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Abstract

As the rate of improvement of uniprocessors slows, parallel programming has become an issue for more

programmers now, not just for high performance scientific computing developers. Multicore processors and

accelerators are nowubiquitous inboth small and large scale computingdevices. Thepotential for performance

improvement through parallelism is significant in contemporary hardware.

Despite the heightened interest towards parallel computing in recent years; writing efficient, portable paral-

lel applications remains a challenge, in particular, in the presence of increasingly heterogeneous architectures.

The predominant way of parallel computing is to extend a sequential language with low-level parallelization

primitives. These primitives are platform specific, difficult to combine, and often error-prone. Recent high-

level language-based alternatives to these tools struggle to perform well and lack in portability also.

This research proposes an alternative parallel programming paradigm to strike a balance between existing

platform specific and hardware agnostic approaches. The paradigm lets a program’s logic be expressed over a

genericmachine abstraction, calledPCubeS, to enable portability. The language counterpart, called IT, enables

reasoning about hardware features in all aspects of programming but emphasizes on separation of concerns and

uses a declarative syntax so that program efficiency can be achieved productively.

Three IT compilers have been developed for three architecture types (multicore CPUs, distributedmemory

machines, and hybrid supercomputers having bothCPUs andNVIDIAGPUs as nodes) as part of this research.

Early performance experiment results on representative hardware platforms for five well-known applications

suggest that the proposed paradigm is a viable future option for portable and efficient parallel computing.
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1
Introduction

1.1 Moࣅvaࣅon

The history of parallel machines can be traced back to the early days of computers. For example, researchers at

IBMproposed SOLOMON, a SIMDmachinewith 1024 1-bit processing elements, back in 1958. Development

of CMUMultiminiprocessor Computer (C.mmp) started as early as 1970 20. This attention toward parallelism

from the very beginning is, more or less, driven by two factors. First, many applications of interest in both

1



science and industry have significant inherent parallelisms. Second, and more importantly, the computation

power demanded by the applications always surpassed the capacity available in the machines.

Consequently, there is a continuing effort for increasing the power of parallel supercomputers. For example,

while an early parallel supercomputer, ZMOB, startedwith only 256 processors78; present day supercomputers

have millions of cores. There is a great diversity in these machines’ architecture in terms of the nature of pro-

cessing elements, their coordination, interconnection network, memory layout, cache management, etc. Such

diversity indicates that there is no single agreed upon ideal vision of how best to build a parallel computer.

This diversity in parallel architectures comes as no surprise. Parallel supercomputers are often built to target

specific classes of applications, and different applications have widely different computation and communica-

tion requirements, necessitating different hardware organizations. Nonetheless, as large scale data analysis and

massively parallel computations have becomemoremainstream in recent years, new parallel architectures tend

to bemore general purpose. In the absence of an all-serving, ideal vision; the current trend in parallel supercom-

puter development is to incorporate heterogeneity within a single machine to serve a multitude of application

classes. For example, two recent parallel supercomputers, Titan tit and Stampede sta, are hybrid architectures

comprising multi-core CPUs, accelerators, and large memory nodes. Furthermore, often there are heterogene-

ity in the organization of these nodes and hierarchy in their interconnection network’s architecture.

With the end of rapid uniprocessor performance improvement, parallel programming – that used to be a

concern for high performance scientific computing – has also become an issue for everyone else. Multicore

processors and accelerators are now ubiquitous. They are in tablets, desktop PCs, workstation clusters, super-

computers, and many other small and big computing devices. There is an enormous potential of performance

improvement through parallelism for applications running in these hardware platforms.

2



Anaccelerateddemand for better performance on compute intensive problems compoundedby a consistent

trend of increasing hardware complexity leads to a heightened interest toward parallel computing in recent

years. A panel of multidisciplinary Berkeley researchers 16 thus have concluded that “developing programming

models that productively enable development of highly efficient implementations of parallel applications is the

biggest challenge facing the deployment of future many-core systems.”

Unfortunately, parallel computing remains hard in general, despite decades of research and development

of a plethora of programming tools, techniques, and languages. The predominant way of programming in

parallel architectures remains to be extending a sequential language with low-level parallelization primitives as

in MPI91, Pthreads 25, OpenMP 36, and CUDA71. These tools are platform specific, difficult to combine, and

often error-prone. Recent high-level language based alternatives to these tools such as Chapel 30 and X10 32 are

struggling to perform well. Further, so far their application has been limited to specific architecture types.

This is regrettable, as we cannot require an average computer user to be an expert in multiple modes of

parallel programming. Parallel programming is no more restricted to costly computation intensive sciences

or to expensive industry funded data analysis; rather it has spread in many branches of academic, industrial,

and personal computing. We need a common framework for exploiting parallelism in computations in an easy

way. That is the objective of my research: to provide a portable, efficient, and productive paradigm for parallel

computing.

First, I emphasize portability as there is a long-standing opposition against accepting a new programming

paradigm in any community that is already accustomed to some other paradigm. One of the reasons, I believe,

techniques like MPI, Pthreads, OpenMP, or CUDA are so successful is that they built on existing knowledge

of widely used languages like C and Fortran. Even though these techniques make writing and debugging pro-
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grams difficult, once one masters a technique, those issues become much less of a barrier. Rather our current

problem is that a typical programmer is exposed to a variety of parallel architectures and his/her experience

from programming on a hardware is often not useful on the next hardware because existing techniques are

tied to particular execution platforms. Hence, new paradigms should address this problem as a central issue.

Second, given high performance is the primary concern in parallel computing, we cannot offer portability

at the expense of efficiency. Performance of programs written using the new paradigms should match the

performance of equivalent programs written using existing techniques. This is the only reasonable goal given

that a programmer can use platform specific low-level tools to achieve the same effects in a program that a new

paradigm automatically does for him/her.

Finally, I advise for a systematic, easy to understand, and human-centric approach of program development

for the new paradigms as productivity problems have been identified as a significant barrier to the application

of parallel computing to the sciences and other disciplines65 16. Nevertheless, I believe productivity should

never compromise efficiency given the latter’s importance. Rather, new paradigms should offer features and

programming style that enable high performance in a productive way.

1.2 Problems in Current Soluࣅons

Andrews in Concurrent Programming: Principles and Practice 15 expresses that “concurrent programs are to

sequential programs what chess is to checkers.” That developing a parallel algorithm requires a more creative

involvement in general than an equivalent sequential algorithm is undeniable. The difficulty of devising the

algorithm, however, is not commonly the core problem with parallel programming. Rather, most problems
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occur in the process of translating the parallel algorithm into a program, as deftly described by Snyder in his

seminal work “Type Architectures, Shared Memory, and the Corollary of Modest Potential 82.”

Correctly implementing interactions between parallel pieces of a program can be difficult. So much so that

sometimes the original algorithm is lost in the plethora of interaction primitives. The biggest problem, how-

ever, is extracting good performance from a parallel machine. Features like memory organization, cache hierar-

chies, interconnection network structure, speed and bandwidth of memory access and data transfers that are

orthogonal to the algorithm by and large determine the performance of its program implementation.

Predominant parallel programming tools such as MPI, Pthreads, and CUDA give a programmer the ulti-

mate control over an execution environment. In doing so, these tools enable the programmer to write a code

optimized for the target platform. For example in MPI, he/she can send messages anywhere he/she wants

and in any shape or form, synchronize pieces of computations as he/she intended, and combine sub-programs

whatever way it suits him/her – but all that at the expense of programmer’s productivity and lack of program’s

portability.

Furthermore, these tools and primitivesmay be perfect for their designated original environments, but with

the advent of hierarchical andhybrid architectures they fall short of utilizingmany important hardware features.

For example, neither MPI nor Pthreads addresses cache hierarchies. Combining these primitives in a program

for hybrid platforms – though feasible – is often difficult for an average programmer. Lack of portability often

leads to vendor locked in also. For example, CUDA programming paradigm works quite well for NVIDIA

GPGPUs but inapplicable in other accelerators and co-processors.

The strategy takenby recent high-level programming language initiatives such asCo-array Fortran73, UPC42,

X10 32, or Chapel 30 is to fix a machine model of the target execution platform – in these cases the partitioned
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global address space (PGAS) model 37 – and provide primitives to use features of the model that are imple-

mented with appropriate low-level primitives available in the target platform. Consequently the programmer

is relieved from the specific details of a particular hardware. For example, PGAS exposes a model of a single

globally addressablememory composed of the localmemories of a collection of sequential processors. Thus the

programmer can assume a sharedmemory environment when writing a PGAS program even if the underlying

hardware is a distributed memory machine.

Heterogeneity of hardware platforms has been a major barrier for efficient implementation of the building

block features of these languages across the board. Further, the simplicity of the machine model often makes

it too restrictive. For example, PGAS model does not expose cache hierarchy and cannot portray hybrid archi-

tectures. In addition, most high-level languages still allow writing programs in a hardware oblivious manner.

This strategy enables easy expression of parallelism but at the expense of loss of efficiency. Furthermore, there is

no longer a clear correlation between runtime behavior of a program and its source code that hurts debugging

performance. Given the paramount importance of performance in parallel programming, productivity at the

expense of efficiency may not be an attractive proposition. No wonder none of the PGAS languages has been

widely accepted by the parallel computing community despite a decade of development.

I argue that parallel programming should neither be hardware specific nor be hardware agnostic. Rather,

the right approach is to adopt a middle ground: a hardware cognizant mode of programming.
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1.3 My Proposiࣅon

The process of writing a parallel program involves designing an algorithm exhibiting adequate parallelism, de-

termining how independent pieces of the program should communicate with each other, the granularity of

those pieces, and finally theirmapping to physical processing units (the four-step process, known as the Foster’s

methodology of parallel programming46). Good decisions in all these steps depend on knowing the character-

istics of the physical platform onwhich the programwill eventually run. Therefore, hardware concerns should

be highlighted in all aspects of parallel programming. Nevertheless, instead of expressing the program’s logic

over the bare hardware features, we should express it over an abstraction of the machine that exposes its key

underlying features along with their associated costs. This abstraction, called a type architecture 82, enables pro-

gram portability without sacrificing performance. This is the central idea behind hardware cognizant parallel

programming.

For this idea to work, the type architecture abstraction has to be generic enough to be able to describe most

contemporary parallel hardware, and the languages that will serve as themediums of expression have to expose

and utilize that abstraction throughout the programming process effectively. My research touches both aspects

of the type architecture based parallel programming. I propose a new type architecture that can describe the

salient features of most parallel hardware of present time and a programming language for high performance

parallel computing that operates on top of my type architecture abstraction.

The type architecture is called the Partitioned Parallel Processing Spaces (PCubeS). PCubeS describes a par-

allel execution environment as a hierarchy of parallel processing spaces. Each space is further partitioned into

identical, independent processing units having a defined processing power andmemory capacity. A space is fur-
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ther characterized by its aggregate memory capacity and inter-component communication capability. PCubeS

handles heterogeneity of target execution environments through its hierarchical breakdown of a platform and

by supporting multiple models per hardware in unusual cases.

The programming language is called IT. IT is a language for high performance and mostly data parallel

programming a. In an IT program, computations take place in a hierarchy of logical processing spaces each

of which may impose a different partitioning for a data structure. The programmer has to explicitly map the

logical spaces to the physical spaces of PCubeS to generate the executable. The compiler decides the proper

implementation of computation and communication based on the mapping. The implementation of compu-

tation and communication varies furtherwith the change of the target hardware architecturePCubeS describes.

IT emphasizes separation of programming concerns and avoidance of compiler introduced non-deterministic

runtime overhead. The expectation is that an IT programmer should be able to predict, debug, and analyze

the suitability of a program and its runtime performance on a specific platform just by comparing the source

code and the PCubeS description of the hardware.

These two components, PCubeS and IT, are tied together to substantiate the broader vision, the claim of

my research:

A high-level parallel programming paradigm based on type architecture will enable porta-

bility, simplify learning and performance debugging, and approximate the efficiency of

contemporary low-level programming techniques.
aIT supports other forms of parallelism but the focus is on data parallelism
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1.4 Research Contribuࣅons

ThePCubeS type architecture, the IT programming language, and the implementation of the IT compilers are

the major contributions of this research. The combination of the first two forms my programming paradigm

that is referred as thePCubeS+ IT paradigm in the rest of thiswriting. To show thatPCubeS+ IT paradigm is a

practicality – not just a research proposition – I have developed three IT compilers for three different hardware

architectures.

These architectures are multicore CPUs, distributed memory supercomputers or compute clusters, and hy-

brid supercomputers having both multicore CPUs and NVIDIA GPGPUs as nodes. These architectures are

referred as multicore, segmented-memory, and hybrid respectively in the rest of the writing. The compilers

generate C++ programs parallelized with MPI, Pthreads, and/or CUDA constructs from IT source codes as

appropriate for respective target hardware.

I then took IT implementations of five representative application kernels (matrix-matrix multiplication,

LU factorization, conjugate gradient, finite difference approximation in a regular grid, and Monte Carlo area

estimation), compiled them with each of the compilers, ran the executables on representative machines, and

examined the results with respect to portability, productivity, and performance. Regarding performance, I

compared IT executables against handwritten versions, and conducted strong and weak scalability analysis.

The results are promising. With respect to portability, the exact same codewas executed on each architecture.

With respect to productivity, the IT programs are consistently shorter, less cluttered, and easier to comprehend

than their hand-written counterparts. With respect to performance, the strong and weak scaling results are

convincing and what one would expect for the respective application kernels.
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With respect to the absolute performance compared to the hand-written counterparts, the early unopti-

mized results are encouraging. In both multicore and segmented-memory architectures, IT executables’ per-

formance is consistent with what a reasonably good programmer can achieve. These are just early results and

significant optimization remains. Hence there are reasons to be optimistic about the paradigm’s success.

Currently IT executables’ Performance in the hybrid architecture is considerably lagging their hand-written

counterparts. I am having difficulties building a performancemodel of the parts of the code that execute inside

theGPUs. Not having a reliable performancemodel makes good code generation difficult. Furthermore, there

are redundancies and inefficiencies in the CPU and GPU interaction that I have to mitigate. I am already

working on these issues.

Two technical reports have been published on the language96 and the type architecture94. There is a paper

on the overall paradigm also95. Another paper discussing the performance results with sample applications on

three target hardware architectures is in the planning phase.

1.5 Structure of the Dissertaࣅon

Chapter 2 discusses parallel programming tools, techniques, and languages relevant to my research. In par-

ticular, the chapter provides a comparison of the PCubeS + IT paradigm with other contemporary parallel

programming research initiatives. Type architecture based programming is not a new concept. The chapter

also presents previous research in this direction and analyzes their lack of success.

Chapter 3 presents a detailed investigation on the PCubeS type architecture, its design rationale, and its

applicability in contemporary parallel machines. Furthermore, the chapter provides examples of PCubeS de-
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scriptions of some modern hardware.

Chapter 4 gives an overview of the IT language. Although the chapter talks about features and syntax,

much of the conversation is focused on the philosophical underpinning of the language and its behavioral

characteristics. This is done to avoid diverting readers’ attention from the core research objectives.

Chapter 5 illustrates how the concepts of the language aremapped to the features of the target hardware, and

the consequence of that mapping on the compilation process and the runtime behavior of an executable. The

three compilers being developed as parts of this research implement a common runtime environment. The

chapter describes that runtime environment also.

Chapter 6 discusses the three compilers. The chapter gives a broad overview of the compilers and does

not delve into too much internal detail to keep the discussion short and centered at the research objectives.

Nevertheless, implementations of critical runtime elements are described for individual compilers so that the

readers understand how the PCubeS + IT paradigm becomes a reality across hardware architectures.

Chapter 7 presents and analyzes experimental results with IT implementations of five well-known building

block applications on three different target platforms. The lessons and the consequent directions for future

research learned from these experiments are also discussed along the way.

Finally, Chapter 8 concludes with a reflection on the research findings, experience conducting the research,

and what should be the short and long term plans for the future of this work.
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2
Related Work

In this chapter I discuss prominent work on parallel computing tools, techniques, and approaches of the past

and present. The tools, techniques, and approaches are presented in a manner to form a historical perspective

of parallel computing. Along the way, I provide an assessment of their relative success and failure and my

expectation about the future of parallel computing that leads to my proposed programming paradigm. At the

end, I contrast my proposal with other contemporary research on parallel computing to clarify the differences
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in their philosophical underpinning.

Many notable parallel computing projects – in particular, those that put less emphasis on high-performance

– are not discussed here as the goal is not to provide a survey of the field; rather to establish the context for my

work.

2.1 Approaches to Parallelism

Development of a parallel program – as mentioned in Foster’s influential work46 – can be divided into four

distinct activities: partitioning data structures and the computation into independent units, determining com-

munication requirements among the units, agglomerating units into tasks of appropriate grain, and finally

mapping those tasks to processors. An intuitive understanding of these activities was there long before the

advent of Foster’s methodology of parallel computing. It was well understood that parallel programming in-

volves much more than mere translating an algorithm into an executable code, but researchers greatly differ in

segregating the compiler’s and programmer’s responsibilities the activities parallel programming entails. Con-

sequently, a wealth of research has been done that expresses these differences of opinion. Parallel computing

literature is replete with research on fully parallelizing compilers, parallel extensions to sequential languages,

parallel languages built out of sequential cores, and finally built-from-scratch parallel languages.

2.1.1 Parallelizing Compilers

Research on parallelizing compilers had the vision that a programmer’s involvement in writing a parallel pro-

gram should be minimal. The central assumption here is that a compiler should be able to identify and group
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parallelisms inherent in a sequential program and map them appropriately to processors. Most works that be-

ing done on this area such as FortranD 55, Parascope 33, Polaris 22, and SUIF 50 focused on parallelizing programs

written in Fortran and C, languages that were already popular within scientific communities. These compil-

ers used sophisticated data dependence and control flow analysis, in both intra and inter-procedural levels, to

transform a sequential code into parallel node programs.

Unfortunately, the amount of parallelism that can be eked out of a sequential program is often quite low.

In addition, often times, significant scopes of parallelism escape compiler analysis due to the presence of false

dependencies and aliases. Therefore, these compilers had much less success in parallelizing than what they

envisioned.

On the other hand, often the amount of parallelism discovered in a sequential program is high but so fine-

grain that its efficient exploitation becomes difficult. This latter problem is the source to the principal reason

behindparallelizing compilers’ lack of adoption: compilers’ failure to effectively group andmapnodeprograms

into processors. With the rise of distributed memory multicomputers, where the cost of communication can

become several times higher than that of computation, there is so much to lose due to inefficiency in program

placement. Consequently, initial enthusiasms for parallelizing compilers were soon all gone.

2.1.2 Parallel Extensions to Sequenࣅal Languages

Significant research has been done to extend sequential languages with mechanism for parallelism. Supports

for parallelismmay be incorporated as language features or as libraries that a programmer can use. Viena FOR-

TRAN 31, High Performance Fortran62, pC++70 are bygone examples of the first approach. These languages

extend a sequential FORTRAN or C core by introducing distributed arrays and constructs like parallel for
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loops. Note that the idea of distributed arrayswas already in FortranD 54, but the difference now is that the pro-

grammer has more control regarding allocation of the pieces of a data structure in processors. These languages,

exposing a shared memory model of the execution environment, were ported in both shared and distributed

memory machines; and saw limited success in terms of performance and adoption.

Recentpartitionedglobal address space (PGAS) languages such asCo-arrayFortran73, Titanium97, orUPC42

bear the same spirit ofmaintaining a sharedmemory viewof the environment. Here the sharedmemory is, how-

ever, visibly partitioned among available processors. Theprogrammerdistinguishes between local andnonlocal

memory references and responsible for explicit synchronizations. A problemwith both past and present exten-

sions of sequential languages is that they are built on top of an already feature-heavy core. One can argue that

mixing of data distribution, synchronization, and similar other parallel constructs with the features of the core

language makes the program harder to get right and less readable.

The library based approach of extending sequential languages to support parallelism, however, has achieved

widespread success. The message passing interface (MPI)91 is the standard for parallel programming for over

two decades. The OpenMP 36 directive based parallelization is also popular for easy parallelization in shared

memory environments. Efforts have also been taken to combine the two to improve MPI codes’ performance

in hardware platforms having distributed shared memory multi-processors 26, but the results are inconclusive.

A central reason for MPI and OpenMP’s success is that they require minimal learning over a programmer’s

existing knowledge of C or FORTRAN. To parallelize a code using OpenMP, the programmer just adds few

pragma directives on top of loops. Although one can do only so much with pragmas, often-times that is all

what he/she needs. On the other hand, MPI, that extends C and FORTRAN with explicit communication

facilities, provides the programmer with absolute control regarding exploitation of parallelism. It is difficult
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to beat a hand-tuned MPI code with code generated by other means due to MPI’s expressive power. On the

flip side, MPI programs are often accused of being difficult to get right, difficult to debug, and less readable.

Freedom of expression in MPI comes at the expense of lack of structures in the program and a preponderance

of communication tricks that often overshadows the underlying algorithm. These issues often discourage new

programmers from using MPI despite its ubiquity.

Similar to Von Neumann style imperative languages discussed above, considerable expectations were there

about prospects of functional languages in parallel computing. Functional languages are known for their

brevity, mathematical rigor, expressiveness, and elegance 17 88. They are widely used by domain scientists 53 60

for analytics and simulations, particularly when infinite list manipulation is required. The most attractive fea-

ture of functional languages regarding parallel programming is that they are inherently parallel: nothing more

is added to the language to support parallelism. If the underlying algorithm has it, any inherent parallelism in

a program can be easily discovered through compiler analysis. Therefore, theoretically, only a runtime support

is needed that will dispatch independent pieces of computations to available processors. Unfortunately, func-

tional languages in their unmodified form faced the same peril that imperative parallelizing compilers faced

with the advent of distributed memory machines, and for the same reason too: a lack of success in automatic

task agglomeration and mapping93. For functional languages the inefficiency problem was more intense as

parallelisms exposed by a functional code are usually too fine-grain to be exploited effectively.

Consequently, functional languages are extendedwith different forms of explicit or semi-explicit parallelism

supports that can be implemented more or less efficiently. Parallelism is introduced via programmer’s anno-

tations, explicit task creations, parallel skeleton functions, and data-parallel arrays under various names in dif-

ferent languages 51 52 28. In our opinion, most of such innovations are in essence against the spirit of functional
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programming as a program may no longer be viewed solely as a mathematical object being manipulated by

repeated applications of functions – it is cluttered with parallel directives. Parallelism supports in the popu-

lar Haskell programming language is a good example in that regard, 86. Presently Haskell embodies almost all

forms of parallelism ever proposed in any functional language, including annotations that dispatch compu-

tation exclusively in accelerators! The proponents of Haskell believe that a comprehensive set of parallelism

constructs should bring the language in the forefront of parallel computing, but we would argue that their

proposal of ‘learn only the parts you need’ of a feature-rich language is in discord with the principals of good

programming languages design that promote a lean language core 56.

2.1.3 Built-from Scratch Parallel Languages

Dataflow Languages

A close companion of functional programming, data-flow programming has among the first parallel program-

ming languages that are built with the objective of efficient execution in parallel architectures 39 89 in mind. As

opposed to in an imperative program where an explicit flow of control manipulates computations over data,

in a data-flow program there is no control flow; rather the computation flows along the pieces of data as they

become available. Data-flow languages such as VAL68 and Sisal45 present a syntax that is similar to that of

a typical imperative language, but operations are restricted to single assignment per variable to facilitate flow

analysis. Like functional programs, data-flow programs expose fine-grained irregular parallelisms. Researchers

of data-flow languages, however, had the optimism that efficient data-flow supercomputers can be built. Out

of that optimism, hardware like theManchester data-flowmachine48 had indeed been built, but they could not
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meet the efficiency demand. Overhead of token-spacemanagement and associativememorymatchingwere the

principal reasons behind their inefficiency.

Nonetheless, as an idea, the view of a computation as a flow governed by availability of data retains its at-

tractiveness. Presently, coarse-grained data-flows or work-flows have widespread use in scientific communities.

Work-flows like DAGuE23 and Pegasus 38 have limited expressive powers compared to a typical data-flow lan-

guage. Here a computation can only be modeled as a directed acyclic graph, which is too restrictive for most

conventional parallel programs. Accordingly, work-flows are developed as tools or engines for managing inter

dependent tasks, never as language alternatives.

Imperaࣅve Languages

Work on 80’s and 90’s such as Occam 59, Linda 27, PLITS44, and Concurrent CGehani & Roome are examples of

languages that are built with explicit emphasis on parallelism. Most, if not all, of these languages are variants

of Hoare’s communicating sequential processes (CSP) 57. They model the computation of a parallel program

as decomposed among a set of processes that interact with one another by exchanging messages. Their differ-

ences lie mainly in how they expose communication channels used by the processes to the programmer. Such

an interpretation of a program is, however, too coarse-grained for most cases of high performance parallel

computing, as mentioned in 51. To elaborate, it is easy to view a client-server application as communicating

sequential processes, but the same is not true for a system of linear equations solver. Unfortunately, the latter

– not the former – represents the kind of problems that are dominant in parallel computers. Consequently,

CSP languages, although quite successful in operating system and distributed system programming, did not

become main-stream in the arena of parallel programming. Interestingly enough, an MPI program is hardly
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anything more than a CSP.

Parallel programming languages that came out in recent years are, in the contrary to their predecessors, di-

rected towards high productivity65. Chapel 30, X10 32, and Fortress 83 – the three DARPA funded languages

– have manifold features for expressing, grouping, and mapping parallelisms. Fortress even has all its expres-

sions treated to be parallel by default. Benchmark programs written in these languages often run on par with

equivalent MPI programs, but the languages’ future wide adoption is still uncertain.

A wide assortment of features can make efficient compiler development for these languages difficult, and so

far theyhave limited success in that regard. Further, a language that allows you to express all formsof parallelism

is not necessarily the language that guides you to choose the appropriate form for a particular problem, and in

our opinion that is precisely the problem with contemporary parallel programming language initiatives. The

desire to support everything may also lead to poor performance. Fortress is a glaring example of this problem.

The project itself has been terminated due to lack of efficient implementations of proposed features.

Among the few parallel programming languages that ever emphasized learn-ability, NESL 21 is most notable.

NESL asks a parallel algorithm to be understood as characterized by two parameters: work and depth. The

work is the total amount of computation involved and the depth is the number of steps. The running time of a

programon a fixed number of processors can be estimated by analyzing these two parameters of the underlying

algorithm. The programmer is expected to write a code that strikes the optimal balance between its work

and depth. A mechanism introduced in NESL called nested data parallelism has also received a wide acclaim.

Programs exhibiting nested data parallelisms can be transformed by a compiler into flat data-parallel programs

that run efficiently in most parallel computers. Many interesting programs are, regrettably, not nested data

parallel. So NESL has a limited applicability.
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2.1.4 Domain Specific Parallel Languages

Finally, developing domain specific languages (DSL) and toolkits is an emerging trend in high performance

parallel programming66. ADSL grows from a general purpose language and provides efficient application spe-

cific abstractions for common data structures and problem patterns. There are frameworks to develop DSL

over low-level primitives such asMPI and threads74, and the performance of DSL programs are often compet-

itive to general purpose language implementations. Nevertheless, as their nature suggests, they cannot be the

solution for high performance parallel computing in general.

2.2 Hardware Modeling in Parallelism Approaches

Earlier attempts on introducing parallelism, regardless of the specific form they took, were much more con-

cerned about expressing different forms of parallelism than efficient realization of those expressions. Given

performance is the central concern, many projects failed due to the lack of it originating from the absence of

hardware support for efficient implementations of parallel primitives or incorrect modeling of the hardware it-

self. Snyder in his seminal work ‘TypeArchitectures, sharedmemory, and the corollary of amodest potential’ 82

explicates this problem at length.

Snyder posits that a language should expose a type-architecture of the environment where a program will

run. The type architecture working as an intermediary between the hardware and the language should expose

key hardware facilities available with their associated costs so that the programmer and the compiler both can

perform appropriate optimizations in the process of translating a parallel algorithm into an efficient executable.
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2.2.1 Parallel Type Architectures

Although the notion of type-architecture remains attractive since its proposal, few parallel type architectures

have been proposed so far and there is none that has been universally accepted. Some are not even formally

presented as type architectures.

PRAM or paracomputer was proposed in 1980’s by Schwartz79 and implicitly accepted by the theory commu-

nity as a type architecture. PRAM’s view of a parallel execution environment is of an arbitrarily large number

of identical processors sharing a commonmemorywhere any number of processors can read andwrite simulta-

neously at a unit cost. The problem with paracomputer is that it is unrealizable. Although it makes designing

parallel algorithms easy, Snyder deftly explains how its impracticality can easily fool someone into unwittingly

choosing sub-optimal algorithms 82.

SIMD or Single Instruction Multiple Data type architecture 81 was temporarily popular in 1970s and 1980s

during the time of machines like CM-1, CM-2, ILLIAC IV, SIMDA, etc. A SIMD machine is described as

a computer system that has a controller unit and a fixed number of processing elements that are connected

by some interconnection network. The controller unit broadcasts an instruction to the processing elements

and the processing elements that are active at that time all execute that instruction on different pieces of data.

Present day accelerators’ Single Program Multiple Data (SPMD) execution model can be tracked back to a

SIMD origin, but pure SIMD is no longer a candidate for type architecture for modern machines.

CTA is offered by Snyder as an alternative to PRAMas the first CandidateTypeArchitecture, hence the name.

CTA describes a parallel hardware as a finite set of sequential computers connected by a fixed, bounded degree

graph, with a global controller 82. CTAmay be a good choice for describing purely distributedmemory systems
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of last decades, for present day hybrid machines, it is plainly inadequate.

Systolic Architecture gained some momentum in late 1980s and early 1990s63. CMU’s Warp ma-

chines are good examples of this architecture. In a systolic system, data flows out from the computer memory

in a regular order, passes through a series of processors, and then returns back to thememory. Multiple indepen-

dent series of processors, aka assembly lines, work simultaneously to provide parallelism. Systolic systems offer

a data-driven programming paradigm that is fundamentally different from the instruction-driven paradigm of

Von Neumann architecture that is at the heart of present day parallel machines. Since multiple operations can

be done on a single piece of data, systolic systems are better able to balance computation with IO. Regardless,

systolic architecture is suitable only for highly specialized systems – not for general purpose parallel computing

– as it is difficult to map most algorithms to its restrictive model.

LogP and LogGP type architectures are proposed for distributed memory machines 35 12; and unlike the

previous two examples, they take a parametric approach to type architecture description. LogP describes a

machine in terms of four parameters: communication latency (L), communication overhead (o), minimum

gap in successive communications (g), and finally processor count (P). Later the proponents added another

parameter (G) for capturing long message communication bandwidth to form LogGP. It is possible to gauge

the expected performance of an algorithm to a great precision using LogP or LogGPparameters, but onemight

find it difficult to imagine how a programming language’s features can embody those parameters.

PMH or Parallel Memory Hierarchy describes a parallel computer as a tree of modules that hold and com-

municate data with only leaf modules being able to do computations 13. Each level in the hierarchy has four

attributes: the size of memory blocks, memory capacity in terms of blocks, communication delay in transfer-

ring a block between a parent and a child, and child count. Although PMH is better suited than the previous
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examples in capturing the hierarchical nature of recent parallel architectures, its lack of concern for processing

capacity and elimination of direct module-to-module communication within a level make it too conservative

a type architecture for many high performance computing problems.

PGAS is proposed more as a programming model than as a type architecture Stitt, but essentially it serves

both purposes. PGAS or PartitionedGlobal Address Space describes a sharedmemory execution environment

composed of sequential processors. The shared memory is, however, not a conventional single unit; rather it

is the collective sum of the local memories of individual processors. Each processor has access to the entire

memory but access time varies depending on the locality of the reference.

OpenCL orOpenComputing Language offers a programmingmodel and a hardware abstraction both at the

same time 85. Its type architecture description is of a host CPU and any number of attached OpenCL ‘devices.’

Each such device contains one or more ‘compute units’ each of which holds one or more SIMD ‘processing

elements’ to execute instructions in lockstep. There are four types of memory: a global device memory, a small

low-latency read-only memory, a per unit shared memory, and finally a per element private memory. One or

more of these memories can be missing in a particular platform. This is quite a rigid description to be general

purpose. HenceOpenCL is restricted to hardware accelerators and to some cell processors andmulticore CPUs

only.

2.2.2 Type-Architecture Based Languages

Early attempts on type-architecture based languages are few and far between. Most of those languages suffer

due to the inadequacy of the type-architecture as well as the lack of important parallel features in the languages.

Snyder’s ownPoker72 programming language suffers fromdifficulties inmappingmany algorithms to theCTA
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type-architecture. His subsequent type-architecture base language ZPL uses the same type architecture 82 and

found to performwell onCraymachines though. Type architectures such as LogP 35 andLogGP 12 serve asmore

of an analysis tool and, to the best of our knowledge, never beget any language. Space Limited Procedures 14

and Sequoia43 18 are two languages developed with PMH as the underlying type-architecture. These languages

are restrictive in the sense that they provide no support for communication between parallel task units that

rules out many common computational problems.

In recent years, there is a renewed interest for type-architecture based languages among which PGAS lan-

guages are most prominent. Co-array Fortran73, Titanium97, UPC42, Chapel 30, and X10 32 are all PGAS lan-

guages. The first three are extensions to sequential base languages and the last two are built-from-scratch par-

allel languages. These languages make a tradeoff between hardware modeling and programming features en-

richment that is different from that of their earlier type-architecture based counterparts. In the contemporary

languages, the primary focus is still on enabling diverse forms of parallelism, but mechanisms have been pro-

vided to make those features sensitive to the PGAS model of the target execution platform. In particular, all

these languages allow programmatic control over computation and data locality.

Although to a lesser extent, similar development can be observed in parallel functional languages. For exam-

ple, Legion 19 is a functional language follow-onof Sequoia 18 that uses PMH. Surprisingly, the type architecture

aspect is not highlighted in Legion publications, making it hard to gauge PMH’s impact on the language. Nev-

ertheless, Legion supports hierarchical partitioning and programmer controlled mapping of those partitions

to different layers of a hardware. At the time of this writing, two domain specific languages have been built on

top of the Legion programmingmodel andLegion has a compiler that generates executable formulticore-CPU

+ GPGPU hybrid platforms.
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Coprocessor Languages

Coprocessor languages such as CUDA andOpenCL also fall into the type-architecture based language category

as their efficient usage depends on the proper exploitation of hardware features exposed through the respective

language paradigms.

CUDA71 is the programming tool used for NVIDIA GPGPUs. Initially it was deemed to be difficult, but

GPGPUs’ popularity in high performance computing gave it a rapid surge in acceptance. CUDA follows the

footsteps of earlier SIMD/SPMD languages (C*, pC++, C**, DataParallel C)with additional features tomanip-

ulate memory unique to NVIDIA architectures. A CUDA program is a C or Fortran program with functions

to be offloaded to the accelerators and additional instructions for data transfers between a CPU host and ac-

companying accelerators. The programmer needs to understand the inner working of the accelerator threads

and details of memory access to make his/her offloading functions to behave correctly and efficiently.

The OpenCL 85 standard has a strong CUDA heritage and was originally targeted for accelerators only. Re-

cently, it has become more of a standard for parallel programming for multicore CPUs and GPUs alike. It is,

however, unlikely to be successful beyond single work-station machines as the OpenCL type architecture is

inapplicable to distributed systems.

2.3 The Current Landscape of Parallel Compuࣅng

After several decades of research on parallel computing, the dominant mode of parallelism is still low-level

sequential languages extended with parallelism support. As mentioned earlier, MPI is the standard for parallel

computing in distributed memory supercomputers and workstation clusters. OpenMP and Pthreads 25 both

25



are immensely popular in sharedmemory systems. CUDAhas become the standard of parallel computing in all

NVIDIAGPGPUplatforms. All these tools perform excellently in their respective target platforms. Although

producing optimized code using these tools is an engaging endeavor, they have a low learning curve andwriting

a moderately efficient program is often quite easy.

The problem arises with the advent of hybrid architectures. Some of the most powerful supercomputers of

the present such asTianhe-2 top, Titan tit, Stampede sta, andMira 1 are all hybridmachines. Hybrid architectures

are becoming the norm even in the personal computing domain as currentlymost desktop and laptop comput-

ers come with a multicore CPU and an accelerator. These trends portend trouble for low-level programming

approaches as combining those tools in a single program to get the best out of a hybrid platform is considerably

difficult. Furthermore, the paradigm differences in MPI, CUDA, and OpenMP make it a daunting task for an

average programmer to correctly combine them.

This productivity problem is the principal motivation behind X10 and Chapel, two prominent high-level

parallel programming languages under development. Both projects were initiated in the beginning of the new

millennium through DARPA HPC initiative, have ongoing industry support, and dedicated development

team. Both languages have many features allowing expression of a wide variety of parallelisms. On the other

hand, their low-level building block elements regarding computation and data locality allow a programmer to

some extent control the runtime behavior of the high-level parallel constructs.

Unfortunately, even after a decade of development, both languages have limited success in generating ef-

ficient executable for large-scale system. At the time of this writing, Chapel has its compiler for multicore

CPUs generating efficient binaries, and according to Chapel developers, the binaries generated for distributed

shared-memory supercomputers exhibit mixed performance due to communication inefficiencies 29. Support-
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ing hybrid supercomputers having both multicore CPUs and accelerators is still a future concern. X10 has a

java compiler for multicore CPU platforms. The distributed shared-memory X10 compiler, however, works

for IBM’s blue-gene Q systems only.

It seems to us, these two languages will continue to have significant challenges in generating efficient code

for large scale PGASmachines due to having features (e.g., X10’s arbitrary nesting of dynamic parallelism) that

are difficult to implement efficiently at scale. Furthermore, the failure of the PGAS model itself in accurately

describing present-day deeply hierarchical and heterogeneous hardware architectures should continue to be a

significant barrier for Chapel, X10, and other PGAS languages’ good performance.

2.4 PCubeS + IT Paradigm against Contemporary Parallel Soluࣅons

2.4.1 Differences in Philosophical Foundaࣅons

ThePCubeS + IT programming paradigm is based on the observation thatwriting an efficient parallel program

requires reasoning about hardware features in all four component activities identified by Foster46. So hardware

concern should not be an afterthought that applies only at runtime mapping of a finished program’s features

to processing units as done in X10, Chapel, or Legion; rather the entire program development process should

be cognizant of the hardware features and their costs.

Despite of its hardware-centric program development approach, the paradigm has to be portable across di-

verse parallel platforms to be a practical alternative to existing tools that are intended and tuned for specific

platforms. This is a major problem in languages like X10 or Chapel that their applicability is limited beyond

the PGAS type hardware platforms. On top of that, those platforms already support efficient low-level pro-
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gramming alternatives to the emerging languages.

To elaborate on that note, the type architecture in the proposed paradigm serves as a common grammar to

describe diverse types of hardware architectures and aids in efficient program development as opposed to as a

template description of a specific architecture that rules out many others. This is a very important distinction

PCubeS has with other type architectures, and the main reason PCubeS describes machines in-terms of their

programming capabilities and allows multiple machine models for the same hardware.

Further, PCubeS + IT paradigm strives to make writing highly efficient programs simple instead of just

enabling them. In that respect, the paradigm surpasses even tools like MPI and OpenMP. For example; it is

true that highly efficient, cache-sensitive code can be written using OpenMP; but it is much easier to achieve

the same feat using IT. This behavior is part of the paradigm’s broader philosophy ‘the medium is the message’

which suggests that an effective programming paradigm should serve not only as the tool but also as the guide

towards developing efficient programs.

Finally, PCubeS + IT paradigm emphasizes that the execution-time behavior of a program should be ob-

vious from its source code description and the machine model of the target platform. This principle leads to

the breakdown of responsibilities where the programmer decides everything about his/her program behavior

and the compiler only efficiently implements those decisions. Further, this principle requires PCubeS + IT to

have a heightened interest in readability and performance debugging compared to existing low and high-level

parallel programming alternatives.
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2.4.2 Differences in the Language Development Approach

Underlying philosophical differences, as expected, make IT a very different kind of language than others. The

distinction will be apparent in subsequent sections. Each language or tool brings in some unique flavor and

style in the art of programming. It is difficult to make a qualitative comparison of programming tools and

techniques in terms of their features set. Therefore, that comparison is skipped here.

Nevertheless, it is important to draw attention to an important difference between IT and other ongoing

parallel programming research projects regarding the nature of the language development. From the onset of

the project, the decision was to keep an extremely lean language definition and add, remove, or change features

based on their feasibility and performance across target platforms. This strategy has the direct consequence

that IT already has three compilers for three different platforms in only three years while X10 and Chapel,

bogged down with their extensive feature sets, are yet to support more than two platforms even after a decade

of development.

This may raise the question if the proposed paradigm is just an academic endeavor without a vision for

practical usage in the future as real-world applications widely vary in feature requirements. The answer is NO

butwith a caveat. The project at the current stage is an ongoing investigation onproductive, high-performance,

parallel programming in a portable fashion for present and future parallel systems. As the language continues

to mature during the investigation, plans on making it available for the community will be made.

Regarding future adoption, IT is likely to face fewer obstructions than other recent proposals because IT

does not try to replaceMPI/Pthreads/CUDA– rather IT compilers are built over those tools andwill continue

to benefit from their improvement – IT only argues that those tools should be part of the compiler infrastruc-
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ture as opposed to details that a programmer has to deal with. This reliance on existing technologies will make

it much easier to port IT across platforms than other recent languages that strive to replace those technologies.
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3
PCubeS Type Architecture

This chapter presents the type architecture foundation of my proposed programming paradigm. This chapter

starts with a brief discussion on the current trends on parallel architectures to set up the context for my type

architecture. As the notion of type architectures may be unknown tomany, a short introduction to type archi-

tecture succeeds the discussion on trends. That is followed by a discussion onmy PCubeS type architecture, its

elements, and design principles. To provide some practical examples of how present day parallel architectures
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can be described using PCubeS, detailed case studies of two supercomputers’ PCubeS modeling are presented

at the end.

This chapter is an abridged version of our technical report on PCubeS available here94. I also encourage

interested readers to look at Snyder’s seminal work on Type Architecture 82 that I refer to many times in this

chapter.

3.1 Current Architectural Trends in Parallel Hardware

One of the most significant differences of present day both large and small scale parallel architectures from

architectures of just a decade ago is that they tend to be constructed out of building blocks that are parallel

computing units themselves. For large scale parallel systems, this trendmeans that purely sharedmemory such

as SGI’s Blacklight or purely distributed memory such as IBM’s Blue Gene L systems of yesteryears are now

extreme rarities. Machines like Blue Gene P and Q systems, next generations of L and dating only a few years

back (2007 and 2012 respectively), or theRanger supercomputer inTACC (2008)were already offering a hybrid

computing environment connecting multicore processor nodes in a distributed manner. This trend is further

intensified as recent machines such as Stampede and Titan have not only multicore CPUs but also hardware

accelerators within nodes to offload computations from the former.

This push toward hybrid architectures is not for any conceptual clarity or programmatic simplicity; on the

contrary, hybrid architectures make it more difficult to achieve those objectives. The push is due to memory

and power wall barriers that have become 16 major concerns in computer architecture since the beginning of

this millennium. As these concerns are unlikely to go away in near future, proliferation of hybrid architec-
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tures should continue, and proper attentionmust be given to their deep processing andmemory hierarchies in

programs for effective utilization of available capacities.

Let us briefly examine the component and overall architectures of typical, present day large scale parallel

computing platforms to better comprehend their hierarchical nature.

3.1.1 Node Architectures

A typical supercomputer of current time has multicore CPUs, hardware accelerators, or one or more of both

as a node. The number of processor cores per CPU varies significantly from supercomputer to supercomputer.

For examples, an IBM Blue Gene Q system uses 18-core PowerPC, Stampede 8-core Intel Sandy Bridge, and

Titan 16-core AMD Opteron as their multicore CPU nodes. Sometimes the individual cores are simultane-

ously multithreaded such as the 4-way multithreading of PowerPC cores. That further multiplies the parallel

processing capacity of the CPU.

These cores are general purpose execution units and typically have their own L1 and L2 caches and share an

L3 cache among them. A memory controller connects an external RAM to the CPU to be equally accessible

to all the cores. Figure 3.1 shows the block diagram of a 16-core AMD Opteron CPU as an illustrative example.

We already see a rich hierarchy in the architecture of a single CPU that should be taken into considerationwhile

writing a high-performing program.

At the same time, hardware accelerators that were initially popularized by the gaming industry and com-

puter graphics are becoming increasingly common in supercomputers. For example, Stampede has an Intel

Xeon Phi co-processor alongside 2 Sandy Bridge CPUs and Titan has an NVIDIA Kepler K20X alongside the

AMD Opteron CPU in each compute node. Consider an NVIDIA GPU, the difference between a multicore
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Figure 3.1: A 16-Core AMDOpteron CPU (Source: AMDCorporation)

CPU and the GPU is that the latter has a large number of streamlined, simple cores running in parallel in a

SIMD (Single Instruction Multiple Data) or SPMD (Single Program Multiple Data) manner as opposed to

the independent processing model supported in the heavy, general purpose cores constituting the former. A

large number of scientific computations have significant regularity and data parallelisms that these GPUs are

particularly suitable for, explaining their popularity.

Just like a contemporarymicroprocessor, accelerators have a hierarchy in the organization of their processing

elements, and it is critical to give proper attention to that for efficient utilizationof these hardware. For example,

if we look at the construction of the NVIDIA Kepler K20X GPU that is been used in Titan, we see its scalar

cores are grouped under 14 symmetric multiprocessors that work independently of each other but share the

on board DRAM and a small L2 cache. Figure 3.2 depicts the block diagram of the GPU a. Each symmetric

aK20X GPUs used in Titan have one SM disabled ana. So the number of active SMs is 14 – not 15.
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Figure 3.2: Block diagram of a NVIDIA Kepler GPU having 15 SMs (Source: NVIDIAWebsite)

multiprocessor (SM) can run upto 2048 threads by multiplexing them to its 192 scalar cores a. An SM has

a small, 64 kB, memory to be shared by the cores. Furthermore, these threads do not work independently –

they get dispatched as groups of 32 lockstep threads that are called warps in NVIDIA terminology. Shared

memory access alignment within the threads of a warp, and global memory access alignment among successive

transactions made from an SM are critical for good performance in this environment.

A similar, albeit different, hierarchical decomposition can be discovered in Intel’s Xeon Phi co-processor b;

the only other accelerator currently been extensively used in high performance computing.

To summarize our discussion on node architecture, we see two points coming out as important. First, there

is significant processing power and memory capacity available within a single node; and second, it is inappro-

aThere are 2688 scalar cores in total.
bEach Intel Xeon Phi core has a vector processing unit that can execute 16 single precision or 8 double precision oper-

ations per cycle.
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priate to view a node as a flat collection of processing units. Apart from in programming large-scale machines,

this trend has significance in the domain of personal computing too. As recent personal computers and work-

stations are regularly equipped with powerful multicore CPUs and one or more accelerators, it is possible to

view them as good candidates for small and medium scale scientific computing. Consequently, programming

frameworks that can simultaneously support both domains have the potentials for bringing great benefits.

3.1.2 Supercomputer Architectures

Turning our focus from individual nodes to entire supercomputers, the first noticeable thing is their sheer scale.

Titan has 18,688; Stampede has 6,400; andMira, a Blue GeneQ system, has 49,152 compute nodes. Given that

the demand for more computation power always outstripped the capacity available, this trend towards larger

and larger machines is unlikely to stop.

It is unthinkable to wire suchmassive numbers of nodes directly to one another. At the same time, connect-

ing them in auniform fashion through a sparse networkdoes not give good communicationperformance either.

Therefore, a typical supercomputer has multistage interconnection network or networks that divide the nodes

into densely connected subgroups that are further connected by high-in-bandwidth communication channels

of progressively sparser topologies a. Evidently, the interconnection network of a supercomputer has been sub-

jected to a hierarchical breakdown too. Nature of this breakdown can make a particular application more or

less efficient in a particular supercomputer.

For example, the nodes of Stampede are connected by a two-level fat tree Infiniband interconnect sta. Figure

3.3 illustrates the topology. It is obvious from the figure that all else being equal, a communication between a

aAs an alternative, some supercomputers use multi-dimensional torus networks.
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Figure 3.3: Stampede’s Interconnection Structure (Source: Texas Advanced Computing Center)

pair of nodes within a single leaf should complete significantly faster than that between a pair of nodes belong-

ing to different leaves.

InMira, each compute rack or cabinet hosts 32 compute drawerswith 16 drawers forming amid-plane. A sin-

gle mid-plane hosts 512 compute nodes that are electrically connected into a 5D torus topology, and beyond the

mid-plane level there are only optical connections 1. Again the differential nature of communication becomes

evident.

From the programming perspective, this suggests that treating nodes differently based on their relative po-

sitions in the interconnection network may provide performance advantage. Some recent research, e.g. one

done on Blue Waters system on topology sensitive MPI codes, bolsters that assumption75 – here we need to

have some reservation a.
aAlthough it has been shown that if the nature of communicationswithin a program exactlymatches the interconnec-

tion topology of its execution platform then the potential for performance advantage is great, that is unlikely to happen
for most programs46. Furthermore, graph mapping itself is an NP-complete problem; therefore, programming effort on
such mapping even when it exists is prohibitive. Rather, we believe, considering positional difference at the group level
such as intra-leaf and intra-plane as oppose to across-leaves and across-planes within programs is both manageable and
beneficial.
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3.2 Type Architecture Fundamentals

The huge capacities of present daymassively parallel architectures may appear impressive, but historically their

computational power was never quite enough to satisfy the demandmade by their contemporary applications.

This is because most interesting scientific applications are quadratic or above in their runtime complexity.

Therefore, only a modest improvement in problem size and running time can be achieved through a linear

increase of processors that parallelism offers. The exponential growth of data in large scale data analytics while

each technological advance merely doubling available machine capacities, has made this demand and supply

disparity even more intense in recent years.

It is not that we were unaware of this problem before. It has been identified as early as in 80’s. Snyder in his

1986’s seminal article ‘TypeArchitectures, sharedmemory, and corollary ofmodest potentials 82’ points out that

it is crucial to translate all of the capabilities of a parallel execution platform into useful computation, rather

than losing much of that in implementation heat, to even modestly keep up with the growing demand of the

applications. He argues for a hardware sensitive programming paradigm for writing parallel applications, and

in so doing introduces the notion of a Type Architecture.

Snyder describes the endeavor of writing a program as a two steps translation process: from algorithm to

program then from program to executable. The programmer is responsible for the first transformation and

the compiler for the second. Overheads should be scrupulously avoided in both steps for the sake of efficiency.

Given that the programmer did his/her best in writing the program, unwanted overheads may still arise due to

limitations of the abstract machine model exposed by the programming language that works as the medium

of communication between him and the compiler. Depending on how the language defines it, the abstraction
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can be prohibitively expensive so that he/she has to work against it to get the program to run efficiently in a

particular environment or it can be so low-level that he/she can write programs for only a particular class of

hardware.

There is a rift between high and low-level programming techniques regarding the role their underlying ab-

stract machine models play. Most high-level languages present a simple abstract machine model of the execu-

tion environment to simplify coding and enhance portability of written codes, but that model provides close

to no guidance for efficiently exploiting the features of the environment. Thereby, it is often difficult to get

good performance in high-level languages. On the other hand, low-level programming techniques make the

programmer deal with minute details of the execution environment. Their abstract machine model is effec-

tively the bare hardware. Hence efficiency can be attained, but with considerably greater programming effort

and at the expense of program portability.

To resolve this tension between high and low-level programming techniques and combine the best of both

worlds, Snyder proposes to adopt an idealized machine model that should serve as the standard hardware-

programming language interface, and thereby provide the foundation for themachine abstraction of any paral-

lel programming language. This interface is called the Type Architecture. In other words, the type architecture

is a description of the facilities of hardware. To be effective, the type architecture description should bear the

following two characteristics.

1. A type architecture must expose the salient architectural features of a hardware

2. And, it must accurately reflect the costs of those features

It is important to understand the distinction between a type architecture and the programming model, for-

mally known as the abstract machine model, of a programming language. For example, the Von Neumann
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architecture can be considered a type architecture for sequential machines. FORTRAN69 and Lisp67 present

two different machine models on top of that. FORTRAN offers a programming style that fosters generic ar-

ray operations; in contrast, Lisp offers a programming style that relies on recursive list manipulations. The

type architecture here tells how the operations and primitives of these languages will be translated and how

well they should perform in an execution platform. A successful programmer internalizes the cost of model-

to-architecture translation and chooses his/her primitives and operations accordingly to write an efficient pro-

gram.

To understand the different roles an abstract machine model and a type architecture play in programming

from an alternative angle, consider the pseudo code of an algorithm. A type architecture description tells the

programmer how to assess the efficacy of the algorithm on a target execution platform. The abstract machine

model, on the other hand, tells him/her how to implement the pseudo code in a particular programming

paradigm supported by that platform.

The further the abstract machine model goes away from the actual type architecture the more difficult it

becomes for the programmer to make a correct assessment about the performance of his/her program. Con-

sequently, the algorithm he/she uses may be inappropriate for the underlying execution platform. This is not

a problem when performance is not a major concern, and that is often the case for sequential programming

paradigms. That is, however, definitely not the case for parallel computing.
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3.3 Parࣅࣅoned Parallel Processing Spaces

The formal description of our proposed type architecture, ThePartitioned Parallel Processing Spaces (PCubeS),

is as follows.

PCubeS is a finite hierarchy of parallel processing spaces each having fixed, possibly zero, compute

and memory capacities and containing a finite set of uniform, independent sub-spaces that can

exchange information with one another and move data to and from their parent.

Before we define parallel processing spaces in more detail, we have two things to add on Snyder’s notion of

type architecture that are fundamental to our proposal and essential to understand the elements of PCubeS.

Programmability: Snyder uses the term ‘structural feature’ and ‘facility’ interchangeably. This is because

he ismore concerned about describinghardware features than about how they canbeput tomeaningful use in a

program. We believe this approach of – describe first then derive programmingmodels – is not right as the type

architecture is intended for standardizing the hardware-language interface, and an interface design has to take

into account the demands of both sides. Thus, in our opinion, a type architecture description should rather

focus on the programmatic usage of hardware’s structural features than on their actual working principal. To

make the idea concrete through an example, the description should not bother if a vector is implemented as a

pipelineor a SIMDlane. That thedescribedhardwarehas a vector shouldbe theprimary concern. Furthermore,

if the hardware is good for multiple modes of programming – as many contemporary supercomputers are –

there may be multiple type architecture instances for it describing its features from different programming

perspectives.

Parameterization: we think parameterization is needed for any type architecture description to enable
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a programmer to make accurate estimation of the performance of his/her algorithm for a particular input set.

To understand why it is important, imagine a CTA description of a parallel hardware where processors are

connected through a complete binary tree network configuration. From the description, a programmer can

deduce that on an average communication between a pair of processors should take steps logarithmic to the

number of processors. To determine how frequently a processor should communicate and what should be

the individual message sizes to balance computation with communication, however, he/she needs to know

the actual latency and bandwidth of the network. Lack of such information hurts CTA’s applicability. On the

other hand, a type architecture description in terms of such values such as in the case of LogP should be avoided

as that obstructs programmability. We believe a PMH 13 like description that has a core model parameterized

by actual values is the proper middle ground. The programmer can use the model to design the algorithm and

then the parameter values to assess a program’s runtime performance.

3.3.1 Elements of PCubeS

Let us now characterize the elements of PCubeS to better understand how this type architecture can be used

to describe present day parallel machines.

Parallel Processing Space (PPS): the notion PPS is used to describe any part of a parallel hard-

ware or the entire hardware itself where a computation can take place and/or data can reside. For example, in

case of a multicore CPU, both the CPU and its individual cores are spaces, the latter lying within the former as

sub-spaces. From the perspective of the former, the latter are its Parallel Processing Units (PPU). As part of a

computation, a space can perform two fundamental operations: floating point arithmetic and datamovement.
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Capacity of a space: parallel processing and memory access capacities of a space are defined as the

number of corresponding fundamental operations that can be done in parallel. For example, a SIMD thread

group within an NVIDIA GPU’s symmetric multiprocessor has 32 operations per clock cycle as its parallel

processing capacity as 32 threads run in lock-step within each group. Note that the actual hardware implemen-

tation of a parallelization feature is not important; rather its programmatic manifestation is. This allows us to

treat cores, SIMD lanes, vector pipelines all in the same way. We believe the speed of instruction execution is

enough to expose their efficiency differences.

The memory, if it exists in the space, is characterized by its size and the number of transactions to and from

that can be done on it in parallel. We use the term transaction to represent a single load/store operation or

a communication. A transaction is further characterized by the volume of data it carries and its latency. For

example, if a read/write operation by a thread within a dual hyper-threaded CPU core involves 8 bytes of data

and takes 15 cycles to complete, and operations from both threads can take place simultaneously then the core’s

parallel memory access capacity is 2 transactions of width 8 bytes and latency 15 cycles.

Uniformity and Independence of Sub-spaces: given that an execution platform is viewed as a hi-

erarchy of spaces, it is important that there is a guiding principal for breaking larger hardware components

into smaller components to form sub-spaces – otherwise, any hardware can be described as a flat PCubeS hier-

archy having a single space only. In that regard, we use uniformity and independence as the defining factors.

Uniformity requires that not only all sub-spaces of a particular space have the same processing and memory

capacities but also their information exchange with one another and data movement to and from their parents

have the same average values for transactional attributes. Meanwhile, independence requires that operations

done by different sub-spaces are independent. Whenever both of these requirements are met for a hardware
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component then we divide its capacities into sub-spaces; otherwise we do not.

To understand how this rule works in practice, consider a supercomputer node having two 8-core CPUs.

We cannot view a node as a 2-space hierarchy where the node is the higher space containing 16 sub-spaces,

one for each core. This violates the uniformity requirement due to difference in intra-CPU and inter-CPU

information exchanges among cores. There should be another space in-between that represents the individual

CPUs to bring uniformity into the hierarchy. Similarly, the 32 lock-step threads of an NVIDIA GPU thread

block cannot form sub-spaces despite being uniform. This is because their operations are not independent.

Information Exchange: it is important that we characterize interactions between sibling spaces as infor-

mation exchanges instead of as communication or other platform specific term. This allows us to treat shared

memory and distributed memory systems in a uniform way. Furthermore, within the umbrella of distributed

memory architecture, different execution platforms may have different implementations of communication

mechanism. The use of an abstract term enables us to mitigate these differences. An information exchange

is characterized solely by its latency. We believe that is enough to capture the efficiency differences among

different modes of interaction.

For example, if we consider a shared memory environment of four CPU cores sharing an L3 cache. Then

information exchange between a pair of cores is equivalent to the sending core writing data in the cache and

receiving core subsequently reading it. The only difference between such an interaction and a read following

a write by a single core is that there should be a mutex operation signaling the completion of writing by the

former. So the latency of information exchange in this case is the latency of the mutex operation. For another

example, in a distributed memory system supporting two-sided communication, the latency of information

exchange would be that of handshaking added to the latency of actual data transfer. For a system with one-
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sided communication, the handshaking cost is replaced by the cost of setting a flag in the receiver’s memory.

Data Movement: unlike in the case of information exchange, in characterizing datamovements between a

parent space and its sub-spaces all three transactional attributes – latency, width, and concurrency – are needed.

Transaction latency and width are used to understand the cost of a single data motion between the parent and

one of its children, and transaction concurrency is used to determine howmany datamovement operations can

takeplace inparallel. For example, each symmetricmultiprocessor (SM) in anNVIDIAK-20GPUcan read and

write globalmemory at amaximum chunk size of 128 bytes that takes around 100 to 300 clock cycles. Assuming

all 15 SMs in theGPU can initiate a globalmemory operation at the same time, the datamovement between the

sub-spaces representing individual SMs and the space representing the entire GPU has transactional latency of

100 to 300 cycles, width 128 bytes, and concurrency 15 operations.

When the space under concern represents a distributed memory segment of the hardware, transactional

attributes need to be determined from the capacity of the communication channel and the settings of the com-

munication protocol. For example, if we consider the space represented by a leaf in the fat-tree network of

Stampede as shown in Figure 3.3 then the 20 nodes are its sub-spaces. In this case, transaction concurrency

for data movement is the number of concurrent flow that can go in and out of the leaf router, latency is self-

explanatory, and transaction width is the maximum amount of data that each packet within a flow can carry.

3.3.2 Design Principles

In designing PCubeS, we adopt a few principles that have programmatic significance. We will like to draw

readers’ attentions to these principles now.
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Caches as Memories

PCubeS treats hardware managed caches as if they were programmable memories. This treatment of caches is

unusual butwebelieve it is important to capture and expose the efficiency of present daymulti-level cache based

memory designs. Contemporary multicore CPUs and accelerators have significant capacities in their caches,

and often time effective utilization of these caches becomes the determining factor for good performance. For

example, a single core of an Intel Xeon Phi Co-processor has 512 KB of L2 cache and the latency ratios between

accessing that cache and accessing the on-board DRAM is about 1:10. Evidently, ignoring the L2 cache is not a

good choice.

On the other hand, treating a cache as amemorymay raise the concern that the type architecture is describing

a feature in a way that differs from its true nature. We believe that this is not a problem for two reasons. First,

a cache’s size is interpreted as the memory capacity in its PCubeS interpretation. That suggests that programs

have to be written with the assumption that at runtime the memory can hold up to the cache size amount of

data. Although actual loading and unloading of data to and from the cache is beyond programmatic control,

since the working set can fit into the cache, it will behave more or less like a memory. The compiler should be

able to generate addresses so that cache conflict is minimized or eliminated altogether.

Second, replacing the caches by programmable memories, or allowing a hardware switch for software con-

trolled management of caches is not difficult to implement in the hardware a. Such provisions can bring per-

formance benefits. As a type architecture is a vehicle for not only describing existing architectures but also for

guiding future architecture developments, emphasizing programmatic manipulation of the caches, we believe,

aSome recent AMD and Intel CPUs have primitive abilities to lock and unlock cache lines.
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is the right approach to take.

Exposing caches as memories raises another question. Which memory should be exposed when a hardware

feature has exclusive access tomultiple caches and/ormemories? This is an important concern given that a PPS

can have only one memory. At the end, the person building the PCubeS description is responsible for making

the correct choice in that regard. Nonetheless, our opinion on that can be expressed as two generic rules.

1. The largest cache/memory should be exposed as thememory of a space as it is generallymore important
to handle the largest capacity more efficiently.

2. Information exchange among sub-spaces within a space should take place through the closest/smallest
memory as it generally represents the fastest path of communication.

If there is some definite advantage in exposing more than one memory then an alternative is to model the

hardware feature as a linear hierarchy of PPSes with each PPS holding a different memory.

Contenࣅon Oblivious Modeling

It is noticeable that PCubeS does not model contention. We recognize that contention is an important issue

in parallel hardware design. For example, tree saturation or hotspot contention problem76 in interconnec-

tion networks is so significant that it has become a standard practice to have a separate network/channel in

supercomputers for collective communication, a common source of hotspots. Memory bank conflict in multi-

banked memories is another source of considerable performance loss in many programs.

One can argue that a CTA like descriptionmay be better suited in addressing hotspot contentions due to its

emphasis on the specific structure of the interconnection network, or PMH is better suited for memory bank

conflicts as it has the notionofmemoryblocks; butwe argue otherwise because contentions are very application

specific problems and just focusing on hardware features is not enough to deal with them. Therefore including
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features like memory bank size, memory stride, or network topology in the type architecture description may

not pay off. Rather there is a change that they will further confuse the programmer.

Does our approach introduce a potential gap between perceived and actual performance of a program writ-

ten over the type architecture abstraction? The chance is there as it exists in all other type architectures, but we

believe its probability can be reduced using standard programming techniques. For example, the use of prim-

itives such as MPI reduction and scatter-gather are effective in avoiding most hotspot contentions. Similarly,

a compiler can do a lot to reduce memory bank conflicts when it has significant control over memory manage-

ment of a program. Given thatwe are arguing for type architecture based programmingparadigms, we envision

that language primitives and compilers will play bigger roles in dealing with problems like contentions.

Symmetrical Space Hierarchy

Aswe havementioned earlier, an ideal PCubeS description requires that sub-spaces of a PPS are uniform. This

rule implies that sibling PPSes at any level of the hierarchy have an equal number of sub-spaces. In other

words, the hierarchy is symmetrical. We emphasize symmetry because, in our opinion, a symmetrical system is

significantly easier to both program and design than an asymmetrical system.

Many large scale parallel architectures are inherently symmetrical, e.g., Mira Blue Gene Q supercomputer 1.

Furthermore, most accelerators and multicore CPUs that are been used in supercomputers have symmetrical

organization of internal processing elements and memory modules. Therefore, PCubeS’ restriction of sub-

space uniformity readily applies.

Some hybrid systems, however, cannot be described as symmetrical hierarchies. For example, a compute

node of Stampede supercomputer has two 8-core CPUs and a 61-core accelerator/co-processor. The accelerator
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Host System

Connection to Infiniband Network

Core

L3 Cache

Memory Memory Memory

Figure 3.4: Block Diagram of a StampedeNode

cores can work just like the CPU cores or can be used to offload computations from the latter. Unfortunately,

in both programming paradigms sub-space uniformity is directly inapplicable. The first case fails because accel-

erator cores arewidely different in their capacities from theCPU cores. The second case fails because accelerator

cores cannot be uniformly distributed under the two CPUs.

Note that Stampede supports CPU-only and accelerator-only programming models. Due to the symmetry

of the interconnection network, the whole hardware can be described as a PCubeS instance for such usages.

It is only when all resources of a node are used simultaneously a problem occurs. Therefore, PCubeS is not

appropriate for all parallel architectures or their supported programming paradigms. Nevertheless, often times

a conservative PCubeS estimate can be drawn by merging sibling spaces, dividing space capacities, and often

discarding some spaces altogether.

To give an example of how this can be done, consider theCPU-to-accelerator offloading computationmodel

for a Stampede node. A block diagram of that node is given in Figure 3.4.

In the offloading paradigm, individual cores can offload small pieces of computations to the accelerator from

both CPUs, or the two CPUs can offload two relatively larger computations. This gives rise to two sub-cases,
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3 Accelerator Cores

Single CPU Core

Single CPU

Node
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Figure 3.5: TwoAlternative Symmetrical Breakdowns of a StampedeNode

and both can be conservatively described using PCubeS by ignoring some accelerator cores as shown in Figure

3.5(A) and (B). Note that in the second case, only 48 of the 61 accelerator cores can be used in a program.

Whether a conservative estimate is worth consideration or not depends on the hardware and its expected

usage. In the case of a Stampede node, the second description seems to be quite wasteful; thereby should be

avoided. Despite these kind of problems, we stick to the uniform sub-space requirement because of program-

ming simplicity.

Furthermore, we would like to encourage parallel hardware manufacturers to adopt symmetrical designs

throughPCubeS. In our opinion, an asymmetric organization of componentsmakes it difficult to reason about

actual runtime behavior of a program. For example, all 61 cores of the Intel Xeon Phi accelerator/co-processor

can be utilized by the 16 cores of the two Sandy Bridge CPUs in a Stampede node, but it is difficult to imagine

any offloading scheduler for the co-processor other than a work-pool for such usage. A symmetrical decom-

position with 48 or 64 co-processor cores provides more scheduling alternatives. Common wisdom suggests it

should not be difficult to restrict the number of cores to 48 or increase it to 64 in the hardware.
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3.4 Mapping Hardware Architectures to PCubeS

If we compare PCubeS with other previously proposed type architectures; we see manymachines described by

CTA, SIMD, PMH, and PGAS that can also be described using PCubeS. Most supercomputers of yesteryears

such as purely distributed machines and purely shared memory machines are instances of PCubeS. Many clus-

ters of workstations and even clusters of such clusters fall under PCubeS category. Most present day super-

computers that have only multicore CPUs as nodes such as Blue Gene P and Q systems are PCubeS instances.

More complicated cases are the ones that have both multicore CPUs and accelerators within nodes. PCubeS

can describe many of them too. To show how this can be done, we take the Titan Supercomputer tit of Oak

Ridge Leadership Community Facility as a case study for PCubeS.

3.4.1 The Titan Supercomputer: a Case Study

Titan has 18,688 compute nodes. Each compute node contains a 16 core AMDOpteron CPU and anNVIDIA

Tesla K20x GPU. Two nodes share a single Gemini interconnection router and the interconnection network

connects these routers in a 3D torus topology. The underlying philosophy in Titan’s design is to let the GPUs

do the heavy lifting of a scientific application and use theCPUsmostly as coordinators of activities in theGPUs.

Within that paradigm, there are two use cases to consider for a node.

1. A single activity offloaded to a GPU by its accompanying CPU consumes entire GPU capacity

2. Individual cores within a CPU offload relatively smaller, parallel computations to the GPU

Given that GPUs are not efficient in handling irregular parallelism, for some applications, doing the heavy

liftingwithin theCPUsmay be the right approach. This gives us the third programming paradigm for the node
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3. CPU cores compute pieces of a parallel computation and coordinate their results

The network connecting the nodes is only a medium for communicating intermediate results of computa-

tions generated by individual nodes running under one of the above three paradigms. Note that PCubeS does

not allow different programming paradigms in different nodes to coexist simultaneously nor does it allow a

node to have multiple different sub-spaces. This is a limitation of our type architecture. If such behavior is

expected, this limitation can be partially circumvented by dividing the capacity of the entire hardware into

independent groups of nodes where each group runs a different programming paradigm.

What features of the GPU and CPU of a node the type architecture should expose and how they should

manifest in the description depend on the choice of programming paradigm. Before we present the salient

features of a node from the perspective of the supercomputer as a whole, however, let us derive the PCubeS

descriptions of the multicore CPU and GPU when they are treated in isolation.

PCubeS Mapping of AMDOpteron CPU

If we refer back to the block diagram of a 16 core AMD Opteron CPU61 given in Figure 1, we see that it has a

non-uniform memory access (NUMA) model. Individual cores have their exclusive 16 KB L1 cache, a pair of

cores share a 2 MB L2 cache, a group of 8 cores share a 8 MB L3 cache, then all cores have uniform access to a

32 GB main memory. CPU cores run at a clock frequency of 2.2 GHz and data paths are 64 bits wide.

Although there are 16 cores in total, two cores sharing an L2 cache share a single floating point execution

unit. Since PCubeS measures compute capability in terms of floating point instruction density, there is no

processing capacity in the lowest level of the hierarchy – there is just the memory capacity of an L1 cache per

PPU. Rather, the processing capacity is assigned to the immediate higher level, Space-2, supporting 1 operation
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Transaction width: 64 B

Memory: 16 KB
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                         Degree of concurrency 1
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Space 2:
Processing Capacity: 1 operation

Processing Capacity: None

Latency: L2 cache latency

Transaction width: 64 B

Concurrency: 1 transactions

High Low

Sub−spaces: 2

Memory: 2 MB
Speed 2.2 GHz

Processing Capacity: None

Space 1:

Figure 3.6: PCubeSModel of AMDOpteron ShowingOnly 1 PPU Per PPS

per clock cycle. A Space-2 PPU contains a pairs of Space-1 PPUs with a single 2 MB L2 cache shared among

the pair. Each space in the next level combines four Space-2 PPUs and owns an 8 MB L3 segment. The final

space represents the entire CPU comprising two Space-3 PPUs sharing the 32 GB main memory. A pictorial

depiction of the PCubeS description is given below in Figure 3.6.

In the above model, the latency of information exchange (the cost of an interaction between two sibling

PPUs of the same PPS) is not shown because we do not know the cost of doing atomics in the hardware.

Only one datamovement operation at a time can take place between a parent and its sub-spaces up to level 3

as there is only one 64 bits wide data path. Meanwhile, 4 concurrent data movement operations can take place

between Space-4 and Space-3 as the main memory is quad channeled. Finally, transaction width is 64 bytes

along each arc as the cache lines are 64 bytes long.

The assignment of memory access and data movement capacities in Figure 6 requires particular attention.

Note that the L1 cache attributes are described as transaction properties of the Space-1 memory; but, except

for the size, the attributes of other caches and the main memory are described as the transaction properties for
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data movements between adjacent spaces. This distinction is important as data need to flow into the L1 cache

from upper level caches and the main memory for any computation to be done. In addition, this interpre-

tation provides an indirect memory contention model for upper spaces through the transaction concurrency

attribute.

PCubeS Mapping of NVIDIA Tesla K20X Accelerator

ATesla K20XGPU64, shown in Figure 3.2, has 2688 streaming cores running at 837MHz clock speed and dis-

tributed within 14 streaming multiprocessors (SM). It has a 6GB on-board DDR2 RAM as the main memory

unit. Shared memory per SM is 64 KB but only 48 KB of it is accessible to programs. The streaming cores

run in lock step within each SM as a group of 32 threads known as warps and each SM can run up to 32 warps.

Each shared memory load/store operation can process 16 32-bit words and a global memory load/store is twice

that size. The PCubeS description of the hardware depicts a 3 levels space hierarchy. Figure 3.7 illustrates this

description.

Awarp represents a Space-1 unit. Parallel processing capacity of a Space-1 is 32 operations per cycle. The clock

speed is, however, only 26.16MHz instead of 837MHz aswarps are executed as pipeline instead of concurrently

and there are 32 of them. This clock speed setting in the PCubeS description is in contrast to NVIDIA’s adver-

tised value as PCubeS is focused on actual performance characteristics of warps rather than mere numbers and

structural details a. A warp has no memory. This indicates that the result of any computation needs to be

moved to the closest space with a memory, which is in this case the parent Space-2.

aIn the CUDA programming paradigm, it is possible to have just one warp running per SM. Theoretically the warp
can run at 837 MHz clock speed then. In practice the effective performance of most CUDA kernels is dominated by the
memory access latencies for such a configuration so it is discouraged.
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LowHigh

                                     Speed 26.16 MHz

Figure 3.7: PCubeSModel of NVIDIA K20X ShowingOnly 1 PPU Per PPS

A Space-2 represents an SM and holds 32 Space-1 PPUs as sub-spaces. Only one Space-1 PPU can transfer

data to its parent Space-2 at a time due to the pipelined nature of warp execution. So there is no concurrency,

but the latency is minimal. A transaction carries 64 bytes of data and takes only one memory cycle to finish.

Finally, there is only one unit in Level-3 of the hierarchy. A single Space-3 PPU represents the entire GPU.

It has 6 GB memory and holds 14 Space-2 PPUs as sub-spaces.

The PCubeS description of the accelerator resembles the hardware abstraction popularized by NVIDIA’s

CUDA programming model that also has 3 levels. Nonetheless, there are important differences to discover as

we examine the parameters. We see that PCubeS makes the limitations of the hardware more explicit. For ex-

ample, in CUDA, threads of a warp can diverge and execute different instructions. This gives a programmer

more flexibility. In reality, however, divergent paths are executed sequentially. The PCubeS description makes

divergence impossible by coupling the threads together. Such divergences in a program then need to be im-

plemented as sequential streams of less degrees of parallelism. So the programmer is aware of his wastage of
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processing capacity. For another example, data transfers between global and sharedmemory happen in chunks

of 128 bytes, but CUDA threads can issue arbitrarily small and irregular requests to the global memory. In

PCubeS, any data transfer between global and shared memory is mediated by the Space-2 unit under concern

that makes such irregular requests impossible a.

To summarize, PCubeS provides a more restrictive but accurate representation of the hardware than the

CUDA machine model – with some exceptions b. As a type architecture description and an abstract machine

model are not the same the comparison is not exact. Our point is that a programming paradigmwhosemachine

model resembles the PCubeS description more than that of CUDA is more likely to guide the programmer in

the right direction regarding efficient use of the GPU hardware.

PCubeS Mapping of Titan

Given that three different programming models are supported by the supercomputer, there should be three

different PCubeS descriptions for it. In the easiest case, where only the multicore CPUs can be used, we get the

description depicted in Figure 3.8.

On top of the node hierarchy presented in Figure 3.8, we have one additional level representing the pair of

nodes sharing a Gemini interconnect router. There are 18,688/2 = 9,344 such Space-5 PPUs in the machine.

Information exchange latency between a pair of Space-5 PPUs is the average latency of a packet transmission

in the 3D torus interconnection network. Notice the un-rootedness of the hierarchy. This is expected as there

is no global controller or common aggregation point for the nodes of the supercomputer.

aAgain, a program can still have irregular data reads from the global memory but the programmer is cognizant about
their inefficiency.

bAdditional memories such as constant or texture memories that are visible in CUDA cannot be used in PCubeS.
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Memory: None

Sub−spaces: 2
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Concurrency: 2 transactions
Transaction width: network’s maximum packet size
Latency: Node to router transfer delay

A Node

Figure 3.8: First PCubeSDescription of the Titan Supercomputer

Let us now consider the case where the CPU within a node works as a coordinator of computations of-

floaded to its accompanying GPU and individual computations are large enough to consume the entire GPU

capacity. In this scenario, only one core within the CPU does any useful work – the rest remain idle. So the

spaces in upper three levels of the 4 levels hierarchy presented in Figure 3.8 become memory only spaces with

branching factor 1 a. The GPU representation remains as it is. Figure 3.9 illustrates the PCubeS description for

this scenario.

One important concern in describing this kind of hybrid environments is ‘how to define the transaction

attributes for data transfer between theCPUand accelerator.’ Note that although Space-4 (aCore) is the parent

of Space-3 (a GPU) in the PCubeS description, actual data transfer takes place from Space-7 to Space-3. When

moving data out of the GPU to CPU core, data flows from Space-3 to Space-7 then from there to Space-4. As

PCubeS is silent about the actual mechanism of data transfer this is not a problem, but one has to define the

transaction attributes appropriately to derive a conservative estimate for the communication channel.

aAs an alternative, the PPSes of the CPU can be merged together to form a single PPS if it is unimportant to expose
the memory latencies.
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Space 8: A Node Pair Space 6: L3 Cache

Space 5: L2 Cache

Space 7: Main Memory

Space 4: Single Core

Space 2: SM

Space 1: Warp

Space 3: GPU

An Accelerator

A Node

Concurrency: 1 transaction

Transaction width: 64 B

Latency: Main Memory to Core latency + GPU to Main Memory latency

Figure 3.9: Second PCubeSDescription of the Titan Supercomputer

The consistent rule for deriving a conservative estimate is: set the transaction width and concurrency to

that of the least capacity link along the physical data transfer path, set the latency as the sum of the latencies of

individual links, and if there is any shared link along the path then divide its capacity uniformly. For Titan, this

gives us 1 concurrent transaction, 64 byte transaction width, and latency of main memory to L1 cache transfer

augmented with main memory to GPU memory transfer latency for data movement between Space-4 and

Space-3.

Finally, let us consider the casewhere individual cores of aCPUoffload parallel pieces of computations to the

GPU. In this scenario, we have an imbalance as there are 16 cores in theCPUbut only 14 SMs in theGPU.Thus,

we have to discard two cores and adjust the CPU hierarchy of Figure 3.8 to regain symmetry before assigning a

segment of the GPU to individual cores.

One way to do this is tomerge the two Space-3 PPUs and get rid of Space-2 PPUs altogether. Therefore, the

cores share the L3 cache and own an exclusive L1 cache but cannot access the L2. Figure 3.10 shows the final

PCubeS description of Titan after these modifications.
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Figure 3.10: Third PCubeSDescription of the Titan Supercomputer

Not shown in Figure 3.10, but transaction concurrencies and latencies of shared links need to be adjusted in

the final description where appropriate.

3.4.2 The Mira Supercomputer: Second Case Study

The Mira Supercomputermir in Argonne Leadership Computing Facility is a Blue Gene Q system. It has 48

compute racks hosting a total of 49,152 IBM PowerPC92 A2 nodes. Nodes are connected in a 5D torus inter-

connection topology and each node has 18 cores running at 1.6 GHz clock speed. This is a symmetric system

of homogeneous nodes. Nonetheless, there are important subtleties in the architecture that reveals a rich hier-

archy in the PCubeS description, as illustrated in Figure 3.11.

Down at the bottom, each core can run up to 4 hyper-threads that have access to a SIMD instruction unit of

4 words wide. So a Space-1 of Mira is a hyper-thread with a processing capacity of 4 parallel operations and no

memory. The clock speed for an operation is only 400 MHz, instead of 1.6 GHz, as there are 4 Space-1 PPUs.

In the next level, a single core with its 16 KB L1 cache represents a Space-2 PPU. As the data path is 64 bits

and hyper-threads’ data load/store happens in the L1 cache, transactions between Space-1 and Space-2 are 8 B
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Space 1: Hyperthread
Processing Capacity: 4 operations
                                         Speed 400 MHzMemory: None
Sub−spaces: None

Memory: None

Processing Capacity: None

Space 5: Midplane

Space 2: Core
Processing Capacity: None
Memory: 16 KB L1

Sub−spaces: 4

Sub−spaces: 16

Memory: 32MB

Processing Capacity: None

Space 3: L2 Cache

Space 6: Rack
Processing Capacity: None
Memory: None
Sub−spaces: 2

Latency: torus link traversal delay / 2

Concurrency: 2 transactions

Width: 64 B

Latency: main memory latency

Width: 64 B

Latency: L2 cache latency

Concurrency: 1 transaction

Latency: L1 cache latency

Concurrency: 1 transaction

Width: 8B

Space 4: Node/CPU
Processing Capacity: None

Memory: 16 GB

Sub−spaces: 1
Information Exchange: 9 links traversal delay

Informaction Exchange: register write

Sub−spaces: 512
Information Exchange: midplane crossing latency

Information Exchange: rack crossing latencyLatency: torus link traversal delay / 2

Figure 3.11: The PCubeSDescription of theMira Supercomputer
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wide. Transaction concurrency is 1 as only one hyper-thread issues a load or store at a time.

The single Space-3 PPU in the next level represents the 32 MB L2 cache shared by all cores. The common

cache line size is 64 B. So, that is the width for a transaction between a Space-3 and its Space-2 sub-spaces. A

Space-3 has 16 sub-spaces as opposed to 18 because only 16 out of the 18 cores can be used in a program. Above

the L2 cache a CPU or node constitutes a Space-4 with no processing and 16 GB memory capacities.

From Space-4, the 5D torus interconnection network becomes effective. Nonetheless, we get more levels in

the hierarchy because of the non-uniform nature of node wiring. A single compute rack of Mira holds 1024

nodes. The rack is further divided into two mid-planes containing 512 nodes each. A mid-plane is the smallest

full torus configuration where the average distance between a pair of nodes is 9 torus links. Average distance

between a communicating pair lying in different mid-planes is thus 10 links.

Therefore, the PCubeS description has two additional levels on top of Space-4 for representing a mid-plane

and a rack as Space-5 and Space-6 PPUs respectively. There are 48 racks in the system. Hencewehave 48 Space-6

PPUs in total. Like Titan’s, Mira’s hierarchy is also un-rooted as the racks are equivalent.

Notice the Latencies of information exchange among sibling spaces and between a parent and child space

starting from Space-4 and above. Space-4 siblings are the 512 nodes connected in a 4 × 4 × 4 × 4 × 2 torus

topology. So an information exchange between a pair of Space-4 PPUs has on average 9 torus links traversal

delay. Mid-plane crossing adds one more link in the communication path of two nodes. Therefore, we divide

the cost of traversing a single link into half and assign that as the cost of communication between a Space-

4 and its parent Space-5 PPU. This augmented with any additional delay for mid-plane crossing – set as the

information exchange latency in Space-5 – reflects the true average cost of communication between nodes of

opposite mid-planes. The same logic applies for nodes’ cross-rack communications in Space-6.
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3.5 Summary

Ifwe reflect on our discussion in previous sections, we realize that developingPCubeS descriptions of amachine

is an involved procedure. The choice of spaces and their capabilities depends very much on the expected usage

of the underlying features, which requires the developer to have a solid understanding of the expected usage to

begin with.

PCubeS’ focus onprogrammability over physical implementationof structural features alsomakes it difficult

to judge amachine as non-PCubeS architecture. This is different fromSnyder’s original idea of type architecture

aswe see differentmachines are easily classified asCTAornon-CTA. InPCubeS, the efficiency of the description

dictates whether the underlying hardware is a PCubeS instance or not.

For example, Sun Microsystems’ UltraSPARK T1 58 microprocessors have 8 cores. Each core can handle 4

concurrent threads and has large caches. The system, however, has a single floating point unit to be shared

among all cores. With a scheduler that gives round robin access to the floating point unit to all threads, one

can give a PCubeS description of the system. The sheer inefficiency of the description – not the infeasibility of

constructing one – shows that the architecture is not suitable for a PCubeS description.
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4
IT Parallel Programming Language

This chapter provides an overview of the language component ofmyproposed dual-part parallel programming

paradigm. After a brief introduction to IT programming, the chapter explores the language characteristics and

its abstract machine model, then provides an overview of its current features. Afterwards a linear algebra IT

program is explained in detail to serve as a practical example. A discussion on interoperability follows before

the chapter concludes.
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An in-depth investigation of IT language is avoided here lest that diverts our focus from the core research

objectives. For interested readers, a detailed description of the language syntax and its features is available in

our technical report on IT 96. In addition, a concise presentation of the entire programming paradigm can be

found in our earlier publication95.

4.1 Introducࣅon

The central concept behind the PCubeS + IT programming paradigm is to make reasoning about hardware

features an integral part of all aspects of a parallel program’s development. Despite the constant presence of

hardware concerns; we want the paradigm to be portable, programming on it to be productive, and perfor-

mance of its executable to be adequate.

On its own, the PCubeS type architecture only addresses the portability aspect of the problem. It provides

the mechanism to describe different hardware in a uniformway without hiding their salient features. Effective

utilization of those features in a programwithout overwhelming programmer effort, however, largely depends

on the ability of the underlying language being used to cleanly expose hardware features through its abstract

machine model and on its ability to encourage programming styles that are efficient.

The IT programming language is designed with those concerns in mind. As PCubeS describes a parallel

architecture as a hierarchy of physical processing spaces, in an IT program, computations take place in a cor-

responding hierarchy of logical processing spaces each of which may impose a different partitioning for a data

structure. To generate an executable the programmer needs to explicitly map these logical spaces to physical

spaces ofPCubeS. Efficient partitioning andmapping is critical for the goodperformance of a program. The im-
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plementation of computation and communication that is determined by the compiler depends on the features

of the physical spaces computations have been mapped to.

On the surface, IT may appear as another high-level programming language just like X10 or Chapel – and

several IT constructs have semantic analogs in those languages – but a key difference lies in the treatment of

these features. An IT program looks like a parallel pseudo-code with space markers controlling flow of data

and computations and their inter-dependency, data partition specification remains separate from the algorith-

mic logic, and mapping is not even a part of the source program. This gives flexibility for tuning individual

pieces of a program based on the PCubeS description of the target hardware. Separation of concerns makes it

easy to write the program and enhances its readability. Finally, emphasis has been given to avoid any compiler

introduced non-deterministic overhead in the program.

To summarize, IT forces the programmer to be cognizant of the features of target architectures when de-

veloping an algorithm as in low-level programming, but allows him/her to express the program over a broadly

applicable and portable hardware abstraction as in the high-level programming, and encourages him/her to

learn how to exploit hardware features by establishing a clear relationship between the source code and its

runtime performance.

4.2 IT Programming Model

The paradigm asks a programmer to first break a program in a top-down manner into cooperating tasks. The

executionorder of tasks is determinedby their data dependencies and availability of physical resources in the tar-

get platform. The execution platform and the data structures located in it constitute a program’s environment.

65



The execution of a task changes the environment by updating existing data structures and adding new struc-

tures that may be needed at later time for subsequent tasks. By-products of tasks that are not finally written

to external files are automatically garbage collected. An example of IT task breakdown is a conjugate gradient

programwhere matrix-vector multiplication, vector dot-products and so on are the individual tasks. The gran-

ularity of the individual tasks is subjective, but the guideline is to restrict tasks to independent program units

that use a particular arrangement of data.

Beneath the task level parallelism resides the data parallelism of compute stages within a task (computation

stages are similar to procedures in conventional programming languages). A task specifies the logic of the par-

allel algorithm as a sequence of compute stages executing in one or more Logical Processing Spaces

(LPS) within a Computation Section. The relationship between these logical spaces and how data structures

are partitioned within each space are specified in an accompanying Partition Section. The partition specifica-

tion dictates the number of groups of data structure pieces or partitions – we call them Logical Process-

ing Units (LPU) – in each logical space. Each LPU runs independently in data parallel fashion. Inter-LPU

interaction is governed by LPUs’ data dependencies and the compiler takes care of the underlying synchroniza-

tion and data transfer required for that. The programmer controls the degree of parallelism by specifying the

mapping of logical spaces to physical spaces (PPS) and runtime arguments for the parameters of the Partition

Section.

Finally, the calculation inside a compute stage is written using a declarative syntax supporting parallel loops,

reductions, and conventional arithmetic and logical operators. When writing a compute stage, the program-

mer assumes the locality of any data structure used within and is encouraged to focus on identifying instruction

level parallelisms through the declarative parallel constructs. Depending on the support available in the target
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platform these parallel constructs may get translated into vectorized or SIMD instructions or just execute se-

quentially. Again, the nature of the translation, consequently its efficiency, depends on the mapping of LPSes

to PPSes which is under programmer’s control. Listing 4.1 presents an example IT single-task program as an

illustration of the aforementioned concepts.

1Program ( args ) {
2
3 / / create an environment object for the matrix−matrix multiplication task
4 mmEnv = new TaskEnvironment(name : ‘ ‘ Block Matrix−Matrix Multiply ”)
5
6 / / spec i fy how external input f i l e s are associated with the environmental objects
7 bind_input (mmEnv, ‘ ‘ a” , args . input_file_1 )
8 bind_input (mmEnv, ‘ ‘b” , args . input_file_2 )
9

10 / / execute the task
11 execute ( task : ‘ ‘ Block Matrix−Matrix Multiply ”; environment : mmEnv; part i t ion : args .k, args . l , args . q)
12
13 / / spec i fy where the output should be written to
14 bind_output (mmEnv, ‘ ‘ c” , args . output_file )
15 }
16
17Task ‘ ‘ Block Matrix−Matrix Multiply ” :
18 Define :
19 a , b , c : 2d Array of Real single−precision
20 Environment:
21 a , b : l ink
22 c : create
23 Initialize :
24 c . dimension1 = a . dimension1
25 c . dimension2 = b . dimension2
26 Stages :
27 / / a single computation stage embodying the logic of the matrix−matrix multiplication
28 multiplyMatrices (x , y , z ) {
29 do { x [ i ] [ j ] = x [ i ] [ j ] + y [ i ] [k] * z [k ] [ j ]
30 } for i , j in x ; k in y
31 }
32 Computation :
33 Space A {
34 / / the stage has to be repeated for each sub−partition of Space A to have a block implementation
35 / / as opposed to a traditional one
36 Repeat foreach sub−part i t ion {
37 multiplyMatrices ( c , a , b)
38 }
39 }
40 Partition (k, l , q ) :
41 / / 2D partitioning of space giving a block of c in each partition along with a chunk of rows of a
42 / / and a chunk of columns of b
43 Space A <2d> {
44 c : block_size (k, l )
45 a : block_size (k) , repl icated
46 b : repl icated , block_size ( l )
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47 / / block−by−block flow of data inside a PPU i s governed by the sub−partition speci f icat ion
48 Sub−part i t ion <1d> <unordered> {
49 a<dim2>, b<dim1>: block_size (q)
50 }
51 }

Lisধng 4.1: An IT BlockMatrix-MatrixMultiplication Program

Although the detailswill only become clear oncewediscuss the component features, the systematic structure

of the IT program should be recognized even from a cursory inspection. The basic idea is a single space task

Block Matrix-Matrix Multiply. The heart of the computation is the multiplyMatrices stage defined in the

Stages Section. The code does exactly what you expect: a set of vector dot products. multiplyMatrices is called

repeatedly and in parallel within Space-A in the Computation Section: once for each sub-partition of Space-A

data structures. The sub-partitions are defined in the Partition Section.

More formerly, the computation flow (Line 32 to 39) specifies that within the confinement of Space-A par-

tition the compute stagemultiplyMatrices should execute in each of its sub-partitions one after another. The

Partition Section (Line 40 to 51) dictates that each independent Space-A partition will have a k× l blocks of c,

k rows of a, and l columns of b. Then within a partition, q columns of a and q rows of b will be operated at

once for that k rows and l columns respectively.

For example, if the sole space of Listing 4.1 is mapped to the symmetric multiprocessor (SMs) of a GPGPU

then the degree of parallelism will be equal to the number of SMs in the hardware and the Space-A LPUs will

be multiplexed on them to be executed one after another. The threads of an SM will execute the compute

stage in SIMD fashion over data loaded on SM’s shared memory. The partition arguments k, l, and q should

be chosen so that data for a sub-partition can be held within the limited shared memory.

On the other hand, if Space-A is mapped to the cores of a multicore CPU then the degree of parallelismwill
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be equal to the number of cores and each core will execute the instructions of multiplyMatrices stage sequen-

tially. Then a different setting for the partition arguments, based on cache capacities, may be appropriate.

In short, IT asks a programmer to design programs in a declarative manner with flexible breakdowns of

computations and associated data structures that can be efficiently tuned to the features of a specific execution

platform if he/she knows how to exploit those features.

4.3 IT Design Raࣅonale

Several elemental design choices make programming in IT quite different from programming in other con-

temporary parallel language offerings. These choices are made not to give IT a different look-and-feel for the

sake of it; rather they contribute to the paradigm’s overall objective of enabling portable and efficient hardware-

cognizant parallel programming. This section elaborates on these design choices.

4.3.1 Separaࣅon of Concerns

An IT program is viewed as a set of tasks each of which has parts being executed in different spaces. An IT task

is further partitioned into separate sections for, among other things, specifying the computation and the data

partition. Therefore, the programmer addresses the issues of parallelism in the algorithm and cross component

communication separately from partitioning and mapping.

This separation of concerns is there to simplify reasoning about the type architecture model of a target

executionplatformwhenprogramming. In addition, it provides a degree of clarity in a task and allows adapting

the task for a new execution platform with minimal changes.
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The systematic nature of IT programming not only affects how but also when different aspects of paral-

lel programming become relevant. When breaking down a program into cooperating tasks, the programmer

is concerned about high-level task parallelism among program units; when constructing a task, he/she is con-

cerned about data parallelism in the algorithm; inside the compute stages of a task, he/she is concerned about

instruction-level parallelism and vectorization. Operations such as creating a new task inside another task or

invoking a compute stage from another stage are not permitted to concentrate programming effort on a par-

ticular aspect at a time.

4.3.2 Lean Language Core

The IT programming language is designed to be minimalist and has a small set of programming primitives.

As the language is intended for high performance parallel computing, features that are not essential in that

regard are avoided. Although the language is still in its preliminary stage and will absorb new features with

time, a central theme will remain to provide a basic set of features over which other useful features can be built

– instead of having a bloated core.

4.3.3 Declaraࣅve Syntax

IT uses declarative syntax for both the compute-stages and the flow definition in the Computation Section.

The syntax is declarative as it instructs what computation to be done but not how to do it. For example, the

do . . . for loop of the multiplyMatrices stage in Listing 4.1 iterates over three indices i, j, k. This should result

in a triple-nested loop in conventional imperative programming languages. In IT, however, the ordering of

three index traversals is left for the compiler to decide. For the flow definition, this philosophy extends fur-
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ther at a coarser level where requirements for synchronization and communication in-between compute-stage

transitions are determined based on the context in the flow.

This choice of declarative syntax is of paramount importance in enabling full exploitation of features of

a target execution platform. Regarding the flexibility in the implementation choice for communication and

synchronization, the need for a declarative syntax may be quite apparent; but the need is there, and no less

intense, for translation of the compute-stages also.

Most modern architectures have vector or SIMD instruction units, memory banks, etc. whose effective us-

age is essential for good performance in the respective hardware. IndeedPCubeS exposesmany of these features

in terms of parallel transaction and computation capacities of the PPSes. Ordering instructions and memory

operations to exploit these capacities, in particular across architectures, is difficult for an average programmer

to master nevertheless. Furthermore, the architectural differences in different target platforms may render a

highly efficient code in one platform to perform poorly in another when order-sensitive instructions andmem-

ory operations are used.

Thus IT adopts a declarative syntax to let the compiler for a specific platform to deal with the specifics of its

target. The programmer only enables utmost compiler level optimizations by choosing size of data partitions

properly and specifying the calculation over them in a declarative manner a.

In addition, a declarative syntax simplifies static analysis of the source code, which an IT compiler heavily

depends on for proper code generation. Moreover, in some situations, a declarative syntax makes it easy to

express a parallel algorithm that would be difficult to express otherwise. For example, Listing 4.2 shows a com-

aSince the programmer explicitly dealswith all non-deterministic aspects of a program, compiler optimizations should
bring only deterministic improvements that the programmer can reason with.
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pute stage from a finite difference stencil computation that uses Jacobi iterations to calculate the next state of

a heated plate based on the current state.

1 refineEstimates ( plate ) {
2 localRows = plate . dimension1 . range
3 localCols = plate . dimension2 . range
4 do { plate [ i ] [ j ] at ( current ) \
5 = 1 /4 * ( plate [ i −1][ j ] \
6 + plate [ i + 1 ] [ j ] \
7 + plate [ i ] [ j−1] \
8 + plate [ i ] [ j + 1 ] ) at ( current − 1 )
9 } for i , j in plate \

10 and ( i > localRows .min and i < localRows .max) \
11 and ( j > localCols .min and j < localCols .max)
12 }

Lisধng 4.2: ACompute Stage for an Iterative Refinement Stencil Task (note the use of at (current) and at (current-1))

Without the declarative syntax for calculating the current plate cell values from previous values of neighbor-

ing cells, this parallel code would be difficult to express cleanly. The problem with an imperative syntax is that

sometimes the difficulty in expression leads to the choice of a sequential algorithm as opposed to a parallel one.

4.3.4 Programmer-Compiler Responsibility Breakdown

IT makes the programmer responsible for defining the nature and frequency of communication in a task

through his/her algorithm and partition specification, but he/she is oblivious of the actual communication

mechanism– thoughnot the costs! The compiler decides about the communicationmechanismbased onwhat

is available in the target platform and the runtime tries its best to optimize communication using computation-

communication overlapping, message combining, etc.

Data synchronization takes place automatically at LPS boundaries and as needed basis. The compiler gener-

ates code that checks for possible modification of any data structure shared among multiple LPSes (or LPUs).

As the computation for a space ends within an LPU, the runtime synchronizes data based on the result of
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the check. If the updates are needed immediately, execution halts until synchronization happens. Otherwise,

computation of subsequent LPUs can proceed while asynchronous data updates are going on for future use.

Furthermore, note that because of the declarative syntax, the runtime, not the programmer, is responsible

for loading data in the appropriatememory and reading/writing that data efficiently from there. This raises the

important question, ‘where does IT draw the line between the programmer and the compiler’s responsibilities

in generating an efficient program?’ The answer is anything that the compiler or runtime can always decide on

optimally is left for automatic analysis and everything else is a programmer’s responsibility.

This policy is adopted so that an IT programmer can predict, debug, and analyze the suitability of a pro-

gram and its runtime performance on a specific platform just by comparing the source code with the PCubeS

description of the hardware a.

4.4 Abstract Machine Model of IT

As IT presents a machine model of a hierarchy of LPSes where tasks can execute, it is critical to understand the

notion of LPSes and the nature of computations within them to make sense of subsequent discussions.

4.4.1 Logical Processing Spaces

A Logical Processing Space (LPS), as its name suggests, is an entity where computations can be done over data

structures. It is not directly associated with the computations or the data structures; rather both are assigned

to it. The best way to understand an LPS is how variables and instructions are treated in a traditional Von

aNote that this vision can be realized only if the IT runtime engine has adequate control over the features of the
hardware exposed through its PCubeS description and utilizes that control properly.
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Variable Definitions:
a: Integer
b: Integer
c: Real Single−Precision

Instructions Stream:
...
...
c = a / b

Figure 4.1: AVonNeumann Space

Neumann programming language.

In a traditional Von Neumann machine, there is a memory and instructions. Instructions are fetched from

the memory and executed. When an instruction executes, it may load and store variables in the memory. The

entire memory is visible to each instruction - whether a variable is in the scope of the current programming

context or not, or whether it is a local variable or a global. Figure 4.1 illustrates this concept. The address space

of the Von Neumann computer is shown as a slate. Within the memory three variables a, b, and c have been

defined. Instructions operating in the VonNeumannmachine can load and store variables in the address space.

In essence all instructions can access all memory, this makes the Von Neumann model a single-space model.

IT supports multiple spaces in a program where both variables and computations can be assigned (notice

the distinction between definition and assignment). Figure 4.2 depicts a scenario with two spaces. Here the

variables average,median, and earning_list are defined externally; the first two reside in Space-A and the second

two in Space-B. Thus the earning_list is shared between the two spaces. The update done on the earning_list

in Space-A is visible in Space-B, but the variable average is not accessible from the latter by any instruction.

There are further additions to the notion of a space in IT. First, an IT space or LPS has a dimensionality

attribute. That is, an LPS is not a characterless vacuum; rather it is more like a geometric coordinate space.

Second, an LPS can be partitioned into independent units called Logical Processing Units (LPU). The same
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Variable Assignments:
average
earning_list

Instructions Stream:
earning_list  = compute_earnings()
average = get_avg(earning_list)
...

Variable Assignments:
median
earning_list

Instructions Stream:
...
median = get_median(earning_list)

average, median: Real double−precision
earning_list: List of Integer

Variable Definitions:

Space A Space B

Figure 4.2: Demonstration of a Dual SpaceModel

instructions stream executes in all LPUs but on different parts of data structures. A group of LPUs may, how-

ever, share a particular part of a data structure. Then only one can update that part at a time and afterwards

the remaining LPUs receive the update.

Execuࣅon in LPSes

In the absence of data dependencies on shared/overlappedparts instruction streams in individual LPUs execute

independently. Figure 4.3 depicts the breakup of a single LPS for the matrix-matrix multiplication task of

Listing 4.1.

Further, IT allows the data to be used inside an LPU to be loaded incrementally as opposed to all at once.

This facility comes in handy when the computation for the LPU needs to be done in a memory constrained

physical processor (PPU) such as an NVIDIA GPU symmetric multiprocessor. Incremental loading and un-

loading allows virtually limitless amount of data to be processed in a small PPU.
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Partition No (2, 2)

multiplyMatrices stage executes on the
selected parts of a,b, and c inside
partition (2, 2)

c

a

b

2D Space A

    c: block_size(k, l)
    a: block_size(k), replicated
    b: replicated, block_size(l)

...

Space A <2d> {

Figure 4.3: An Illustration of LPS Partitioning for a Small Matrix-MatrixMultiply Problem

For example, this facility can be used to convert a traditional matrix-matrix multiplication program into a

blockmatrix-matrixmultiplication program as done in Listing 4.1. Programmatic-ally this is achieved using the

Sub-partition construct (Line 48 to 50 of Listing 4.1). Figure 4.4 below illustrates the effect of sub-partitioning

for the discussed problem.

Finally, the power of LPS goes further in IT with the support of LPS hierarchies. In IT each LPU can be

treated as an LPS and can be further divided into lower level LPUs. In fact, there may be multiple lower level

LPSes for an upper level LPU thatmay differ in their dimensionality and partition counts. Figure 4.5 illustrates

the idea of the LPS hierarchy for a Monte Carlo area estimation program.

Whendata sharing amongmultipleLPSes is involved, a relevant concern is the consistencymodel. IT adopts

the strong consistency model. Regardless of how many LPSes share a single data structure and what the rela-

tionships among those LPSes are, IT ensures that the update in any data part is exclusive and all instruction

streams operate over the most up-to-date data. It is the responsibility of the IT compiler to establish strong

data consistency throughwhatevermechanism appropriate in the target execution platform. The programmer
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Blocks of rows from
the selected sequence
of columns of b enter
and leave the LPU
in sequence

the LPU in sequence

sequence of rows of a enter and leave

Blocks of columns from the selected

A block of c gets loaded once and stays

A Space A LPU

Space A <2d> {
    c: block_size(k, l)
    a: block_size(k), replicated
    b: replicated, block_size(l)
    Sub−partition <1d> {
       a<dim2>, b<dim1>: block_size(q)
    }
}

Figure 4.4: Effect of Sub-partitioning in theMatrix-MatrixMultiply Problem

Middle LPS: 2D

Bottom LPS: 1D

Top LPS: Un−partitioned

The LPS
1. Accumulates sub−area
   estimates from the
   next level
2. Calculates total area
   within the shape

Each LPU
1. Accumulate point placement
   results from the next level
2. Makes and estimate of the
   area of the shape within a
   designated grid block

Each LPU
1. Generates a series
   of points in a
   vertical area stripe
2. Calculates the number
   of points inside and
   outside within the
   shape

Figure 4.5: Three Space Breakdown of aMonte Carlo Area Estimation Problem

77



is only responsible for applying appropriate conditions in the code to ensure that only one LPU updates the

shared data part at a time.

So at the end, IT abstract machine model is a partial hierarchy of LPSes, where each LPS consists of one

or more LPUs that are capable of holding data and executing instruction streams over their data content, and

each LPU has access to the most up-to-date version of the data before it starts any computation.

4.5 IT Features Overview

Data Structures

The basic primitive types in IT are signed and unsigned integers, single and double precision real numbers,

characters, Boolean values, and fixed-length strings. The two collection types are list and array. There is no

notion of pointers in IT. Hence multidimensional arrays are supported but not arrays of arrays.

User defined types are supported; which resemble C structures. A user defined data type can have other

custom data types, primitive types, and fixed length arrays as properties, but not lists or dynamic arrays.

Both arrays and lists can hold objects of user defined types. A list in IT is a dimension-less sequence of

elements of the same type. A list can hold arrays as elements and vice versa, but the elements of the nested

collections cannot themselves be collections.

Parallel Instrucࣅons

IT supports instruction-level parallelism in terms of parallel loops and parallel reduction operations inside

compute stages of a task. For example, the do …for loop of Listing 4.2 code snippet is a parallel loop that can
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iterate over each i, j index combination concurrently. Aparallel reduction is a reduction statement placed inside

a parallel loop. A reduction statement takes the form, lvalue = reduce(OpCode, vector_expr). This causes the

vector expression being evaluated for each vector position then the result being reduced and assigned to the

left-hand-side.

If sequential execution is intended then the programmer just changes the looping instruction from do…for

to do in sequence…for. Sequential while loops can be used also.

Funcࣅons

IT functions are sequential and similar toC functions, butwith twonotable exceptions. First, IT functions are

type polymorphic: the argument and return types are deduced from the calling context. Second, partitioned

arrays cannot be used as function arguments. The second restriction is there to encourage the programmer to

consider the possibility of parallel operations on arrays before settling for the sequential alternative. Although

an entire array cannot be passed as an argument to a function, its individual elements can be passed as references.

An ‘&’ precedes the names of those function arguments to be passed as references as opposed to values.

Data Parࣅࣅoning

Currently, IT supports the standard block-size, block-count, stride, and block-stride partition functions to

divide arrays within an LPS to form the LPUs. The array partitions can be overlapped along any dimension. A

special construct, padding, is provided to specify the overlapping regions among neighboring partitions. More

commonly, an entire array or array dimension can be shared among LPUs (as done in the Partition Section of

Listing 4.1 using the replicated keyword).
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The long term goal is to allow programmer-defined partition functions. The mechanism implemented in

the compiler to determine synchronization and communication requirements already accommodate arbitrary

functions, but the interface to enable such feature is currently unavailable in the language.

4.6 An IT Programming Example: LU Factorizaࣅon

This section examines a comprehensive IT sample program. An involved and long example is chosen to expose

and discuss various aspects of IT programming. Except for understanding the code samples given inAppendix

A, the content of this section is not needed for any subsequent discussion. Therefore, the reader can entirely

skip this section or come back to it later.

4.6.1 Problem Descripࣅon

A common approach to solve a system of linear equations of matrix form Axi = bi is to first divide the argu-

ment matrix A into two upper and lower triangular matrices L and U. Then solve two resulting triangular

systems using simple Gaussian Elimination. The triangulation process is known as LU Factorization (or De-

composition). For numerical stability the decomposition is done using either rows or columns as pivots that

results in another pivot matrix being generated as the third outcome.

The traditional LU Factorization algorithm suffers from bad memory/cache reuse characteristics. It pro-

ceeds diagonally by adding one more column in the lower and one more row in the upper triangular matrices

respectively. At each step of the algorithm, however, the entire remaining portion of the upper triangular ma-

trix needs to be updated based on the most recently calculated row and column. Updating the remaining part
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of the upper triangular matrix is the most time consuming part of the algorithm and dominates its asymptotic

running time. For larger matrices this step causes a lot of cache thrashing also.

The logic behind abetter algorithm is thatmost rowsof the remainingpart of the upper triangularmatrix are

not needed immediately. Therefore, it is wasteful to update them in each step. Rather, only a portion of those

rows should be updated for a certain number of iterations. Then the remaining stale part can be updated using

a SAXPY (c = αc+ βa× b) operation from the up-to-date rows. SAXPY has a better memory reuse potential.

The asymptotic runtime of both algorithms are the same but the gain through memory reuse is massive in

many architectures. This algorithm is called the Parallel Blocked kji-SAXPY LU Factorization algorithm90.

4.6.2 Task Invocaࣅon and Coordinaࣅon

In IT the modified algorithm can be easily represented using two tasks, one for the factorization part and

another for the SAXPY part. A third task is used to initialize the upper and lower triangular matrices from the

input argument matrix. A single program coordinator function – the entry point to any IT program – specifies

how the tasks of the program are related and when they can be scheduled for execution. Listing 4.3 shows the

coordinator function for the LU factorization program.

The sole argument of the program coordinator holds all command line arguments passed at the beginning.

The command line arguments are passed as key, value pairs in the form ‘key=value.’
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1Program ( args ) {
2 blockSize = args . block_size
3 initEnv = new TaskEnvironment(name : ‘ ‘ In i t ia te LU”)
4 bind_input ( initEnv , ‘ ‘ a” , args . argument_matrix_file )
5
6 / / execute a para l l e l in i t ia l izat ion task that copies element from a to u and l
7 execute ( task : ‘ ‘ In i t ia te LU”; environment : initEnv )
8
9 luEnv = new TaskEnvironment(name : ‘ ‘LU Factorization ”)

10
11 luEnv . u = initEnv . u
12 luEnv . l = initEnv . l
13 rows = initEnv . a . dimension1 . range
14 max1 = rows .max
15 max2 = initEnv . a . dimension2 . range .max
16
17 do in sequence {
18 lastRow = k + blockSize − 1
19 i f ( lastRow > max1) { lastRow = max1 }
20 range = new Range(min: k, max: lastRow )
21
22 / / execute a modified version of LU factorization that updates l properly in each step but
23 / / updates only a section of rows and columns of u
24 execute ( task : ‘ ‘LU Factorization ”; environment : luEnv ; i n i t i a l i z e : range )
25
26 i f ( lastRow < max1) {
27 mMultEnv = new TaskEnvironment(name : ‘ ‘SAXPY”)
28 mMultEnv. a = luEnv . u [ ( lastRow + 1 ) . . . max1 ] [k . . . lastRow ]
29 mMultEnv. b = luEnv . l [k . . . lastRow ] [ ( lastRow + 1 ) . . . max2]
30 mMultEnv. c = luEnv . u [ ( lastRow + 1 ) . . . max1 ] [ ( lastRow + 1 ) . . . max2]
31
32 / / execute a saxpy operation of the form c = c − a * b to update the remaining
33 / / section of u that was l e f t unmodified during LU factorization
34 execute ( task : ‘ ‘SAXPY”; environment : mMultEnv; part i t ion : args .k, args . l , args . q)
35 }
36 } for k in rows s t ep blockSize
37
38 bind_output ( luEnv , ‘ ‘u” , args . upper_matrix_file )
39 bind_output ( luEnv , ‘ ‘ l ” , args . lower_matrix_file )
40 bind_output ( luEnv , ‘ ‘ p” , args . pivot_matrix_file )
41 }

Lisধng 4.3: The ProgramCoordinator Function for Block LU Factorization

First it executes the Initiate LU task (Line 7) to initiate upper and lower triangular matrices from elements

of the argumentmatrix that is read from an external file (Line 4). Then the outputs of the first task are assigned

to the environment of the second, LU Factorization, task (Line 11 and 12) that executes repeatedly inside a loop

(Line 24). After the completion of one round of the LU Factorization task, a SAXPY task (Line 34) updates

the stale portion of the upper triangular matrix using another portion of the same matrix and a portion of the
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lower triangular matrix.

A task invocation in the program coordinator takes the following form:

1 execute ( task : task−name ;
2 environment : environment−reference ;
3 i n i t i a l i z e : comma separated init ia l izat ion−parameters ;
4 part i t ion : comma separated integer part i t ion parameters )

Here the Initialize and Partition parameters are optional butmust be supplied for tasks needing them. Note

that the execute statement in a program is expected to be non-blocking. Further, the invocation of the execute

commanddoes not necessarily launch the task immediately – rather it schedules the task for execution. The task

can start only after all previous tasks, if any, manipulating its environmental data structures finish executing.

Since there are environmental dependencies between the LU Factorization and SAXPY tasks, the latter

cannot start before the former finish. For the same reason, the next iteration of the loop cannot re-launch the

former until the latter finishes for the previous iteration.

Relating tasks through their environments provide two primary benefits. First, tasks can share as many data

structures as deemed appropriate for the logic of the program. Second– andmore importantly – this allows the

compiler to generate code to directly use the data distribution of preceding tasks in subsequent tasks whenever

applicable. Even when data reordering is beneficial that can be done within individual tasks in parallel. There

is no need for accumulating intermediate results in a central place.

Like computation, the principal mechanism for file I/O in IT is parallel. The coordinator program only

specifies the external input/output files – the action is called binding – and the actual read/write happens in

parallel inside the individual tasks. For example, the bind_input command at Line 4 only attaches appropriate

instruction to the Initiate LU task that causes the argument matrix to be read when that task starts execution.
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Similarly, the three bind_output commands of Line 38 to 40 results in the outputs of theLU Factorization task

to be written to files in parallel at the end of the program. The bind_input and bind_output commands are

sensitive to the type of the data structure and read/write data accordingly. The file formatmust be appropriate

for bind_input’s correct behavior though.

4.6.3 Task Definiࣅon

Listing 4.4 depicts the Initiate LU task. Every IT task follows the same structure of this simple task.

1Task ‘ ‘ In i t ia te LU” :
2 Define :
3 a , u , l : 2d Array of Real double−precision
4 Environment:
5 a : l ink
6 u , l : create
7 Initialize :
8 u . dimension1 = l . dimension1 = a . dimension2
9 u . dimension2 = l . dimension2 = a . dimension1

10 Stages :
11 prepare ( a , u , l ) {
12 do { u [ j ] [ i ] = a [ i ] [ j ] } for i , j in a
13 do { l [ i ] [ i ] = 1 } for i in l
14 }
15 Computation :
16 Space A { prepare ( a , u , l ) }
17 Partition :
18 Space A <1d> {
19 a<dim2>, u<dim1>, l<dim1>: s t r ide ( )
20 }

Lisধng 4.4: Definition of Initiate LU Task

A task has six distinct sections (highlighted in red): Define, Environment, Initialize, Stages, Computation,

and Partition. TheDefine Section specifies all data structures alongwith their types. The Environment Section

lists structures in the environment that this task manipulates. If the type of a structure is link then it must be

available in the environment before the coordinator function can launch the task (similar to IN/OUT); if it

is create then it will be added as a result in the environment after the task finishes execution (similar to OUT).
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The remaining option is create-if-not-linked. Anynon-environmental data structure is garbage collected at task

completion.

The Initialize Section executes sequentially at the inception of the task. As the name suggests, it initializes

data structures. In particular, it sets the dimension lengths of all arrays that are not linked so that parts of arrays

can be distributed among LPUs properly.

The parallel core of the task is specified in the remaining three sections. The Stages Section lists all compute

stages required to implement the logic of the task. A compute stage can be compared with a procedure in

traditional programming language. The difference is that a stage embodies parallel instructions.

The Computation Section describes the parallel algorithm as a flow of compute stages to be executed in

different LPSes. In this case, there is only one compute stage, prepare, to be executed in parallel on LPUs of

Space-A.

The Partition Section specifies the configuration of the LPSes used in the computation flow, their relation-

ships, and how data structure parts are distributed among LPUs of an LPS. In the Initiate LU task The Par-

tition Section specifies a 1D partition for Space-A where the columns of a and rows of u and l are distributed

using a unit stride to form the LPUs.

4.6.4 Specificaࣅon of Computaࣅon

The Computation block of the LU Factorization, as shown in Listing 4.5, is a more illustrative example of

specification of a parallel computation in an IT task.
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1 Computation :
2 Space A {
3 Repeat for k in k_range {
4 Space B {
5 Where k in u . local . dimension1 . range { selectPivot ( pivot , u , k) }
6 }
7 storePivot (p , k, pivot )
8 Space B {
9 Where k != pivot {

10 Epoch { interchangeRows ( pivot , k, u , l ) }
11 }
12 Where k in l . local . dimension1 . range { updateLower ( l , k, l_row) }
13 updateUpperRowsBlock (u , l_row , k, row_range)
14 collectLColParts ( l_column, l , k, row_range)
15 }
16 generatePivotColumn(p_column, l_column, row_range , k)
17 Space B {
18 updateUpperColsBlock (u , p_column, k, row_range)
19 }
20 }
21 }

Lisধng 4.5: Algorithmic Logic of LU Factorization Task

The Compute Section describes the logic of the task as a flow of compute-stages in LPSes. In the compu-

tation of Listing 4.5, the flow of control operates entirely in the confinement of Space-A and repeats for a

sequence of rows specified by k_range. Within a repeat loop, the control first enters Space-B to select the pivot

element for the current iteration. Then it comes out of Space-B and records the pivot in a Space-A. Upon its

re-entrance to Space-B; it executes stages of classic LU factorization such as interchangeRows, and updateLower.

The differencewith an IT implementation of the classic LU factorization and the current task is only a block or

rows and columns of the upper triangular matrix are updated as opposed to all rows and columns. The update

here happens in two steps using the updaterUpperRowsBlock and updateUpperColsBlock and an intermediate

LPS transition to Space-A to generate a supporting data structure in the generatePivotColumn stage.

LU Factorization of Listing 4.5 involves several updates of shared variables inside compute-stages. For ex-

ample, the pivot that is selected in the selectPivot stage (Line 5) is needed during execution of storePivot (Line

7) and interchangeRows (Line 10). The programmer ensures that only one LPU of Space-B updates the pivot
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in an iteration of the repeat loop using the Where condition for the selectPivot’s invocation. The selectPivot

stage executes only on the LPU that has the associated condition true. Notice the use of the keyword local in

the Where condition. It indicates that the associate range to be compared is for the part of the array an LPU

has – not for the entire array. The compiler injects appropriate synchronization/communication in between

the transition from selectPivot to subsequent stages to ensure that the up-to-date value of the pivot is available

wherever needed.

The above discussion exposes another importance of breaking down the logic of the task into compute-

stages. Once inside a compute stage, an LPU executes oblivious of other LPUs and any sharing of data part the

former may have with the latter. The compiler ensures that data shared among LPUs being synchronized only

at the compute-stage boundaries. In the absence of data dependencies, LPUs execute independently. There-

fore, if the logic of a task supports it, different LPUsmay be at completely different stages and iterations of the

task’s computation flow.

To lay out the flow of the task, three flow control instructions can be placed in the Compute Block. These

are as follows.

1 Repeat Boolean−expression { nested sub−flow }
2 Where Boolean−expression { nested sub−flow }
3 Epoch { nested stages accessing version dependent data s tructures }

The Repeat instruction causes the nested sub-flow to iterate for the time-being the associated condition

remains valid. TheWhere condition restricts the execution of the nested sub-flow in the LPUs the associated

condition evaluates to true. The Epoch boundary is used to dictate when the version number of any version-

dependent data structure should be updated.
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4.6.5 Data Parࣅࣅoning

Listing 4.6 illustrates the Partition Section for the LU Factorization task of Listing 4.5. Here, the upper-most

LPS, Space-A, is un-partitioned and has been divided by 1-dimensional LPS Space-B.

1 Partition (b ) :
2 Space A <un−partitioned> { p , p_column, l_column }
3 Space B <1D> divides Space A part i t i ons {
4 u<dim1>, l<dim1>, l_column : block_stride (b)
5 l_row , p_column : repl icated
6 }

Lisধng 4.6: Data Partition Configuration for LU Factorization Task

The array p that keeps track of pivot row indexes from different iterations only exists in Space-A. So there

will be a single undivided copy of it for the entire task and, hence, storePivot stage of Listing 4.5 (Line 7) that

updates the array has been placed to execute in Space-A. The number of LPUs in Space-B, on the other hand,

will depend on the number of strided blocks of u and l generated at task launch time. That is, the Space-BLPUs

count depends on the input size and the partition parameter b. Some other data structures such as l_row will

be shared among all those LPUs. Any of the replicated data structures can be updated by one Space-B LPU at

a time only. Hence stages that update those structures are constrained with aWhere condition in Listing 4.5.

4.7 Interoperability with other Languages

Since it is natural for programmers to have libraries written in other languages that they need to incorporate in

an IT program, IT supports code snippets written in other languages to be included within compute stages of

a task as extern code blocks. The syntax for an extern code block is illustrated in the following example.
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1@Extern {
2 @Language ‘ ‘Case sens i t i ve name of the language”
3 @Includes { comma separated l i s t of header f i l e s needed to compile the code snippet }
4 @Libraries { comma separated l i s t of l ib r a r i e s to be linked to the executable for the snippet }
5 ${
6 The code snippet
7 }$
8 }

In the above, the@Include and@Libraries sections are optional.

Any task-global scalar variable, user defined type, and non-partition-able data structures (such as a constant

size array) are accessible within an extern block; so is any local variable declared within the compute stage the

extern code block resides in. These variables are accessed using the same name within the extern code snippet

as they are accessed in the IT code. In addition, themetadata of all task-global arrays and the runtime partition

arguments are accessible within the snippet. In the letter case the programmer has to follow a different naming

convention though.

Since the IT compiler does not interpret the content of an extern block, any change made within the extern

block to a task-global variable or an element of a partitioned array is not traceable from IT. So the automatic de-

pendency detection and subsequent synchronization and communication mechanism will fail to synchronize

LPUs for such a change. Therefore, the programmer should rather do his/her update on a temporary variable

inside the extern code snippet. Then after coming out of the extern block assign the value of the temporary

variable to the variable/element he/she originally intended to update.

IT ’s interoperability support is geared toward accommodating compute-bound sequential code blocks and

code blocks processing hardware information written using low-level sequential languages such as C or FOR-

TRAN. Interaction with other parallel languages/tools which enables a bulk of computation to be done out-

side IT is never intended as that would encourage the old way of thinking. Consequently partitioned arrays
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are kept unaccessible from extern code blocks. There would be a safety concern also if such interaction was

allowed.

As IT arrays can be repeatedly partitioned along a task’s LPS hierarchy where each LPS partition can poten-

tially reorder the array indices, mapping an original index to its storage location and vice-versa is an intricate

process. IT compilers take care of this transformation. If done incorrectly, the index transformation may eas-

ily lead to memory corruptions. Passing partitioned arrays to extern code blocks opens a floodgate of such

opportunities a.

4.8 Summary

Notice that despite emphasizing the importance of reasoning about hardware features in parallel programming,

we avoided addressing the mapping of logical processing spaces of an IT program to the physical processing

spaces of the PCubeS description of the target hardware. This is to show that an IT program should make

perfect logical sense and be analytically accurate regardless of the target platform.

This is the very essence of hardware-cognizant as opposed to hardware-specific parallel programming. The

IT abstract machine model of hierarchy of LPSes suggests that there must be a corresponding hierarchy of

PPSes – equivalently a PCubeS description – for the program to execute, but a program is not written with a

specific PCubeS architecture in mind. It is important to understand the subtle but important distinction be-

tweenPCubeS + IT paradigm’s treatment of the type architecture and that ofChapel, X10, or Legion here. The

programmer can completely bypass the type architecture during both program construction and its runtime

aCurrently the segmented memory and multicore compilers support C/C++ extern code blocks. Our future plan is
to allow direct C++/CUDA codes inside compute stages of offloaded LPUs and support FORTRAN codes for all three
back-ends architectures.
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in those languages. In IT, the programmer has to construct the program on a PCubeS like model that he/she

explicitly maps to the PCubeS description of the target hardware before the program can even compile.

A gamut of runtime behaviors can be achieved from the same IT source code using different mappings of

LPSes to PPSes. In fact, if the program is sufficiently flexible, just amapping variation can be enough to achieve

good performance in diverse target architectures. The next chapter discusses the mapping process and related

topics.
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5
From Abstract Programming Model to Physical

Hardware

This chapter discusses the mapping of LPSes of an IT program to PPSes of the target platform and the restric-

tions a particular mapping choice imposes on the IT program’s runtime behavior regarding data placement

and computation. This discussion will illustrate how the abstract machine model of IT directly corresponds
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with the PCubeS description of the execution platform once mapping is done, which enables the programmer

to assess and improve a program’s performance.

Although IT offers considerable flexibility on how a compiler should implement LPU (and at the coarser

level task) execution and coordination based on a mapping, all three compilers constructed as part of this re-

search implement a common runtime model. This chapter also examines that runtime model and establishes

the bridge between the theory and practice.

5.1 Mapping LPSes to PPSes

In terms of procedure, the mapping of a program’s LPSes to PPSes of the target execution platform is straight-

forward. The programmer has to explicitly map each LPS of each task of the program separately to the PPS

he/she deems appropriate. The only restriction in the LPS-PPS mapping is that the partial ordering of LPSes

in a task’s partition hierarchy must be respected when mapping them to PPSes. To elaborate, if Space-A is an

ancestor of Space-B in a task’s partition then the latter cannot bemapped to a PPS situated higher than that the

former has beenmapped to. Both LPSes can bemapped to the same PPS though. If the target architecture has

multiple PCubeS descriptions, the programmer should specify the particular description being chosen using

an optionalmodel parameter.

Themapping is specified in a separatemapping configuration file and is an input to the compiler in addition

to the IT source code. The grammar for the mapping configuration file is as follows.

1 mapping : = task−mapping+
2 task−mapping : = ‘ ‘Task_Name” { model? lps−mapping+ }
3 model : = Model : ‘ ‘Model_Name”
4 lps−mapping : = Space id : pps−no
5 id : = [A−Z] | Root
6 pps−no : = [0−9]+
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Processing Capacity: 1 Operation, Speed: 2.3 GHz

Memory: 16 KB
Space 1: Core

Processing Capacity: None

Memory: None
Processing Capacity: None
Sub−spaces: 4

Space 5: Socket

Space 6: Cluster
Memory: None
Processing Capacity: None
Sub−spaces: 4

Space 2: Core−Pair
Sub−spaces: 2 
Memory: 2 MB

Memory: 6 MB
Processing Capacity: None
Sub−spaces: 4

Space 3: NUMA−Node

Space 4: CPU
Memory: 64 GB
Processing Capacity: None
Sub−spaces: 2

Concurrency: 4 transactions
Transaction width: 1460 B
Latency: Etharnet Latency

Concurrency: 4 transactions
Transaction width: unknown
Latency: CPU crossing latency

Transaction width: 64 B
Concurrency: 2 transactions

Latency: Main memory latency

Concurrency: 1 transaction
Transaction width: 64 B
Latency: L3 latency

Concurrency: 1 transaction
Transaction width: 8 B
Latency: L2 latency

Figure 5.1: PCubeSDescription of Hermes Cluster with One PPS Expanded at Each Level

To illustrate the mapping process with an example, assume an IT program has three tasks whose LPS hier-

archies have the topologies of Figure 5.2 (the figure shows the invisible Root LPS for the entire program that

tasks’ LPS hierarchies descend from) and the PCubeS description of the target execution platform, called the

Hermes Cluster a, is as shown in Figure 5.1. Then a feasible mapping configuration for the program can be as

shown in Listing 5.1.

aHermes cluster is an actual cluster in Computer Science, UVA having 4 nodes each having 4 16-core AMD CPUs
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Space D

Space B

Space C

Space A

Space A

Space B

Space C Space D

Root Program Space

Task 3Task 2Task 1

Space A

Figure 5.2: Pictorial Description of the LPSHierarchies of an IT Program

1 ‘ ‘Task 1” {
2 Space A: 6
3 Space B : 3
4 Space C: 4
5 Space D: 1
6 }
7 ‘ ‘Task 2” {
8 Space A: 2
9 }

10 ‘ ‘Task 3” {
11 Space A: 4
12 Space B : 3
13 Space C: 2
14 Space D: 2
15 }

Lisধng 5.1: An LPS-PPSMapping for the Program

Note that in Listing 5.1 above, the LPS-PPS mappings of individual tasks are independent of one another.

For example, Space-B of Task 1 and 3 might have different data structures, or different partitioning for some

common data structures, or even the exact same data partitions regardless of the LPSes being mapped to the

same PPS in both cases. What happens to data organization as the program makes transition from one task

to the other depends upon the actual runtime relationship between these tasks’ partition hierarchies. The

compiler is responsible for generating appropriate data movement instructions by comparing task partition
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hierarchies and tasks’ LPS-PPS mappings.

5.2 Consequence of an LPS-PPS Mapping

Despite the process of LPS-PPS mapping being straightforward, considerable discretion should be applied

when it is done as themapping efficiency alone canmake a program perform good or bad on a particular execu-

tion platform (note that LPS-PPSmapping never affects a program’s correctness). This is because the LPS-PPS

mapping dictates the degree of parallelism at different phases of a program (and task), roles of different PPUs

during program execution, computation and data locality, data communication and synchronization require-

ments, and even high-level memory management policies.

5.2.1 Degree of Parallelism in an IT Program

The degree of parallelism in an IT program varies with tasks and within a task in execution of compute stages

assigned to different LPSes. When an LPS is mapped to a PPS of the target hardware, the LPUs correspond to

that LPS are multiplexed to the PPUs of mapped PPS. So the degree of parallelism is dictated by the number

of PPUs participating in LPU computation.

For example, inListing 5.1 the soleLPS, Space-A, ofTask-2 has beenmapped to Space-2 of theHermes cluster.

An inspection of Figure 5.1 reveals that there are 128 Space-4 PPUs in the cluster (4 core-pairs perNUMA-node,

2 NUMA-nodes per CPU, 4 CPUs per socket/node, and 4 nodes in the cluster). The LPUs of Space-A will be

distributed to these 128 PPUs and the compute stages of Space-A will execute 128-way parallel assuming that

enough LPUs exist. Task-2 has only one LPS. Thus the degree of parallelism remains fixed for the time-being
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of its execution. For tasks havingmultiple LPSes more interesting behavior can be introduced bymapping the

LPSes to different PPSes.

For example, in Listing 5.1 Space-A of Task-1 has been mapped to Space-6 of the Hermes cluster. There is

only one PPU in Space-6 in that machine, as apparent from the PCubeS description of Figure 5.1. Thus Task-1

compute stages that are assigned to Space-Awill all execute in that single PPU. Space-B, on the other hand, has

been mapped to Space-3 of Hermes cluster. There are total 32 Space-3 PPUs in the cluster (2 NUMA nodes

for each CPU, 4 CPUs per node, and 4 nodes in the cluster). Therefore, Space-B compute stages will execute

independently in parallel in 32 PPUs.

The multiplexing of LPUs to PPUs respects logical hierarchies of LPSes in the source task. For example,

Space-D of Task-1 divides Space-B. According to the mapping specification, Space-B LPUs will be multiplexed

to the NUMA-nodes. Then Space-D LPUs that divides a particular Space-B LPU assigned to a specific CPU

will be multiplexed within the cores of that NUMA-node only.

So in the course of the execution of Task-1, the degree of parallelism varies from 1 to 256 according to the

logic of the computation – and that is just Task-1. Task-2 and Task-3 exercise the PPSes quite differently from

the way Task-1 does.

Note that Task-1 LPSes have been mapped to Space-6, 3, 4, and 1. According to Figure 5.1, none of those

PPSes has any compute capacity. This raises the question how a code can execute in such a PPS.When an LPS

is assigned to a PPS lacking compute/memory capacity, the PPUs of the latter execute the LPUs of the former

using the compute/memory capacity of the closest ancestor/descendant PPS according to the following rule.

PPS Substitution Rule:

1. If an LPS is assigned to a PPS having no compute capacity then computation for all LPUs of that LPS
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is done by a single PPU in the nearest lower/upper level PPS capable of computation.

2. If a PPU has insufficient memory to hold the data for LPUs it operates on then it will use the memory
of the nearest ancestor PPU that can hold that data and stage data in/out as needed.

The programmer can confine the execution of a taskwithin a smaller section of the targetmachine instead of

consuming it entirely by specifying a mapping for the special Root LPS. Assume he/she wants to use the core-

pairs of a single node as opposed to the entire cluster (as instructed by the mapping of Listing 5.1) to execute

Space-A LPUs of Task-2. Then the LPS-PPS mapping for Task-2 should have the following configuration of

Listing 5.2 instead.

1 ‘ ‘Task 2” {
2 Space Root : 5
3 Space A: 2
4 }

Lisধng 5.2: an AlternativeMapping for Task 2

Space-Root is by-default un-partitioned and all LPSes of a task descends from it. Therefore according to the

mapping of Listing 5.2, only oneHermes node will be utilized for this task and the overall degree of parallelism

for the sole Space-A compute-stages will be 32.

This ability to vary the degree of parallelism can be a powerful tool to control a program’s performance. For

example, if the LPUs of an LPS operate on disjoint data parts that are large then a lesser degree of parallelism

but more memory space per LPU might be a good choice; thus the LPS should be mapped to some higher

level PPS. On the other hand, if there is considerable data sharing among LPUs and the data parts are small

then emphasis might better be on more parallelism; thus the LPS should be mapped to some lower level PPS.

Parts of a real world parallel application often have different computation and data usage characteristics. IT ’s

mapping feature enables the programmer to work in concert with those characteristic differences as opposed

to find his/her way out of them.
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5.2.2 A PPU’s Role in a Program Execuࣅon

As shown in the mapping of Listing 5.1, the tasks of a program can have more or less LPSes than the PPSes

available in the target hardware but LPS-PPSmapping can still be done smoothly by mapping multiple LPSes

to the same PPS and/or skipping some PPSes altogether. Once mapping is done, however, the programmer

should assume that the abstract LPShierarchy of his/her programhasmaterialized in the hierarchy of the PPSes

being used in the mapping, and the cost of execution and coordination of LPUs of the program matches the

capacities of the PPUs the former have beenmultiplexed into. If the programmer cannot assume that then the

central theme of the paradigm, hardware-cognizant programming, is compromised.

This assumption imposes restrictions on how PPUs are realized at the execution time – not the choice of

their implementation primitives (e.g. processes or threads) though. To understand the restrictions with an ex-

ample, assume the partition configuration ofTask-1 of Figure 5.2 is as shown in Listing 5.3 and the computation

flow of the task has a section as shown in Listing 5.4. Further assume that all three stages in Listing 5.4 update

matrix_b.

1Partition (k, l , m) :
2 Space A <un−partitioned> {
3 matrix_a , matrix_b , vector
4 }
5 Space B <2d> divides Space A part i t i ons {
6 matrix_a : block_size (k, l )
7 matrix_b<dim2, dim1>: replicated , block_size ( l )
8 }
9 Space C <1d> divides Space A part i t i ons {

10 vector , matrix_b<dim2>: block_stride (m)
11 }
12 Space D <1d> divides Space B part i t i ons {
13 matrix_b<dim1>: s t r ide ( )
14 }

Lisধng 5.3: Task 1 Partition Configuration
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1 Space B {
2 Repeat for i in matrix_b . dimension1 . range {
3 Space D {
4 stage1 (matrix_b)
5 }
6 stage2 (matrix_a , matrix_b)
7 }
8 }
9 Space C {

10 stage3 ( vector , matrix_b)
11 }

Lisধng 5.4: APart of Task 1 Computation Flow

The flowof computation resides in Space-B fromLine 1 to Line 8 in Listing 5.4. Given that Space-B has been

mapped to NUMA-nodes (Listing 5.1), at runtime the execution of that part of the task is expected to happen

inside the confinement of individual NUMA-nodes. This condition should hold even for any data movement

needed to resolve the data dependency formatrix_b between Space-B and D LPUs. If parts ofmatrix_b have

to escape the NUMA-node confinement for the sake of data dependency resolution in-between stage1 and

stage2 transitions then that adds hidden runtime overhead that the programmer cannot estimate. During the

transition from Space-B to Space-C at Line 9, however, data reshuffling should take place within the entire

cluster. This is because despite Space-C has been mapped to CPUs, the NUMA-node PPUs of individual

CPUs do not necessarily hold the data needed by the latter as Space B and C are unrelated in the partition

hierarchy.

This example illustrates that the PPUs cannot be realized as one-dimensional entities responsible for execut-

ing instructions only. Rather, the ideal implementation of PPUs should involve donning execution, memory

management, and data dependency resolution roles as dictated by the runtime context.
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5.2.3 Data and Computaࣅon Locality

Since data structures are assigned to LPSes and not being owned by them, the LPU execution model to be

realized in PPUs is not owner compute. This becomes obvious if one considers that LPUs may have shared

data that they can individually modify or LPU data partitions may be overlapped. For example, the same

matrix_b part is shared among all Space-B LPUs of Listing 5.3 that occupy the same position along the 2nd LPS

dimension. The sole restriction on the data modification is that there is no race condition. Thus a specific

implementation can pass around a single data part among interested PPUs or have per-PPU versions of the

same part that are updated as needed.

The LPU execution model required in IT should, rather, be called local compute: a PPU executes instruc-

tion streams on data made available locally for the LPUs beingmultiplexed to the PPU. Thus what is local and

what is not is an important consideration for the compiler to implement the PPUs and for the programmer to

understand the performance of programs running over those PPUs.

Consider again themapping ofTask-1 LPSes inListing 5.1 in this regard. Noneof theLPSes has beenmapped

to the Core-Pair PPS: the only PPS capable of computation in the Hermes cluster. Nevertheless, all computa-

tion will take place in the core-pairs as dictated by the PPS Substitution Rule. When computing for a Space-D

LPU (e.g. stage1 of Listing 5.4), once loaded, associated data is expected to stay in the core memory (given the

data fit into that memory) for the course of that LPU execution as Space-D has been mapped to cores. In

other words, the boundary for data locality is the core memory when dealing with Space-D. Subsequently the

same core-pair may compute for a Space-C LPU (e.g., stage3 of Listing 5.4). Then the associated data can reside

anywhere within the CPU, as Space-C has been mapped to the CPU PPS, and still be local to that core-pair.
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On the surface this may appear to be a mere reiteration of the PPS Substitution Rule, but probing deeper,

one realizes that the locality restriction provides a definitive memory management implementation guideline

for the compiler and consequently enables the programmer to estimate thememory utilization efficiency of an

executing program.

In the context of the Hermes cluster and Task-1 mapping example, this means any IT compiler implemen-

tation needs to ensure L1 cache data locality (which is the core memory) for Space-D computations and main

memory data locality (which is the CPU memory) for Space-C computations. A clever compiler may further

optimize a Space-C computation’s memory access but that is optional and doing so will not violate any con-

servative estimate of memory efficiency the programmer may deduce based on the PCubeS description and

mapping configuration.

5.2.4 Memory Management

The partition configuration of a task such as Task-1 partition in Listing 5.3 establishes the hierarchical relation-

ship among LPSes and their data contents. The actual sizes of the data parts are, however, only known at run-

time by applying the partitioning functions with the runtime arguments for partition parameters on the input

data structures. The paradigm encourages the programmer to choose the partition arguments in a manner so

that his/her LPU data parts are ideal for the PPUs that will do the execution. Hence memory consumption

on overhead data structures that the programmer is unaware of has to be negligible. As any PPU implementa-

tion will have some memory footprint, one way to deal with this issue can be to reserve a small fraction of the

hardware features’ memory capacity for PPU implementation and expose the remaining capacity through the

PCubeS description. Still, the reserved fraction has to be small to be true to the paradigm’s objectives.
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Furthermore, data parts should be present in a particular memory only for the time they are expected to

according to the logic of the program and the mapping configuration, or their existence should not affect the

performance of an ongoing LPU execution they are not part of. This is because the programmer is expected to

reason about the system that way. Therefore, the timeliness of datamovement in and out ofmemories is an im-

portant implementation concern along with the automatic garbage collection demanded by the programming

model.

5.2.5 Concurrent Task Execuࣅons

According to the IT programming model described in Chapter 4, tasks in a program can execute concurrently

as long as there is no data dependency among them and the hardware resources needed to execute them are

available. Concurrent task executions, however, can introduce unexpected runtime behavior such as cache

thrashing among LPUs of different tasks that runs counter to the objective of enabling proper performance

assessment. So it is important to understand the notion of resource allocation in the context of IT + PCubeS

paradigm to support concurrent task executions properly.

The resource allocation requirement can be summarized in a single sentence. When a particular LPS-PPS

mapping is chosen for an IT task, not only the computation resources but also the memory and communication

resources the mapping entails are committed to the task for the time being of its execution. Thus Task-1 of Figure

5.2 cannot run concurrently with the remaining two tasks given the mapping of Listing 5.1 even if many core

pairs remain idle during former’s execution. This is because the particular mapping of Task-1 commits the

entire cluster to the task. Had the mapping configuration been as in Listing 5.5 then all three tasks could run
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concurrently in three different Hermes nodes in the absence of any data dependencies a.

1 ‘ ‘Task 1” {
2 Space A: 5
3 Space B : 3
4 Space C: 4
5 Space D: 1
6 }
7 ‘ ‘Task 2” {
8 Space Root : 5
9 Space A: 2

10 }
11 ‘ ‘Task 3” {
12 Space Root : 5
13 Space A: 4
14 Space B : 3
15 Space C: 2
16 Space D: 2
17 }

Lisধng 5.5: AnAlternativeMapping for the Program in Figure 5.2

This restriction on concurrent task executionsmay appear wasteful but it is not. If the programmer wanted

he/she could combine the independent tasks together to form a bigger task allowing LPUs of independent

LPSes to execute in parallel in idle PPUs. The requirement is any nondeterministic behavior is introduced and

accordingly understood by the programmer instead of by the compiler. Allowing opportunistic exploitation

of parallelism by the compiler achieves nothing that cannot be achieved via other means; it only undermines

the goal of predictable runtime behavior.

5.3 Designing and Debugging an IT Program

After the PCubeS type architecture, the IT language, and the mapping process; there is nothing more for a

programmer to learn about thePCubeS + IT paradigm to program in it efficiently. So this is the proper place to

reflect on earlier discussions and see how we envision the program construction process to be in this paradigm.

aTask 1 does not need an explicit Root LPSmapping as its own top-most LPS, Space-A, is un-partitioned (Listing 5.3)
which effectively encloses the task’s resource consumption to a single Hermes node.
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It startswith an investigationof thenature of the specific problemathand that theprogramattempts to solve.

The programmer should focus on identifying different forms and granularities of parallelisms in the problem

and consider different algorithmic approaches for exploiting those opportunities. For example, different trade-

offs between space and time overhead is possible when solving a finite difference problem using the existing

algorithms. Before making a specific choice of algorithm, however, he/she should consider the kind of PCubeS

architecture the program will be targeted to and decide accordingly.

Some aspects of IT programming are no different from generic parallel computing principles. For example,

if the chosen algorithm has independent or loosely connected components then breaking them into separate

tasks is a good practice in general. The paradigm ensures that there is negligible overhead in having multiple

tasks as opposed to a single task if the data arrangement remains the same. If the data need to be rearranged

then that provides a stronger argument in favor of multiple tasks.

It is the construction of individual tasks that may confuse a rookie programmer. The big question is how to

architect a portable task that can execute efficiently in different target platformswithout or with little modifica-

tions. This concernmaybe bewildering given thatmost contemporary parallelmachines are deeply hierarchical

which may suggest the need of corresponding long hierarchy of LPSes in the task. The problem, however, is

not as perplexing as it may appear in the beginning and the answer again lies in the nature of the algorithmic

sub-part the task is intended for.

If the algorithmhas interdependent phases having different computation anddata access characteristics then

those phases should be implemented as compute stages. Then the phase transitions and phases’ hierarchical

relationships should be encoded as a computation flow that makes transition between LPSes along the way

it executes compute stages. If the opportunity of such breakdown is not inherent in the algorithm then no
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attempt should be made to introduce it artificially. For example, a vector-vector addition can have one phase

only and a blocked matrix-matrix multiplication task can hardly be improved beyond the definition given in

Listing 4.1 of the previous chapter. An LU factorization on the other hand has several phases allowing a more

interesting flow definition.

Data partition specification for the LPSes immediately follows the computation flowdefinition. In fact they

should often be constructed together as the validity of the computation flow is tied with the specification of

the data partitions. Even in the partitioning step, the specific PCubeS target can be largely ignored; instead the

programmer can analyze the task’s behavior assuming there is a one-to-one correspondence between the LPS

hierarchy and the target machine’s PPS hierarchy. Possibility of load imbalance and loss of parallelism can be

discovered fromanalysis done on the assumed idealmachine and should be dealtwith by changing the partition

functions accordingly.

Details of the PCubeS description of the target becomemajor concerns only during themapping step. Map-

ping can be an involved process for a complex program with many tasks, but given LPS-PPS mapping does

not affect program correctness, it can be improved gradually. An uncertain programmer may start with an

LPS-PPS mapping that makes the program completely sequential, utmost parallel, or anything in-between.

None of those initial choices may be appropriate, but the predictability of the runtime behavior enables the

programmer to identify the sources of mapping inefficiencies and rectify them.

Finally, note that the program construction is not a linear process as described above. Initial inadequate

performance may not be rectifiable by mapping variations alone. The programmer may need to refine tasks’

computation flow and partition specifications, and how tasks interact in the program. Unlike some other pro-

gramming paradigms though, the refinement can lead to amore flexible, consequentlymore portable, program
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definition when carefully done.

5.4 Implemented IT Run-ࣅme Model

As long as the requirements of the language model and the mapping configuration are satisfied, different im-

plementations are possible for the IT runtime engine (RTE) for task and PPU handling. In fact, it is better to

choose an implementation model that can utilize the strength of the underlying low-level programming prim-

itives an IT compiler uses to generate the executable in a specific PCubeS platform. Nonetheless, the three

compilers we have developed as part of the research implement a commonRTE. This section gives an overview

of that RTE for illustrative purposes.

5.4.1 Run-ࣅme Process Model

The run-time process model for IT is straight-forward. On each compute node of the target execution envi-

ronment a single process is started. The process executes the IT program that includes references to the IT

run-time libraries described below. The main program starts up, initializes global variables, and starts the pro-

gram controller.

Applications compiledwith themulticore complier have just the single process running on the host. At run-

time, parallelism is achieved by using Pthreads threads that play the role of PPUs. LPUs are assigned to PPUs,

and PPUs execute a loop in which they execute the LPUs that have been assigned to them and synchronize as

necessary.

Applications compiled for distributed memory machines use one MPI process per node with one corre-
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sponding Unix process for each node. When the node has multiple cores (almost always the case today) then

Pthreads threads are used for intra-node parallelism in much the same way as in the multicore compiler. Com-

munication and synchronization within a node is achieved using shared memory and Pthreads barriers. Inter-

node communication and synchronization is performed using MPI.

Applications that use accelerators, in particular GPUs, have a slightly different execution model. As above,

each node executes a single Unix process. If the cores are to be used then there is one pthread per PPU specified

by theuser in themapping file. ThePPUcontrollers get thenextLPUto execute froman internal data structure

executing them as required. If a set of LPUs in an LPS are to be executed on theGPU, a single controller thread

is started that manages interactions with the GPU. The GPU controller thread is responsible for copying LPU

data structures onto the card, initiating the kernel calls on the GPU, and staging data back from the cards.

LPU execution on the GPU is managed by LPU management code executed on each GPU SM that stages

data into the SM from card memory, executes the LPU, and copies data back to card memory. The SM LPU

management code in the kernel continues executing until it has executed its entire batch of LPUs, at which

point it terminates.

Once the GPU kernel calls have completed, the GPU controller thread on the host first copies data back

from the GPU, then if there are more LPUs to execute, the GPU controller thread sends another batch of

LPU’s to the GPU. This process repeats until all of the LPUs have been executed.

5.4.2 Components of the RTE

The architecture diagram of the implemented RTE is depicted in Figure 5.3. The components of the RTE

are grouped into three hierarchical categories based on their lifetime and role during the execution of an IT
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Figure 5.3: Architecture Diagram for IT Run-time Execution Engine

program.

The top level, Program Control, components aid in scheduling and coordination of the tasks of an IT pro-

gram. These components remain active for the entire duration of a program execution. The components are

as follows.

• Program Coordinator Module: executes the logic of the program coordinator function of the IT
program and schedules tasks.

• Environmental Data Structures Repository: holds parts of environmental data structures
created and updated by different tasks.

• Environment Manager: ensures freshness of data in the repository, provides access to data parts from
different tasks, and governs garbage collection.

• Garbage Collector: removes environmental data structures that are no longer needed and reclaims
their memory.
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Currently, the RTE does not support concurrent task executions. Hence there is no inter-task dependency

checker among the Program Control components.

The middle level, Task Control, components set up software and hardware resources for a single task execu-

tion. These resources remain alive during the lifetime of that particular task and are accessed by all PPUs that

participate in the task execution. The components are as follows.

• Task Executor: configures and manages all resources for a task execution, interacts with the Envi-
ronment Manager for data preparation for the task, and cleans all task specific resources before exit.

• Data Parts Registry: holds all data structures, both environmental andnon-environmental, needed
by the task.

• Dependency Resolvers Registry: holds synchronization and communication resources for data
dependency resolutions among PPUs during task execution.

• PPU Role Assignment Rule Box: retains the hardware resource configuration logic that the Task
Executor uses to run the PPUs.

The bottom level,PPU Control, components are the interacting parts of a single physical processor responsi-

ble for executingPPUs. Since a single physical processor in the target hardwaremaybe responsible for executing

code andmanaging data formultiple PPUs, the whole of the parts is called aComposite PPU Controller. Figure

5.4 shows the content of a Composite PPU Controller.

A Composite PPUController remains affixed to a particular physical processor during a task execution and

has the following components.

• Flow Executor: executes the computation flow of the task on the LPUs desginated for the Compos-
ite PPU Controller.

• Role Assignments: answers if the querying Composite PPU Controller has the proper role to exe-
cute a particular part of the computation flow of interest.
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• Computation Flow Template: is a graph representation of the computation flow of the task that
the Flow Executor steps through.

• LPU Generator: generates LPUs on demand for the Flow Executor.

The components of the RTE are implemented in different ways for different back-end architectures. Even

their interfaces are not the same across the board. Nevertheless, the services they provide and the manner they

interact are uniform in all our implementations. Now we know the services; next we discuss how and when

the RTE components interact to execute an IT program.

5.4.3 Interacࣅons among RTE Components

For the sake of scalability, the RTE is implemented as a system of distributed processes. That is, as opposed to a

centralized controller managing RTE components throughout the hardware; multiple instances of RTEs run

independently across hardware units as processes. In the current implementation, a single process is created
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for each largest swath of shared memory (e.g., one per CPU or cluster node) but other placements (e.g., one

per NUMA-node) are possible and may be better performing. An RTE process encompasses the Program

Control components and creates, governs, and destroys other components as needed for the tasks the process

participates in execution.

Program Coordinaࣅon and Tasks Scheduling

The ProgramCoordinatorModule of a process schedules tasks one after another as they are encountered in the

program coordinator function. Before scheduling the next task, the Program Coordinator Module interacts

with the EnvironmentManager to ensure all environmental data structure parts needed for the task execution

are locally available, up-to-date, and are in their proper format. TheEnvironmentalData StructuresRepository

only holds data structure parts that are relevant to the current process. Therefore, if successive tasks partition a

common data structure in different ways then data re-shuffling is needed in-between task transitions. Environ-

mentManagers of participating processes cooperatively perform the re-shuffling – there is no centralization of

data.

Re-shuffling of a data structure parts consists of two steps. First, each process communicates to all other

processes a description of its current content for the data structure of interest and another description for the

content it needs to launch the upcoming task. Second, based on that information, a process determines what

data it needs to send/receive to/from whom then acts accordingly. Upon receiving control back from the En-

vironment Manager, the Program Coordinator Module instantiates a Task Executor of appropriate type to

execute the task.

After each task completion, theEnvironmentManager investigates theEnvironmentalData StructuresRepos-
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itory and instructs the Garbage Collector to remove any data structure parts that are no longer needed.

Task Preparaࣅon

The Task Executor interacts with the Environment Manager to load/store environmental data structures. A

task may use other non-environmental data structures too as auxiliary variables. All data andmetadata needed

for successful execution of the task are prepared and stored in the Data Parts Registry. Task Executors of dif-

ferent processes collectively determine and agree on the proper communication primitives for resolving the

various data dependencies that will arise during the course of execution. Each stores local descriptions of those

primitives in the Dependency Resolvers Registry.

Some data dependencies are confined within the PPUs of the individual processes. Each Task Executor pre-

pares proper data movement and synchronization primitives for resolving those dependencies independently

of others and places those primitives in the Dependency Resolvers Registry also.

The PPU Role Assignment Rule Box serves as a static template generated from the mapping configuration

for assigning PPUs to the processing elements of the hardware. Once the data and resolver registries are ready,

the Task Executor spawns a number of Composite PPU Controllers, configures them as dictated by the PPU

Role Assignment Rule Box, and then allots them to proper processing elements to execute the LPUs. The rest

of the task execution is collectively taken care of by these Composite PPU Controllers.

Each Composite PPU Controller reports its completion to the Task Executor. After receiving notifications

from all of them, the Task Executor does the resource cleanup.
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PPU Execuࣅon

Within aCompositePPUController, theFlowExecutor executes the logic of the task. AllCompositePPUCon-

trollers are given the same Computation Flow Template a and independently traverse it. As a Flow Executor

encounters a direction to execute any stage in the Computation FlowTemplate, it checks its Role Assignments

to determine if the owner Composite PPU Controller has the specific PPU role required to execute that stage.

If the role checking is successful then the Flow Executor instructs the LPU Generator to generate the LPUs

multiplexed to the PPU one-by-one as the Flow Executor executes the concerned stage on each LPU.

LPU generation does not cause any memory allocation for data structure parts. The LPU Generator only

gathers relevant data structure parts by querying the Data Parts Registry using the metadata supplied by the

Flow Executor. Further, LPUs are generated and processed one at a time so that a single LPU instance can be

updated with new data structure part references and there is no dynamic memory allocation for LPUs either.

If the stage execution requires some data dependency to be resolved first or creates new dependencies after-

wards then the Flow Executor contacts the Data Dependency Resolvers Registry, retrieves the specific resolver

for the dependency under concern, and issues appropriate signal on the resolver. Each resolver is already tai-

lored by the Task Executor for the group of Composite PPU Controllers that participate in the dependency

resolution. So upon receiving a signal, the resolver does the intended action, if applicable updates data parts

in the Data Parts Registry, and then passes control back to the Flow Executor so that it can proceed. When

the Flow Executor reaches the end of the Computation Flow Template, task execution is done for the owner

Composite PPU Controller which then notifies the Task Executor.

a A Composite Flow Template is a translated form of computation flow from the IT task annotated with partition
and data dependency information.
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In the above, the Flow Executor does not know the inner mechanism of the dependency resolvers. Neither

does it understand the specific implementation functions/procedures used for the compute stages. It only

invokes those functions/procedures with proper LPUdata. So these pieces can have different implementations

in different platforms. Further, note that as LPUs execute independently in the languagemodel except for data

dependencies so do the Composite PPU Controllers in the actual implementation.
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6
Compilation

This chapter discusses the three IT compilers developed as part of this research. These compilers generate exe-

cutables for multicore CPUs, supercomputers and compute clusters constructed from multicore CPU nodes,

and hybrid supercomputers having bothmulticore CPUs andNVIDIAGPUs as nodes respectively. These are

all source-to-source compilers that generate C++ code parallelized with tools b appropriate for respective target

environments. Although each new PCubeS back-end type brings its own challenges for code generation, the

bMPI, Pthreads, and/or CUDA
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compilers are largely built on top of each other. The chapter also describes the general strategy for breaking

down the compilation process that makes such stacked compiler implementations feasible.

The three architectures are chosen as targets to show the portability of the PCubeS + IT paradigm across

machine types common in contemporary high performance parallel computing problems. Due to time con-

straints, the focus was never on making a single compiler perfect. This left all three compilers with significant

optimization opportunities. The chapter concludes with a review of those optimization opportunities.

Discussions of this chapter frequently refer to the IT Runtime Environment (RTE) presented in Chapter

5 Section 5.4. So the reader should review that section before proceeding further.

6.1 The Broad Picture

One can view the act of programming as a three-step transformation process of the form

Problem →to Algorithm →to Program →to Executable

in which the programmer is responsible for the first two transformations and the compiler for the third. Then

in the context of PCubeS + IT, the program is actually a combination of two things: the source code and

the mapping configuration. The IT compiler is expected to understand the directives of the program and

transform them to proper machine instructions based on an intimate knowledge of the underlying hardware.

Since the programdirectives are expressed in terms ofPCubeS, the compiler’s knowledge of the hardware entails

understanding its PCubeS description and the correspondence between elements of that description and the

features of the actual hardware. Therefore in terms of input/output, the compilation process can be depicted

as in Figure 6.1.
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Figure 6.1: A Schematic Diagram of the Compilation Process in Terms of Input/Output

In Figure 6.1, thePCubeS description and the hardware specification are depicted as external to the compiler

as opposed to its integral parts. This is intended as from the inception the plan was make PCubeS compilers

rely on existing, matured, and widely used low-level parallel programming primitives available in different ar-

chitecture types for the architecture specific aspects of the code generation process. This strategy allows a single

compiler towork in all target hardwarewhere a particular set of low-level programming primitives such asMPI

or Pthreads are applicable. The compiler is responsible for ensuring that those primitives are applied accurately,

efficiently, and in accordance to the PCubeS description of the hardware.

There are three steps in the compilation process as shown in Figure 6.2.

The first step takes the IT source code as the sole input and produces an intermediate code for a virtual

machine specification a. The second stage takes the intermediate code and the mapping configuration, con-

strains the virtual machine specification with actual hardware characteristics, and then generates a low-level

native program (a C++ program parallelized withMPI, Pthreads, and/or CUDA). Finally, the pieces of the na-

aThe virtual machine specification has been described in Section 6.2.
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Figure 6.2: Generic Architecture of an IT Compiler

tive program are compiled with appropriate native compilers and linked together with RTE and user supplied

libraries to form the executable.

The IT programmingmodelmakes the compiler responsible for allmemorymanagement, data synchroniza-

tion, and communication for a program. From the discussion ofChapter 5, it is apparent that the programmer’s

choice of the LPS-PPSmapping and the features of the execution platformdictate the proper implementations

of those aspects. Nevertheless, the policy for memory management, data synchronization, communication,

and so on can largely be determined from the IT source code directly when viewed in light of a proper virtual

machine specification. This is a result of the particular structuring and declarative syntax of the IT program,

and it has a great consequence. The consequence is we can describe data allocation requirements, data access

characteristics, and data dependencies within LPSes and LPUs of individual IT tasks in an abstract way that
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hold true irrespective of the LPS-PPS mapping and the specific target execution platform. Hence we have the

front-end compiler transforms the IT source code and augments additional details to the transformation as

policy directives for the back-end compiler. The back-end compiler for a specific target further refines and then

implements those directives based on the mapping configuration and machine characteristics.

This strategy enables us to keep the front-end compiler fixed and only vary the back-end compiler and run-

time library implementation to generate executables for different architecture types. The challenge is in defin-

ing a proper virtualmachine that supersedes any realPCubeS architecture and having an elaborate intermediate

code that has all information needed to guide generation of a proper native program for any target execution

platform.

Subsequent sections discuss the front-end compiler and the three back-end compilers we implemented. Be-

fore we dive into that, however, it is important to inform the reader about the syntax difference between the 1st

version of IT that the compilers currently parse and the 2nd version that is being used throughout this writing

to explain the language and is being published in our technical report96.

6.1.1 Syntax Difference between Two Language Versions

The initial version of the IT language that we drafted in late 2013 remains the same in terms of the expressive

power of the language, semantics of the features, and all other regardswith one notable exception: the syntax of

the language has undergone several changes as we discovered strangeness and irregularities in it. Most of these

changes are syntactic sugar orminor tweaks that we believe have improved the readability of IT programs. The

onlymajor syntax change is the way the computation flow of a task is specified, and the change has a significant

bearing on the front-end compilation process. Listing 6.1 and 6.2 illustrate the syntax change in the context of
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the Block Matrix-Matrix Multiplication task discussed in Chapter 4.

1Stages :
2 multiplyMatrices (x , y , z ) {
3 do { x [ i ] [ j ] = x [ i ] [ j ] + y [ i ] [k] * z [k ] [ j ]
4 } for i , j in x ; k in y
5 }
6Computation :
7 Space A {
8 Repeat foreach sub−part i t ion {
9 multiplyMatrices ( c , a , b)

10 }
11 }

Lisধng 6.1: New Syntax for Specifying a Task Computation

1Compute:
2 ‘ ‘ multiplyMatrices” (Space A) {
3 do { c [ i ] [ j ] = c [ i ] [ j ] + a [ i ] [k] * b[k ] [ j ]
4 } for i , j in c ; k in a
5 }
6 Repeat : from ‘ ‘ multiplyMatrices” foreach Space A sub−part i t ion

Lisধng 6.2: Old Syntax for Specifying a Task Computation

In the new syntax, the compute stages of a task are defined in the Stages Section. The stages have no LPS

association of their own. The algorithmic logic of the task is then expressed as a flow of those stages through

LPSes in the separate Computation Section. The letter section uses LPS markers (e.g., Space A of Line 7) and

other control constructs (e.g., repeat statement of Line 8) along with the stage invocations to define the flow.

In the old syntax, however, these two sections are fused together. Consequently compute stages are fixed to

particular LPSes, directly access task-global variables, and bear LPS marker tags.

We switched to the new syntax, primarily, to be able to invoke the same compute stage with different argu-

ments and from different LPSes, which would cause redundant stage definitions in the old syntax. In addition,

we wanted to have a clearer separation of concerns between coarser-grain data parallelism realized through par-

allel stage executions in different LPUs from finer instruction parallelism within individual stages. From the

compilation perspective the situation does not change much.
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There is another consequence of this syntax change. The new syntax enables type-polymorphic stage defi-

nitions that were not even a concern in the old syntax. Since IT extensively uses type-inference, having type-

polymorphic stages appears to be a natural choice.

Type polymorphism is strictly a front-end compiler concern. Therefore, we need to make change in one

place only. Due to time constraints, however, we did not incorporate any changes ensued by the new language

definition to the front-end compiler that has already been fully functional before those changes. So the sub-

sequent discussion on compilers does not address the issue of type-polymorphism. Type polymorphism is a

well-studied issue that should not be difficult to implement in IT compilers, as our draft assessment suggests.

6.2 The Front-End Compiler

We mentioned before that the front-end compiler assumes a virtual machine specification to generate an inter-

mediate representation of the IT source code that can be used by any back-end compiler to generate an efficient

native program. The virtual hardware has the following properties.

1. It is a fully distributed-memory PCubeS architecture with arbitrary number of PPSes each having a
non-zero processing and memory capacity.

2. Each PPS in the hardware has more than one PPUs

3. Direct communication is possible between PPUs of a pair of PPSes regardless of the number of inter-
mediate PPSes separating the two in the hierarchy.

In the absence of anymapping configuration at this step of compilation, it is further assumed that each LPS

of a task has been mapped to a different PPS of the hardware.
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Themerit of choosing this particular machine specification is that it exposes all potential data dependencies

in an IT task and the nature of those dependencies. A reflection on the three aforementioned properties shows

why that is true.

First, the hardware has distributed memory in all PPS levels. That means any LPS transition in the task’s

computation flowwill ensue a data movement requirement if some data common in the involved LPSes being

updated in the former and read in the upcoming compute stage to be executed in the latter.

Second, there are multiple PPUs with disjoint memories in each PPS. Hence an update of a data structure

having overlapped LPU partitions or being shared among LPUs will also create data dependencies within the

PPUs of the single PPS executing those LPUs.

Finally, direct communication is possible between PPUs of any pair of PPSes. Given that LPSes are assumed

to be mapped to different PPSes, this makes LPS and PPS mutually interchangeable and enables data depen-

dencies to be characterized (such as all-to-all, scatter, gather, or point-to-point dependencies) based on the po-

sitions of the involved LPSes in the LPS hierarchy. The idea is to account for all possible dependencies in the

first step then configure or remove specific dependencies based on the actual hardware features and mapping

configuration during the back-end compilation step.

Another important responsibility of the front-end compiler is toprocess thedatapartitioning and alignment

instructions of tasks’ Partition Section and encode all those instructions in a format useful during the back-end

compilation. Efficiency of this encoding is pivotal for successful back-end compilation as memory allocation,

communication, compute stage translation, more-or-less all aspects of the back-end compilation are affected

by it.

The front-end compiler also does type-inference, data version update tracking, and other analyses on the
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Figure 6.3: Phases of the Front-end Compiler

source code to generate the intermediate code. The phases of the front-end compiler are illustrated in Figure

6.3 with key sub-phases highlighted. There is no separate intermediate code generation phase in the Figure.

This is because successive sub-phases of Static Analysis incrementally build up the intermediate code.

Lexical and Syntax Analysis and some parts of Semantic Analysis (e.g., scoping) are not particularly interest-

ing. The interested reader can find how to do those in any compiler textbook such as 11. Here we briefly discuss

the highlighted sub-phases that are challenging and specific to IT.

6.2.1 Semanࣅc Analysis

Type Inference

Since the programmer is required to provide data types of only the task-global variables in the Define Section

of a task and in the properties of his/her custom data types, the compiler has to determine types of any other
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variables introduced anywhere else. This is done through a recursive type inference process. At each pass of the

recursion, the compiler takes input the variables and functionswhose types are already known and tries to infer

the types of variables and functions from those known types. If no new variable or function type is determined

at a particular pass but there are still unknown types then the process has come to a fixed-point, the compiler

halts and asks the programmer to specify the unknown types explicitly. Type validation takes place along with

type inference. If some type errors are discovered in a particular pass then the process halts and error messages

are displayed. The type inference process terminates successfully and hands over control to the next sub-phase

when there are no more unknown types.

Parࣅࣅon Validaࣅon and Encoding

Although the grammar for thePartition Section provides a human-readable and intuitivemechanism to specify

tasks’ LPSes, their data content, and data partitions; the immediate parsed form is not directly usable in sub-

sequent compilation phases. Take the partition configuration of Listing 5.3 of Chapter 5 for example, neither

the LPS hierarchy, nor the array to LPS dimension alignments, nor can the recursive partitioning of arrays be

deduced without going back and forth in the abstract syntax tree. Hence, in the semantic analysis phase that

part of the abstract syntax tree is extracted and transformed into a tree – a tree of coordinate systems called the

Data Partition Tree – where any information can be discovered through a direct lookup. Partition validation

also takes place during this transformation process.

Each LPS is a node in the Data Partition Tree and forms a coordinate system with number of dimensions

equal to the LPS dimensions. The dimensionless placeholderRoot LPS forms the root of the tree. An array’s di-

mension, the functionbeingused topartition that dimension and associatedpartitionparameters are deposited
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as a token to the aligned dimension of the LPS node. A balanced coordinate system has an equal number of

tokens along each dimension and a valid partition hierarchy has all LPS coordinate systems balanced. Once the

validity of the partition hierarchy has been established, the array partition tokens in hierarchically related LPS

nodes are linked together to construct hierarchical partition instructions for individual arrays.

The decision of transforming of a task’s Partition Section into a tree of nested coordinate systems is not ar-

bitrary. This conversion and subsequent generation of hierarchical partition instructions for individual arrays

enable the back-end compiler to derive an accurate association between an array element index and its actual

storage location for any memory allocation scheme. This capability is crucial to realize IT ’s support for hierar-

chically dividing arrays using index reordering partition functions any number of times.

6.2.2 Staࣅc Analysis

Flow Transformaࣅon

We mentioned earlier that successive passes of static analysis incrementally generate the intermediate code. In

that regard, the first pass transforms the abstract syntax trees for each task in the program into a directed and

recursive flow graph. The nodes in the graph are compute stages and compiler introducedmeta-stages for flow-

control (such as conditional stage executions and repeat loops) and LPS transitions. Each node in the flow

graph is linked to the appropriate node in the partition hierarchy to enable easy access to LPS and data structure

partition information.

A crucial aspect of the flow transformation process is to augment data distribution and transfer control

stages in the flow graph for LPSes having sub-partitions. These LPSes requires that data part allocation and
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LPU distribution decisions are made on-the-fly during task execution – unlike in the case of normal LPSes

where those decisions aremade at task inception. To avoidmanaging parts of data structures that are not being

used during a particular transition to such an LPS in the flow graph, the control stages are augmented to the

flow graph after a data access analysis on the existing stages. Thus the flow transformation is actually a two-step

process.

The directed, recursive flow graph representation for intermediate code has a significance. TheComputation

Section of an IT task, despite having the appearance of a pseudo-code, is a specification of a parallel algorithm.

As described in Chapter 5, the PPUs of the target hardware are responsible to execute the algorithm concur-

rently and resolve any memory management issues and data dependencies that occur during its parallel exe-

cution. The chosen representation, once augmented with data access and dependency information, facilitates

such PPU behavior. Whether a PPU should execute a compute stage independently, or update data versions

in the memory, or interact with other PPUs to resolve a data dependency, etc. is uniquely determined by the

particular context the PPU is in the flow graph at that instance. Only the implementations of those operations

vary depending on the back-end architecture type and LPS-PPS mapping. Therefore, the intermediate flow

graph can be directly translated into a native code with pluggable platform specific implementations of differ-

ent PPU roles. This finding is the foundation of the multi-component breakdown of the Composite PPU

Controller in our IT RTE.

Data Access Analysis

Data access analysis annotates stages of the flow graph with information regarding what task-global data has

been accessed where, how many versions of those data being accessed, and the nature (read/write/reduce) of a
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data access. This information is needed to derive data dependencies among the stages of the flow graph during

later part of the front-end compilation, and to make memory management and LPU generation decisions

during the back-end compilation.

For arrays, distinction has been made between accessing data and metadata such as querying a dimension

length. Some final data access validations are also done during this step, e.g., whether accessing a particular

data structure or its element in a particular stage is allowed by the partition configuration of that data structure.

These validations do not cover for all possible incorrect data accesses at run-time.

Data Dependency Analysis

Once the flow graph generation is complete and data access information is available, data dependency analysis

kicks off. First, the dependency relationships are implanted into the flow graph as arcs connecting compute

stage nodes based on nodes’ data access characteristics. Then source and/or destination of those arcs are shifted

to encircling meta-stages, if appropriate, to avoid having any arc connecting nodes at different recursion lev-

els. Afterwards, redundant arcs and arcs whose data dependency is indirectly resolved by some other arcs are

removed.

The dependency arcs shifting is a semantic preserving transformation whose accuracy can be provenmathe-

matically from the structure of the recursive flow graph and the nature of execution of that graph. It is logically

impossible to make recursive boundary crossing transitions among nodes of the graph without violating the

algorithmic structure of the source code. Consequently, any data dependency among two graph nodes at sep-

arate recursion boundaries need to be resolved only once at the location where their ancestor nodes are at the

same recursion level.
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Similarly, redundant and voided dependency arcs determination has a sound logical underpinning. The

transitivity of data dependency relationships is utilized in that regard. Note that the programmer’s choice of

LPS-PPS mapping can make even more data dependencies redundant during the back-end compilation step.

For example, if a pair of LPSes using the same partitioning for a data structure have been mapped to the same

PPS then all dependencies among their compute stages for that data structure become void. The front-end

compiler only eliminates dependencies that are logically redundant.

Once all valid dependencies are identified, individual dependency arcs are characterized further to reveal the

nature of the dependencies. Some data dependencies are just ordering dependencies among involved stages.

They are annotated likewise. Dependency arcs that will require some form of synchronization or data transfer

are classified into five categories: point-to-point, data gather, data scatter, broadcast, and boundary sharing.

This classification is done based on the relative positions of the LPSes of the compute stages that a dependency

arc connects and the nature of the data partitioning in those LPSes.

The dependency arcs are classified in this manner so that the back-end compiler can apply the synchroniza-

tion/communication primitive ideal for a particular type. The capability of implementing appropriate, type-

specific synchronization and communication primitives is essential for generating a native code that can com-

pete in performance with a hand-written low-level code. Any generic implementation of those features may

unduly punish a particular IT program.

Final Note on the Intermediate Code

Figure 6.4 depicts a simplified graphical representation of the intermediate code, or the flow graph, that high-

lights the dependency andordering relationships amongnodes of a 3-space task for traditional LUFactorization
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with Row Pivoting. The task’s computation and data partition are presented in the old IT syntax in Listing

6.3.

1Compute:
2 ‘ ‘ Prepare” (Space B) {
3 do { u [ j ] [ i ] = a [ i ] [ j ] } for i , j in a
4 do { l [ i ] [ i ] = 1 } for i in l
5 }
6 ‘ ‘ Se lect Pivot” (Space B)
7 Activate i f k in u . local . dimension1 . range {
8 do { pivot = reduce ( ‘ ‘maxEntry” , u [k ] [ j ] )
9 } for j in u and j >= k

10 }
11 ‘ ‘ Store Pivot” (Space A) {
12 p [k] = pivot
13 }
14 ‘ ‘ Interchange Columns” (Space B) {
15 i f (k != pivot ) {
16 do { pivot_entry = u [ i ] [k]
17 u [ i ] [k] = u [ i ] [ pivot ]
18 u [ i ] [ pivot ] = pivot_entry
19 } for i in u and i >= k
20 do { pivot_entry = l [ i ] [k]
21 l [ i ] [k] = l [ i ] [ pivot ]
22 l [ i ] [ pivot ] = pivot_entry
23 } for i in l and i < k
24 }
25 }
26 ‘ ‘Update Lower” (Space B)
27 Activate i f k in l . local . dimension1 . range {
28 do { l [k ] [ j ] = u [k ] [ j ] / u [k ] [k]
29 l_row[ j ] = l [k ] [ j ]
30 } for j in l and j > k
31 }
32 ‘ ‘Update Upper” (Space C) {
33 do {
34 u [ i ] [ j ] = u [ i ] [ j ] − l_row[ j ] * u [ i ] [k]
35 } for i , j in u and i > k and j >= k
36 }
37 Repeat : from ‘ ‘ Se lect Pivot” for k in a . dimension1 . range
38Partition (b ) :
39 Space A <un−partitioned> { p }
40 Space B <1d> divides Space A part i t i ons {
41 a<dim2>, u<dim1>, l<dim1>: s t r ide ( )
42 l_row : repl icated
43 }
44 Space C <1d> divides Space B part i t i ons {
45 u<dim2>, l_row : block_size (b)
46 }

Lisধng 6.3: LU Factorization with Row Pivoting Task Logic

Note that the dependency arcs inside the sub-graph of the Repeat Control node (Node 2) are classified as

forward or reverse to separate dependencies between a pair of nodes in a single iteration of the repeat loop
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Figure 6.4: A Simplified FlowDiagram of LUFwith Row Pivoting

(forward) from dependencies between a pair of nodes in adjacent iterations (reverse). The back-end compiler

uses this information to avoid deadlock during the entrance and exit of a repeat loop occurring from waiting

on non-existent dependencies.

A flow graph with dependency and ordering arcs as the intermediate form allows the back-end compiler

to reorder the stage executions to optimize memory access, if applicable. Additionally, based on the source

and destination of a data dependency arc, the compiler can overlap computation with communication to fur-

ther improve run-time performance. None of those optimizations are tried in the existing back-end compilers.

Regardless, we wanted to keep the front-end compiler’s output the utmost flexible.

Finally, no attempt is made to combine the flow graphs of the various interacting tasks of a program dur-

ing the front-end compilation as the nature of their actual interaction depends on the mapping configuration
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which is unknown at this compilation step.

6.3 The Mulࣅcore Back-end Compiler

The first IT back-end compiler we developed generates executables that run in multicore CPUs. The IT com-

piler generates the native code as a collection of C++ source files parallelized with POSIX threads (or Pthreads)

which the native C++ compiler of the target hardware compiles and links into the executable.

For the multicore back-end, our vision was to take advantage of matured shared-memory programming

techniques as much as possible and then minimize the overhead of IT RTE implementation using carefully

chosen data structures and algorithms. The expectation was that if the overhead cost of IT RTE operations is

negligible then the runtime behavior of an IT executable should resemble that of an equivalent hand-written

multi-threaded parallel program. We chose Pthreads as the mechanism for parallelism due to its wide applica-

bility. Furthermore, Pthreads provides the utmost programmer control of a thread’s behavior which wasmuch

needed for flexible and efficient implementations of IT RTE components.

6.3.1 RTE Implementaࣅon

Referring back to the run-timemodel of Chapter 5, the Task Executor in this case is a manager of threads. Each

task execution creates a number of Pthreads as the Composite PPU Controllers and cleans them up when the

task completes. The Pthreads are pinned to appropriate cores of the CPU during the lifetime of a task and

share or exclusively access hardware caches according to the mapping configuration.

To elaborate, take for example aHermes node of Figure 5.1 as the target hardware; if anLPS of a task has been
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mapped to the NUMA-nodes then there will be a single thread pinned to the first core of each NUMA-node.

Hence that thread will have exclusive access to all shared caches inside the NUMA-node. Threads of different

NUMA-nodes, however, have to compete for the main memory access.

The flow graph from the front-compiler is converted to aC++ function and serves as theComputation Flow

Template. The compute stages of the task are translated as void functions that take in an LPU and task-global

scalar variables as reference parameters, and update them directly. Calls to those functions are implanted into

appropriate places in the Computation FlowTemplate. The FlowExecutor invokes a function or skips it based

on the Composite PPU Controller’s PPU role and availability of LPUs. Listing 6.4 shows the central part of

the Computation FlowTemplate the compiler generates for theBlock Matrix-Matrix Multiply task of Listing

4.1. This illustrates how the Flow Executor works.

1 int spaceA_SubLpuId = INVALID_ID;
2 int spaceA_SubIteration = 0;
3 SpaceA_Sub_LPU *spaceA_SubLpu = NULL;
4 LPU *lpu = NULL;
5 / / i teration over LPUs
6 while ( ( lpu = threadState−>getNextLpu (Space_A_Sub , Space_Root ,
7 spaceA_SubLpuId ) ) != NULL) {
8 spaceA_SubLpu = (SpaceA_Sub_LPU*) lpu ;
9 / / role checking to decide whether to execute this stage

10 if ( threadState−>isValidPpu (Space_A_Sub ) ) {
11 / / executing user computation
12 multiplyMatrices ( spaceA_SubLpu , arrayMetadata ,
13 taskGlobals , threadLocals , partition ) ;
14 }
15 spaceA_SubLpuId = spaceA_SubLpu−>id ;
16 spaceA_SubIteration++;
17 }

Lisধng 6.4: TheMain Section of the Computation Flow Template of a BlockMatrix-MatrixMultiply Task

Let us now examine some important elements of the multicore implementation of the IT RTE.
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6.3.2 Memory Model

The multicore run-time has the simplest memory model. It allocates only main memory and relies on the

multicore hardware’s cache control mechanism for data transfer to/from caches during LPU executions. The

discussion in Chapter 5 makes it evident that programmatic control of the caches is ideal for any IT run-time

to ensure data locality. The current strategy cannot guarantee that. Nonetheless, we adopt this strategy to save

development time.

Data structures – in particular, arrays – are allocated as whole as opposed to separate parts for individual

LPUs a. This policy greatly simplifies data structuremanagement and inter-task interaction handling. Both the

Environmental Data Structures Repository andData Parts Registry of Figure 5.3 are associated maps that Task

Executors andComposite PPUControllers look up for data theywill use. Since tasks execute one after another,

the inter-task data dependency problem is gone altogether. This simplification of key IT RTE components

goes a long way to reduce overhead computation cost in the IT executable.

How the notion of independent LPU execution is implemented and how data dependency resolution for a

data (or data part) shared among LPUs is done under this model are critical concerns that we discuss next.

6.3.3 LPU Generaࣅon

An LPU in the multicore memory model is just a set of metadata descriptions that define what data structures

andwhat regions of those data structures anLPUwill use. Since arrays in the source programcanbepartitioned

multiple times along the LPS hierarchy, LPU metadata descriptions for arrays are also hierarchical.

aAny multidimensional array in the source code is implemented as a single-dimensional array in the back-end.
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For this LPU generation scheme, the LPU Generator of Figure 5.4 is implemented as a collection of library

functions. This is done by investigating the coordinate space definition of each LPS in the partition hierarchy

and generating functions that determine LPU counts, which part of an array should fall within a specific LPU,

and so on. Based on its PPU and group IDs for the concerned LPS, a Composite PPU Controller gets the

IDs of the subset of LPUs that it needs to execute. Another set of libraries is used to generate the LPU when

passed an LPU ID and the total LPU count. As described in Chapter 5, no memory allocation is done for the

LPU structure; rather the properties of the same instance are updated for subsequent LPUs. Thus, the LPU

Generator does not need to look up a Data Parts Registry as shown in Figure 5.4. Affixing the data structure

references to the sole LPU instance of an LPS during that instance’s creation is sufficient.

LPU generation is a recursive process. Suppose a task has the following partition hierarchy: Space-A divides

Space-B which divides Space-C. Then if a directive has been found in the Computation Flow Template to ex-

ecute a compute stage in Space-A, the Flow Executor has to iterate over LPUs based on what ancestor LPS

the transition has been made from to reach Space-A in that instance. If the transition has been made from

Space-B then the Flow Executor should iterate only over the LPUs of Space-A. If, however, the transition has

been made from Space-C then the Flow Executor should recursively go between the LPUs of Space-B to accu-

mulate all Space-A LPUs. An efficient implementation of this recursive LPU generation process was essential

for minimizing the IT RTE overhead. We solved this problem using a clever modification of the well-known

depth-first search (DFS) tree traversal algorithm 34.

Since LPSes of a task form a rooted tree hierarchy in the IT source code, their LPUs form such a hierarchy

also at run-time. It is as if the branches of the LPS tree hierarchy are replicated over and over in the LPU

tree hierarchy based on the sizes of data structures and specific partition instructions applied at each tree level.
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A Composite PPU Controller’s LPU execution can be imagined as a process of traversing the nodes of the

LPU tree, executing compute stages on the LPUs as it traverses them, and handling other management issues

(e.g., dependency resolution) as needed during a transition from a tree level to the next. The difference from

a straightforward DFS traversal is that a Composite PPU Controller traverses only dedicated tree nodes based

on its PPU and group IDs, as mentioned before.

In our implementation, the LPUGenerator is supplied with theData Partition Tree generated by the front-

end compiler that encodes both the LPS hierarchy and partition instructions in those LPSes. Each Composite

PPUController gets its own instance of the LPUGenerator that the former initializes with its PPU and group

IDs and sets to a LPU traversal state at the root of the would be LPU tree hierarchy. With each LPU request

from the Flow Executor of the Composite PPU Controller, the LPUGenerator expands the LPU tree, adjusts

the traversal state, and returns the next LPU. Tominimize space overhead for this process, at all times the LPU

Generator maintains a single path – not the entirety – of the LPU tree. In other words, LPU tree expansion

and traversal happen simultaneously.

A check-pointing mechanism is introduced to be able to constraint the DFS traversal (and re-traversals) of

theLPU treewithin a sub-tree based on the context of theComputationFlowTemplate. A checkpoint informs

the LPUGenerator about the sub-tree root of the current DFS traversal. Then only LPUswithin that sub-tree

are returned with successive invocations of getNextLpu. If all those LPUs are exhausted, the LPU Generator

reports that. Then the checkpoint needs to be moved to restart LPU generation from a different sub-tree. To

traverse the same LPUs from the previous sub-tree, the checkpoint needs be reset but not moved.

Note that this entire logic of setting checkpoints and traversing LPUs is encapsulated within the LPU Gen-

erator. The FlowExecutor just accesses the LPUGeneratorwith appropriate parameters to specify the traversal
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boundaries. Thus the getNextLpu invocation at Line 6 of Listing 6.4 has the second argument pointing to the

LPS the transition has been made from. We found this elaborate mechanism actually contributes little to the

overall run-time of the program.

6.3.4 Synchronizaࣅon

Since data structures are allocated as whole, all data dependency resolution problems become synchronization

problems in the multicore back-end. There is a set of synchronization primitives for each dependency arc in

the flow graph. Each primitive is intended for a particular group of Composite PPU Controller threads hav-

ing LPUs with overlapped/replicated data. There is a deterministic association between a thread’s data inter-

dependency with others and the CPU core the thread occupies. This association is the foundation of synchro-

nization grouping.

Let us examine a simple example to understand this association. Assume that a task has three hierarchically

related LPSes: Space-A, B, and C. Further assume that a single array is partitioned in Space-A, then those par-

titions are replicated among the LPUs of Space-B, then Space-C LPUs further divide those replicated Space-B

partitions. Finally, assume that the programmerwants to run the task using a single CPUof theHermes cluster

of Figure 5.1 with amapping configuration thatmaps Space-A, B, andC toNUMA-Node, Core-Pair, andCore

PPS levels respectively.

Given the above configuration, if some threads executing compute stages of Space-C update the concerned

array then all threads within a single NUMA-Node confinement are affected and should be notified. This is

required due to the replication of the array parts in Space-B LPUs. Threads of different NUMA-Nodes do

not affect one-another as the array is divided into disjoint partitions in Space-A. Therefore for this particular
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example, two synchronization primitives will be needed for the twoNUMA-Nodes of theCPU, each primitive

will have 8 participants for the 8 Composite PPU Controller threads running on the cores of a NUMA-Node,

with the threads aware of what particular primitive is intended for them.

The discovery that synchronization grouping can be done in this manner for arbitrary task partition hierar-

chies once the LPS-PPS mapping is known is one of the most important findings during multicore back-end

compiler development. This characteristic is a result of the close correspondence of the abstract programming

model of IT and PCubeS machine description.

The back-end compiler annotates the dependency arcs of the intermediate code based on a mapping de-

pendent static analysis. Afterwards it generates library routines for creating and accessing the synchronization

primitives by parsing those annotations. These synchronization primitives and their access functions form the

Dependency Resolvers Registry for the multicore back-end.

The Task Executor initializes the primitives in the Dependency Resolvers Registry during a task launch.

Subsequently, the FlowExecutor of a Composite PPUController thread retrieves its synchronization primitive

for a particular situation in the Computation Flow Template and issues the proper signal irrespective of other

participant threads. The synchronization primitive ensures that the Flow Executors of different threads are

blocked and released at proper times. In other words, threads cooperate in a synchronization without being

conscious of their cooperation. The compiler generated code snippet of Listing 6.5 illustrates this mechanism

in the context of the LU Factorization with Row Pivoting task of Figure 6.4.

The two synchronizations from Line 20 to 32 in Listing 6.5 are for the two data dependency arcs from the

Interchange Columns andUpdate Lower stages (invoked at Line 5 and 11) to theUpdate Upper stage. Note that

a dependency arc is for an LPU-LPU interaction in the flow graph of Figure 6.4 but the compiler implements
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1 while ( ( lpu = threadState−>getNextLpu (Space_B , Space_Root , spaceBLpuId ) ) != NULL) {
2 spaceBLpu = (SpaceB_LPU*) lpu ;
3 if ( threadState−>isValidPpu ( Space_B ) ) {
4 / / invoking user computation
5 int stage5Executed = interchange_columns ( spaceBLpu ,
6 arrayMetadata , taskGlobals , threadLocals , partition ) ;
7 uStage5No3 += stage5Executed ;
8 }
9 if ( threadState−>isValidPpu ( Space_B ) ) {

10 / / invoking user computation
11 int stage6Executed = update_lower ( spaceBLpu ,
12 arrayMetadata , taskGlobals , threadLocals , partition ) ;
13 l_rowStage6No1 += stage6Executed ;
14 }
15 spaceBLpuId = spaceBLpu−>id ;
16 spaceBIteration ++;
17 }
18 } / / scope exit for iterating LPUs of Space B
19
20 / / resolving synchronization dependencies
21 if ( uStage5No3 > 0 && threadState−>isValidPpu ( Space_B ) ) {
22 threadSync−>uStage5No3DSync−>signal ( repeatIteration ) ;
23 uStage5No3 = 0;
24 } else if ( threadState−>isValidPpu (Space_C) ) {
25 threadSync−>uStage5No3DSync−>wait ( repeatIteration ) ;
26 }
27 if ( l_rowStage6No1 > 0 && threadState−>isValidPpu ( Space_B ) ) {
28 threadSync−>l_rowStage6No1DSync−>signal ( repeatIteration ) ;
29 l_rowStage6No1 = 0;
30 } else if ( threadState−>isValidPpu (Space_C) ) {
31 threadSync−>l_rowStage6No1DSync−>wait ( repeatIteration ) ;
32 }

Lisধng 6.5: ACode Snippet from LUFwith Row Pivoting Task’s Flow Template
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a PPU-PPU synchronization that is derived from the arc characteristics and LPU distribution information.

Implementing an LPU-LPU synchronization mechanism would be far more complicated due to the overhead

related to tracking individual LPU executions.

6.3.5 Array Index Transformaࣅon

One of the most critical aspects of the back-end compilation is to associate array indices to their storage loca-

tions (and vice versa) within the functions for compute stages in the presence of array index reordering in the

Partition Section. This is a concern regardless of the particular memory model being chosen by the back-end

compiler as the hierarchical LPUmetadata descriptions for arrays have to be generated by recursively applying

the partition functions. Given multicore back-end compiler is the first compiler we have developed, we had

to solve this issue here. The two subsequent compilers apply the same solution strategy developed for the first

compiler with minor adjustments for the memory models they implement.

The index transformation problembecomes apparent if one reflects on the IT code samples being presented

so far in this writing. For portability, array indexingwithin a compute stage is necessarily oblivious of the actual

physical locations the indices refer to. The programmer only ensures that indices are valid for the underlying

LPU given the specification provided in the Partition Section. Take the Block Matrix-Matrix Multiplication

task of Listing 4.1 as an example. It is not unrealistic to have the inputmatrices partitioned using stride in Space-

A thenwithin the sub-partition using block-stride when that task is being used in conjunctionwith other tasks

to solve a larger problem. Thismeans indices inbothdimensions of thematriceswill be shuffled anddistributed

amongLPUs in thatmanner. Nevertheless, theCompute Section remains the same. Itwill remain the same even

if we addmore LPSes and havemultiple shuffles per dimension. It is the compiler’s responsibility to transform
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all index comparisons and array accesses to ensure that the correct storage address is retrieved for an index value

and vice versa.

The transformation is done by associating parameterized expressions with each partition function defini-

tion. There are three such transform expressions: one for converting an original array index to its transformed

index within an LPU part, another for doing the reverse translation, and a final expression for determining if an

arbitrary integer lies within the transformed index range of an array part. Different expressions are needed in

different statement contexts the concerned array and its indices are being used within a compute stage. During

code generation, the compiler replaces parameters with appropriate arguments in a transform expression, com-

bines transform expressions for different dimensions, and puts the resulting expression as a replacement for

direct index accesses based on what is appropriate for a particular scenario. If a particular array dimension has

been reordered multiple times along the LPS hierarchy then the expression for that dimension is generated by

repeatedly transforming the transform expression. This is done using an expression stack where each popped

expression replaces one or more parameters in the subsequent expression.

The mathematics of transforming and reverse transforming an array element index is founded on the logic

of function composition fnC. If f : X → Y and g : Y → Z are two functions then their composition g ◦ f :

X → Z is a function for all x ∈ Xwith the property g ◦ f = g(f(x)). Each partition function provides its own

associated functions for the aforementioned three types of index transformations that may be needed in an IT

executable. For a hierarchical partition, appropriate associated functions can be applied one after another in a

compositional manner.

The problem with straightforward function applications for an index transformation is that function invo-

cations are costly. In particular, array index transformations often happen inside deeply nested loops whose
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execution time can be affected drastically if burdened with unwanted function calls. The novelty of our index

transformation technique is that it involves no function calls. This feat is achieved using the aforementioned

parameterized expressions for the transformation functions.

Note that an array index transformation does not result in a compile-time static expression. This is because

the array/storage index being transformed aswell as the arguments for the underlying partition functions are all

run-time variables. Rather the final expression being generated by the compiler as a replacement for a straight-

forward index access in the source code is itself a parameterized expression. The parameters of that final ex-

pression are, however, available as local variables in the context the expression is evaluated. Consequently, at

run-time the expression is always evaluated to proper integer value.

Depending on the complexity of the partition functions and the depth of the partition hierarchy, an index

transformation may result in a lot of integer operations. Integer operations are, however, cheap compared to

floating point arithmetics that dominate high performance parallel computing. Furthermore, the native com-

piler’s optimizer should detect and eliminate any redundancy in the transformation expressions at the third

compilation step. Nonetheless, measures have been taken in the back-end compiler to hoist index transforma-

tion expressions to appropriate loop level to avoid redundant computations.

6.4 The Segmented Memory Back-end Compiler

The secondback-end compiler, called the SegmentedMemory IT Compiler, generates executables for compute

clusters or supercomputers composed of multicore CPUs. Since we already had an IT compiler for multicore

CPUs, the plan was to build the new compiler on top of that. Then aspects of the IT run-time that involves
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cross CPU interactions will be handled by an added part and aspects of the IT run-time local to individual

CPUs will be delegated to the existing multicore compiler.

This strategy provides a communicating processes model for a segmented memory executable where each

participant process is a multi-threaded shared memory program that communicates with other processes by

sending/receiving explicit messages. There is a justification for this particular design choice. The conventional

wisdom is shared memory programming techniques are ideal for shared memory environments as distributed

memory programming techniques are for distributed memory systems. Consequently, hardware architectures

that connect shared memory component pieces through a distributed network should be programmed using

a hybrid as opposed to a uniform programming technique.

The chosen strategy has one problem: the multicore compiler’s memory model that allocates and manages

data structures as a whole is inapplicable in the new environmentwhere CPUs are expected to hold only partial

data relevant to local LPUcomputations. Hencewe changed thememorymodel of themulticore compiler into

a newmodelwhere individual data parts are allocated separately. This change invalidates someparts of previous

LPU generation scheme. So the implementation of the LPU Generator and its interaction mechanism with

the Data Parts Registry are updated accordingly. Apart from those, the multicore compiler remains mostly

unchanged and the larger segmented memory compiler gets the feature breakdown of Figure 6.5.

The segmented memory compiler generates C++ MPI code to implement the added part of the run-time

and the multicore part is still C++ parallelized with Pthreads. MPI has been chosen for the added part as it is

the standard for distributed memory programming for decades. The native code in this scenario is a collection

of MPI + Pthreads hybrid C++ source files that are compiled and linked into the executable with whatever

MPI C++ compiler is installed in the target machine. Given two standard parallelization techniques have been
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Figure 6.5: Breakdown of the SegmentedMemory Back-end Compiler

used, IT segmented memory executables can run in virtually all contemporary supercomputers and compute

clusters.

6.4.1 RTE Implementaࣅon

Referring back to the run-time model of Chapter 5, the Program Coordinator Module in this case is an MPI

process running on each cluster/supercomputer node. Accordingly, Environment Managers of different pro-

cesses use MPI communications to do any data reshuffling needed before a task launch.

TheTask Executor in the segmentedmemory back-end is very similar to that of themulticore back-endwith

one addition: the newTask Executor needs to set upDataDependencyResolvers for dependencies that cannot

be resolved using synchronization primitives.

Dependencies that involve inter-process communications have resolvers implemented over MPI. The MPI

communication within a resolver is tailored based on the nature of the dependency. That is, different MPI
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collective and point-to-point communication primitives are used for different kinds of dependencies. Depen-

dencies that involve no communication still use the previous synchronization primitives.

There is one more possibility: some dependencies may involve no inter-process communications but still

need to exchange elements among data parts local to individualMPI processes. This situationmay arise as data

structures are not allocated as a whole anymore; therefore, overlapped data parts need to be synchronized by

explicitly copying elements from one to another. This form of dependencies are handled with a third kind of

Data Dependency Resolvers. The Flow Executor is oblivious of the difference among different resolver types.

It uses them from the Data Dependency Resolvers Registry without knowing the underlying mechanism of

dependency resolution.

AComposite PPUController thread’s behavior does not change at all from the previous case. It still executes

the Computation Flow Template, checks its PPU Role Assignments to determine what to execute and what

not to, retrieves new LPUs from the LPU Generator, and issues signals on designated resolvers. The only

addition is that the Task Executor also assigns higher level PPU IDs to the Composite PPU Controller based

on the position of the underlying CPU core in the overall network. Hence, compute stages of LPSes mapped

above the CPU/node level PPS are only executed within selective MPI processes.

To summarize, the segmented memory back-end compiler is architected in a way so that the MPI features

can be peeled off from it, leaving a new multicore compiler implementation with a different memory model.

This particular design has the further advantage that the communication infrastructure can be switched from

MPI to something else, if deemed beneficial, without affecting the rest of the compiler.

Subsequent sections describe the major feature changes and additions in the run-time model introduced by

the segmented memory compiler.
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6.4.2 Memory Model

The new memory model allocates memory only for data parts of LPUs that execute locally. As LPUs and data

parts within them are hierarchically defined, it is important to make allocation decisions prudently to avoid

data redundancy and performance overhead during LPU execution. The current solutionmakes allocation de-

cisions based on a data access analysis done on the intermediate flow graph generated by the front end compiler.

A data structure within an LPS is tagged as needing parts allocation by the analysis if the following conditions

hold.

1. The data structure is accessed in some compute stage that executes in the current LPS.

2. The data structure has not already been tagged for allocation in some ancestor LPS of the current LPS.

3. If (2) is false, the data structure has been accessed multiple times in stages of the current LPS and has
been reordered by some partition function since the last time it has been tagged for allocation.

These conditions eliminate data parts allocations for LPSes whose LPUs are just bounding box for descen-

dant LPUs. Furthermore, single access scenarios that are unlikely to be benefited from new parts allocation are

also skipped. For example, according to the above conditions, the upper triangular matrix, u, of the LU Fac-

torization task of Listing 6.3 will be allocated for Space-B LPUs but not for Space-C LPUs despite both LPSes

have stages that access u. Once all allocation tags are placed properly, the compiler generates library functions

for data parts allocation.

Immediately after its launch, the Task Executor invokes these library functions to generate the data parts

needed for the LPUs to be executed within the current MPI process and populates the Data Parts Registry.

Note that there are many-to-one relationships from LPU IDs to data part IDs because of the possibility of

replicated data parts along some LPS dimensions. Thus given an LPU ID, the IDs of the various data parts the
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LPU needs can be determined. Furthermore, as the hierarchical partition configurations for individual data

structures are known, the dimension ranges of array data parts can be calculated from their part IDs. Thus the

parts can be allocated properly. This process, unfortunately, requires generating IDs of all LPUs of the current

MPI process before any computation starts. To avoid holding LPU IDs –which can be numerous – the library

function processes LPU IDs one by one and generates any new data part identified.

This scheme of managing a collection of unique parts for individual data structures has two important con-

sequences. First, there is no duplication of data. If multiple Composite PPUController threads within a single

MPI process access a common data part, any update to that data part can be synchronized among those threads

using the previous thread synchronization technique – no data movement is involved. Second, the memory

consumption per MPI process for data parts is exactly necessary and sufficient for all LPU computations the

MPI process is responsible for. Hence, the scheme is space optimal and has the best scaling characteristics.

As PCubeS + IT programming paradigm encourages a programmer to partition arrays to fit in hardware

caches, the data parts can be quite small and their number for large input sizes can be considerably big. So

an efficient mechanism is needed to identify an LPU data part in the Data Parts Registry. This is done by

storing the parts of an array into an ordered tree hierarchy called the Part Container Tree. Each level in the tree

corresponds to a particular LPS and array dimension combination. The nodes of that level are ordered based

on the entry in a part’s ID for that combination. The leaves of the tree hold the data parts. Thus a data part can

be retrieved in logarithmic time given its ID. Figure 6.6 illustrates the Part Container Tree search procedure for

the Block Matrix-Matrix Multiplication task of Listing 4.1.

Note that data part search in the registry is logarithmic in the worst case. A further optimization is made

based on the observation that most of the time data parts needed for successive LPUs of a PPU lie next to each
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Figure 6.6: The Process of Locating Data Parts in Part Container Trees using the LPU ID
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other in the part container tree or are the same. This is a consequence of the particular policy the run-time

applies for multiplexing LPUs to PPUs. The LPU Generator takes advantage of this by maintaining stateful

iterators for the Part Container Trees of the Data Parts Registry. During an LPU construction process, the

iterators are investigated first to check if a particular data part is at the current or next location of an iterator.

The Part Container Tree is searched only if that checking fails a. This strategy makes LPU generation process

a constant time operation as it was in the previous compiler.

6.4.3 Communicaࣅon

The most difficult aspect of the segmented memory back-end compiler was to solve data communication

amongMPI processes for dependencies involving partitioned arrays b. The problem asks for a generic solution

that is accurate regardless of the partition configuration of the communicated data structure, and the solution’s

efficiency was critical for the paradigm’s success in the target architecture. Algorithmwhose complexity is even

logarithmic in the problem size or the number of LPUs will negatively impact scalability. The solution we

implemented is quite sophisticated and involves many steps. Regardless, belowwe provide an overview in case

the reader might be interested to know how it works.

Algorithmic Foundaࣅon

The central idea behind the solution is to construct precise mathematical descriptions in terms of multidimen-

sional interval functions (as arrays can be multidimensional) of the data content of each MPI process for both

aA search also moves the iterator to the searched position.
bProper communication mechanism for scalar data structures and non-partitioned collections can be easily deter-

mined from the information carried by the dependency arcs.
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ends of a data dependency arc. An MPI process has to communicate an update to another process if the for-

mer’s sender-end data description has a non-empty intersection with the letter’s receiver-end data description

and the intersection function precisely describes the data that needs to be communicated. Given a pair ofMPI

processes i and j, the data i has to send to j for a dependency can be described mathematically as follows.

desc(sendi,j) =

( ∪
partupdater_LPS∈i

desc(partupdater_LPS)

)
∩

( ∪
partreceiver_LPS∈j

desc(partreceiver_LPS)

)
(6.1)

There are several questions associated with this solution strategy. Among them the twomathematical ques-

tions are: how to construct a multidimensional interval description of an MPI process’s data content for an

LPS, and how to compute the intersection between two arbitrary interval descriptions.

Note that the partition functions are nothing butmathematical instructions for dividing an array dimension

given its index range. So an interval description is straightforward to construct for a single data part of an

isolated LPS. Problems arise when there are more than one LPS in the hierarchy leading to the LPS relevant to

thedata dependency. This is because each ancestorLPS along thehierarchy canpartition everydimensionof the

concerned array. In that regard, we invented an algorithm that can create a precisemathematical descriptionof a

hierarchically partitioned array by recursively applyingmathematical transformations over an original periodic

interval description in a bottom up fashion.

Anypartition instruction p canbemathematically described as an interval function fp < β, ρ, δ, η >: I → B

mapping the integer range I to boolean valuesB indicating if a particular point in the integer domain is included

or not included. The included points form the index range of p. In this formation β is the starting point, ρ is
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the period, δ is the number of contiguous points includedwithin each periodic interval, and η is the number of

times theperiodic interval repeats. Then letting p to divide the index range of a higher level partition instruction

q having interval function fq is mathematically equivalent to transforming the domain of fp with the range of

fq. This transformation gives a set of interval functions
∑N

i=0 fi < βi, ρi, δi, ηi > representing the hierarchical

partition instruction composed of p and q. If q itself divides the index range of an even higher level partition

instruction r then the domain of individual functions fi can be transformed to get the final interval description.

This is the logical foundation of our recursive interval description generation algorithm.

This algorithm provides a way to generate an interval description for the total data content for an LPS. The

unionof all data part descriptions (used inEquation 6.1) is a valid description for theMPIprocess’s data content.

The problem, however, is that the data parts can be numerous. So the aggregate description itself can become

unwieldy and computing all the individual interval descriptions can be prohibitively expensive too.

To circumvent both problems, we enhance the recursive interval description generation algorithm to work

over a compact string representation of the entire Part Container Tree for an LPS instead of over individual

data parts the tree holds. We call the algorithm for constructing the string representation from aPart Container

Tree the Folding Algorithm a. Although the details of the Folding Algorithm are skipped here, it is important

to understand the rationale behind it which is again founded on the properties of periodic interval functions.

Assume that the index range of a 1D array a has been divided applying the partition function p that produces

the set of periodic interval functions
∑N

i=0 fi < βi, ρ, δi, η > for consecutive data parts ai. Then if an MPI

process contains all the parts from aj to aj+n, the data content of the process can be described by the single inter-

aThe algorithm is called a folding algorithm as it progresses as a recursive process of combining part IDs horizontally
within a level then vertically across levels.
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val function< βj, ρ, δj + · · ·+ δj+n, η > a. For aD dimensional array b being divided by multiple partition

functions p1 · · · pD scenario, a single interval function description can be generated only if the underlying data

parts have a common interval function description in all but a single dimension. The Folding Algorithm ap-

plies this principle to combine data part IDs and form the most compact representation of the Part Container

Tree as a hierarchical part ID range description. Then the recursive interval description generation algorithm

converts the part ID range into a functional form.

The compactness of the output of the Folding Algorithm impacts the efficiency of all subsequent algorith-

mic and implementation-specific aspects of inter-process communication. Importantly, the compactness or

the lack of it is a property of the LPU distribution scheme. Thus IT ’s systematic LPU multiplexing to PPUs

and the efficiency of communication go hand-in-hand.

Along each dimension, the multidimensional interval description is a collection of periodic interval func-

tions that tell us what indices are included and what are not. We calculate the intersection of two such interval

descriptions along any dimension by calculating intersections of those periodic interval functions. For this we

invented an algorithm that calculates the intersection of two periodic interval functions with arbitrary but fi-

nite number of interval occurrences in time logarithmic of the periods. The algorithm compares LCM of the

period lengths number of interval occurrences in the worst case; hence the logarithmic time complexity. If the

intersection along any dimension is empty then the two multidimensional interval descriptions do not inter-

sect. To the best of our knowledge, both the algorithm for interval description generation and the algorithm

for calculating their intersections are novel discovery of this research b.

aSome adjustment is needed in this logic when p does not evenly divide the index range of a.
bWehave not published those two algorithms though. The source codes for the algorithms can be found in our github

project for the compilers in src/utils/interval.cpp and src/partition-lib/partition.cpp files within the segmented memory
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Opࣅmizaࣅons for a Pracࣅcal Implementaࣅon

Once the mathematical groundwork is done, we need to address the practical concerns. How does a process

determinewhat other processes have for the two ends of the data dependency so that it can determinewhom to

send local updates to andwhere to receive remote updates from? One possibility is to let all processes exchange

their interval descriptions among one another. That strategy will be costly for a large number of PPUs and can

be wasteful too as most processes may have to communicate with only a few other processes.

We tackle this problem by constructing a completeDistribution Tree of data part IDs of all MPI processes

in each process then generating interval descriptions for relevant other processes from that Distribution Tree.

Distribution Tree construction involves no communication. The Task Executor just pretends that it has the

PPUs of other MPI processes, generates part IDs from those PPUs’ LPU IDs, and then stores the IDs in the

DistributionTree. OneDistributionTree ismade for every array that has some dependency arcs requiring com-

munication in the intermediate code. This is a one time cost during program execution. The time and space

complexities of Distribution Tree construction can be a scalability problem in a large network, in particular,

when the data parts are numerous. This is an issue we will address in the future.

The key to keep the cost of inter-process data exchange requirement calculation manageable is to let each

MPI process search only the locations in the Distribution Tree relevant to it. This is done by investigating the

Part Container Tree and identifying where in the Distribution Tree the current MPI process’s data parts fit

into. We call this identification process Confinement Construction.

A confinement is basically a sub-tree of the Distribution Tree; and depending on the nature of the data

compiler directory.
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partitions, there might be multiple confinements relevant to the current MPI process. The process can have

data parts overlapping with only those other MPI processes that have some data parts in the confinements the

former participates into. We skip the mathematical derivation here, but the rationale for confinement-based

data overlapping calculation follows from the same rationale of synchronization grouping in the multicore

back-end compiler discussed earlier. Once all confinements are identified, compact string representations of

the confinement sub-trees are made for each participating process using the previous Folding Algorithm, an

interval description is generated for the string representation, and current process computes its data intersection

with the other process. At the end, eachMPIprocess knows exactlywhat to send and receive and to/fromwhere

without any communication.

The Mechanism of Communicaࣅon

Once the data content of communications are determined then the mechanism for transferring the data needs

to be implemented. Only at this step does MPI become a part of the solution. MPI has a wide range of primi-

tives for different types of collective and point-to-point communications. Therefore, the front-end compiler’s

classification of dependency arcs based on different kinds of data transfer needs comes in handy at this step.

In fact, there is a one-to-one correspondence between IT dependency arc types and specific MPI communica-

tion primitives. The back-end compiler takes full advantage of this association by using the most appropriate

primitive for a particular dependency arc type.

Since elements of the data to be communicated may come from many different data parts and moreover

from non-adjacent memory addresses within those parts, a separate communication buffer is needed to collect

those elements together before an MPI communication takes place. In that regard, proper communication
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buffers for holding data items coming from different data parts are created. In addition, an efficient mecha-

nism for elements exchange between data parts in the Part Container Trees and the communication buffers is

implemented that is linear to the length of the buffers.

Groups of interacting processes get their own MPI Communicator resource if it is deemed that a collective

communication primitive is ideal for the particular dependency and group. Some MPI collective communica-

tions such asMPI_Gatherv andMPI_AllReduce require buffer aggregation. A communication buffer aggre-

gation mechanism is implemented for those. All these features are wrapped inside a resolver that is placed in

the Data Dependency Resolvers Registry.

During task execution time, a Flow Executor only retrieves the resolver from the registry and issues a proper

signal on the resolver. The resolver ensures that it has received all send/receive signals it is supposed to receive

formFlowExecutors local to theMPIprocess beforeproceeding any further. Once all signals havebeen received

the resolver copies data to be sent from data parts to communication buffers, performsMPI communications,

copies any data received from the communication buffers to the data parts, and then releases the blocked Flow

Executors.

It is important to recognize that the sophisticated resolver setup process takes place only once per task ex-

ecution, before the Composite PPU Controller threads start running. The overhead for subsequent use of

the resolver by the Flow Executors is not significantly higher than direct MPI communications programmers

typically implement in their MPI programs.
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6.4.4 Program Environment Management

The Environmental Data Structures Repository holds a data structure in the format the completed task used

it during its execution, i.e., as an ordered list of data parts accessible through a Part Container Tree. Along

with the parts list and the Part Container Tree, the hierarchical partition configuration that led to those data

parts are stored as a metadata. The data parts are kept in this manner to leverage the existing technique of

data communicating resolvers for EnvironmentManagers’ interactions during any cross-process data shuffling

before a task launch.

There is one exception in the communication scheme for Environment Managers though. Since the En-

vironment Managers do not maintain Part Distribution Trees, they have to exchange their data descriptions

with one another instead of computing them locally. This change is made as the set of MPI processes that par-

ticipate in a task execution may be different for different tasks; consequently, some MPI processes responsible

for the upcoming task may have no information about the current locations of up-to-date data parts. Further-

more, once a task completes, a participatingMPI process’s knowledge about the data contents of the rests does

not necessarily hold true anymore. The take-home message is, in the current implementation, a data shuffling

during task transitions is costlier than data dependency resolution during task execution.

Another important responsibility of the Environment Manager is to keep track of the freshness of data

parts lists. This issue occurs because if an upcoming task requires a different parts list arrangement for an

existing array in the environment, we create a new parts list for the new task and retain the old parts list as it

is. So depending on the nature of task partitions, multiple parts list versions of a single array may exist in the

environment – some of those versionsmay be fresh and some others stale. This strategy is adopted as IT allows
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an entire task to operate on only a small part of a larger array created by other task. Hence the execution of the

former can only modify a fraction of the data parts stored for the letter. If a transition is subsequently made to

the earlier task then those stale data parts are updated only a.

Referringback to the IT RTEofChapter 5, a newly instantiatedTaskExecutor populates theDataPartsReg-

istry with both environmental and non-environmental data structures. For environmental data structures, the

Data Parts Registry acts only as an access provider. The Composite PPU Controllers of the task subsequently

access all data from the Data Parts Registry and are oblivious of the data type differences. We implement a

mechanism to support a seamless integration of environmental data owned by the EnvironmentManager and

non-environmental data owned by the Data Parts Registry to realize this semantics.

The Program Coordinator Module of the MPI process uses the Environment Manager only to register en-

vironmental instructions with the Task Executor before launching it. Later when the Task Executor initializes

theData Parts Registry, these instructions become activated one after another and a transfer of control happens

from the Data Parts Registry to the Environment Manager for each instruction activation. The Environment

Manager then uses a proper handler to execute that instruction and returns the control. This technique allows

the EnvironmentManager andData Parts Registry to operate on the same data parts references in thememory

for environmental data structures and eliminates any data transfer between those two RTE components.

Finally, since partitioned arrays are maintained as independent parts list versions, the reference count based

garbage collection also treats those versions separately. For scalars and other non-partitioned data structures

there is still just one copy.

aWith minor changes and a few language enhancements, this facility can be used to solve many iterative refinement
problems where some regions of an object are refined more often and in finer grain than the others due to differences in
their complexity or composition.
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Figure 6.7: Breakdown of the Hybrid Back-end Compiler

6.5 The Hybrid Back-end Compiler

The third IT back-end compiler, called the Hybrid IT Compiler, generates executables for compute clusters

and supercomputers that have bothmulticore CPUs andNVIDIAGPUs as compute nodes. As the segmented

memory compiler is constructed by augmenting new features to the multicore compiler, the hybrid compiler

is constructed by augmenting features to the segmented memory compiler. There is a difference in the nature

of the addition though. The news features of the segmented memory compiler work as a canopy over the

features of the multicore compiler, but the new features of the hybrid compiler work more like extensions to

the multicore compiler features. This is so because the PPUs of the GPU in a hybrid machine reside below the

PPUs of the multicore host. Figure 6.7 depicts the feature breakdown of the hybrid compiler.
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The compiler generates CUDA code for the parts of the IT source code to be executed inside the GPU. So

the overall native program is a hybrid ofMPI, Pthreads, andCUDAC++ source files. The CUDA files are com-

piled and linked together using the NVCC compiler, theMPI + Pthreads files are compiled with theMPI C++

compiler, then theMPI compiler links all object files to generate the executable. We believe this is the best strat-

egy for generating executables for a hybrid architecture as the strategy effectively combines the programming

tools ideal for the individual architectural components. Accordingly, we have the utmost optimization oppor-

tunities for future performance improvements. Furthermore, the use of standard tools at each level makes the

IT executable portable across all hybrid supercomputers or compute clusters composed of multicore CPUs

and NVIDIA GPUs.

As illustrated in the Titan Supercomputer case study of Chapter 3, a hybrid machine is modeled by PCubeS

in three different ways. The first model, called the host-only model, ignores the GPU and portrays machine’s

multicore capacities only; the second model, called the GPU model, portrays the GPU as to be controlled by

a host CPU as a whole; and the last model, called the fragmented GPU model, gives each CPU core access to

a portion of the GPU capacity. The current compiler supports the first two PCubeS models only a. When

mapping the tasks of his/her program, the programmer can use different models for different tasks. Note that

even in the GPU model, some parts of a task may execute in the CPU hosts if the corresponding LPSes are

mapped to PPSes above the first GPUPPS in themodel. A host CPUmerely behaves as a single-core hardware

when executing those parts.

aThe current compiler supports a single GPU per node. Extending it to support multiple GPUs per node should not
be difficult.
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A Short Note on the RTE Implementaࣅon

Referring back to the run-time model of Chapter 5, in the context of the hybrid compiler, all the machineries

for programcoordination, environmentmanagement, anddata dependency resolution remain the same as they

were in the segmented memory back-end compiler. If a task is mapped to the host-only model then the ma-

chineries for task execution remain the same also. If a task is mapped to the GPU model, however, then a new

type of task executor is launched that can do both CPU andGPU computations. We call this task executorThe

Hybrid Task Executor. It still uses the mechanism implemented for a regular task executor for host-side com-

putations but it has the additional capacity to integrate host LPUs with GPU LPUs and it has a very different

mechanism for executing LPUs inside the GPU. To understand the source of the difference some background

in CUDA programming is needed. The next section provides a brief overview of the CUDA programming

model before we delve into the details of theHybrid Task Executor. We also encourage the reader to review the

PCubeS description of a single GPU from Chapter 3 case study on the Titan Supercomputer.

6.5.1 The CUDA Programming Model

In a typical CUDA program, the host CPU copies data into the GPU card memory then schedules one or

more computations inside the GPU, called CUDA kernels, to be done over the copied data. After the kernels

finish executing, the host copies the updated data from the GPU card memory back to the host memory. The

paradigm also allows host memory pinning which enables the GPU threads to directly access the host memory

during a kernel computation, but that is an inefficient way of using the GPU and generally not recommended.

A CUDA kernel executes in SPMD (Single Program Multiple Data) fashion in the threads of GPU’s Sym-
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metric Multiprocessors (SM). Each SM executes a programmable number of warps within it. The number of

SMs to be used by a launched kernel and the number of warps to runwithin them are launching parameters. A

warp is a group of 32 lockstep threads. The threads of the warp cannot diverge and must all be computing the

same instruction in the same function at a time in a SIMD fashion. Different warps in an SM may compute

different functions.

TheGPU cardmemory is accessible from all SMs and computations can be directly done on that, but it is at

the range of 100 times slower than the small 64KB sharedmemory or L1 cache (it can be used in either way) per

SM. The standard approach to CUDA programming is to programmatic-ally load data from the card memory

to the sharedmemory or to access data from the former in a way to ensure that the data is cached in the SM for

the most part of the warps execution.

Just caching data in the shared memory is not enough for good data access performance. An SM’s memory

is divided into memory banks and multiple banks can be accessed simultaneously but not multiple addresses

in the same bank. Consequently, depending on the data access patterns of the threads of a warp only 1 data

item as opposed to 32 items may be read at a time. Thus reducing memory bank conflict is essential for good

performance.

A further limitation of the shared memory is that it does not allow dynamic memory allocation – only con-

stant length arrays and scalar variables are supported. The only option that comes close to a dynamic memory

is a single extern per-SMmemory blockwhose size is determined at the kernel launching time. This single block

of shared memory can be used as a programmer controlled cache where spaces for different dynamic variables

can be allocated as needed.

Intra-SM warps synchronization is possible using a __syncthreads() primitive. Cross-SM synchronization
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is, however, not supported. That is, if the same card address is accessed and/or modified from warps of two

different SMs, the behavior of the code is undefined.

Apart from not supporting thread divergence within warps, recursive function calls from threads are either

not supported (olderGPUcards) or inefficient (versions starting fromTeslaK-20). NewerGPUs support direct

cross-GPU data exchanges, but that is in their white paper, and to the best of our knowledge that feature is not

popular in most GPU applications.

Note that at the end of a kernel execution, updates made by all threads in all warps from all SMs get written

to the cardmemory and the sharedmemory (or cache depending on the use case) gets cleared for the next kernel

launch. In other words, shared memory variables do not persist across kernel launches.

6.5.2 The Hybrid Task Executor

Given the prohibitive cost of accessing the host CPU memory from GPU threads, the previous scheme of the

Task Executor creating a fixed number of Composite PPUControllers that execute LPUsmultiplexed to PPUs

of different PPSes is no longer an option. Any computation to be done in an LPS mapped to a PPS above the

GPU level is thereby kept separate and designated to aHost PPU Controller thread. When a transition is made

from an LPS mapped to host CPU or above to an LPS mapped to one of the three PPSes a of the GPU, the

following things happen.

1. The Task Executor accumulates data parts for the LPUs multiplexed to the PPUs of upcoming GPU
PPS and copies those data parts into the GPU card memory.

2. Then it launches one or more CUDA kernels that emulate a Composite PPU Controller’s LPU execu-
tion logic inside the GPU SMs/warps for LPSes mapped inside the GPU.

aThese PPSes are GPU, SM, and Warp in that order in the PCubeS description.
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3. After all the launched kernels ran to their completion, the Task Executor copies any updated data parts
back to the host CPU memory and removes all data from GPU card memory.

Then the Task Executor switches back to the Host PPU Controller thread. A location in the Computation

FlowTemplate that causes such switchings between host andGPU executionmodes is called aGPUOffloading

Context. Since there is only one Host PPU Controller thread in this scheme, the Task Executor directly runs

the logic of that Host PPU Controller instead of delegating responsibilities to a separate thread.

There are two interrelated problems associated with copying LPU data parts into GPU card memory: a

host to GPU data part transfer is costly so should be done in bulk, but the capacity of the GPU cardmemory is

usually significantly smaller than that of the host memory so LPU data parts may not fit in the GPU all at once.

To balance between these two opposing problems, the Task Executormaintains a host-side data buffer per data

structure needed by the GPU kernels. It accumulates contents from LPU data parts into those buffers until

adding more LPU data oversubscribes the GPU memory or there are no LPUs left. Then it copies individual

data buffers as a whole into the card memory.

Each data buffer has some associated metadata buffers that are also copied into the card memory. GPU

SMs/warps access those metadata buffers to determine the location of a particular data part’s content in the

data buffer. At the end, the data copy-in/kernel execution/data copy-out sequence described previously may

actually repeat for a number of times at a GPU Offloading Context to account for all LPUs before the Task

Executor can switch back to the Host PPU Controller mode a.

If the LPUs have overlapping data parts or share some data then data dependencies may arise among GPUs

of different MPI processes within the current part of the flow template that is intended for GPU execution.

aA possible optimization is to pipeline the data transfers and overlap GPU execution with data movements.
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Any inter-process communication, however, needs to be mediated by the hosts using the Data Dependency

Resolvers Registry mechanism described before. So the intermediate flow graph generated by the front-end

compiler cannot be directly translated into the Computation Flow Template in the hybrid back-end. Instead,

the flow graph needs to be modified first so that any sub-graph intended for GPU execution is broken down

into separate GPUOffloading Contexts with intervening transitions back to the host if the original sub-graph

execution introduces cross-process dependencies.

Flowgraphbreakdown for identifying allGPUOffloadingContexts and generatingCUDAkernels for them

were the twomost critical problems in the hybrid back-end compiler. Subsequent sections discuss their current

solutions.

6.5.3 Idenࣅfying GPU Offloading Contexts

To understand how the intermediate flow graph is modified for GPU execution and how GPU kernel bound-

aries are set within it, assume that an arbitrary task has the computation flow of Listing 6.6 and has been

mapped to the GPU model of a hybrid back-end as shown in Figure 6.8. Further assume that a particular

array, m, has been accessed in all the stages of the computation flow and all other arguments to the stages are

unique for each stage.

Given themappingofFigure 6.8, it is clear that sub-flow fromLine4 to 15 ofListing6.6 should execute inside

the GPU and the rest of the computation should be done in the host. Whether there should be just one GPU

Offloading Context for the sub-flow of Line 4 to 15 or more depends first on how m has been partitioned in

Space-B. If the partitions ofm are disjoint in Space-B then amodification done onmwithin any stage between

Line 4 to 15 only affects the individual GPUs doing the computation. So there will be just oneGPUOffloading
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1Computation :
2 Space A {
3 s tage1 (m, . . . )
4 Space B {
5 stage2 (m, . . . )
6 Space C {
7 stage3 (m, . . . )
8 Space D {
9 stage4 (m, . . . )

10 stage5 (m, . . . )
11 }
12 stage6 (m, . . . )
13 }
14 stage7 (m, . . . )
15 }
16 Space E {
17 stage8 (m, . . . )
18 }
19 }

Lisধng 6.6: Computation Flow of an Imaginary Task
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Figure 6.8: Mapping LPSes of a Task to a HybridMachine
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Context. If, however,m has overlapping partitions in Space-B then the number of GPU Offloading Contexts

depends next on how m has been accessed within the sub-flow. Consider two cases for example, first stage1

modifiesm and all other stages usem as read-only, and second stage1 and some stages within Line 6 to 13modify

m. In the first case there will be two and in the second case will be 3 GPU Offloading Contexts. So after

modification, flow graph for the two cases should appear as if it has been generated for the following two

computation flows of Listing 6.7 and 6.8 instead.

1Computation :
2 Space A {
3 s tage1 (m, . . . )
4 Space B { / / GPU offloading context 1
5 stage2 (m, . . . )
6 }
7 Space B { / / GPU offloading context 2
8 Space C {
9 stage3 (m, . . . )

10 Space D {
11 stage4 (m, . . . )
12 stage5 (m, . . . )
13 }
14 stage6 (m, . . . )
15 }
16 stage7 (m, . . . )
17 }
18 Space E {
19 stage8 (m, . . . )
20 }
21 }

Lisধng 6.7: Case 1 Transformation

1Computation :
2 Space A {
3 stage1 (m, . . . )
4 Space B { / / GPU offloading context 1
5 stage2 (m, . . . )
6 }
7 Space B { / / GPU offloading context 2
8 Space C {
9 stage3 (m, . . . )

10 Space D {
11 stage4 (m, . . . )
12 stage5 (m, . . . )
13 }
14 stage6 (m, . . . )
15 }
16 }
17 Space B { / / GPU offloading context 3
18 stage7 (m, . . . )
19 }
20 Space E {
21 stage8 (m, . . . )
22 }
23 }

Lisধng 6.8: Case 2 Transformation

Two Semantics Preserving Transformations of the Code in Listing 6.6

Note that both transformations are semantic preserving. In other words, Listing 6.6, 6.7, and 6.8 computa-

tions produce the same result. It is important to understand how the intent of the program remains unaltered

even after the flow transformation.

The IT programming model offers a semantics where compute stages are executed on an LPU irrespec-
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tive of the states of other LPUs. The only requirement is that during a stage execution the LPU has access

to the most up-to-date data. It is the responsibility of the compiler to implant appropriate instructions in-

between stage transitions to ensure strong data consistency among LPUs accessing shared or overlapped data.

Therefore, as long as the LPU nesting hierarchy is respected and the programmer specified relative ordering of

inter-dependent compute stages is preserved, any rearrangement of the original computation flow upholds the

semantics of the source task.

Our flow transformation algorithm only affects the sequencing of LPUs without affecting the execution of

any of them. Accordingly, the transformation does not compromise the original semantics. To explain the

transformation in terms of the LPU traversal process described in Section 6.3.3, the transformation algorithm

only converts the original DFS-like exploration of LPUs, to a hybrid of BFS 34 and DFS exploration.

Finally, note that it does not matter how many timesm has been modified in the sub-flow executing inside

Space-C in Listing 6.6. There will be still just one GPU offloading context in the Case 2 transformation span-

ning from Line 7 to 16 of Listing 6.8. This is because the entire Space-C resides within a partition of Space-B.

Hence any changemade tomwithin the former does not need to be propagated to otherMPI processes. When

the control comes out of the Space-C confinement, however, Space-B data parts across MPI processes need to

be synchronized with one another. Consequently, stage7 (Line 18 of Listing 6.8) has been put into a separate

GPU Offloading Context.
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6.5.4 CUDA Kernel Generaࣅon

Determining the Kernel Boundaries

Once aGPUoffloading context is identified, the next concern is to determine the number of kernels the context

needs. It should be obvious in Case 2 of Listing 6.8 that the first and the third offloading contexts need just

one kernel each as the contexts have only one compute stage to execute. So let us focus on the second GPU

Offloading Context that encircles the Space-C computation. According to Figure 6.8 mapping configuration,

Space-C has been mapped to SMs and Space-D to warps. Updates made from warps of a single SM can be

synchronized with one another inside a single CUDA kernel but not updates made across SMs. Updates made

by one kernel are, however, visible to any subsequent kernel. This fact can be exploited to implement inter-

SM synchronization. The run-time has to exit the current kernel and launch a new kernel to make each SM’s

update visible to all. So assumingm has overlapping partitions for Space-C LPUs and is modified in stage3 and

read in the others, the kernel boundaries for Case 2 of Listing 6.8 will be as shown in Listing 18.

Although discussed as such, in reality the flow-graphmodification process does not require investigating the

partition configurations of data structures and how they are being accessed within the compute stages. The

dependency arcs carry enough information that viewed in the light of the mapping configuration is sufficient

to determine all GPU Offloading Contexts and CUDA kernel boundaries. Therefore, instead of changing the

flow graph generated by the front-end compiler, those boundaries can be directly applied during native code

generation.
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1Computation :
2 Space A {
3 stage1 (m, . . . )
4 Space B { / / GPU offloading context 1
5 Kernel {
6 stage2 (m, . . . )
7 }
8 }
9 Space B { / / GPU offloading context 2

10 Kernel {
11 Space C {
12 stage3 (m, . . . )
13 }
14 }
15 Kernel {
16 Space C {
17 Space D {
18 stage4 (m, . . . )
19 stage5 (m, . . . )
20 }
21 stage6 (m, . . . )
22 }
23 }
24 }
25 Space B { / / GPU offloading context 3
26 Kernel {
27 stage7 (m, . . . )
28 }
29 }
30 Space E {
31 stage8 (m, . . . )
32 }
33 }

Lisধng 6.9: Kernel boundaries within GPUOffloading Contexts for the Computation Flow of Listing 6.6

Code Generaࣅon for a CUDA Kernel

Lack of efficient support for recursive functions, significant cost of a non-coalesced GPU card memory access,

consequence of sharedmemory bank-conflicts, and last but not least the need to exploit the lock-step threads of

SMs/warps for good performance all make the previous mechanism of Composite PPU Controller execution

unsuitable for a CUDA kernel implementation. A radically different LPU execution mechanism was needed

and accordingly implemented. Let us take the kernel from Line 15 to 23 of Listing 6.9 as the example to discuss

the deviation from the previous LPU execution model. Had the entire code been running on a segmented
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memory or multicore back-end hardware then that portion of the flow graph would be translated as the code

snippet of Listing 6.10.

1while ( spaceCLpu = getNextLpu (Space_C, Space_B , . . . ) != NULL) {
2 . . . / / Space C LPU dependent argument processing
3 while ( spaceDLpu = getNextLpu (Space_D, Space_C, . . . ) != NULL) {
4 . . . / / Space D LPU dependent argument processing
5 if ( threadState−>isValidPpu (Space_D) ) {
6 stage4_function ( spaceDLpu , . . . ) ;
7 . . . / / any synchronization needed before stage transition
8 stage5_function ( spaceDLpu , . . . ) ;
9 }

10 }
11 . . . / / any synchronization needed before returning to Space C
12 if ( threadState−>isValidPpu (Space_C) ) {
13 stage6_function ( spaceCLpu , . . . ) ;
14 }
15 }

Lisধng 6.10: Corresponding Code for the Discussed Kernel if the Task wasMapped to a Host-onlyModel

The Flow Executor of a Composite PPU Controller thread would execute the code snippet. During the

getNextLpu calls of line 1 and 3, control would be passed to the LPUGenerator that would construct the LPU

by invoking many functions and doing a recursive LPU hierarchy traversal if needed. The LPU Generator is

configured properly for individual threads beforehand. So a Flow Executor would only receive the LPUs desig-

nated for it. The sequential stage functions (Line 6, 8, and 13) would do the LPU computation. During those

function executions, locality of LPU data in memory would be tackled by the hardware’s caching machinery.

For the CUDA kernel, on the other hand, the generated code has the structure of Listing 6.11 (the entire

kernel is basically described in comments because of the lengthiness of the component logic in the compiler

generated code).

1__global__ void cuda_kernel ( LpuDataBuffers spaceBLpuBuffers , KernelMetadata metadata ) {
2
3 extern __shared__ char memoryPanel [ ] ;
4 __shared__ int panelIndex ;
5
6 . . . / / ca lculate SM, warp , and thread IDs of current thread
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7
8 __shared__ spaceCLpu ;
9 if (warp_ID == 0 && thread_ID == 0) {

10 . . . / / assign dynamic shared memory space for space C LPU data parts from memoryPanel
11 }
12 __syncthreads ( ) ;
13
14 for ( int spaceBLpuId = metadata . id_range .min; spaceBLpuId <= metadata . id_range .max; spaceBLpuId++) {
15
16 if (warp_ID == 0 && thread_ID == 0) {
17 . . . / / r e t r ieve Space B LPU data part references from spaceBLpuBuffer
18 . . . / / ca lculate Space C LPU count spaceCLpuCount
19 }
20 __syncthreads ( ) ;
21
22 for ( int spaceCLpuId = sm_ID; spaceCLpuId < spaceCLpuCount ; spaceCLpuId += sm_Count) {
23
24 if (warp_ID == 0 && thread_ID == 0) {
25 . . . / / ca lculate metadata for Space C LPU data parts
26 }
27 __syncthreads ( ) ;
28
29 . . . / / copy data from Space B LPU parts in the card memory to Space C LPU parts in shared memory
30
31 if (warp_ID == 0 && thread_ID == 0) {
32 . . . / / ca lculate Space D LPU count spaceDLpuCount
33 }
34 __syncthreads ( ) ;
35
36 __shared__ spaceDLpu [warp_Count ] ;
37 for ( int spaceDLpuId = warp_ID; spaceDLpuId < spaceDLpuCount ; spaceDLpuId += warp_Count) {
38
39 if ( thread_ID == 0) {
40 . . . / / ca lculate metadata for Space D LPU data parts
41 . . . / / assign data references for Space D LPU data parts within Space C LPU parts
42 }
43
44 stage4_device_function ( spaceDLpu [warp_ID ] ) ;
45 stage5_device_function ( spaceDLpu [warp_ID ] ) ;
46 }
47 __syncthreads ( ) ;
48
49 if (warp_ID == 0) {
50 stage6_device_function ( spaceCLpu ) ;
51 }
52 __syncthreads ( ) ;
53
54 . . . / / copy data from Space C LPU parts in shared memory to Space B LPU parts in the card memory
55 }
56 }
57 }

Lisধng 6.11: Structure of a CUDAKernel
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The Flow Executor and LPU Generator are fused together in the CUDA kernel. This is done by breaking

down the recursive LPU traversal logic described earlier into nested for loops and associated metadata calcu-

lations with flow execution logic inserted in-between at appropriate places. Note that due to the presence of

non-adjacent LPS transitions, LPU generation for the original computation sub-flow to be executed by an ar-

bitrary kernel may not be directly convertible into a nested loop expansion as done in Listing 6.11. Therefore,

a static analysis phase further transforms any non-adjacent LPS transition within the sub-flow into a series of

transitions between adjacent LPSes before the kernel generation initiates.

Since one LPU is generated for an entire SMorwarp at a time andmost parts of the LPU generation process

is sequential, only the first thread in awarp or an entire SM takes care of that part. Thus sections for LPU count

calculation, LPU metadata construction, etc. of Listing 6.11 (such as Line 16-19, Line 24-26, and Line 39-42)

are done within condition blocks that filter out all but one thread. As in the first multicore compiler, LPU

generation within CUDA kernel is basically a metadata calculation process. Except for retrieving the metadata

of the topmost LPS’s LPU that is copied into GPU card memory by the host, no part of the LPU generation

process accesses the card memory. This strategy works because smaller Space-C and Space-D LPUs operate on

regions of the larger Space-B LPU.

The stages, on the other hand, are collectively executed by all the warp and SM threads. Therefore, there is

no condition block surrounding Line 44 and 45 in Listing 6.11. Execution of stage6 is handled by the threads

of the first warp (Line 49 to 51). This is so as Space-C is mapped to the SM (Figure 6.8) which has no compute

capacity a and LPUs of such a PPU is supposed to be executed by the first descendant or ancestor PPU that can

aIn an alternative PCubeS description of the GPU, the compute capacity can be given to the SM directly without an
additionalwarpPPS.Then thePCubeS descriptionwill have twoPPS levels: GPUandSM.Weare considering supporting
both descriptions for a GPU as different descriptions are ideal for different algorithms.

172



compute. In Listing 6.10, the conditional block for PPU role checking from Line 12 to 14 does the same thing

for the host-only mapping.

TheCUDAdevice functions for compute stages areparallel as opposed to their counter parts in thehost-only

mapping. Iteration indexes of the parallel for loops of an IT source stage are distributed among the threads of

the SM or warp. The efficiency of the index distribution is crucial for reducing shared memory bank conflicts

among the threads during the loop execution. Currently we do a rudimentary analysis of the source IT stage

to make the distribution decision. The analysis needs further improvements.

The programmatic control of the shared memory through an extern memory panel from Line 3 to 11 and

then in Line 29 is another important aspect of the CUDA kernel generation. We reserve enough space in the

shared memory for the topmost LPU data parts needed within each SM then assign different data parts dif-

ferent sections of the memory panel. Thus despite Space-B LPUs being shipped into the card from the host,

memory is reserved only for holding a single Space-C LPU as an SM only needs that much memory during

kernel execution. In this regard, we have a mechanism to determine the highest memory requirement for a

descendant LPU given an ancestor LPU.

Finally, note that any data transfer between the GPU card memory and the SM shared memory is done col-

laboratively by all threads of the SM (Line 29 and 54) and in amanner thatminimizes non-coalesced read/write

of the card memory.
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6.6 Future Work

Developing the compilers was like a race against time. We had to implement all three of them to prove the

portability of PCubeS + IT paradigm in the architectures popular in present day high performance parallel

computing, but therewas not enough time and resources to optimize any compiler in particular. Some features

are yet not implemented in one or two. Furthermore, the front-end compiler needs to be updated to support

the new IT syntax. Among all these issues, some are critical for performance. As good performance is one of

the major objectives of the paradigm, here we briefly discuss some performance critical issues that we want to

address in the future.

IO Opࣅmizaࣅon

Currently any file IO operation is very inefficient in both segmented memory and hybrid compiler. We imple-

mented amechanism for initializing data parts from files using random file reads but the strategy does not scale.

Moreover, file writing is now serialized among MPI processes. Several solutions are at table to address the IO

issue such as memory mapped files, a new parallel data file format for IT, using MPI IO, and mapping a file as

another LPS in an IT task.

Parallelizing Resource Setup Process

In all three compilers, creation of the data parts and preparation of the dependency resolvers are sequential

operations. For large input sizes these operations can be a large part of a task’s overall running time as they have

many internal steps that are linear to the data parts count. Many of these steps can be made parallel. Given the
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back-end architectures we are targeting are parallel; parallelizing these operations is a natural choice.

Improving GPU Execuࣅon

In the current implementation of the hybrid compiler, each GPUOffloading Context causes one or more host

to GPU data copy-in, kernel execution, GPU to host data copy-out cycles. If the GPU Offloading Context

appears within a repeat loop in the flow graph then the cycles repeat within each loop iteration. In other words,

the GPU Offloading Context handling is now a memory-less process. Often times the data to be processed

within a GPU does not change across repeat loop iterations. Some other time an entire data structure can be

copied into theGPU and kept there for the lifetime of the task. As a data exchange between host CPUmemory

and theGPUcardmemory is a costly operation, it is important thatwe take advantage of all such opportunities.

Further, CUDA supports pipelining of offloading kernels through its streaming feature but currently we are

launching the kernels in a lock-step manner. Similarly, some supercomputer nodes have more than one GPU

but the current compiler only supports one GPU per node. We want to address these issues in the future also.

Programmaࣅc Cache Control

Currently we are entirely relying on multicore CPUs cache machinery for LPU data locality. Our so far exper-

iments indicate that sometimes data that we expect to be in the cache is probably not in there. This is first a

violation of the paradigm and second it makes assessing what changes need to be made in the compilers for

better code generation very difficult. So wewant to introduce some level of programmatic cache control by the

IT run-time in the future compilers. For example, we can use some modern hardware’s support for pinning

memory blocks in the caches for this purpose.
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7
Experiments

This chapter describes the experiments we have done to assess the practicality of the PCubeS + IT program-

ming paradigm as a portable and efficient alternative to contemporary high-performance parallel computing

techniques. After a brief discussion on the objective and nature of the experiments; the chapter presents the test

application suite, experimental platforms, and measurement techniques. Finally, it expounds the test results

on individual platforms.
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7.1 Objecࣅve and Nature of Experiments

If we paraphrase the thesis statement, the goal of this research is to provide a new direction for parallel comput-

ing through a novel hardware cognizant programming paradigm that has the following characteristics.

• The paradigm is portable across architectural platforms common in contemporary parallel computing.

• Enables writing programs whose efficiency is on-par with equivalent programs written using standard
platform specific programming techniques.

• Simplifies debugging the runtime performance of a program.

• Makes it easy to write efficient parallel programs.

The experiments we have conducted a are aimed towards that goal. A comprehensive study of the effective-

ness of a new programming paradigm requires significant time and human resource investment, and is outside

the scope of this research. Consequently, we have relied on a representative set of applications to evaluate the

paradigm. Experiments done on the representative set do not go all the way proving the stated goal has been

reached, rather they show that the goal is achievable and the paradigm has the potential to achieve it.

Our intention was to choose the representative set from existing, well-known, and widely-used program-

ming patterns so that a comparative analysis to platform specific low-level implementations can bemade easily.

Furthermore, wewanted the experiment results to be illustrative of the paradigm’s effectiveness to average paral-

lel computing enthusiasts. In that regard, we have chosen five building block problems from four characteristic

application classes identified in the landmark paper ‘The Landscape of Parallel Computing Research: A View

fromBerkeley 16.’ The paper identifies 13 characteristic classes, or dwarfs, that capture different patterns of com-

aMost experiments are conducted by my adviser, Professor Andrew Grimshaw, and fellow graduate student, Swa-
roopa Dola
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putation and communication that are common in important applications. We choose 4 out of those 13 to keep

the effort of development and experiment manageable.

Our chosen dwarfs are: Dense Linear Algebra, Sparse Linear Algebra, Regular Grid, andMonte Carlo. The

problems we have chosen areMatrix-MatrixMultiplication and LU Factorization fromDense Linear Algebra,

Conjugate Gradient from Sparse Linear Algebra, 5-point Iterative Stencil from Regular Grid, and an Area Es-

timation problem from Monte Carlo. Each of these five problems has a different memory, computation, and

communication characteristics that demands a careful consideration of target hardware’s features in constru-

ing an efficient solution. Hence their choice helps to assess the effectiveness of PCubeS as an interface to the

hardware as well as the efficiency of IT as the medium of programming.

We have used well-known and efficient, but not complicated algorithms for the chosen problems for both

IT and reference implementations. The reference programs are hand-written sequential C++ programs for

the multicore and segmented memory back-ends. For the hybrid back-end, we have compared IT programs

against hand-written CUDA programs. To summarize, our objective is to showwhat a knowledgeable parallel

programmer can achieve using IT at a reasonable effort – not how the IT programs fare against sophisticated

library implementations done by experts. We believe our choice of algorithms is practical and adequate at this

phase of the compiler and language development.

The experiments are done on three machines with three different architecture types in accordance to the

three back-end compilers being discussed before. We have used the same IT source codes in all three back-

ends to make the portability aspects of the paradigm obvious a. There is, however, one restriction: the hybrid

aSome IT programs for the hybrid back-end have deeper partition hierarchies in tasks than the corresponding tasks
in programs for the remaining two back-ends. Any IT task with a deep partition hierarchy transforms into an equivalent
task with a narrow hierarchy when consecutive LPSes are collapsed into one by mapping of them to the same PPS.
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compiler does not yet support all features needed for the 5-point Iterative Stencil and Conjugate Gradient.

Hence, only the remaining three programs are tested on the hybrid back-end.

Wenowdiscuss the individual problems and algorithms tounderstand their characteristics andwhat features

of the hardware impacts their respective solutions. The IT source codes of all programs are given in Appendix

A.

7.2 Applicaࣅon Suite

7.2.1 Matrix-Matrix Mulࣅplicaࣅon

Matrix-Matrix Multiplication is, arguably, the most important problem in linear algebra and a building block

element to numerous larger applications. In this problem, a result matrix is computed by multiplying two

argument matrices. Each (i, j)th entry in the result is the dot product of ith row and jth column of the first and

second argument matrices respectively. The problem hasO(mn2p) asymptotic time complexity for argument

matrices of dimensionsm × n and n × p. Matrix-Matrix Multiplication is a memory bound problem and its

straightforward implementation suffers from severe cache misses for larger matrices. We implemented an alter-

native algorithm that divides the matrices into blocks, multiplies the blocks, and then accumulates the partial

results to generate the final output (check the supplementary material ‘Using Blocking to Increase Temporal

Locality’ of the book 24 for the algorithm). This incremental result construction process makes the program

more compute bound. We refer to the algorithm as the Block Matrix-Matrix Multiplication. As explained

in Chapter 3, PCubeS stresses on exposing the memory and cache hierarchy of a described hardware in detail.

An IT programmer exploits the hierarchy by mapping LPSes of the IT program to proper PPSes and by se-
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lecting partition parameters for the LPUs appropriately to fit them into the PPUs. The Block Matrix-Matrix

Multiplication tests how effective this strategy of cache exploitation is in practice.

7.2.2 LU Factorizaࣅon

LU Decomposition or Factorization is another common problem is linear algebra. In this problem, the ar-

gument matrix of a system of linear equations is decomposed into an upper and a lower triangular matrix to

facilitate Gaussian Elimination. The technique is originally invented by Alan Turing 87, and many algorithms

have been developed for it due to the importance of the problem. All these algorithms progress in a diagonal

fashion by adding one or more entries in the upper and lower triangular matrices in each step based on com-

putation done on unaltered parts of the original argument matrix. For numerical stability, most algorithms

permute the order of either rows or columns of the argument matrix during the decomposition process. The

permutation technique is called pivoting, and the algorithms are, accordingly, classified as LU Factorization

with Partial Pivoting.

All parallel implementations of LU Factorization involve heavy communications of shared data update.

This is the reason we have chosen LU Factorization as our second test problem. IT implementations of LU

Factorization shows that the automatic data dependency resolution demanded by IT can be realized efficiently

in the back-end compilers. Furthermore, this is a problem where index reordering data partitioning is essen-

tial for computation load balancing. Therefore, the implementations expose the cost of IT ’s automatic index

transformation also.

We have several IT programs implementing different LU Factorization algorithms. For the performance

experiment, we only used a blocked algorithm that has an embedded SAXPY (c = αc + βa × b) operation
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for better temporal locality (the algorithm is referred as the Blocked kji-SAXPY Algorithm in90). We call the

algorithm Block LU Factorization.

7.2.3 Conjugate Gradient on Random Sparse Matrix

Conjugate Gradient is the most prominent mechanism for solving a sparse system of linear equations 80. The

normal strategy of Gaussian Elimination using matrix factorization is unsuitable for most sparse systems as

sparse matrices in practical problems are usually several factors larger than their dense counterparts. Conse-

quently, the factoringmay be impossible because of limitedmemory or very time consuming when it is doable.

Alternative algorithms for sparse matrices exploits the fact that most entries in a sparse matrix are zeros and

avoid storing and computing over those entries.

Conjugate Gradient is an iterative method applicable for symmetric, positive-definite matrices. It applies a

logic of steepest descent of the gradient of a quadratic form of the sparse matrix to quickly converge into the

solution. We have implemented the algorithm published in 80 for random sparse matrices stored in compressed

row format (CSR) Dongarra. Although the sparse matrices of practical problems are often regular structures (e.g.,

a diagonal bandmatrix), we have decided to implement the algorithm towork on themost generic and random

CSR format. This is because an algorithm on a regular, partition-able sparse matrix does not reveal anything

new about thePCubeS + IT paradigm afterMatrix-MatrixMultiplication and LUFactorization. In particular,

we wanted to investigate the impact of irregular memory accesses on the performance of an IT program as we

increase the degree of parallelism.
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7.2.4 5-point Iteraࣅve Stencil

5-point iterative stencil is a numerical differentiation technique on two-dimensional grids. In this problem, the

next value of a point in the grid is computed from its current value and values of its four neighbors 8. 2D and 3D

stencil problems are common in Molecular Dynamics, Image Processing, Cellular Automata and many other

fields. A critical aspect of all parallel stencil algorithms is that they involveboundary sharing amongneighboring

data partitions and consequent exchange of updated points in the overlapped regions. This is a difficult feature

to implement in a generic way – nonetheless, IT supports that. We wanted to verify the effectiveness of the

feature implementation.

The algorithmwe have implemented uses Jacobi iteration 8 withDirichlet boundary conditionDir tomeasure

heat propagation on a simulated heated plate problem. Like most stencil programs, our implementation is

memory bound. Note that straightforward stencil with Jacobi iteration has the problem of slow convergence

and many applications similar to our simulated problem use more advance techniques such as Adaptive Mesh

Refinement and Multigrid41. Supporting basic stencil is the first step toward enabling those techniques in IT.

7.2.5 Monte Carlo Area Esࣅmaࣅon

Monte-Carlo method is a broad class of algorithms that use repeated random sampling to obtain numeric

results for problems that are difficult or impossible to solve using other meansMon. Monte Carlo algorithms

are embarrassingly parallel and generally compute bound. We implemented an area under the curve estimation

problem that is a common use case ofMonte Carlo simulation. We had to implement parallel reductions using

MPI collectives and Pthread synchronizations to support this problem, but it has mainly been included in the
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application suite as the sole compute bound problem.

7.3 Experimental PlaĤorms

7.3.1 Mulࣅcore Back-end: Hermes Machines

We have usedHermesmachines of Computer Science, University of Virgina (UVA) as the back-end platforms

for the multicore compiler. There are four Hermes machines in the Computer Science, UVA cluster having

the same configuration. We have run the tests on whatever machine we found available. Each 64-core Her-

mesmachine consists of four 16-core AMD Opteron 6276 server processors on four socket of a Dell 0W13NR

motherboard. RAM per CPU is 64 GB, giving a total of 256 GB main memory. There are three cache levels in

an AMD Opteron 6276. A 6 MB L3 cache segment is shared among a group of 8 cores. Then a pair of cores

share a 2 MB L2 cache. Finally, each core has a 16 KB L1 cache. Note that there are only 8 floating point units

in a CPU despite the number of cores being 16. Each pair of cores share a floating point unit. The PCubeS

description of aHermesmachine is illustrated previously in Figure 5.1.

The native C++ compiler we have used to generate the executables is gcc version 4.9.4 (Ubuntu4.9.4-2

ubuntu1 14.04.1). All codes have been compiled with O3 optimization flag enabled. Finally, note that Her-

mes machines have NUMA memory allocation enabled but the multicore compiler allocates data structures

assuming a uniform memory. Hence, there is an inherent inefficiency in memory accesses done by IT executa-

bles that the sequential reference implementations do not suffer.
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Figure 7.1: PCubeSDescription of the Parallel Partition of Rivanna Cluster

7.3.2 Segmented-memory Back-end: Rivanna Compute Cluster

We have used the parallel partition in the Rivanna compute cluster of ARCS, UVA as the back-end for seg-

mented memory compiler. The parallel partition has two 2.50 GHz Intel Xeon E5-2670 CPUs in each com-

pute node. These nodes are connected by an Infiniband interconnect. Each CPU has 10 cores and three cache

levels. A 25 MB L3 cache segment is shared among 10 cores. Then each core individually has a 256 KB L2 and

a 32 KB L1 cache. Memory per node is 126 GB. The PCubeS description of the parallel partition is shown in

Figure 7.1.

Although the parallel partition has manymore nodes, due to our allocation restriction, we have limited the

nodes count to 50 in the experiments. Thus the maximum number of cores being used in the experiments is
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1000. The native MPI compiler in this platform is mpic++ that uses Intel’s icpc version 14.0.2 C++ compiler

underneath and the OpenMPI Intel implementation (openmpi/intel/1.8.4) for message passing. Finally, note

that Intel Xeon E5-2670 supports vector instructions but automatic vectorization through the underlying icpc

compiler was working for neither IT executables nor reference implementations. Therefore, we ignore that

capacity.

7.3.3 Hybrid Back-end: Big Red II GPU Cluster

We have used the gpu queue in the Big Red II supercomputer of Indiana University as the back-end for the

hybrid compiler. Each node in the queue has a 16-core AMD Opteron 6276 server processor (the same CPU

used in the Hermes machines) and an NVIDIA K20 GK110 GPU. Host CPU memory per node is 31 GB and

the GPU has a 6 GB card memory. A K20 GPU has 13 symmetric multiprocessors (SMs) as apposed 14 of the

K20XGPU described in Section 3.4.1. The remaining configurations are the same in both GPUs. All three IT

programswe have run on the queue are single-task programsmapped to theGPUmodel of themachine a. The

PCubeS description of the queue for theGPU model is illustrated in Figure 7.2.

We have used amaximumof 8 nodes to run the programs due to availability restrictions. Big Red II is a Cray

machine that provides an integrated Cray environment for compiling and running programs. At the time of

the experiments, the environment had PrgEnv-cray/5.2.82 set as the default. The underlying C++ compiler

was crayc++ and the MPI implementation was cray-mpich/7.3.2. The CUDA compiler was nvcc 7.0, V7.0.27.

As in the previous two platforms, back-end compilers hadO3 optimization flag turned on. In addition, CUDA

codes have been compiled with compute architecture setting 3.5 (arch=sm_35 parameter).

aRemember a hybrid machine has 3 different PCubeS descriptions or models based on its intended use (Section 6.5).
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Figure 7.2: The PCubeSDescription of GPUQueue of Big Red II
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7.4 Measurement Criteria and Techniques

All measurements and analyses have been done on programs’ running time. Lately it has become common

to measure the floating point operations per second (FLOPs) in computational science problems as opposed

to the running time. In our opinion, the former metric may be appropriate for assessing the efficiency gain

through a particular program optimization but analyses based on the latter is the right choice when assessing a

language. Therefore, we stick to the traditional and more intuitive running time measurement.

We have run each program 5 times and have taken the average to account for random performance fluctua-

tions in the target machines at the time of the experiments. We were interested in three analyses of programs’

running time.

1. Speedup: is the ratio between the sequential execution time and the parallel execution time.

2. Scaled Speedup: is the testing of retainment of speedup with proportional increase in execution re-
sources and input size.

3. Parallel Overhead: is the portion of the running time spent on communication, redundant computa-
tions, and other overhead.

The speedup is generallymeasured for a fixed input size and different degrees of parallelism. Thismetric is of

interest when there is a large problem at handwhose performancemay be improved by parallelism. The asymp-

totic speedup of a parallel program is limited by the percentage of time it executes serially – the famous finding

known as the Amdahl’s Law77. If the performance of a program steadily improves with an arbitrary increase

of the degree of parallelism then the program is called strongly scalable. The programs in our applications suite

have different asymptotic speedups and only two of them, Block Matrix-Matrix Multiplication and Monte

Carlo Area Estimation are theoretically strongly scalable. We were, however, interested only in actual speedup
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of IT programs compared to reference sequential (or CUDA) implementations. For these experiments, differ-

ent degrees of parallelism have been achieved from the same IT program by mapping the LPSes differently

during compilation or increasing/decreasing the nodes count at runtime.

The scaled speedup has been proposed by Gustafson49 as an alternative to Amdahl’s asymptotic speedup

when the objective for more parallelism is to solve larger problems – not the same small problem more effi-

ciently. If the performance of a program remains steadywith proportional increase of the input size and parallel

execution resources then the program is calledweakly scalable and is a good candidate for running on large-scale

parallel architectures. Except for theConjugate Gradient, all programs in our application suite are theoretically

weakly scalable. We wanted to test if that property holds in practice for IT implementations. Since scaled

speedup experiments require an increase in execution resources both in terms of memory and computation

power, we performed them on the segmented memory and hybrid back-ends only. We skipped the multicore

back-end as there memory and cache resources remain constant for different degrees of parallelism.

Finally, we have included the parallel overhead as the third metric to identify sources of inefficiencies that

may hinder potential performance improvement in executables generated from the IT programs. This metric

is important specifically for the segmentedmemory and hybrid back-ends as the generated executables formost

programs in the application suite involve considerable data movements and communications. The multicore

back-end has synchronization overhead only.

Input data for all experiments have been generated randomly as we were not interested in the results. This

strategy does not affect the runtime behavior of any program in the application suite – except for theConjugate

Gradient, which requires a positive definitematrixwith a spectral radius less than 1. To circumvent the problem,

we have modified the iterative algorithm to run for a maximum number of iterations as opposed to until the
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solution has been reached.

Further, all programs in the application suite use double-precision floating points for relevant array elements.

Therefore, all running time measurements presented subsequently are for double-precision arithmetic.

Finally, note that we either did not measure the time consumed on file IO or disabled file read/write on

programs when feasible. Thus the aforementioned running time is the time taken by the programs except for

IO. We admit that file IO support is sub-optimal in all three compilers at present, and tackling this issue is an

important future work (Section 6.6), but the issue is orthogonal to the objective of the current experiments.

The upcoming sections discuss the results of the experiments on the chosen platforms. We use graphical

representations of the results in these sections to focus on trends as opposed to exact values of our metrics of

interest. The actual timing data for all experiments are available in Appendix B.

7.5 Experiment Results on Hermes

7.5.1 Block Matrix-Matrix Mulࣅplicaࣅon

Figure 7.3 depicts the speedups of IT BlockMatrix-MatrixMultiplicationprogramcompared to the sequential

reference implementation. We used 10, 239× 10, 239 square matrices a as inputs and 64× 64 blocks to fit data

into the caches during LPU computation.

Note that there is no 2 or 16-Cores version of the IT program as theHermesmachines’ PCubeS description

does not allow such breakups of the CPU cores.

aIn the multicore back-end, input size that is an exact multiple of 1024 is causing IT programs to run slower than
usual. We discovered this problem very late during the experiments. We are currently investigating the reason for this
strange behavior.
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Figure 7.3: Strong Scaling Results for BlockMatrix-MatrixMultiplication onHermes for 10, 239 × 10, 239 SquareMatrices

The IT versions achieve consistent and almost linear speedups with increase of parallelism up to 32 cores.

The 37 times speedup for 64 cores is particularly interesting. TheHermesmachines have only 32 floating point

units for their 64 cores – still we got an speedup over 32. This happens due to better cache utilization with

proper block size configuration.

Further, notice that the 1-Core IT version is almost as efficient (a slowdownof 4%) as the reference sequential

program. This indicates the efficiency of our LPU generation process. For the given input and block size

configuration, 160 × 160 × 160 = 4, 096, 000 LPUs were generated by the IT program, but the impact of

that on the running time appears to be marginal.

7.5.2 Block LU Factorizaࣅon

Figure 7.4 depicts the speedups of IT Block LU Factorization program compared to the sequential reference

implementation. We used an 10, 239 × 10, 239 square matrix as the input and a strided-block partition (with
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Figure 7.4: Strong Scaling Results for Block LU Factorization onHermes for a 10, 239 × 10, 239 Square ArgumentMatrix

64 rows per stride) for load balancing a.

The IT versions achieve consistent speedupwith the increase of parallelism. Thedegree of speedup forBlock

LU Factorization is lesser than that of Block Matrix-Matrix Multiplication, as the former has two sequential

stages per iteration and involves synchronization of shared data when the latter has no such bottlenecks.

The 1-Core IT version again approximates (a slowdown of 5%) the performance of the sequential reference

implementationdespite the former applying several index transformationswhen accessing array elements. This

result illustrates the efficiency of our index transformation process for index reordering partition functions.

7.5.3 Conjugate Gradient on Random Sparse Matrix

Figure 7.5 shows the performance of IT Conjugate Gradient program compared to the sequential reference

implementation for a 99.95% sparse 320, 000× 320, 000 symmetric argumentmatrix. The experiment is done

aIn a strided-block partition, a core gets stripes of rows/columns from the matrix as opposed to a sequential chunk.
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Figure 7.5: Strong Scaling Results for Conjugate Gradient on Hermes for a 99.95% Sparse 320, 000 × 320, 000 Symmetric

Matrix

for 1000 iterations. For this problem, there is hardly any speedup with increasing parallelism. Given that most

parts of the underlying algorithm are parallel and there is little LPU generation overhead in the component

tasks, the results are seemingly disappointing.

So we investigated the runtime behavior of the IT program using the Linux top command. We have found

that the CPU utilization hardly ever reaches 100% (the maximum is 3,200% due to 32 floating points unit) no

matter what the degree of parallelism is. This suggests that the irregular data accesses from the sparse matrix as

demanded by the underlying algorithm result in poor cache utilization in the program. The cores are spending

most of the time waiting for data to arrive in caches as opposed to doing computation. In addition, space

conflicts in the shared L2 and L3 caches are likely to intensify with more cores. The fall-off of speedup from

the 32 to 64-Cores version further substantiate this conclusion.
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Figure 7.6: Strong Scaling Results for 5-point Iterative Stencil on Hermes for a 10, 239 × 10, 239 Plate and 10,000 Iterations

7.5.4 5-point Iteraࣅve Stencil

Figure 7.6 illustrates the speedup of IT 5-point Iterative Stencil program compared to the sequential imple-

mentation for a simulated heated plate problem of size 10, 239× 10, 239. Each program version ran for 10,000

iterations. The graph displays two speedups per version as this problem involves data copying among neighbor-

ing partitions for overlapping boundary region synchronization. The Computation Speedup ignores the data

copying cost which is included in the Execution Speedup. There were 4 overlapping boundary rows among

data partitions requiring a synchronization in every 4th iteration.

It is apparent from the results that data synchronization overhead is insignificant compared to the execu-

tion time in all parallel versions. We observe a near linear speedup up to 8-Cores where it peaked. This trend is

expected as the cores are competing for spaces in the shared L2 and L3 caches in Iterative Stencil instead of co-
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Figure 7.7: Strong Scaling Results forMonte Carlo Area Estimation onHermes for a 10, 239 × 10, 239 Square Grid and 250
Samples Per Grid Cell

operating as they do in Block Matrix-Matrix Multiplication and LU Factorization. Up to the 8-Cores version,

the L2 and L3 caches are unique for individual cores, justifying the near linear speedup.

7.5.5 Monte Carlo Area Esࣅmaࣅon

Figure 7.7 presents the speedup of IT Monte Carlo Area Estimation program compared to the sequential

implementation. The bounding area for the problem was divided into a grid of 10, 239 × 10, 239 cells and

250 random samples were generated per cell to estimate the area under the curve represented by the equation,

10 sin(x2) + 50 cos(y3).

As shown in Figure 7.7, IT versions have a near linear speedup compared to the sequential reference imple-

mentation up to the 32-Cores version. There is a further improvement in the 64-Cores version. This is similar

to the behavior we have observed for Block Matrix-Matrix Multiplication. ForMonte Carlo Area Estimation,

the improvement is more likely due to faster integer operations rather than better cache utilization. Although
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a pair of cores in Hermes share a single floating point unit, each has its own integer unit. In the future, we

would like to investigate if exposing the integer capacity in the PCubeS description of a hardware along with

the floating point capacity has any significant benefit.

7.6 Experiment Results on Rivanna

7.6.1 Block Matrix-Matrix Mulࣅplicaࣅon

Figure 7.8 depicts the strong and week scaling results of IT Block Matrix-Matrix Multiplication program

on Rivanna compute cluster. The strong scaling results have been presented as the speedup of IT program

versions compared to the sequential reference implementation. Here theComputation Speedup only considers

the computation time and theExecution Speedup considers the computation time and any additional overhead.

The input matrices for strong scaling were 10, 239 × 10, 239 squares and the block size was fixed to 64 × 64.

The weak scaling results for the IT versions are shown as a breakdown of the actual running time for different

input size and core count combinations.

We observe a super-linear speedup of computation with increasing parallelism. The 1000-Cores version per-

forms 1180 times better than the sequential implementation. The speedup tapers off when additional overhead

is considered. The execution speedup for the 1000-Cores version is only 238 times compared to the sequential

implementation. Our investigation suggests that this happens because of the drastic reduction of the compu-

tation time that makes the overhead cost a larger percentage of the overall running time. The actual <compu-

tation time, overhead cost> combinations for the 500-Cores and 1000-Cores versions are <3.34861 sec, 6.49955

sec> and <1.638 sec, 6.46373 sec> respectively. We could not run the experiment for a much larger input size
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Figure 7.8: Strong (Matrix Size 10,239) andWeak Scaling Results for BlockMatrix-MatrixMultiplication on Rivanna

due to a maximum memory per node limitation set on Rivanna by its job scheduling system.

We used a more gradual increase of core counts to capture the trend for the weak scaling experiment. As

shown in the graph, the computation time remains almost flat. These are the best possible results. The over-

head computation per node increases with larger input sizes. For this problem, the entire overhead is due to

the initial serial preparation of array data parts and auxiliary management data structures. Much of this cost

can be eliminated in the future by parallelizing the steps of the resource preparation process.

7.6.2 Block LU Factorizaࣅon

Figure 7.9 presents the strong and weak scaling results for IT Block LU Factorization on Rivanna compute

cluster. This time the input argument matrices were 20, 480 × 20, 480 squares for the strong scaling experi-
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Figure 7.9: Strong (Matrix Size 20,480) andWeak Scaling Results for Block LU Factorization on Rivanna Cluster

Compared to the previous Block Matrix-Matrix Multiplication program, we observe only a modest im-

provement of performancewith increasingparallelism. This is expected as the IT implementationnow involves

multiple collectiveMPI communications per iteration on top of the intra-node CPU core synchronization for

serial compute stages. The computation speedup (including both computation and communication as both

are parts of the algorithmic logic) is not drastic and the difference between the two speedup metrics is minor.

This is because the additional overhead cost for data structures and communication resources setup is insignif-

icant compared to the cost of actual computation.

For the weak scalability testing, we further distinguish between time spent on actual computation and time

spent on communication. As shown in Figure 7.9, there are fluctuations in the computation times but the
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Figure 7.10: Strong Scaling Results for Conjugate Gradient on Rivanna for a 99.95% Sparse 320, 000 × 320, 000Matrix

overall trend is flat. The communication time goes, predictably, up with larger problem sizes due to increasing

cost of communicating larger data parts amongmore nodes. The initial sequential resource preparationprocess

seems to have a slight decreasing trend. We need to investigate the reason for this performance improvement.

7.6.3 Conjugate Gradient on Random Sparse Matrix

Figure 7.10 shows the performance of IT Conjugate Gradient program compared to the sequential reference

implementation for the same 99.95% sparse 320, 000× 320, 000 argument matrix used during experimenting

on Hermes. Again the experiment is done for 1000 iterations. Given our multicore experiment did not give

significant speedup with increasing parallelism, we decided to scale up the resources in terms of node count

as opposed to core count and let each node do its part of the computation sequentially. We expected a steady

increase of speedup with more parallelism with this strategy.
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The results are the biggest revelation in the segmented-memoryperformance testing. The computationdoes

improvewith increasing parallelismbut the increasing cost of the concomitant overhead calculation completely

tramples any performance gain in the overall execution. We found that most of the overhead cost is associated

with Environment Managers’ interaction during task transitions. As discussed in Chapter 6, we knew that

interactions among Environment Managers are inefficient compared to PPU Controllers’ interaction within a

single task, but we did not expect the difference to be so significant. Arguably, had we implemented Conjugate

Gradient as a single task as opposed to a programwith three different tasks and six task invocations per iteration,

theoverhead costwouldbe a tiny fractionof that of the current overhead. Such a change is, however, unjustified

due to productivity reasons. The results rather suggest that optimizing the environment management part of

the IT RTE implementation should be a central concern during future development.

7.6.4 5-point Iteraࣅve Stencil

Figure 7.11 presents the strong and weak scaling results for IT 5-point Iterative Stencil on Rivanna compute

cluster. The simulated heated plates were 10, 239 × 10, 239 squares for the strong scaling experiment. Further,

for the strong scaling experiment, boundary overlapping among inter-node and intra-node data parts were 16

rows and 4 rows respectively. The LPSes were made 1D by the runtime partition configuration despite the

source IT task has 2D partitioning in both LPSes. For the weak scalability experiment, on the other hand,

we kept the original 2D partitioning for the upper LPS to stabilize the communication overhead and used 4

overlapping boundary rows and columns in the inter-node data parts and just 1 overlapping row for the intra-

node data parts.

The results are good for both experiments as illustrated in Figure 7.11. The results also show the importance
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Figure 7.11: Strong andWeak Scaling Results for 5-point Iterative Stencil (10,000 Iterations) on Rivanna

of choosing appropriate partitioning parameters. We did some weak scalability testing using 1D partitioning

also and experienced performance deterioration in larger problems due to a linear increase of the communica-

tion overhead. A 2D partitioning keeps the per-node communication overheadmore or less constant as can be

seen in Figure 7.11.

These results also illustrate the flexibility the PCubeS + IT paradigm offers in shaping a program’s behavior.

A generic 2D partitioned program of the 5-point Iterative Stencil is much harder to implement for an average

programmer than a program using 1D partitioning. In IT, however, the difference is just a one line change.
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7.6.5 Monte Carlo Area Esࣅmaࣅon

Figure 7.12 depicts the strong and weak scaling results for IT Monte Carlo Area Estimation. The strong scala-

bility experiment is done for the same curve and grid configuration as in the case of corresponding experiment

inHermes. Theweak scalability experiment only increases the grid dimension. Both experiments generate 1000

samples per grid cell.
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Figure 7.12: Strong andWeak Scaling Results forMonte Carlo Area Estimation (1000 Samples Per Cell) on Rivanna

The results are unsurprisingly good for both experiments. We observe a near linear increase of speedupwith

increasing parallelism on a fixed input size, and flat running times for proportional increase in parallel resources

and the input size for this embarrassingly parallel program.
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7.7 Experiment Results on Big Red II

Before we discuss the performance results on Big Red II, we like to point out that the hybrid IT compiler is

currently in its initial stage. We have some programs running but we are still struggling to come up with a

performance model that will inform us what code generation strategy for the GPU kernels is ideal and what

data transfer policy is better for the CPU host and GPU interactions.

In addition, the reference implementations are highly optimized single GPU CUDA programs that assume

the program data always resides in the GPU cardmemory once copied into it. The IT programsmoves data in

and out of the GPU card memory to support much larger input sizes than that can be fit into a single GPU all

at once. The impact of this behavior difference is significant and we do not have an apple-to-apple comparison

between the hand-written reference and IT implementations.

7.7.1 Block Matrix-Matrix Mulࣅplicaࣅon

Figure 7.13 depicts the strong andweak scaling results for IT BlockMatrix-MatrixMultiplication. TheResults

of both experiments are shown as a breakdown of overall running time to expose the underlying components

of inefficiencies, if exists. The strong scalability experiment is done for 10, 240× 10, 240 square input matrices.

TheOther Host Level Overhead component in the graphs represent the cost of data preparation and auxil-

iary resource setup. TheHost Execution Time represents the time spent doing computation/communication

in the host that cannot be pushed down to the GPU due to some algorithmic restriction or, in the case of the

IT implementation in particular, due to a lack of support in the current hybrid compiler. The remaining two

timing components are self explanatory.
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Figure 7.13: Strong andWeak Scaling Results for BlockMatrix-MatrixMultiplication on Big Red II

As shown in Figure 7.13, the IT 1-GPU version is almost 6 times slower than the CUDA reference implemen-

tation and that is mostly because of the generated kernel’s relative inefficiency compared to the hand-written

version. We are currently investigating the reason for this slowdown. The IT implementation’s performance

almost linearly improves with increasing GPU count. This result indicates that if we can solve the inefficiency

problem for the 1-GPU version then the performance gain will be substantial.

The host level overhead for the IT implementation is also larger than that of the reference implementation.

This is expected as managing small data parts for LPUs separately involves more computation overhead than

does initialization of a single large block of memory as done in the reference implementation. Further, this

overhead does not alarm us as it also exhibits a downward trend with increasing parallelism.

The weak scalability results are good and consistent with earlier results from Rivanna. Thus the current
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hybrid compiler is adequate in that regard.

7.7.2 Block LU Factorizaࣅon

Figure 7.14 shows the strong and weak scaling results for IT Block LU Factorization. The strong scalability

experiment is again done for 10, 240 × 10, 240 square input argument matrices.

 0

 100

 200

 300

 400

 500

 600

H
an

d-
w

rit
te

n

IT
 1

-G
P

U

IT
 2

-G
P

U
s

IT
 4

-G
P

U
s

IT
 8

-G
P

U
s

S
ec

on
ds

Program Version

Kernel Execution Time
Data Transfer Time

Host Execution Time
Other Host Level Overhead

 0

 100

 200

 300

 400

 500

 600

 700

1 
G

P
U

: 1
02

40

2 
G

P
U

s:
 1

29
02

4 
G

P
U

s:
 1

62
55

8 
G

P
U

s:
 2

04
80

S
ec

on
ds

GPU Count: Input Size

Kernel Execution Time
Data Transfer Time

Host Execution Time
Other Host Level Overhead

Figure 7.14: Strong andWeak Scaling Results for Block LU Factorization on Big Red II

The most noticeable feature in both graphs are the large data transfer and host execution costs. Other than

that, the results are consistent with the findings from the previous Block Matrix-Matrix Multiplication exper-

iments. The host execution time part is so significant in the IT versions primarily because the hybrid compiler

still cannot generate CUDA kernels for stages with reduction operations and epoch version updates. Conse-

quently, the near 5% part of the computation that executes in the host has become the larger contributor of
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the runtime due to a massive speed difference in the kernel and host code executions. This part of the running

time is not scaling with increasing parallelism either. We need to give this issue the most emphasis in future

development of the hybrid compiler.

Despite having a downward trend, the data transfer time is also unacceptably large. This happens due to

the memoryless nature of the host and GPU interaction. The IT implementation exchanges two whole matri-

ces between the GPU and the host in each encounter of the same GPU Offloading Context when only a tiny

fraction of the matrices is updated in-between successive encounters. With a more sophisticated data transfer

mechanism we should be able to eliminate most of this data transfer cost.

7.7.3 Monte Carlo Area Esࣅmaࣅon

Finally, Figure 7.15 illustrates the strong and weak scaling results for IT Monte Carlo Area Estimation on Big

Red II. The curve being investigated is the same curve from earlier multicore and segmented memory experi-

ments. The bounding area is again divided into a square grid of 10, 240× 10, 240 cells for the strong scalability

test. The samples per cell is, however, set to 10,000 to produce enough work for the warps of the GPU SMs.

The results of both experiments are excellent as can be seen in Figure 7.15. Unlike Block Matrix-Matrix

Multiplication andBlock LU Factorization, the 1-GPUversion of the IT programperforms nearly as well as the

handwritten CUDAprogram. Then there is a linear reduction of running time – equivalently, a linear increase

of speedup – with more GPUs. The difference between theMonte Carlo Area Estimation IT kernel and that

of the previous two programs is that the former has an insignificant memory access overhead compared to the

latter. The three kernels involve comparable overhead calculation for LPU generation. This result suggests

that the kernel execution time slowdown we have observed for the earlier two programs is probably related to
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Figure 7.15: Strong andWeak Scaling Results forMonte Carlo Area Estimation (10,000 Samples Per Cell) on Big Red II

sub-optimal memory accesses as opposed to overhead computations.
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8
Conclusion

My desire to undertake this research was ignited from a personal experience with parallel computing in a grad-

uate course I took for that subject several years ago. The students were asked to implement a simple 5-point

Iterative Stencil program that uses 1D partitioning in three different architectural platforms in three consecu-

tive homework assignments. I found the program difficult to implement efficiently – every single time – due

to the differences in the target architectures and the programming tools we had to use. This was a troubling
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experience given the underlying algorithmic and data partitioning strategies that lead to an efficient parallel so-

lution for the 5-point Iterative Stencil remain the same irrespective of the target hardware. Evenmore worrying

was the observation that I spent most of my effort getting the parallelization tools right than thinking about a

better solution.

I agree with Andrews’ statement 15 that “concurrent programs are to sequential programs what chess is to

checkers.” Nevertheless, I found placing the chess pieces on the board and understanding their rule of engage-

ment to be harder than actually playing the game! The predominant low-level parallelization tools such as

MPI, Pthreads, and CUDA have made parallel computing harder than what it inherently is. The present high-

level language based alternatives to those tools, on the other hand, have not appreciated that inherent difficulty

enough and are trying to make a chess out of checkers. Thus the overall outcome is either discouragement or

disappointment for people who could be benefited from learning parallel programming, and there are a lot of

them now.

With the end of rapid single-processor performance improvement, there is a proliferation of parallel hard-

ware everywhere. At the same time, costly compute intensive applications and large-scale data analytics have

become the norm in many areas of sciences, arts, and industry. The potential benefits of parallel computing is

enormous at present. We just need proper paradigms to make parallel computing enjoyable, productive, and

above all rewarding enough to avail the current opportunity.

The broad objective of this research was to provide such a parallel programming paradigm and in doing

so proving that the aforementioned vision is practical. The central idea behind the PCubeS + IT program-

ming paradigm is to provide an unifying abstraction, called a type architecture, that exposes the salient features

and their associated costs of any parallel hardware; then describe a parallel program in terms of that generic
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abstraction using a medium that seamlessly integrates reasoning about hardware features with expressing the

algorithmic logic of the program. I hoped that this paradigmwill enable highperformance andportable parallel

programming without losing programmer productivity. That hope led the my research claim:

A high level parallel programming paradigm based on type architecture will enable porta-

bility, simplify learning and performance debugging, and approximate the efficiency of

contemporary low level programming techniques.

This research has produced the PCubeS type architecture that describes a parallel hardware as a finite hier-

archy of parallel processing spaces each having fixed, possibly zero, compute and memory capacities and con-

taining a finite set of uniform, independent sub-spaces. This research has also given the IT language for high

performance parallel computing in which computations are defined to take place in a corresponding hierarchy

of logical processing spaces, each of which may impose a different partitioning of data structures. In addition,

three IT compilers for three architectural back-ends – multicore CPUs, distributed memory supercomputers

and compute clusters, and hybrid supercomputers having both multicore CPUs andNVIDIAGPUs as nodes

– have been developed. All these took closely 4 years of research and development. Now it is the right time to

ask how far the work goes in proving my stated claim.

As illustrated in Chapter 3, PCubeS can describemost present day parallel architectures effectively regardless

of their heterogeneity. Thus an unifying machine abstraction for present day parallel hardware is an evident

reality. Thatwehave three IT compilers and are able to run the same ITprogram in three different architectural

back-ends is also a proof of the PCubeS + IT paradigm’s portability. The qualitative attributes of the language

such as readability, simplicity, and programmer productivity have not been verified yet using some human
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study. Regardless, I will argue that the strong separation of concerns and the use of a declarative syntax that

give IT programs a pseudo-code like appearance, and the brevity of an IT program compared to equivalent

hand-written parallel programs written using existing techniques are indicative of IT ’s success in those regards.

Regarding efficiency, I believe it is fair to say that the PCubeS + IT paradigm has promising prospects.

The results presented in Chapter 7 for five well-known building block applications are generally good. Yes,

we discovered performance issues in the IT programs, and we are not yet ready to compete with existing par-

allelization techniques that are in decades of development, but we have not discovered any problem during

experiments that appears to be an obstacle for future performance improvement. Rather the opportunity of

performance improvement through better cache control, sophisticated environment management, context-

aware GPU kernel scheduling, and many more makes me excited about a bright future.

I would like to work on those optimizations but I would prefer to pass the baton and let other burgeoning,

student researchers to investigate future opportunities. For example, implementing an efficient parallel file IO

mechanism for the PCubeS + IT paradigm should be a rewarding project on its own. One can also pick a

particular back-end architecture and investigate all possible optimizations for the corresponding IT compiler.

Optimizing communication and environment management overhead in the IT RTE for Exascale Computing

should also be interesting. In my view, this research answers as many questions as it introduces. I want fresh

new ideas to enrich the paradigm through the involvement of new student researchers as opposed to having

the project started and ended with me.

I did not want the PCubeS + IT paradigm to be just an academic endeavor, answering questions asked only

for the sake of curiosity. I wanted it to be a real solution to real-world problems – not within the 4 years of

my research but definitely in the future. So in conclusion it is appropriate to ask what need to be done to
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make that happen. Real world applications are not like the building block programs we did the experiments

on. Rather, they havemany components and demand awide range of features. Therefore, the IT languagewill

require significant feature enhancement. Regardless, the future researchers must be cautious about bringing

in new features without properly investigating what can be implemented efficiently across the board and what

not. The central theme of a lean language core, a declarative syntax, and a clear separation of concerns must be

respected to retain the flavor of the paradigm. This is an alternative line of research I encourage my successors

to examine.

For the near future, I believe support for adaptivemesh refinements andmulti-gridmethods and an efficient

list implementation coupled with an improved file IO and some synthetic features will take PCubeS + IT a

long way towards solving many critical real-world problems for which efficient solutions are yet unknown or

too difficult to construct using existing techniques. We need research fundings and collaboration with domain

scientists to make progress in that direction.

Finally, I want to thank the reader for coming this far. That you have read it is my reward, and I treasure it

dearly. If you have learned anything from my writing or have gotten even a single chuckle out of it, that is my

humble gift to you in return. Thank you.
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A
IT Source Codes

A.1 Block Matrix-Matrix Mulࣅplicaࣅon

1Program ( args ) {
2
3 / / create an environment object for the matrix−matrix multiplication task
4 mmEnv = new TaskEnvironment(name : ‘ ‘ Block Matrix−Matrix Multiply ”)
5
6 / / spec i fy how external input f i l e s are associated with the environmental objects
7 bind_input (mmEnv, ‘ ‘ a” , args . input_file_1 )
8 bind_input (mmEnv, ‘ ‘b” , args . input_file_2 )
9

10 / / execute the task
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11 execute ( task : ‘ ‘ Block Matrix−Matrix Multiply ”; environment : mmEnv; part i t ion : args .k, args . l , args . q)
12
13 / / spec i fy where the output should be written to
14 bind_output (mmEnv, ‘ ‘ c” , args . output_file )
15 }
16
17Task ‘ ‘ Block Matrix−Matrix Multiply ” :
18 Define :
19 a , b , c : 2d Array of Real double−precision
20 Environment:
21 a , b : l ink
22 c : create
23 Initialize :
24 c . dimension1 = a . dimension1
25 c . dimension2 = b . dimension2
26 Stages :
27 / / a single computation stage embodying the logic of the matrix−matrix multiplication
28 multiplyMatrices (x , y , z ) {
29 do { x [ i ] [ j ] = x [ i ] [ j ] + y [ i ] [k] * z [k ] [ j ]
30 } for i , j in x ; k in y
31 }
32 Computation :
33 Space A {
34 / / the stage has to be repeated for each sub−partition of Space A to have a block implementation
35 / / as opposed to a traditional one
36 Repeat foreach sub−part i t ion {
37 multiplyMatrices ( c , a , b)
38 }
39 }
40 Partition (k, l , q ) :
41 / / 2D partitioning of space giving a block of c in each partition along with a chunk of rows of a
42 / / and a chunk of columns of b
43 Space A <2d> {
44 c : block_size (k, l )
45 a : block_size (k) , repl icated
46 b : repl icated , block_size ( l )
47 / / block−by−block flow of data inside a PPU i s governed by the sub−partition speci f icat ion
48 Sub−part i t ion <1d> <unordered> {
49 a<dim2>, b<dim1>: block_size (q)
50 }
51 }

A.2 Block LU Factorizaࣅon

1Program ( args ) {
2 luEnv = new TaskEnvironment(name : ‘ ‘ Block LU Factorization ”)
3 bind_input ( luEnv , ‘ ‘ a” , args . input_matrix_file )
4 execute ( task : ‘ ‘ Block LU Factorization ”; environment : luEnv ; part i t ion : args . block_size )
5 bind_output ( luEnv , ‘ ‘u” , args . upper_matrix_file )
6 bind_output ( luEnv , ‘ ‘ l ” , args . lower_matrix_file )
7 bind_output ( luEnv , ‘ ‘ p” , args . pivot_matrix_file )
8 }
9
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10Task ‘ ‘ Block LU Factorization ” :
11 Define :
12 a , u , l : 2d Array of Real double−precision
13 p : 1d Array of Integer
14 l_row , l_column, p_column : 1d Array of Real double−precision
15 u_block , l_block : 2d Array of Real double−precision
16 pivot , k, r , block_size : Integer
17 row_range : Range
18 Environment:
19 a : l ink
20 u , l , p : create
21 Initialize :
22 u . dimension1 = l . dimension1 = a . dimension2
23 u . dimension2 = l . dimension2 = a . dimension1
24 p . dimension = a . dimension1
25 block_size = part i t ion . b
26 l_row . dimension = l . dimension2
27 l_column . dimension = p_column. dimension = l . dimension1
28 u_block . dimension1 = u . dimension1
29 u_block . dimension2 . range .min = l_block . dimension1 . range .min = 0
30 u_block . dimension2 . range .max = l_block . dimension1 . range .max = block_size − 1
31 l_block . dimension2 = l . dimension2
32 Stages :
33 prepareLU (a , u , l ) {
34 do { u [ j ] [ i ] = a [ i ] [ j ] } for i , j in a
35 do { l [ i ] [ i ] = 1 } for i in l
36 }
37 calculateRowRange ( a , row_range , block_size ) {
38 last_row = r + block_size − 1
39 i f ( last_row > a . dimension1 . range .max) {
40 last_row = a . dimension1 . range .max
41 }
42 row_range .min = r
43 row_range .max = last_row
44 }
45 selectPivot ( pivot , u , k) {
46 do { pivot = reduce ( ‘ ‘maxEntry” , u [k ] [ j ] ) } for j in u and j >= k
47 }
48 storePivot (p , k, pivot ) {
49 p [k] = pivot
50 }
51 interchangeColumns ( pivot , k, u , l ) {
52 do { u [ i ] [k] at ( current ) = u [ i ] [ pivot ] at ( current − 1 )
53 u [ i ] [ pivot ] at ( current ) = u [ i ] [k] at ( current − 1 )
54 } for i in u and i >= k
55 do { l [ i ] [k] at ( current ) = l [ i ] [ pivot ] at ( current − 1 )
56 l [ i ] [ pivot ] at ( current ) = l [ i ] [k] at ( current − 1 )
57 } for i in l and i < k
58 }
59 updateL ( l , k, l_row) {
60 do { l [k ] [ j ] = u [k ] [ j ] / u [k ] [k]
61 u [k ] [ j ] = 0
62 l_row[ j ] = l [k ] [ j ]
63 } for j in l and j > k
64 }
65 updateURowsBlock(u , l_row , k, row_range) {
66 do { u [ i ] [ j ] = u [ i ] [ j ] − l_row[ j ] * u [ i ] [k]
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67 } for i , j in u and i > k and i <= row_range .max and j > k
68 }
69 updateUColsBlock (u , p_column, k, row_range) {
70 do { u [ i ] [k] = u [ i ] [k] − u[ i ] [ j ] * p_column[ j ]
71 } for i , j in u and i > row_range .max and j >= row_range .min and j < k
72 }
73
74 / / three addditional stages are needed to prepare the blocks of updated upper and lower triangular
75 / / matrices for the embedded SAXPY operation
76 collectLColParts ( l_column, l , k, row_range) {
77 do { l_column[ i ] = l [ i ] [k]
78 } for i in l and i >= row_range .min and i < k
79 }
80 generatePivotColumn(p_column, l_column, row_range , k) {
81 do { p_column[ i ] = l_column[ i ]
82 } for i in l_column and i >= row_range .min and i < k
83 }
84 copyUpdatedLBlock ( l_block , row_range , l ) {
85 do { row = i − row_range .min
86 l_block [row ] [ j ] = l [ i ] [ j ]
87 } for i , j in l and i >= row_range .min and i <= row_range .max and j > row_range .max
88 }
89
90 saxpy (u , u_block , l_block , row_range) {
91 do { do { total = reduce (”sum” , u_block [ i ] [m] * l_block [m] [ j ] )
92 } for m in u_block
93 u [ i ] [ j ] = u [ i ] [ j ] − total
94 } for i , j in u and i > row_range .max and j > row_range .max
95 }
96 Computation :
97 Space A {
98 Space B {
99 prepareLU (a , u , l )

100 }
101 Repeat for r in a . dimension1 . range s t ep block_size {
102 calculateRowRange ( a , row_range , block_size )
103 Repeat for k in row_range {
104 Space B {
105 Where k in u . local . dimension1 . range { selectPivot ( pivot , u , k) }
106 }
107 storePivot (p , k, pivot )
108 Space B {
109 Where k != pivot {
110 Epoch { interchangeColumns ( pivot , k, u , l ) }
111 }
112 Where k in l . local . dimension1 . range { updateL ( l , k, l_row) }
113
114 / / only a block of rows are being updated from the upper triangular
115 / / matrix per step instead of the entire matrix
116 updateURowsBlock(u , l_row , k, row_range)
117
118 collectLColParts ( l_column, l , k, row_range)
119 }
120 generatePivotColumn(p_column, l_column, row_range , k)
121 Space B {
122 / / s imilarly only a block of columns are updated per step from the
123 / / upper triangular matrix
124 updateUColsBlock (u , p_column, k, row_range)
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125 }
126 }
127 / / unaltered portion of the upper triangular matrix i s updated using the SAXPY operation
128 / / a f ter the desired number of s tep s of par t ia l LU Factorization
129 Space B {
130 Where r in l . local . dimension1 . range { copyUpdatedLBlock ( l_block , row_range , l ) }
131 Space C {
132 Repeat foreach sub−part i t ion {
133 saxpy (u , u_block , l_block , row_range)
134 }
135 }
136 }
137 }
138 }
139 Partition (b ) :
140 Space A <un−partitioned> {
141 a , p , l_column, l_row , p_column, l_block , u_block
142 }
143 Space B <1d> divides Space A part i t i ons {
144 a<dim2>, u<dim1>, u_block<dim1>, l<dim1>, l_column : block_stride (b)
145 l_row , p_column, l_block : repl icated
146 }
147 / / cache friendly partitioning for the LPS where SAXPY operation takes place
148 Space C <2d> divides Space B part i t i ons {
149 u : block_size (b , b)
150 u_block : block_size (b) , repl icated
151 l_block : replicated , block_size (b)
152 Sub−part i t ion <1d> <unordered> {
153 u_block<dim2>, l_block<dim1>: block_size (b)
154 }
155 }

A.3 Conjugate Gradient on Random Sparse Matrix

1Program ( args ) {
2 / / creating environment objects for component tasks
3 vaEnv1 = new TaskEnvironment(name : ‘ ‘ Vector Addition”)
4 vaEnv2 = new TaskEnvironment(name : ‘ ‘ Vector Addition”)
5 dpEnv = new TaskEnvironment(name : ‘ ‘ Vector Dot Product”)
6 mvmEnv1 = new TaskEnvironment(name : ‘ ‘CSR Matrix Vector Multiply ”)
7 mvmEnv2 = new TaskEnvironment(name : ‘ ‘CSR Matrix Vector Multiply ”)
8
9 / / make the argument sparse matrix stored in compressed row format from f i l e s to be read during f i r s t−time

10 / / execution of the matrix−vector multiply task
11 bind_input (mvmEnv1, ‘ ‘ columns” , args . arg_matrix_cols )
12 bind_input (mvmEnv1, ‘ ‘ rows” , args . arg_matrix_rows )
13 bind_input (mvmEnv1, ‘ ‘ values ” , args . arg_matrix_values )
14
15 / / bind the prediction (x_0) and the known vector (b) to the tasks ’ environment that use them in i t i a l l y
16 bind_input ( vaEnv1 , ‘ ‘u” , args . known_vector)
17 bind_input (mvmEnv1, ‘ ‘ v” , args . prediction_vector )
18
19 / / run the conjugate gradient logic
20 / / note that here iteration should continue until the estimate for solution vector converges to i t s actual

216



21 / / value . That should happen i f the res idual error i s zero . But we are doing an max−i terat ions based
22 / / termination as we do not know i f the symmetric , sparse matrix i s posit ive−definite with a spectra l radius
23 / / l e s s than 1
24 iteration = 0
25 maxIterations = args . maxIterations
26 do {
27 / / calculate A * x_i
28 execute ( ‘ ‘CSR Matrix Vector Multiply ”; mvmEnv1; Partition : args . r )
29
30 / / determine the current res idual error as r_i = b − A * x_i
31 vaEnv1 . alpha = 1
32 vaEnv1 . v = mvmEnv1.w
33 vaEnv1 . beta = −1
34 execute ( ‘ ‘ Vector Addition”; vaEnv1 ; Partition : args . b)
35
36 / / determine the dot product of r_i to i t s e l f as the res idual norm
37 dpEnv . u = dpEnv . v = vaEnv1 .w
38 execute ( ‘ ‘ Vector Dot Product ”; dpEnv ; Partition : args . b)
39 norm = dpEnv . product
40
41 / / in the f i r s t iteration setup duplicate environmental references for the sparse matrix components
42 i f ( i teration == 0) {
43 mvmEnv2. columns = mvmEnv1. columns
44 mvmEnv2. rows = mvmEnv1. rows
45 mvmEnv2. values = mvmEnv1. values
46 }
47
48 / / determine A * r_i
49 mvmEnv2. v = vaEnv1 .w
50 execute ( ‘ ‘CSR Matrix Vector Multiply ”; mvmEnv2; Partition : args . r )
51
52 / / determine dot product of r_i to A * r_i
53 dpEnv . v = mvmEnv2.w
54 execute ( ‘ ‘ Vector Dot Product ”; dpEnv ; Partition : args . b)
55
56 / / determine the next step s ize alpha_i as ( r_i . r_i ) / ( r_i . (A * r_i ) )
57 alpha_i = norm / dpEnv . product
58
59 / / calculate the next estimate x_i = x_i + alpha_i * r_i
60 vaEnv2 . u = mvmEnv1. v
61 vaEnv2 . alpha = 1
62 vaEnv2 . v = vaEnv1 .w
63 vaEnv2 . beta = alpha_i
64 execute ( ‘ ‘ Vector Addition”; vaEnv2 ; Partition : args . b)
65
66 / / prepare x_i for the next iteration
67 mvmEnv1. v = vaEnv2 .w
68 iteration = iteration + 1
69
70 } while i teration < maxIterations and norm > args . precision
71
72 / / store the f inal solution vector in an output f i l e
73 bind_output (vaEnv2 , ‘ ‘w” , args . solution_vector )
74 }
75
76Task ‘ ‘ Vector Addition ” :
77 Define :
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78 u , v , w: 1D Array of Real double−precision
79 alpha , beta : Real double−precision
80 Environment:
81 u , v , alpha , beta : l ink
82 w: create
83 Initialize :
84 w. dimension = u . dimension
85 Stages :
86 addVectors (w, u , v , alpha , beta ) {
87 do { w[ i ] = alpha * u [ i ] + beta * v [ i ] } for i in u
88 }
89 Computation :
90 Space A {
91 addVectors (w, u , v , alpha , beta )
92 }
93 Partition (b ) :
94 Space A <1d> {
95 u , v , w: block_size (b)
96 }
97
98Task ‘ ‘ Vector Dot Product ” :
99 Define :

100 u , v : 1D Array of Real double−precision
101 product : Real double−precision
102 Environment:
103 u , v : l ink
104 product : create
105 Stages :
106 computeDotProduct ( result , u , v ) {
107 do { re su l t = reduce ( ‘ ‘sum” , u [ i ] * v [ i ] ) } for i in u
108 }
109 Computation :
110 Space B {
111 computeDotProduct (Space A : product , u , v )
112 }
113 Partition (b ) :
114 Space A <un−partitioned> {u , v}
115 Space B <1d> divides Space A part i t i ons {
116 u , v : block_size (b)
117 }
118
119Task ‘ ‘CSR Matrix Vector Multiply ” :
120 Define :
121 columns , rows : 1D Array of Integer
122 values , v , w: 1D Array of Real double−precision
123 Environment:
124 values , columns , rows , v : l ink
125 w: create
126 Initialize :
127 w. dimension = rows . dimension
128 Stages :
129 multiply (w, v , rows , columns , values ) {
130 s t a r t = rows . local . dimension1 . range .min
131 i f ( s t a r t == 0) { s t a r t = −1 }
132 do { i f ( i > 0) {
133 beginIndex = rows [ i − 1 ] + 1
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134 } e l s e {
135 beginIndex = 0
136 }
137 endIndex = rows [ i ]
138 do {
139 w[ i ] = w[ i ] + values [ j ] * v [ columns [ j ] ]
140 } for j in columns and j >= beginIndex and j <= endIndex
141 } for i in rows and i > s t a r t
142 }
143 Computation :
144 Space A {
145 multiply (w, v , rows , columns , values )
146 }
147 Partition ( r ) :
148 Space A <1d> {
149 values , columns , v : repl icated
150 rows : block_size ( r ) padding ( 1 , 0)
151 w: block_size ( r )
152 }

A.4 5-point Iteraࣅve Stencil

1Program ( args ) {
2 stencilEnv = new TaskEnvironment(name : ‘ ‘ Five Points Stenci l ”)
3 bind_input ( stencilEnv , ‘ ‘ plate ” , args . input_file )
4 execute ( task : ‘ ‘ Five Points Stenci l ” ; environment : stencilEnv ;
5 i n i t i a l i z e : args . i terat ions ; \
6 part i t ion : args .k, args . l , args .m, args .n, args . p1 , args . p2 ) \
7 bind_output ( stencilEnv , ‘ ‘ plate ” , args . output_file )
8 }
9

10Task ‘ ‘ Five Points Stenci l ” :
11 Define :
12 plate : 2d Array of Real double−precision
13 max_iterations : Integer
14 counter_1 , counter_2 , counter_3 : Integer
15 Environment:
16 plate : l ink
17 Initialize ( max_iterations ) :
18 Stages :
19 refineEstimates ( plate ) {
20 localRows = plate . dimension1 . range
21 localCols = plate . dimension2 . range
22 do { plate [ i ] [ j ] at ( current ) \
23 = 1 /4 * ( plate [ i −1][ j ] \
24 + plate [ i + 1 ] [ j ] \
25 + plate [ i ] [ j−1] \
26 + plate [ i ] [ j + 1 ] ) at ( current − 1 )
27 } for i , j in plate \
28 and ( i > localRows .min and i < localRows .max) \
29 and ( j > localCols .min and j < localCols .max)
30 }
31 Computation :
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32 / / the whole computation should i t e ra te for max_iterations number of times
33 Repeat for counter_1 in [ 1 . . . max_iterations ] {
34 / / a f ter partition . p1 / partition . p2 upper leve l i terat ions the flow should exit for upper
35 / / l eve l padding synchronization
36 Space A {
37 Repeat for counter_2 in [ 1 . . . part i t ion . p1 ] s t ep part i t ion . p2 {
38 / / a f ter partition . p2 i terat ions the flow should exit Space B for lower
39 / / l eve l padding synchronization
40 Space B {
41 Repeat for counter_3 in [ 1 . . . part i t ion . p2 ] {
42 / / epoch needs to be advanced after each refinement step
43 Epoch {
44 refineEstimates ( plate )
45 }
46 }
47 }
48 }
49 }
50 }
51 Partition (k, l , m, n, p1 , p2 ) :
52 Space A <2d> {
53 plate : block_count (k, l ) padding ( p1 )
54 }
55 Space B <2d> divides Space A part i t i ons {
56 plate : block_count (m, n) padding ( p2 )
57 }

A.5 Monte Carlo Area Esࣅmaࣅon

1Program ( args ) {
2 mcEnv = new TaskEnvironment(name : ‘ ‘Monte Carlo Area Estimation”)
3 execute ( ‘ ‘Monte Carlo Area Estimation ”; mcEnv; \
4 Initialize : args . cell_length , args . grid_dim , args . points_per_cell ; \
5 Partition : args . b)
6 }
7
8Class Rectangle :
9 top , bottom, lef t , right : Integer

10
11Task ‘ ‘Monte Carlo Area Estimation ” :
12 Define :
13 grid : 2D Array of Rectangle
14 sub_area_estimates : 2D Array of Real double−precision
15 cell_length , points_per_cell : Integer
16 cel l_s ize : Real double−precision
17 area : Real double−precision Reduction
18 Environment:
19 area : create
20 Initialize ( cell_length , grid_dim , points_per_cell ) :
21 grid . dimension1 . range .min = 0
22 grid . dimension1 . range .max = grid_dim − 1
23 grid . dimension2 = grid . dimension1
24 sub_area_estimates . dimension = grid . dimension
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25 ce l l_s ize = cell_length * cell_length
26 Stages :
27 setupGridCells ( grid , cell_length ) {
28 do {
29 grid [ i ] [ j ] . l e f t = cell_length * i
30 grid [ i ] [ j ] . right = cell_length * ( i + 1 ) − 1
31 grid [ i ] [ j ] . bottom = cell_length * j
32 grid [ i ] [ j ] . top = cell_length * ( j + 1 ) − 1
33 } for i , j in grid
34 }
35 initiateRandGenerator ( ) {
36 @Extern {
37 @Language ”C++”
38 @Includes { time .h, cs tdl ib }
39 ${ srand ( time (NULL) ) ; }$
40 }
41 }
42 estimateSubarea ( cell_length , grid , sub_area_estimates , points_per_cell ) {
43
44 / / i t e ra te para l l e ly over the grid c e l l s
45 do {
46 ce l l = grid [ i ] [ j ]
47 internal_points = 0
48 seed = lpuId [0]
49
50 / / undertakes points_per_cell number of point placement t r a i l s
51 t r i a l = 0
52 do {
53 / / generate a point within the ce l l boundary and calculate i t s position
54 / / r e l a t i ve to the shape
55 @Extern {
56 @Language ”C++”
57 @Includes { math.h, cs tdl ib }
58 ${
59 int x = rand_r ( ( unsigned int *) &seed ) % cell_length + ce l l . l e f t ;
60 int y = rand_r ( ( unsigned int *) &seed ) % cell_length + ce l l . bottom;
61
62 / / tested polynomial i s 10 sin x^2 + 50 cos y ^ 3
63 double re su l t = 10 * sin (pow(x , 2 ) ) + 50 * cos (pow(y , 3 ) ) ;
64 i f ( r e su l t <= 0.0) {
65 internal_points ++;
66 }
67 }$
68 }
69 t r i a l = t r i a l + 1
70 } while ( t r i a l < points_per_cell )
71
72 / / estimate the part of the polynomial within the grid ce l l
73 sub_area_estimates [ i ] [ j ] = ce l l_s ize * internal_points / points_per_cell
74
75 } for i , j in grid
76 }
77 estimateTotalArea ( result , sub_area_estimates ) {
78 do {
79 re su l t = reduce ( ‘ ‘sum” , sub_area_estimates [ i ] [ j ] )
80 } for i , j in sub_area_estimates
81 }
82 Computation :
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83 Space A {
84 Space B {
85 / / ca lculate the ce l l boundaries based on ce l l dimension length and position in the grid
86 setupGridCells ( grid , cell_length )
87
88 / / in i t i a l i z e the random number generator for sampling
89 initiateRandGenerator ( )
90
91 / / estimate the sub−area under the polynomial within each grid ce l l by a fixed number of
92 / / random samples
93 estimateSubarea ( cell_length , grid , sub_area_estimates , points_per_cell )
94
95 / / reduce the sub−area estimates into a single f inal re su l t in Space A
96 estimateTotalArea (Space A : area , sub_area_estimates )
97 }
98 }
99 Partition (b ) :

100 Space A <un−partitioned> { grid }
101 Space B <1d> divides Space A part i t i ons {
102 grid<dim1>, sub_area_estimates<dim1>: block_count (b)
103 }
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B
Experimental Data

B.1 Hybrid Back-end: Big Red II

Program Version Input Size Kernel Execution Data Transfer Host Execution Other Host Overhead
Hand-written 10240 20.57 sec 0.83 sec 0 sec 11.83 sec
IT 1-GPU 10,240 125.8 sec 6.03 sec 0.3 sec 42.45 sec
IT 2-GPUs 10,240 62.89 sec 3.86 sec 0.32 sec 34.94 sec
IT 4-GPUs 10,240 31.45 sec 3.81 sec 0.3 sec 23.28 sec
IT 8-GPUs 10,240 15.72 sec 1.67 sec 0.33 sec 18.8 sec

Table B.1: Strong Scaling Timing Results of BlockMatrix-MatrixMultiplication on Big Red II
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Program Version Input Size Kernel Execution Data Transfer Host Execution Other Host Overhead
IT 1-GPU 10,240 125.79 sec 5.95 sec 0.31 sec 42.19 sec
IT 2-GPUs 12,902 126.62 sec 6.30 sec 0.31 sec 54.98 sec
IT 4-GPUs 16,255 125.97 sec 6.26 sec 0.32 sec 57.23 sec
IT 8-GPUs 20,480 125.77 sec 7.11 sec 0.31 sec 68.455 sec

Table B.2: Weak Scaling Timing Results of BlockMatrix-MatrixMultiplication on Big Red II

Program Version Input Size Kernel Execution Data Transfer Host Execution Other Host Overhead
Hand-written 10,240 15.1 sec 0.7 sec 5.84 sec 0 sec
IT 1-GPU 10,240 85.3861 sec 261.315 sec 130.1919 sec 85.193 sec
IT 2-GPUs 10,240 42.5174 sec 129.7985 sec 112.5431 sec 58.269 sec
IT 4-GPUs 10,240 21.2178 sec 63.5662 sec 105.4520 sec 37.987 sec
IT 8-GPUs 10,240 10.5833 sec 32.1989 sec 101.2508 sec 30.907 sec

Table B.3: Strong Scaling Timing Results of Block LU Factorization on Big Red II

Program Version Input Size Kernel Execution Data Transfer Host Execution Other Host Overhead
IT 1-GPU 10,240 85.4046 sec 261.065 sec 129.2294 sec 85.412 sec
IT 2-GPUs 12,902 85.8069 sec 247.2143 sec 142.5728 sec 101.360 sec
IT 4-GPUs 16,255 85.0394 sec 256.612 sec 169.9956 sec 99.504 sec
IT 8-GPUs 20,480 84.7429 sec 254.733 sec 212.4211 sec 118.437 sec

Table B.4: Weak Scaling Timing Results of Block LU Factorization on Big Red II

Program Version Input Size Kernel Execution Data Transfer Host Execution Other Host Overhead
Hand-written 10,240 243.4 sec 0.21 sec 0 sec 0 sec
IT 1-GPU 10,240 245.248 sec 6.020438 sec 1.255562 sec 3.504 sec
IT 2-GPUs 10,240 124.431 sec 2.985667 sec .768333 sec 2.031 sec
IT 4-GPUs 10,240 61.8975 sec 1.501463 sec .554037 sec 1.3919 sec
IT 8-GPUs 10,240 30.7099 sec .739322 sec .690778 sec 1.2982 sec

Table B.5: Strong Scaling Timing Results ofMonte Carlo Area Estimation on Big Red II

Program Version Input Size Kernel Execution Data Transfer Host Execution Other Host Overhead
IT 1-GPU 10,240 245.299 sec 5.963885 sec 1.254115 sec 3.482 sec
IT 2-GPUs 14,482 249.348 sec 5.943742 sec 1.510258 sec 3.439 sec
IT 4-GPUs 20,480 246.413 sec 5.888004 sec 3.967996 sec 3.670 sec
IT 8-GPUs 28,964 246.494 sec 5.915936 sec 4.672064 sec 3.790 sec

Table B.6: Weak Scaling Timing Results ofMonte Carlo Area Estimation on Big Red II
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B.2 Segmented-memory Back-end: Rivanna Compute Cluster

Program Version Input Size Resource Preparation Overhead Computation Time Other Overhead
Hand-written 10,239 0 sec 1933.47 sec 0 sec
IT 20-Cores 10,239 24.6157 sec 83.5525 sec 0 sec
IT 100-Cores 10,239 14.4593 sec 16.6397 sec 0 sec
IT 500-Cores 10,239 6.49955 sec 3.34861 sec 0 sec
IT 1000-Cores 10,239 6.46373 sec 1.638 sec 0 sec

Table B.7: Strong Scaling Timing Results of BlockMatrix-MatrixMultiplication on Rivanna

Program Version Input Size Computation Time Resource Preparation Overhead
IT 20-Cores 10,240 201.907 sec 13.1619 sec
IT 40-Cores 12,902 203.153 sec 15.2231 sec
IT 80-Cores 16,255 204.013 sec 19.8148 sec
IT 160-Cores 20,480 201.53 sec 27.4318 sec
IT 320-Cores 25,804 203.236 sec 40.7699 sec
IT 640-Cores 32,508 203.914 sec 62.6531 sec

Table B.8: Weak Scaling Timing Results of BlockMatrix-MatrixMultiplication on Rivanna

Program Version Input Size Resource Preparation Overhead Computation Time Other Overhead
Hand-written 20,480 0 sec 9671.27 sec 0 sec
IT 20-Cores 20,480 71.51628 sec 1141.984 sec 1.20172 sec
IT 40-Cores 20,480 35.83 sec 613.518 sec 1.588 sec
IT 80-Cores 20,480 18.048 sec 342.416 sec 1.392 sec
IT 160-Cores 20,480 9.005 sec 204.068 sec 1.7079 sec
IT 320-Cores 20,480 4.60 sec 136.38 sec 1.3638 sec
IT 640-Cores 20,480 2.392 sec 111.46 sec 1.006 sec
IT 960-Cores 20,480 1.942 sec 105.247 sec 0.745 sec

Table B.9: Strong Scaling Timing Results of Block LU Factorization on Rivanna
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Program Version Input Size Computation Time Communication Overhead Resource Preparation Overhead
IT 20-Cores 10,240 175.349 sec 2.27343 sec 17.9142 sec
IT 40-Cores 12,902 123.638 sec 13.7526 sec 14.2393 sec
IT 80-Cores 16,255 119.847 sec 28.8984 sec 11.3341 sec
IT 160-Cores 20,480 155.833 sec 76.169 sec 9.04663 sec
IT 320-Cores 25,804 124.369 sec 82.3926 sec 7.2741 sec
IT 640-Cores 32,508 129.688 sec 135.719 sec 5.73743 sec

Table B.10: Weak Scaling Timing Results of Block LU Factorization on Rivanna

Program Version Input Size Iterations Computation Time Environment Management Overhead
Hand-written 320,000 1000 573.67 sec 0 sec
IT 1-Node 320,000 1000 467.687 sec 4.91 sec
IT 2-Nodes 320,000 1000 461.464 sec 337.57 sec
IT 4-Nodes 320,000 1000 459.224 sec 399.29 sec
IT 8-Nodes 320,000 1000 287.975 sec 342.11 sec
IT 16-Nodes 320,000 1000 146.265 sec 461.79 sec
IT 32-Nodes 320,000 1000 82.4862 sec 637.02 sec
IT 64-Nodes 320,000 1000 47.0628 sec 680.77 sec

Table B.11: Strong Scaling Results for Conjugate Gradient on Rivanna for a 99.95% SparseMatrix

Program Version Input Size Iterations Resource Preparation Overhead Computation Time Other Overhead
Hand-written 10,239 10,000 0 sec 2059 sec 0 sec
IT 20-Cores 10,239 10,000 13.12 sec 898.342 sec 9.354 sec
IT 100-Cores 10,239 10,000 2.77 sec 190.114 sec 2.638 sec
IT 300-Cores 10,239 10,000 0.48 sec 69.511 sec 0.751 sec
IT 500-Cores 10,239 10,000 0.615 sec 38.6915 sec 1.26 sec
IT 700-Cores 10,239 10,000 0.242 sec 26.093 sec 0.60 sec
IT 1000-Cores 10,239 10,000 0.296 sec 14.361 sec 1.1 sec

Table B.12: Strong Scaling Timing Results of 5-point Iterative Stencil on Rivanna

Program Version Input Size Iterations Resource Preparation Over-
head Computation Time Other Overhead

IT 20-Cores 10,240 10,000 6.54344 sec 593.084 sec 63.3062 sec
IT 80-Cores 20,480 10,000 6.86589 sec 595.204 sec 78.4019 sec
IT 180-Cores 30,720 10,000 6.89374 sec 596.716 sec 108.073 sec
IT 320-Cores 40,960 10,000 6.58999 sec 600.35 sec 109.621 sec
IT 500-Cores 51,200 10,000 6.58432 sec 593.632 sec 119.584 sec
IT 720-Cores 61,440 10,000 6.76767 sec 596.599 sec 119.182 sec

Table B.13: Weak Scaling Timing Results of 5-point Iterative Stencil on Rivanna

Program Version Grid Dimension Samples Per Cell Resource Preparation Overhead Computation Time
Hand-written 10,240 1000 0 sec 16,065.1 sec
IT 20-Cores 10,240 1000 1.08475 sec 824.56 sec
IT 40-Cores 10,240 1000 0.576924 sec 413.214 sec
IT 80-Cores 10,240 1000 0.362021 sec 206.942 sec
IT 160-Cores 10,240 1000 0.282253 sec 103.575 sec
IT 320-Cores 10,240 1000 0.295342 sec 51.9234 sec

Table B.14: Strong Scaling Timing Results ofMonte Carlo Area Estimation on Rivanna
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Program Version Grid Dimension Samples Per Cell Computation Time Resource Preparation Overhead
IT 20-Cores 10,240 1000 824.56 sec 1.08475 sec
IT 40-Cores 14,482 1000 826.441 sec 1.10838 sec
IT 80-Cores 20,480 1000 825.705 sec 1.16423 sec
IT 160-Cores 28,964 1000 856.2 sec 1.17591 sec
IT 320-Cores 40,960 1000 826.174 sec 1.30623 sec

Table B.15: Weak Scaling Timing Results ofMonte Carlo Area Estimation on Rivanna
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B.3 Mulࣅcore Back-end: Hermes Machines

Program Version Input Size Computation Time Resource Preparation Overhead
Hand-written 10,239 2844.81 sec 0 sec
IT 1-Cores 10,239 2962.38 sec 0 sec
IT 4-Cores 10,239 767.838 sec 0 sec
IT 8-Cores 10,239 392.293 sec 0 sec
IT 32-Cores 10,239 113.778 sec 0 sec
IT 64-Cores 10,239 76.6735 sec 0 sec

Table B.16: Strong Scaling Timing Results of BlockMatrix-MatrixMultiplication onHermes

Program Version Input Size Computation Time Resource Preparation Overhead
Hand-written 10,239 904.993 sec 0 sec
IT 1-Cores 10,239 948.612 sec 0 sec
IT 4-Cores 10,239 369.022 sec 0 sec
IT 8-Cores 10,239 205.249 sec 0 sec
IT 32-Cores 10,239 75.6677 sec 0 sec
IT 64-Cores 10,239 59.5962 sec 0 sec

Table B.17: Strong Scaling Timing Results of Block LU Factorization onHermes

Program Version Input Size Iterations Computation Time Resource Preparation Overhead
Hand-written 320,000 1000 338.479 sec 0 sec
IT 1-Cores 320,000 1000 444.587 sec 0 sec
IT 4-Cores 320,000 1000 420.205 sec 0 sec
IT 8-Cores 320,000 1000 282.078 sec 0 sec
IT 32-Cores 320,000 1000 227.544 sec 0 sec
IT 64-Cores 320,000 1000 291.473 sec 0 sec

Table B.18: Strong Scaling Timing Results of Conjugate Gradient on Hermes for a 99.95% SparseMatrix
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Program Version Input Size Iterations Computation Time Resource Preparation Overhead
Hand-written 10,239 10,000 4211.06 sec 0 sec
IT 1-Cores 10,239 10,000 4609.13 sec 9.11768 sec
IT 4-Cores 10,239 10,000 1108.33 sec 9.99017 sec
IT 8-Cores 10,239 10,000 568.358 sec 9.11788 sec
IT 32-Cores 10,239 10,000 552.255 sec 9.59435 sec
IT 64-Cores 10,239 10,000 1270.21 sec 9.56709 sec

Table B.19: Strong Scaling Timing Results of 5-point Iterative Stencil on Hermes

Program Version Input Size Samples Per Cell Computation Time Resource Preparation Overhead
Hand-written 10,239 250 11,604.5 sec 0 sec
IT 1-Cores 10,239 250 11,351.167 sec 0 sec
IT 4-Cores 10,239 250 2,859.51 sec 0 sec
IT 8-Cores 10,239 250 1,441.92 sec 0 sec
IT 32-Cores 10,239 250 398.106 sec 0 sec
IT 64-Cores 10,239 250 280.963 sec 0 sec

Table B.20: Strong Scaling Timing Results ofMonte Carlo Area Estimation onHermes
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