

negligible. This assumption is common in previous indoor climate studies [51], [52]. Table 16 

shows the input values used in this study to calculate PMV.   

 

Table 16. Assumed Values for Calculating PMV  

Input data (unit) Assumed Value 

Clothing (clo) 

 

Summer months (May, 

June, July, August, 

September) 

0.36 (Walking shorts, 

short-sleeve shirt [50]) 

Other months 0.6 (Trousers, long-

sleeve shirt [50]) 

Metabolic rate (met) 1.7 (Office activities, walking about [50])  

External work (met) 0 [50] 

Air temperature Tair (°C) Indoor dry bulb temperature 

Mean radiant temperature Tmrt (°C) Indoor dry bulb temperature 

Relative air velocity (m/s) 0.05 [53] 

Relative humidity (%) Indoor relative humidity 

  

The PMV metric is iteratively calculated by using of the following four equations given in ISO 

7730 [49] 
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where: 

M  is the metabolic rate in (W/m2), 1 metabolic unit = 1 met = 58.2 W/m2; 

W   is the effective mechanical power in (W/m2); 

clI   is the clothing insulation in (m2 K/W), 1 clothing unit = 1 clo = 0.155 m2 °C/W; 

clf   is the clothing surface area factor; 

at    is the air temperature in (°C); 

rt    is the mean radiant temperature in (°C); 

arv  is the relative air velocity in (m/s); 

ap  is the water vapor partial pressure in (Pa); 

ch   is the convective heat transfer coefficient in [W/(m2 K)]; and 

clt   is the clothing surface temperature in (°C).  

 

It is noted that the conversion of 1 met equals to 58.2 W/m2 is based on (ANSI/ASHRAE) 

Standard 55 [50]. This conversion neglects body size, sex, and age of an individual, for more 

information regarding this conversion and topic see [54].  

 

The PPD index is determined from the PMV. It is a quantitative prediction of thermally 

dissatisfied people in percentage (%) and it is computed by 

 

 
4 2100 95 exp( 0.03353 0.2179 )PPD PMV PMV       .  (1.54) 

 

Computer instructions for calculating PMV and PPD is provided in Appendix D of American 

Nation Standards Institute /American Society of Heating, Refrigerating, and Air-Conditioning 

Engineers (ANSI/ASHRAE) Standard 55 [50]. The instructions were implemented in Matlab 

[53]. In a typical application, ANSI/ASHRAE Standard 55 also defines a recommended PMV 

and PPD range, shown in Table 17, for general thermal comfort. If the calculated values for 

the PMV and hence for the PPD are within the defined ranges, the conditions are considered 

to be comfortable.  
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Table 17. The PMV and PPD Ranges for Thermal Comfort 

PMV Range PPD (%) 

-0.5 < PMV < +0.5  < 10 
 

Figure 41 shows the annual results from calculating PMV and PPD when residential EMCA1 

is applied.  

 

 
 

Figure 41. Annual comfort results for residential EMCA1 as measured by PMV and PPD 

 

5.5.3.2. Calculating the Discomfort Index 

 

The discomfort index (PPDwc) is the sum of the product of a weighting factor and time when 

a building is occupied. In this study, the value of PPDwc is computed in every occupied minute 

and the result is reported in hours. PPDwc is computed by 

 

  ,

1

 for 1,...,
om

wc k j j

j

PPD wf t k n


   ,  (1.55) 

where: 

n is the number of alternatives; 

wfj is the weighting factor in each occupied minute; 

om is the total number of occupied minutes; and 

tj is the time step, 1 min. 

 

The weighting factor is computed by 
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where:  

actualPMVPPD  is the PPD corresponding to the actual PMV; and 

PMVlimitPPD  is the PPD corresponding to limitPMV . 

 

5.6. Priorities from Performance Data 

 

The results of applying Eq. (1.48), Eq. (1.49), and Eq. (1.55) to the performance data for each 

residential EMCA are shown in Table 18. In this document, Table 18 is referred to as the 

Performance Table. The values in the Performance Table are used to derive priorities for each 

residential EMCA relative to the criteria.  

 

Table 18. Summary of Results for key Performance Metrics 

Residential EMCA Total Energy 

(Etotal) [kWh] 

Total Cost 

(Ctotal) [$] 

Discomfort Index 

(PPDwc) [h] 

1 5605 901 9 

2 5588 880 339 

3 5484 847 1176 

4 5762 918 222 

5 5882 938 0 

6 6589 1050 37 

 

Having computed the total energy consumption (Etotal), cost of consuming energy (Ctotal), and 

the discomfort index (PPDwc) for all residential EMCAs, the next step is to compute a set of 

relative priorities when alternatives are pairwise compared. To compute these priorities, an 

algorithm was developed to first map each column of the Performance Table to the Intensity 

of Importance in Table 8 then form an MPC using the derived quantified judgements aij in 

matrix A. Using AHP’s standard procedure described in Sec. 5.1 on matrix A will result in 

relative priorities (a set of weights) with respect to criteria along with λmax, CI, and CR. When 

creating the MPC, the following main assumptions form the basis of the computations: 

 

1. Lower energy consumption is desired over higher energy consumption;  

2. Lower monetary cost is desired over higher cost; and 

3. More comfortable environment is desired over less comfortable environment. 

The following steps describe the algorithm for computing priorities: 

 

1. For each entry in each column in the Performance Table, scale the values by dividing 

the maximum of each column by the value of each entry in the column.   Let RE, RC, 

and RDC represent energy, cost, and discomfort ratios, respectively. These ratios are 

mathematically represented by: 
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where   max ,max : 1,...,wc kPPD k n   and for numerical stability  
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For instance, the energy ratios RE,k (for k = 1,…, n), where n is the number of residential 

EMCAs, is computed by Eq. (1.57) and is shown in Table 19. 

 

Table 19. Energy Ratio (RE) 

Residential EMCA Etotal (kWh) RE (dimensionless) 

1 5605 1.18 

2 5588 1.18 

3 5484 1.20 

4 5762 1.14 

5 5882 1.12 

6 6589 1.00 

 

2. Define scale factors for energy (SEf), cost (SCf), and discomfort (SDf). Let Cscale represent 

the AHP Intensity of Importance shown in Table 8. 
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where   max ,max : 1,...,E kR k n    and   min ,min : 1,...,E kR k n   .  
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where   max ,max : 1,...,C kR k n    and   min ,min : 1,...,C kR k n   .  
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where   max ,max : 1,...,DC kR k n    and   min ,min : 1,...,DC kR k n   .  
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For instance, using Eq. (1.61), the SEf for the values in RE (given in Table 19) is 39.68.  

 

3. Map energy consumption (ME), cost (MC), and discomfort (MDC) to Cscale to create a 

vector of preferences, rounded to the nearest integer 

     , , min min ,0 , 1,...,E k E k Ef scaleM round R S C k n      .  (1.64) 

     , , min min ,0 , 1,...,C k C k Cf scaleM round R S C k n      .  (1.65) 

     , , min min ,0 , 1,...,DC k DC k Df scaleM round R S C k n      .  (1.66) 

 

For instance, using Eq. (1.64), mapping the values in RE (given in Table 19) to Cscale resulted 

in ME = [8,8,9,7,6,1].  

 

4. Find the differences between each element of ME, MC, and MDC with respect to all other 

elements of the same vector. The result is an n x n matrix of the form DE(dij), DC(dij), 

and DDC(dij). More explicitly 

Let d represent a vector of mapped preferences (i.e., ME) 
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where n is the number of elements in d. For instance, finding the differences between each 

element of vector ME results in the matrix DE(dij) 

 

 

1 2 3 4 5 6

1 0 0 1 1 2 7

2 0 0 1 1 2 7

( , ) 3 1 1 0 2 3 8

4 1 1 2 0 1 6

5 2 2 3 1 0 5

6 7 7 8 6 5 0

E

EMCA EMCA EMCA EMCA EMCA EMCA

EMCA

EMCA

D i j EMCA

EMCA

EMCA

EMCA







  

   

    

. 

 

The first row of DE(1,j) for j=1,2,…,6 represents the differences between the first element of 

ME (8 in this case) and all other elements of ME, including the first element itself. DC(dij) and 

DDC(dij) are determined in a similar manner. 
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5. In the AHP framework, no MPC can contain any values (dij) that are less than or equal 

to zero. Since the DE(i,j) matrix contains entries that are equal to zero, the results from 

step 4 needs to be modified. Let qij represent the modified entries replacing dij and let 

Q(i,j) represent the modified matrix replacing D(i,j) where 
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the new matrix is 
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and DE(i,j) becomes 
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Q(i,j) still contains entries qij that are less than zero and converting it to MPC requires a 

few additional modifications. Let fij represent the modified entries replacing qij and F(i,j) 

replacing Q(i,j), then 
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the new matrix is 
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and QE(i,j) becomes 
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1 2 3 4 5 6

1 1.0000 1.0000 0.5000 2.0000 3.0000 8.0000

2 1.0000 1.0000 0.5000 2.0000 3.0000 8.0000

( , ) 3 2.0000 2.0000 1.0000 3.0000 4.0000 9.0000

4 0.5000 0.5000 0.3333 1.0000 2.0000 7.00

E

EMCA EMCA EMCA EMCA EMCA EMCA

EMCA

EMCA

F i j EMCA

EMCA



00

5 0.3333 0.3333 0.2500 0.5000 1.0000 6.0000

6 0.1250 0.1250 0.1111 0.1429 0.1667 1.0000

EMCA

EMCA

.  

 

F(i,j) is an MPC that satisfies Rule 1 and Rule 2 described in Section 2 and reflects the derived 

objective judgments obtained from the performance data documented in the Performance Table 

for each alternative residential EMCA with respect to the energy, cost, and comfort criteria. 

Applying AHP’s standard eigenvector and eigenvalue methods to F(i,j), the relative priorities 

for each alternative with respect to the criteria, as well as consistency metrics CI and CR, are 

computed. For instance, the relative priorities of residential EMCAs with respect to the energy 

criterion, using FE(i,j), is given in Table 20. 

 

Table 20. Priorities and Consistency Metrics 

Residential EMCAs 

Priorities with respect 

to energy criterion 

and consistency metrics 

 

1 0.21 

Priorities 

2 0.21 

3 0.34 

4 0.13 

5 0.08 

6 0.02 

λmax 6.15 

Consistency CI 0.03 

CR 0.03 

 

In Table 20, residential EMCA3 has the highest priority with respect to the energy criterion 

compared to other alternatives, which is consistent with our assumption that less energy 

consumption is more desirable. The CR value of 3 % is less than the recommended consistency 

of 10 %, suggesting that the judgments for comparing alternatives are consistent.  
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5.7. Overall Scores 

 

Having computed priorities of criteria with respect to the goal (wg) and priorities of each 

alternative with respect to criteria (pa), the overall score for each alternative with respect to the 

goal is computed by Eq. (1.47). Recall that the priorities of criteria with respect to the goal 

along with consistency metrics were given in Table 14. The priorities (pa) for each alternative 

with respect to the criteria for residential EMCAs and the consistency metrics are given in 

Table 21. For example, priorities of residential EMCA1 with respect to the energy, cost, and 

comfort criteria are pa = [0.21, 0.18, 0.12].  

 

Table 21. Priorities and Consistency Metrics 

Residential EMCAs 

and consistency metrics 
Energy Cost Comfort 

 

1 0.21 0.18 0.12 

Priorities 

2 0.21 0.18 0.06 

3 0.34 0.42 0.06 

4 0.13 0.11 0.06 

5 0.08 0.08 0.63 

6 0.02 0.03 0.06 

λmax 6.15 6.20 6.04 

Consistency CI 0.03 0.04 0.01 

CR 0.03 0.03 0.01 

 

The overall scores for residential EMCAs with respect to the goal are calculated using 

Eq. (1.47) and shown in Table 22. 

 

Table 22. The Overall Scores 

Residential EMCAs Overall scores (ranking) 

1 0.17 

2 0.15 

3 0.31 

4 0.10 

5 0.23 

6 0.04 

 

Based on the overall scores in Table 22, residential EMCA3 is the most desirable alternative 

with respect to the overall goal reflecting user’s very strong preference in an alternative EMCA 

that saves the most money (lowest cost) followed by a strong desire for comfort over energy 

savings, and weak preference for comfort over cost. The relationship between alternatives, 

criteria, and the goal are shown in Figure 42. It shows the problem hierarchy, an example of 

computed priorities for two residential EMCAs, and the overall scores (ranking) for all 

residential EMCAs. 
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Figure 42. Summary figure showing the problem hierarchy, priorities and the overall scores 

for each alternative with respect to the goal 

 

As previously mentioned, based on the performance data and user preferences, residential 

EMCA3 was ranked the highest by the AE. Depending on user preferences, a different 

algorithm other than residential EMCA3 can be ranked the highest by the AE. Recall that user 

preferences can only impact priorities of criteria with respect to the goal. For example, a user 

conveys a very strong desire in an alternative that provides the most comfort over cost, a strong 

preference for comfort over energy consumption, but a weak preference for energy 

consumption over cost. These preferences are captured by the AE in inputs fields of Figure 39 

as following:  
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The AE forms the corresponding MPC for pairwise comparisons between criteria as shown in 

Table 23. It also calculates priorities for criteria with respect to the goal and the overall scores 

based on the new priorities.  

 

Table 23. MPC for Capturing User Preferences 

 Energy Cost Comfort 

Energy 1 3 0.2 

Cost 0.3333 1 0.1429 

Comfort 5 7 1 

 

The CR value of 5.6 % suggests that the user’s judgments in Table 23 were consistent and the 

overall scores for residential EMCAs with respect to the goal are given in Table 24. 

 

Table 24. The Overall Scores 

Residential EMCAs Overall scores (ranking) 

1 0.14 

2 0.10 

3 0.14 

4 0.08 

5 0.48 

6 0.05 

 

The overall scores in Table 24 show that residential EMCA5 is the most desirable alternative. 

Residential EMCA5 is the top-ranked because it offers the best comfort among alternatives. 

 

5.8. Limitations 

 

Even though the AHP’s theoretical foundations has been subject of debate in the literature [45], 

[55], it is the most widely used [46], [56] approach for solving practical multi-criteria decision 

making problems. Therefore, AHP was chosen for this study to develop the AE. Application 

of the AE requires hourly energy consumption data from HVAC equipment and the hourly 

price of electricity for computing the cost. It also requires one-minute sampling of indoor air 

temperature, mean radiant temperature, relative humidity, and an occupancy schedule. In the 

current study, to calculate PPDwc the mean radiant temperature was assumed to be the same as 

the indoor air temperature. This assumption may not be valid for residential homes where the 

indoor temperatures are significantly impacted by direct solar radiation. Additionally, the 

current implementation of the AE only considers a three-level hierarchy (goal, criteria, and 

alternatives), while AHP provides a much more flexible framework for incorporating 

additional levels, criteria, and sub-hierarchies. The scope of this study was limited to three 

criteria and six residential EMCAs. 

 

The algorithm used to derive priorities from the simulation performance data normalized the 

values for Energy, Cost, and Comfort with respect to the maximum value. This choice was 

arbitrary. Other possible choices for normalization could include the minimum, mean, or 

median value. It has been shown that, for some data sets,  the approach used for normalization 

can affect the ranking [45]. 
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Chapter 6 

 
6. Conclusion and Future Work 

 

6.1. Conclusion 

For homes to become active participants in a smart grid, intelligent control algorithms are 

needed to facilitate autonomous interactions that take homeowner preferences into 

consideration. The objective of this dissertation was to develop an assessment tool that can 

rank the performance of these control algorithms, using a user’s subjective preferences and 

objective performance data, representing energy consumption, cost, and comfort. It was 

established that a comprehensive assessment framework was needed to evaluate the 

performance of these algorithms by providing a figure of merit that enables policy makers, 

customers, and other stakeholders to make an informed decision by choosing a residential 

control algorithm that satisfied their need. Until now, it was not known if an effective 

comparison (ranking) between the residential control algorithms can be performed. 

 

The key to a successful completion of this research was the design and implementation of the 

simulation manager and the assessment engine. The simulation manager facilitated the loosely-

coupled integration of residential energy management control algorithms with the TRNSYS 

based residential simulation model. This loosely-coupled architecture provided an efficient 

mechanism for evaluating different types of residential energy management control algorithms 

without changing the core functionality of the simulation manager. The communication 

between the residential simulation model and other components of the simulation manager was 

established through a newly developed TRNSYS type (Type277). Type277 is written in C++ 

and compiled as a 32-bit Windows dynamic link library. To ensure a reliable exchange of 

information between the residential simulation model and other components of the simulation 

manager, the data is serialized using Google’s protocol buffers. The key idea behind this 

approach was to enable a TRNSYS based simulation model to communicate with other 

applications that are likely to be written in different software languages. Since the data is 

serialized with Google’s protocol buffers, Type277 enables a TRNSYS based simulation 

model to directly communicate with Java, C++, Python, and many more languages that are 

supported by the protocol buffers and indirectly with any software environment that 

communicates with these languages. The assessment engine was developed to rank the 

performance of residential energy management control algorithms using subjective 

judgements for pairwise comparisons of energy consumption, cost, and comfort criteria; and 

objective performance data for pairwise comparisons of residential EMCAs. This is a multi-

criteria decision-making problem that required both qualitative and quantitative analyses. The 

AHP framework was used to solve this problem because it is a widely used framework for 

solving multi-criteria decision-making problems. 

 

Testing and validation of the assessment engine was illustrated by applying the assessment 

process to six residential energy management control algorithms. The control algorithms were 

developed and tested using a simulation model of the Net-Zero Energy Residential Test 

Facility located on the campus of the National Institute of Standards and Technology in 

Gaithersburg, MD. Residential EMCA5 was designed to match a real heat pump controller 
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used in the house model. Residential EMCA6 was the same as the first with relaxed comfort 

deadbands. Residential EMCA1 to residential EMCA4 used linear integer optimization with 

varying optimization objectives to generate forecasted heat pump control actions by utilizing 

the control optimization framework. The control optimization framework used three main 

components a default controller, a learning algorithm, and an optimization algorithm. The 

default controller was designed to maintain the indoor temperature close to the heating and 

cooling setpoints. The learning algorithm is a sliding-window algorithm that was designed to 

forecast the next day’s indoor temperature using a first order lumped capacitance model. It was 

formulated in such a way that key design details of a residential house such as window size 

and configuration, thermal insulation, and airtightness that effect heat loss and solar heat gain 

were combined into effective parameters that could be learned from observation. The sliding-

window of learning data accounted for both seasonal variations in the sun position and daily 

cloud cover fluctuations. The optimization algorithms used a common structure to solve both 

single and multi-objective optimization problems, utilizing heat pump power and capacity, an 

indoor temperature forecasting model, an objective function and constraints, and a linear 

integer programming solver to obtain forecasted heat pump control actions for a given horizon. 

The algorithms were compared by analyzing their performance over a year based on energy 

consumption, cost, and comfort as measured by predicted mean vote and predicted percentage 

of dissatisfied. Successful implementation of the assessment framework produced a figure of 

merit, which can be used to compare the performance of residential energy management 

control algorithms. 

 

As discussed earlier in this dissertation, successful implementation of the assessment 

framework resulted in an assessment engine that can rank the performance residential energy 

management control algorithm. The assessment engine utilized a flexible hybrid mechanism 

based on the Analytical Hierarchy Process that derives a ranking from a combination of 

subjective user inputs representing preferences, and objective data from algorithms’ 

performance related to energy consumption, cost and comfort. Such an assessment engine is a 

significant contribution for evaluating the performance of control algorithms, as it provides 

policy makers, homeowners, control algorithm engineers, and other stakeholder an efficient 

mechanism to evaluate the impact of new and existing smart grid ready residential energy 

management control technologies.  By utilizing the Analytical Hierarchy Process to provide a 

single overall score the assessment engine delivers an effective mechanism for directly 

comparing alternative residential energy management control algorithms and rank them 

effectively. 

 

 

6.2. Future Work 

 

Application of the assessment framework was successfully demonstrated to rank EMCAs in 

single-family homes. Further research is needed to verify that the assessment framework is 

broadly applicable to evaluate the performance of EMCAs used in small commercial and 

residential buildings. The main idea is to explore the possibility of establishing a test procedure 

for evaluating these control algorithms. The objective of the test procedure is to provide 

unbiased information for stakeholders, policy makers, and consumers to make informed 

decisions, and ultimately lead to an industry run certification program. The certification 
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program can help consumers in differentiating among available options and choosing an 

EMCA that meets their need. The test procedure realization involves exploring the following 

research topics: 

1. Developing a test platform that is capable of interfacing real-time control hardware 

with a building simulation model; 

2. Developing short-term test procedures that are applicable for long-term evaluation of 

these control algorithms; and 

3. Developing metrics for assessing the consistency and reliability of the test procedures. 

Furthermore, with the proliferation of distributed energy resources i.e., photovoltaics, 

buildings are expected to actively participate in the smart electric grid operation at the 

distribution level. Buildings can participate in the grid operation by provide ancillary services 

such as frequency response, real and reactive power consumption and supply, and voltage 

control. The key challenge facing the utilities and customers is the evaluation and verification 

of these services rendered to the grid. Further research is needed to investigate if the assessment 

framework, presented in this study, is also applicable for this application.    
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Appendix A 

The aim of developing residential EMCAs was to control a residential heat pump, generating 

a set of performance data for testing and validating the AE. Each control algorithm was 

integrated and tested over the course of one year using a simulation model of the NZERTF. 

Using the performance data (i.e., power consumption and indoor temperature for each 

residential EMCA) the following key performance metrics are computed: 

 

1. Total energy consumption, using Eq. (1.48); 

2. Total cost of consuming energy, using Eq. (1.49); and  

3. Thermal discomfort of the occupants, using Eq. (1.55).  

 

The results for the annual total energy consumption, cost of total energy consumption, and 

discomfort for all EMCAs were reported in Table 18. In addition, the annual energy 

consumption across different operating modes of the heat pump, for all EMCAs, are also 

computed, given in Table 25.   

 

Table 25. Annual Energy Consumption across Different Operating Modes of the Heat 

Pump with Respect to EMCAs 

 

The annual energy consumption across different operating modes of the heat pump for the 

original simulation model of the NZERTF is given in Table 26. 
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1 34 323 2340 282 1322 1305 

2 14 333 2452 278 1273 1238 
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5 405 356 2326 261 1287 1247 
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Table 26. Annual Energy Consumption across Different Operating Modes of the Heat 

Pump with Respect to the Original Simulation Model of the NZERTF 

 

To better quantify the performance of residential EMCAs reported in Table 18, the data for 

each residential EMCA is compared with respect to the original simulation model of the 

NZERTF. The total energy consumption of the original simulation model was 6190.4 kWh, 

the total cost of consuming energy was $ 984.3, and total discomfort index was 297.2 h. A 

summary of this comparison is given in Table 27. 

 

Table 27. Annual Performance Comparisons of Residential EMCAs and the Original 

Simulation Model 

Residential 

EMCAs 

Different in Annual 

Energy 

Consumption [%] 

Difference in Annual  

Cost of Energy 

Consumption [%] 

Difference in 

Annual Discomfort 

Index [%] 

1 -9 -8 -97 

2 -10 -11 14 

3 -11 -14 296 

4 -7 -7 -25 

5 -5 -5 -100 

6 6 7 -88 

 

As can be seen in Table 27, using residential EMCA1 through residential EMCA5 resulted in 

energy and cost savings with varying degrees of thermal discomfort. Residential EMCA6, 

however, used more electrical energy, resulting in a 7 % higher cost but 88 % better thermal 

comfort compared to the original simulation model. All residential EMCAs improved thermal 

comfort except residential EMCA2 and residential EMCA3. Residential EMCA3 achieved the 

highest energy and cost savings, but at a greater discomfort to the occupants.    

 

Similarly, to better quantify the performance of residential EMCAs across different operating 

modes of the heat pump, the annual energy consumptions reported in Table 25 is compared 

with respect to the annual energy consumption of the original simulation model reported in 

Table 26. The results of these comparisons are reported in Figure 43. For clarity, the ratios 

for the 3rd Stage are plotted on the secondary axis.  
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Figure 43. Ratios of residential EMCAs across different operating modes of the heat pump 

 

As can be seen from Figure 43, all residential EMCAs resulted in lower energy consumption 

while operating in Defrost Cycle and Dehumidification modes. In the heating season, all 

residential EMCAs, except residential EMCA2 which consumed the same amount of energy 

as the original model, resulted in modest energy savings while the heat pump operated in the 

1st and 2nd Stages. For all residential EMCAs, the energy consumption in the Standby mode 

slightly increased because the heat pump ran fewer minutes compared to the original 

simulation model. In the cooling season, all residential EMCAs resulted in modest energy 

increase while the heat pump operated in the 1st and 2nd Stages. Residential EMCA1 through 

residential EMCA4 resulted in a considerable reduction in energy consumption of the 

3rd Stage. Meanwhile residential EMCA5 resulted in modest energy savings while operating 

in the 3rd Stage. In contrast, the energy consumption associated with the 3rd Stage of the 

residential EMCA6 significant increased compared to the original simulation model.  

 

Further comparisons, with respect to the thermal performance as measured by the PMV and 

PPD metrics and indoor temperature, are also made between residential EMCAs and the 

original simulation model. The results of these comparisons are presented in Appendix B 

through Appendix G.   
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Appendix B 

 

Residential EMCA1 

 

The mathematical description of residential EMCA1 was given in Sec. 4.2.1.3.1. 

 

Thermal Performance 

 

The annual comparison of Tind profiles of residential EMCA1 and the original simulation 

model is shown in Figure 44. In both heating and cooling seasons, Tind is tightly controlled by 

the original simulation model based on the deadbands of the differential controllers given in 

Table 6. There are minor deviations from the setpoints in both heating and cooling seasons, 

but larger fluctuations during the shoulder seasons. The indoor temperature fluctuation during 

the shoulder seasons are due to the deadbands of the differential controllers as it switches 

between heating and cooling seasons. Residential EMCA1 shows slightly larger deviations in 

Tind from the setpoints because it uses wider deadbands.   

 

 
 

Figure 44. Residential EMCA1 – annual comparison of Tind with the NZERTF original 

simulation model 

 

The optimization solver is trying to minimize the objective function of residential EMCA1 

given in Eq. (1.37) such that the forecasted Tind given by  Eq. (1.34) and Eq. (1.36) are 

maintained within the constraints of the problem. Figure 45 shows that the forecasted Tind 

closely matches the original simulation values, albeit with minor deviations from the heating 

and cooling setpoints. In comparison, the temperature response of the simulation model to the 

forecasted control actions shows slightly larger deviations from heating and cooling setpoints.  
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Figure 45. Residential EMCA1 - annual comparison between the forecasted and simulated Tind 

 

To better quantify the differences between the forecasted and simulated Tind in residential 

EMCA1, Figure 46 shows the resulting % RMSE in both heating and cooling seasons. The 

behavior, limitation, and capability of the learning algorithm used for forecasting Tind in 

residential EMCA1 was previously described in Sec. 3.  

 

Over the course of one year, residential EMCA1 was expected to run 16 848 times based on 

its forecast horizon. As can be seen from Figure 46, only 44 % of the time, the optimization 

solver generated control actions and forecasted Tind. This is because the on-time, off-time, 

upper, and lower bound constraints for residential EMCA1 are strict, which collectively 

increases the chance that the optimization solver cannot find a feasible solution to satisfy all 

constraints.   
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Figure 46. Residential EMCA1 - the % RMSE between forecasted and simulated Tind 

 

Furthermore, the thermal performance of residential EMCA1, as measured by PMV and PPD, 

was calculated. Figure 47 shows the annual comparisons of PMV between residential EMCA1 

and the original simulation model of the NZERTF. The PMV corresponding to the original 

simulation model transitions between slightly warm and slightly cool temperature during the 

shoulder seasons, but it remains within the recommend thermal range of +0.5 and -0.5 in other 

times. In comparison, the PMV associated with residential EMCA1 remains within the 

recommended range during the shoulder season but oscillates around the upper recommended 

limit of + 0.5. In other words, the occupants are feeling slightly warmer than the original 

simulation model. In a few instances, the PMV index associated with residential EMCA1 is 

lower than the recommended comfort limit of -0.5, suggesting that the occupants feel slightly 

colder than the original simulation model. In general, it can be concluded that the occupants 

were comfortable throughout the simulation year except for 9 h (Table 18). 
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Figure 47. Residential EMCA1 – comparison of annual PMV with the NZERTF original 

simulation model 

 

Similarly, Figure 48 shows the annual comparison of PPD between residential EMCA1 and 

the original simulation model. According to ANSI/ASHRAE Standard 55, PPD of less than 

10 % are considered comfortable conditions. The PPD corresponding to the original simulation 

model suggest that a large percentage of the occupants were uncomfortable during the shoulder 

seasons, but for a shorter time. In comparison, the PPD corresponding to the residential 

EMCA1 suggest that fewer occupants were uncomfortable in the cooling season but for a 

longer time. Thermal comfort is mainly impacted in the cooling season. The occupants are 

generally comfortable in the heating season. Note that the lowest value of PPD is 5 %, 

suggesting that five percent of the occupants will always feel uncomfortable regardless. 
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Figure 48. Residential EMCA1 - comparison of annual PPD with the NZERTF original 

simulation model    
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Appendix C 

Residential EMCA2 

 

The mathematical description of the residential EMCA2 for minimizing the cost of operating 

the heat pump was presented in Section 4.2.1.3.2. A forecast horizon of one day was chosen 

for this algorithm to take advantage of the full range of variability in the structure of the RTP 

tariff. Since the optimization problem is defined over one day, it is computationally difficult 

for the optimization solver to forecast heat pump control actions for each simulation time step 

in a reasonable amount of time. Therefore, the forecast horizon was divided into 60 bins, each 

bin holding 24 min of data. Average values of all forecasted variables in each bin was 

computed and used as a representative sample. This effectively reduced the forecast horizon 

to 60 min, which is computationally less time consuming.  Since the new forecast horizon is 

60 min, the output of the optimization solver is also a vector of length sixty.  Each element of 

the vector represents 24 forecasted control actions. For example, if the 2nd Stage is given as the 

first element of the output vector, then the heat pump is operated in the 2nd Stage for the next 

24 min.  

 

Thermal Performance 

 

The annual comparison of Tind profiles of residential EMCA2 and the original simulation 

model is shown in Figure 49. In both heating and cooling seasons, Tind is tightly controlled by 

the original simulation model based on the deadbands of the differential controllers given in 

Table 6. There are minor deviations from the setpoints in both heating and cooling seasons, 

but larger variations during the shoulder seasons. The indoor temperature fluctuations during 

the shoulder seasons are due to the deadbands of the differential controllers as it switches 

between heating and cooling seasons. Residential EMCA2 shows slightly larger deviations in 

Tind from the setpoints because it uses wider deadbands. Also, the variation in indoor 

temperature is affected by repeating the same control action for 24 consecutive simulation 

steps. 
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Figure 49. Residential EMCA2 - annual comparison of Tind with the NZERTF original 

simulation model 

 

The optimization solver is trying to minimize the objective function of residential EMCA2 

given in Eq. (1.42) such that the forecasted Tind given by Eq. (1.34) and Eq. (1.36) are 

maintained within the constraints of the problem. Figure 50 shows that the forecasted Tind 

closely matches the original simulation values, albeit with minor deviations from the heating 

and cooling setpoints. In comparison, the temperature response of the simulation model to the 

forecasted control actions shows more frequent and larger deviations from heating and cooling 

setpoints.  
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Figure 50. Residential EMCA2 - annual comparison between the forecasted and simulated Tind 

 

To better quantify the differences between the forecasted and simulated Tind in residential 

EMCA2, Figure 51 shows the resulting % RMSE in both heating and cooling seasons. The 

behavior, limitation, and capability of the learning algorithm used for forecasting Tind in 

residential EMCA2 was previously described in Sec. 3.  

 

Over the course of one year, residential EMCA2 was expected to run 351 times based on its 

forecast horizon. As can be seen from Figure 51, only 17 % of the time, the optimization solver 

generated control actions and forecasted Tind.  This is because the forecast horizon for 

residential EMCA2 is 1440 min and the upper and lower bound constraints are stringent. 

Having a long forecast horizon introduces extended delays in providing feedback to the 

optimization solver. Due to this delay, residual errors in forecasting are accumulated over time, 

amounting to much larger deviations in the simulated Tind and fewer solutions that can satisfy 

all constraints. 
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Figure 51. Residential EMCA2 - the % RMSE between forecasted and simulated Tind 

 

Furthermore, the thermal performance of residential EMCA2, as measured by PMV and PPD, 

was calculated. Figure 52 shows an annual comparison of PMV between residential EMCA2 

and the original simulation model of the NZERTF. The PMV corresponding to the original 

simulation model transitions between slightly warm and slightly cool temperature during the 

shoulder seasons, but it remains within the recommend thermal range of +0.5 and -0.5 in other 

times. In comparison, the PMV associated with residential EMCA2 remains within the 

recommended range during the shoulder season but oscillates around the comfort limits, 

especially in the cooling season.  In the cooling season, the occupants generally feel warmer 

and even uncomfortable in few instances compared to the original simulation model. In a few 

instances, the PMV index associated with residential EMCA2 is lower than the recommended 

comfort limit of -0.5, suggesting that the occupants feel slightly colder than the original 

simulation model. In general, it can be concluded that the occupants were comfortable 

throughout the simulation year except for 339 h (Table 18). This is a noteworthy increase in 

discomfort compared to residential EMCA1, suggesting that thermal comfort was sacrificed 

for more cost savings.   
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Figure 52. Residential EMCA2 - comparison of annual PMV with the NZERTF original 

simulation model 

 

Similarly, Figure 53 shows the annual comparison of PPD between residential EMCA2 and 

the original simulation model. The PPD corresponding to the original simulation model suggest 

that a large percentage of the occupants were uncomfortable during the shoulder seasons but 

for a shorter period. In comparison, the PPD corresponding to the residential EMCA2 suggest 

that fewer occupants are uncomfortable in cooling season but for a longer period. Thermal 

comfort is mainly impacted in the cooling season. The occupants are generally comfortable in 

the heating season.  
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Figure 53. Residential EMCA2 - comparison of annual PPD with the NZERTF original 

simulation model 

 

Minimizing Cost 

 

As previously mentioned, the objective of residential EMCA2 is to minimize the cost of 

consuming energy. One way to accomplish this task is by shifting the operation of the heat 

pump from peak price of electricity to off-peak times, resulting in a lower cost. The following 

two examples highlight the behavior of residential EMCA2. Figure 54 shows a comparison 

between forecasted and simulated Tind plotted with respect to the left axis, and heat pump power 

consumption and RTP tariff plotted with respect to right axis. The highest RTP peaks occurred 

in July (Figure 40) during the cooling season. 
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Figure 54. Residential EMCA2 - forecasted and simulated Tind and heat pump power 

consumption during the highest RTP peaks (July 17th) 

 

As can be seen from Figure 54, the forecasted Tind is maintained within the constraints of 

residential EMCA2. However, the response of the simulation model to forecasted control 

actions shows large deviations in Tind. The maximum temperature difference between the 

forecasted and simulated Tind is 1.8 °C. The three highest RTP peaks, on this day, occur 

between 4:00 p.m. and 7:00 p.m. The optimization solver has shifted the operation of the heat 

pump away from these peak hours expect for 24 min when the 1st Stage is activated close to 

6:00 p.m.  

 

Likewise, Figure 55 shows a comparison between forecasted and simulated Tind and heat pump 

power consumption with respect to the peak RTP tariff that occurred on the 19th of July. 
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Figure 55. Residential EMCA2 - forecasted and simulated Tind and heat pump power 

consumption during the second highest RTP peaks (July 19th) 

 

As can be seen from Figure 55, the forecasted Tind is maintained within the constraints of 

residential EMCA2. However, the response of the simulation model to forecasted control 

actions shows large deviations in Tind. The maximum temperature difference between the 

forecasted and simulated Tind is 1.7 °C. The two highest RTP peaks, on this day, occurred 

between 4:00 p.m. to 6:00 p.m. The optimization solver has shifted the operation of the heat 

pump away from these peak hours expect for 9 min when the 1st Stage remained activated past 

4:00 p.m. 
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Appendix D 

Residential EMCA3 

 

The mathematical description of the residential EMCA3 for minimizing the cost of operating 

the heat pump while maintaining thermal comfort was presented in Sec.4.2.1.4.1. A forecast 

horizon of 4 h was chosen for this algorithm to take advantage of variability in the structure of 

the RTP tariff. Since the optimization problem is defined over 4 h, it is computationally 

difficult for the optimization solver to forecast heat pump control actions for each simulation 

time step in a reasonable amount of time. Therefore, the forecast horizon was divided into 60 

bins, each bin holding 4 min of data. Average values of all forecasted variables in each bin was 

computed and used as a representative sample. This effectively reduced the forecast horizon 

to 60 min, which is computationally less time consuming. Since the new forecast horizon is 60 

min, the output of the optimization solver is also a vector of length sixty. Each element of the 

vector represents 4 forecasted control actions. For example, if the 2nd Stage is given as the first 

element of the output vector, then the heat pump is operated in the 2nd Stage for the next 4 min. 

 

Thermal Performance 

 

The annual comparison of Tind profiles of residential EMCA3 and the original simulation 

model is shown in Figure 56. In both heating and cooling seasons, Tind is tightly controlled by 

the original simulation model based on the deadbands of the differential controllers given in 

Table 6. There are minor deviations from the setpoints in both heating and cooling seasons, 

but larger variations during the shoulder seasons. The indoor temperature fluctuations during 

the shoulder seasons are due to the deadbands of the differential controllers as it switches 

between heating and cooling seasons. Residential EMCA3 shows smaller variations during the 

shoulder seasons, but larger deviations in the heating and cooling seasons.  

 

Residential EMCA3 exhibits large temperature deviations (Figure 56) because it is formulated 

in such a way that the optimization solver is required to maintain a balance between two 

different objectives, thermal comfort and cost. Depending on the choice of the dominance 

factor λ, the optimization solver can save more money or maintain a better thermal comfort. In 

residential EMCA3, the cost term is slightly dominant over the thermal comfort. In other 

words, the optimization solver is trying to minimize the cost of operating the heat pump by 

allowing the thermal comfort to fluctuate over a wider range.  
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Figure 56. Residential EMCA3 – annual comparison of Tind with the NZERTF original 

simulation model 

 

The optimization problem solver is trying to minimize the objective function of residential 

EMCA3 given in Eq. (1.43) such that the forecasted Tind given by Eq. (1.34) and Eq. (1.36) 

and the cost of consuming energy are maintained within the constraints of the problem. Figure 

57 shows the annual comparison between the forecasted and simulated Tind. Given the problem 

definition for residential EMCA3, the deviations of Tind from the HSp and CSp are more 

frequent and larger compared to residential EMCA1 and residential EMCA2. Residential 

EMCA3 is not restricted by the upper and lower bound constraints; thus, it is more flexible in 

managing cost and thermal comfort.  
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Figure 57. Residential EMCA3 - annual comparison between the forecasted and simulated Tind 

 

To better quantify the differences between the forecasted and simulated Tind in residential 

EMCA3, Figure 58 shows the resulting % RMSE in both heating and cooling seasons. The 

behavior, limitation, and capability of the learning algorithm used for forecasting Tind in 

residential EMCA3 was previously described in Sec. 3.  In the heating season, Figure 58 shows 

that there are many instances in which residential EMCA3 overestimated the forecast of Tind 

compared to the simulation model. In the cooling season, the forecasted and simulated Tind are 

in good agreements. 

 

Over the course of one year, residential EMCA3 was expected to run 2106 times based on its 

forecast horizon. As can be seen from Figure 58, the optimization solver generated control 

actions for all expected times. In other words, the optimization solver found a feasible solution 

every time that it was expected to run.   
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Figure 58. Residential EMCA3 - the % RMSE between forecasted and simulated Tind 

 

Furthermore, the thermal performance of residential EMCA3, as measured by PMV and PPD, 

was calculated. Figure 59 shows the annual comparison of PMV between residential EMCA3 

and the original simulation model of the NZERTF. The PMV corresponding to the original 

simulation model transitions between slightly warm and slightly cool temperature during the 

shoulder seasons, but it remains within the recommend thermal range of +0.5 and -0.5 in other 

times. In comparison, the PMV associated with residential EMCA3 remains within the 

recommended range during the shoulder season but oscillates around the comfort limits, 

especially in the cooling season. In the cooling season, the occupants generally feel warmer 

compared to the original simulation model, and in some instances uncomfortable. In the 

heating season, the PMV values suggest that, on a few instances, the occupants feel 

uncomfortable compared to the original simulation model. In general, it can be concluded that 

the occupants were comfortable throughout the simulation year except for 1176 h (Table 18). 

This is a significant increase in discomfort compared to residential EMCA1 and residential 

EMCA2, suggesting that thermal comfort was sacrificed for more cost savings. The result was 

expected because λ was chosen such that the optimization solver would maximize cost savings 

while also not letting thermal comfort drift too far from the setpoints. 
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Figure 59. Residential EMCA3 – annual comparison of PMV with the NZERTF original 

simulation model 

 

Similarly, Figure 60 shows the annual comparison of PPD between residential EMCA3 and 

the original simulation model. The PPD corresponding to the original simulation model suggest 

that a large percentage of the occupants were uncomfortable during the shoulder seasons but 

for a shorter period. In comparison, the PPD corresponding to the residential EMCA3 suggest 

that not only more occupants were uncomfortable, but they were also uncomfortable for a 

longer period. Thermal comfort is mainly impacted in the cooling season, but in the heating 

season some occupants were uncomfortable as well, albeit for a shorter period.  

 



106 

 

 
 

Figure 60. Residential EMCA3 – annual comparison of PPD with the NZERTF original 

simulation model 

 

 

Minimizing Cost 

 

As previously mentioned, the objective of residential EMCA3 is to minimize the cost of 

consuming energy while also maintaining thermal comfort. One way to accomplish this task 

is by shifting the operation of the heat pump from peak price of electricity to off-peak times, 

resulting in a lower cost. Figure 61 shows a comparison between forecasted and simulated Tind 

plotted with respect to the left axis, and heat pump power consumption and RTP tariff plotted 

with respect to the right axis.  
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Figure 61. Residential EMCA3 - forecasted and simulated Tind and heat pump power 

consumption during the highest RTP peaks (July 17th) 

 

As can be seen from Figure 61, the forecasted Tind is maintained within the constraints of 

residential EMCA3. However, the response of the simulation model to forecasted control 

actions shows large deviations in Tind. The highest RTP peak (125.1 ¢/kWh) occurred between 

4:00 p.m. and 5:00 p.m. Even though the highest peak occurred at the beginning of the forecast 

horizon at 4:00 p.m., the heat pump was activated immediately because the value of thermal 

comfort term in the objective function was dominating compared to the value of the cost term. 

It was dominating because the gap between the initial temperature and CSp was significant. 

Hence, the heat pump operated for 45 min until the Tind dropped below a threshold at which 

the value of the cost term started to dominate.   
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Appendix E 

Residential EMCA4 

 

The objective and mathematical description of residential EMCA4 is identical to the 

formulation of residential EMCA3, including all constraints, forecast horizon, and 

implementation described in Sec. 4.2.1.4.1 and Appendix D. The only difference is the value 

of the dominance factor λ = 0.55.  

 

Thermal Performance 

 

The annual comparison of Tind profiles of residential EMCA4 and the original simulation 

model is shown in Figure 62. In both heating and cooling seasons, Tind is tightly controlled by 

the original simulation model based on the deadbands of the differential controllers given in 

Table 6. There are minor deviations from the setpoints in both heating and cooling seasons, 

but larger variations during the shoulder seasons. The indoor temperature fluctuations during 

the shoulder seasons are due to the deadbands of the differential controllers as it switches 

between heating and cooling seasons. Residential EMCA4 shows smaller variations during the 

shoulder seasons, but larger deviations in the heating and cooling seasons.  

 

Residential EMCA4 exhibits slightly different deviations (Figure 62) compared to residential 

EMCA3. In residential EMCA4, thermal comfort term is slightly dominant over the cost term. 

In other words, the optimization solver is trying to maintain better thermal comfort at a higher 

cost.  
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Figure 62. Residential EMCA4 – annual comparison of Tind with the NZERTF original 

simulation model 

 

Figure 63 shows the annual comparison between the forecasted and simulated Tind. Given the 

problem definition for residential EMCA4, the deviations of Tind from the HSp and CSp are 

more frequent and larger compared to residential EMCA1 and residential EMCA2 but slightly 

smaller compared to residential EMCA3, demonstrating the impact of choosing λ on the overall 

cost and thermal comfort. Like residential EMCA3, residential EMCA4 is flexible in managing 

cost and thermal comfort.  
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Figure 63. Residential EMCA4 – annual comparison between the forecasted and simulated 

Tind 

 

To better quantify the differences between the forecasted and simulated Tind in residential 

EMCA4, Figure 64 shows the resulting % RMSE in both heating and cooling seasons. The 

behavior, limitation, and capability of the learning algorithm used for forecasting Tind in 

residential EMCA3 was previously described in Sec. 3. In the heating season, Figure 64 shows 

that there are many instances in which residential EMCA4 overestimates the forecast of Tind 

compared to the simulation model. In the cooling season, the forecasted and simulated Tind are 

in good agreements.  

 

Over the course of one year, residential EMCA4 was expected to run 2106 times based on its 

forecast horizon. As can be seen from Figure 64, the optimization solver generated control 

actions for all expected times. In other words, the optimization solver found a feasible solution 

every time that it was expected to run.   
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Figure 64. Residential EMCA4 - the % RMSE between forecasted and simulated Tind 

 

Furthermore, the thermal performance of residential EMCA4, as measured by PMV and PPD, 

was calculated. Figure 65 shows the annual comparison of PMV between residential EMCA4 

and the original simulation model. The PMV corresponding to the original simulation model 

transitions between slightly warm and slightly cool temperature during the shoulder seasons, 

but it remains within the recommend thermal range of +0.5 and -0.5 in other times. In 

comparison, the PMV associated with residential EMCA4 remains within the recommended 

range during the shoulder seasons, but oscillates near the comfort limits, especially in the 

cooling season. In the cooling season, the occupants generally feel warmer compared to the 

original simulation model, and in some instances uncomfortable. In the heating season, the 

PMV values suggest that, on a few instances, the occupants feel uncomfortable compared to 

the original simulation model. In general, it can be concluded that the occupants were 

comfortable majority of the time during the simulation year except for 222 h (Table 18). This 

is a large increase in discomfort compared to residential EMCA1, but less than residential 

EMCA2 and residential EMCA3. This behavior is expected because the requirement for 

residential EMCA4 is to maintain thermal comfort first then reduce the cost. 
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Figure 65. Residential EMCA4 – annual comparison of PMV with the NZERTF original 

simulation model 

 

Similarly, Figure 66 shows the annual comparison of PPD between residential EMCA4 and 

the original simulation model. The PPD corresponding to the original simulation model suggest 

that a large percentage of the occupants were uncomfortable during the shoulder seasons but 

for a shorter period. In comparison, the PPD corresponding to the residential EMCA4 suggest 

that not only more occupants were uncomfortable, but they were uncomfortable for a longer 

period. Thermal comfort is mainly impacted in the cooling season, but in the heating season 

some occupants were uncomfortable as well, albeit for a shorter period. 
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Figure 66. Residential EMCA4 – annual comparison of PPD with the original simulation 

model 

 

Minimizing Cost 

 

As previously mentioned, the objective of residential EMCA4 is to minimize the cost of 

consuming energy while also maintaining thermal comfort. One way to accomplish this task 

is by shifting the operation of the heat pump from peak price of electricity to off-peak times. 

This strategy may not be employed by residential EMCA4 because its task is to maintain 

thermal comfort first then reduce cost. Figure 67 shows a comparison between forecasted and 

simulated Tind plotted with respect to the left axis, and heat pump power consumption and RTP 

tariff with respect to the right axis. 
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Figure 67. Residential EMCA4 - forecasted and simulated Tind and heat pump power 

consumption during the highest RTP peaks (July 17th) 

 

As can be seen from Figure 67, the forecasted Tind is maintained within the constraints of 

residential EMCA4. However, the response of the simulation model to forecasted control 

actions shows large deviations in Tind. The highest RTP peak (125.1 ¢/kWh) occurred between 

4:00 p.m. and 5:00 p.m.  Even though the highest peak occurred at the beginning of the forecast 

horizon at 4:00 p.m., the heat pump was activated immediately because the value of thermal 

comfort term in the objective function was dominating compared to the value of the cost term. 

It was dominating because the gap between the initial temperature and CSp was significant. 

The heat pump operated continuously for 2 h, and after a brief downtime, reactivated again. 

This behavior is in contrast with residential EMCA3 where the heat pump only operated for 

45 min until the Tind dropped below a threshold where the balance was tipped over towards 

energy savings.  
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Appendix F 

Residential EMCA5 

 

Residential EMCA5 is the Default Controller described in Sec. 4.1. It was designed, as a best 

effort, to replicate the operation of the differential controllers used in the original simulation 

model of the NZERTF.  

 

Thermal Performance 

 

The annual comparison of Tind profiles of residential EMCA5 and the original simulation 

model is shown in Figure 68.  

 

 
 

Figure 68. Residential EMCA5 - annual comparison of Tind with the original simulation model 

 

As can be seen from Figure 68, residential EMCA5 and the original simulation model have 

similar Tind profiles. In both profiles, there are small variations from the heating and cooling 

setpoints. The original simulation model shows larger deviations in Tind during the shoulder 

seasons, while these variations are smaller in residential EMCA5. To highlight their 

similarities and differences, two representative months for heating and cooling seasons are 

selected and shown in Figure 69 and Figure 70, respectively.  

 

The top subplot in Figure 69 shows a comparison of Tind between residential EMCA5 and the 

original simulation model in the month of January, while the bottom subplot shows three days 

with the lowest temperature drops.   
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Figure 69. Residential EMCA5 – comparison of Tind with the original simulation model 

 

As can be seen from Figure 69, both temperature profiles are similar with minor differences in 

the magnitude of deviations from the HSp. In both temperature profiles, the largest temperature 

decay from the HSp occurred on the 7th of January. The maximum temperature decay of the 

original simulation model is 0.2 °C, where the maximum temperature decay of residential 

EMCA5 is 0.54 °C.  

 

Similarly, the top subplot of Figure 70 shows a comparison of Tind between residential EMCA5 

and the original simulation model in the month of July, while the bottom subplot captures a 

few days with larger variations in the indoor temperature.  
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Figure 70. Residential EMCA5 - a comparison of Tind with the original simulation model 

 

As can be seen from Figure 70, both temperature profiles are similar. The largest temperature 

difference is 0.16 °C between the two profiles in the bottom subplot.  

 

Furthermore, the thermal performance of residential EMCA5, as measured by PMV and PPD, 

was calculated. Figure 71 shows the annual comparison of PMV between residential EMCA5 

and the original simulation model. The PMV corresponding to the original simulation model 

transitions between slightly warm and slightly cool temperatures during the shoulder seasons, 

but it remains within the recommend thermal range of +0.5 and -0.5 in all other seasons. In 

comparison, the PMV associated with residential EMCA5 remains within the recommended 

range in all seasons, including the shoulder seasons. According to the information in Table 18, 

the discomfort index for residential EMCA5 is 0 h, suggesting that the occupants have been 

comfortable throughout the simulation year. The impact of residential EMCA5 on thermal 

discomfort was expected to be minimal because it was designed to maintain thermal comfort 

regardless of energy consumption. 
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Figure 71. Residential EMCA5 - comparison of annual PMV with the original simulation 

model 

 

Likewise, Figure 72 shows the annual comparison of PPD between residential EMCA5 and 

the original simulation model. The PPD values corresponding to the original simulation model 

suggest that a large percentage of the occupants were uncomfortable during the shoulder 

seasons, but for a shorter period. The PPD values corresponding to the residential EMCA5 

confirms that the occupants were comfortable throughout the year and the maximum value of 

PPD is well within the 10 % of the thermal comfort limit.  
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Figure 72. Residential EMCA5 - comparison of annual PPD with the original simulation 

model 

 

  



120 

 

Appendix G 

Residential EMCA6 

 

Residential EMCA6 is identical to residential EMCA5; it only uses wider deadbands (Table 5) 

for controlling different stages of the heat pump.   

 

Thermal Performance 

 

The annual comparison of Tind profiles of residential EMCA6 and the original simulation 

model is shown in Figure 73. 

 

 
 

Figure 73. Residential EMCA6 - annual comparison of Tind with the original simulation model 

 

As can be seen from Figure 73, residential EMCA6 and the original simulation model do not 

have similar Tind profiles because the deadbands for residential EMCA6 were relaxed. In both 

profiles, there are small variations from the heating and cooling setpoints. The original 

simulation model shows larger deviations in Tind during the shoulder seasons, while these 

temperature variations are smaller in residential EMCA6. To highlight their similarities and 

differences, two representative months for heating and cooling seasons are selected and shown 

in Figure 74 and Figure 75, respectively.   

 

The top subplot in Figure 74 shows a comparison of Tind between residential EMCA6 and the 

simulation model in January, while the bottom subplot shows three days with the lowest 

temperature drops.  
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Figure 74. Residential EMCA6 - a comparison of Tind with the original simulation model 

 

As can be seen from Figure 74, both temperature profiles fluctuate within their respective 

deadbands from the HSp. In both temperature profiles, the largest temperature decay from the 

HSp occurred on the 7th of January. The maximum temperature decay of the original simulation 

model is 0.2 °C, where the maximum temperature decay of residential EMCA6 is 0.89 °C.  

 

Similarly, the top subplot of Figure 75 shows a comparison of Tind between residential EMCA6 

and the original simulation model in the month of July, while the bottom subplot captures a 

few days with larger variations in the indoor temperature 
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Figure 75. Residential EMCA6 - a comparison of Tind with the original simulation model 

 

As can be seen from Figure 75, both temperature profiles fluctuate within their respective 

deadbands from the CSp. The largest temperature increase of for both profiles occurred on the 

14th of July. The largest temperature increase of for the original simulation model was 0.33 °C, 

while the maximum temperature increase for residential EMCA6 was 0.62 °C. 

 

Furthermore, the thermal performance of residential EMCA6, as measured by PMV and PPD, 

was calculated. Figure 76 shows the annual comparison of PMV between residential EMCA6 

and the original simulation model. The PMV corresponding to the original simulation model 

transitions between slightly warm and slightly cool temperature during the shoulder seasons, 

but it remains within the recommend thermal range of +0.5 and -0.5 in all other seasons. In 

comparison, the PMV associated with residential EMCA6 generally within the recommended 

range in the heating and shoulder seasons. In the cooling season, the PMV associated with 

residential EMCA6 oscillates around the upper recommended limit of + 0.5. In other words, 

the occupants are feeling slightly warmer than the original simulation model. In general, it can 

be concluded that the occupants were comfortable throughout of the simulation year except for 

37 h (Table 18).  
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Figure 76. Residential EMCA6 - comparison of annual PMV with the original simulation 

model 

 

Similarly, Figure 77 shows the annual comparison of PPD between residential EMCA6 and 

the original simulation model. The PPD values corresponding to the original simulation model 

suggest that a large percentage of the occupants were uncomfortable during the shoulder 

seasons, but for a shorter period. The PPD values corresponding to the residential EMCA6 

suggest that not only more occupants were uncomfortable, but they were uncomfortable for a 

longer period. In general, the maximum value of PPD is well within the 10 % thermal comfort 

limit. 
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Figure 77. Residential EMCA6 - comparison of annual PPD with the original simulation 

model 
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Nomenclature  

AE  assessment engine 

AEUI  AE user interface 

AHP  Analytical Hierarchy Process 

ANSI  American National Standards Institute 

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers 

ASTM  American Society for Testing and Materials 

CCD  cooling control decisions 

cHSD  cooling 2nd Stage deadband 

CI  consistency index 

cLSD  cooling 1st Stage deadband 

cLSTO  cooling 1st Stage time-out 

coolToHeat cool to heating season deadband 

CR  consistency ratio 

Cscale  comparison scale 

CSp  cooling temperature setpoint 

DBM  division by maximum 

DBS  division by sum 

DCTBE default control timer before the end 

DCTS  default control timer at the start 

Diff  difference 

DR  demand response 

Ec1  1st Stage heat pump thermal capacity for cooling 

Ec2  2nd Stage heat pump thermal capacity for cooling 

Eh1  1st Stage heat pump thermal capacity for heating 

Eh2  2nd Stage heat pump thermal capacity for heating 

Eh3  3rd Stage capacity for heating 

EISA  Energy Independence and Security Act 

EMCA  energy management control algorithm 

FDD  fault detection and diagnostics 

hASD  3rd Stage heating deadband 

HCD  heating control decisions 

heatToCool heat to cooling season deadband 

hHSD  2nd Stage heating deadband 

hHSTO 2nd Stage heating time-out 

hLSD  1st Stage heating deadband 

hLSTO  1st Stage heating time-out 

HSp  heating setpoint 

HVAC  heating, ventilating, and air-conditioning 

IEEE  Institute of Electrical and Electronics Engineers 

ISO  International Organization for Standardization 

ITFM  indoor temperature forecast model 

kWh  kilowatt hour 

MATLAB Matrix Laboratory 

MC  mapping cost 

MCDM multi-criteria decision-making 
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MDC  mapping discomfort 

ME  mapping energy consumption 

MPC  matrix of pairwise comparisons 

NIST   National Institute of Standards and Technology 

NZERTF Net-Zero Energy Residential Test Facility 

Pc1  1st Stage electrical power for Cooling 

Pc2  2nd Stage electrical power for Cooling 

Ph1  1st Stage electrical power for heating 

Ph2  2nd Stage electrical power for Heating 

Ph3  3rd Stage electrical power for Heating 

PJM  Pennsylvania-New Jersey-Maryland Interconnection 

PMV  predicted mean vote 

PPD  predicted percentage of dissatisfied 

PPDwc  PPD-Weighted criterion 

qhp   rate of heat generated inside a residence by the heat pump; 

ql   rate of heat generated inside a residence by the internal loads 

qsol   total solar heat gain added to a residence  

RC  cost ratio 

RDC  discomfort ratio 

RE  energy ratio 

RI  random index 

RTP  real-time pricing 

SCF  cost scale factor 

SDF  discomfort scale factor 

SEF  energy scale factor 

T∞   outside ambient dry-bulb temperature 

Ti   initial indoor temperature 

Tind  first floor dry-bulb indoor temperature 

TMY  typical meteorological year 

TRNSYS Transient System Simulation Tool 

UA   overall heat transfer coefficient 

YALMIP Yet Another Linear Matrix Inequalities Parser 

λ  the dominance factor 

τ   building time constant  



127 

 

List of Publications 

1. F. Omar and S. T. Bushby, “A Self-Learning Algorithm for Temperature Prediction 

in a Single Family Residence,” NIST Tech. Note 1891, 2015. 

2. F. Omar, S. T. Bushby, and R. D. Williams, “A self-learning algorithm for estimating 

solar heat gain and temperature changes in a single-Family residence,” Energy Build., 

vol. 150, 2017. 

3. F. Omar, S. T. Bushby, and R. D. Williams, “Assessing the Performance of 

Residential Energy Management Control Algorithms: Muti-Criteria Decision Making 

Using the Analytical Hierarchy Process,” NIST Tech. Note 2017, 2018. 

4. Under review in Energy and Buildings: 

a. F. Omar, S. T. Bushby, and R. D. Williams, “Assessing the Performance of 

Residential Energy Management Control Algorithms: Muti-Criteria Decision 

Making Using the Analytical Hierarchy Process,”. 

5. Planned, F. Omar, S. T. Bushby, and R. D. Williams, “Energy Management Control 

Algorithms for the Net Zero Residential Test Facility,” NIST Tech. Note xxxx, 2018. 

  



128 

 

References 

 [1] EIA, “Monthly Energy Review,” Table 7.6 Electricity End Use, U.S. Energy 

Information Administration, 2018. [Online]. Available: 

https://www.eia.gov/totalenergy/data/monthly/pdf/sec7_19.pdf. [Accessed: 13-Mar-

2018]. 

[2] EIA, “Annual Energy Outlook 2018 with projections to 2050,” Table 4: Residential 

Sector Key Indicator and Consumption, U.S. Energy Information Administration, 

2018. [Online]. Available: https://www.eia.gov/outlooks/aeo/pdf/AEO2018.pdf. 

[Accessed: 13-Mar-2018]. 

[3] “Energy Independence and Security Act of 2007,” United States, Public Law 110-140, 

2007. 

[4] NIST, “NIST Framework and Roadmap for Smart Grid Interoperability Standards, 

Release 3.0,” NIST Spec. Publ. 1108R3, 2014. 

[5] “Demand Response | Department of Energy.” [Online]. Available: 

http://energy.gov/oe/technology-development/smart-grid/demand-response. 

[Accessed: 16-Oct-2015]. 

[6] U.S. Department of Energy, “Benefits of Demand Response in Electricity Markets and 

Recommendations for Achieving Them,” 2006. 

[7] J. S. Vardakas, N. Zorba, and C. V. Verikoukis, “A Survey on Demand Response 

Programs in Smart Grids: Pricing Methods and Optimization Algorithms,” IEEE 

Commun. Surv. Tutorials, vol. 17, no. c, pp. 1–1, 2014. 

[8] R. Deng, Z. Yang, M.-Y. Chow, and J. Chen, “A Survey on Demand Response in 

Smart Grids: Mathematical Models and Approaches,” IEEE Trans. Ind. Informatics, 

vol. 11, no. 3, pp. 1–1, 2015. 

[9] P. Siano, “Demand response and smart grids—A survey,” Renew. Sustain. Energy 

Rev., vol. 30, pp. 461–478, 2014. 

[10] E. Balke, G. Nellis, S. Klein, H. Skye, V. Payne, and T. Ullah, “Detailed energy model 

of the National Institute of Standards and Technology Net-Zero Energy Residential 

Test Facility: Development, modification, and validation,” Sci. Technol. Built 

Environ., vol. 0, no. 0, pp. 1–14, 2017. 

[11] S. A. Klein et al, “TRNSYS 17: A Transient System Simulation program, Solar 

Energy Laboratory, University of Wisconsin, Madison, USA,” Trnsys, 2010. 

[12] Google product, “Google Code Archive - Long-term storage for Google Code Project 

Hosting.,” 2013. [Online]. Available: 

https://code.google.com/archive/p/matlabcontrol/. [Accessed: 17-Sep-2014]. 

[13] H. Fanney, V. Payne, T. Ullah, N. Lisa, M. Boyd, F. Omar, M. Davis, H. Skye, B. 

Dougherty, B. Polidoro, W. Healy, J. Kneifel, and B. Pettit, “Net-zero and Beyond! 

Design and Performance of NIST’s Net-zero Energy Residential Test Facility,” 

Energy Build. 101, pp. 95–109, 2015. 

[14] F. Omar and S. T. Bushby, “Simulating Occupancy in The NIST Net-Zero Energy 

Residential Test Facility,” NIST Tech. Note 1817, 2013. 



129 

 

[15] T. Fast, T. Wall, and L. Chen, “Java Native Access,” 2007. [Online]. Available: 

https://github.com/java-native-access/jna. [Accessed: 22-Aug-2016]. 

[16] Google, “Protocol Buffers | Google Developers,” 2008. [Online]. Available: 

https://developers.google.com/protocol-buffers/. [Accessed: 10-Sep-2014]. 

[17] IBPSA-USA, “Best Directory | Building Energy Software Tools.” [Online]. Available: 

http://www.buildingenergysoftwaretools.com/. [Accessed: 15-Aug-2015]. 

[18] F. Incropera and D. DeWitt, “Introduction to Heat Transfer,” 4th ed., Wiley, 2002, pp. 

240–249. 

[19] M. Davis, W. Heally, M. Boyd, L. Ng, V. Payne, H. Skye, and T. Ullah, “Monitoring 

Techniques for the Net-Zero Energy Residential Test Facility,” NIST Technical Note 

1854, 2014. 

[20] “Chapter 15. Fenestration,” in ASHRAE Handbook: Fundamentals, ASHRAE, 2013, 

p. 13. 

[21] “Chapter 15. Fenestration,” in ASHRAE Handbook: Fundamentals, ASHRAE, 2013, 

p. 17. 

[22] J. A. Duffie and W. A. Beckman, “Solar Radiation,” in Solar Engineering of Thermal 

Processes, 3rd ed., Wiley, 2006, pp. 3–17. 

[23] M. Rubin, “Solar optical properties of windows,” Energy Res., vol. 6, pp. 123–133, 

1982. 

[24] P. Lei, “A Linear Programming Method for Synthesizing Origin-Destination (O-D) 

Trip Tables from Traffic Counts for Inconsistent Systems,” Virginia Polytechnic 

Institute and State University, 1998. 

[25] J. S. Armstrong, Ed., “Principle of Forecasting: A Handbook for Researchers and 

Practitioners,” in Appendix, Kluwer Academic Publishers, 2001, p. 470. 

[26] F. Omar and S. T. Bushby, “A Self-Learning Algorithm for Temperature Prediction in 

a Single Family Residence,” NIST Tech. Note 1891, 2015. 

[27] F. Omar, S. T. Bushby, and R. D. Williams, “A self-learning algorithm for estimating 

solar heat gain and temperature changes in a single-Family residence,” Energy Build., 

vol. 150, 2017. 

[28] J. Lofberg, “YALMIP : a toolbox for modeling and optimization in MATLAB,” in 

2004 IEEE International Conference on Robotics and Automation (IEEE Cat. 

No.04CH37508), 2004, pp. 284–289. 

[29] The MathWorks, “Optimization Toolbox User’s Guide R2017a,” 2017. 

[30] W. V. Payne, “NZERTF’s Heat Pump Capacity Outputs,” Private Communications, 

National Institute of Standards and Technology, MD, 2013. 

[31] C. Chen, S. Kishore, and L. V. Snyder, “An innovative RTP-based residential power 

scheduling scheme for smart grids,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal 

Process. - Proc., pp. 5956–5959, 2011. 

[32] A. H. Mohsenian-Rad and A. Leon-Garcia, “Optimal residential load control with 

price prediction in real-time electricity pricing environments,” IEEE Trans. Smart 



130 

 

Grid, vol. 1, no. 2, pp. 120–133, 2010. 

[33] M. Avci, M. Erkoc, A. Rahmani, and S. Asfour, “Model predictive HVAC load 

control in Buildings using real-time electricity pricing,” Energy Build., vol. 60, pp. 

199–209, 2013. 

[34] A. Afram, F. Janabi-sharifi, A. S. Fung, and K. Raahemifar, “Artificial neural network 

( ANN ) based model predictive control ( MPC ) and optimization of HVAC systems : 

A state of the art review and case study of a residential HVAC system,” Energy Build., 

vol. 141, pp. 96–113, 2017. 

[35] J. H. Yoon, R. Baldick, and A. Novoselac, “Demand response control of residential 

HVAC loads based on dynamic electricity prices and economic analysis,” Sci. 

Technol. Built Environ., vol. 22, no. 6, pp. 705–719, 2016. 

[36] T. Cui, S. Chen, Y. Wang, Q. Zhu, S. Nazarian, and M. Pedram, “Optimal co-

scheduling of HVAC control and battery management for energy-efficient buildings 

considering state-of-health degradation,” Proc. Asia South Pacific Des. Autom. Conf. 

ASP-DAC, vol. 25–28–Janu, pp. 775–780, 2016. 

[37] F. Nägele, T. Kasper, and B. Girod, “Turning up the heat on obsolete thermostats: a 

simulation-based comparison of intelligent control approaches for residential heating 

systems,” Renew. Sustain. Energy Rev., vol. 75, pp. 1254–1268, 2017. 

[38] J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben, J. Stankovic, E. Field, and K. 

Whitehouse, “The Smart Thermostat: Using Occupancy Sensors to Save Energy in 

Homes,” Proc. ACM SenSys, vol. 55, pp. 211–224, 2010. 

[39] K. X. Perez, M. Baldea, and T. F. Edgar, “Integrated smart appliance scheduling and 

HVAC control for peak residential load management,” Proc. Am. Control Conf., vol. 

2016–July, pp. 1458–1463, 2016. 

[40] B. Urban and K. Roth, “A Data-Driven Framework for Comparing Residential 

Thermostat Energy Performance,” Fraunhofer Center for Sustainable Energy Systems, 

Final Report | Co-Developed with NEST, 2014. 

[41] J. Iwaro,  a Mwasha, R. Williams, and R. Zico, “An Integrated Criteria Weighting 

Framework for the sustainable performance assessment and design of building 

envelope,” Renew. Sustain. Energy Rev., vol. 29, pp. 417–434, 2014. 

[42] C. J. Hopfe, G. L. M. Augenbroe, and J. L. M. Hensen, “Multi-criteria decision 

making under uncertainty in building performance assessment,” Build. Environ., vol. 

69, pp. 81–90, 2013. 

[43] T. L. Saaty, Multicriteria Decsion Making: The Analytic Hierarchy Process. 

University of Pittsburgh, 1988. 

[44] S. D. Pohekar and M. Ramachandran, “Application of multi-criteria decision making 

to sustainable energy planning - A review,” Renew. Sustain. Energy Rev., vol. 8, no. 4, 

pp. 365–381, 2004. 

[45] G. A. Norris and H. E. Marshall, “Multiattribute decision analysis method for 

evaluating buildings and building systems.,” NIST Tech. Note 5663, 1995. 

[46] O. S. Vaidya and S. Kumar, “Analytic hierarchy process: An overview of 



131 

 

applications,” Eur. J. Oper. Res., vol. 169, no. 1, pp. 1–29, 2006. 

[47] ASTM, “Standard Practice for Applying Analytical Hierarchy Process ( AHP ) to 

Multiattribute Decision Analysis of Investments Related to Buildings and Building 

Systems 1,” 2016. 

[48] S. Carlucci and L. Pagliano, “A review of indices for the long-term evaluation of the 

general thermal comfort conditions in buildings,” Energy Build., vol. 53, pp. 194–205, 

2012. 

[49] ISO 7730, “Erogonomics of the Thermal Environment - Analytical Determination and 

Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices 

and Local Thermal Comfort Criteria,” 2005. 

[50] ASHRAE, “Standard 55-2010. Thermal Environmental Conditions for Human 

Occupancy.Atlanta: American Society of Heating Refrigerating and Air Conditioning 

Engineers,” Atlanta, USA, 2010. 

[51] N. Walikewitz, B. Jänicke, M. Langner, F. Meier, and W. Endlicher, “The difference 

between the mean radiant temperature and the air temperature within indoor 

environments: A case study during summer conditions,” Build. Environ., vol. 84, pp. 

151–161, 2015. 

[52] M. Langner, K. Scherber, and W. R. Endlicher, “Indoor heat stress: An assessment of 

human bioclimate using the UTCI in different buildings in Berlin,” DIE ERDE, vol. 

144, no. 3–4, pp. 260–273, 2013. 

[53] L. Ng, “A Software Program for Calculating PMV and PPD.” Private 

Communications, National Institute of Standards and Technology, MD, 2017. 

[54] A. Persily and L. de Jonge, “Carbon dioxide generation rates for building occupants,” 

Indoor Air, vol. 27, no. 5, pp. 868–879, 2017. 

[55] A. Ishizaka and M. Lusti, “How to derive priorities in AHP: A comparative study,” in 

Central European Journal of Operations Research, 2006, vol. 14, no. 4, pp. 387–400. 

[56] R. D. F. S. M. Russo and R. Camanho, “Criteria in AHP: A systematic review of 

literature,” Procedia Comput. Sci., vol. 55, no. Itqm, pp. 1123–1132, 2015. 

 


