
Serverless Functions: Transitioning to a Dynamic Web Publishing System

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Taher Calcuttawala

Fall, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

Serverless Functions: Transitioning to a Dynamic Web Publishing
System

CS4991 Capstone Report, 2022

Taher Calcuttawala
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
tyc7eu@virginia.edu

Abstract
A brand management technology company’s existing
website publishing system was incapable of
generating pages dynamically, requiring the use of
inefficient workarounds to overcome this challenge. I
worked on a new dynamic web publishing system that
allowed for serverless function integration to generate
web pages. I built multiple Kafka consumers to record
plugin metadata; then designed various websites to
test the system end-to-end to ensure acceptable
functionality. This new system significantly reduced
overhead, allowing pages to be generated much more
efficiently, using much less storage. Additional
advantages include increased security and flexibility.
The system is currently in its nascent stages and in-
depth testing is still required to ensure the product
works as intended at scale.

1. Introduction/Background
The brand management technology company’s core
platform allows businesses to collect and organize
their data. The company has various products that
leverage the data stored on the core platform, such as
AI-powered search, SEO-ready web pages, listings,
and data analytics. The team I worked on focuses on
website publishing and serving, ensuring that
generated pages are hosted to their corresponding
geographic servers correctly. For the new dynamic
web publishing system, our team was tasked with
generating, storing, and serving serverless function
data.

The motivation for creating this new system was the
many drawbacks in the existing system. First, the new
system allows for third party interaction with the
company’s products. The old system required an in-
house consulting team to build web pages for the
client on the company’s platform. The new system,

however, allows anyone to leverage the company’s
product and platform to build a webpage. Second, the
new system supports serverless functions. These
functions are dynamic, stored on the cloud, and
rendered server side, which provides a variety of
functionalities not present in the existing system.

2. Related Works
The goal of serverless architecture is to host single
purpose applications that scale on demand.
Traditionally, these serverless functions follow a
lifecycle in which they are created, perform their task
when called, and then are destroyed. According to
Hall and Ramachandran (2019), this allows users to
only pay when their functions are executing, and hosts
gain the benefit of reduced resource consumption as
the functions are not running constantly.

This defines the approach the brand management
company took to solve the drawbacks with the
existing system. The ease of accessibility serverless
architecture provides benefits not only for the
company’s clients, but also greatly reduces resource
consumption for the company. A serverless function
implementation like this could have been used a
starting point for the new dynamic publishing system.

While the concept of serverless architecture is new,
there have already been substantial commercial
applications. All the major cloud providers have
begun implementing their own platforms for
serverless architecture, allowing users to deploy
applications to the market without having the
infrastructure in place to support them. As a result of
this widespread adoption, generally accepted
conventions are now in place to optimize their
implementation and use, according to Nupponen and
Taibi (2020). Following these guidelines would be

essential to the development of the new dynamic
system, as many of the limitations of serverless
functions have already been identified and researched.

3. Project Design
The overall goal of this project was to create a new
web publishing system that could generate pages
dynamically, using serverless functions. The
company’s approach to serverless functions differed
from existing implementations as it was built into the
existing ecosystem, leveraging already built
microservices to generate, deploy and host the
serverless functions. While this lack of flexibility
seems like a drawback, it allows clients to seamlessly
integrate serverless functions into their existing web
pages for specific use cases and using static pages
where the extra features are not necessary.

My team was responsible for publishing and serving a
given plugin, a single instance of a serverless
function. The main requirement for this system was to
take a JavaScript function written by an end-user and
publish it. This process would turn the client’s code
into a plugin our system would recognize. Once the
plugin was properly generated, our system would
need to keep track of it, recording whether it was up
and running and which regions it was published in.

3.1 System Architecture
As shown in Figure 1, the plugin publishing system is
comprised of five major components: The user
interface, the publishing server, the publishing
regions, the feedback processor, and the database.

Figure 1: System Architecture

A user interacts with the front-end user interface,
where they create their JavaScript function. The user-

defined function is then sent to the publishing server,
where the code is published into a plugin. Once the
plugin data has been created, it is stored in the
database. The publishing server also sends the plugin
to each of the geographic publishing regions, where
they are ready to be invoked. This is done using a
Kafka consumer in each publishing region, which
consumes the data sent by the publishing server. The
geographic publishing regions are copies of each
other and should ideally hold the same information.
Their redundancy and strategic geographic
positioning allow for high-speed access of plugins
stored within them.

Once a plugin is received by a publishing region, it
interacts with the feedback processor, confirming that
the plugin has been successfully published. This is
done using another Kafka consumer, located in the
feedback processor, which consumes the confirmation
sent by a publishing region. The feedback processor
then updates the database with this confirmation.

3.2 Database Interaction
The publishing server and the feedback processor read
and write information about a plugin to the database.
This is crucial in informing internal services about the
health and status of a published plugin, as querying
the internal database is much quicker than pinging the
publishing regions. For security and ease-of-use, I
wrote custom query functions into both the publishing
server and feedback processor to query the database.
These custom functions allowed a specific plugin to
be accessed or modified given its primary key.

Additionally, since the database was being accessed
indirectly through function calls, there was protection
from malicious attacks such as SQL-Injections. In the
publishing server, these query functions added a
plugin to the database. In the feedback processor,
these functions updated the correct plugin’s data,
confirming that it had been successfully published to
the publishing region.

3.3 Database Design
To allow plugins to be reliably queried, a robust
database design is required. A SQL database was used
to store plugin data, which includes the id, route,
region flag, submitted time, and updated time, as
shown in Figure 2.

Figure 1: Plugin Database Table

The id field represents the primary key and can be
used to solely identify a specific plugin. The route
refers to the URL path the plugin resides. The
submitted time is the field that records the timestamp
the plugin was published. The region flag is a binary
field that represents whether a given plugin has been
published to a specific geographic region. Consider a
system where there are five regions, each with an
index 0 through 4. If the region flag field is “00000,”
we know that the plugin has not been published to any
region. If the region flag is “10111,” we know that the
plugin has been published to every region except the
one with index 1. This field notifies the internal
system which regions the plugin has been published
to. The updated time field is also a timestamp field,
which is updated to the latest time whenever the
region flag is updated. It is important to note that the
actual plugin data is not stored in the database; only
information about the status of a plugin is stored. The
actual plugin code is stored within the publishing
regions, where it would be invoked.

4. Results
The system is currently in the testing stages. At the
end of my time with the company, I wrote various
functions to test the system end-to-end to ensure
proper functionality for each component. I was
successful in generating multiple serverless functions,
which showcased the new system working, and the
various advantages the dynamic system had over the
static one.

5. Conclusion
This new publishing system provides many new
features. One of these functionalities includes API

key protection through server-side rendering, which
greatly reduces API key usage and costs associated
with usage thresholds. Another feature of serverless
functions is dynamic routing, which allows different
serverless functions to be mapped to different URL
paths and allows URL parameters to be passed to
those functions if necessary, greatly reducing the
number of static pages that need to be stored. These
are just a couple examples of the various advantages
of serverless functions allowing the company to cater
to a much larger host of potential clients.

6. Future Work
The new publishing system still requires various
features to be ready for client use. The current system
only supports GET requests, meaning plugins can
only display information. While URL arguments can
be used as a workaround to send data, it is not secure.
An important feature to add in the future would be
POST request support, allowing plugins to send data
securely to a server or another plugin. This feature
would greatly increase their versatility and security.

A dedicated web interface would be necessary for
users to create, update and monitor their plugins.
While this feature is purely visual, it would increase
user engagement and ease of use. Adding this feature
would not be difficult, as the company has existing
status pages for its other products. Building this
feature into a user’s existing portal would be
seamless.

Finally, although the functionality of the publishing
system was tested thoroughly, a load test has not been
done. This kind of testing would be essential in
determining whether the new system could handle
many concurrent users. One of the strengths of
serverless functions is their ability to scale on
demand, so it would be imperative to test this.

References
[1] Hall, A. and Ramachandran, U. 2019. “An

execution model for serverless functions at the
edge,” Proceedings of the International
Conference on Internet of Things Design and
Implementation.

[2] Nupponen, J. and Taibi, D. 2020. “Serverless:
What it is, what to do and what not to
do,” 2020 IEEE International Conference on
Software Architecture Companion (ICSA-C).

