

Horse Show Administration Program Improvements

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Draden Gaffney
Fall, 2019

Technical Project Team Members
Jacob Fullerton
Jack Schumann
Andrew Yim
Alvin Yuan

On my honor as a University Student, I have neither given nor received
unauthorized aid on this assignment as defined by the Honor Guidelines for
Thesis-Related Assignments

Signature __ Date __________
 ​Draden Gaffney

Approved __ Date __________
 Dr. Ahmed Ibrahim, Department of Computer Science

Table of Contents

Abstract 3

1. Introduction 4
1.1 Problem Statement 5
1.2 Contributions 6

2. Related Work 7

3. System Design 8
3.1 System Requirements 8
3.2 Wireframes 10
3.3 Sample Code 14
3.4 Sample Tests 18
3.5 Code Coverage 19
3.6 Installation Instructions 21

4. Results 25

5. Conclusions 27

6. Future Work 28

7. References 29

2

Abstract

In any software engineering project, maintenance is often the most time consuming

portion of the software development process. This semester, we primarily performed

maintenance on a previous team’s Django application. Additionally, our team completed smaller

tasks such as writing documentation on branching strategy, JIRA usage, and installation

instructions for all products used. Development and maintenance of this software was guided by

a specific customer from the Charlottesville area. This customer runs a horse show for which the

software was originally built for, but the final product did not meet all of their needs. At the

beginning of the semester, there were five specific bugs that were requested to be fixed, but more

bugs and potential improvements were recognized throughout the semester. Our team would

meet bi-weekly with this customer to showcase our changes and discuss further improvements.

Throughout the semester, our team was able to complete all of the bug fixes and improvements

that the customer desired.

One of the major takeaways of this product was the importance of following procedures

in both what to work on and how it was added to the master branch of the GitHub repository. As

our team consisted of five members, we needed to utilize extra tools to ensure that the work was

distributed efficiently. We used Jira to track the various features to be implemented or fixed, and

we used Git to create a branch for every user story, which was then merged into the master

branch using a peer-reviewed pull request. This project improved upon an existing piece of

software, but another result of our work is that a future team will be able to utilize our team

methods and documentation to perform maintenance on other software products.

3

1. Introduction

When working as a full time developer, the majority of the workload consists of adding

new features and fixing bugs. A recent survey found that developers spend around 30% of their

time performing maintenance (Grams. 2019). This project follows the workflow of a team that

was assigned an existing, incomplete project. As this application was not initially developed by

our team, this brings the challenge of learning the codebase before being able to make

meaningful improvements. Additionally, this challenge limits the design of the application as the

majority of design decisions have already been made.

For our technical project, our team took a Django application developed in a past

capstone project to track data in horse shows and implemented improvements and bugfixes. This

application allowed the user to enter riders, horses, and combinations of horses and riders to

track the points of each competitor throughout a horse show. Then, when the show is over, the

application calculates the winners of each category throughout the entire show. The desired

changes were elicited through the customer’s original request and through bi-weekly customer

meetings.

1.1 Problem Statement

The customers for this project are the organizers of the Hoof-n-Woof horse show. This

show is comprised of many different events and throughout each competition there must be a

system in place to track all entrants and their scores. The original system that was used by the

organizers was a poster board chart where all riders, horses and combos would be written on the

border and their scores would be recorded.

4

Figure 1: Previous system of scorekeeping for Hoof-n-Woof

This system was not ideal as scores has to be stored physically in one place, and if mistakes were

made, it would be very messy to correct them. Adding up all scores had to be done manually,

which is time consuming and prone to error. Additionally, in order to find a specific result for a

past show the organizers would have to find the specific board for that show. Instead, a web app

would allow them to quickly navigate to any previous show to check scores. Previous students

working on this project stated that high turnover in event management also led them to pursue an

online approach to score tracking (Darroch et al. 2019). In a previous year, students developed a

Django application that would allow the organizers to track all of the information from the chart

above. Unfortunately, there were bugs in this implementation that prevented the application from

being used to its full potential. These bugs included things such as a search function not working,

the application crashing if a user is already logged in when visiting, and tables not being able to

5

be properly sorted. Our goal for the semester was to fix these bugs and work with the customer

to find additional improvements that would help them optimize the application.

1.2 Contributions

As our team was working on improving an existing application, the changes that our team

implemented mainly focused on the application’s efficiency and user experience. For example, in

the original application, the table’s data on entrants could not be sorted, so we implemented a

new table that could be sorted by any column. Additionally, there were many other fixes such as

being able to create new riders and horses when making a combo, whereas in the original

version, the user would have to navigate to a new page to do this. There were also various bugs

in the application that were fixed, such as visiting the site while already logged in would return

an error and the search function not working properly. Since the users of the application are not

very tech savvy, we also installed the new software on their computer using GitHub and updated

a local program so that the software could be updated without meeting in person.

6

2. Related Work

Few systems exist that work for horse show administration, especially given the use case

for the customers. Horse shows are already a niche field, and much of the software that does

exist only allows for online data entry. The Hoof-n-Woof horse shows are run completely

offline, so any system that requires internet usage cannot be used. Some systems are also too

bloated in their feature list, adding many unnecessary and confusing features to the system since

they are generalized applications. The goal for this project was to create a very simple and easy

to use system that worked specifically for how the customer runs their shows. That way the

system can be clear and easy to navigate, and every feature works according to the customer’s

needs.

The previous system for running horse shows was with a poster board chart, and all

results and combinations were handwritten. This resulted in a number of problems, as it was time

inefficient for recording and looking up horse information, and difficult to edit and reuse the

information across shows. The customers had to manually calculate scores and costs for every

entry, and they couldn’t sort any of the horses or riders to easily find them. With the new Django

application, horse shows can be better managed by the customers, and many of the steps from

before are automated. It is run locally on the client’s machine, so it works even without internet

access. Horses and riders can be easily added and edited, and all of their information is quickly

accessible through searching and sorting. Horse shows and their classes are automatically ranked

based on scores, and the costs for all entrants are calculated across shows. Since this software is

custom tailored for the customer, they can easily record and track their horse shows much

quicker than before.

7

3. System Design

The high level goal of this system was to create a web-based approach to track all entrants and

their scores when competing in different events throughout each horse show. This system was

originally developed using Python and Django, which was chosen by the previous team. Our

team continued to use Python and Django and built upon the previous team’s work. The license

for this system is the same one that the previous team used.

3.1 System Requirements

Gathering system requirements allows the developers to know what exactly they will be

developing. This ensures that the product created by the developers is what the client is

requesting. If done incorrectly, the developers will waste time working on features that are

unnecessary and undesired. By communicating thoroughly and frequently with the client, the

developers can ensure that the product is being developed correctly.

Minimum Requirements

- As a user, I want horses/riders alphabetically sorted by default instead of by time added.

- As a user, I want to be able to add classes while creating or editing combos.

- As a user, I want to be able to search for riders/horses while creating a new combo.

- As a user, I want valid combo numbers to be all numbers from 0-999.

- As a user, I would like to be able to create horses/riders while creating combos without

losing entered combo data.

- As a user, I would like to be able to enter accession numbers for horses that contain

hyphens.

8

- As a user, I would like to be able to search for horses by any part of their name.

Desired Requirements

- As a user, I would like to see the horse, rider, and owner after a combo number is ranked

on the class result page.

- As a user, I should be able to access class pages by clicking on the table entrees on the

division scores page.

- As a user, I want to be able to sort tables by each column by clicking on the column title.

- As a user, I would like to add an existing combination number to a class by entering the

combination number on the rank class page.

- As a user, I would like to restrict who can sign up for the website.

- As a user, I would like to label a class with numbers plus an optional letter (e.g. class 123

or 123A).

- As a user, I would like to calculate first and second total points across all classes.

Optional Requirements

- As a user, I would like a report detailing rankings/results for the entire show by class with

class number, class name, ranking combo #, rider name, horse name, and owner.

- As a user, I would like to see a notification or alert when I add or remove items.

- As a user, I would like the messages alerting me of a new/updated horse, rider, or combo

to include the name of the horse, rider or combo(id).

- As a user I would like a confirmation before a rider or horse is deleted.

9

3.2 Wireframes

Wireframes are used early in the development process to outline the basic structure of pages of

the web application. They allow the developers to hash out the necessary pages and their

corresponding purposes without having to worry about design elements. The developers can also

walk through the wireframes to ensure that they all make sense and work together cohesively.

Our team did not develop this system from scratch, so we did not have to make our own

wireframes; however, we included the previous team’s wireframes below.

10

11

12

13

3.3 Sample Code

Models

14

15

Views

16

Forms

17

3.4 Sample Tests

Testing is important because it verifies that the code works as intended. It allows the developer

to move onto the next task with confidence, knowing that the code just written is correct. If a bug

is not caught early on, it could cause significant problems down the road and waste a lot of time.

Tests will also immediately catch new changes that break previous features.

18

This test is responsible for testing the ClassParticipation and HorseRiderCombo models. It

creates a ClassParticipation object using the Class and HorseRiderCombo objects. Then, it

verifies that the ClassParticipation’s class field is accurate using an assert statement.

3.5 Code Coverage

The code coverage package used for this project is called Coverage, which uses tools provided in

the Python standard library to track code coverage.

Setting up Coverage

1. Install Coverage using https://pypi.org/project/coverage/ or ​pip install coverage

2. Create a file called ​.coveragerc​ in the same directory as your manage.py file. There are

a lot of different options in this optional configuration file for running Coverage which

can be used to personalize Coverage. Add the following into the ​.coveragerc​ file:

19

[run]

source=.

[report]

show_missing=True

The ​source​ ​option is the root directory of the files for Coverage to check, and

show_missing​ ​displays the line numbers of code that has not been covered by tests.

3. Add the following into your​ ​.gitignore

htmlcov/

.coverage*

coverage.xml

Running Coverage

1. Run ​coverage run manage.py test your-app​ to run Coverage on your Django

project. This will run the entire test suite with Coverage.

2. Run ​coverage report​ to view all the files Coverage was run on and the line numbers

for code that was not covered. The coverage percentage for each file will be displayed.

3. Run ​coverage html​ to generate html files in the ​htmlcov​ directory, which can then be

opened to view detailed coverage details in a browser.

4. Run ​coverage erase​ to remove Coverage data from previous runs. This should ideally

be done before every time Coverage is run.

For this project, Coverage reports that 92% of our code is covered by the tests.

20

3.6 Installation Instructions

The customer is running the system on a laptop running Windows 10, so these

instructions are for installation on a Windows machine. This instructions are made to host the

software locally since that is the customer’s use case. To obtain this software, the user must have

a GitHub account with access to the code repository.

There are three main parts to running this software: setting up the computer with required

dependencies, cloning the code repository onto the computer, and creating the database/running

the server.

Create your Club Windows User Account

This step is optional and is only required if your user does not have administrator privileges. If this step
is skipped, replace "Club" with your Windows account name in the following steps.

1. On your machine, go to the search tab on the start menu, and type in "Settings"

2. Click on "Account"

3. Under "Family & Other People", click "Add Someone Else to this PC"

4. Click "I don't have this person's sign-in information"

5. Click "Add a user without a Microsoft account"

6. Create the new account while making sure that the username is "Club"

7. Click on the Club account from the "Family & other people" screen and change the

account type to Administrator

8. Log into the new "Club" account

21

Set up the computer with the required dependencies (NOTE: This step requires internet
connection)

1. Manually install dependencies

○ Download Python from here: ​https://www.python.org/downloads/

● On the main page, under "Download the latest version for Windows", click "Download

Python 3.7.2", open the file once it's fully downloaded, and follow the instructions by

accepting the default options and proceeding through the screens to install

○ Download Git from here: ​https://git-scm.com/downloads

● Click the Windows button and once the package is fully downloaded, open it and follow

the instructions by accepting the default options and proceeding through the screens to

install

2. Add the dependencies to the environment variables (python, git)

○ Go to the search tab on the start menu and then type "Edit the system environment

variables"

○ Click "Environment Variables"

○ Click on the "Path" row under user variables and select "Edit"

○ Click "New" and type the path name where Python is installed on your computer

to add it. It can usually be found at the following path:

"C:\Users\Club\AppData\Local\Programs\Python\Python37-32"

○ Click "New" and type the path name where Python Scripts is installed on your

computer to add it. It can usually be found at the following

path:"C:\Users\Club\AppData\Local\Programs\Python\Python37-32\Scripts"

22

https://www.python.org/downloads/
https://git-scm.com/downloads

○ Click "New" and type the path name where the Git Bin is installed on your

computer to add it. It can usually be found at the following path: "C:\Program

Files\Git\bin"

○ Click "New" and type the path name where the Git Cmd is installed on your

computer to add it. It can usually be found at the following path: "C:\Program

Files\Git\cmd"

○ Then press "OK" to save

Clone the repo onto the computer (NOTE: This step requires internet connection)

1. Press the Windows Start. Type "Command Prompt" and then click on it.

2. On the command line, type ​cd C:\Users\Club\Documents​ and run​ ​git clone

https://github.com/uva-cp-1920/horse_show.git​ to pull the code

○ If a folder does not exist, cd into the existing folders and type "mkdir " + folder

name or use the "File Explorer" to manually create the new folder

3. Type ​dir​ into the command line, and if you see a folder called "horse_show", cloning the

repo was successful.

4. To install the project dependencies, type ​cd horse_show​ in the command line to enter the

project folder. Then type ​pip3 install -r requirements.txt​ to install the

dependencies.

Create the database

This step is only required the first time the project is installed.

1. Press the Windows Start. Type "Command Prompt" and then click on it.

23

2. On the command line, type ​cd

C:\Users\Club\Documents\horse_show\src\newenv\horseshow-proj

3. Type ​python manage.py makemigrations show

4. Type ​python manage.py migrate

Run the server

1. Press the Windows Start. Type "Command Prompt" and then click on it.

2. On the command line, type ​cd

C:\Users\Club\Documents\horse_show\src\newenv\horseshow-proj

3. Type ​python manage.py runserver

4. The server is now running locally. To access it, go to localhost:8000/show/login within

your browser. To stop the server, close the command prompt window from step 1.

24

4. Results

The goal of the system was to act as an offline registration platform for the client's horse

show competitions. The clients operated the system while the other stakeholders, competitors,

simply conveyed information to the clients behind the register. As a result of the updated design

the system was able to address all features requested by the client. This included an improved

search which filters across multiple fields and various workflow improvements. For example, the

central flow of adding a horse-rider combination was reduced to 7 clicks from the previous 9

clicks. This flow was also modified to handle previously registered horses and riders, reducing

the required clicks to 3. Another example was the class ranking flow, where each competitor is

assigned a rank, was updated to handle the case where a competitor was accidentally not

registered to the class it was being ranked in. In the previous system, this error would require 4

more clicks; however, the updated system can handle this error in one click.

This updated system allowed the horse show administration system to be used effectively

in a real horse show for the first time. The client tried the software in a smaller show on October

27th with approximately 20 horse-rider combinations. The system is used to register competitors

to the horse show, calculate billing, and track the score of contestants. Compared to the previous

version of the software, the clients estimated that they were 3-4 times more efficient during

registration. The clients also called out an improvement in the system which added additional

information to the results page. The page now includes the ranks of riders and horses by name

rather than simply the three-digit combination number. The clients noted that these

improvements significantly improved the quality of result ceremonies as having Horse and Rider

25

names "made the award announcement seem more polished". The clients' primary show is in

Spring 2020 with over 60 horse-rider combinations and as a result of the trial run the clients plan

to use the new system in the Spring show.

Throughout the update of the administration website many bugs were unearthed and

patched. This included an edge-case where if the same combination id was registered to multiple

shows, the ranking system could incorrectly include a contestant from a previous show in the

current show. Bugs like these were revealed by maintaining 100% code-coverage in the team's

test cases and demoing the products bi-weekly with the clients and at the client' smaller horse

show. As a result the clients reported an improved feeling of polish and found the software to be

much more stable than the previous version.

26

5. Conclusions

We accomplished the needs of our client by fixing the bugs of the code stack left behind

by the previous team, and we added newly implemented features that the client requested. We

were able to add new features while not introducing any new bugs due to our 100% code

coverage. Meeting with the clients every other week allowed for us to update them with our

progress and communicate effectively the project’s roadmap. Since we finished the needs of the

client early, we suggested new ideas to add that the client might like. With the finished project,

the client will no longer have to rely on pen and paper or a buggy platform to keep track of horse

shows. Now the client can use our system in a more efficient manner since we reduced the

number of clicks required for functions, implemented easier search, and allowed sorting and

ranking of horses, riders, and combinations. During this process, we learned how to function and

communicate as a team. Each member focused on improving different aspects of the project, and

weekly meetings allowed us to bring our ideas together to create one cohesive product. Our

clients can now use the software without any issues, and the documentation we’ve created allows

future teams to build off of our methodologies in their projects. As a result, our clients are

excited to be using the software for the first time in a full-scale horse show in Spring 2020.

27

6. Future Work

Even after improving upon the original software, there are still some changes that could

greatly benefit horse show administration in the future. One of the features present in the original

project was a function that automatically filled out a Virginia Horse Shows Association (VHSA)

PDF with show results, ranking horses along with their owners and riders. This feature no longer

works because the VHSA has changed their horse show system from the time that this feature

was implemented, making it unusable for current shows. As a future goal, the original functions

to generate this PDF can be modified to fit the current system and make it functional again.

Further research should be done on which aspects of horse show administration have changed

since this feature was originally made; more information on the rules and regulations for these

shows can be found on the VHSA handbook on their website. With this additional information,

the PDF generating function can be fixed and used in future shows.

28

7. References

[1] Grams, C. (2019, March 14). Developers spend 30% of their time on code maintenance: our

latest survey results

https://blog.tidelift.com/developers-spend-30-of-their-time-on-code-maintenance-our-latest-surv

ey-results-part-3.

[2] Darroch, Mallapragada, Nathan, Pappagallo, Prahlad, Saharya, Wu (2019) Horse Show

Administration Program Technical Thesis

29

