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Abstract

Forecasting agricultural yield at a local or regional level is of utmost importance

to decision makers in the food supply chain sector. Growers must make decisions

based on projected yields. For example, they might be interested in selling their pro-

duction in advance to cover part of their costs or to hedge potential price volatility.

In Brazil, these stakeholders rely on public forecasts provided by the Companhia

Nacional de Abastecimento (CONAB) and the Instituto Brasileiro de Geografia e

Estat́ıstica (IBGE). However, the forecasts published by these sources have some-

thing in common: they are deterministic and discount or omit the uncertainty

associated with their estimates. Moreover, forecasts for the same crop, region, and

time may differ from source to source. This research develops a methodology to

quantify the uncertainties associated with deterministic forecasts of soybean crop

yields in the state of Mato Grosso, Brazil. The theory of Bayesian Processor of

Forecasts (BPF) is reviewed and expanded to incorporate a judgmental prior dis-

tribution function modeled from the farmers’ assessments. Farmers in Mato Grosso

were interviewed and a set of quantiles of yields was assessed for each one. Individ-

ual prior distribution functions were modeled using these sets of quantiles and then

combined into a single prior distribution function. The deterministic forecasts were

collected from reports issued by CONAB and IBGE in October, February, and May

annually between 1993 and 2017. The BPF model is able to merge these determin-

istic forecasts, and produce probabilistic forecasts of the yield. Various BPF models

were developed for different lead times and using different prior information. The

empirical and simulated results of this study exemplify the advantages of using the

BPF theory and provide a guideline on how to apply this methodology to combine

prior distribution functions, fuse information from different sources, and produce

probabilistic forecasts.

Key words: agricultural yield; probabilistic forecasting; Bayesian forecaster; Bayesian

Processor of Forecasts; data modeling; judgmental assessment; expert uncertainty.



iii

Acknowledgements

This work was supported by the Brazilian agency Coordenação de Aperfeiçoamento

de Pessoal de Nı́vel Superior (CAPES) in partnership with Laspau, a nonprofit af-

filiated with Harvard University.

I would like to thank the University of Virginia (UVA) for the opportunity

to work as a teaching assistant for the Accelerated Master Program in Systems

Engineering.

I would like to thank Dr. Roman Krzysztofowicz for serving as my advisor and

providing insightful guidance during this research. Drs. William T. Scherer, James

H. Lambert, Garrick Louis, and Karen Kafadar not only served as members of my

research committee, but also gave me helpful advice. I thank Drs. Lambert and

Scherer specifically for all the fruitful discussions about my professional develop-

ment. I owe particular gratitude to Dr. Kafadar for the invaluable discussions about

statistics, teaching philosophy, and the academic life. In addition, Jayne Weber and

Elizabeth Harrison provided an outstanding guidance through the administrative

part of the program. I am also indebted to Fernanda Schwantes, Paulo Ozaki, and

the many farmers from Mato Grosso who participated in this study.

The UVA community was also essential to the completion of this project. I am

grateful for the friends I made in Charlottesville. I would like to thank Baozhen

Xie and Adriana Vito for the counseling and help during the many rough patches

of graduate school.

Finally, I am grateful for the support from my family, particularly from my

mother Maria Cristina Haselmann Paulo. This project wouldn’t have been possible

without her presence, many times in person, and her emotional (and financial)

support. I realize now that the tolls of an international degree fall not only in the

students, but also in their families. Emily Miller also had an essential role by being

constantly cheerful and helpful. Her positivity, along with the encouragement of her

wonderful family, alleviated the stress of being so distant from home.



iv

Table of contents

ABSTRACT ii

ACKNOWLEDGEMENTS iii

LIST OF ACRONYMS viii

LIST OF DISTRIBUTIONS viii

LIST OF KEY SYMBOLS ix

LIST OF FIGURES xi

LIST OF TABLES xvi

1 INTRODUCTION 1

1.1 Background for Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Forecasts of Agricultural Yield . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Challenges in the Brazilian Soybean Production . . . . . . . . . . . 2

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 DETERMINISTIC YIELD FORECASTS 6

2.1 Soybean Production Timeline . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Brazilian Institute of Geography and Statistics (IBGE) . . . . . . . . . . . 8
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IBGE Instituto Brasileiro de Geografia e Estat́ıstica.
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1. Introduction

In agriculture, farmers are often required to make decisions under uncertain conditions,

such as purchasing fertilizers, chemicals, seeds, and even selling their production ahead

of harvest. Generally, their decision process for these issues is supported by information

derived from multiple sources such as government agencies and private companies. How-

ever, there is uncertainty associated with these estimates and forecasts. This uncertainty

is not always communicated by the organizations releasing such data. Even in cases when

uncertainty is communicated, it may not be well understood by those not trained in prob-

abilistic reasoning. For farmers, the uncertainty surrounding predictions of input prices,

yield, and commodity markets, for example, can have huge impacts on their livelihoods.

1.1 Background for Research

1.1.1 Forecasts of Agricultural Yield

The United States Department of Agriculture (USDA) publishes several reports during

the agricultural season estimating national and international production for the most sig-

nificant crops. The USDA releases information through several sub-departments such as

the Economic Research Service (ERS), Foreign Agricultural Service (FAS), National Agri-

cultural Statistics Service (NASS), and the World Agricultural Outlook Board (WAOB).

These reports affect decision making in both business planning and policy making.

Typically, agricultural models used in estimating acreage to be harvested and yield com-

bine information from multiple sources, such as surveys, meteorological stations, and crop

monitors. These models may involve complex estimations or forecasting algorithms, even

though their outputs often appear as point estimates. Moreover, such estimates rarely

acknowledge the uncertainty surrounding them.

The Brazilian government makes a similar effort to produce information for the agri-
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culture sector through the Instituto Brasileiro de Geografia e Estatistica (IBGE) and the

Companhia Nacional de Abastecimento (CONAB). The IBGE is associated with the Min-

istry of Planning, Budget and Management, and CONAB is associated with the Ministry

of Agriculture and Supply. Both ministries are part of the executive branch.

Forecasting soybean production on a national scale is particularly important to coun-

tries such as Brazil and United States, whose climates are ideal for this vital crop. Ap-

proximately 21.6% of the Brazilian GPD originated from agribusiness in 2017 according

to CEPEA (2018). Soybean production alone contributed 142.3 billion reais in 2017,

equal to 25% of the total agricultural production in the country that year (IBGE, 2017b).

Internationally, Brazil competes with the United States to be the world leader in pro-

duction. In the 2017/2018 season, Brazil produced 120.80 million metric tons and the

United States produced 120.07 million metric tons, corresponding to approximately 36%

and 35%, respectively, of the global soybean production (USDA, 2019).

1.1.2 Challenges in the Brazilian Soybean Production

While Brazil enjoys the spoils of this lucrative industry, being one of the largest soybean

producers presents many challenges. Approximately 45% of soybeans in Brazil were pro-

duced in the Center-West region of the country in the 2017/2018 season (IBGE, 2019).

This region is composed of 3 states: Mato Grosso, Mato Grosso do Sul, and Goiás. The

climate in this region is conducive to growing soybean, but there is a deficit of transporta-

tion alternatives to the main ports in Brazil for exportation.

Trucks are the transportation method of choice at the moment, but there are many

downsides, such as costs associated with fuel, road conditions, wages, and so on. Certainly,

the volatility of trucks as the main method of transportation leaves farmers vulnerable.

This dilemma is already playing out on the national stage. Constant increases in the cost

of transportation driven by increases in both tolls and the price of diesel led to a national

truck driver’s strike in May of 2018. This strike seriously impacted the exportation pos-
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sible at that time (and ultimately, profit), given that there is limited storage capacity for

unshipped goods with a shelf life. The strike ended with a settlement between the truck-

ers’ union and the government that imposed minimum freight rates and changes in the

adjustments of the diesel price. These policies are still under review and are considered

to be controversial by many agents in the supply chain. The total reliance on the road

system for agricultural exportation is risky for both farmers and grain traders.

Other methods of transportation are being explored, though none have emerged as

an obvious choice. Over the last few years, the government and private companies have

invested in the railroad system, but the capacity is still limited. This system requires

a large amount of investment, and consequently it is operated by a small number of

companies. The rail freight rates usually compete with the road system, leaving a limited

incentive to use trains depending on the size of the cargo. Waterways have a great

potential in Brazil, but also depend heavily on public investments.

Brazil’s logistical challenges are closely related to its storage capacity. The soybean

spoilage process is relatively long as compared to other agricultural products, which allows

them to be stored in silos and warehouses for up to 6 months under optimal moisture

and temperature conditions, without any quality problems. Storing soybeans longer is

possible, but additional efforts to maintain quality are required. However, the storage

capacity in the country is still insufficient to alleviate the logistical problems.

These are some of the reasons why forecasting yield is important. Planning an entire

season ahead while expecting to deal with many challenges requires reliable information.

Furthermore, assessing the uncertainties associated with the forecasts will potentially

improve decision making throughout the supply chain.
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1.2 Research Objectives

The overall objective is to develop a methodology to produce probabilistic agricultural

yield forecasts. This methodology will incorporate judgmentally assessed prior informa-

tion from farmers into a yield forecasting model. Specifically, judgmentally assessed prior

distribution function will be input to a Bayesian forecasting model that will output a

probabilistic forecast of the yield. Two forecasting models will be formulated.

1. A forecasting model using historical prior, which will produce probabilistic yield

forecasts for a region or a field. The predictors will be the deterministic forecasts

for the region issued by government organizations. This model will allow grow-

ers and other decision makers in agriculture to quantify the uncertainty related to

their recorded data set and also take advantage of multiple sources of deterministic

forecasts.

2. A forecasting model using a judgmental prior, which will produce probabilistic yield

forecasts for a region or a field. Similarly to the previous model, the predictors will

be the deterministic yield forecasts for the region, issued by a government sources.

However, a group of J farmers will contribute to the prior information. Each farmer

will produce a prior distribution function of the yield of the region and selected field.

The mixture of the J distribution functions will form a prior distribution function

of the predictand.

The methodology developed in this research will: (1) improve the judgmental as-

sessments currently being done in agricultural forecasting systems, (2) apply a new way

to combine judgmentally assessed information using Bayesian Model Averaging, and (3)

quantify and display the uncertainty about the agricultural yield using Bayesian Processor

of Forecasts.
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1.3 Overview

In order to achieve the objectives of this research, the next chapter reviews the method-

ologies currently applied to produce deterministic forecasts of agricultural yield by the

main government organizations in Brazil and in the United States. Chapter 3 reviews the

Bayesian forecasting framework, specifically the theory of Bayesian Processor of Forecasts

(BPF) and expands it to incorporate the judgmental prior distributions.

Chapter 4 is devoted to the modeling of judgmental distribution functions. In addi-

tion, it addresses the topic of combining prior distribution functions using the Bayesian

Model Averaging (BMA). Chapter 5 develops a framework for transforming judgmental

assessments of the yield of a field into the yield of a region through a field-region stochastic

transformation. This transformation is consistent with the Bayesian framework.

Chapter 6 constructs BPF models from observed data of the yield of Mato Grosso.

This chapter serves as a guideline to produce probabilistic forecasts of agricultural yield.

Subsequently, chapter 7 applies the methodology described in chapter 3 to incorporate the

farmers’ assessments into the BPF models. Lastly, chapter 8 summarizes the conclusions

obtained from analyzing the models and the results.

The appendices contain three additional items. Appendix A constructs examples of

the Bayesian Model Averaging algorithm to analyze its sensitivity to calibration and

informativeness of forecasters. Appendix B summarizes the methodology for modeling

distribution functions. This methodology is used in various parts of the research. Ap-

pendix C exemplifies the implementation of the models created in this research using R.

It serves as a practical guide for future readers to execute the framework developed in

this dissertation.
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2. Deterministic Yield Forecasts

This section reviews the methodology currently being used by some government organiza-

tions to produce deterministic forecasts of agricultural yield. It starts with a description

of the soybean production timeline in order to understand the activities related to differ-

ent stages of the crop season and the economic value of forecasts issued at various lead

times.

2.1 Soybean Production Timeline

Different varieties of soybeans reach maturity at different times, i.e., the time interval

from planting to harvest varies depending on the variety. Moreover, external conditions

such as soil moisture, temperature, solar irradiance, and day length have a great influence

on the development of the crops. The planting season is determined by an attempt to

combine the expected external conditions with the requirements of each stage of crop

development (EMBRAPA, 2013).

The soybean crop seasons in the United States and Brazil are not the same; therefore,

the forecasts are published during different times of year. In general, the soybean pro-

duction cycle occurs from October until the end of May in Brazil. The same cycle occurs

from April until November in the United States.

Farmers will take many factors into account as they plan when to plant, fertilize, and

harvest for the upcoming year. The farmer will base his or her decisions about when to

undertake these efforts on how the crop is developing so far and on forecasts regarding the

production yield. Other factors, like the fact that grain storage facilities must be reserved

prior to the harvest season, must also be taken into account. Because the planning process

has many moving parts, farmers will often use tools like the Soybean Production Calendar

developed by Lee et. al. (2007), for example.
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Soybean Production Calendar - USA

1 2 3 4 5 6 7 8 9 10 11 12

Planning
Tax prep.

Planter prep.
Sprayer prep.

phosphorus (P) and potassium (K) app.
Scout for weeds, insects

Burndown, apply pre herbicides
Plant seed
Seed fungicide
Seed pesticide
Check storage facilities

Check stand
Emergence
Begin grain marketing

Flowering, pod set, seed fill
Apply post herbicides

Spray foliar fungicide, if necessary
Scout for insects, diseases

Harvester prep
Planter repairs

Scout for weed escapes
Assess storage vs. market options

Sprayer repairs
Dry grain in bin

Spot spray
Seed drydown
Grain harvest

Take soil samples
Apply lime

Grain storage
Harvest repairs

Early purchase of inputs

Figure 2.1 Soybean production calendar for the state of Kentucky (Lee et al., 2007).
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This calendar lists an ideal time intervals for each agricultural operation during the sea-

son. The activities are divided into four types of operation: equipment maintenance/shop,

crop management, grain storage, and business/marketing. The weather conditions and the

growth requirements of the plant are the main factors that shape this calendar. Figure 2.1

shows the calendar and displays the activities and decisions made during the production

cycle, exemplifying the complexity of a soybean production operation in Kentucky.

2.2 Brazilian Institute of Geography and Statistics (IBGE)

The Brazilian government produces statistics about its agricultural production through

IBGE and CONAB . IBGE is part of the Ministry of Planning, Budget and Management in

Brazil. The agricultural data is collected and analyzed by the Board of Research (Diretoria

de Pesquisas - DPE) and, more specifically, supervised by the Agricultural Department

(Coordenação de Agropecuária - DPE/COAGRO). IBGE‘s major publication regarding

agricultural production is the Levantamento Sistemático da Produção Agŕıcola (LSPA).

The LSPA report contains municipal data about estimated area, production, and yield

for thirty five crops (including soybeans), and is published monthly (IBGE, 2002).

Private companies also produce agricultural information in some regions. For instance,

the Instituto Mato-grossense de Economia Agropecuária (IMEA) located in the State of

Mato Grosso collects information about the major crops in the center-west region of

Brazil. The IMEA is a non-profit institution that publishes weekly and monthly reports

about agricultural production.

2.2.1 Levantamento Sistemático da Produção Agŕıcola (LSPA)

The LSPA is a report issued monthly by IBGE from January to December, containing

estimates of planted area, harvested area, production, and yield for Brazil for a number of

agricultural crops, including soybeans. The IBGE does not contact the growers directly to
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collect data about their production. Instead, three groups are formed to aggregate local

data: the Grupo de Coordenação de Estat́ısticas Agropecuárias (GCEA), the Comissão

Municipal de Estat́ısticas Agropecuárias (COMEA) and the Comissão Regional de Es-

tat́ısticas Agropecuárias (COREA). The methodology used to elaborate the LSPA report

is decribed in IBGE (2018).

These three groups are formed in several locations in Brazil every month. The COMEA

gathers individuals connected to agricultural institutions and associations to review in-

formation at a local level. The GCEA and COREA gather individuals from agricultural

unions, associations, companies, and banks to review information at a regional level. The

participants of each meeting inform IBGE of their estimates regarding:

• Type of crop

• Area (in hectares): planted or to be planted, harvested or to be harvested, and

harvested in the current month

• Production (in tons)

• Yield (in kilograms/hectare)

• Price per unit (R$/tons)

• % of production stored

• Irrigation: Yes/No, and % of current area

• Abnormal event, taking the values: (0) missing, (1) excessive rain, (2) insufficient

rain, (3) frost, (4) hail, (5) pest, (6) disease, (7) eradication/abandoned, (8) other,

(9) none

• Stage, taking the values: (0) missing, (1) planning, (2) soil management, (3) plant-

ing, (4) cultivation, (5) harvest in progress, (6) harvest complete, (7) marketing, (8)

emergency, (9) flowering, (10) podding, (11) off season
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The groups discuss and fill up paper forms with their estimates for the variables above.

Once this information is collected, the GCEA, COMEA, and COREA send it to IBGE

to compose the LSPA report. The reports issued in October, November, and December

represent a prediction of the actual values of harvested area and production after the

season is completed. These forecasts are deterministic.

The forecast of the current yield reported by the LSPA is calculated using the observed

yields of the last 5 seasons. Let the continuous variate W be the yield of a certain state

reported by the LSPA, and its realization be denoted by w ∈ W , where W is the sample

space. Let w(t) be the observed yield in the state at year t. Let wL = min{w(t)} and

wU = max{w(t)}, for t = 1, ..., 5. The forecast of the yield for the current year, w(6), is

calculated as follows:

w(6) =

∑5
t=1w(t)− wL − wU

3
. (2.1)

In other words, the LSPA eliminates the highest and the lowest observed yields in the

last 5 years and takes the average of the remaining values to obtain a forecast for the

current year. The estimated planted area is multiplied by the predicted yield to obtain a

forecast about the production.

The final estimates are made by IBGE using the information collected from the groups

and their analysis of conditions that may affect the production. During the planning and

soil management stages, IBGE collects and analyzes data about input markets, such as

fertilizers, seed, and soil correctors. This information is utilized to estimate the area

intended for planting, while the expected yield is estimated based on historical yield.

Throughout the growing season, IBGE monitors the production conditions, such as

weather and phytosanitary conditions, in order to update the planted area estimates and

the yield forecasts. During the harvest stage, the actual data about harvested area and

yield are obtained.
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The IBGE validates the data before releasing the LSPA reports using both quantitative

and qualitative methods. Quantitative validation refers to the process of looking for

mistypes and missing data. The qualitative validation is a subjective analysis of the

reliability of the estimates. The IBGE analyzes the occurrence of outliers by comparing

the data collected in the previous season (for the same month) with the current data.

The forms collected from the local groups (GCEA, COMEA, and COREA) are analyzed

again for any explanation, in case there is some outlier.

2.2.2 Produção Agŕıcola Municipal (PAM)

The PAM is a report issued annually by IBGE containing estimates of planted area,

harvested area, production, yield, and value of production for a number of agricultural

crops. These estimates are separated by city, microregions, mesoregions, states, large

regions, and country. This report is quite similar to the LSPA, distinguishable only by

its periodicity.

In fact, for crops included in the LSPA, the PAM report simply aggregates the monthly

data collected in that source. Soybeans are included in this category. In the case of crops

monitored only by the PAM, the methodology for collecting information is similar to the

LSPA’s methodology. Questionnaires are applied by IBGE’s field employees to growers,

associations, stakeholders, etc. The collected data is validated similarly to the LSPA

report (IBGE, 2018).

2.3 Companhia Nacional de Abastecimento (CONAB)

CONAB is a government organization commissioned to apply public policies related to

warehousing services to small and mid-sized farms, and supply of agricultural products to

low income families. As part of their mission, CONAB produces reports with estimates

related to the agriculture sector, including statistics about soybean production. Their
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report is called Acompanhamento da Safra Brasileira de Grãos (ASBG) .

The ASBG is a report issued monthly from October to September. Similar to the

LSPA publication, the ASBG uses a quantitative and a qualitative analysis to produce

production, area, and yield forecasts for several agricultural crops. The quantitative

analysis involves statistical models and confidence intervals (CONAB, 2015). The specific

statistical models used in this publication are not explicitly described in the methodology

section of the report.

The qualitative analysis is made by interviewing agents in the supply chain, such as

growers, cooperative staff, consulting and extension companies, local government agen-

cies, and input resellers. First, the states are divided into large regions and then CONAB

interview the subjects according to a stratified sampling method. The subjective infor-

mation collect in the interviews refer to municipality level, or a group of municipalities

(CONAB, 2015).

The ASBG report usually contains the estimates and forecasts of production, area, and

yield for several crops along with a market analysis of each crop. This analysis involves

explanations about variations in the estimates from one year to another related to weather

conditions, diseases, insects and so on, as well as an assessment of marketing conditions,

such as price, credit markets, and production costs.

2.4 United States Department of Agriculture (USDA)

USDA’s National Agricultural Statistics Service (NASS) is the branch responsible for pro-

ducing information about the USA’s crop production, price paid and received by farmers,

production factors such as labor and chemical usage, and variations in the demographics

of rural areas. One of the forecasts published by the NASS each month is the yield of

several crops, such as corn, soybeans, cotton, wheat, and potatoes (USDA, 2012).

The NASS forecasts and estimates the area to be harvested and yield per area. Es-
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sentially, the crop production cycle is divided into three periods: (1) the beginning of

the cycle, when the planted area is estimated, (2) during the cycle, when the area to be

harvested and yield are forecasted, and (3) after the harvest, when the final harvested

area and yield are estimated. In order to assess information about these variables, the

NASS performs a subjective type of survey called the Agricultural Yield Survey, and an

objective type of survey called the Objective Yield Survey, consisting of measurements

and counts in random plots (USDA, 2012).

The methodological report published by USDA (2012) thoroughly describes the data

collection and modeling of these two types of surveys. In summary, the following deter-

ministic equation is used to compute the final net yield per acre:

Y = (F ∗W )− L, (2.2)

where Y is the population net yield per acre, F is the population average number of fruit

per acre, W is the population average net fruit weight per unit, in industry standard

moisture, and L is the population average harvest loss per acre (USDA, 2012). The

USDA collects a number of measurements to estimate each variate in equation (2.2). For

instance, in order to forecast variate F , the following linear regression is utilized:

f = β0 + β1x+ ε, (2.3)

where f is the estimate of average weight of fruit per unit, β0 and β1 are the coefficients of

the regression, x is a characteristic of the plant, and ε is the residuals. Similar approaches

are applied to estimate the other variates in equation (2.2).

The limited collection capacity of primary information through interviews in other

countries forces the USDA to base international forecasts on secondary sources, economic

models, and environmental models. In addition, the USDA uses satellite images, weather

analysis, expert reports, and reports of private and public companies as international
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sources of information (USDA, 1999).

Another source of agricultural forecasts is the USDA‘s World Agricultural Supply and

Demand Estimates (WASDE) report. It is a monthly publication that includes forecasts

of national and international wheat, rice, coarse grain, oilseeds, and cotton production.

This report is prepared by nine Interagency Commodity Estimates Committees (ICECs)

formed by representatives of several USDA agencies. The ICECs are managed by the

USDA World Agricultural Outlook Board (WAOB) analysts (USDA, 2006).

In order to produce the WASDE report, the ICECs compile and analyze informa-

tion from: (1) the Foreign Agricultural Service (FAS) regarding international commodity

markets, (2) the Economic Research Service (ERS) regarding national and international

regional assessments, (3) the National Agricultural Statistics Service (NASS) regarding

national crop and livestock estimates, and (4) the Farm Services Agency and the Agri-

cultural Marketing Service regarding domestic policies and markets.

The WASDE report also contains an evaluation of the forecasts issued by this publica-

tion. This evaluation is in the form of the difference between projected and final estimates

of production, exports, domestic use, and ending stocks.

2.5 Summary

The methodologies reviewed in this chapter and applied to produce deterministic fore-

casts of agricultural yield by the different government organizations have a subjective and

a quantitative components. The subjective forecasts collected from growers and other

agents in the supply chain provide a local and updated perspective of the agricultural

production. However, these assessments are complemented with a statistical analysis in-

volving information about factors that may impact agriculture, such as weather, diseases,

and markets.

The LSPA, PAM, and ASBG reports issued by Brazilian government agencies do not
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contain any assessments of uncertainty associated with their estimates and forecasts, while

the WASDE reports issued by the USDA contains some statistics about the difference be-

tween the expected and actual values of production. In order to take advantage of random

sampling in many statistical models, these methodologies allocate part of their resources

in sampling methods. Some sampling methods involve more sophisticated technologies

such as satellite images analysis and stratification of regions.
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3. Bayesian Forecasting Framework

This chapter describes the Bayesian theory of probabilistic forecasting. First, the Bayesian

framework is discussed, followed by the Bayesian Processor of Forecasts (BPF) theory, and

the methodologies to construct Bayesian Meta-Gaussian models. This general framework

will be used more specifically in the next chapters to construct Bayesian forecasting models

that will output probabilistic forecasts of the yield.

3.1 Introduction

The Bayesian forecasting model developed here expands a well known Bayesian theory

of probabilistic forecasting (e.g., Krzysztofowicz and Reese (1991); Kelly and Krzyszto-

fowicz (1995); Kelly and Krzysztofowicz (1997); Krzysztofowicz (1999); Krzysztofowicz

and Kelly (2000); Krzysztofowicz (2001); Maranzano (2006); Krzysztofowicz and Evans

(2008); Maranzano and Krzysztofowicz (2008); Krzysztofowicz (2014)). This is the foun-

dation for the models developed later in this research.

The goal of developing these models is to produce probabilistic forecasts of agricultural

yield. The Bayesian framework is particularly convenient to address this problem since

it allows the use of information from different sources. This chapter expands the BPF

theory by using prior distribution functions assessed judgmentally by farmers to produce

a probabilistic forecast.

In addition, the models developed in this chapter allow forecasting at different lead

times. The same framework can be applied to other agricultural products, using different

predictors.
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3.1.1 Variates

Let the continuous variate W with sample space W be the predictand, i.e., a variate of

interest to the forecast problem. Its realization is denoted w ∈ W . Let the continuous

variate X with sample space X be the predictor, i.e., a variate that potentially reduces

the uncertainty of the forecast problem. Its realization is x ∈ X .

This notation is expanded using subscripts and superscripts in the following chapters

to define different predictands and predictors. The term predictand is more common

in Bayesian statistics, while it is often referred in conventional statistical literature as

response or dependent variable. The predictors are often called independent variates

(James et al., 2017).

3.1.2 Bayesian Forecaster

The inputs to the model are a prior density function and a family of likelihood functions

(Krzysztofowicz, 1999). Let function g(w) = p(w) for all w ∈ W be the prior density func-

tion of W , where p is a generic density function. Function G(w) is the prior distribution

function of W .

The functions f(x|w) = p(x|W = w) for all x ∈ X and w ∈ W constitute the family

of likelihood functions. Specifically:

• f(·|w) for a fixed w ∈ W is the density function of X, conditional on the hypothesis

that the actual realization of the predictand is W = w.

• f(x|·) for a fixed x ∈ X is the likelihood function of W , conditional on the realization

of the predictor X = x.

The outputs from the model are an expected density function of the predictor and a

family of posterior density functions (Krzysztofowicz, 1999). Let function κ(x) = p(x) be

the expected density function of X, for all x ∈ X . The functions φ(w|x) = p(w|X = x)
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for all x ∈ X and w ∈ W constitute the family of posterior density functions of predictand

W . Specifically:

• φ(·|x) is the posterior density function of predictand W , conditional on a realization

of the predictor X = x.

The Bayesian forecaster can be developed by applying the total probability law, for

all x ∈ X , to obtain the expected density function of X:

κ(x) =

∫
W
f(x|w)g(w)dw. (3.1)

The family of posterior density functions of W is derived by applying Bayes Theorem

for all w ∈ W :

φ(w|x) =
f(x|w)g(w)

κ(x)
. (3.2)

The posterior density function φ(·|x) is conditional on the realization x ∈ X of X.

It quantifies the uncertainty about predictand W , given realization X = x. It also

constitutes a probabilistic forecast of W for a given realization of X = x.

The applications of the Bayesian forecaster are diverse. Krzysztofowicz (2001) dis-

cusses the risks of using deterministic forecasts in hydrological forecasting systems. Among

these risks is the illusion of certainty that comes from the omission of information about

the uncertainty associated with deterministic forecasts. On the other hand, probabilistic

forecasts, such as the ones produced by the Bayesian forecaster, express the degree of

certitude related to the forecasts. In addition, probabilistic forecasts can be used in ac-

cordance with decision analysis in order to make rational decisions. Other applications in

hydrology were developed by Krzysztofowicz and Reese (1991), Kelly and Krzysztofowicz

(1997), Krzysztofowicz (1999), and Krzysztofowicz and Evans (2008).

Maranzano and Krzysztofowicz (2008) used a Bayesian forecaster constructed for a

binary predictand to forecast post-flight damage in one of the components of the shuttle
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Challenger, called O-ring, in 1986. This study reanalyzes the prediction process of a

failure event that happened before the space shuttle Challenger accident and suggests a

new approach to produce probabilistic forecasts using prior probabilities of damage in the

O-ring assessed judgmentally by experts. In this topic, one of the advantages of using the

Bayesian forecaster is the quantification of uncertainty about the experts’ assessments.

The challenge in using this methodology lies in modeling the distribution functions

and analyzing the stochastic dependence between the variates. In this study, the Bayesian

forecaster will be used to produce probabilistic forecasts of agricultural yield using prior

distribution constructed from experts’ assessments.

3.1.3 Prior Information

The conventional Bayesian Processor of Forecast (BPF) is constructed using a historical

prior distribution function. This function is modeled using recorded data of W . This

research expands the theory by applying judgmental prior distribution functions from

farmers to the construction of the BPF. The framework to model judgmental prior dis-

tribution functions is describe in chapter 4.

The judgmental prior distribution function quantifies the uncertainty of W from a

farmer’s perspective. This research uses these functions as a way to incorporate informa-

tion assessed from experts into the Bayesian forecaster. Currently, subjective forecasts

obtained from experts are interpreted by analysts also in a subjective manner or they are

incorporated into deterministic statistical models.

Let st denote the state of the agricultural system in year t at the time the farmer as-

sesses his judgmental prior distribution function, for t = 1, 2, ..., T. Let S be the sample

space of state such that st ∈ S. The state of the system in a particular field or region

may depend upon factors such as weather, soil conditions, disease incidence, and so on.

Let w(t) be the observed yield in year t.
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w(1) W

GH Gi
T

w(2) w(T-1)

Figure 3.1 Timeline of the modeling of the prior distribution functions.

In summary, the two types of prior distributions involved are:

1. The historical prior distribution function GH modeled using observed values of yield

{w(t) : t = 1, ..., T − 1}. This distribution is stationary, since it is independent of

the current state of the system sT . The superscript H will be omitted for simplicity,

so that G = GH .

2. The judgmental prior distribution function Gi
t, for i = F,R, modeled from farmer’s

assessments and discussed in chapters 4 and 5. This distribution is assessed once a

year and it is conditional on st:

Gi
t(w) = Gi(w|st). (3.3)

Therefore, this distribution is nonstationary. Figure 3.1 shows the timeline consid-

ered to estimate GH and Gi
T .

This research assessed the judgmental prior distribution Gi
T for year T = 2018. The

next subsection describes the theory of the Bayesian Processor of Forecasts. The conven-

tional BPF uses the historical prior distribution function G, and the expanded version of

the BPF uses both G and the judgmental prior distribution function Gi
T .
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3.2 Bayesian Processor of Forecasts

The formulation of the BPF was presented by Krzysztofowicz (1999) under the sec-

tion called Bayesian Post-Processing. This section describes the Bayesian meta-Gaussian

model using one predictor and multiple predictors. This framework is applied in chapter

6 to construct the Bayesian forecasters for the yield of regions in Mato Grosso, Brazil.

3.2.1 Purpose and Structure

Figure 3.2 shows the principle of the BPF developed in this research. The realization

of X is a deterministic forecast of W with a fixed lead time. The prior distribution

function quantifies the uncertainty about W from observed data. The BPF merges this

quantification with the assessment of uncertainty regarding X. The BPF has been suc-

cessfully applied in meteorology and hydrology (e.g., Krzysztofowicz and Reese (1991);

Krzysztofowicz (1999); Krzysztofowicz and Evans (2008)).

Krzysztofowicz and Evans (2008) designed a meta-Gaussian BPF to assess the un-

certainty related to deterministic forecasts produced by the National Weather Service

(NWS). These deterministic forecasts were produced judgmentally by human forecasters

with the help of a software systems and a subjective analyses of information from multiple

sources. The meta-Gaussian BPF was able to successfully produce probabilistic forecasts

of daily maximum temperature.

Deterministic 
Model

Total 
Uncertainty

X = x W

φ(w|x)

Figure 3.2 Scheme of the Bayesian Processor of Forecasts.
Source: Krzysztofowicz (1999)
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3.2.2 Information Fusion

Frequently, data from multiple sources must be analyzed simultaneously to solve a problem

or make a decision. Analysts often provide their subjective assessments by analyzing

multiple sources one by one. However, the formal framework to systematically combine

information from different sources in a useful way is referred as information fusion.

In this study, Bayes theorem expressed in equation (3.2) is used to fuse information

about the predictand issued by IBGE, and information about the predictive performance

of deterministic forecasts issued by the IBGE and CONAB. According to Krzysztofowicz

and Evans (2008), a proper application of Bayes theorem can solve problems in merging

information, such as when a joint sample of X and W has smaller size than the prior

sample of W .

In conventional statistical analysis, disparities in the size of the joint and prior sample

may result in the discard of data. In other words, only the joint sample is utilized.

Therefore, the Bayesian approach provides an advantage related to the efficiency in using

data. This advantage might turn out to be useful in cases with small sample sizes.

The following methodology focuses on the implementation of the BPF. The Bayesian

meta-Gaussian models using one predictor and using multiple predictors are described in

order to construct the BPF.

3.2.3 Bayesian Meta-Gaussian Model Using One Predictor

In order to construct a BPF for agricultural yield, this research examines the Bayesian

meta-Gaussian Forecaster (BMGF) for its convenient properties. The BMGF has been

developed by Kelly and Krzysztofowicz (1997), and extensively applied in research by

Maranzano (2006), and Krzysztofowicz and Evans (2008).

This general framework is described here for the BMGF using one predictor, and

using multiple predictors in the following sub-section. Chapter 6 uses this framework
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to construct BPF models for common forecasting problems in agriculture. The theory

described is based on the research from Maranzano (2006).

The construction and estimation of parameters of the Bayesian meta-Gaussian Fore-

caster involves modeling in the original space of variates X and W , modeling in a trans-

formed space through the use of the Normal Quantile Transformation (NQT), and finally

return to the original space.

The prior distribution function G, and the initial estimate K̄ of the marginal distribu-

tion function of X, are modeled using the methodology described in Appendix B. Once

these functions are modeled, it is possible to transform the variates using the Normal

Quantile Transformation (NQT),

V = Q−1(G(W )), (3.4a)

Z = Q−1(K̄(X)), (3.4b)

where Q−1 is inverse of the standard normal distribution function.

Once the variates are transformed, it is possible to model the family of likelihood

functions. The model assumes that the stochastic dependence between V and Z is normal-

linear. Therefore, the likelihood parameters can be estimated by the relationship

Z = aV + b+ Ξ, (3.5)

where a and b are unknown parameters, and Ξ is the residual from the linear regression.

The conditional mean and variance are

E(Z|v) = av + b, (3.6a)

V ar(Z|v) = σ2. (3.6b)
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The parameters a, b, and σ2 should be estimated using the method of maximum likeli-

hood (ML), which for a and b is equivalent to the method of least squares. The estimation

of these parameters uses the historical joint sample of (X,W ). The ML estimator of σ2 is

σ̄2 =
1

N

N∑
n=1

(Ξn − µ̄Ξ)2, (3.7)

where the ML estimator of the mean µΞ, is

µ̄Ξ =
1

N

N∑
n=1

Ξn. (3.8)

The assumptions regarding the linearity of the stochastic dependence between V and

Z, homoscedasticity, and normality of the residuals must be validated here. The first

step to validate these assumptions is to plot the sample {(z, v)} and visually analyze

the dependence structure between these two variates. The second step is to analyze the

residuals.

Given a satisfactory validation of these assumptions, the coefficients from the linear

regression can be used in the conditional density functions fQ(z|v) as follows.

fQ(z|v) =
1

σ
q

(
z − av − b

σ

)
, (3.9)

where q is the standard normal density function.

According to Krzysztofowicz (1999), the normal-linear likelihood function allows the

complete description of the predictive capability of the predictor in terms of three param-

eters: a, b, and σ.

The posterior density function of W , conditional on X = x, is

φ(w|x) =
g(w)

Tq(Q−1(G(w)))
q

(
Q−1(G(w))− c1Q

−1(K̄(x))− c0

T

)
, (3.10)
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and the posterior distribution function of W , conditional on X = x, is

Φ(w|x) = Q

(
Q−1(G(w))− c1Q

−1(K̄(x))− c0

T

)
, (3.11)

where Q is the standard normal distribution function and c1, c0, and T 2 are the posterior

parameters that are calculated as follows:

c1 =
a

a2 + σ2
, (3.12a)

c0 =
−ab

a2 + σ2
, (3.12b)

T =

(
σ2

a2 + σ2

)1/2

. (3.12c)

The posterior quantile function of W , conditional on a realization X = x, can be found

by inverting the posterior distribution in equation (3.11) as follows.

w(p|x) = Φ−1(p|x) = G−1(Q(c1Q
−1(K̄(x)) + c0 + TQ−1(p))). (3.13)

for any p (0 < p < 1), where G−1 denotes the inverse of the function G. For p = 0.5,

equation (3.13) produces the Bayesian meta-Gaussian median posterior regression. A 90%

central credible interval around the median posterior regression can be computed using

w(0.05|·) and w(0.95|·).

3.2.4 Bayesian Meta-Gaussian Model Using Multiple Predictors

Similarly to the previous section, this framework has been developed by Kelly and Krzyszto-

fowicz (1997), Maranzano (2006), and Krzysztofowicz and Evans (2008). Let Xl be the

predictor, with sample space Xl, and realization xl ∈ Xl, for l = 1, ..., L. Let X be the

vector of predictors. In summary, the following samples are used in this model:
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Historical prior sample of W – {w(n) : n = 1, ..., N − 1}, (3.14a)

Marginal sample of Xl – {xl(n) : n = 1, ..., Nl − 1}, l = 1, ..., L, (3.14b)

Joint sample of Xl and W – {(xl(n), w(n)) : n = 1, ..., N ′ − 1}, l = 1, ..., L, (3.14c)

where Nl − 1 is the sample size of predictor Xl. The sizes of the historical sample of W

and the marginal samples of Xl do not have to be equal. In fact, due to the nature of the

problem, it is common to have the sample size of the W larger than the sample sizes of

Xl. In addition, the sample sizes of Xl do not necessarily have to be equal. The size of

the joint sample of Xl and W is bounded by the smallest sample size of Xl. Therefore, it

is possible that N ≥ N ′, and Nl ≥ N ′.

Let K̄l denote the initial estimate of the marginal distribution function of Xl, obtained

from the marginal sample. The variates X1, ..., XL,W are transformed using the Normal

Quantile Transformation (NQT) as follows:

V = Q−1(G(W )), (3.15a)

Zl = Q−1(K̄l(Xl)), for l = 1, ..., L. (3.15b)

Each variate is assumed to be normally distributed: variate V with mean µ0 and

variance σ2
0, and variate Zl with mean µl and variance σ2

l . Consider the two L-dimensional

column vectors

µ = (µ1, ..., µL), (3.16a)

σ = (σ10, ..., σL0). (3.16b)

The stochastic dependence between the variates in the transformed space is assumed

to be from the multivariate Normal family. Considering the vector (Z1, ..., ZL, V ) to be
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MVN(µQ,ΣQ), where

µQ =



µ1

...

µL

µ0


, ΣQ =



σ2
1 · · · σ1L σ10

...
...

...

σ1L · · · σ2
L σL0

σ10 · · · σL0 σ2
0


. (3.17)

Consequently, the multivariate density function fQ(·|v) is also MVN(µfQ ,ΣfQ), where

µfQ =


µ1 + σ10

σ2
0

(v − µ0)

...

µL + σL0

σ2
0

(v − µ0)

 , ΣfQ =


σ2

1 − σ10σ10
σ2
0

· · · σ1L − σ10σL0

σ2
0

...
...

σ1L − σ10σL0

σ2
0

· · · σ2
L − σL0σL0

σ2
0

 . (3.18)

According to Maranzano (2006), the posterior density function φQ in the transformed

space takes the form:

φQ(v|z) =
1

T
q

(
v − ΣL

l=1clzl − c0

T

)
. (3.19)

The posterior distribution function ΦQ in the transformed space takes the form:

ΦQ(v|z) = Q

(
v − ΣL

l=1clzl − c0

T

)
, (3.20)

where

cT =
T 2

σ2
0

σTΣ−1
fQ
, (3.21a)

c0 = cT
(
µ0

σ2
0

σ − µ
)
, (3.21b)

T =

(
σ4

0

σTΣ−1
fQ
σ + σ4

0

) 1
2

. (3.21c)

and cT = [c1, ..., cL] is an L-dimensional row vector (the transpose of c).
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The expressions for the conditional density function f and posterior density function

φ in the original space can be derived from the relationship originated from the NQT

in equations (3.15a) and (3.15b). The density function f(x|w) of X, conditional on the

hypothesis that W = w has the expression

f(x|w) =
1

(2π)L/2|ΣfQ |1/2
L∏
l=1

κ̄l(xl)

q(Q−1(K̄l(xl)))
e
−(z−µfQ

)′Σ−1
fQ

(z−µfQ
)/2
. (3.22)

The posterior density function of W , conditional on the realization of the vector of

predictors X = x, is

φ(w|x) =
g(w)

Tq(Q−1(G(w)))
q

(
Q−1(G(w))− ΣL

l=1clQ
−1(K̄l(xl))− c0

T

)
. (3.23)

The posterior distribution function of W , conditional on the realization of the vector

of predictors X = x, is

Φ(w|x) = Q

(
Q−1(G(w))− ΣL

l=1clQ
−1(K̄l(xl))− c0

T

)
. (3.24)

The posterior quantile function of W is

w(p|x) = Φ−1(p|x) = G−1(Q(
L∑
l=1

clQ
−1(K̄l(xl)) + c0 + TQ−1(p))), (3.25)

for p such that 0 < p < 1. The posterior quantile function in equation (3.25) can be used

to produce a 90% central credible interval around the median posterior regression using

w(0.05|·) as a lower bound and w(0.95|·) as an upper bound.

The posterior density, distribution, and quantile functions produce probabilistic fore-

casts of W , conditional on the realization of the deterministic forecast Xl = xl for

l = 1, ..., L. This systematical approach can be used consistently with a decision model,
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as opposed to subjectively determining which deterministic forecast is more reliable.

3.3 Bayesian Processor of Forecasts Using Judgmental Prior

This section develops the framework to use judgmental prior distribution functions in

the Bayesian Processor of Forecasts. This framework also provides the tools to analyze

whether the farmers are able to contribute with insightful information about future yields.

The judgmental prior distribution functions quantify the uncertainty related to W under

the expert’s perspective. The following subsections adapt the Bayesian meta-Gaussian

models for one and multiple predictors using this new rationale.

3.3.1 Bayesian Meta-Gaussian Model Using One Predictor

Modeling the Bayesian meta-Gaussian forecaster using the judgmental prior distribution is

similar to the framework discussed in subsection 3.2.3 up to the derivation of the posterior

distribution and density functions. This model uses both the historical and judgmental

prior distribution functions.

Figure 3.3 shows a scheme of the BPF using judgmental prior distributions. This model

expands the conventional BPF presented in figure 3.2 by quantifying the uncertainty

about W for the current year from the farmer’s perspective. The posterior parameters

are obtained using the historical prior distribution function, but the posterior functions

are constructed using the judgmental prior distribution function.

The variates are transformed using the NQT through the historical prior distribution

function G = GH and the initial estimate K̄:

V = Q−1(G(W )), (3.26a)

Z = Q−1(K̄(X)). (3.26b)
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Figure 3.3 Scheme of the Bayesian Processor of Forecasts using judgmental priors.
Source: Adapted from Krzysztofowicz (1999)

Similar to subsection 3.2.3, the stochastic dependence between V and Z is assumed to

be normal-linear and the likelihood parameters can be estimated using the relationship

Z = aV + b+ Ξ. (3.27)

The conditional mean and variance are

E(Z|v) = av + b, (3.28a)

V ar(Z|v) = σ2. (3.28b)

The conditional density functions fQ(z|v) can be derived as follows, given that the

assumptions related to the stochastic dependence between V and Z have been validated:

fQ(z|v) =
1

σ
q

(
z − av − b

σ

)
. (3.29)

Thus far, the modeling steps have not been modified. The posterior distribution and
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density functions are constructed using a judgmental prior distribution. However, some

considerations must be made in order to use function Gi
t.

According to equation (3.1), a new prior density function of W results in a new

expected marginal density function of X, κ(x). Let K̄ be the initial estimate of the

marginal distribution function of X. Then, there exists w ∈ W and x ∈ X such that

G(w) = K̄(x). (3.30)

Solving equation (3.30) for w, we have

w = G−1(K̄(x)). (3.31)

Theoretically, using the same approach as in equation (3.30), the new expected density

function K̄i
t(x) of X, which corresponds to a judgmental prior distribution function Gi

t,

can be obtained as follows:

K̄i
t,l(x) = Gi

t(w)

= Gi
t(G

−1(K̄(x))).

(3.32)

Finally, the posterior density function of W , conditional on X = x, is

φ(w|x) =
git(w)

Tq(Q−1(Gi
t(w)))

q

(
Q−1(Gi

t(w))− c1Q
−1(K̄i

t(x))− c0

T

)
, (3.33)

and the posterior distribution function of W , conditional on X = x, is

Φ(w|x) = Q

(
Q−1(Gi

t(w))− c1Q
−1(K̄i

t(x))− c0

T

)
, (3.34)
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where c1, c0, and T 2 are the posterior parameters that are calculated as follows:

c1 =
a

a2 + σ2
, (3.35a)

c0 =
−ab

a2 + σ2
, (3.35b)

T =

(
σ2

a2 + σ2

)1/2

. (3.35c)

The posterior quantile function of W , conditional on a realization X = x, can be found

by inverting the posterior distribution in equation (3.34) as follows.

w(p|x) = Φ−1(p|x) = G
i(−1)
t (Q(c1Q

−1(K̄i
t(x)) + c0 + TQ−1(p))). (3.36)

for any p (0 < p < 1), where G
i(−1)
t denotes the inverse of the function Gi

t. For p = 0.5,

equation (3.36) produces the Bayesian meta-Gaussian median posterior regression. A 90%

central credible interval around the median posterior regression can be computed using

w(0.05|·) and w(0.95|·).

The BPF constructed in this section: (1) produces probabilistic forecast of W , con-

ditional on the realization of X = x, through the posterior distribution function Φ(w|x),

(2) quantifies the uncertainty associated with the deterministic forecasts of yield, and (3)

incorporates the judgmental prior distribution function assessed from a farmer.

3.3.2 Bayesian Meta-Gaussian Model Using Multiple Predictors

Similarly to subsection 3.2.4, this subsection describes BMGF for multiple predictors, but

using the judgmental prior distribution function. Let K̄l denote the initial estimate of the

expected marginal distribution function of Xl, obtained from the marginal sample. The

variates W,X1, ..., XL are transformed using the Normal Quantile Transformation (NQT)
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as follows:

V = Q−1(G(W )), (3.37a)

Zl = Q−1(K̄l(Xl)), for l = 1, ..., L. (3.37b)

The posterior parameters T, cL, and c0 can be estimated similarly to subsection 3.2.4,

using equations (3.16)-(3.21). However, the new posterior density and distribution func-

tions use the judgmental prior distribution function in this framework. In the following

equations (3.39), (3.40), and (3.41), the judgmental prior distribution function Gi
t and

its inverse G
i(−1)
t are applied. In parallel to equation (3.32), the new expected density

function K̄i
t,l resulting from using the nonstationary prior distribution function Gi

t can be

obtained as follows:

K̄i
t,l(xl) = Gi

t(w)

= Gi
t(G

−1(K̄l(xl))), for l = 1, ..., L.

(3.38)

The posterior density function of W , conditional on the realization of the vector of

predictors X = x, is

φ(w|x) =
git(w)

Tq(Q−1(Gi
t(w)))

q

(
Q−1(Gi

t(w))− ΣL
l=1clQ

−1(K̄i
t,l(xl))− c0

T

)
. (3.39)

The posterior distribution function of W , conditional on the realization of the vector

of predictors X = x, is

Φ(w|x) = Q

(
Q−1(Gi

t(w))− ΣL
l=1clQ

−1(K̄i
t,l(xl))− c0

T

)
. (3.40)

Similarly to the Bayesian forecaster using a single predictor, the model developed

for multiple predictors incorporates prior distributions assessed judgmentally based on
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the premise that experts, such as farmers, posses a greater understanding about the

production conditions of their fields and can potentially add insightful information to the

forecast. The posterior quantile function of W is

w(p|x) = Φ−1(p|x) = G
i(−1)
t (Q(

L∑
l=1

clQ
−1(K̄i

t,l(xl)) + c0 + TQ−1(p))), (3.41)

for p such that 0 < p < 1.

The posterior quantile function in equation (3.41) can be used to produce a 90% central

credible interval around the median posterior regression using w(0.05|·) as a lower bound

and w(0.95|·) as an upper bound.

3.4 Summary

The framework described and developed in this chapter is capable of producing proba-

bilistic forecasts of agricultural yield. The user is able to quantify uncertainty about the

yield, whether using historical data or through an expert perspective, and merge it with

the quantification of uncertainty about deterministic forecasts. In addition, the models

developed for multiple predictors allow the user to take advantage of several deterministic

forecasts.

Modeling the BPF is relatively tractable in the sense that only the judgmental dis-

tribution functions must be estimated every season. The analyst can model them and

update the posterior functions at any time desired. The probabilistic forecasts released to

the decision makers do not have to contain the complexities associated with the structure

of the forecaster.

Chapter 4 addresses the problem of judgmentally assessing prior distribution functions

from individuals and the problem of combining multiple functions into a single one. This

topic is compelling to the successful construction of a BPF model, since it can directly

impact the derivation of the posterior functions.
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4. Judgmental Distribution Functions

Experts are often summoned in decision analysis to provide insightful information. Through

experience, an expert can subjectively forecast a realization of a continuous predictand by

considering possible scenarios, and the uncertainty related to each of them. This chap-

ter reviews the predominant methods to assess a distribution function judgmentally, and

develops an approach to combine assessments from different experts.

4.1 Why Are Farmers Experts?

DeGroot (1988) presents two definitions of expert, each one being on a different extreme.

First, DeGroot summarizes the definition of expert presented by other authors (e.g. Morris

(1974, 1977)) as “to be anyone or any system that will give you a prediction”. Second,

he defines an expert as “to be someone whose prediction you will simply adopt as your

own posterior probability without modification”.

Farmers think about expected production many times before and during the growing

season. For instance, deciding the amount of lime to be applied in the soil to correct the pH

is a complex task. The optimal quantity will depend on the type of soil of a particular field,

the initial pH, the type of crop, and the depth of soil to be neutralized (Buchholz, 2004;

Mallarino et al., 2013). However, farmers can consider the trade-off between applying

smaller amounts of lime and providing sub-optimal conditions of production. This is one

example among many associated with expected production that farmers must considerate.

Returning to the definition of expert by Morris (1977) as “anyone with special knowl-

edge about an uncertain quantity or event”, farmers evidently qualify as experts of their

own production, or even on a larger scale, of the regional production. They are certainly

capable of providing predictions to those who don’t participate in the production process.
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4.2 Assessing Judgmental Distribution Functions

4.2.1 Overview

The elicitation of judgmental point estimates, probabilities, and distribution functions

from experts is subject of a extensive discussion. The effectiveness of judgmental assess-

ment methods may depend on the experts’ understanding of the problem or variate of

interest, but also on their knowledge about statistical concepts such as probability or

quantile. However, there are some advantages of assessing quantiles, like the facility to

construct parametric distribution functions.

Alpert and Raiffa (1982) described the method of direct quantile assessments, and

tested it among MBA and graduate students at Harvard University between 1968 and

1969. Briefly, this method consists of requesting the participants to estimate median and

other quantiles related to some variable. The researcher directly requests the quantiles.

Keeney et al. (1984) applied the method of direct quantile assessments to 14 health

specialists working for the United States Environmental Protection Agency (EPA) to as-

sess their judgments about the health risks associated with different levels of CO exposure

in the air. This problem was particularly difficult to tackle exclusively with experimental

data due to the possibility of unethical procedures. However, Keeney et al. successfully

developed a risk assessment model to expose the health risks of several levels of CO in

the air caused by pollution.

Winterfeldt and Schweitzer (1998) assessed the quantiles of technical staff members of

the United States Department of Energy (DOE), contractors, and consultants regarding

a proposed schedule of tritium production for nuclear weapons. At that time, Winterfeldt

and Schweitzer described the lack of national tritium production as a vulnerability to

the nuclear program and to the national security. Given multiple solutions, the experts

provided their estimates about the schedule of each option.
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4.2.2 Framework

Let the continuous variate W i for i = F,R with sample space W i be the predictand, i.e.,

a variate of interest to the forecast problem. Its realization is denoted wi ∈ W i, where

W i = {wi : ηL < wi < ηU} , where ηL is a lower bound and ηU is an upper bound. The

superscripts F and R are the initials for Field and Region, respectively. The following

definition is adapted from Krzysztofowicz (2016).

Definition. A judgmental prior distribution function Gi
t of the continuous predictand

W i is the numerical measure of the degree of certainty about the occurrence of all events

{W i ≤ wi : wi ∈ W i}, given information (I), knowledge (K), and experience (E) pos-

sessed by the expert at the time of forecast preparation. At every point wi ∈ W i, function

Gi specifies the probability assigned by the expert to event {W i ≤ wi}:

Gi
t(w

i) = P (W i ≤ wi|I,K,E), for i = F,R.

According to Krzysztofowicz (2016), assessing the judgmental distribution function

from the definition above is unfeasible due to the infinite possible realizations of W i.

However, an approximation to function Gi
t of W i can be constructed by assessing quantiles

from the experts. The following definition was also adapted from to Krzysztofowicz (2016).

Definition. A judgmental quantile of W i corresponding to probability p ∈ (0, 1) is a

realization wi(p) ∈ W i such that event {W i ≤ wi(p)} is judged to have the probability

G(wi(p)) = P (W i ≤ wi(p)|I,K,E) = p.

The quantiles wi(p) were assessed for five values of p: 0.1, 0.25, 0.5, 0.75, 0.9. There-

fore, a set of points {(wi(p), p)} was obtained for i = F and i = R.
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4.2.3 Assessment Procedures

The procedures to assess judgmental quantiles from the farmers were developed based

on the research by Alpert and Raiffa (1982), and Krzysztofowicz (2016). The goal is to

assess values of wij(p) for i = F,R, from farmer j and for several predetermined values

of p. However, the methodology developed had to be adapted to subjects that are not

familiar with statistical concepts, such as quantiles. For that reason, the subjects were

divided into two groups, a pilot and a research group. The groups were as follows.

Pilot Group: 1 soybean grower from Rondonópolis with 5,000 hectares of land and

1 soybean grower from São Desidério with 10,000 hectares. Both locations are in

the state of Mato Grosso.

Research Group: 6 soybean growers in total from Sorriso (550 and 4,000 hectares),

Paranantinga (20,000 hectares), Sapezal (1,200 hectares), Diamantino (2,000 hectares),

and Canarana (150 hectares), in Mato Grosso.

Alpert and Raiffa (1982) developed the method of direct quantile assessments 1 to

quantify the uncertainty of a number of students regarding some general-knowledge vari-

ables. They analyzed 4 groups of students enrolled in different programs of Harvard, but

with an advanced knowledge in probability theory. This particular aspect of the stu-

dents allowed Alpert and Raiffa (1982) to directly request quantile values using a survey

with 2 pages divided into 4 sections. The first page displayed the instructions, the ques-

tions, and a list of uncertainties. The second page was reserved for the student’s quantile

assessments.

The instructions provided by Alpert and Raiffa (1982) explained the purpose of the

survey, mathematical definitions of quantiles, and a guideline to the following sections

in their study. The questions section collected some data from the students, such as

1direct fractile assessments in the original publication.
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Figure 4.1 Scheme for assessing the judgmental quantiles, wFj (p), for: (a) p = 0.5, (b)
p = 0.25, (c) p = 0.1, (d) p = 0.75, and (e) p = 0.9.
Source: Adapted from Krzysztofowicz (2016)

preferences for drinking, draft deferments for graduate students, and gambling. The

list of uncertainties contained the variables assessed in the question section and 6 other

variables, such as the total egg production in millions in the U.S. in 1965.

The methodology developed by Krzysztofowicz (2016) overcomes the need to directly

request quantiles by designing questions using the definition of quantile and a more inclu-

sive language. Figure 4.1 shows the rationale for assessing judgmental quantiles adapted

from Krzysztofowicz (2016). Each line in Figure 4.1 represents the assessment of one quan-

tile. The white circles represent a quantile to be assessed and the black circles represent

a quantile already assessed.

The assessment of each quantile starts by defining a subset of the domain to be con-

sidered by the subject. For instance, the subject must consider the complete sample space
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for assessing the median, wFj (0.5), in figure 4.1-(a). In order to assess wFj (0.25), the sub-

ject is asked to consider a subset of the sample space with W F
j < wFj (0.5) as shown in

figure 4.1-(b). The same rationale applies to the assessment of the other quantiles.

Krzysztofowicz (2016) proposes next a format in which the subject provides a possible

realization of W F
j , wFj (p), for a certain p that in his judgment, the following events are

equally likely, given the subset considered:

Realization of W F
j

will be below
your estimate:
W F
j < wFj (p)

Realization of W F
j

will be above
your estimate:
wFj (p) < W F

j

Subsequently, Krzysztofowicz (2016) proposes a validation question to verify if the

estimated wFj (p) has the same properties as stated by the definition of quantile according

to the subject. This step is made by suggesting a reference event that is commonly

known by the subject and that has the probability of outcomes equal to 1
2
, such as a coin

toss. The subject is then asked to compare the properties of the reference event with the

properties of the assessed quantile, in terms of probabilities.

Suitable results using this approach will depend upon the subject’s understanding of

events that are equally likely to occur and the researcher’s ability to adapt the method to

be as inclusive as possible. Goldstein and Rothschild (2014) compare the assessment of

subjective probability using standard (direct) and graphical methods. They point out that

using a graphical interface may improve accuracy when assessing subjective probabilities

from laypeople. For this reason, the validation question was modified firstly to provide a

visual representation of outcomes that are equally likely to happen.

Clemen (1996) suggests an approach to assess subjective probability that bypasses

the problem of directly requesting a number. In this approach, the subject is asked to

pick between two lottery-like games. Each game has the same two outcomes Prize A and

Prize B. The researcher must set Prize A to be much more valuable than Price B, so that
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A would be preferable to B. The subject must pick one out of the two following games,

considering the subset in question for each quantile assessment:

Win Prize A if W F
j < wFj (p).

Win Prize B if wFj (p) < W F
j .

or

Win Prize A with known probability 1
2
.

Win Prize B with known probability 1
2
.

This approach was constructed to be applied in the pilot group for validating the

assessed wFj (p). Clemen (1996) keeps the conditions of the first lottery constant, but

changes the probability of Prize A and B in the second game until the subject is indif-

ferent in order to assess these probabilities. However, in this study the values of wFj (p)

can be reassessed until the subject is indifferent between both games, keeping the same

probability 1
2

for each outcome in the second lottery. The indifference point indicates that

the subject consider the events W F
j < wFj (p) and wFj (p) < W F

j to be equally likely.

The approach proposed by Krzysztofowicz (2016) was adapted to this research and

applied to the pilot group. Each interviewee indirectly provided his assessment of wij(p)

for p: 0.1, 0.25, 0.5, 0.75, 0.9. The soybean growers were previously contacted by phone

or email in order to explain the purposes of the research and to provide a brief overview

on how the data collected would be used. Additionally, a brief conversation about the

current production conditions in Mato Grosso was had with the subjects contacted by

phone to engage them in the mindset of the interview. The online survey was applied

using Qualtrics — an online platform that can be use to create and apply surveys.

The individual interviews were made available via desktop or mobile devices. The

hypothetical prizes presented to the pilot group were a trip to Hawaii (Prize A) and a

ticket to the movies (Prize B). The assessment of the quantiles proceeded as follows.
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Assessing the 0.5-Quantile, wFj (0.5)

Step 1. The subject was asked to consider all possible realizations of W F
j .

Step 2. The subject was then asked to provide an estimate of W F
j such that in his

judgment the following events would be equally likely:

Realization of W F
j

will be below
your estimate:
W F
j < wFj (0.5)

Realization of W F
j

will be above
your estimate:
wFj (0.5) < W F

j

Step 3. The subject was asked to pick one out of two of the following games. The

first game would result in Prize A if wFJ (0.5) < W F
j or Prize B if W F

j < wFJ (0.5).

The second game would result in Prize A with probability 0.5 or Prize B with

probability 0.5.

Prize A

Prize B
0.5

0.5

��
� 0.5 <  ��

�

Prize A

Prize B

��
� < ��

� 0.5

Step 4. The assessed value of wFJ (0.5) is validated when the subject in indifferent

between the first game and the second game. The estimate is reassessed if the

subject clearly prefers one game over the other.

Assessing the 0.25-Quantile, wFj (0.25)

Step 1. The subject was asked to consider possible realizations of W F
j below wFj (0.5).

Step 2. The subject was then asked to provide an estimate of W F
j such that in his

judgment the following events would be equally likely:
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Realization of W F
j

will be below
your estimate:
W F
j < wFj (0.25)

Realization of W F
j

will be above
your estimate:
wFj (0.25) < W F

j

Step 3. The subject was asked to pick one out of two of the following games. The

first game would result in Prize A if wFJ (0.25) < W F
j < wFJ (0.5) or Prize B if

W F
j < wFJ (0.25). The second game would result in Prize A with probability 0.5

or Prize B with probability 0.5.

Prize A

Prize B
0.5

0.5

��
� 0.25 < ��

�< ��
� 0.5

Prize A

Prize B

��
� < ��

� 0.25

Step 4. The assessed value of wFJ (0.25) is validated when the subject in indifferent

between the first game and the second game. The estimate is reassessed if the

subject clearly prefers one game over the other.

Assessing the 0.01-Quantile, wFj (0.01)

Step 1. The subject was asked to consider possible realizations ofW F
j below wFj (0.25).

Step 2. The subject was then asked to provide an estimate of W F
j such that in his

judgment this estimate would be an extreme under the worst possible produc-

tion conditions.

Assessing the 0.75-Quantile, wFj (0.75)

Step 1. The subject was asked to consider possible realizations of W F
j above wFj (0.5).

Step 2. The subject was then asked to provide an estimate of W F
j such that in his

judgment the following events would be equally likely:
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Realization of W F
j

will be below
your estimate:
W F
j < wFj (0.75)

Realization of W F
j

will be above
your estimate:
wFj (0.75) < W F

j

Step 3. The subject was asked to pick one out of two of the following games. The

first game would result in Prize A if wFJ (0.75) < W F
j or Prize B if wFJ (0.5) <

W F
j < wFJ (0.25). The second game would result in Prize A with probability 0.5

or Prize B with probability 0.5.

Prize A

Prize B
0.5

0.5

��
� 0.5 < ��

�< ��
� 0.75

Prize A

Prize B

��
� 0.75 < ��

�

Step 4. The assessed value of wFJ (0.75) is validated when the subject in indifferent

between the first game and the second game. The estimate is reassessed if the

subject clearly prefers one game over the other.

Assessing the 0.9-Quantile, wFj (0.9)

Step 1. The subject was asked to consider possible realizations ofW F
j above wFj (0.75).

Step 2. The subject was then asked to provide an estimate of W F
j such that in his

judgment this estimate would be an extreme under the best possible production

conditions.

Two important results came from applying the methodology described above to the

pilot group. First, the unit being used to measure yield had to be changed. The official

reports by IBGE and CONAB express yield in terms of tons per hectares, but many

farmers are used to deal with bags per hectares. Therefore, the survey had to adopt this

unit.
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Second, the farmers could not finish the survey. There were complications about

understanding the concept of events that are equally likely to occur. Farmers may be

used to mentally formulate point-estimates of their yield. For that reason, it was possibly

difficult for them to think in terms of probability. In addition, the validation question

could not be interpreted adequately by them, generating a lot of uncertainty. These

complications lead to the adaptation of a survey.

The second round of surveys, applied to the research group, was changed in the fol-

lowing topics.

(a) Units. The yield measurements in the new survey were in terms of bags per hectare

(b) Language. The questions were reformulated to circumvent use of the words equally

likely, and probability.

(c) Validation. The validation was incorporated in the assessment question.

(d) Graphical format. The subject could pick his estimate by sliding a marker through

a ruler, using Qualtrics.

The subject was first asked to assess his estimate of yield given current production

conditions. Based on this estimate, different scenarios were introduced and the subject

was asked to provide a new estimate. Each scenario was linked to a quantile of W F
j . The

new estimate was bounded by the previous answers, i.e., the set of possible values for new

scenarios were conditional on their previous assessments. The probability p was connected

to the different scenarios and subjectively determined to avoid defining concepts such as

quantiles, or probability.
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Table 4.1 Judgmental quantiles wij(p) [bags/ha] of W i assessed by farmers in Mato
Grosso, Brazil, in February 2018.

j City wFj (0.1) wFj (0.25) wFj (0.5) wFj (0.75) wFj (0.9) wRj (0.1) wRj (0.25) wRj (0.5) wRj (0.75) wRj (0.9)

1 Sorriso 50.3 60.9 70.5 73.8 76.1 45.2 50.1 60.6 65.0 67.6
2 Sorriso 50.2 58.4 65.6 67.5 70.3 49.6 50.5 55.2 58.0 58.7
3 Paranatinga 44.9 57.5 65.0 69.9 80.0 48.0 50.3 53.4 56.0 57.5
4 Sapezal 30.1 45.5 70.0 75.0 80.0 50.2 55.2 58.0 62.7 67.5
5 Diamantino 34.9 44.0 52.5 60.2 73.9 43.8 45.6 51.5 58.6 66.4
6 Canarana 45.4 52.1 60.6 65.5 72.0 44.1 48.5 54.4 56.5 58.6

The same approach was applied to assess the quantiles wRj (p) of WR
j . Table 4.1

shows the assessed quantiles. Each farmer j provided quantiles wij(p) for i = F,R, and

p = 0.1, 0.25, 0.5, 0.75, and 0.9. The following sub-sections use these quantiles to model

distribution functions.

4.3 Parametric Models

The judgmentally assessed quantiles wFj (p) of W F
j and wRj (p) of WR

j in figure 4.1 are

utilized to model two parametric distribution functions per farmer j: GF
t,j of W F

j and GR
t,j

of WR
j . Therefore, a total of 12 parametric distribution functions are modeled in this

sub-section. Finally, the set of distribution functions GF
t,j is combined into one distribu-

tion function GF . Likewise, the set of distribution functions GR
t,j is combined into one

distribution function GR.

The sample space is assumed here to be a bounded interval. Due to the physical nature

of the problem, it is impossible to consider negative values of yield, as well as unrealistic

high values. Although certain conditions may lead to a very low yield values in extreme

cases, the lower and upper bounds of the sample space were selected based on a historical

analysis of the yield in the location of each farmer.

The same methodology was applied to construct the parametric models for Gi
t,j, for

i = F,R, and j = 1, ..., 6. The procedures to construct a parametric model described as

follows were based on the methodology developed by Krzysztofowicz (2014, 2016).

Step 1. Construct an empirical distribution of W i
j using the assessed quantiles wij(p).
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Step 2. Hypothesize parametric models of Gi
t,j. In this step, a catalogue produced

by Krzysztofowicz (2014) was used to select parametric models.

Step 3. Estimate the parameters of the models selected.

Step 4. Choose the parametric model and parameter values that minimize the Max-

imum Absolute Difference between the empirical distribution function (step 1)

and the estimated parametric distribution function (steps 2 and 3).

Step 5. Analyze the goodness-of-fit of the parametric model Gi
t,j.

Four different parametric models for functions Gi
j were estimated using this method-

ology. First, the Log-Reciprocal Type I–Weibull (LC1–WB) was estimated for GF
t,6 and

GR
t,3. The LC1–WB distribution function can be written as

G(w) = 1− exp

[
−
( y
α

)β]
, (4.1)

and the LC1–WB density function

g(w) =
1

ηU − w
β

α

( y
α

)β−1

exp

[
−
( y
α

)β]
, (4.2)

where

y = ln
ηU − ηL
ηU − w

. (4.3)

Second, the Log-Reciprocal Type I–Inverted Weibull (LC1–IW) was estimated for GR
t,5.

The LC1–IW distribution function can be written as

G(w) = exp

[
−
(
α

y

)β]
, (4.4)

and the LC1–IW density function
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g(w) =
1

ηU − w
β

α

(
α

y

)β+1

exp

[
−
(
α

y

)β]
, (4.5)

where

y = ln
ηU − ηL
ηU − w

. (4.6)

Third, the Log-Reciprocal Type II–Inverted Weibull (LC2–IW) was estimated for GF
t,1,

GF
t,2, GF

t,4, GR
t,1, GR

t,2, and GR
t,6. The LC2–IW distribution function can be written as

G(w) = 1− exp

[
−
(
α

y

)β]
, (4.7)

and the LC2–IW density function

g(w) =
1

w − ηL
β

α

(
α

y

)β+1

exp

[
−
(
α

y

)β]
, (4.8)

where

y = ln
ηU − ηL
w − ηL

. (4.9)

Finally, the Log Ratio Type 1–Laplace (LR1–LP) was estimated for GF
t,3, GF

t,5, and

GR
t,4. The LR1–LP distribution function can be written as

G(w) =


1

2
exp

(
y − β
α

)
, if y ≤ β,

1− 1

2
exp

(
−y − β

α

)
, if β ≤ y,

(4.10)

and the LR1–LP density function

g(w) =
ηU − ηL

(w − ηL)(ηU − w)

1

2α
exp

(
−|y − β|

α

)
, (4.11)
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where

y = ln
w − ηL
ηU − w

. (4.12)

The next sub-section lays out the parameters for each distribution function and the

analysis of goodness-of-fit.

4.4 Parameters and Graphs

Table 4.2 summarizes the parameter values of distribution functions Gi
t,j of W i for j =

1, ..., 6. The equations for all distributions previously stated along with their parameters

provide a systematical approach to quantify the uncertainty of the farmers about the yield

of their field and the yield of their region. The Maximum Absolute Difference (MAD)

was calculated for each hypothesized distribution, and the one with the lowest MAD was

selected. According to Krzysztofowicz (2014), the distribution functions with MAD below

0.05 indicate excellent to good fit, and the MAD between 0.05 and 0.10 indicate good to

adequate fit. The distribution in table 4.2 fall into these two categories.

Figure 4.2 shows the judgmental quantiles assessed from the farmers in Mato Grosso

and the estimated distribution functions GF
t,j of W F . Similarly, figure 4.3 shows the

estimated distribution functions GR
t,j of WR. They display the farmers’ assessments in

terms of probabilities, and the shape of the distribution function can provide insightful

information about how confident a farmer is about his predictions.

The shape of some of the distributions in figures 4.2 and 4.3, such as GF
t,1, shows a

shorter right tail. This shape could represent the farmers’ confidence about their yield

limitations, possibly from historical observations of yield in that same field or region, and

biological restrictions of the seed. However, the farmers seem to be less confident about

their estimates closer to the lower bounds. In this case, many external variables that are

hard to predict can influence the yield, such as weather, diseases, or insect infestations.
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Table 4.2 The parameter values and goodness-of-fit measures of the prior distribution
functions Gi

t,j of W i, judgmentally assessed by the farmers in Mato Grosso,
Brazil.

j i Distribution αij βij ηiL,j ηiU,j MAD

1 F LC2–IW 0.36 2.42 30 90 0.049
2 F LC2–IW 0.50 3.80 30 90 0.061
3 F LR1–LP 0.55 -0.30 30 110 0.042
4 F LC2–IW 0.28 1.19 20 90 0.054
5 F LR1–LP 0.74 -0.16 20 90 0.020
6 F LC1–WB 0.81 2.39 30 90 0.026
1 R LC2–IW 0.62 2.70 30 90 0.054
2 R LC2–IW 0.83 5.90 30 90 0.056
3 R LC1–WB 0.53 5.29 30 90 0.016
4 R LR1–LP 0.36 -0.11 30 90 0.029
5 R LC1–IW 0.36 2.11 30 90 0.030
6 R LC2–IW 0.86 4.67 30 90 0.047
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Figure 4.2 Distribution functions GF
j of W F

j , for j = 1, ..., 6, in terms of the five
quantiles judgmentally assessed.
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Figure 4.3 Distribution functions GR
j of WR

j , for j = 1, ..., 6, in terms of the five
quantiles judgmentally assessed.
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4.5 Combining Judgmentally Assessed Distribution Functions

In forecasting problems, groups of experts are often called upon to provide forecasts

instead of one single expert. Many authors have devoted their research to the problem

of combining judgmentally assessed distributions into a single aggregated distribution

function. Winkler (1968) refers to this specific problem as the “consensus problem”.

Krzysztofowicz (2014) describes the problem of group forecasting and proposes a solu-

tion through reconciling and combining the assessments. This is a behavioral aggregation

approach according to Clemen and Winkler (1999). Another approach to aggregate mul-

tiple assessments is the mathematical combination of distributions.

Clemen and Winkler (1999) describe two categories of mathematical combinations: an

axiomatic, and a Bayesian. The axiomatic approach consists of deriving the form of the

aggregated distribution function based on pre-determined assumptions. An example of

this method is the linear combination of individual distribution functions into a single dis-

tribution function. The Bayesian method may be more challenging to apply. It is usually

described in studies through the decision maker’s perspective, i.e., how the decision maker

can update his prior distribution function using the experts’ distribution functions. This

study considers a weighted-average method with equal weights first, and then expands

the theory of Bayesian Model Averaging (BMA) to construct a weighting system.

Consider a Bayesian forecaster of a continuous predictand W , with a continuous pre-

dictor X, when J experts are requested to provide their prior information about W . Each

expert provides a different prior density function of W , and the task is to obtain a single

posterior density function of predictand W , conditional on the realization of the predictor

X = x.
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4.5.1 Generic Model

Each farmer j will provide a different prior density function, gij(w
i), for j = 1, ..., J .

The individual density functions will be combined in order to derive one single posterior

density function. The mixture of the J component prior density functions is:

gi(wi) =
J∑
j=1

λjg
i
j(w

i). (4.13)

The expected density function of predictor X is:

κi(x) =

∫
Wi

f i(x|wi)gi(wi)dwi

=

∫
Wi

f i(x|wi)
J∑
j=1

λjg
i
j(w

i)dwi

=
J∑
j=1

λj

∫
Wi

f i(x|wi)gij(wi)dwi

=
J∑
j=1

λjκ
i
j(x).

(4.14)

The posterior density function of predictand W is:

φi(wi|x) =
f i(x|wi)gi(wi)

κi(x)

=
f i(x|wi)

∑J
j=1 λjg

i
j(w

i)

κi(x)

= f i(x|wi)
∑J

j=1 λjg
i
j(w

i)∑J
k=1 λkκ

i
k(x)

=

∑J
j=1 λjg

i
j(w

i)f i(x|wi)κij(x)/κij(x)∑J
k=1 λkκ

i
k(x)

=
J∑
j=1

Λj(x)φij(w
i|x).

(4.15)

The weight system Λj(x) is:
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Λj(x) =
λjκ

i
j(x)∑J

k=1 λkκ
i
k(x)

=
λjκ

i
j(x)

κi(x)
, (4.16)

and

φij(w
i|x) =

f i(x|wi)gij(w)

κij(x)
. (4.17)

Functions (4.13) and (4.15) provide a comparison between the mixture of prior den-

sity functions and the mixture of posterior density functions. Clemen and Winkler (1999)

summarize some of the findings about comparisons between simple weighting systems,

such as averages, and more complex systems when combining probabilities or probability

distributions. In terms of probabilities, many studies conclude that simpler combina-

tion methods can perform better than more complex methods. However, in the case of

probability distributions, the Bayesian approach may have advantages over the axiomatic

approach.

Intuitively, a farmer whose forecasts are more informative should be assigned a higher

weight in the mixture model than a farmer whose forecasts are less informative, assuming

both farmers are well calibrated. For this reason, the weight λj could be interpreted as

the probability of farmer j being well calibrated and most informative. According to

Krzysztofowicz (2016), the analysis of calibration of a forecaster must be done over time

by recording the assessed quantiles and the realizations of predictand W .

This interpretation could be used in conjunction with the Bayesian Model Averaging

(BMA) theory in order to estimate the weights λj, once these data are available. The

BMA was created as an alternative to address the uncertainty regarding model selection

using Bayes theorem (Hoeting et al., 1999), but this research will apply BMA to the prior

mixture weighting system within the Bayesian forecaster.
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4.5.2 Uniform Combination

Winkler (1968) refers to the combination of subjective distribution functions with equal

weights as the case when the decision maker is unable to evaluate the performance of the

experts in forecasting a variate. It is reasonable to assume initially that the models are

equally likely to be the true model. Hoeting et al. (1999) refer to this case as a neutral

choice.

Consider a mixture model in which the aggregated prior density function gi, defined

in (4.13), is a simple average of the J density functions, i.e., it is a linear combination

with equal weights λj = 1/J for j = 1, ..., J . For the case of gF with J = 6,

gF (wF ) =
6∑
j=1

1

6
gFt,j(w

F ). (4.18)

Since the estimated parametric models for GF
t,j take several forms, function GF would

be the combination of the distribution functions detailed in table 4.2. Figures 4.4 and 4.5

show the individual distribution functions, Gi
t,j, and the combined distribution functions

Gi, for i = F,R.

In order to obtain a conventional distribution function from the mixture, additional

steps are taken. First, a data set is generated in the form of a sequence of values from

ηL to ηU by 1 unit. Second, the function GF is utilized to calculate the corresponding

sequence of probabilities. Third, a new distribution function is optimally fitted to the

generated sequence of values and the corresponding probabilities.

4.5.3 Bayesian Model Averaging (BMA)

The BMA is a method to combine forecasts from different models using Bayes’ Theorem,

given the same data set. In this study, the BMA approach can be used to obtain λj,

for j = 1, ..., J , given a historical record of the farmers’ forecasts. Since this data is
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Figure 4.4 Combined prior distribution function GF of W F superimposed on individual
prior distribution functions GF

j , for j = 1, ..., 6, respectively.
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Figure 4.5 Combined prior distribution function GR of WR superimposed on individual
prior distribution functions GR

j , for j = 1, ..., 6, respectively.
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unavailable at this moment, a simulation was conducted in Appendix A to illustrate this

approach.

Consider that each farmer provided judgmental quantiles that were used to estimate

a parametric distribution function. Each judgmental distribution function Gi
t,j of W i is

a different model. Briefly, the BMA is an average of the models, each weighted by its

posterior model probability, i.e., the probability of the model being the true one, given

the data available. The BMA approach developed in this sub-section is applicable to both

i = ForR. Therefore, the index i is dropped in order to have a clearer notation.

Expanding this concept, an expert’s judgmental distribution functions can be evalu-

ated by retrospectively comparing the actual realizations with his assessments. Consider

a group of experts Sj, for j = 1, ..., J . Instead of examining the probability of a model

being the true one, this study examines the posterior probability of expert Sj being well-

calibrated given the realizations of W i, and compare it to the other experts. Therefore,

the goal is to estimate posterior probability of expert Sj being well-calibrated.

Consider a situation where the historical data of W is available until the previous

forecast time T − 1, i.e., D = {(gt,j, w(t)) : t = 0, ..., T − 1}. Using the BMA, adapted

from Hoeting et al. (1999), the combined prior density function of W (T ), given the data

D from T years is

gT (w(T )|D) =
J∑
j=1

gT,j(w(T ))P (Sj|D), (4.19)

where D is the historical data sample of predictand W , and P (Sj|D) is the posterior

probability of Sj being well-calibrated given data D, such that

J∑
j=1

P (Sj|D) = 1. (4.20)

In sub-section 4.5.1, P (Sj|D) is represented by λj. The first task is to model P (Sj|D).
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Using Bayes’ theorem,

P (Sj|D) =
p(D|Sj)P (Sj)

p(D)
, (4.21)

where p(D) is the expected density function of the observed data D and can be estimated,

according to Liu (2018), by

p(D) =
J∑
j=1

[
T−1∏
t=0

gt,j(w(t))

]
P (Sj), (4.22)

and p(D|Sj) is the likelihood of farmer Sk being well-calibrated given the historical data

D

p(D|Sj) =
T−1∏
t=0

gt,j(w(t)). (4.23)

Once the prior probability p(Sj) of farmer Sj being well-calibrated is adequately mod-

eled, the expected density function of the observed data D, p(D), can be derived. Then,

the posterior probability of Sj being well-calibrated given data D, P (Sj|D), can be derived

and utilized in equation (4.19) to obtain the posterior density function gT (w(T )|D).

However, since there is no data available to model P (Sj) at this moment, let us consider

once again the same prior probability P (Sj) = 1/6, for each farmer j. Inserting equations

(4.22) and (4.23) into equation (4.21) allows us to derive the posterior probability of farmer

j being well-calibrated given the data. For farmer 1, we have the following equation:

P (S1|D) =

∏T−1
t=0 gt,1(w(t))P (S1)∑J

j=1

[∏T−1
t=0 gt,j(w(t))

]
P (Sj)

=

∏T−1
t=0 g1,t(w(t))∑J

j=1

[∏T−1
t=0 gt,j(w(t))

] (4.24)

The same rationale can be applied to the other farmers. Using the distribution func-

tions previously modeled and listed in table 4.2, it is possible to obtain equation (4.24).
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Finally, equation (4.24) can be inserted in (4.19) to obtain the combined prior density

function,

gT (w(T )|D) =
J∑
j=1

gT,j(w)P (Sj|D)

= g1,T (w)

∏T−1
t=0 g1,t(w(t))∑J

j=1

[∏T−1
t=0 gt,j(w(t))

] + ...+ gT,J(w)

∏T−1
t=0 gt,J(w(t))∑J

j=1

[∏T−1
t=0 gt,j(w(t))

]
=
gT,1(w)

∏T−1
t=0 gt,1(w(t)) + ...+ gT,J(w)

∏T−1
t=0 gt,J(w(t))∑J

j=1

[∏T−1
t=0 gt,j(w(t))

] .

(4.25)

4.6 Summary

This section provided a guideline to assess judgmental distribution functions from farmers

and an initial discussion on how to combine them. However, both topics are still the focus

of research in various fields. One of the shortcomings of assessing probabilities instead of

point forecasts is the limited knowledge of the general public about statistical concepts,

such as probability and quantiles. Therefore, the researcher must circumvent this fact

using methodologies such as the one discussed in this chapter.

Once the proper methodology is applied, it s possible to construct a distribution

function of a variate of interest instead of having a simple point forecast. This framework

allows the researcher to analyze the performance of the forecasters in terms of calibration,

informativeness, and confidence, given a historical record of forecasts. It also allows

the researcher to take action based on these metrics, for instance, by providing training

to improve calibration or combining forecasts using different weights using the BMA

approach.
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5. Field-Region Stochastic Transformation

In the previous section, farmers were asked to provide their assessments regarding the yield

of their respective fields and the region. This section analyzes the stochastic relationship

between the yield of a particular field and its corresponding region in order to obtain

the input data for the forecast model of regional yield using local prior. Modeling this

relationship allows us to use the farmers’ assessments of the yield of a field to forecast

the yield of their region. First, the locations of the interviewed farmers are described.

The relationship between their field yield and regional yield is modeled, and the field

quantiles are transformed into regional quantiles. Finally, the prior distribution functions

are modeled for each farmer and combined into one prior distribution function to be used

in the Bayesian Processor of Forecasts.

5.1 Overview

The agricultural production of an entire region is hardly homogeneous. Several factors can

vary according to the location, such as soil type, altitude, weather conditions, and even

community types. A smaller area, such as a specific field in a farm, presents more consis-

tent conditions that a farmer intimately understands; this potentially reduces uncertainty.

For that reason, farmers may have a higher “degree of belief” about the assessments of

their field yield than the assessments of their regional yield.

The IBGE divides the Brazilian territory into states, mesoregions (Portuguese: mesor-

regiões), and microregions (Portuguese: microrregiões). Mesoregions are defined by a com-

bination of similarity of communities, landscape, and organizational structure. Microre-

gions are subsets of the mesoregions. They are defined by more specific attributes, such

as the organizational structure of agricultural, industrial, and mining activities (IBGE,

2017a).
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Figure 5.1 Map of Mato Grosso divided into microregions with the locations of the
farmers interviewed.

Figure 5.1 shows the map of the state of Mato Grosso, and the location of each in-

terviewed farmer. The gray lines divide the state into microregions. The center-west

region of Brazil, composed of the states of Mato Grosso, Mato Grosso do Sul, and Goiás,

produces more soybean than anywhere else in Brazil. Mato Grosso itself produced ap-

proximately 26% of the total Brazillian soybean production in 2017 with a total area of

approximately 7.8 times the state of Ohio.

In the same year, Mato Grosso exported approximately 22% (14.8 million tons) of the

total soybean grain exported by Brazil . Out of this amount, 72% was destined to Asia,

22% to Europe, and 4% to the Middle-East (MDIC, 2018). This high demand presents

huge logistical challenges to transport or store the crop after harvest. Historically, the

soybean exports from Mato Grosso have been heavily directed to Ports of Santos and

Paranaguá, in the states of São Paulo and Paraná, respectively.
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Figure 5.2 Boxplots of the microregion soybean yield in the 2016 season for selected
states in Brazil.

The distance between the city of Sorriso (MT), a major logistic hub for soybean, and

the Port of Santos (SP), for instance, is approximately 2,000 km (1242.7 miles) by truck.

Nearly 47% of the soybean crop exported in 2017 passed through the Port of Santos,

but a concerted effort has been made to make better use of the ports in the north, such

as Barcarena (PA) with 19% of the soybean exportation in 2017 in order to relieve the

demand in the south.

Figure 5.2 summarizes the soybean yield in microregions of several states in Brazil for

the 2016 season. Some states such as Maranhão (MA) and Piaúı (PI) present a consider-

able range of yield in their microregions. The state of Mato Grosso (MT) has less variable

yields when compared to the other states. This aspect could represent more homoge-
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Table 5.1 Location of farmers and corresponding microregions.

Farmer j City Microregion
1 Sorriso Alto Teles Pires
2 Sorriso Alto Teles Pires
3 Paranatinga Paranatinga
4 Sapezal Parecis
5 Diamantino Parecis
6 Canarana Canarana

neous production conditions in the state of Mato Grosso. The stochastic transformation

presented in this section quantifies this uncertainty in a convenient way to be used along

with the Bayesian Forecasting methodology.

In order to produce yield estimates, IBGE collects data from different sources, includ-

ing their own collection system, technicians from other departments, farmers, and other

individuals or institutions that are involved in preparing statistics for agriculture (IBGE,

2002). The regional harvested yield of a certain crop can be estimated by computing

the total production and dividing by the total harvested area of a region. Therefore, the

correlation between the yield of Mato Grosso and the yield of its microregions is expected.

Table 5.1 identifies the city and the microregion where each farmer interviewed in

this study is located. The farmers are located in four different microregions within Mato

Grosso. Therefore, for the purposes of this research, the yield of each microregion is

mapped into the yield of the State of Mato Grosso. This mapping is used to transform

the judgmentally assessed quantiles wF (p) into wR(p).

The yield of a particular microregion is used here as an approximation of the yield of

a farmer’s field. Ideally, the historical records of the yield of each farmer’s land would be

used to transform the field yield to the regional yield. However, the availability of such

records depends upon the reliability of record keeping by farmers and their willingness

to make private data public. However, the methodology developed in this study can be

applied to individual data sets by farmers or analysts.
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Figure 5.3 Soybean crop yield in Mato Grosso and 4 microregions from 1990 to 2016.
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To overcome the insufficient availability of data, a stochastic transformation will be

constructed for the microregion Alto Teles Pires and it will be utilized for farmers 1

and 2. Similarly, a Paranatinga transformation will be utilized for farmer 3, a Parecis

transformation for farmers 4 and 5, and a Canarana transformation for farmer 6.

Figure 5.3 shows the soybean crop yield in Mato Grosso and in the 4 microregions

previously mentioned. This is the data utilized to model the stochastic transformation in

this chapter. The sample size for all sets are N = 27.

The apparent long-term upward trend in the yield of Mato Grosso could possibly

represent advancements in technologies, such as in genetics, machinery, and productions

methods. However, advancements in technology have a lower impact in the short-term.

Variations from year to year are more likely to be caused by shifts in the weather or

production conditions.

In general, the data sets in figure 5.3 do not seem to present any outliers, except for

a large negative variation in the yield of Paranatinga from 2015 to 2016. Upon further

investigation, farmers in Mato Grosso reported abnormal weather conditions during the

planting stage of the 2015/2016 season. The insufficient precipitation affected the ger-

mination of the soybean seed, and many farmers had to replant. The entire state was

affected, but some regions suffered more damage (CONAB, 2016). In addition, there is

no clear seasonal patterns in these data sets that could be successfully modeled at this

time.

The following section will model the normal-linear stochastic transformation between

the yield of the microregions and the yield of Mato Grosso. The next step is to transform

the assessed quantiles of W F into quantiles of WR, and model the judgmental prior

distribution functions to be used in the Bayesian forecasters.
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5.2 Normal-Linear Stochastic Transformation

Transforming values of the yield of a particular field, W F
j , into the yield of a region,

WR, adds uncertainty to the forecast of WR. Therefore, in addition to modeling the

relationship between these two variates, this study quantifies the uncertainty related to

this problem by deriving the stochastic transformation Ψj(w
R|W F

j = wFj ), for j = 1, ..., J .

5.2.1 Framework

According to DeGroot (1970), a stochastic transformation from W F
j to WR is a nonnneg-

ative function Ψj on the product space WR ×WF
j that satisfies the condition

∫
WR

Ψj(w
R|wFj )dwR = 1, (5.1)

for all wFj ∈ WF
j . The normal-linear stochastic transformation is a convenient model,

starting with the form

wR = cjw
F
j + dj + Tj, (5.2)

where cj and dj are coefficients, and Tj is a residual, for j = 1, ..., J . Assuming that

Tj ∼ N(m = 0, τ 2
j ), it follows that the stochastic transformation Ψj(w

R|W F
j = wFj ) is a

normal distribution with mean and variance

E(WR|W F
j = wFj ) = cjw

F
j + dj,

V ar(WR|W F
j = wFj ) = τ 2

j .

(5.3)

The parameters cj, dj and τj can be estimated using linear regression. The normality

and homoscedasticity of the random variable Tj must also be confirmed in order to proceed

with this method. However, once these assumptions are verified, it is possible to rewrite
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the linear model as (WR|W F
j = wFj ) ∼ N(cjw

F
j + dj, τ

2
j ). In other words, the conditional

distribution of WR, given W F
j = wj is normal-linear.

Based on these results, it is possible to define the normal-linear stochastic transfor-

mation

Ψj(w
R|wFj ) = Q

(
wR − cjwFj − dj

τj

)
, (5.4)

where Q is the standard normal distribution function.

Each farmer j provided a set of points {(wFj (p), p)}, where wFj (p) are the p-probability

quantiles of W F
j , and p is a fixed set of probabilities. Equation (5.4) can be used to

transform this data set into {(wRj (p), p)}. The p-probability quantile wRj (p) of WR, given

any quantile wFj (p) of W F , is

p = Q

(
wRj (p)− cjwFj (p)− dj

τj

)
, 0 < p < 1. (5.5)

The inverse of equation (5.5) is

Q−1(p) =
wRj (p)− cjwFj (p)− dj

τj
, (5.6)

and it can be rearranged into

wRj (p) = cjw
F
j (p) + dj + τjQ

−1(p). (5.7)

Equation (5.7) transforms the judgmentally assessed quantiles of W F
j into quantiles

of WR
j while accounting for the uncertainty associated with the stochastic transformation

between these two variates. Deterministic models, while sometimes easier to process,

might fail to carry this information forward. The vulnerability of this proposed model

lies in the validation of the assumptions regarding the residuals of the linear regression.

This normal-linear stochastic transformation is the first step to addressing the hypoth-
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esis that farmers may understand the dynamics of their field better than the dynamics

of their region. The same formulation could also be explored when modeling other situ-

ations involving judgmental assessments where the decomposition of complex system is

available.

The normal-linear stochastic transformation discussed here can be modeled according

to the following procedure:

Step 1. Retrieve the joint sample of WR and W F
j , {(wR, wFj )}, for each farmer j =

1, ..., J.

Step 2. Perform a linear regression of WR on W F
j to obtain the coefficients cj, dj

and the sample of residuals {tj}.

Step 3. Test the residuals {tj} for normality and homoscedasticity. If these two

conditions are met, move on to the next step.

Step 4. Transform the quantiles wFj (p) into wRj (p) using equation (5.7).

5.2.2 Application

Let WR be the yield of the state where the farmers are located, as estimated by IBGE. In

this case, WR is the soybean yield of Mato Grosso. Let an approximation of W F
j be the

soybean yield of the microregion where farmer j is located, also issued by IBGE in the

annual publication Produção Agŕıcola Municipal (PAM). Since there are four microregions

(table 5.1), a different normal-linear stochastic transformation is constructed for each

microregion.

Figure 5.4 shows the linear regressions of WR on W F
j and the corresponding coefficients

for each model. The same stochastic transformation can be utilized for groups of farmers

in the same region. Table 5.1 summarizes the location of the farmers. Figure 5.5 shows

the residuals from the regressions.
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Figure 5.4 Linear regression of WR on W F
j [bags per hectare] in the microregions: (a)

Alto Teles Pires, (b) Paranatinga, (c) Parecis, and (d) Canarana.
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Figure 5.5 Residuals obtained from the linear regression of the regional yield on the
local yield in the microregions: (a) Alto Teles Pires, (b) Paranatinga, (c)
Parecis, and (d) Canarana.
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(d) j = 6

Figure 5.6 Normal probability plots for the residuals of the linear regression for the
regional yield on the local yield in the microregions: (a) Alto Teles Pires, (b)
Paranatinga, (c) Parecis, and (d) Canarana.
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Table 5.2 Parameters of normal distribution functions fitted to regression residuals.

Regression τj MAD K-S statistic CV Significance Level
Alto Teles Pires 1.167 0.151 0.118 0.201 ≥ 0.20
Paranatinga 1.390 0.152 0.154 0.201 ≥ 0.20
Parecis 2.272 0.088 0.064 0.201 ≥ 0.20
Canarana 1.079 0.069 0.075 0.201 ≥ 0.20

The coefficients of the linear regression were estimated using the method of least

squares. This approach is particularly convenient for the stochastic transformation pro-

posed here, since its solution seeks to minimize the sum of the squares of the residuals.

The orthogonality condition between the residuals and the regressor in the least squares

method forces the sum of the residuals to be 0. Although Hoaglin et al. (2000) indicate

that the least squares method offers no resistance, it is suitable in this problem since the

data set does not contain any obvious outliers. The assumption Tj ∼ N(m = 0, τ 2
j ) must

be validated using the results of these regression models.

The residuals in Figure 5.5 do not appear to have a trend, i.e., they seem to be

randomly placed around the average line. This implies a constant variance, or in other

words, homoscedasticity of the residuals. Therefore, assuming τ 2
j to be the variance

of their distribution is suitable. The values of τ 2
j were calculated using the maximum

likelihood estimator.

Figure 5.6 shows the Gaussian probability plots of each set of residuals. The plots

were constructed by adapting the methodology described by Hoaglin et al. (2000) with

the meta-Gaussian plotting positions as described by Krzysztofowicz (2014). While the

QQ plots for the residuals of the Parecis and Canarana regression indicate a normal

distribution, the QQ plots of Alto Teles Pires and Paranatinga suggest a light-tailed

distribution. However, this analysis must take into consideration the relatively small

sample size N of 27 observations.

Table 5.2 shows the goodness-of-fit statistics for the normal distribution functions

considered in each residual set. The MAD imply a good fit for the residual sets of Parecis
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Table 5.3 Judgmental quantiles wRj (p) of WR transformed from wFj (p) of W F , in
[bags/ha].

Farmer City wFj (0.1) wFj (0.25) wFj (0.5) wFj (0.75) wFj (0.9)

1 Sorriso 50.3 60.9 70.5 73.8 76.1
2 Sorriso 50.2 58.4 65.6 67.5 70.3
3 Paranatinga 44.9 57.5 65.0 69.9 80.0
4 Sapezal 30.1 45.5 70.0 75.0 80.0
5 Diamantino 34.9 44.0 52.5 60.2 73.9
6 Canarana 45.4 52.1 60.6 65.5 72.0

Farmer City wRj (0.1) wRj (0.25) wRj (0.5) wRj (0.75) wRj (0.9)

1 Sorriso 47.6 57.1 65.9 69.4 72.0
2 Sorriso 47.5 55.0 61.8 64.2 67.2
3 Paranatinga 46.5 54.4 59.5 63.2 69.7
4 Sapezal 28.2 44.4 69.4 75.7 81.9
5 Diamantino 32.8 42.9 52.6 61.5 76.1
6 Canarana 45.4 50.8 57.5 61.8 67.0

and Canarana, as expected from analyzing their QQ plots. Although the MAD for the

residuals of the Alto Teles Pires and Paranatinga regressions suggest adequate fit, the

Kolmogorov-Smirnov test did not reject the null hypothesis in both cases. Therefore, the

assumption of Tj ∼ N(0, τ 2
j ) is validated.

The quantiles wFj (p) are transformed into wRj (p) using equation (5.7) and the coeffi-

cients in Figure 5.4. Table 5.3 summarizes the final results of the stochastic transforma-

tion. The next chapter will use these quantiles to model prior distribution functions of

WR, combine these functions, and construct Bayesian forecasters for agricultural yield.

5.3 Historical vs Judgmental Prior

Three types of prior distribution functions were modeled in this study: (1) the historical

prior distribution G, (2) the judgmental prior distribution GR
t of WR constructed from the

judgmentally assessed quantiles of WR , and (3) the transformed prior distribution GS
t of

WR obtained from the stochastic transformation of the judgmentally assessed quantiles

of W F .
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The historical prior distribution function G was modeled using the records of yield

issued by the LSPA/IBGE in September of each year, from 1993 to 2017 (sample size

N = 25). The parametric model for G of WR is LC2–IW

G(wR|α, β) = exp

[
−
(
α

y

)β]
, (5.8)

where

y = ln
ηU − ηL
wR − ηL

. (5.9)

The prior distribution function GR
t , constructed using the judgmentally assessed quan-

tiles of WR, and the prior distribution function GS
t , constructed using the stochastic

transformation of the judgmentally assessed quantiles of W F into quantiles of WR, follow

the same model for the year t = 2018. The parametric model for GR
t and GS

t is LR1–LP

GR
t (wR|α, β) = GS

t (wR|α, β) =


1
2
exp

(
y−β
α

)
if y ≤ β

1− 1
2
exp

(
−y−β

α

)
if β ≤ y

(5.10)

where

y = ln
wR − ηL
ηU − wR

. (5.11)

These prior distributions are used at different moments of the construction of the

Bayesian Forecaster. Table 5.4 summarizes the parameter values of the prior distribution

functions and figure 5.7 shows the empirical and parametric prior distribution functions.

Table 5.4 Prior distribution functions of the net harvested yield in Mato Grosso, Brazil.

Prior Distribution α β ηL ηU MAD K-S stat Critical Value
G LC2–IW 1.0777 6.7246 30 90 0.0712 0.110 0.208
GS
t LR1–LP 0.7369 -0.0329 30 90 0.0296 - -

GR
t LR1–LP 0.4154 -0.3489 30 90 0.176 - -



77

30 40 50 60 70 80 90

0.0

0.2

0.4

0.6

0.8

1.0

wR

P
(W

R
≤

w
R
)

historical
judgmental
transformed

Figure 5.7 Parametric distribution functions G, GS
t , and GR

t of WR.

The prior distribution functions GR
t and GS

t in figure 5.7 indicate a higher variance

of WR than the function G does. Intuitively, when considering the same variate, farmers

with an expert understanding of the dynamics of the regional production would be able

to indicate a lower variance of WR. In other words, the scenario would be the opposite.

In addition, the tails of the prior distribution functions GR
t and GS

t suggest a higher

probability for values of yield considered extreme by the historical records.

This leads to conclude that the judgmental and transformed prior distribution func-

tions modeled in this study are not completely accurate. Many factors can have influenced

the shape of these distribution functions, such as incomplete understanding of the variate

of interest by the experts or limitations in the methodology to assess quantiles. Never-

theless, these functions were useful to analyze the sensitivity of the Bayesian forecaster

to judgmental prior distributions in chapter 7.

These shortcomings represent opportunities to improve the forecasting models devel-
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oped in this chapter. Ideally, improvements in this type of functions can be made by

collecting the subjective quantiles from the same experts over time, since the judgmental

prior distribution functions in figure 5.7 only represent the year t = 2018. However, the

user can construct new forecasters by updating the judgmental prior distribution functions

using the framework developed in this research.

5.4 Summary

This chapter developed a stochastic transformation to map quantiles of W F into quantiles

of WR. This model addresses the challenge of assessing information from experts about

a certain variate, while the variate of interest for the forecasting problem is another. In

this case, the methodology allows the growers to think about a variate that may be more

familiar to them, the yield of a field, instead of the yield of the state.
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6. Probabilistic Forecasting of Agricultural

Yield

After observing the deterministic forecasts of production and yield, and modeling the

judgmental prior distributions from farmers, decision makers can produce probabilistic

forecasts using this information. This chapter uses the framework described in chapter 3

to address the problem of probabilistic forecasting of agricultural yield. Different Bayesian

processors of forecasts (BPF) are constructed using a historical prior distribution function

for various lead times.

6.1 Overview

The BPF models constructed in this chapter are in their conventional form, i.e., the prior

information used is historical as opposed to being judgmentally assessed. In other words,

the inputs to each model come exclusively from observed data. Analysts can use these

models to quantify uncertainty about the yield of Mato Grosso and the deterministic

forecasts of CONAB and IBGE, and merge them to produce probabilistic forecasts.

This chapter starts by analyzing the prior distribution function followed by the pre-

dictors before developing the specific structure of each forecasters. This layout allows an

initial comparison between the prior distribution function and the marginal distribution

functions of each predictor. Finally, each forecaster is constructed and the results are

displayed. The forecasters differ mainly according to the lead time and the number of

predictors used.

Table 6.1 aids to convert the yield data into the same unit, bags per hectare, which is

used throughout this research. Although this is a trivial task, using units familiar to the

farmers is essential to help them to understand the probabilistic forecasts.
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Table 6.1 Agricultural unit conversions.

Unit Equivalent
1 acre 0.404 hectare
1 bushel (soybean) 0.027 metric ton
1 bushel (soybean) 0.454 bags (60 kilograms)
1 bushel (soybean) per acre 0.06725 metric ton per hectare
1 bushel (soybean) per acre 1.122 bags (60 kilograms) per hectare
1 ton per hectare 16.667 bags (60 kilograms) per hectare

6.2 Variates and Samples

Let the continuous variate WR with sample space WR be the predictand — the net

harvested yield of the soybean crop in the State of Mato Grosso, Brazil, in bags per

hectare . Its realization is denoted wR ∈ WR, where WR = {wR : 0 < wR < ∞}. In

Brazil, IBGE and CONAB estimate the soybean crop yield of several states, including

Mato Grosso. The actual value of WR is considered to be the estimate issued in September

by the LSPA/IBGE. A sample of N = 25 realizations was extracted from the LSPA/IBGE

reports from 1993 to 2017.

Let the continuous variate W F with sample space WF represent the net harvested

yield of a particular field, in bags per hectare . Its realization is denoted wF ∈ WF , where

WF = {wF : 0 < wF < ∞}. The farmer observes W F every season after the harvest is

complete. The observations of the yield come from recorded data in the farm. Ideally,

a farmer with a well-structured historical database of his farm can use his own records

to construct this model. However, this study uses the yield of the microregion within

which the farmer resides as an approximation of wF . A sample of N = 25 realizations

was extracted from the LSPA/IBGE reports from 1993 to 2017 (see table 6.2).

The soybean yield can be affected, like many other crops, by weather conditions,

nutrition, diseases, and many other factors. Growers can form their yield expectations

based on current production conditions and using forecasts from other sources. Likewise,

other agents in the food supply chain, such as traders, consultants, and the government
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Table 6.2 Deterministic forecasts and actual estimates of the soybean crop yield in Mato
Grosso, in bags per hectare.

Year n x1 x2 x3 x4 x5 wR

1993 1 na na 39.68 na 40.60 40.90
1994 2 na na 42.00 na 43.65 43.75
1995 3 na na 41.80 na 41.55 41.55
1996 4 na na 40.47 na 40.42 40.42
1997 5 na na 42.77 na 43.53 43.53
1998 6 na na 46.30 na 45.13 45.03
1999 7 na na 45.65 na 45.65 47.30
2000 8 na na 47.30 na 46.95 50.37
2001 9 na na 50.50 na 49.98 50.92
2002 10 na na 51.10 na 50.27 51.00
2003 11 na na 52.08 na 51.48 48.07
2004 12 50.00 na 48.80 na 48.32 45.97
2005 13 48.83 na 50.33 na 48.42 48.42
2006 14 48.33 46.73 49.52 na 45.53 44.70
2007 15 48.67 50.83 48.80 49.67 50.55 50.32
2008 16 49.67 50.50 52.58 52.27 52.27 52.42
2009 17 50.00 51.67 51.75 51.65 51.38 51.33
2010 18 50.45 51.30 51.30 50.60 50.23 50.28
2011 19 51.00 52.25 52.25 53.17 53.72 53.72
2012 20 51.67 53.17 52.95 52.00 52.12 52.15
2013 21 51.67 52.12 51.60 50.17 49.38 49.32
2014 22 51.83 51.83 52.13 51.72 51.15 51.27
2015 23 52.13 51.92 51.80 52.75 51.65 51.83
2016 24 52.98 50.07 50.68 49.27 49.73 48.28
2017 25 52.18 54.62 53.87 54.55 54.93 55.03

Source: LSPA/IBGE, CONAB.
*na = not available
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Table 6.3 Description of predictors Xl according to issued month, sample size, and
source.

Variate Forecast Interval Sample Size Source
X1 October 2004 to 2017 14 CONAB
X2 February 2006 to 2017 12 CONAB
X3 February 1993 to 2017 25 IBGE
X4 May 2007 to 2017 11 CONAB
X5 May 1993 to 2017 25 IBGE

can use farmers’ assessments to form their forecasts as well as forecasts from other sources.

For this reason, the predictors considered in this model are deterministic forecasts issued

by IBGE and CONAB — two important government sources of agricultural information

in Brazil.

Let the continuous variate Xl with sample space Xl be the predictor for l = 1, ..., 5.

It represents the deterministic forecasts issued by IBGE and CONAB at different lead

times. Its realization is xl ∈ Xl, where Xl = {xl : 0 < xl < ∞} . Table 6.3 summarizes

the attributes of each predictor considered in this problem. The soybean crop harvest

usually happens from March through May in Mato Grosso. Therefore, the May forecast

is expected to be the closest to the realization. Table 6.2 reports the realizations.

This sample is used to estimate the distribution functions of each predictor and predic-

tand. The distribution functions are used to construct the BPF models. These functions

can be updated over time once more observations are recorded. However, due to the

nature of the problem, only one observation of each variate is recorded per year.

On the other hand, the models developed in this study can be applied to different

types of crop and allow the use of multiple predictors. The readers can customize their

BPF models according to the information available and with potential new predictors,

increasing the sample size.
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6.3 Prior Information

The prior information in this study is modeled through historical data of WR . The

historical prior distribution function G was modeled using the records of yield issued by

the LSPA/IBGE in September of each year, from 1993 to 2017 (sample size N = 25).

The parametric model for G of WR is Log-reciprocal type II inverted Weibull (LC2–IW)

G(wR|α, β) = 1− exp

[
−
(
α

y

)β]
, (6.1)

where

y = ln
ηU − ηL
wR − ηL

, (6.2)

and ηL and ηU are the lower and upper bounds, respectively. These bounds are selected

based on physical constraints associated with the variates, for instance, yields cannot be

lower than 0, or subjectively according to a rigorous analysis of the sample space of the

variate.

Figure 6.1 shows the empirical and parametric distribution functions of WR and table

6.4 shows the parameter values of G. The MAD suggests good to adequate fit and the K-S

statistic does not reject the model at a 20% significance level. Therefore, the LC2–IW

model is good for the prior distribution function G. This function will be used in the

construction of the BPF models in this chapter.

Table 6.4 Prior distribution function of the net harvested yield in Mato Grosso, Brazil.

Predictand Distribution α β ηL ηU MAD K-S stat. Critical value*
WR LC2–IW 1.0777 6.7246 30 90 0.0712 0.110 0.208

*At the significance level α = 0.20
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Figure 6.1 Empirical and parametric distribution functions of the WR.
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6.4 Predictors

The predictors considered in this study are the deterministic forecasts issued by CONAB

and IBGE at different lead times before the harvest is complete. This section is devoted

to model the initial estimate of the marginal distribution function K̄i of Xi, for i = 1, ..., 5.

The distribution functions are modeled according to the methodology in appendix B.

The parametric model for K̄1, K̄3, K̄4, K̄5 is Log-reciprocal type II inverted Weibull

(LC2–IW)

K̄i(xi|α, β) = 1− exp

[
−
(
α

y

)β]
, (6.3)

where

y = ln
ηU − ηL
xi − ηL

. (6.4)

The parametric model for K̄2 is Log-reciprocal type I log-logistic (LC1–LL)

K̄i(xi|α, β) =

[
1 +

( y
α

)−β]−1

, (6.5)

where

y = ln
ηU − ηL
ηU − xi

. (6.6)

Table 6.5 summarizes the marginal distribution functions estimated for each predictor.

The models estimated for X1, X2, X4, andX5 are suitable, with MADs implying good fit,

and K-S test not rejecting the null hypothesis (variate Xi has the distribution function

K̄i) at a 20% significance level.

With a MAD indicating poor fit, the model K̄3 is still suitable with the K-S test not

rejecting the null hypothesis at a 20% significance level. The modeling of such variates
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Table 6.5 Marginal distribution functions of the predictors of the net harvested yield in
Mato Grosso, Brazil.

Predictor Distribution α β ηL ηU MAD K-S stat. Critical value*
X1 LC2-IW 1.03 16.07 30 90 0.071 0.122 0.267
X2 LC1-LL 0.45 30.46 30 90 0.070 0.139 0.297
X3 LC2-IW 1.05 7.45 30 90 0.106 0.139 0.208
X4 LC2-IW 0.99 18.59 30 90 0.066 0.117 0.309
X5 LC2-IW 1.08 6.76 30 90 0.074 0.111 0.208

*At the significance level α = 0.20

can be improved with time, given a larger sample. Figure 6.2 shows the empirical and

parametric distribution of each predictor.

The distribution functions K̄1, K̄2, and K̄4 modeled after the data issued by CONAB

are quite steep. The variance of these deterministic forecasts is smaller than the variance of

the IBGE forecasts. For instance, the probability of the yield of Mato Grosso being greater

than 50 bags per hectare according to the estimated parametric distribution function K̄2

is approximately 0.96. The same event has probability of 0.49 according to K̄3.

Consider now the probability of the yield of Mato Grosso being greater than 53 bags

per hectare. According to the CONAB February forecast, this probability is 0.10, while

the IBGE February forecast suggests 0.14. This is the kind of disparity that can influence

the reliability of these sources in decision making. The models developed in this research

are able to take advantage of both predictors and merge this uncertainty in a systematical

approach.
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Figure 6.2 Empirical and parametric distribution functions of the: (1) CONAB October
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6.5 Forecasting Regional Yield

Consider the case of a trading company looking to export a certain amount of soybean

from Brazil to China. The exportation contract is closed before the farmers have planted

the soybean. In order to fulfill this contract, the company purchases grain from farmers

located in different states. This company is likely to be interested in yield forecasts during

the development of the crop season.

Without much effort, an analyst can collect deterministic monthly yield forecasts

for a state issued by IBGE and CONAB. These forecasts are free and available to the

public. In addition, this analyst can purchase deterministic yield forecasts from consulting

companies. The analyst’s task is to determine which source is more reliable and how to

use the deterministic forecast in decision making.

In this section, Bayesian processor of forecasts (BPF) models are constructed to ad-

dress similar problems. Suppose an analyst has a data set containing records of the yield

of Mato Grosso, and deterministic yield forecasts issued by IBGE and CONAB. The BPF

produces probabilistic yield forecasts using both sources of deterministic forecasts. The

framework utilized in this section is described in chapter 3.

The BPF models expose the uncertainty related to the deterministic yield forecasts,

and provide a method to obtain probabilistic forecasts of regional yield. Three BPFs will

be constructed in this section. Table 6.6 displays the predictors used in each BPF. The

main difference between each BPF is the set of predictors. Additional information from

newer forecasts, as well as changes in the farmers’ judgments, can be incorporated using

this framework.

Two frameworks must be applied to construct the BPF models in this section. First, a

Bayesian meta-Gaussian model using one predictor is constructed for the BPFOct. Second,

two Bayesian meta-Gaussian models using multiple predictors are constructed for BPFFeb

and BPFMay.
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Table 6.6 Predictors used in each Bayesian Processor of Forecasts.

BPF Predictors
Lead time
(Months)

BPFOct X1 11
BPFFeb X2, X3 7
BPFMay X4, X5 4

6.5.1 BPF - October

The report issued in October by CONAB is the first in the season; therefore, many decision

makers usually expect its release. The BPFOct quantifies the uncertainty related to the

yield forecasts for Mato Grosso and allows the user to produce probabilistic forecasts.

The BPFOct considers the deterministic forecast issued in October by CONAB as the

predictor X1.

According to Maranzano (2006), modeling each Bayesian meta-Gaussian forecaster

using one predictor involves the following steps:

Step 1. Estimate the marginal distribution functions. This step has been discussed

in sections 6.3 and 6.4. Each BPF uses a different combination of predictors as

shown in table 6.6. Therefore, the parametric models of the marginal distribu-

tion function are summoned as needed in the following sections.

Step 2. Transform the variates using the NQT. The Normal Quantile Transformation

is a composition of the inverse of the standard normal distribution function and

the distribution function of the variate.

Step 3. Model the family of likelihood functions. The family of likelihood functions

is modeled in the transformed space. The dependence structure between the

predictor and the predictand is assumed to be Normal-linear.

Step 4. Validate dependence structure. This step involves analyses whether the as-

sumptions of the meta-Gaussian model hold.
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Step 5. Compute posterior parameters. The posterior parameters along with the

marginal distribution functions previously modeled are used to obtain the pos-

terior distribution and density functions.

These steps are executed below in order to estimate and validate the BPFOct.

Step 1. Estimate marginal distribution functions

The parametric model of the marginal distribution function G for the yield of Mato

Grosso is LC2–IW, as described in equations (6.1) and (6.2). The parametric model of the

marginal distribution function K̄1 of X1 is LC2–IW, as described in equations (6.3) and

(6.4). The parameter values for G and K̄1 are shown in tables 5.4 and 6.5, respectively.

Step 2. Transform the variates using the NQT

VariateWR is transformed using the NQT through the historical prior distributionGH ,

and the predictor X1 is transformed using the marginal distribution K̄1. The transformed

variates using the NQT are

V = Q−1(G(WR)), (6.7)

Z1 = Q−1(K̄1(X1)). (6.8)

Equations (6.7) and (6.8) are utilized to obtain the joint sample {(z1, v)}. Each re-

alization of variate V is computed as v = Q−1(G(wR)); that is, first evaluating the

historical prior distribution function at the observation wR, then evaluating the inverse

of the standard normal distribution function at that value. Using this transformation for

all the recorded values of WR results in a transformed sample with same size as the orig-

inal sample. The same process is made for z1 = Q−1(K̄1(x1)). The family of likelihood

functions is modeled in the transformed space. Figure 6.3-a shows a scatterplot of the

transformed joint sample. This joint sample is shown in table 6.7.
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Table 6.7 Transformed data obtained by the NQT.

Year n z1 z2 z3 z4 z5 v
1993 1 na na -2.14 na -1.75 -1.70
1994 2 na na -1.74 na -1.22 -1.20
1995 3 na na -1.78 na -1.59 -1.59
1996 4 na na -2.01 na -1.78 -1.78
1997 5 na na -1.61 na -1.24 -1.24
1998 6 na na -0.91 na -0.93 -0.96
1999 7 na na -1.05 na -0.83 -0.48
2000 8 na na -0.68 na -0.55 0.32
2001 9 na na 0.18 na 0.22 0.49
2002 10 na na 0.37 na 0.31 0.51
2003 11 na na 0.72 na 0.69 -0.29
2004 12 -0.53 na -0.31 na -0.22 -0.77
2005 13 -1.08 na 0.13 na -0.20 -0.21
2006 14 -1.29 -3.85 -0.11 na -0.85 -1.02
2007 15 -1.15 -0.98 -0.31 -1.29 0.39 0.31
2008 16 -0.70 -1.31 0.91 0.32 0.96 1.00
2009 17 -0.53 -0.08 0.60 -0.16 0.65 0.62
2010 18 -0.28 -0.49 0.44 -0.82 0.29 0.30
2011 19 0.05 0.55 0.78 1.18 1.54 1.51
2012 20 0.52 1.42 1.06 0.10 0.91 0.90
2013 21 0.52 0.41 0.54 -1.04 0.05 0.03
2014 22 0.64 0.10 0.74 -0.11 0.58 0.60
2015 23 0.89 0.20 0.61 0.75 0.75 0.79
2016 24 1.70 -1.69 0.23 -1.47 0.15 -0.24
2017 25 0.93 2.43 1.47 3.12 2.11 2.12
Sample mean -0.02 -0.27 -0.16 0.05 -0.06 -0.08
Sample sd 0.88 1.53 1.03 1.26 1.00 1.00

*na = not available
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Step 3. Model the family of likelihood functions

According to the framework discussed in chapter 3, the Bayesian meta-Gaussian model

assumes that the stochastic dependence between Z and V is normal-linear. Therefore,

a least squares regression is fitted using the joint sample {(z1, v)}. The linear regression

follows the model described in chapter 3:

Z1 = aV + b+ Ξ. (6.9)

Figure 6.3-a shows this transformed joint sample, the least squares regression of Z1 on

V , and the 90% central credible interval. Figure 6.3-b shows the meta-Gaussian median

regression of X1 on WR obtained by mapping the regression from the transformed space

into the original space.

Step 4. Validate dependence structure

The residuals of the regression of Z1 on V with slope a = 0.408 and intercept b =

−0.194 are shown in figure 6.4-a. Initially, a visual analysis of the residuals does not

indicate clear heteroscedasticity. The residuals seem to be randomly distributed around

the null horizontal line. Figure 6.4-b shows the QQ plot of the residuals obtained using

the meta-Gaussian plotting positions. The QQ plot indicates a possible discrepancy in

the left and right tail from the Gaussian distribution. Therefore, an additional analysis

is required in order to strengthen the validation process.

The goodness-of-fit of a hypothesized Gaussian distribution can be analyzed according

to the methodology in Appendix B. The MAD of 0.0517 indicates good fit. The K-S

statistic of 0.110 does not reject the null hypothesis that the residuals follow the Gaussian

distribution with critical value of 0.276 at a significance level of 0.20. Therefore, there

is no strong evidence to invalidate the assumptions of homoscedasticity, null mean, and

normality of the residuals at this moment. The estimated parameters of the regression

can be used to estimate the posterior parameters of the Bayesian forecaster.
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Figure 6.3 (a) Linear regression of Z1 on V , and 90% central credible interval; (b)
meta-Gaussian median regression of the deterministic forecast X1 issued by
CONAB in October on the regional yield WR.
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Figure 6.4 (a) Residuals from the linear regression of Z1 on V ; (b) QQ plot of the
residuals constructed using the meta-Gaussian plotting positions.
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Table 6.8 Quantiles wR(p) of the yield of Mato Grosso estimated from the historical
prior distribution and posterior quantiles wR(p|x1), given x1 = 47, 49, 52 and
p = 0.01, 0.25, 0.5, 0.75, 0.9.

Function Forecast 0.01 0.25 0.5 0.75 0.9
Historical Prior wR(p) 37.1 46.4 49.2 51.5 53.2
Posterior Quantile wR(p|x1 = 47) 34.1 42.7 45.9 48.5 50.5
Posterior Quantile wR(p|x1 = 49) 36.2 44.8 47.6 50.0 51.7
Posterior Quantile wR(p|x1 = 52) 41.5 48.8 50.9 52.7 54.0

Step 5. Compute posterior parameters

Finally, the posterior parameters are computed. The estimates of posterior parameters

of the Bayesian meta-Gaussian model are

c1 = 0.495, c0 = 0.096, and T = 0.893.

The posterior parameters along with the parameters of G and K̄1 are enough to spec-

ify the posterior quantile , distribution, and density functions of WR. These functions

produce probabilistic forecasts of WR. The posterior quantile function of WR, condi-

tional on a realization of X1 = x1, is given by equation (3.13). The posterior density and

distribution functions are given by equations (3.10) and (3.11), respectively.

The posterior quantile function produces forecasts of WR given any values of p ∈ (0, 1)

and x1. For instance, suppose CONAB released a deterministic forecast of the yield of

Mato Grosso in October of x1 = 47 bags per hectare and a decision maker needs to

forecast the yield of Mato Grosso. Given equation (3.13) and the previously estimated

parameters, it is possible to calculate the quantiles in table 6.8. Then, the decision maker

can conclude, for instance, that it is equally likely that the yield of the region will be

above or below 45.9 bags per hectare, or that the probability of the yield being greater

than 48.5 bags per hectare is 0.25. Another conclusion could be that the probability of

the yield being between 42.7 and 48.5 bags per hectare is 0.5.

Figure 6.5 shows posterior density and distribution functions, conditional on different
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values of X1, along with the historical prior density and distribution functions. These plots

are useful to analyze particular cases of the family of posterior functions and compare them

with the prior functions. The different shapes of the density functions in figure 6.5-b shows

the impact of the deterministic forecast issued by CONAB in October on the uncertainty

about the yield of Mato Grosso.

Intuitively, the deterministic forecasts with smaller lead time should converge to the

actual realization of WR. Therefore, it is expected that the posterior density functions

follow a narrower shape than the prior density function according to the lead time of

the deterministic forecast. Some of the posterior density functions in figure 6.5-b are not

necessarily narrower than the prior density, but they represent a shift according to the

observation x1, such as for x1 = 47 and x1 = 49.

However, some posterior functions can represent a greater reduction in the uncertainty

about the yield of Mato Grosso, given the October forecast from CONAB, such as the

case of φ(·|x1 = 52). Suppose a trading company is concerned about low yields in Mato

Grosso. Historically, the company knows that the probability of an yield lower than 46

bags per hectares is approximately 0.22, but after CONAB reported a forecast of 52 bags

per hectare, the company can use the BPFOct model to calculate the posterior probability.

The posterior probability of observing an yield lower than 46 bags per hectare is 0.08,

given x1 = 52.

The BPFOct is the first model to produce probabilistic forecasts of agricultural yield

in this research. It takes a yield estimate issued by CONAB in October along with

prior knowledge about the yield of Mato Grosso and outputs forecasts and their related

probabilities. This represents a contribution to the current models used for forecasting

agricultural yield.
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6.5.2 BPF - February

The BPFFeb uses the deterministic forecasts issued by CONAB and IBGE in February as

predictors. Usually the soybean crop fields are in an advanced stage of their cycle at this

moment. The farmers and the forecasters have a better idea about the final yield and

the deterministic forecasts are usually adjusted to significant changes in the production

conditions, such as abnormal weather or diseases incidence.

Modeling the BPFFeb follows the framework described in sub-section 3.2.4. The prior

distribution function remains the same as the BPFOct, but the model in this section

utilizes multiple predictors as mentioned. According to Maranzano (2006), modeling each

Bayesian meta-Gaussian forecaster using multiple predictors involves the following steps:

Step 1. Estimate the marginal distribution functions. This step has been discussed

in sections 6.3 and 6.4. Each BPF uses a different combination of predictors as

shown in table 6.6. Therefore, the parametric models of the marginal distribu-

tion function are summoned as needed in the following sections.

Step 2. Transform the variates using the NQT. The procedure to apply the NQT is

similar to the model developed for October.

Step 3. Estimate the moments of variates in the transformed space. The moments

µQ and ΣQ are composed here. This step also includes computing the infor-

mativeness score (IS) and performing a predictor screening.

Step 4. Validate meta-Gaussian dependence structure. This step involves analyses

whether the assumptions of the meta-Gaussian model hold.

Step 5. Compute posterior parameters. The posterior parameters along with the

marginal distribution functions previously modeled are used to obtain the pos-

terior distribution and density functions.
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These steps are executed below in order to estimate and validate the BPFFeb. The

end results are the equations and parameter values of a posterior density, distribution,

and quantile functions that can be used to produce probabilistic forecasts of the yield of

Mato Grosso, given the deterministic forecasts of CONAB and IBGE in February.

Step 1. Estimate marginal distribution functions

The parametric model of the prior distribution function G is the same as in section

6.5.1, i.e., LC2–IW, as described in equations (6.1) and (6.2). This is the historical prior

distribution function modeled using observed data of the yield of Mato Grosso.

The parametric model of the marginal distribution function K̄2 of X2 is LC1–LL, as

described in equations (6.5) and (6.6), and the model of function K̄3 of X3 is LC2–IW,

as described in equations (6.3) and (6.4). The parameter values for G, K̄2 and K̄3 are

shown in tables 5.4 and 6.5, respectively.

Step 2. Transform the variates using the NQT

The parametric models described in the previous step were utilized to obtain the

transformed joint samples {(z2, v)}, {(z3, v)}, and {(z2, z3)} as follows:

V = Q−1(G(WR)), (6.10)

Z2 = Q−1(K̄2(X2)), (6.11)

Z3 = Q−1(K̄3(X3)). (6.12)

Figures 6.6-a and 6.8-a show the transformed joint samples {(z2, v)} and {(z3, v)},

respectively. Figure 6.10-a shows the joint sample {(z2, z3)}. These transformed samples

will be used to estimate the likelihood parameters and validate the meta-Gaussian as-

sumptions. These joint samples are shown in table 6.7.
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Step 3. Estimate the moments of variates in the transformed space

The transformed samples obtained in the previous step were used to compute µQ and

ΣQ. The estimates calculated using the joint sample (X2, X3, V ) of size N = 12 are

µQ =


−0.274

0.580

0.576

 , ΣQ =


2.345 0.560 0.994

0.560 0.217 0.296

0.994 0.296 0.607

 . (6.13)

The IS for predictors X2 and X3 are

IS2 = 0.889, IS3 = 0.876.

The informativeness score for X2 is larger than the score of X3. Therefore, the deter-

ministic forecast issued by CONAB in February is more informative than the deterministic

forecast issued by IBGE in the same month for forecasting the actual yield of Mato Grosso.

This is an important conclusion considering the resources allocated in producing these es-

timates.

Step 4. Validate meta-Gaussian dependence structure

According to Maranzano (2006), validating the meta-Gaussian dependence structure

involves checking the assumption that vector (Z2, Z3, V ) is multivariate Gaussian. One

of the approaches to validate this assumption is based on the necessary condition that if

the vector (Z2, Z3, V ) is multivariate Gaussian, all the pairs of variates in this vectors are

bivariate Gaussian.

Figures 6.7 and 6.9 show the scatterplots and QQ plots of the residuals of the regres-

sion of Z2 on V and Z3 on V , respectively. The analysis of the residuals of the linear

regression of Z2 on V do not indicate clear signs of heteroscedasticity. However, the QQ
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Figure 6.6 (a) Linear regression of Z2 on V , and 90% central credible interval; (b)
Bayesian meta-Gaussian median regression of the deterministic forecast X2

issued by CONAB in February on the regional yield WR.
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Figure 6.7 (a) Residuals from the linear regression of Z2 on V ; (b) QQ plot of the
residuals constructed using the meta-Gaussian plotting positions.
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Figure 6.8 (a) Linear regression of Z3 on V , and 90% central credible interval; (b)
Bayesian meta-Gaussian median regression of the deterministic forecast X3

issued by IBGE in February on the regional yield WR.
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Figure 6.9 (a) Residuals from the linear regression of Z3 on V ; (b) QQ plot of the
residuals constructed using the meta-Gaussian plotting positions.
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Figure 6.10 (a) Linear regression of Z3 on Z2, and 90% central credible interval; (b)
residuals from the linear regression; (c) QQ plot of the residuals constructed
using the meta-Gaussian plotting positions.
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plot indicates the possibility of a heavy-tailed distribution. The plots in figure 6.9 suggest

homoscedasticity and Gaussianity for the residuals of the linear regression of Z3 on V .

Figure 6.10 shows the linear regression of Z3 on Z2 as well as the scatterplot and

QQ plot of the residuals to validate the regression. Visually, there is no clear evidence

that the residuals from this linear regression are heteroscedastic. The QQ plot indicates

the possibility of a heavy-tailed distribution, but close to Gaussian in the central region.

This analysis can become more explicit once the sample size of {(z2, z3)} increases. At

this moment, this research considers that the assumptions related to the meta-Gaussian

dependence structure hold, but this analysis can be improved by collecting data over time.

Step 5. Compute posterior parameters

The estimates of the posterior parameters are

c2 = 0.282, c3 = 0.778,

c0 = 0.111, T = 0.398.

These estimates were obtained using equations 3.21 and they were applied to equations

3.23, 3.24, and 3.25 to obtain the posterior distribution, density, and quantile functions,

respectively. The posterior parameters along with the equations for the prior distribution

function and the marginal distribution functions of X2 and X3 are sufficient to construct

the BPFFeb.

Figure 6.11 shows examples of posterior density functions φ(·|x2, x3). For instance,

Figure 6.11-a shows the case with x2 = 50 and x3 = 45 and the corresponding posterior

density function φ(·|x2 = 50, x3 = 45). In other words, it represents the situation when

CONAB forecasts an yield of 50 bags per hectare and IBGE forecasts an yield of 45 bags

per hectare in February for the state of Mato Grosso. The decision maker can use the

posterior density function associated with those realizations and produce probabilistic

forecasts of the yield of Mato Grosso.
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6.5.3 BPF - May

The BPFMay is constructed using the same framework applied in the BPFFeb, a meta-

Gaussian model using multiple predictors. In this case, the predictors are the deterministic

forecasts issued by CONAB (X4) and IBGE (X5) in May for the yield of the state of Mato

Grosso. Intuitively, these deterministic forecasts should carry less uncertainty about the

actual realization of yield , since they are released with a shorter lead time. Yet having

probabilistic forecast at this time can bring an economic value to the decision maker, since

many marketing activities are still being done throughout the year.

The following steps are executed to model the BPFMay:

Step 1. Estimate marginal distribution functions

Once again, the parametric model of the prior distribution function G is the same

as in section 6.5.1. The parametric models of the marginal distribution functions K̄4 of

X4 and K̄5 of X5 are LC2–IW, as described in equations (6.3) and (6.4). The parameter

values for G, K̄4 and K̄5 are shown in tables 5.4 and 6.5, respectively.

Step 2. Transform the variates using the NQT

The transformed joint samples {(z4, v)}, {(z5, v)}, and {(z4, z5)} are obtained by ap-

plying the NQT as follows:

V = Q−1(G(WR)), (6.14)

Z4 = Q−1(K̄4(X4)), (6.15)

Z5 = Q−1(K̄5(X5)). (6.16)

Figures 6.12-a, 6.14-a, 6.16-a and shows the transformed joint samples {(z4, v)},

{(z5, v)}, {(z4, z5)}, respectively.
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Step 3. Estimate the moments of variates in the transformed space

The estimates of µQ and ΣQ using the joint sample (X4, X5, V ) of size N = 11 are

µQ =


0.052

0.763

0.721

 , ΣQ =


1.576 0.701 0.774

0.701 0.342 0.369

0.774 0.369 0.409

 . (6.17)

The IS for predictors X4 and X5 are

IS4 = 0.985, IS5 = 0.994.

Predictor X5 is slightly more informative than X4. In fact, the IS of both predictor

are quite close to 1, which would mean they are close to being perfect. Intuitively, this

shall come as no surprise, since IBGE and CONAB update their estimates monthly ac-

cording to variations in the production conditions up to the end of the season. Therefore,

forecasts with shorter lead time will likely be closer to the actual realization of yield.

Step 4. Validate meta-Gaussian dependence structure

Figures 6.13, 6.15, and 6.16 show the scatterplots and QQ plots of the linear regres-

sions of Z4 on V , Z5 on V , and Z5 on Z4, respectively. The analysis of figures 6.13 and

6.16 indicates that the vectors (Z4, V ) and (Z4, Z5) are bivariate Gaussian. However, The

QQ plot in figure 6.15-b suggest a heavy-tailed distribution for the residuals of the regres-

sion of Z5 on V . Once again, the small sample size in this case provides little conclusive

arguments to invalidate this assumption, but this analysis should be revised once more

data are available. Therefore, this research concludes that there is no clear evidence that

the vector (Z4, Z5, V ) is not multivariate Gaussian.
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Figure 6.12 (a) Linear regression of Z4 on V , and 90% central credible interval; (b)
Bayesian meta-Gaussian median regression of the deterministic forecast X4

issued by CONAB in May on the regional yield WR.
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Figure 6.13 (a) Residuals from the linear regression of Z4 on V ; (b) QQ plot of the
residuals constructed using the meta-Gaussian plotting positions.
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Figure 6.14 (a) Linear regression of Z5 on V , and 90% central credible interval; (b)
Bayesian meta-Gaussian median regression of the deterministic forecast X5

issued by IBGE in May on the regional yield WR.
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Figure 6.15 (a) Residuals from the linear regression of Z5 on V ; (b) QQ plot of the
residuals constructed using the meta-Gaussian plotting positions.



114

●

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

4

z4= Q−1(K(x4))

z 5
=

 Q
−1

(K
(x

5)
)

(a)

a = 0.445
b = 0.739
σ = 0.173

●

●

●
●

●

●

●

●

●

●
●

−2 −1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

z4

re
si

du
al

s

(b)

●
●

● ● ● ●
● ● ●

● ●

−2 −1 0 1 2

−2

−1

0

1

2

Gaussian Quantile

S
am

pl
e 

Q
ua

nt
ile

s

(c)

Figure 6.16 (a) Linear regression of Z5 on Z4, and 90% central credible interval; (b)
residuals from the linear regression; (c) QQ plot of the residuals constructed
using the meta-Gaussian plotting positions.
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Step 5. Compute posterior parameters

The estimates of the posterior parameters are

c4 = 0.128, c5 = 0.829,

c0 = 0.075, T = 0.096.

The posterior parameters, the parametric models of the prior distribution function

G and of the marginal distribution functions K̄4 and K̄5 are sufficient to construct the

posterior density, distribution, and quantile functions of WR, conditional on the realiza-

tion of the vector of predictors (X4, X5). Figure 6.17 shows examples of posterior density

function, given different realizations of X4 and X5.

The posterior density functions are quite narrower than the prior density function,

indicating a considerable decrease in uncertainty from the prior to the posterior functions.

Both predictors are very informative, but changes in x5 result in a slightly greater change

in the mode and spread of the posterior density functions, when compared to changes in

x4.

6.5.4 Summary

The BPFs constructed so far use the historical prior information. These models decrease

the uncertainty associated with the prior information at different times in the soybean

season. Each model has a different economic value due to different lead times and the

types of decisions that the grower must make at various stages of the season.

These models address the problem of having different deterministic forecasts from dif-

ferent sources regarding the same variate, in this case, the yield of Mato Grosso. The

same framework can be applied to different regions, agricultural crops, predictors, and

lead times. For instance, an analyst could merge additional deterministic forecasts pur-

chased from private companies in this model and analyze whether these forecasts decrease

uncertainty about the actual yields.
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Figure 6.17 (a) Historical prior density function g and posterior density functions
φ(·|x4 = 50, x5) for x5 = 45, 50, and 55; (b) posterior density functions
φ(·|x4, x5 = 50) for x4 = 45, 50, and 55.
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6.6 Example of Real Forecast

The models developed so far are able to produce probabilistic forecasts of the yield of

Mato Grosso using the deterministic forecasts of IBGE and CONAB. The observed data

used was recorded up to 2017. Let us analyze the same variate during the year of 2018.

Table 6.9 shows the deterministic forecasts issued by CONAB and IBGE at different times

in the crop season. The first forecast was issued in October by CONAB and the observed

yield was 55.8 bags per hectare.

The organizations clearly updated their forecasts over time and got closer to the ac-

tual observation in September. However, many agents had to make decisions based on

the October, February, and May forecasts. The difference between the CONAB October

forecast and the IBGE September estimate was of 4.7 bags per hectare. This is a sig-

nificant difference considering the size of certain farms. Figure 6.18 shows the posterior

distribution and density functions of each BPF, conditional on the realizations of the

predictors in table 6.9.

Suppose a grower wants to know the probability of the actual yield being above the

51.1 bags per hectare forecasted by CONAB in October. According to the historical

prior, the probability of this event is 0.29, while the posterior distribution function of the

BPFOct, conditional on the realization X1 = 51.1, tell us that the probability of the same

event is 0.33. The BPFOct slightly decreased the uncertainty about WR.

The BPFFeb and BPFMay, considerably decreased the uncertainty about WR. Suppose

Table 6.9 Deterministic forecasts and actual realization of the soybean crop yield, in
bags per hectare, in Mato Grosso in the 2017/2018 crop season issued by
IBGE and CONAB .

2017 2018 2018 2018
Oct Feb May Sep

CONAB 51.1 53.6 55.8 -
IBGE - 54.5 55.9 55.8
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Table 6.10 Quantiles wR(p) of the yield of Mato Grosso from the historical prior
distribution and posterior quantiles wR(p|x1 = 51.1),
wR(p|x2 = 53.6, x3 = 54.5), and wR(p|x4 = 55.8, x5 = 55.9), for
p = 0.01, 0.25, 0.5, 0.75, 0.9.

Function Forecast 0.01 0.25 0.5 0.75 0.9
Historical Prior wR(p) 37.1 46.4 49.2 51.5 53.2
Posterior Quantile wR(p|x1 = 51.1) 39.5 47.4 49.8 51.7 53.2
Posterior Quantile wR(p|x2 = 53.6, x3 = 54.5) 53.8 54.3 54.5 54.8 54.9
Posterior Quantile wR(p|x4 = 55.8, x5 = 55.9) 56.7 57.1 57.2 57.3 57.3

a grower wants to make probabilistic forecasts after receiving the reports from CONAB

and IBGE in February. At this moment, the development of the crop seasons is almost at

the end and the forecasters at these organizations have a better idea regarding the final

estimations of yield.

The IBGE forecasted 54.5 and CONAB forecasted 53.6 bags per hectare in February.

Growers can produce probabilistic forecasts using the posterior quantile function in order

to have a more illustrative set of probabilities. Table 6.10 shows values of five quantiles.

Given the deterministic forecasts in February, for instance, farmers can use table 6.10 to

have a comprehensive set of forecasts and their respective probabilities.

According to CONAB (2018), the soybean yield in Mato Grosso for the 2017/2018

broke the historical record due to large increase in the planted area, optimum planting

timing, favorable weather conditions, and improvements in seed technology. In fact, it

was considered to be an extreme event above the 0.9-quantile of the February forecast.

However, the BPFMay adjusted these quantiles after the May forecasts were released.

While improvements in technology are persistent, optimal weather conditions do not

repeat year after year. Many factors can drive the yield down, such as an increase in

disease incidence, drought, and so on. The BPF model updates the probabilistic forecasts

based on the deterministic forecasts issued by these organizations. The same analysis can

be made in the following years, using new deterministic forecasts.
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6.7 Summary

This chapter developed models to produce probabilistic forecasts of agricultural yield. The

main difference between the models was the lead time. The deterministic forecasts used

as predictors were issued in October, February, and May. During the month of October,

the growers in Brazil are starting to prepare for planting. In February, the season is at an

advanced stage. The growers have observed the weather conditions and other risk factors

that can significantly influence the yield. In May, the harvest season is almost over.

The Bayesian forecasters developed in this chapter quantify the uncertainty related to

the actual soybean yield of Mato Grosso and the deterministic forecasts issued by CONAB

and IBGE at different lead times. The model merges information from these two sources

in order to produce the probabilistic forecast. This addresses the current problem of

credibility associated with these two sources. Instead of choosing a deterministic forecast

to use among these sources, growers can use the BPF models to take advantage of both

estimates.

Moreover, the probabilistic forecasts provide not only a forecast, conditional on the re-

alization of a deterministic forecast, but also a quantification of the uncertainty associated

with that forecast. Growers can incorporate this important information in their decision

making throughout the development of the crop season. The real example in subsection

6.6 shows an application of the BPF models in a peculiar crop season, the 2017/2018.

Although the yield of this season was a historical record, the posterior functions were able

to decrease uncertainty about the yield of Mato Grosso.

Table 6.7 reports the transformed observations obtained from the NQT for reference.

The calculations can be reproduced and the results can be validated using this table. The

next chapter explores the sensitivity of the models developed here to type of information,

the judgmental prior distributions.
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7. Sensitivity to Judgmental Priors

This chapter continues to explore the problem of probabilistic forecasting of agricultural

yield, but using judgmental prior distribution functions. These judgmental functions

were obtained from growers and they are described in chapters 4 and 5. First, a model

to forecast the yield of a field is developed, followed by models to forecast the yield of a

region using different types of prior distributions.

7.1 Overview

Yield forecasts are often released to the public as point estimates. The Bayesian processor

of forecasts (BPF) previously implemented in chapter 3 provides a convenient solution to

quantify the existing uncertainty of deterministic yield forecasts. Moreover, the expertise

of farmers regarding their own fields and region is integrated into modeling in order to

provide additional information for the forecast.

The construction of the BPF models follows the framework exposed in chapter 3.

The BPF models differ according to the type of prior distribution function used. The

judgmental prior distribution functions are modeled in chapter 4, and the stochastic

transformation utilized to map the field quantiles into region quantiles is discussed in

chapter 5. The next section provides a guideline to produce probabilistic forecasts of the

yield of a field and it analyzes the impact of judgmental prior information. The third

section analyzes the sensitivity of the models developed in chapter 6 to judgmental prior

information.

7.2 Forecasting Local Yield Using Judgmentally Assessed Prior

Suppose a grower keeps records of his production, planted area, and yield for a number

of fields within his property. He has a good understanding about the dynamics of the
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production in his various fields and he wishes to forecast the yield of a specific field. Many

growers can produce point estimates of future yield of a field based on the inputs applied,

weather conditions, disease incidence, and so on. This section provides a guideline to take

a step further and produce probabilistic forecasts using historical records of the yield and

their judgmental prior distribution functions.

Let the continuous variate W F with sample space WF be the predictand — the net

harvested yield of the soybean crop in a field, in bags per hectare . Its realization is

denoted wF ∈ WF , where WF = {wF : 0 < wF < ∞}. Let the continuous variate X1

with sample space X1 be the predictor — a deterministic forecast of the yield of the region

where the field is located, in bags per hectare . Its realization is denoted x1 ∈ X∞, where

X1 = {x1 : 0 < x1 <∞}.

In order to illustrate this model, a hypothetical example was designed with real data

as proxies for the yield of a field. The yield of the city of Sorriso was considered as a proxy

of the yield of a certain field. These yield values were estimated by PAM/IBGE and the

data set contains records from 1987 to 2017. The deterministic forecasts are also issued

by the PAM/IBGE for the microregion of Alto Teles Pires, where the city of Sorriso is

located. These forecasts are from 2000 to 2017. Assume that these estimates represent

forecasts issued in February. Table 7.1 shows the observations of both variates.

In practice, growers can replace these observations with their own records of yield and

desired predictor. The sample sizes need not be the same. The example created in this

section considers a time series of W F longer than X1. The Bayesian forecaster is able to

use all data as opposed to using only the joint sample. The methodology applied in this

section is described in chapter 3.

It is worth mentioning that the sample of W F in table 7.1 seems to be nonstationary.

The values of wF appear to be nonstationary in the mean, with a lower mean for the

first part of the time series, perhaps until 1995, and a higher mean after that. Figure 7.1

shows the time series graph of wF and moving averages calculated with different orders.
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Table 7.1 Joint samples {(x1, w
F )} and {(z1, v)}.

year x1 wF z1 v
1987 na 38.0 na -1.53
1988 na 33.8 na -2.00
1989 na 39.2 na -1.40
1990 na 31.0 na -2.46
1991 na 39.1 na -1.41
1992 na 43.0 na -0.97
1993 na 40.6 na -1.25
1994 na 43.4 na -0.92
1995 na 37.0 na -1.63
1996 na 45.0 na -0.72
1997 na 46.3 na -0.54
1998 na 46.0 na -0.58
1999 na 48.3 na -0.22
2000 51.9 55.0 0.41 1.55
2001 51.9 54.3 0.41 1.27
2002 51.4 52.0 -0.01 0.55
2003 51.5 51.0 0.07 0.31
2004 48.3 52.0 -1.48 0.55
2005 52.7 52.0 0.83 0.55
2006 48.1 50.0 -1.55 0.09
2007 50.4 51.0 -0.66 0.31
2008 53.2 52.0 1.08 0.55
2009 51.7 52.0 0.26 0.55
2010 51.1 49.7 -0.23 0.03
2011 56.1 58.0 2.18 3.39
2012 52.6 54.0 0.80 1.16
2013 50.6 52.1 -0.54 0.58
2014 49.9 52.4 -0.90 0.66
2015 51.0 52.5 -0.27 0.69
2016 49.7 48.0 -0.99 -0.27
2017 56.4 58.0 2.27 3.39

sample mean 51.6 47.6 0.1 0.0
sample sd 2.12 6.88 1.05 1.33

Source: PAM/IBGE.
*na = not available
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Figure 7.1 (a) Time series plot of wF , (b) moving average plot of order 3, (c) moving
average plot of order 5, and (d) moving average plot of order 7.
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Figure 7.2 Historical annual average international soybean prices from 1987 to 2017.
Source: macrotrends.net

The graphs in figure 7.1 indicate that the average yield increases until approximately

the year of 2000 and then it stabilizes for the remaining years. In real applications, this

nonstationarity may pose an obstacle to modeling the prior distribution function. It could

be argued that the values of wF follow different distributions before and after 2000.

Upon further investigation, the 90s were reported to be a time of expansion of the soy-

bean crop in Brazil. The ascending profitability in the first half of that decade motivated

the expansion of the cultivated area. However, in order to understand the increase in the

yields, one must analyze the international soybean prices in figure 7.2.

The good international prices in 1996 and 1997 had a positive impact on the growers’

profit. This fact allowed them to take action in the following years when the international

price fell considerably. According to the LSPA reports, the growers invested heavily in

new technologies to reduce risk associated with their exposure to international prices.

This scenario may explain the jump in the yields in the 90s.

The entire sample is taken for the hypothetical example to show how samples with

different sizes can be utilized in this approach. In a more thorough analysis, the non-

stationarity of this time series must be addressed possibly by transforming the data set

into a stationary time series.
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Table 7.2 Parameter values of the historical prior distribution function of W F and the
marginal distribution function of X1.

Function Distribution α β ηL ηU MAD K-S stat Critical Value
G LC2–IW 0.5052 2.5402 30 65 0.0867 0.129 0.188
K̄ LR1–LP 0.1783 0.4485 30 65 0.0576 0.096 0.244

The historical prior distribution function G of W F modeled using the data in table

7.1 is Log-reciprocal type II inverted Weibull (LC2–IW)

G(wF |α, β) = exp

[
−
(
α

y

)β]
, (7.1)

where

y = ln
ηU − ηL
wF − ηL

, (7.2)

and ηL and ηU are the lower and upper bounds, respectively. The parameter values are in

table 7.2. The MAD suggests adequate to good fit and the K-S statistic does not reject

this distribution function at a 20% significance level. Therefore, this function is good for

G of W F .

The marginal distribution K̄ of X1 is LR1–LP

K̄(x1) =


1

2
exp

(
y − β
α

)
, if y ≤ β,

1− 1

2
exp

(
−y − β

α

)
, if β ≤ y,

(7.3)

where

y = ln
x1 − ηL
ηU − x1

. (7.4)

The parameter values for this distribution function are in table 7.2. Figures 7.3 and

7.4 show the empirical and parametric distributions functions of W F and X1.
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Equations (7.5) and (7.6) are used to transform the original joint sample {(x1, w
F )}

into {(z1, v)}. Similar to the previous models developed, the NQT equations are:

V = Q−1(G(W F )), (7.5)

Z1 = Q−1(K̄1(X1)). (7.6)

Table 7.1 shows the joint sample {(z1, v)} and figure 7.5-a shows the scatterplot of

this joint sample along with the linear regression estimated using the least squares. The

residuals of this regression are shown in figure 7.6-a and figure 7.6-b shows the QQ plot

of these residuals. There is no clear indication of heteroscedasticity in the residuals.

The estimates of posterior parameters of the Bayesian meta-Gaussian model are

c1 = 0.507, c0 = 0.759, and T = 0.589.

These posterior parameters along with marginal distribution function of X1 and the

prior distribution function ofW F are sufficient to derive the family of posterior density and

distribution functions. Figure 7.7 shows examples of posterior distribution and density

functions, conditional on certain realizations of X1. Suppose IBGE issues a deterministic

forecast of x1 = 51 for Alto Teles Pires (the microregion) and the grower wants to calculate

the probability of wF > 48. According to his historical records, this probability is equal

to 0.61. However, using the posterior distribution function, conditional on x1 = 51, the

grower can take advantage of the deterministic forecast and update his uncertainty about

the yield of this field. The posterior probability for this event is 0.83. Much higher than

the historical records alone could predict.

The BPF model constructed so far utilizes only the historical record, but suppose the

grower wants to incorporate his judgmental assessment about the yield of the current

year. Chapter 4 and 5 discuss methods to assess and model the uncertainty of growers.
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Figure 7.7 (a) Historical prior distribution function G, and posterior distribution
function Φ(·|x1), given the deterministic forecast x1 = 47, x1 = 51, and
x1 = 54 ; (b) corresponding density functions φ(·|x1).
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Table 7.3 Parameter values of the judgmental prior distribution function of W F .

Function Distribution α β ηL ηU MAD
GF
T LC1–LL 0.4287 4.0827 30 65 0.0212

In this example, suppose the judgmental prior distribution function GF
T assessed from the

grower that owns the field is Log-reciprocal type I log-logistic (LC1–LL)

GF
T (wF |α, β) =

[
1 +

( y
α

)−β]−1

, (7.7)

where

y = ln
ηU − ηL
ηU − wF

, (7.8)

and the parameter values are shown in table 7.3

The posterior functions can be updated to incorporate this judgmental distribution

function according to the methodology developed in section 3.3. Figure 7.8 shows a com-

parison between the historical and judgmental functions as well as the updated posterior

functions of wF , conditional on realizations X1 = x1. In this example, the grower seems

to be confident that lower values of yield in year T are more likely to happen. For in-

stance, the median in the historical prior is approximately 49.5 bags per hectare, while in

his judgment, the median would be approximately 42.2 bags per hectare for year T . His

assessments are pessimistic for the current year.

The updated posterior functions in figure 7.8 are quite different from the posterior

functions in figure 7.7. The changes in the updated posterior functions reflect the judg-

mental assessments from the grower. For instance, the posterior probability of wF > 48,

conditional on x1 = 51, was 0.83. The same event has probability of 0.64 according to

the updated functions.
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Figure 7.8 (a) Historical prior distribution function G and judgmental prior distribution
function GF

T , (b) posterior distribution functions Φ(·|x1), given the
deterministic forecast x1 = 47, x1 = 51, and x1 = 54, (c) corresponding
historical and judgmental prior density functions, and (d) corresponding
posterior density functions φ(·|x1).
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7.3 Forecasting Regional Yield Using Judgmentally Assessed

Prior

This section returns to the problem of forecasting the yield of a region. Suppose an analyst

wants to forecast the soybean crop yield of the state of Mato Grosso in Brazil. The models

developed in chapter 6 use exclusively observed data as inputs to the Bayesian forecaster.

The models constructed in this section adapt the framework of the previous models to

incorporate judgmental prior distribution functions.

Let the continuous variate WR with sample space WR be the predictand — the net

harvested yield of the state of Mato Grosso, in bags per hectare . Its realization is denoted

wR ∈ WR, where WR = {wR : 0 < wF <∞}. Let the continuous variate Xl with sample

space Xl be the predictor — a deterministic forecast of the yield of Mato Grosso, in bags

per hectare . Its realization is denoted xl ∈ Xl, where Xl = {xl : 0 < xl < ∞}, for

l = 1, ..., 5. Table 6.2 on page 81 contains the records of Xl, for l = 1, ..., 5, and WR.

The steps to formulate the BPF are similar to the models developed so far up to

the derivation of the posterior functions. The historical prior distribution function G

is used in the NQT. Therefore, the steps similar to those performed in chapter 6 are

omitted in order to present only the sensitivity of the models to the judgmental prior

distribution functions. The reader must go through steps 1-4 for each model in section

6.5 and complete the modeling with the results described in this section.

Two types of judgmentally assessed prior distribution functions are evaluated. The

first is a prior distribution function GR
T modeled from the judgmentally assessed quantiles

of WR. This function is called judgmental prior distribution function, and it is described

in chapter 4. The second is a prior distribution function GS
T modeled from quantiles of

WR that are obtained from the judgmentally assessed quantiles of W F using a field-region

stochastic transformation. This function is called transformed prior distribution function,

and it is described in chapter 5.



136

Table 7.4 Parametric models and parameter values of the historical prior distribution
function G and the judgmental prior distribution functions GR

T and GS
T .

Function Distribution α β ηL ηU
G LC2–IW 1.0777 6.7246 30 90
GR
T LR1–LP 0.4154 -0.3489 30 90

GS
T LR1–LP 0.7369 -0.0329 30 90

Each judgmental prior distribution function was obtained by combining J individual

prior distribution functions assessed from farmers in Mato Grosso. The parametric model

for the judgmental and transformed prior distribution functions is LR1–LP

GR
T (wR) = GS

T (wR) =


1

2
exp

(
y − β
α

)
, if y ≤ β,

1− 1

2
exp

(
−y − β

α

)
, if β ≤ y,

(7.9)

where

y = ln
w − ηL
ηU − wR

. (7.10)

Table 7.4 shows the parameter values for G, GR
T , and GS

T . Figure 7.9 shows the graphs

of the respective distribution and density functions. Chapter 4 presents a more detailed

discussion of the shapes of these prior distribution functions. This chapter analyzes the

sensitivity of the posterior distribution and density functions to the different prior distri-

butions.

Each BPF model is updated using the judgmental and transformed prior distribution

functions. The BPFOct is updated using the methodology described in subsection 3.3.1.

The BPFFeb and BPFMay are updated according to the methodology in subsection 3.3.2.

Therefore, two new sets of posterior density functions are obtained for each BPF.

Figure 7.10 shows the three prior density functions and examples of the resulting

posterior density functions, conditional on different predictor values. The posterior density

functions modeled using only the historical prior distribution function (column 0) are just
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Figure 7.9 (a) Historical prior distribution function G, and judgmental prior distribution
functions GR

T and GS
T ; (b) corresponding density functions.
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a reproduction of the results in chapter 6.

The impact of the judgmental and transformed prior distribution functions in the

BPFOct is quite significant. These prior distribution functions suggest a greater variance

than the historical prior, as well as higher medians. The posterior density functions are

adjusted accordingly. The updated posteriors cover a wider range of possible values of

yields, and they seem to have increase the uncertainty about WR relative to the models

developed in chapter 6.

Although the same judgmental and transformed prior distribution functions are used

in the BPFFeb, the impact seems to be weaker than in the BPFOct. There is a decrease

in posterior uncertainty, which is due to a more informative set of predictors. The same

comparison can be made between the BPFMay and the BPFFeb.

These results illustrate the use of judgmentally assessed prior distributions in the

Bayesian forecaster. The task to choose between one model or another will depend on

a careful analysis of the performance of each farmer as a forecaster. Ultimately, the

conventional BPF, using only the historical prior, can be used for a primary analysis,

which next can be adjusted according to the judgmental prior distribution functions.

The transformed prior distribution function seemed to have increased the uncertainty

about WR when compared to the judgmental prior distribution function. The field-region

stochastic transformation still holds as a viable method, but improvements can be made

by collecting actual realizations wF from each farmer, instead of using the yields of the

microregion as proxies. Another potential improvement in this model lies in the elicitation

of quantiles from farmers. The methodology used in this research tries to separate the

farmer’s assessment process from complex probability concepts.
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Figure 7.10 Prior density functions and examples of posterior density functions arranged
in rows by type of BPF: (a) BPFOct, (b) BPFFeb, and (c) BPFMay; and
columns by type of prior distribution function utilized to derive the
posterior functions: (0) historical prior, (1) judgmental prior, and (2)
transformed prior.
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7.4 Summary

This chapter analyzed the sensitivity of BPF models to the judgmental prior distribution

function and to the transformed prior distribution function previously modeled in chapters

4 and 5. The first model developed provides a guideline to forecast the yield of a specific

field. Farmers can used their own records to construct a BPF model and update it

according to their judgments in a systematical way. This model can be constructed one

time, and it can be used for many years until the additional sample size is large enough

for updates. This methodology can be applied directly from this research or it can be

coded into a software in order to facilitate use.

The updated BPF models incorporated the judgmentally assessed prior distribution

functions. Although the shapes of these prior functions look invalid, it was possible to

analyze their impact on the posterior density functions. In fact, these results illustrate

the case of a judgmental prior distribution that seems incompatible with the shape of the

historical prior distribution. This could happen due to underconfidence of the subjects,

inaccurate understanding of the domain of the variate of interest, or flawed methodology

to assess subjective quantiles.
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8. Summary and Conclusions

This research has accomplished its objective of producing probabilistic forecasts of agri-

cultural yields and incorporating judgmental information into the model. This chapter

summarizes the contributions of this research, and suggests future research.

8.1 Summary of Contributions

The motivation for this research was to provide an alternative to the forecasting methods

currently being applied in agriculture (i.e., to forecast soybean crop yield of a particular

field or region). The available forecasts published by the Brazilian government are deter-

ministic and they usually present no assessment of uncertainty. Developing a Bayesian

forecaster for this problem allowed the production of probabilistic forecasts of the yield

of a field or a region.

In addition to this goal, an expansion of the Bayesian Processor of Forecasts (BPF)

was presented in order to incorporate information from farmers. Information coming

from farmers, traders, weather forecasters, and other agents in the supply chain is widely

assimilated in agriculture. In fact, many statistics published by official organizations such

as IBGE and CONAB have a subjective component associated with individual or group

forecasts. This research presented a methodology to collect judgmental assessments from

farmers in the form of quantiles, and use them to model prior distribution functions.

Specifically, the main contributions are related to four aspects of forecasting.

1. Probability assessments. Assessing subjective probabilities or other statistics from

experts who do not have training in probability theory is challenging, and it has

been a topic of interest for many decades. This research reviewed and applied a

methodology to assess quantiles from experts. The online tool Qualtrics provided

an interactive tool for farmers to assess quantiles of the yield.
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2. Forecast combination puzzle. This term is commonly used to address the problem

of combining forecasts of a variate of interest produced from a set of models. This

research adds to this approach by exploring the combination of prior distribution

functions using the Bayesian Model Averaging (BMA) theory that finds an optimum

set of weights for each year. Appendix A presents three examples constructed to

evaluate this algorithm in terms of calibration and informativeness. The BMA al-

gorithm was able to reward more informative forecasters and punish uninformative

ones, but it was not capable of discerning well calibrated forecasters from miscali-

brated ones.

3. Information fusion. The credibility of information sources in agriculture is not

always satisfactory. In fact, it is common in the market to observe a variety of

deterministic forecasts for the same variate (e.g., the soybean crop yield for a region).

The BPF developed in this research is able to quantify the uncertainties of multiple

sources, such as CONAB and IBGE, and to fuse them. Decision maker can take

advantage of both sources in a systematic manner without having to subjectively

opt for a specific one.

4. Probabilistic forecasts. In summary, my research allows us to produce forecasts of

the yield of a field or a region and have an immediate assessment of uncertainty

about these variates, when the current methods often omits it. This supplemental

information is useful to improve risk management and decision making in many parts

of the food supply chain. The cases analyzed provide a guideline on how to apply

the methodology and obtain probabilistic forecasts from deterministic forecasts and

judgmental assessments. Instead of having a point estimate of the yield, decision

maker can have an entire distribution function of the yield.

These contributions have the potential to improve decision making in agriculture by

allowing the agents of the supply chain to explicitly take the risk into account in their
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decisions during the crop season. In addition, contributions to the probability assessments

and the forecast combination puzzle could be transferred to other fields, such as data

analysis of large samples, machine learning, and risk analysis.

8.2 Future Research

Some of the topics presented here also represent potential areas for improvement and

future research. Ample opportunities exist to continue the development of the Bayesian

forecaster. Some of the suggestions for future research are:

1. Quantile assessments. Future research on this topic may further explore the use of

data visualization tools to assess quantiles from experts, such as in Qualtrics. Many

studies so far have tried to explain the concept of quantile or probability to the

subjects prior to the interview, such as the study by Alpert and Raiffa (1982), but

there is still space to explore research methods that circumvent this step. Moreover,

the validation of the assessed quantiles is a step that could be further explored.

2. Bayesian Model Averaging. Further research is necessary to improve the use of the

BMA approach in combining judgmental prior distribution functions, specifically in

regards to the inability of the BMA to identify miscalibrated forecasters.

3. Probabilistic forecasting of agricultural variates. In this research, the variate of

interest was the yield, but future research could analyze other types of agricultural

variates, such as production, price, and so on. The same approach could be applied

to other crops using different predictors, such as weather, disease incidence, or input

applications, like fertilizer and chemicals.
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Appendix A. BMA Simulation

This appendix develops 3 simulated examples to illustrate the application of the Bayesian

Model Averaging (BMA) approach in obtaining the weights λj, for j = 1, ..., J, discussed in

subsection 4.5.3. Additionally, these examples explore the response of the BMA approach

to two characteristics of the forecasters, informativeness and calibration.

A.1 Example A

Example A analyzes the progression of simulated judgmentally assessed distribution func-

tions of J = 3 farmers during T = 8 years. For each year, a set of weights λj is obtained

using the BMA approach, for j = 1, 2, 3. Since the performance of each farmer in the first

year t = 0 is unknown, a uniform set of weights is applied in that year. The first task is

to compose 8 actual values wR. Table A.1 shows the actual values wR. These values are

utilized to analyze the calibration of the forecasters.

The objective of this example is to verify whether the BMA can assign weights ac-

cording to different levels of informativeness among the subjects. In order to discuss

this problem, the simulation must satisfy certain conditions. The first condition refers to

concept of calibration of forecasters.

According to Krzysztofowicz (2016), a forecaster is considered well calibrated if the

frequency of events observed follows the frequency specified by the assessed quantiles.

Therefore, the distribution functions generated for each farmer were constructed such that

the frequency of events across T = 8 years followed the forecast probabilities simulated

for each farmer. In other words, farmers j = 1, 2, 3 are well calibrated.

Table A.1 Simulated values wR.

t 0 1 2 3 4 5 6 7
wR 35 64 57 68 65 45 59 72
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Adapting the definition explained in Krzysztofowicz (2016), a forecaster j = 1 is said

to be more informative than a forecaster j = 2, with respect to predictand WR if, for every

rational decider, the economic value of forecaster j = 1 is at least as high as the economic

value of the forecaster j = 2. In order to compare the forecasters, Krzysztofowicz (2016)

defines the concept of sufficiency characteristic as

SC =
|a|
σ
, (A.1)

where |a| is called the “signal” and it is the slope of the regression of the forecast median

wj,0.5(t) on the actual realization w(t); and σ, called the “noise”, is the standard deviation

of the residuals around the regression line. Density functions with different shapes were

constructed in order to simulate different levels of informativeness. These functions rep-

resented the uncertainty of each forecaster with respect to the predictand. The following

profiles were then created using the concepts mentioned:

• j = 1. A forecaster well calibrated and highly informative. The density function for

each year is narrow and tall.

• j = 2. A forecaster well calibrated and informative. The density function for each

year is less narrow and tall than that of the highly informative forecaster, but it

still reduces uncertainty about the predictand.

• j = 3. A forecaster well calibrated and uninformative. The density function of this

forecaster is roughly the same over the entire time frame. Therefore, the forecaster

adds no information from one year to another.

The comparison of these 3 profiles allows us to analyze whether the BMA algorithm

assigns different weights according to the different levels of informativeness. The distribu-

tion functions created in this simulation follow the LC2–IW distribution as described in

equations (6.1) and (6.2). Figures A.1 to A.6 show the simulated distribution and density

functions for each profile for t = 0, ..., 7.
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Figure A.1 Distribution functions simulated for j = 1, for t = 0, ..., 7.
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Figure A.2 Density functions simulated for j = 1, for t = 0, ..., 7.



148

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

wR

P
ro

ba
bi

lit
y

●

t=0

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

wR

P
ro

ba
bi

lit
y

●

t=1

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

wR

P
ro

ba
bi

lit
y

●

t=2

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

wR

P
ro

ba
bi

lit
y

●

t=3

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

wR

P
ro

ba
bi

lit
y

●

t=4

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

wR

P
ro

ba
bi

lit
y

●

t=5

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

wR

P
ro

ba
bi

lit
y

●

t=6

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

wR

P
ro

ba
bi

lit
y

●

t=7

Figure A.3 Distribution functions simulated for j = 2, for t = 0, ..., 7.
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Figure A.4 Density functions simulated for j = 2, for t = 0, ..., 7.
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Figure A.5 Distribution functions simulated for j = 3, for t = 0, ..., 7.



151

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

wR

D
en

si
ty

●

t = 0

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

wR

D
en

si
ty

●

t = 1

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

wR

D
en

si
ty

●

t = 2

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

wR

D
en

si
ty

●

t = 3

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

wR

D
en

si
ty

●

t = 4

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

wR

D
en

si
ty

●

t = 5

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

wR

D
en

si
ty

●

t = 6

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

wR

D
en

si
ty

●

t = 7

Figure A.6 Density functions simulated for j = 3, for t = 0, ..., 7.
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Figure A.7 BMA weights in Example A for t = 0, ..., 7.

Figure A.7 shows the weights obtained from the BMA algorithm. As mentioned, the

forecasters start with a uniform weight since there is no information about their calibration

and informativeness. However, once the subjects start providing their assessments, the

BMA algorithm changes the weight of each person based on their performance.

After analyzing the density functions provided in year 0, the BMA algorithm assigns

the highest weight to forecaster 2, and lower weights to forecasters 1 and 3. This result

reflects the shape of the density functions provided that year. The density function of

forecaster 2 was narrower around the median and the actual value was very close to it,
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while the other forecasters presented density functions more flat.

However, forecaster 1 quickly became more informative than the other ones. The BMA

consistently reallocated the weights from forecasters 2 and 3 to forecaster 1 over time. By

year 8, the uninformative forecaster 3 has a weight very close to 0, while the weight for

forecaster 1 is considerably higher than the weight for forecaster 2. Therefore, the BMA

algorithm is able to penalize uninformative forecasters and favor the highly informative

one, given that they are all well calibrated.

In addition, the algorithm is able to recognize improvements in the forecasts of certain

subjects in certain years and adjust gradually over the future years. For instance, fore-

caster 2 presented years of improvements, such as in t = 5 and the algorithm increased

his weight in the following year. This result is particularly interesting to the topic of

training forecasters to improve their assessments. Suppose forecaster 3 decided to invest

time in training and improving his understanding of the problem. The BMA algorithm

would allow him to have higher weights, given observed improvements in his forecasts,

while considering his historical performance.

Table A.2 shows the SCj for each forecaster after the initial 4 years and at the end

of the 8 years. Since forecaster 3 provides the same median for all years, the SC3 is

equal to 0. The difference between SC1 and SC2 is quite significant in the initial 4 years.

Therefore, it is possible to conclude that forecaster 1 is more informative than forecaster 2.

Although the difference between these two measurements decrease, the same conclusion

holds after 8 years. However, the BMA algorithm did not seem to be affected by this

change, as it continued to assign higher weights to the highly informative forecaster.

Table A.2 Sufficiency characteristics for j = 1, 2, 3.

years SC1 SC2 SC3

0 to 3 0.628 0.196 0
0 to 7 0.451 0.137 0
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A.2 Example B

Similarly to previous case, Example B analyzes simulated distribution functions for J = 3

forecasters during T = 8 years. For each year, a set of weights λj is obtained using the

BMA approach. The actual values wR are the same as in table A.1.

The objective of this example is to analyze whether the BMA algorithm can identify

a well calibrated forecaster and assign different weights accordingly. In order to analyze

this problem, two constraints were imposed on the simulated data:

1. Each forecasters has a well-calibrated median. That is, after 4 years and after 8

years, 50% of the actual realizations wR fell below the median and 50% above.

2. Each forecaster is about equally informative. Therefore, for this example, the con-

structed distribution functions must yield SC1 ≈ SC2 ≈ SC3. The examples were

constructed such that the sufficiency characteristic of each forecaster is approxi-

mately equal from years 0 to 3, 4 to 7, and for the entire range 0 to 7.

The following profiles were then created subject to the constraints mentioned above:

• j = 1. Well calibrated forecaster. The frequency of actual realizations wR equals

the probability specified by the simulated quantiles.

• j = 2. Overconfident forecaster. In this case, the actual realizations fell either below

wj,0.25(t) or above wj,0.75(t).

• j = 3. Underconfident forecaster. In this case, the actual realizations fell between

wj,0.25(t) and wj,0.75(t).

Figures A.8, A.9, and A.10 show the simulated distribution functions for j = 1, 2, 3.

These distribution functions were constructed so that the forecasters are about equally

informative after 4 years as well as after 8 years. The distribution functions simulated in

this example follow the LC2–IW distribution as described in equations (6.1) and (6.2).

Figure A.11 shows the set of weights λj for j = 1, 2, 3 over the years.
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Figure A.8 Distribution functions simulated for j = 1, for t = 0, ..., 7.
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Figure A.9 Distribution functions simulated for j = 2, for t = 0, ..., 7.
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Figure A.10 Distribution functions simulated for j = 3, for t = 0, ..., 7.
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Figure A.11 BMA weights in Example B for t = 0, ..., 7.

The BMA algorithm consistently assigned higher weights to the overconfident fore-

caster, when compared to the other forecasters, during all 8 years. The well calibrated

and underconfident forecasters had similar weights until year 5, then the BMA algorithm

assigned higher weights to the well calibrated forecaster. Intuitively, a well calibrated

forecaster is preferable to an overconfident or underconfident forecaster. However, the

BMA algorithm was not able to capture this problem. Table A.3 shows the sufficiency

characteristics for j = 1, 2, 3.
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Table A.3 Sufficiency characteristics for j = 1, 2, 3.

years SC1 SC2 SC3

0 to 3 0.032 0.032 0.036
4 to 7 0.037 0.035 0.039
0 to 7 0.025 0.027 0.025

This example shows the importance of training forecasters towards improving their

calibration, as the BMA algorithm is not capable of identifying this the miscalibration

automatically. Therefore, the calibration of forecasts must be ensured independently from,

and before the application of, the BMA the algorithm.

A.3 Example C

Example C builds on the previous example to analyze the sensitivity of the BMA algo-

rithm to a single very unrealistic distribution function. Consider the same forecasters

from example B: well calibrated, overconfident, and underconfident. Suppose the same

distribution functions were assessed by each forecaster during the same eight years, except

for the distribution function for year t = 3.

Suppose three different scenarios, where in each scenario a different forecaster assessed

the unrealistic distribution function for t = 3 while the others remain the same as in

example B. Figure A.12 shows the unrealistic distribution function. The actual value was

wR = 68 bags per hectare for t = 3. This distribution function gives probability 1 for

WR < 68. Therefore, it was far off from reality. The three scenarios constructed are:

• Scenario 1. Well calibrated forecaster provides unrealistic distribution function at

t = 3, while other remain the same as in example B.

• Scenario 2. Overconfident forecaster provides unrealistic distribution function at

t = 3, while other remain the same as in example B.

• Scenario 3. Underconfident forecaster provides unrealistic distribution function at

t = 3, while other remain the same as in example B.
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Figure A.12 Unrealistic distribution function for t = 3.

Figure A.13 shows the BMA weights for each scenario. All scenarios presented the

same feature regarding the sensitivity of the BMA algorithm to the unrealistic distribu-

tion function. The weight of the forecaster with the unrealistic distribution immediately

dropped to zero and the forecaster did not regain any participation up to the end of the

time interval.

Scenario 2 can be compared to the results in Example B. In example B, the overconfi-

dent forecaster had consistently higher weight than the others, but a mistake in one year

could have eliminated him from consideration as exemplified in scenario 2. The same

comparison applies to the other forecasters.

In each scenario, the final set of weights considerably changed after t = 3. Further

research should examine whether this merciless feature of the BMA should be automati-

cally allowed to exclude the misguided forecaster, even though he could be well calibrated

and informative in the remaining period.
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Figure A.13 BMA weights in Example B for t = 0, ..., 7 and scenarios 1, 2, 3.
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A.4 Summary

The examples developed in this appendix illustrate the BMA approach to obtaining a

set of weights for combining the judgmental distribution functions. It is desirable to

assign higher weights to forecasters that present a better performance and lower weights

to others. However, due to the nature of the problem in this research, it is difficult to

obtain large data sets to evaluate the BMA in a short time frame. Therefore, simulating

data is a solution.

Example A analyzed whether the BMA algorithm can capture different levels of infor-

mativeness and assign higher weights to more informative forecasters, when all are well

calibrated. The results show a clear allocation of a higher weight to the more informative

forecaster over the years.

Example B analyzed whether the BMA algorithm is able to identify well calibrated

forecasters and assign different weights accordingly. The BMA algorithm was not capable

of differentiating between the well calibrated forecaster and the others. This represents a

disadvantage of using the BMA approach in an unsupervised way.

Example C analyzed the sensitivity of the BMA algorithm to an unrealistic distribution

function. The algorithm quickly excluded the misguided forecaster, but became resistant

to his recovery over time. This leads to another question of whether the BMA algorithm

should be allowed to eliminate a forecaster who is unlucky one time, but otherwise is well

calibrated and informative.
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Appendix B. Modeling Distribution Functions

Modeling distribution functions from a data set is a key task in the application of the

Bayesian Forecaster. This section describes a methodology that is used to model distri-

bution functions throughout this research.

The methodology reviewed below is thoroughly described by Krzysztofowicz (2014).

The distributions modeled are univariate, parametric, and have closed-form expressions

for the distribution, density, and quantile functions. These expressions are convenient for

the construction of the meta-Gaussian models developed in chapter 6.

Let us take as an example the modeling of the distribution function G of the continuous

variate W , with sample spaceW , and realization w ∈ W . The goal is to find an expression

for G that best represents the uncertainty related to W , given a sample of observed data.

The same approach can be applied to modeling other distribution functions. The steps

of this approach are as follows.

1. Construct an empirical distribution function of W .

The empirical distribution function is created by pairing the observed data,

sorted in ascending order, with a corresponding theoretical plotting position. This

research uses the meta-Gaussian plotting positions calculated as follows (Krzyszto-

fowicz, 2014):

pn =

[(
N − n+ 1

n

)tN
+ 1

]−1

, (B.1)

where n is the rank of the ordered data, N is the sample size, and tN is a constant

calculated as follows for a sample size 11 ≤ N ≤ 20000:

tN = 1.9574N−0.8039 + 1. (B.2)
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The ordered set of values {(w(n), pn) : n = 1, ..., N} specifies the empirical

distribution function.

2. Hypothesize parametric models for G and estimate the parameters of each model.

The parametric models considered in this research are available in a catalogue

developed by Krzysztofowicz (2014). This catalogue provides the closed-form ex-

pressions for the distribution, density, and quantile functions of each model. The

parameter values for any hypothesized model are estimated by minimizing the max-

imum absolute difference (MAD). The MAD is calculated as follows:

MAD = max
1≤n≤N

|pn −G(w(n))|. (B.3)

This optimization problem is solved numerically.

3. Compare the MAD of each hypothesized parametric model and select the one with

the lowest MAD.

4. Evaluate the goodness-of-fit of the selected model.

Krzysztofowicz (2014) suggests a validation of the selected model using a graphi-

cal analysis, the analysis of the calculated MAD, and the Kolmogorov-Sminorv (K-S)

test. The graphical analysis involves plotting the empirical and the parametric dis-

tribution functions in order to judgmentally evaluate clear incompatibilities between

the two functions.

The parametric distribution function obtained from implementing the steps above is

a representation of the uncertainty associate with variate W . Appendix C describes the

implementation of the distribution functions modeled in this research using the statistical

software R.
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Appendix C. Bayesian Forecasting Using R

The programming language and software environment R is an important tool for statistical

analysis and data visualization. It is a powerful and free software available at https:

//www.r-project.org/. This section describes the R implementation used to model the

Bayesian forecasters. Future users can add and improve this script to model their data.

C.1 Distribution, Density, and Quantile Functions

There are many packages in R to model and visualize distribution and density functions.

However, in order to use these packages in the construction of a Bayesian forecaster,

one must study the source code to be sure that the functions are in accordance to the

theoretical framework. In order to avoid any complications, the functions in this study

were constructed from the very beginning.

The following distribution functions were created based on the catalogue of univariate

distributions in Krzysztofowicz (2014). They were utilized to construct the Bayesian

forecasters in this research.

#Weibull density function

wb <− function(x, alpha, beta, eta){
(beta/alpha)∗((x−eta)/alpha)ˆ(beta−1)∗exp(−((x−eta)/alpha)ˆbeta)

}

#Weibull distribution function

WB <− function(x, alpha, beta, eta){
1 − exp(−((x−eta)/(alpha))ˆbeta)

}

#Weibull quantile function

WBinv <− function(p, alpha, beta, eta){
alpha∗(−log(1−p))ˆ(1/beta)+eta
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}

#Inverted−Weibull density function

iw <− function(x, alpha, beta, eta){
(beta/alpha)∗(alpha/(x−eta))ˆ(beta+1)∗exp(−(alpha/(x−eta))ˆbeta)

}

#Inverted−Weibull distribution function

IW <− function(x, alpha, beta, eta){
exp(−(alpha/(x−eta))ˆbeta)

}

#Inverted−Weibull quantile function

IWinv <− function(p, alpha, beta, eta){
alpha∗(−log(p))ˆ(−1/beta)+eta

}

#Laplace density function

lp <− function(x, alpha, beta){
1/(2∗alpha)∗exp(−(abs(x−beta))/(alpha))

}

#Laplace distribution function

LP <− function(x, alpha, beta){
ifelse (x <= beta, 0.5∗exp((x − beta)/(alpha)), 1 − 0.5∗exp(−(x−beta)/(alpha)))

}

#Laplace quantile function

LPinv <− function(p, alpha, beta){
ifelse (p<=0.5, beta+ alpha∗log(2∗p), beta−alpha∗log(2∗(1−p)))

}

#LC1−WB density function

lc1wb <− function(y, alpha, beta, etaL, etaU) {
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x = log((etaU−etaL)/(etaU−y))

1/(etaU−y)∗wb(x, alpha, beta, 0)

}

#LC1−WB distribution function

LC1WB <− function(y, alpha, beta, etaL, etaU) {
x = log((etaU−etaL)/(etaU−y))

WB(x, alpha, beta, 0)

}

#LC1−WB quantile function

LC1WBinv <− function(p, alpha, beta, etaL, etaU){
etaU − exp(log(etaU − etaL) − WBinv(p, alpha, beta, 0))

}

#LC2−IW density function

lc2lw <− function(y, alpha, beta, etaL, etaU) {
x = log((etaU−etaL)/(y−etaL))

1/(y−etaL)∗lw(x, alpha, beta, 0)

}

#LC2−IW distribution function

LC2LW <− function(y, alpha, beta, etaL, etaU) {
x = log((etaU−etaL)/(y−etaL))

1 − LW(x, alpha, beta, 0)

}

#LC2−IW quantile function

LC2LWinv <− function(p, alpha, beta, etaL, etaU){
exp(log(etaU − etaL) − LWinv(1−p, alpha, beta, 0)) + etaL

}

#LR1−LP density function

lr1lp <− function(y, alpha, beta, etaL, etaU) {
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x = log((y−etaL)/(etaU−y))

(etaU−etaL)/((y−etaL)∗(etaU−y))∗lp(x, alpha, beta)

}

#LR1−LP distribution function

LR1LP <− function(y, alpha, beta, etaL, etaU) {
x = log((y−etaL)/(etaU−y))

LP(x, alpha, beta)

}

#LR1−LP quantile function

LR1LPinv <− function(p, alpha, beta, etaL, etaU) {
(etaL + etaU∗exp(LPinv(p, alpha, beta)))/(1 + exp(LPinv(p, alpha, beta)))

}

The following function calculates the meta-Gaussian plotting positions developed by

Krzysztofowicz (2014) and discussed in appendix B:

# meta−Gaussian plotting positions

ppointsMG <− function (n) {
if (length(n) > 1L) n <− length(n)

if (n>=2 & n<=3){
t = 3.0193∗nˆ(−1.1018)+1

}else if (n>=4 & n<=5){
t = 2.4035∗nˆ(−0.9096)+1

}else if (n>=6 & n<=10){
t = 2.1408∗nˆ(−0.8423)+1

}else if (n>=11 & n<=20000){
t = 1.9574∗nˆ(−0.8039)+1

}else if (n>20000){
t = 1

}
if (n > 0)(((n − 1L:n +1)/(1L:n))ˆt +1)ˆ(−1) else numeric()

}
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Next, the function normalPlot produces a QQ plot using the meta-Gaussian plotting

positions.

#QQ plots with meta−Gaussian plotting positions

normalPlot <− function (res) {
res = sort(res)

gaussianQuantiles = qnorm(ppointsMG(res))

plot(gaussianQuantiles, res ,

main=””, xlab=”Gaussian Quantile”, ylab=”Sample Quantiles”,

las = 1)

qqline(res)

}

C.2 Bayesian Forecasters

This subsection describes the implementation of two meta-Gaussian forecasters, the BPFOct

and the BPFFeb, developed in section 6.5. The first model is constructed using one pre-

dictor and the second using multiple predictors. The remaining models developed in this

research were similarly implemented by adjusting the functions and estimations according

to the model.

### LOADING DATA

## Loading distribution functions parameters

dfPar<− read.csv(”distPar.csv”,sep=”;”, header=T)

## Loading predictor and predictand realizations

dfPnd<− read.csv(”predictand.csv”,sep=”;”, header=F)

dfPor1<− read.csv(”conabOct.csv”,sep=”;”, header=F)

dfPor2<− read.csv(”conabFeb.csv”,sep=”;”, header=F)

dfPor3<− read.csv(”ibgeFeb.csv”,sep=”;”, header=F)

dfPor4<− read.csv(”conabMay.csv”,sep=”;”, header=F)

dfPor5<− read.csv(”ibgeMay.csv”,sep=”;”, header=F)
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### NORMAL QUANTILE TRANSFORMATION

dfNqtPnd<−qnorm(LC2IW(dfPnd,1.0777, 6.7246, 30,90), mean=0, sd=1)

dfNqtPor1<−qnorm(LC2IW(dfPor1,1.03, 16.07, 30, 90), mean=0, sd=1)

dfNqtPor2<−qnorm(LC1LL(dfPor2,0.45, 30.46, 30, 90), mean=0, sd=1)

dfNqtPor3<−qnorm(LC2IW(dfPor3,0.99, 18.99, 30, 90), mean=0, sd=1)

dfNqtPor4<−qnorm(LC2IW(dfPor4,1.05, 7.45, 30, 90), mean=0, sd=1)

dfNqtPor5<−qnorm(LC2IW(dfPor5,1.08, 6.76, 30, 90), mean=0, sd=1)

### OCTOBER BAYESIAN FORECASTER

##Fitting linear regression in the transformed space

regPor1<−lm(dfNqtPor1˜dfNqtPnd[12:25])

b<−summary(regPor1)$coefficients[1]

a<−summary(regPor1)$coefficients[2]

sigma<−sqrt(moment(residuals(regPor1), order = 2, central = T))

resOct<−residuals(regPor1)

#Calculating posterior coefficients

c1<− a/(aˆ2 + sigmaˆ2)

c0<− (−a∗b)/(aˆ2 + sigmaˆ2)

T2<− sigmaˆ2/(aˆ2+sigmaˆ2)

#Calculating 90 \% Central credible Interval : Transformed Space

CIU <− sigma∗qnorm(0.95, mean=0, sd = 1)

CIL <− sigma∗qnorm(0.05, mean=0, sd = 1)

#P−probability quantile function of X1

X1pProb <− function(p, w){
Gh = LC2IW(w, 1.0777, 6.7246, 30, 90)

Kinv = function(t){LC2IWinv(t, 1.0300, 16.0700, 30, 90)}
Kinv(pnorm(a∗qnorm(Gh) + b + sigma∗qnorm(p)))

}

# Calculating 90 \% Central credible Interval : Original Space
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CIUoriginal <− X1pProb(0.95, range2)

CILoriginal <− X1pProb(0.05, range2)

medianRegX1 <− X1pProb(0.5, range2)

# Posterior distribution function

PHIoct<−function(w, x){
Gh = LC2IW(w,1.0777, 6.7246, 30, 90)

Kbar = LC2IW(x, 1.03, 16.07, 30, 90)

pnorm((qnorm(Gh) − c1∗qnorm(Kbar) − c0)/sqrt(T2))

}

# Posterior density function

phiOct<− function(w, x){
gh = lc2iw(w,1.0777, 6.7246, 30, 90)

Gh = LC2IW(w,1.0777, 6.7246, 30, 90)

result = gh/(sqrt(T2)∗dnorm(qnorm(Gh)))∗dnorm(qnorm(PHIoct(w, x)))

}

# Posterior quantile function

PHIoctInv<−function(p, x){
Kbar = LC2IW(x, 1.03, 16.07, 30, 90)

LC2IWinv(pnorm(c1∗qnorm(Kbar)+ c0 + sqrt(T2)∗qnorm(p)),1.0777, 6.7246, 30, 90)

}

#Forecasting using the BPFoct

seq1<−seq(30, 60, 0.1)

PHIoct47 <− PHIoct(seq1, 47)

PHIoct49 <− PHIoct(seq1, 49)

PHIoct52 <− PHIoct(seq1, 52)

### FEBRUARY BAYESIAN FORECASTER

##Mean, variance, and covariance

#manipulationg data set

numberLines<−max(length(dfNqtPor2), length(dfNqtPor3), length(dfNqtPnd))
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dfFebFor = matrix(data=NA, nrow=numberLines, ncol=3)

start = numberLines−length(dfNqtPor2)+1

for( i in start :numberLines){
dfFebFor[i , 1]= dfNqtPor2[i−start+1]

}

start = numberLines−length(dfNqtPor3)+1

for( i in start :numberLines){
dfFebFor[i , 2]= dfNqtPor3[i−start+1]

}

start = numberLines−length(dfNqtPnd)+1

for( i in start :numberLines){
dfFebFor[i , 3]= dfNqtPnd[i−start+1]

}

dfFebFor = na.omit(dfFebFor)

#Function to compute ML mean

computeMean<−function(df){
muQ = matrix(data=NA, nrow=ncol(df), ncol=1)

for( i in 1:ncol(df)){
muQ[i, 1] = mean(df[,i ], na.rm=TRUE)

}
print(muQ)

}

#Function to compute ML variance

computeVar<−function(df){
SigmaQ = mlest(df)$sigmahat

print(SigmaQ)

}
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#Function to compute multivariate density function fQ mean

computeMeanfQ<−function(df, v){
#calculate MVN(muQ, SigmaQ) mean

dim1=ncol(df)

muQ = matrix(data=NA, nrow=dim1, ncol=1)

for( i in 1:dim1){
muQ[i, 1] = mean(df[,i ], na.rm=TRUE)

}
#Calculate MVN(muQ, SigmaQ) var (require(mvnmle))

SigmaQ = mlest(df)$sigmahat

#calculate MVN(mufQ, SigmafQ) mean

dim2=nrow(muQ)−1

mufQ=matrix(data=NA, nrow=dim2, ncol=1)

for( i in 1:dim2){
mufQ[i, 1] = muQ[i, 1]+

(SigmaQ[i, dim1]/SigmaQ[dim1, dim1])∗(v − muQ[dim1, 1])

}
print(mufQ)

}

#Function to compute multivariate density function fQ var

computeVarfQ<−function(df){
#Calculate MVN(muQ, SigmaQ) var (require(mvnmle))

SigmaQ = mlest(df)$sigmahat

#Calculate MVN(mufQ, SigmafQ) var

dim1=ncol(df)

dim2=ncol(df)−1

SigmafQ=matrix(data=NA, nrow=dim2, ncol=dim2)

for( i in 1:dim2){
for(j in 1:dim2){

SigmafQ[i, j ] = SigmaQ[i, j] −
(SigmaQ[j, dim1]∗SigmaQ[i, dim1])/(SigmaQ[dim1, dim1])

}
}
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print(SigmafQ)

}

##Posterior Parameters

#Function to compute T

computePosT<−function(df){
#Calculate SigmaQ)|(require(mvnmle))

dim1=ncol(df)

SigmaQ = mlest(df)$sigmahat

#Calculate MVN(mufQ, SigmafQ) var

dim2 = ncol(df)−1

SigmafQ = matrix(data=NA, nrow=dim2, ncol=dim2)

for( i in 1:dim2){
for(j in 1:dim2){

SigmafQ[i, j ] = SigmaQ[i, j] −
(SigmaQ[j, dim1]∗SigmaQ[i, dim1])/(SigmaQ[dim1, dim1])

}
}
#Calculate T

sigma = SigmaQ[1:dim2, dim1]

postT = sqrt((SigmaQ[dim1, dim1]ˆ2)/(crossprod(sigma,solve(SigmafQ))%∗%sigma +

SigmaQ[dim1, dim1]ˆ2))

print(postT)

}
#Function to compute vector cT

computePostCT<−function(df){
#Calculate SigmaQ)|(require(mvnmle))

dim1=ncol(df)

SigmaQ = mlest(df)$sigmahat

#Calculate MVN(mufQ, SigmafQ) var

dim2 = ncol(df)−1

SigmafQ = matrix(data=NA, nrow=dim2, ncol=dim2)

for( i in 1:dim2){
for(j in 1:dim2){
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SigmafQ[i, j ] = SigmaQ[i, j] −
(SigmaQ[j, dim1]∗SigmaQ[i, dim1])/(SigmaQ[dim1, dim1])

}
}
#Calculate T

sigma = SigmaQ[1:dim2, dim1]

postT = sqrt((SigmaQ[dim1, dim1]ˆ2)/(crossprod(sigma,solve(SigmafQ))%∗%sigma +

SigmaQ[dim1, dim1]ˆ2))

#Calculate Posterior CT

postCT = c((postTˆ2)/SigmaQ[dim1, dim1])∗crossprod(sigma, solve(SigmafQ))

print(postCT)

}

#Function to compute vector c0

computePostC0<−function(df){
#Compute muQ

muQ = matrix(data=NA, nrow=ncol(df), ncol=1)

for( i in 1:ncol(df)){
muQ[i, 1] = mean(df[,i ], na.rm=TRUE)

}
#Calculate SigmaQ|(require(mvnmle))

dim1=ncol(df)

SigmaQ = mlest(df)$sigmahat

#Calculate MVN(mufQ, SigmafQ) var

dim2 = ncol(df)−1

SigmafQ = matrix(data=NA, nrow=dim2, ncol=dim2)

for( i in 1:dim2){
for(j in 1:dim2){

SigmafQ[i, j ] = SigmaQ[i, j] −
(SigmaQ[j, dim1]∗SigmaQ[i, dim1])/(SigmaQ[dim1, dim1])

}
}
#Calculate T

mu = muQ[1:dim2, 1]
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sigma = SigmaQ[1:dim2, dim1]

postT = sqrt((SigmaQ[dim1, dim1]ˆ2)/(crossprod(sigma,solve(SigmafQ))%∗%sigma +

SigmaQ[dim1, dim1]ˆ2))

#Calculate Posterior CT

postCT = c((postTˆ2)/SigmaQ[dim1, dim1])∗crossprod(sigma, solve(SigmafQ))

#Calculate Posterior C0

postC0 = postCT%∗%(muQ[dim1,1]/SigmaQ[dim1, dim1]∗sigma−mu)

print(postC0)

}

#function to compute sufficiency Characteristic

computeSC<−function(df, i){
#Calculate SigmaQ|(require(mvnmle))

dim1=ncol(df)

SigmaQ = mlest(df)$sigmahat

#Calculate SC

SC = SigmaQ[dim1, dim1]∗((SigmaQ[dim1, dim1]∗SigmaQ[i, i] −
SigmaQ[i, dim1]ˆ2))/(SigmaQ[i, dim1]ˆ2)

print(SC)

}

#function to compute the correlation gamma

computeGamma<−function(df, i){
#Calculate SigmaQ|(require(mvnmle))

dim1=ncol(df)

SigmaQ = mlest(df)$sigmahat

#Calculate correlation gamma

gamma =

abs(sign(SigmaQ[i, dim1])∗(((SigmaQ[dim1, dim1]∗(SigmaQ[dim1, dim1]∗SigmaQ[i, i] −
SigmaQ[i, dim1]ˆ2))/(SigmaQ[i, dim1]ˆ2))+1)ˆ(−0.5))

print(gamma)

}

##February Parameters
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muFeb<−computeMean(dfFebFor)

sigmaFeb<−round(computeVar(dfFebFor), 3)

computeMeanfQ(dfFebFor, 40)

computeVarfQ(dfFebFor)

computePosT(dfFebFor)

ctFeb <− computePostCT(dfFebFor)

c0Feb <− computePostC0(dfFebFor)

computeSC(dfFebFor, 1)

computeSC(dfFebFor, 2)

computeGamma(dfFebFor, 1)

computeGamma(dfFebFor, 2)

#Posterior density function

phiFeb<− function(w, x2, x3){
gh = lc2iw(w,1.0777, 6.7246, 30, 90)

Gh = LC2IW(w,1.0777, 6.7246, 30, 90)

Kbar2 = LC1LL(x2,0.4500, 30.4600, 30, 90)

Kbar3 = LC2IW(x3, 0.9900, 18.9900, 30, 90)

step1 = qnorm(Gh)

step2 = ctFeb[1]∗qnorm(Kbar2)+ctFeb[2]∗qnorm(Kbar3)

step3 = step1 − step2 − c0Feb

result = gh/(sqrt(T2)∗dnorm(step1))∗dnorm(step3/sqrt(T2))

}

#Forecasting

seq1<−seq(30, 60, 0.1)

phiFeb1<−phiFeb(seq1, 50, 45)

phiFeb2<−phiFeb(seq1, 50, 50)

phiFeb3<−phiFeb(seq1, 50, 55)

phiFeb4<−phiFeb(seq1, 45, 50)

phiFeb5<−phiFeb(seq1, 50, 50)

phiFeb6<−phiFeb(seq1, 55, 50)
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médio dos produtos das lavouras.



180

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2017). An Introduction to Statistical

Learning with Applications in R. Springer, springer texts in statistics edition.

Keeney, R. L., Sarin, R. K., and Winkler, R. L. (1984). Analysis of alternative national

ambient carbon monoxide standards. Management Science: Risk Analysis, 30(4):518–

528.

Kelly, K. S. and Krzysztofowicz, R. (1995). Bayesian revision of an arbitrary prior density.

In Proceedings of the section on Bayesian Statistical Science, pages 50–53. American

Statistical Association.

Kelly, K. S. and Krzysztofowicz, R. (1997). A bivariate meta-Gaussian density for use in

hydrology. Stochastic Hydrology and Hydraulics, 11(1):17–31.

Krzysztofowicz, R. (1999). Bayesian forecasting via deterministic model. Risk Analysis,

19(4):739–749.

Krzysztofowicz, R. (2001). The case for probabilistic forecasting in hydrology. Journal of

Hydrology, (1-4):2–9.

Krzysztofowicz, R. (2014). Bayesian meta-Gaussian forecasters. Course pack for: SYS

7075 Bayesian forecast-decision theory. University of Virginia, Charlottesville, VA.

Krzysztofowicz, R. (2016). Probabilistic forecasts and optimal decisions. Course pack for:

SYS 3060 Stochastic decision models. University of Virginia, Charlottesville, VA.

Krzysztofowicz, R. and Evans, W. B. (2008). Probabilistic forecasts from the national

digital forecast database. Weather and Forecasting, 23(2):270–289.

Krzysztofowicz, R. and Kelly, K. S. (2000). Hydrologic uncertainty processor for proba-

bilistic river stage forecasting. Water Resources Research, 36(11):3265–3277.



181

Krzysztofowicz, R. and Reese, S. (1991). Bayesian analyses of seasonal runoff forecasts.

Stochastic Hydrology and Hydraulics, (4):295–322.

Lee, C., Herbek, J., Murdock, L., Schwab, G., Green, J. D., and Martin, J. (2007). Corn

and soybean production calendar. Technical report, Cooperative Extension Service -

University of Kentucky - College of Agriculture.

Liu, J. (2018). Bayesian System Averaging: A Theory Unifying Bayesian Forecasting

System and Bayesian Model Averaging Methods. PhD thesis, University of Virginia.

Mallarino, A. P., Sawyer, J. E., and Barnhart, S. K. (2013). A General Guide for Crop

Nutrient and Limestone Recommendations in Iowa. Iowa State University Extension

and Outreach.

Maranzano, C. J. (2006). Bayesian Meta-Gaussian Models For Data Analysis And Prob-

abilistic Forecasting. PhD thesis, University of Virginia.

Maranzano, C. J. and Krzysztofowicz, R. (2008). Bayesian re-analysis of the challenger

o-ring data. Risk Analysis, 28(4):1053–1067.

MDIC (2018). Sistema de análise das informações de comércio exterior. Ministério do
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