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Abstract

Heterogeneous computing with both CPUs and accelerators, such as GPUs, has become increas-

ingly popular for general purpose computing. GPUs differ from CPUs significantly in architecture

and programming models. GPUs provide high compute throughput and memory bandwidth, and

offer dramatically better performance for many applications.

However, there is little previous work on understanding GPU application behaviors and how

to map applications efficiently on the GPU. In addition, effective techniques are needed for both

the CPU and the GPU to achieve an overall high performance. To better understand and optimize

heterogeneous systems, we study the following research issues to address these concerns. These

include 1) the design of the Rodinia benchmark suite for heterogeneous platforms including both

the CPU and the GPU, 2) a detailed characterization of Rodinia benchmark suite, 3) the Dymaxion

framework to optimize the memory access patterns of heterogeneous platforms, 4) an approach for

spreading and balancing workloads across the CPU and the GPU, and 5) a methodology to predict

the performance of GPU applications.
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Chapter 1

Introduction

Microprocessors face increasing challenges in achieving high performance and efficiency due to

severe power limits. Industry has shifted towards multi-core and many-core approaches over the

past decade. One important trend is that computer systems are increasingly exposing a hybrid

model consisting of accelerators -such as graphics processors (GPUs) - combined with multicore

CPUs. GPUs, for instance, offer parallelism at scales not currently available with other processors

and afford about an order of magnitude greater peak throughput than general-purpose, multicore

CPUs, while the CPUs offer high single-thread performance. This provides the best combination

of both high parallelism and high single-thread performance, to provide overall high-performance

processing for computationally demanding tasks.

Heterogeneous computing overcomes the inherent limitations in homogeneous systems and pro-

vides a novel cost-effective approach to various problems, offering better compute efficiency and

diverse capabilities. At the same time, it also opens up new challenges to computer architects

and programmers. These include the increasing heterogeneity and consequent complexity of com-

pute and memory structures, making performance portability a challenge. Designers will have to

deal with architecture diversity and achieve a better trade-off among performance, power and cost.

Furthermore, heterogeneous computing requires a friendly programming environment as well as

efficient runtime and operating system support.

A vision of heterogeneous computer systems that incorporates diverse accelerators and selects

the best computational unit for a particular task is widely shared among researchers and many in-

1



Chapter 1. Introduction 2

dustry analysts. To allow coordinated effective use of these compute units requires researchers to

address a set of research questions first. For example, there is little previous research on under-

standing GPUs’ application features, and how to adapt the applications efficiently onto the GPU

for better performance. In addition, techniques are needed to spread workloads simultaneously

across the CPU and the GPU to take advantage of the available compute resources efficiently. The

CPU and the GPU may prefer different memory mappings, and how to achieve a good performance

portability while minimizing the communication cost of maintaining heterogeneous layouts is also

important. Furthermore, research in heterogeneous computing needs a set of well designed bench-

marks, which were not previously available.

To address these concerns, this dissertation addresses two major research challenges:

1. Understanding heterogeneous systems. This includes understanding programming features,

application characteristics and metrics important to performance.

2. Optimizing the performance of heterogeneous systems. High performance can be achieved if

we are able to exploit the compute capabilities of each individual platform, while at the same

time, ensure synergy among them for collaborative processing. We target heterogeneous

systems with CPU and GPU in this work.

To optimize the performance of heterogeneous systems, this dissertation focuses on optimiz-

ing data mappings and data transfer across platforms. The main hypothesis of this work is that

chunk-based dynamic load balancing and device-specific memory layout transformation improve

performance for CPU-GPU systems. A second hypothesis is that performance of an arbitrary appli-

cation can be accurately predicted across various GPU configurations using the performance of a set

of benchmark applications, as long as essential characteristics of the application and benchmarks

can be obtained.

To address these research challenges and prove our hypothesis, our approach consists of several

specific research tasks:

1. Understanding the GPU programming features and investigating techniques for optimizing

the GPU performance (my Master’s thesis) and designing the Rodinia benchmark suite for
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heterogeneous computing (partly in my Master’s thesis and further extensions in this Ph.D.

dissertation).

2. Performing a characterization of Rodinia and comparing it to other benchmarks.

3. Developing an approach to allow applications to run on both the CPU and the GPU simulta-

neously, and investigate the load-balancing issue.

4. Designing the Dymaxion framework to optimize the memory access patterns for heteroge-

neous systems.

5. Proposing a set of metrics and a methodology to predict the performance of GPU applications.

Each of the previous research tasks contributes an important part to the overall mission of un-

derstanding and optimizing the performance of heterogeneous systems:

To better understand heterogeneous systems, we first study how to take advantage of the GPU

for general purpose computation and this analysis leads to the development of Rodinia (Task 1).

We further conduct a characterization of Rodinia and analyze its diversity (Task 2). Part of this

effort also includes studying how well the Rodinia suite is designed with a comparison to other

benchmarks. We further study Task 5 for predicting the GPU performance. This can be used to

evaluate how well we understand the GPU platform, if both the metrics and the methodology are

effective for performance prediction.

To optimize the performance of heterogeneous systems and prove our hypothesis, we have pur-

sued several directions. We take advantage of various techniques (e.g. data structure, algorithm

and GPU-specific hardware features) to optimize the GPU performance (Task 1 and 4). To allow

efficient CPU-GPU collaborative processing, we propose Task 3 to spread and balance workloads

across the CPU and the GPU. Another important issue is that CPU and GPU may prefer different

memory mappings. Task 4 studies this problem and proposes techniques to minimize the CPU-GPU

communication overhead while transforming the data layout.

The following five sections demonstrate five research challenges in heterogeneous computing

in details, along with their related works and our proposed approaches to address the concerns :
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1.1 GPU Performance Optimization and Rodinia

In my masters thesis [13], we began to answer how to efficiently leverage the GPU platform for

high-performance general purpose computation. We studied a diverse set of GPU applications

with different parallel patterns [2] and explored various software and hardware strategies to op-

timize GPU programs. These include determining efficient algorithm mappings of applications’

data structures to CUDA’s domain-based model, and optimizing data-locality and memory access

patterns implied by the implementation of their algorithms, in order to take advantage of a GPU

memory hierarchy (e.g. specialized GPU memories). All of these findings and results were also

documented in our JPDC’08 paper [15].

Before addressing all the research challenges we mentioned, researchers first need a set of well-

designed workloads for their research. These workloads should span a diverse range of parallelism

and compute patterns, and stress different GPU hardware components, providing researchers with

various feature options to identify computer architecture bottlenecks and to fine tune hardware

designs. There are many benchmark suites for parallel computing on general-purpose CPU archi-

tectures. Several multithreaded benchmark suites for multicore CPUs, including SPLASH-2 [82],

Parsec [9], and SPEC OMP [71], are available. However, heterogeneous systems fall into a gap

that is not covered by current benchmark suites or benchmark development. There are several GPU

benchmarks available [4, 20, 75]. However, these benchmark suites do not include multithreaded

CPU implementations, and were created without a formally-guided design methodology to ensure

workload diversity and coverage of workload space.

Based on our experience developing and optimizing various GPU applications, we have con-

structed the Rodinia benchmark suite for heterogeneous computing to address these concerns (part

in my Masters thesis and extensions in this dissertation). The Rodinia applications currently target

both multicore CPUs and GPUs, using OpenMP, OpenCL and NVIDIA’s CUDA. OpenMP is an

API for multicore CPUs that allows programmers to use compiler directives to express parallelism.

CUDA is NVIDIA’s C extension and API for programming the GPU. OpenCL is a multi-vendor

standard that targets heterogeneous systems.
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Since we began tracking downloads in June 2010, Rodinia has received over 800 registered

downloads, and the citations of Rodinia related publications are growing (e.g. 223 citations for the

JPDC work [15], 74 citations for the SASP work [16] and 139 citations for the IISWC work [14]).

The JPDC work was awarded “Top Cited Article 2005-2010” for Journal of Parallel and Distributed

Computing. Rodinia is also being considered for inclusion in SPEC’s new GPGPU suite [76]. The

details of Rodinia will be described in Chapter 2.

1.2 GPU Workload Characterization

We endeavor to design Rodinia so that it is a useful tool for researchers to explore heterogeneous

systems including the CPU and the GPU. To make effective use of it requires researchers to un-

derstand the characteristics of the suite itself, and the relationship of its program mix with other

benchmark suites. However, there are some important questions yet to be answered:

• What features do the Rodinia benchmarks demonstrate in terms of important GPU and CPU

metrics?

• How much do the Rodinia workloads designed for heterogeneous platforms (those with GPU

accelerators) differ from those of other suites designed for multicore CPUs?

• How well do the chosen applications span and cover the workload space?

A better understanding of these issues will not only expand the knowledge of parallel bench-

mark construction, but could also inform decisions on workload scheduling and partitioning on

different architectures and guide researchers to choose appropriate benchmarks for their research

as well. Bienia et al. [8] compare SPLASH-2 and Parsec to determine the extent of feature overlap,

and conclude that the workloads have significant differences. Many Parsec workloads have larger

working sets than those in SPLASH-2, useful in the face of the scientific trend toward massive data

growth. Other work compares the communication characteristics of SPLASH-2 and Parsec [81] and

examines the behavior of Parsec on real hardware [7]. However, there is no previous work conduct-

ing a detailed characterization of heterogeneous workloads and comparing them to other workloads
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designed for the multicore CPU. Furthermore, to ensure a sufficient application coverage, a criti-

cal requirement for benchmark suite design, previous work performs studies on how well existing

benchmarks cover application space, but only on single-threaded benchmarks [42,66], while this is

an open problem in heterogeneous environments.

In Chapter 3, we conduct a detailed characterization of the Rodinia benchmark suite and study

its diversity from different perspectives. We also evaluate the Rodinia benchmarks on an NVIDIA

GTX480, which is based on the Fermi architecture with traditional L1 and L2 caches. We subse-

quently perform an application space study, comparing the multithreaded CPU implementations of

Rodinia with those of Parsec, and evaluate the extent to which the program selections of the two

suites overlap. Finally, we present analysis and discussion of important, open research topics, in-

cluding the need for an overall application space study of multithreaded workloads. We also discuss

the challenges that make porting existing benchmarks (e.g. Parsec) difficult.

1.3 CPU-GPU Workload Spreading and Balancing

There has been growing research activity to explore how to efficiently utilize the available compute

resources within a heterogeneous platform. One important issue is how to spread and schedule

workloads simultaneously on the CPUs and the GPUs, while maintain a desirable load-balanced

ratio.

GPUs differ significantly from CPUs in hardware architecture, memory hierarchy, etc. This in

turns requires that the solutions to these issues be applicable in most of the practical circumstances

given the diversity of the platforms. It should be also adaptable to hardware resource changes es-

pecially when multiple applications share common hardware resources. OpenCL has been released

to support heterogeneous computing. However, the current release does not provide support for

programmers to conduct efficient mappings and workload partitioning.

Twin Peaks [28] makes the OpenCL code originally targeted for GPUs efficiently run on CPUs.

Stratton et al. [72] proposed MCUDA for mapping the NVIDIA CUDA kernels to run on mul-

ticore CPUs architectures. Saha et al. [69] develop a programming model for a heterogeneous
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x86 platform, consists of a general-purpose x86 CPU and Larrabee cores. Also, MapCG [34] is a

MapReduce framework providing source code level portability between CPU and GPU. However,

none of these works studies spreading workloads simultaneously on the CPU and the GPU. Intel’s

Merge framework [52] supports executing parallel compute kernels across devices. but relies on

programmers to manually specify the mapping of a problem. This is not only tedious, but also not

adaptable to the changes of hardware configurations or problem sizes [56]. Other works, such as

the Qilin project [56], propose adaptive mappings. Qilin uses training runs to decide the amounts

of works distributed onto the CPU and the GPU beforehand. However, this approach is not likely

to perform well, when the available compute resources for an application change at runtime (e.g.

competing resources with another application). In addition, no previous work takes into account

that the CPU and the GPU may prefer different memory layouts and access patterns.

To overcome these limitations, in Chapter 4 we study an approach to execute parallel compute

kernels simultaneously on the CPU and the GPU and allow efficient data partitioning and load

balancing across devices. Our approach is based on hierarchical domain partitioning with chunking

and work queues which keep track of the processing chunks. It has the advantage of being able to

adjust to run-time compute resource changes. We also include scheduling strategies to ensure better

data locality in order to save costly PCI-E transfers. Also, we apply memory remapping to achieve

desirable data layouts for diverse compute devices (See Chapter 5).

1.4 Memory Access Pattern Optimizations

Memory bandwidth and latency present serious concerns that limit throughput in GPU architectures.

Together with SIMT branch divergence [27, 84], they are two of the distinctive characteristics that

limits the GPU performance. The memory bandwidth issue is getting relatively worse, as the num-

ber of processing elements per chip is growing much faster than bandwidth and latency are improv-

ing. Furthermore, the performance relies on effective memory bandwidth utilization [41, 77, 84].

Furthermore, an application’s algorithmic behavior, as viewed by the programmer, does not

necessarily lead to the most efficient memory access pattern. Today’s GPU programming models
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require programmers to invest considerable manual effort to optimize memory accesses for high

performance. For instance, GPUs’ SIMD architectures require efficient memory coalescing for

inter-thread data locality. Hybrid memory units—such as the GPU’s shared, constant, and texture

memories—present access patterns that are unfamiliar and unintuitive to programmers and that fa-

vor specific, specialized mappings. However, code optimized for specialized access patterns may

not perform well or be portable across multiple vendors’ platforms and different hardware genera-

tions. Additionally, for efficient heterogeneous computing, different architectures and multithread-

ing models may favor different memory mappings. For example, SIMD organizations generally

perform best when each thread or lane of a SIMD operation accesses adjacent data, while scalar

organizations perform best when a single thread accesses adjacent data. This in turn requires hetero-

geneity in data layout as well as per-device optimization for simultaneous execution. A high-level

abstraction to define memory mappings is needed for heterogeneous computing.

Previous work investigates how to optimize data organization for efficient memory accesses. An

early report by Leung and Zahorjan [49] discusses how array elements should be laid out in memory

to improve spatial locality for accesses in nested loops of CPU programs. Impulse [85] proposes

application-specific optimizations through configurable physical address remapping by supporting

prefetching at the memory controller. Sung et al. [77] investigated a compiler approach for layout

transformation for GPU kernels, focusing merely on structured-grid applications. Jang et al. [41]

use a mathematical model and associative algorithms to analyze data access patterns and target loop

vectorization and GPU memory selection with different patterns. The linear, shifted, and strided

access patterns [41] can be handled by either the row-major or column-major mapping. Zhang et

al. [84] proposes a dynamic approach to reduce irregularities in GPU programs. However, these

approaches maintain many duplicate data copies for fine-grained data reordering, and sometimes

requires breaking the integrity of compute kernels. In addition, there is no previous works studying

the memory remapping and related latency-hiding techniques, which are implemented during CPU-

GPU data communication. Furthermore, none of the previous work evaluates the memory mapping

issue when scheduling workloads simultaneously on both the CPU and the GPU, and studies the

portability issue.
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To address these concerns, in Chapter 5, we proposed a high-level abstraction to define memory

mappings and access patterns for heterogeneous computing. We developed a framework, Dymax-

ion, and associated techniques to allow programmers to easily optimize the access patterns for better

memory bandwidth utilizations. We further created a prototype API implementation and runtime,

which optimize memory layouts accordingly and then transform subsequent memory access ad-

dresses as necessary. To minimize the layout transformation overhead across devices, we hid the

latency through chunking data structures and overlapping their data transfers with layout reorgani-

zations. With Dymaxion, applications with a variety of access patterns achieve significant speedups,

while maintaining better portability. We anticipate that the techniques we proposed in Dymaxion

can be further integrated into compiler frameworks for automatic memory remapping and transfor-

mation. In addition, for efficient CPU-GPU load balancing, data layouts of some applications must

be transformed across devices so that memory accesses are optimized for both platforms. This is

achieved by applying Dymaxion to each data chunk in the load balancing framework.

1.5 GPU Performance Prediction

It is important for researchers and users to understand and be able predict the performance of an

application of interest running on the GPU. Users need to determine the platform or product achiev-

ing the best performance for their applications of interest to make appropriate purchasing deci-

sions. Of course, the applications of users’ interest are their best benchmarks. However, sometimes

users need to rely on the performance of standardized benchmarks, microbenchmarks and synthetic

benchmarks to estimate the performance of their applications [37], which motivates the need to

evaluate the design of today’s GPU benchmark suites to achieve this goal. Studying the approaches

for performance prediction can also help researchers to understand first order parameters/metrics

capturing the behaviors of the GPU platform.

Previous research works have explored the issues of analyzing and predicting application perfor-

mance for CPUs [12, 29, 37, 70]. However, they mostly concentrate on single-thread applications.

Recently, researchers have started to study performance prediction for GPUs. Some researchers
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build analytical models with detailed GPU hardware parameters [3, 35] as inputs. However, one

challenge is the difficulty to keep up with GPUs’ evolution, which invalidates highly tuned analyti-

cal models. Other works use regression methods to construct empirical models [45].

In Chapter 6, we study an approach of predicting the performance of target GPU applications

by correlating with characteristics of existing workloads. We first identify a set of important GPU

application characteristics and further use them to predict the GPU performance by determining

the most similar benchmarks to the target application. Our prediction technique extends the prior

work by Host et al. [37] to support manycore architectures. As part of our analysis, we discuss

the effectiveness of using Rodinia only, as well as including other suites, to achieve the necessary

accuracy. Finally, we present several imperative issues for determining mutual relationships among

benchmarks and a more systematic way for future benchmark suite construction in general.

1.6 Contributions

In summary, to understand and optimize the performance of heterogeneous systems, we research

the following research problems in this dissertation:

• In Chapter 2, we develop the Rodinia benchmark suite to fill the gap of benchmarking het-

erogeneous platforms including both the CPU and the GPU.

• In Chapter 3, we characterize the Rodinia benchmarks and show the diverse behaviors ex-

hibited. We compare Rodinia with other benchmark suites (e.g. Parsec) and evaluate how

Rodinia differ from the suites designed for multicore CPUs.

• In Chapter 4, we study an approach to allow applications to run on both the CPU and the

GPU simultaneously and study the load-balancing issue.

• In Chapter 5, we design a set of APIs, layout/index transformation and latency hiding tech-

niques to optimize memory access patterns for heterogeneous systems.

• In Chapter 6, we design and evaluate the methodology of predicting the performance of a

GPU application by correlating to that of existing benchmarks.
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Our research tasks and contributions are in alignment with resolving the overall dissertation.

To understand heterogeneous systems, we study how to leverage GPUs for general purpose com-

putation, characterize the Rodinia workloads and analyze their diversity, and further propose a set

of metrics and a methodology for GPU performance prediction. We optimize the performance of

heterogeneous systems from three perspectives: 1) exploring techniques to optimize the GPU per-

formance, 2) developing a framework to efficiently spread and balance workloads across the CPU

and the GPU, and 3) maintaining heterogeneous layouts and minimizing the cross-platform data

communication overhead during layout transformation.



Chapter 2

GPU Computing and Rodinia

In this chapter, we give an overview of GPU architectures and their programming models (e.g.

CUDA and OpenCL). And then we introduce the Rodinia benchmark suite developed for heteroge-

neous systems including multicore CPUs and GPUs.

2.1 A Short Primer for GPUs

2.1.1 NVIDIA Tesla and Fermi

NVIDIA’s unified computing architecture is designed to support both graphics and general-purpose

computing. The programmable processing elements share a common, very general-purpose instruc-

tion set that is used by both graphics and general-purpose computation. Each processing element

is designed to be a very simple pipeline supporting multiple, time-multiplexed thread contexts. La-

tencies are simply tolerated by switching threads. Current GPU products support many concurrent

threads. Nickolls et al. [62] and Lindholm et al. [53] provide a nice description of contemporary

NVIDIA GPU architectures.

For instance, in a NVIDIA GTX 280 GPU, each streaming multiprocessor (SM) consists of 8

processing elements, called Stream Processors or SPs. Each SM also has 16 kb on-chip, software-

managed per-block shared memory (PBSM) or scratchpad memory. To maximize the number of

processing elements that can be accommodated within the GPU die, these 8 SPs operate in SIMD

fashion under the control of a single instruction sequencer. The threads in a thread block are time-

12
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sliced onto these 8 SPs in groups of 32 called warps. Each warp of 32 threads operates in lockstep

and these 32 threads are time-sliced on the 8 SPs. Multithreading is then achieved through a hard-

ware thread scheduler in each SM. Every cycle this scheduler selects the next warp to execute.

Divergent threads are handled using hardware masking until they reconverge. Different warps in

a thread block need not operate in lockstep, but if threads within a warp follow divergent paths,

only threads on the same path can be executed simultaneously. In the worst case, all 32 threads in a

warp follow different paths without reconverging—resulting in a sequential execution of the threads

across the warp. NVIDIA’s GPU architecture is optimized for workloads with relatively little data

locality and only very localized data reuse. As a consequence, it does not provide large hardware

caches shared among multiple cores, as is the case on modern CPUs.

To support more general purpose workloads, especially those with irregular access patterns,

NVIDIA introduced a new architecture code-named Fermi, integrating traditional hardware caches.

For example, NVIDIA GeForce GTX 480 GPUs have 15 streaming multiprocessors with a total

of 480 1.4 GHz streaming processors, and a 768 kB unified L2 cache. Each SM has a 64 kB,

configurable, on-chip memory that can be configured as 48 kB shared + 16 kB L1 or as 16 kB shared

+ 48 kB L1. Another important feature of Fermi cards is their capability to support concurrent

kernel executions and ECC memory [62].

In addition to the PBSM and hardware caches, each SM has two small, private data caches, both

of which only hold read-only data: the texture cache and the constant cache. Data structures must

be explicitly allocated into the PBSM, constant, and texture memory spaces. The texture cache are

optimized for arbitrary access patterns to achieve the best average performance. The constant cache

is optimized for broadcasting values to all PEs in an SM and performance degrades linearly if PEs

request multiple addresses in a given cycle. The best performance will be achieved when all the

threads within a warp touch the same cache line.

2.1.2 A Comparison with AMD GPU Architectures

The overall design concepts of NVIDIA and AMD GPUs are similar to each other. However, one

feature which makes AMD GPUs differ from NVIDIA products is their adoption of very long in-
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struction word (VLIW) processors to carry out computations in a vector-like fashion [87]. For

instance, the AMD Cypress GPU (i.e. Radeon 5870) consists of 20 SIMD engines. Inside a SIMD

engine, there are 16 thread processors (TP) and 32KB local memory. A SIMD engine is equivalent

to a stream multiprocessor on an NVIDIA GPU, while the local memory is equivalent to the shared

memory on an SM. Each SIMD engine also includes a texture unit with 8KB L1 cache. Unlike

the NVIDIA GPU SPs, a thread processor within a SIMD engine is a five-way VLIW processor:

each thread processor consists of five processing elements (four ALUs and a special function unit).

In each cycle, independent instructions are assigned to these processing elements as a VLIW bun-

dle and are simultaneously executed. Therefore, effective uses of AMD GPUs rely on effective

compilers to generate sufficient instructions to fill the pipelines or require programmers to explic-

itly develop programs to achieve high packing ratios (e.g. float4, int4). Another difference be-

tween NVIDIA and AMD GPU architectures is that global memory accesses go through the L2 in

NVIDIA’s Fermi architectures, while only image objects and constants use the L2 in Cypress [87].

2.1.3 The CUDA Programming Model

CUDA is a C extension and API for parallel programming. CUDA represents the coprocessor as

a device that can run a large number of threads. The threads are managed by representing parallel

tasks as kernels mapped over a computation domain. Kernels are scalar and represent the work to

be done at a single point in the domain. The kernel is then invoked as a thread at every point in the

domain. The parallel threads share memory and synchronize using barriers.

Data is prepared for processing on the GPU by copying it to the graphics board’s memory in a

system with a discrete GPU. Data transfer is performed using DMA and can take place concurrently

with kernel processing. AMD Fusion [1] products integrate both the CPU and the GPU on the same

die, which share a single physical memory and memory channel. However, currently CPU and GPU

still work on their own memory spaces and data must still be copied between different spaces.

GPU’s computation domain is actually defined with a multidimensional structure, in the form

of a 3D grid of 3D thread blocks. The significance of the thread block construct is that each

thread block is assigned in its entirety to a single streaming multiprocessor and runs as a unit
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to completion without preemption. The number of thread blocks in a grid can greatly exceed the

hardware resources, in which case fresh thread blocks are assigned to SMs as previous thread blocks

retire.

In addition to global shared memory, each thread block has available a private, per-block shared

memory that is only visible to threads within that thread block. The amount of this PBSM that will

be used must be defined by the kernel but is limited to 16 KB (or 48 kb in Fermi, depending on

configurations). The PBSM allows threads within a thread block to cooperate in a fine-grained

fashion by sharing data among themselves with low latency.

CUDA uses a relaxed memory consistency model [33]. Synchronization within a thread block

(i.s. syncthread()) is entirely managed in hardware. Synchronization among thread blocks is

achieved by allowing a kernel to complete and starting a new kernel; in effect, a global barrier. It is

important to note that the order in which thread blocks are assigned to SMs is arbitrary. Because or-

der of execution among thread blocks within a grid is non-deterministic, and because thread blocks

run to completion, it is important to note that thread blocks should never have a producer-consumer

relationship due to the risk of deadlock. Producer-consumer relationships must be confined within

thread blocks or separated across global barriers.

2.1.4 OpenCL

OpenCL [64] has been released as a unified framework designed for GPUs and other processors.

CUDA and OpenCL models have much similarity in the virtual machines they define. Most tech-

niques for optimizing applications in CUDA can be translated easily into those in OpenCL. The

OpenCL platform model is based on compute devices that consist of compute units with processing

elements, which are equivalent to CUDA’s SM and SP units. In OpenCL, a host program launches

a kernel with work-items over an index space, and work-items are further grouped into work-groups

(thread blocks in CUDA). Also, the OpenCL memory model has a similar memory hierarchy as

CUDA, such as the global memory space shared by all work-groups, the per-work-group local

memory space, the per-work-item private memory space, etc. The global and constant data cache

can be used for data which take advantage of the read-only texture and constant cache in CUDA.
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Table 2.1: Rodinia applications and their dwarfs and application domains
Application Dwarf Domain
Kmeans Dense Linear Algebra Data Mining
Needleman-Wunsch (NW) Dynamic Programming Bioinformatics
HotSpot (HS) Structured Grid Physics Simulation
Back Propagation (BP) Unstructured Grid Pattern Recognition
SRAD* Structured Grid Image Processing
Leukocyte Tracking (LC) Structured Grid Medical Imaging
Breadth-First Search (BFS) Graph Traversal Graph Algorithms
Stream Cluster (SC) Dense Linear Algebra Data Mining
MUMmer (MUM) Graph Traversal Bioinformatics
CFD Solver (CFD) Unstructured Grid Fluid Dynamics
LU Decomposition (LUD) Dense Linear Algebra Linear Algebra
Heart Wall Tracking (HW) Structured Grid Medical Imaging

Finally, OpenCL adopts a “relaxed consistency” memory model similar to CUDA. Local memory

consistency is ensured across work-items within a work-group at a barrier but not guaranteed across

different work-groups.

2.2 Rodinia Benchmark Suite

For my master thesis [13], we studied various approaches of optimizing GPU applications for higher

performance including algorithmic mappings, data structures and layouts and memory access pat-

terns (e.g. DRAM coalescing and GPU’s hybrid memory spaces). Extending this work, we devel-

oped Rodinia 1 to address the issues of benchmarking heterogeneous systems including the CPU

and the GPU. Several multithreaded benchmark suites for multicore CPUs, including SPLASH-

2 [82], Parsec [9], and SPEC OMP [71], are available. Rodinia was developed to address the needs

of benchmarking heterogeneous systems, particularly those including a GPU.

To choose applications for Rodinia, the Berkeley Dwarf taxonomy [2] was initially used as a

guideline so that we do not miss any important parallel compute patterns. Table 3.1 illustrates some

Rodinia applications used in this study and their corresponding domains and Dwarves. Rodinia is

released open-source and maintained online at http://lava.cs.virginia.edu/wiki/rodinia.

The Rodinia benchmarks are currently implemented in OpenMP, CUDA and OpenCL [64].

OpenCL and CUDA use very similar sets of abstractions, such that CUDA is sufficient for the

1Rodinia is a supercontinent that existed between 1.1 billion and 750 million years ago. It was a supercontinent
which combined all of Earth’s continents today, so we use Rodinia to describe the concept of a benchmark suite for
heterogeneous processor organizations.
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characterization and diversity analysis presented in this dissertation. We expect that our reported

results will transfer directly to the OpenCL ports when they are complete. Rodinia has the following

important features:

• Rodinia is the first benchmark suite in academia for heterogeneous computing including im-

plementations for both the CPU and the GPU.

• Rodinia includes applications from emerging domains such as bioinformatics, data mining,

and image processing, as well as the accelerator implementations of traditional algorithms

(LU decomposition and graph traversal).

• Rodinia implementations take advantage of non-traditional memory hierarchies, such as

scratchpad and texture units, for general purpose computation. Cell and ClearSpeed are two

examples in a trend to use other types of memories as alternatives to hardware-managed

cache. This trend in turn requires benchmark development to keep up with such an evolution.

• Rodinia provides multiple versions of some applications, with successive layers of optimiza-

tion, allowing designers to evaluate the impact of multiple different implementations on their

architecture or compiler designs. This is important to evaluate how architectures support

different programming styles and efforts.

• Rodinia’s applications currently adopt an “offloading” model which assumes that accelerators

use a memory space disjoint from main memory.

• We applied both algorithmic optimizations (e.g. ghost-zone technique and persist thread

block) hardware-level optimizations (e.g. using GPU shared, texture and constant memories)

for Rodinia. This has been well documented in our JPDC and IISWC works [14, 15].

• We also did a study by porting three Rodinia applications on FPGA [16], and discuss how

efficiently a set of important compute operations execute on a GPU compared to an FPGA.

Parboil [75] and SHOC [20] are two other efforts to benchmark GPUs. However, most of the

Parboil and SHOC workloads are simple kernels and no diversity analysis for their workloads is
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provided. Goswami et al. [22] compared NVIDIA CUDA SDK, Parboil and Rodinia with various

GPGPU workload characteristics using a clustering analysis similar to Chapter 3, Section 3.2, and

concluded Rodinia is the most diverse among three suites.

2.2.1 Workloads

The Rodinia benchmark suite currently includes the following benchmarks. Among these bench-

marks, HW, LUD, MUM and CFD and the incremental versions for several benchmarks were

introduced as an extension to Rodinia in our IISWC’10 [17] work, after its initial release in

IISWC’09 [14] (part of my master work). Another major extension is the inclusion of the Ro-

dinia OpenCL versions. Note that I only developed SRAD, HS, BP, NW and KM. The rest were

contributed by others. We briefly describe each application we used in the experiments of this

study:

Leukocyte Tracking (LC) detects and tracks rolling leukocytes (white blood cells) in video

microscopy of blood vessels [11]. In the application, cells are detected in the first video frame and

then tracked through subsequent frames. The major processes include computing for each pixel

the maximal Gradient Inverse Coefficient of Variation (GICOV) score across a range of possible

ellipses and computing, in the area surrounding each cell, a Motion Gradient Vector Flow (MGVF)

matrix.

Speckle Reducing Anisotropic Diffusion (SRAD) is a diffusion algorithm based on partial

differential equations and used for removing the speckles in an image without sacrificing important

image features. SRAD is widely used in ultrasonic and radar imaging applications. The inputs to

the program are ultrasound images and the value of each point in the computation domain depends

on its four neighbors.

HotSpot (HS) is a thermal simulation tool [39] used for estimating processor temperature based

on an architectural floor plan and simulated power measurements. Our benchmark includes the

2D transient thermal simulation kernel of HotSpot, which iteratively solves a series of differential

equations for block temperatures. The inputs to the program are power and initial temperatures.

Each output cell in the grid represents the average temperature value of the corresponding area of
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the chip.

Back Propagation (BP) is a machine-learning algorithm that trains the weights of connecting

nodes on a layered neural network. The application is comprised of two phases: the Forward Phase,

in which the activations are propagated from the input to the output layer, and the Backward Phase,

in which the error between the observed and requested values in the output layer is propagated

backwards to adjust the weights and bias values. Our parallelized versions are based on a CMU

implementation [21].

Needleman-Wunsch (NW) is a global optimization method for DNA sequence alignment. The

potential pairs of sequences are organized in a 2-D matrix. The algorithm fills the matrix with

scores, which represent the value of the maximum weighted path ending at that cell. A trace-back

process is used to search the optimal alignment. A parallel Needleman-Wunsch algorithm processes

the score matrix in diagonal strips from top-left to bottom-right.

K-means (KM) is a clustering algorithm used extensively in data mining. This identifies re-

lated points by associating each data point with its nearest cluster, computing new cluster cen-

troids, and iterating until convergence. Our OpenMP implementation is based on the Northwestern

MineBench [67] implementation.

Stream Cluster (SC) solves the online clustering problem. For a stream of input points, it finds

a pre-determined number of medians so that each point is assigned to its nearest center [9]. The

quality of the clustering is measured by the sum of squared distances (SSQ) metric. The original

code is from the Parsec Benchmark suite developed by Princeton University [9]. We ported the

Parsec implementation to CUDA and OpenMP.

Breadth-First Search (BFS) traverses all the connected components in a graph. Large graphs

involving millions of vertices are common in scientific and engineering applications. The CUDA

version of BFS was contributed by IIIT [30].

LU Decomposition (LUD): LU Decomposition is an algorithm to calculate the solutions of a

set of linear equations. The LUD kernel decomposes a matrix as the product of a lower triangu-

lar matrix and an upper triangular matrix. This application has many row-wise and column-wise

interdependencies and requires significant optimization to achieve good parallel performance.
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Heartwall Tracking (HW): The Heart Wall [78] application tracks the changing shape of

the walls of a mouse heart over a sequence of 104 ultrasound images, each with a resolution of

609×590 pixels. In its initial stage, the program performs several image processing passes—edge

detection, SRAD despeckling (part of Rodinia), morphological transformation, and dilation—on

the first image in the sequence in order to detect partial shapes of inner and outer heart walls. To

reconstruct approximated full shapes of heart walls for tracking purposes, the application gener-

ates ellipses that are superimposed over the image and sampled to mark points on the heart walls.

In its final stage, the program tracks the changing shapes of the two heart walls by detecting the

movement of certain sample points throughout the sequence of images.

Computational Fluid Dynamics (CFD): The CFD solver is an unstructured-grid, finite-

volume solver for the three-dimensional Euler equations for compressible flow. Effective GPU

memory bandwidth is improved by reducing total global memory accesses and overlapping redun-

dant computation, as well as by using an appropriate numbering scheme and data layout. The CFD

solver is released with two versions: one with precomputed fluxes, and the other with redundant

flux computations. CFD is an implementation of the work by Corrigan et al. [19].

MUMmerGPU (MUMmer): MUMmerGPU, developed by Schatz et al. [68], is an high-

throughput, parallel, pairwise, local-sequence alignment program. It uses the GPU to simulta-

neously align multiple query sequences against a single reference sequence stored as a suffix tree

encoded with 2-D textures. The tree of the reference sequence is constructed on the CPU using

Ukkonen’s Algorithm [80] and transferred to the GPU along with the query sequences. The query

sequences are then transfered to the GPU, and are aligned with the tree on the GPU.



Chapter 3

A Characterization of Rodinia

In this chapter, we characterize the Rodinia benchmark suite on both real hardware and a simulator

to better understand its program mix. Rodinia was developed to address the issues of benchmarking

heterogeneous systems, particularly those including a GPU. There is growing use of the Rodinia

workloads (e.g. 223 citations for the JPDC work [15], 74 citations for the SASP work [16] and 139

citations for the IISWC work [14]) , but there are some important questions yet to be answered –for

instance, how much the Rodinia workloads designed for heterogeneous platforms differ from those

of other suites designed for multicore CPUs, how well the chosen applications span the workload

space, and how well traditional, multithreaded CPU workloads can map onto GPU platforms.

To address these concerns, this chapter makes the following contributions:

• We conduct a detailed characterization of the Rodinia GPU workloads to aid researchers in

understanding the characteristics of Rodinia.

• We evaluate the Rodinia benchmarks on an NVIDIA GTX480, which is based on the Fermi

architecture with traditional L1 and L2 caches.

• We perform an application space study, comparing the multithreaded CPU implementations

of Rodinia with those of Parsec, and evaluate the extent to which the program selections of

the two suites overlap.

21



Chapter 3. A Characterization of Rodinia 22

Table 3.1: Rodinia applications and kernels (‘*’ denotes kernel).
Application Dwarf Domain Problem Sizes
Kmeans Dense Linear Algebra Data Mining 204800 data points, 34 features
Needleman-Wunsch (NW) Dynamic Programming Bioinformatics 2048×2048 data points
HotSpot* (HS) Structured Grid Physics Simulation 500×500 data points
Back Propagation* (BP) Unstructured Grid Pattern Recognition 65536 input nodes
SRAD* Structured Grid Image Processing 512×512 data points
Leukocyte Tracking (LC) Structured Grid Medical Imaging 219×640 pixels/frame
Breadth-First Search* (BFS) Graph Traversal Graph Algorithms 1000000 nodes
Stream Cluster* (SC) Dense Linear Algebra Data Mining 65536 points, 256 dimensions
MUMmer (MUM) Graph Traversal Bioinformatics 50000 25-character queries
CFD Solver (CFD) Unstructured Grid Fluid Dynamics 97k elements
LU Decomposition* (LUD) Dense Linear Algebra Linear Algebra 256×256 data points
Heart Wall Tracking (HW) Structured Grid Medical Imaging 609×590 pixels/frame

• We present analysis and discussion of important, open research topics, including the needs

for a general application space study of multithreaded workloads and for new parallel perfor-

mance metrics, and we discuss the challenges that make porting existing suites difficult.

The work of this chapter has been published in IISWC 2010 [17]. Some other characterizations

and diversity analysis of Rodinia (e.g. parallel speedup, execution time break down, MICA diver-

sity [36] and power consumption) are documented in our IISWC 2009 paper (part of my master

work) [14].

Table 3.2: GPGPU-sim Configurations.
Parameter Value Parameter Value
Clock Frequency 2 GHz No. of CTAs/Core 8
No. of SMs 28 Number of Registers/Core 16384
Warp Size 32 Shared Memory/Core 32 kB
SIMD pipeline width 32 Shared Memory Bank Conflict True
No. of Threads/Core 1024 No. of Memory Channels 8

3.1 Characterization of Rodinia

In this section, we characterize Rodinia’s applications in terms of instructions per cycle (IPC),

memory instruction mix, and warp divergence. Our analysis shows that the Rodinia applications

demonstrate good diversity, and the addition of new benchmarks enrich the application coverage

of the previous Rodinia release [14]. We also use Rodinia to benchmark the NVIDIA GeForce

GTX480 GPU (Fermi) targeting each of L1 and shared memory as preferred configurations. Ta-

ble 3.1 illustrates the Rodinia applications and their input sizes we use in this study.
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Figure 3.1: IPCs are measured over 8-shader and 28-shader configurations [17].

3.1.1 Experiment Setup

To measure program characteristics and architectural behaviors of the Rodinia GPU benchmarks,

we use GPGPU-Sim [4] from the University of British Columbia. GPGPU-Sim provides a detailed

simulation model of a contemporary GPU capable of running CUDA and OpenCL workloads. Ta-

ble 3.2 shows the parameters we used to configure the simulator. Our GPGPU-Sim simulations

did not use an L2 cache. Table 3.1 shows the input sizes of the Rodinia applications we used for

simulations. To measure Rodinia on real hardware, we use an NVIDIA GeForce GTX480 with 15

streaming multiprocessors (SMs) with a total of 480 1.4 GHz streaming processors (SPs), and a

768 kB L2. Each SM has a 64 kB, configurable, on-chip memory that can be configured as 48 kB

shared + 16 kB L1 or as 16 kB shared + 48 kB L1. We use NVIDIA CUDA 2.2 for the GPGPU-Sim

simulations; for the GTX 480 experiments, we use CUDA version 3.0.
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Figure 3.2: Memory operation breakdown in terms of shared, texture, constant, parameter, and local
or global memory instructions [17]. “Param” memory refers to parameters passed through the GPU
kernel call, which we always treat as cache hits [4].

3.1.2 GPU Benchmark Results

Figure 3.1 shows the IPCs of each of the Rodinia benchmarks measured with 28-shader—the default

configuration provided by the GPGPU-Sim package [4] with a SIMD width of 32—and 8-shader

configurations. The IPCs with the 28-shader configuration range from less than 100 in MUM-

mer and Needleman-Wunsch) to more than 700 in SRAD, HotSpot, and Leukocyte. The highest

IPCs are usually due to massive parallelism, better usage of memory locality, and good algorithmic

optimization [11,14,58,78]. Low IPC can be attributed to any of myriad faults: there is limited par-

allelism per iteration in Needleman-Wunsch due to the dependencies of processing data elements in

a diagonal strip manner [15]; the overhead of the GPU’s global memory accesses dominates some

applications (e.g. CFD and Breadth-First Search); and other applications present many divergent

branches.

Many Rodinia benchmarks take advantage of the GPU’s specialized memory spaces by local-

izing data access patterns and inter-thread communication within thread blocks to take advantage

of the SM’s per-block shared memory. For read-only data structures, binding to cached constant or
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Figure 3.3: Warp occupancies show the numbers of active threads in an issued warp over the entire
runtime of the benchmark [4] [17].

texture memory to reap the benefits of caching can provide significant performance improvements.

Figure 3.2 shows a breakdown of different types of memory accesses. Applications such as Back

Propagation, HotSpot, Needleman-Wunsch and StreamCluster make extensive use of shared mem-

ory. The performances of Kmeans, Leukocyte and MUMmer are improved by taking advantage of

texture memory. Different from Kmeans and Leukocyte, Heartwall uses constant memory to store

large numbers of parameters which cannot be readily fit into shared memory.

Figure 3.3 shows warp occupancies [4]—the average number of active threads over all issued

warps—over the entire runtime of the benchmarks. In a SIMT model [61], the cores will achieve

the best performance when the threads within a SIMT group follow the same execution path. For

example, because it must determine whether or not neighboring nodes have been visited, Breadth-

First Search contains many control flow operations; hence the high number of low occupancy warps.

SRAD does not have much control flow; what of it there is deals with the loading and processing

data elements lying on the boundaries between data blocks. Heartwall must determine the specific

operations to execute on the various regions of the image, but this requires a relatively small portion

of the calculation, and the rest of the computation executes with little control flow.
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For other applications, unfilled warps are not due to branch divergence. Only some of the

threads in Back Propagation are active, due to the parallel reduction; assuming a 16-data-element

sum reduction, the number of active threads during the four iterations are 8, 4, 2 and 1. A similar

situation occurs in Needleman-Wunsch, where, in each thread-block, the number of active threads

is less than 16. MUMmer experiences severe performance loss in particular because more than 60%

of its warps have less than 5 active threads [4].

3.1.3 Incrementally Optimized Versions

One important distinguishing characteristic of Rodinia is its support for multiple versions of in-

dividual benchmarks (incremental versions). Incremental versions are useful tools for architects

and compiler developers because they allow analysis of the impact of hardware and software de-

sign choices on problems that are fundamentally the same but differ in certain specifics. Incremental

versions can be used by programmers and compiler developers as “roadmaps” for similar problems,

to aid them in getting from unoptimized to optimized or to evaluate their own optimizations.

We have released incremental code versions of Leukocyte, LUD, Needleman-Wunsch and SRAD.

Table 3.3 shows sample characteristics of two different versions of SRAD and Leukocyte. We apply

more shared memory optimization on the second version of SRAD, thus increasing the IPC from

404 to 748. Similarly, the performance of Leukocyte version 2 is improved by reducing the per-

centage of long latency global memory accesses through the use of persistent thread blocks. Boyer

et al. provide a detailed study on the optimization of Leukocyte [11].

Table 3.3: Incrementally optimized versions of SRAD and Leukocyte [17].
Benchmarks Statistics

SRAD
Version 1 IPC: 404, BW Utilization: 26%

Shared: 9.7%, Global: 49.3% (Mem. inst. mix)

Version 2 IPC: 748, BW Utilization: 34%
Shared: 28.9%, Global: 51.9%

Leukocyte
Version 1 IPC: 656, BW Utilization: 8%

Const: 54.1%, Tex: 22.7%, Global: 7.7%

Version 2 IPC: 707, BW utilization: 3%
Const: 65.1%, Tex: 34.7%, Global: 0.0%
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Figure 3.4: Normalized kernel execution time of the GPU implementations on a GTX 280 and a
GTX 480 (Fermi) [17]. Two configurations (L1 and shared preferred) are used for the GTX 480
measurements.

3.1.4 Fermi Evaluation

In contrast to the earlier G80 and Tesla products, NVIDIA’s Fermi includes traditional L1 and L2

caches. Each SM has 64 kB of on-chip memory that can be configured as 48 kB of shared memory

and 16 kB of L1 (shared bias), the default configuration) or as 16KB of shared memory and 48

kB of L1 (L1 bias. CUDA provides a new API function, cudaFuncSetCacheConfig(), to select

the desired configuration [27]. A unified L2 cache handles all memory requests for data loads and

stores, as well as all texture fetches.

Figure 3.4 shows the results obtained measuring the performance of the Rodinia CUDA imple-

mentations on an NVIDIA GeForce GTX480 GPU with each memory configuration. We compare

to the results on a GTX280 GPU with 240 1.3 GHz SPs and 1 GB of device memory. All the

measurements are kernel execution times normalized to the GTX280. Except for applications such

as LUD and Leukocyte, the total workload size is larger than the aggregate L1 capacity. The perfor-

mances of MUMmer and BFS, which have large numbers of global memory accesses, improve by

11.6% and 16.7% respectively after switching the configuration from shared bias to L1 bias. Many
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Rodinia applications, including SRAD, Needleman-Wunsch and Leukocyte, which are designed to

utilize shared memory well, expectedly prefer the shared bias setting. Also, some applications

(LU Decomposition and StreamCluster) show very little performance variation between the two

configurations.

3.2 Rodinia and Parsec

In this section, we perform a comparison between Parsec and Rodinia benchmarks and evaluate

their workload coverage. We hope that this comparison may facilitate the improvement of workload

construction for multicore CPU and accelerator performance analysis.

How to perform fair comparisons between accelerator and CPU workloads running on different

architectures is an open research question, and one which we cannot adequately address in this

dissertation. Among the difficulties in heterogeneous, parallel benchmarking are the questions of

1. algorithm choice: How alike are the underlying algorithms of two different implementations?

2. optimization: What does it mean to compare the quantity and quality of optimization across

heterogeneous platforms? 3. effort: If performance is not the sole concern, the next item on the list

is probably cost or programmer effort. How difficult is an application to implement [14–16]?

We use the Rodinia OpenMP implementations to compare with the Parsec benchmarks in this

study. We apply principal component analysis (PCA) to identify distinctions and also to characterize

the workloads in terms of cache behavior, working set, and other metrics.

3.2.1 Comparison of Rodinia and Parsec

Parsec, a benchmark suite jointly developed by Princeton University and Intel, has been gradually

gaining popularity among users of multithreaded workloads. The suite includes some workloads

from emerging application domains and uses some state-of-the-art software techniques. Bienia et

al. [8] compare SPLASH-2 and Parsec to determine the extent of feature overlap, and conclude that

the workloads have significant differences. Many Parsec workloads have larger working sets than

those in SPLASH-2, useful in the face of the scientific trend toward massive data growth. Other
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Table 3.4: Comparison between Parsec and Rodinia.
Features↓ \ Suite→ Parsec Rodinia
Platform CPU CPU and GPU
Programming Model Pthreads, OpenMP, and TBB OpenMP and CUDA
Machine Model Shared Memory Shared Memory and Offloading
Application Domains Scientific, Engineering, Finance, Multimedia Scientific, Engineering, Data Mining
Application Count 3 Kernels and 9 Applications 6 Kernels and 6 Applications
Optimized for. . . Multicore Manycore and Accelerator
Incremental Versions No Yes
Memory Space HW Cache HW and SW Caches
Problem Sizes Small–Large Small–Large
Special SW Techniques SW Pipelining Ghost-zone and Persistent Thread Blocks
Synchronization Barriers, Locks, and Conditions Barriers

Table 3.5: Parsec applications and sim-large input sizes. [7, 8]
Application Application Domain Problem Size Description
Blackscholes Financial Analysis, Algebra 65,536 options Portfolio price calculation
Bodytrack Computer Vision 4 frames, 4,000 particles Computer vision, tracks 3D pose of human body
Canneal Engineering 400,000 elements Synthetic chip design, routing
Dedup Enterprise Storage 184 MB Pipelined compression kernel
Facesim Animation 1 frame, 372,126 tetrahedrons Physics simulation, models a human face
Ferret Similarity Search 256 queries, 34,973 images Pipelined audio, image and video searches
Fluidanimate Animation 5 frames, 300,000 particles Physics simulation, animation of fluids
Freqmine Data Mining 990,000 transactions Data mining application
StreamCluster Data Mining 16,384 points per block, 1 block Kernel to solve the online clustering problem
Swaptions Financial Analysis 64 swaptions, 20,000 simulations Portfolio price calculations with Monte-Carlo
Vips Media Processing 1 image, 26,625,500 pixels Image processing, image transformations
X264 Media Processing 128 frames, 640,360 pixels H.264 video encoder

work compares the communication characteristics of SPLASH-2 and Parsec [81] and examines the

behavior of Parsec on real hardware [7].

Table 3.4 provides a high-level overview of the differing design focuses of Parsec and Rodinia,

while Table 3.5 provides some more specific details on Parsec. In the previous sections, we dis-

cussed several aspects of Rodinia which distinguish it from other benchmark suites; here we provide

some more discussion on the topic, specifically with respect to Parsec.

Parsec provides a rich set of features that support fine-grained parallelism (locks), languages

(TBB, OpenMP, and Pthreads), and large code bases. Rodinia currently focuses only on OpenMP

workloads for the CPU implementations. The use of fine-grained parallelism in Rodinia, even

in CPU implementations, is restricted by our desire to maintain algorithmic congruence with

the CUDA ports given the fact that CUDA supports only barrier synchronization within a thread

block [53] and global synchronization at kernel exit or when using a global synchronization prim-
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itive. In the construction of the Rodinia benchmark suite, we also consider Parsec workloads. We

include StreamCluster in Rodinia, but find that those benchmarks relying on task pipelining, like

Ferret, do not port well unless each stage is also heavily parallelizable.

3.2.2 Methodology

To compare Rodinia and Parsec, we adopt the methodology and metrics of Bienia et al. [8] in their

SPLASH-2 and Parsec comparison, so that the reported results are cross-comparable. The points

of comparison include instruction mix (including ALU, branch, and memory instructions), working

set (cache misses per memory reference), and sharing behavior (the fraction of cache lines shared,

and the number of accesses to shared lines per memory reference). Our experiments use eight cache

sizes, ranging from 128 kB to 16 MB, and measure the sharing and the working set behavior. We

adopt a similar cache structure to that use by Bienia et al. as well, an 8-core processor with a single

cache shared by all cores. The cache is 4-way associative with 64 byte lines. All programs are

compiled with gcc 4.2.1 with OpenMP or Pthreads.

All data is obtained with Pin [55]. Pin is a dynamic, binary instrumentation tool and provides

an infrastructure for writing program analysis tools, called Pin tools. Instruction mix is obtained

using the mix-mt tool provided with the Pin package. A Pin tool, based on the cache tool in Pin, is

developed to collect cache behavior characteristics.

3.2.3 Principal Component Analysis and Measuring Similarity

Principal components analysis (PCA) is a statistical, data analysis technique that reduces a data

set’s dimensionality and removes correlation from the data set while controlling the amount of

information lost. PCA computes n new variables, called principal components, which are linear

combinations of n original variables, such that all principal components are uncorrelated. The

first of the resulting orthogonal principal components exhibits the largest variance, followed by the

second, followed by the third, and so on [36]. After performing PCA, we cluster to find equivalence

classes of programs with similar characteristics. PCA has been widely applied for benchmark

comparison [8, 36, 42, 66] in similar contexts. However, the issue of how to perform more fair and
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accurate evaluation and comparison of benchmarks is an open one and beyond the scope of this

dissertation.

To measure the similarity among benchmarks, we use classical hierarchical clustering analy-

sis. Similar approaches have been used in other recent performance analysis work. Clusters are

formed in such a way that data objects in the same cluster are very similar and data objects in dif-

ferent clusters are very distinct. We use the MATLAB [79] statistics tool box to process the data

for the collected characteristic values for all the benchmarks. The algorithm involves finding the

similarity or dissimilarity between every pair of data objects in the data set using distance functions

and grouping the objects into a binary, hierarchical cluster tree. Dendrograms are used for result

illustration.

3.3 Analysis

Here we present the results of our principal component analysis.

3.3.1 Hierarchical Clustering

Figure 3.5 shows the overlap of the two program collections. In the figure, the magnitude of the

link between any two nodes (or clusters of nodes) qualtifies the measure of dissimilarity between

those nodes; thus, Leukocyte and Bodytrack are fairly similar, while Heartwall differs significantly

from all other compared benchmarks; and MUMmer and Swaptions, while spatially close in the

figure, are more dissimilar than HotSpot and Facesim. From this dendrogram, it is evident that

the two benchmark suites cover similar application spaces, with most clusters containing both Ro-

dinia and Parsec applications. Also note that the new applications added to Rodinia, namely CFD,

LUD, MUMmer, and Heartwall, enrich the original application set, with the latter two significantly

different from others.

We also perform an analysis of some subsets of our characteristics. Figures 3.6, 3.7 and 3.8

show the instruction mix, working set and sharing behaviors of the programs as is similarly shown

in the Parsec and SPASH-2 comparison [8]. In Figure 3.6, Parsec and Rodinia demonstrate disparate
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Figure 3.5: A dendrogram showing the similarity between the Parsec (P) and Rodinia (R) work-
loads [17]. The x axis represents the linkage distance in a PCA space, which has no obvious physical
analog.

behavior, with Breadth-First Search, Back Propagation, and HotSpot from Rodinia, and Raytrace,

Ferret, Bodytrack, and StreamCluster from Parsec tending to populate different areas in the space.

In the working set plot of Figure 3.7, there are several Parsec and Rodinia benchmarks that are clear

outliers from the main cluster; MUMmer is a significant outlier, which correlates with its high miss

rates. The miss rates (i.e. cache misses per memory reference) of all the benchmarks under a 4 Mb

cache configuration are shown in Figure 3.9. Figure 3.8 shows similar behavior—data sharing, now,

rather than working set size—with Heartwall significantly different from the rest. Looking back

at Figure 3.5, Heartwall and MUMmer are the most disparate benchmarks in the suite; something

which is backed up by this series of figures.

As shown in these figures, for the characteristics we evaluated, Rodinia also provides a good

workload mix for multicore CPUs. Additionally, Parsec and Rodinia demonstrate features that

complement with each other, suggesting that researchers should consider both of them, possibly as

well as other benchmark suites, to ensure a reasonable application coverage for their work.

With the help of the clustering tree, users can choose appropriate benchmarks to meet their

needs – selecting the N most diverse benchmarks for any N. One benchmark can be chosen from
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each cluster by tracking down the clustering tree. If a cluster consists more than two benchmarks,

the benchmark closest to the center of the cluster is chosen as a representative [66].

−2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5 bfs      

hotspot  

backprop 

cfd      

ferret       

raytrace     

bodytrack    

streamcluster

1st Principal Component

2
n
d
 P

ri
n
c
ip

a
l 
C

o
m

p
o
n
e
n
t

Figure 3.6: The instruction mix plot with two
PCA components for Parsec (·) and Rodinia
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Figure 3.7: The working set plot with two PCA
components for Parsec (·) and Rodinia (+) [17]
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Figure 3.8: The sharing plot with two PCA com-
ponents for Parsec (·) and Rodinia (+) [17]

3.3.2 Clustering Discussion

How well the application space is covered by the two suites?

— Our clustering analysis shows that Parsec and Rodinia cover similar application spaces. This

does not imply that using either or both of them is sufficient for research. Consider the blank regions

in the PCA spaces of Figures 3.6, 3.7, and 3.8; it is unclear whether these regions can be covered by
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Figure 3.9: The miss rates of Rodinia and Parsec [8] benchmarks under a 4 Mb cache configura-
tion [17].

other real-world workloads or benchmark suites. This implies that a thorough examination requires

a comprehensive evaluation and comparison of all the current multithreaded benchmark suites,

including SPLASH-2 and various domain-specific workloads, to establish a single set of workloads

with sufficient coverage and little redundancy. Previous work performs such studies but only on

single-threaded benchmarks [42,66], while this is an open problem in heterogeneous environments.

In addition, how to determine whether the benchmarks in a benchmark suite are sufficiently diverse

remains an open research question.

The metrics evaluated in this work are important for multithreaded program behavior [8]. On

the other hand, other potentially important metrics may indicate other crucial differences between

benchmarks. It is an area of ongoing research to develop a set of metrics which are able to capture

most behaviors of multithreaded workloads. Host et al. [36] propose a set of microarchitecture-

independent workload characteristics to profile single-threaded applications, and which are also

useful for performance prediction [38]. A set of metrics for multithreaded workloads are needed.
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Can the Parsec workloads be effectively mapped to heterogeneous platforms?

— Our clustering results indicate that, except for a few outliers, the heterogeneous workloads

we developed for Rodinia are not fundamentally different from those of Parsec, developed for

multicore CPUs. This, however, does not imply that since all the Rodinia benchmarks map well to

the GPU platform, the same will be true of the Parsec benchmarks. We have found many challenges

in the task of porting traditional, multithreaded, CPU workloads onto heterogeneous platforms.

Some issues which make this less than straightforward:

• Library Modules: Application development depends upon libraries and reuse for productiv-

ity and maintainability. This poses a potentially large challenge in porting CPU applications

to accelerators. Though it is possible to implement each library module on the GPU, for ex-

ample, the cost of maintaining modularity is the possibly resultant overhead of GPU kernel

call invocation and memory transfer between the CPU and the GPU. To achieve better per-

formance for GPU applications, optimization sometimes requires cross-function algorithmic

reorganization, or the division of a logical function into multiple kernels.

• Synchronization: Many Parsec applications heavily rely on fine-grained synchronization

primitives, such as mutexes [9]. For some applications, like StreamCluster, it is relatively

easy to reorganize for the GPU, while for others, it is non-trivial; especially in those ap-

plications using the software pipelining model (including Dedup and Ferret), which require

significant algorithmic reorganization. The difficulty in supporting these primitives is directly

attributable to the GPU’s limited synchronization capabilities. On the GPU, synchronization

within a thread block is provided, and global synchronization is achieved via a barrier. The

latest CUDA versions also provide a primitive for an on-chip, global memory fence which,

unfortunately, requires restructuring of applications such that thread blocks are persistent dur-

ing the entire program execution. Locks across thread blocks are non-trivial to implement,

and performance benefits are not guaranteed.

Are existing application classification taxonomies sufficient to differentiate application char-

acteristics?
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Several approaches have been proposed for classifying applications based on their memory

access and execution patterns, including the Berkeley Dwarves [2] and Intel’s Recognition, Mining

and Synthesis (RMS) [51]. Rodinia and Parsec were designed with the Dwarves and RMS as

guidelines, respectively. Although these taxonomies are defined at a high levels of abstraction to

provide useful guiding principals and to allow users to effectively reason about program behavior,

our work, often with multiple instances of a single Dwarf, suggests that the Dwarf taxonomy alone

may not be sufficient to ensure adequate diversity, and that some important behaviors may not be

captured by the Dwarves.

As shown in Figure 3.5, for Structured Grid applications, stencil-type workloads, such as SRAD

and Fluidanimate, are quite similar. However, applications such as HotSpot, Leukocyte, and Heart-

wall are located in different clusters, with Heartwall significantly different from the others. Back

Propagation and CFD are both from the Unstructured Grid Dwarf and show significant differences.

The Graph Traversal applications, MUMmer and Breadth-First Search, are also very dissimilar.

Even applications from the same application domain are quite different; for example, the two

fluid dynamics applications, Parsec’s Fluidanimate and Rodinia’s CFD differ more than Fluidan-

imate and Facesim, the latter members of different Dwarves. Also, two data mining benchmarks,

Kmeans and StreamCluster, both of which rely on distance-based clustering, lie far apart in the

binary clustering tree.

3.3.3 Instruction and Data Footprints

Figures 3.10 and 3.11 illustrate the instruction and data footprints of Parsec and Rodinia. The figures

show the number of 64-byte instruction blocks and 4 kB data blocks touched during the entire

program execution [42]. Figure 3.11 shows that both Parsec and Rodinia use large working sets,

but, with the exception of MUMmer, Parsec applications tend to have larger instruction footprints,

or code sizes, than Rodinia workloads.

There is a related, open question in workload characterization, that of the difference between

“big” applications and “small” ones, or, in other words, between applications and kernels. Better

understanding this issue requires finding the “building blocks” of the applications and a method
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to correlate applications with with constituent kernels. Carrington et al. [12] did this in the HPC

domain, but some more sophisticated approaches are needed for higher prediction accuracy.

Figure 3.10: The numbers of 64-byte instruction blocks touched during the program execution [17].

Figure 3.11: The number of 4 kB data blocks touched during the program execution [17].
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3.4 Other Benchmark Suites

The Parsec benchmark suite [9] includes emerging applications from finance, multimedia, and data

mining. Parsec benchmarks utilize relatively large working sets and are developed with state-of-art

software techniques such as software pipelining. Some earlier benchmark suites include SPLASH-

2 [82] and SPEC OMP2001 [71], consisting of general-purpose workloads focusing on science,

engineering, and graphics. BioParallel [40], ALPBench [50], and MineBench [67] target specific

application domains. Parboil [75] and SHOC [20] are two efforts to benchmark GPUs, but the

former does not provide any diversity analysis and the latter targets systems with multiple GPU

nodes. Bakhoda et al. developed GPGPU-Sim [4] with a set of GPU workloads to analyze various

CUDA programs. Rodinia is distinct from these works primarily in that it is designed to provide

implementations with diverse parallel execution patterns, optimizations, and software mappings, in

addition to its ability to compare platforms, a crucial capability for tackling the design challenges

of future parallel and heterogeneous systems.

3.5 Conclusions and Future Work

In this chapter, we performed a detailed characterization of Rodinia, designed to let researchers

better understand this collection of benchmarks. Our experimental results show that Rodinia appli-

cations demonstrate a good mixture of diversity in application characteristics. We evaluate Rodinia

on an NVIDIA’s GTX 480 GPU with different L1 cache/shared memory combinations.

We also compared Rodinia with Parsec, and some important differences we observe show the

importance of measuring how well existing suites span the design space and the importance of using

applications from different suites together.

Directions for future work include performing an application-space coverage study of existing

multithreaded workloads, and correlating program characteristics across the CPU and the GPU as

well as across big applications and small kernels.
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Load Balancing

One trend of computer architecture development is integrating both CPUs and various accelerators

to explore heterogeneity. Some representative examples of these platforms include systems with

multicore CPUs + discrete GPUs (e.g. from NVIDIA and AMD), STI Cell processors [43], and

AMD Fusion APUs [1] that integrate both the CPU and the GPU on a single die. On the other hand,

these heterogeneous systems can be enterprise servers or machine clusters consisting of various

processors, probably with diverse compute capabilities or from different hardware generations. Re-

cently, there has been growing research to explore how to efficiently utilize the available compute

resources in a heterogeneous system. Important research issues include mapping applications to

their most appropriate devices and determining desirable balanced workload ratios.

This chapter studies an approach to execute parallel compute kernels simultaneously on the

CPU and the GPU and aims to achieve efficient work spreading and load balancing across platforms.

There are several prior research works trying to tackle a similar issue. As discussed in Section1.3,

Intel’s Merge framework [52] relies on programmers to specify problem mappings manually, which

is not adaptable to changes of underlying hardware and problem size [56]. Qilin [56] proposes an

adaptive mapping and uses training runs to decide the amount of work distributed to the CPU and

the GPU. However, it will not perform well when the available resource for an application changes

at runtime. Hong et al. [34] propose MapCG, a MapReduce framework to support source-code

level portability between the CPU and the GPU. Twin Peaks [28] makes the applications originally

39
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developed for the GPU run efficiently on the CPU. However, these two studies target single devices

without any support for workload partitioning across different processing units.

To address these concerns, we explore an approach of hierarchical domain partitioning by di-

viding the entire computation domain into smaller chunks and efficiently scheduling them across

platforms in a on-demand way. We use task-queues to keep track of the progress of chunks.

This chapter makes the following contributions:

• We discuss our design considerations, advantages of our load balancing model and its imple-

mentation details.

• We demonstrate performance benefits of CPU-GPU load balancing by presenting four diverse

applications as case studies.

• We further discuss the impact of choosing different chunk sizes and optimization techniques

that improve performance.

4.1 Work Spreading and Balancing Framework

4.1.1 Load Balancing on Heterogeneous Platforms

To distribute workloads across different devices is a challenge. It is further complicated by the vastly

different architectural designs of the CPU and the GPU. In our approach, we treat different compute

devices as having different consumption rates, C, of computation. For instance, the rate for the CPU

is Ccpu while the rate for the GPU is Cgpu. We define W as the total amount of computation. We

also define p as the percentage of computation distributed on the CPU and (1− p) is the percentage

of computation distributed on the GPU. Therefore, the execution time of a program on a 1 CPU +

1 GPU system with this simple model will be:

Tcpu =
W

Ccpu
∗ p (4.1)
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Tgpu =
W

Cgpu
∗ (1− p) (4.2)

T = MAX(Tcpu,Tgpu) (4.3)

Then, the goal of solving the problem becomes minimizing the overall execution time T . A

similar analysis can also be found in the Qilin work [56]. The minimum T will be achieved at the

cross point of the curve Tcpu and Tgpu, and thus theoretically the balanced ratio of the CPU to the

GPU is determined by the following equation.

Wcpu : Wgpu =Ccpu : Cgpu (4.4)

Hong et al. [34] argue that simultaneous CPU-GPU execution might not be beneficial when the

GPU is significantly faster than the CPU or vice versa. However, Lee et al. [48] in their ISCA 2010

paper shows that when some applications are heavily optimized for both the CPU and the GPU, the

CPU can achieve a similar or even exceed the performance of the GPU.

Our solution aims to determine workload distributions dynamically and respond to run-time

resource changes. We focus on the parallel phases in an application and the following items sum-

marize our major design:

• We implement a task-queue based scheduler which dispatches parallel works simultaneously

onto the CPU and the GPU in an on-demand way.

• We divide the computation domain into data chunks, allowing the scheduler to detect com-

putation rates of different devices at runtime and reach a desirable balanced workload ratio.

• The division of computation domain is similar to OpenCL/CUDA’s hierarchical domain par-

titioning, suggesting that existing applications can map to our load balancing model in a

straightforward manner.
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4.1.2 A Hierarchical Partitioned Domain

Both OpenCL [64] and NVIDIA’s CUDA [27] adopt a domain-based hierarchical approach to ab-

stract a computation problem; the domain is conceptually described by 2D/3D matrices (i.e. grids

and blocks) with each data element indexable with thread ids. We use a similar approach to partition

the computation domain by introducing another layer of abstraction – chunk – which is like a grid

in CUDA and OpenCL. Therefore, the domain contains multiple chunks, i.e. grids of blocks. Fig-

ure 4.1 shows a simple example in which a 2-D matrix is divided into 3×3 grids. Each grid is further

divided into 4×4 blocks and each block consists of 8×8 work items. In addition, chunks can be

multidimensional and their partitioning can be flexibly specified by programmers. The information

of partitioning will be passed into the scheduler when users launch a compute kernel. This can be

done in a similar way to CUDA and OpenCL (e.g. <<<ChunkDim,GridDim,BlockDim >>>).

Each chunk is the basic unit for scheduling and processed by one kernel call dispatched either on

the CPU or the GPU. New chunks will be allocated to CPU or GPU, whenever any compute resource

is available for computation. Also, the domain-based model is conceptually consistent with CUDA

and OpenCL, and the extra effort spent on problem mapping is trivial, though programmers are still

required to develop a compute kernel as usual.

The CUDASA programming environment [74] proposed a similar approach by partitioning

the computation domain into four layers. Their work mainly uses it for purpose of mapping a

problem for multi-GPU systems, and a single GPU device is usually responsible for executing a

single CUDA grid. This work observes that such partitioning can also be used for CPU-GPU load

balancing.

4.1.3 Chunk Scheduling

Our scheduler handles work distributions to the CPU and the GPU. When a program starts compu-

tation, it will invoke the scheduler which distributes chunks based on the partitioning information

provided by programmers. The scheduler can spawn CPU worker threads and schedule GPU works

by filling the task queues (e.g. OpenCL command queues). During program execution, the sched-
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Figure 4.1: In this example, the whole application domain is partitioned into 3×3 grids (i.e.
chunks). And each grid is further divided into 4×4 blocks and each block has 8×8 work items.
Each grid, or chunk is the basic unit for scheduling.

uler checks the status of worker threads and in turn fill new jobs and remove the completed jobs.

To implement the CPU threads, we use pthreads for the Linux environment.

Figure 4.2 shows a high-level view illustrating the concept of the scheduling framework. The

master thread launches one worker thread for each CPU core. Each thread maintains a task queue

of uncompleted jobs. The master thread distributes chunks to CPU threads by pushing chunk ids

onto CPU queues. Each CPU thread pops a chunk id from the front of a task queue and subse-

quently launch computation for that particular chunk. Distribution of chunks to the GPU is im-

plemented using asynchronous kernel and memory transfer calls offered by OpenCL/CUDA to

minimize scheduling overhead. Determining if a chunk finishes processing on the GPU is achieved

by polling the GPU command queue. The event is used to track the status of a kernel call. We

use OpenCL events to ensure producer-consumer relationships among OpenCL calls, e.g. between

compute kernels and memory transfers.

One potential advantage of our approach is that if an application shares compute resources

with other applications in a heterogeneous system, our approach can automatically adjust the load

balancing ratio based on the feedback of how fast each device processes their chunks. Furthermore,

we also provide parameters (e.g. gpu fillsize and cpu fillsize) to interact with the scheduler, allowing

manual changes of load balancing ratios for the CPU and the GPU. Currently the scheduling policy

is merely based on processing speeds of different devices, i.e. the emptiness of the task queues.
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Other scheduling techniques optimized for other metrics (e.g. power and energy efficiency) can be

easily integrated in future.

Figure 4.2: Depending computation rates of different devices, the scheduler dispatches data chunks
dynamically on each device

4.1.4 Data Affinity

Systems with CPUs and discrete GPUs require data to be copied from the system memory to the

GPU device memory for subsequent GPU kernel execution. Even in today’s AMD Fusion APU [1]

implementation in which the CPU and the GPU share the same physical memory, memory transfers

are required between the CPU to the GPU memory space. For CPU-GPU load balancing, ideally

only necessary data will be copied across the CPU and the GPU. Therefore, the data chunks with

close data affinity and dependency relationship are desirable to schedule together on the same de-

vice. For example, for many stencil applications (e.g. SRAD), the calculation of a data element

depends on its neighboring elements; this implies that the calculation of a chunk also depends on

its neighboring chunks. Therefore, efficient domain partitioning for SRAD across the CPU and the

GPU requires that we dispatch CPU chunks from one end of the domain and GPU chunks from

the other end, until the two ends consume all the data and meet at the boundary. In this case, only

data chunks located at the boundary need to be exchanged between two devices when data com-

munications are needed. Otherwise, unnecessary data communications will occur with randomly
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Table 4.1: Load Balancing Applications.
Application Dwarf Domain Input size
SRAD Structured Grid Image Processing 4096×4096 matrix
K-means Dense Linear Algebra Data Mining 1310720 data points and 16 features
Sepia Structured Grid Image Processing 1024×1024 pixels
Needleman-Wunsch Dynamic Programming Bioinformatics 4096×4096 score matrix

scheduled chunks.

4.2 Methodology

4.2.1 Experiment Setup

Our measurement results are obtained on real hardware. We compare the execution times by run-

ning applications on the CPU and the GPU individually and simultaneously. The experiments use

an NVIDIA GeForce GTX 460 with 1.35 GHz shader clock, 64 kB configurable on-chip cache per

streaming multiprocessr (SM), 768 kB shared L2 cache and 1 GB device memory. The GTX 460

is designed with the Fermi architecture and allows simultaneous kernel execution. Each SM has

16 streaming processors (SPs) for a total of 480 SPs. The 64 kB cache per-SM can be set into two

configurations —48 kB shared memory + 16 kB L1 or 16 kB shared memory + 48 kB L1. The CPU

is a 2.66 GHz Intel Core2 Quad CPU with 3 MB L2 cache.

4.2.2 Applications

We choose several applications with diverse characteristics. Table 4.1 lists the basic information

for each application. SRAD is a structured grid application processing 2-D array structures. The

result of each element is calculated with its four adjacent neighbors. Kmeans presents parallelism

across different rows of data elements. Sepia is a widely-used kernel to modify RGB value to

produce artificially aged images. We choose this compute kernel (used in Qilin [56]) because of its

limited performance benefit from GPU acceleration. Needleman Wunsch is a dynamic programming

algorithm which presents limited data parallelism within each diagonal strip.
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4.3 Application and Experiment Results

4.3.1 Chunking Overhead
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Figure 4.3: Y-axis represents the normalized throughput for CPU-GPU transfer. The baseline is to
transfer the entire 64 MB data in one chunk between the CPU and the GPU. We compare it with the
same amount of data transfers with multiple chunks.

In our framework, computation is partitioned into chunks to process, which means PCI-E trans-

fers of data structures also need to be accomplished by multiple individual chunk transfers. We

measure the overhead caused by such divisions. For this experiment, we developed a microbench-

mark to transfer a contiguous memory region with a size of 64 MB from the CPU to the GPU. We

compare the execution time of using only one OCL clEnqueueWriteBuffer call and that of using

multiple calls to transfer the same amount of 64 MB data (See Figure 4.3). Our experimental result

shows that using more chunks will incur more overhead. Part of the overhead is due to the extra

time spent on launching OCL clEnqueueWriteBuffer calls. The overhead becomes significant when

the number of chunks exceeds 64.
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4.3.2 Kmeans

Kmeans is a clustering algorithm used extensively in data mining. In Kmeans, a data object is

comprised of several parameters, called features. By dividing a set of data objects into k clusters,

Kmeans represents all the data objects by the mean values or centroids of their respective clusters. In

a single-device Rodinia GPU implementation, data objects are grouped into thread blocks, with each

thread associated to one data object. The task of searching the nearest centroid to each data object

is completely independent and can be done in parallel. To extend the k-means GPU implementation

to a chunking implementation, its main data structure saving all the data objects is partitioned into

multiple chunks and further into blocks. Because data parallelism exists across rows, 1-D chunk

dimension is used (chunkDim.x,chunkDim.y) = (NumO f Elements
ChunkSize ,1). Whenever a chunk is scheduled

to run on the GPU, its data objects are first transfered from the CPU to the GPU. The membership

array segment for this chunk, which stores the closest centroid to each data object, will be transfered

back to the CPU for new centroid calculation.
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Figure 4.4: Y-axis represents the normalized execution time. The execution times are obtained
with running the Kmeans distance kernel on the CPU, the GPU, and the CPU and the GPU simul-
taneously. The chunk size is 64 k of data elements.

Figure 4.4 illustrates the results for the Kmeans distance kernel. In this experiment, we use an

input size of 1.25 M (i.e. data points) and a chunk size of 65536. The execution time is normalized
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Table 4.2: Load Balancing Ratio of Kmeans
Core Combination CPU GPU
one CPU core and GPU 35% 65%
two CPU cores and GPU 50% 50%

to that of running Kmeans on one CPU core. Spreading the works of Kmeans on one CPU core and

the GPU improves the performance by 20.8% against the GPU-only execution. Using two CPU

cores and the GPU improve the performance further by 14.4%. As shown in Table 5.3, for the 1

CPU core + GPU configuration, the portions of the workloads mapped to the CPU and GPU are

35% and 65%, respectively. Switching to the 2 CPU cores + GPU configuration, the portions of the

workloads mapped to the CPU and GPU change to 50% and 50%.

4.3.3 SRAD

SRAD is a diffusion method for ultrasonic and radar imaging applications based on partial differen-

tial equations. It is used to remove locally correlated noise, known as speckles, without destroying

important image features [83].

To adapt SRAD to our model, there are two potential ways to partition its computation do-

main. One way is to divide the main data structure into 2D chunks, and chunk dimensions can be

denoted as (ChunkDim.x,ChunkDim.y) = ( DimX
ChunkSize ,

DimY
ChunkSize) with each further divided into a num-

ber of thread blocks. This partitioning is similar to the example shown in Figure 4.1. On the other

hand, we can divide the domain horizontally into strips, and chunk dimensions can be denoted as

(ChunkDim.x,ChunkDim.y) = ( DimX
ChunkSize ,1). It turns out that the second way of partitioning is more

efficient. The reason is that CUDA and OpenCL provide API functions to copy a linear region of

memory with a start pointer and number of bytes to be transferred as inputs. For an arbitrary block

in a 2-D chunk space, transferring data between the CPU and the GPU requires launching multiple

memcpy calls with each call for one row. The overhead of API calls will be significant when data

size is small. On the other hand, the second approach is more efficient because only one memory

copy is needed to supply data for a specific chunk.

Figure 4.5 shows the results for the SRAD kernel with a 4096×4096 input matrix and a chunk

size of 256 k. Spreading the chunks of SRAD on one CPU core and the GPU improves the per-
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Figure 4.5: Y-axis represents the normalized execution time. The execution times are obtained with
running SRAD on the CPU, the GPU, and the CPU and the GPU simultaneously.

Table 4.3: Load Balancing Ratio of SRAD
Core Combination CPU GPU
one CPU core and GPU 12.5% 87.5%
two CPU cores and GPU 26.6% 73.4%

formance by 10% against the GPU-only execution. Using two CPU cores and the GPU improve

the performance further by 5%. As shown in Table 4.3, for the 1 CPU core + GPU configuration,

the portions of workloads mapped to the CPU and the GPU are 12.5% and 87.5%, respectively.

Switching to the 2 CPU cores + GPU configuration, the portions of the workloads mapped to the

CPU and GPU change to 26.6% and 73.4%. Compared to Kmeans, SRAD obtains less performance

benefit from CPU-GPU load balancing because the GPU execution time is much faster than the

CPU execution time.

4.3.4 Sepia

Sepia is widely used in image processing to give photos with colors an old world effect (e.g.

brown/grey, black/white). Each pixel in the image is represented with a 3-element vector for R,

G and B values. Sepia is applied to each pixel independently with value averaging, scaling and ad-

justments. We choose this compute kernel (also used in Qilin [56]), because the performance benefit
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Table 4.4: Load Balancing Ratio of Sepia
Core Combination CPU GPU
one CPU core and GPU 56% 44%
two CPU cores and GPU 62.5% 37.5%

of the GPU acceleration is very limited due to its memory-boundness and branch divergence [56].
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Figure 4.6: Y-axis represents the normalized execution time. The execution times are obtained with
running Sepia on the CPU, the GPU, and the CPU and the GPU simultaneously.

Figure 4.6 shows the results of Sepia with an input size of 1024× 1024 and a 65536 chunk

size. Spreading Sepia on one CPU core and the GPU improves the performance by 38% against the

GPU-only execution. Using two CPU cores and the GPU improve the performance further by 16%.

As shown in Table 4.4, for the 1 CPU core + GPU configuration, the portions of the workloads

mapped to the CPU and GPU are 56% and 44%, respectively. Switching to the 2 CPU cores + GPU

configuration, the portions of the workloads mapped to the CPU and the GPU change to 62.5% and

37.5%.

4.3.5 Needleman Wunsch

Needleman-Wunsch is a global optimization method for DNA sequence alignment. Che et al. [15]

optimized Needleman Wunsch by introducing a block-level parallelism. To make the algorithm

run on the both the CPU and the GPU, we further introduce another chunk-level of parallelism.
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All the chunks within a diagonal strip, each consisting of multiple blocks, can be distributed to

different compute devices. Figure 4.7 shows the access pattern of Needleman Wunsch. In each

iteration, we compute one diagonal strip of chunks. For this application, we use 2-D chunking:

(ChunkDim.x,ChunkDim.y) = ( DimX
ChunkSize ,

DimY
ChunkSize) (See Figure 4.7). The address of each data ele-

ment can be calculated with the following equation.

data_element_address = cols * (chunk_size * dim.y)

+ chunk_size * dim.x + cols * block_size * blk.y

+ block_size * blk.x + cols * ty + tx;

When the scheduler allocates a chunk on the GPU, two strips of data elements, the north and

west borders of a specific chunk will be transferred from the CPU to the GPU.

Figure 4.7: The domain partitioning of Needleman Wunsch. Parallelism exists in a diagonal strip
of chunks.

We run the Needleman Wunsch implementation with a 4096× 4096 input and a 1024× 1024

chunk size. Load balancing for Needleman Wunsch on the CPU and the GPU does not yield any

performance benefit. The best performance is achieved when scheduling a single chunk on the

GPU, which outperforms the two CPU cores and GPU case by 28%.

This application is especially a challenge for the CPU and the GPU load balancing. For instance,

the CPU-GPU implementation involves many small memory transfers between the CPU and the

GPU (e.g. border strips within chunks). The API calls contribute significant overhead. In addition,

parallelism exists across a diagonal strip of chunks and across a diagonal strip of data blocks within

each chunk. Two adjacent diagonal strips must be processed in serial. Even when the input size is
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large enough to get close to the GPU memory capacity, the amount of data that can be processed in

parallel (along the diagonal) is still small; this does not allow each chunk to fully utilize the GPU.

Needleman-Wunsch and Smith Waterman possess very similar access patterns in the first phase

of filling the score matrix. Previous work [56] shows that Smith Waterman demonstrates bad per-

formance when scheduling its works simultaneously on the CPU and the GPU, which agrees with

our result.

4.3.6 Load Balancing Benefit

In this section, we discuss how much performance benefit we can achieve through load balancing

across the CPU and the GPU. We assume that the CPU and GPU take Tcpu and Tgpu to process the

same amount of work. Therefore, Tloadbalancing =
Tcpu×Tgpu
Tcpu+Tgpu

is the time spent on executing workloads

on the CPU and the GPU. If using the GPU processing time as the baseline, the benefit of simulta-

neous CPU and GPU computation against GPU-only computation can be denoted as Tgpu−Tloadbalancing
Tgpu

.

Figure 4.8 shows the performance benefit of load balancing versus the increasing CPU-GPU

speed gap. When the CPU and GPU take equal time to process the same amount of computation.

The performance of load balancing is 50% faster than CPU or GPU-only execution. As the GPU’s

processing speed becomes significantly faster than CPU (e.g. larger than 10×), performance benefit

becomes smaller (e.g. less than 10%), and scheduling and communication overheads might become

significant and further reduce the benefit. Therefore, load balancing will get its most benefit when

CPU and GPU processing speeds for a particular application are close to each other.

Lee et al. [48] point out that many works reported dramatic speedups obtained from GPU ac-

celeration for many applications, however one reason is that the CPU implementations are usually

less optimized leading to unfair comparisons. Their study shows that most GPU applications in

their experiment, if compared against sufficiently optimized CPU codes, only achieve less than 6×

speedup [48]. This suggests that many applications may potentially benefit from CPU-GPU load

balancing.



Chapter 4. Load Balancing 53

Figure 4.8: Peformance benefit of load balancing versus CPU-GPU speedup

4.3.7 The Choice of Chunk Size

One important consideration is that computation rate of the GPU can be influenced by chunk size.

The rate of the CPU, Ccpu, is relatively constant. In another word, CPU execution time will increase

linearly with increasing number of chunks. However, for many GPU applications, the speedup of

the GPU against the CPU with growing input size usually increases first and then starts to reach

an asymptote. This is due to the fact that small inputs can not fully utilize the GPU. Since we use

each GPU kernel call to process one data chunk, the choice of chunk size is an important factor to

performance.

Figure 4.9 shows the Kmeans’ execution time when we change the chunk size from 16k to 64

k, given the same total input. The performance with a chunk size of 16 k is 20% slower than that

with a chunk size of 64 k under a GPU-only configuration. Similarly, the performance with a chunk

size of 16 k is 13% slower than that with a chunk size of 64 k in a 1 CPU + GPU configuration. All

our applications use big enough chunks for the GPU.

Other techniques can be integrated into our framework to deal with the chunk size issue. Boyer

et al. [10] study a scheduling technique to determine appropriate chunk sizes at runtime with profil-
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Figure 4.9: Change of execution time when we change the chunk size from 16 k to 64 k.

ing. Also, the issue will become less a concern on recent GPU implementations, such as NVIDIA’s

Fermi cards. Fermi GPUs support features such as issuing instructions from multiple independent

streams. When memory transfers are not involved, multiple concurrent kernel calls can be issued

from different streams to efficiently utilize GPU’s hardware resources. Therefore, the execution

time of one kernel call computing a big chunk with a size of N×S can be similar to that of N

concurrent kernel calls, each processing a small chunk with a size of S. We plan to extend our work

taking advantage of this feature in future work. When memory transfers are involved, the issue of

using small chunk size can be alleviated by overlapping kernel computations and memory transfers

across multiple different streams, which we will discuss in details in Chapter5.

4.4 Conclusions and Future Work

To take advantage of the available resources in a heterogeneous system, we study an approach to

execute parallel compute kernels simultaneously on the CPU and the GPU and allow efficient data

partitioning and load balancing across devices. Most previous works solve this problem manually

or their approaches are not adaptable to run-time resource changes.

To overcome these limitations, our work is based on hierarchical domain partitioning with

chunking and work queues. We include scheduling strategies to ensure better data locality to save
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costly PCI-E transfers. We use four applications as case studies– Kmeans, SRAD, Sepia and Needle-

man Wunsch and show that various performance gains are achieved due to different CPU-GPU

speed gaps.

Collaborating with AMD, we are integrating our approaches into the AMD OpenCL runtime.

This will potentially allow future OpenCL applications to obtain higher performance from concur-

rent CPU-GPU execution without any need of source-code modifications.

We restrict our study to applications that are data parallel, and computations can be easily par-

titioned across the CPU and the GPU. Future work includes evaluating applications with irregular

parallelism and studying approaches to automatically decide desirable chunk sizes for different ap-

plications. In Chapter 5, we will present a technique of conducting memory remapping for desirable

data layouts of different devices, which helps improve the load balancing performance.
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Dymaxion

The fast growing core counts in today’s multicore and manycore arcthiectures exert significant

pressure on the memory interface. Memory bandwidth and latency are improving at a slower

pace and limit overal system throughput. High application performance relies on effective memory

bandwidth utilization. Today’s GPU programming models (e.g. CUDA and OpenCL) require pro-

grammers to spend considerable effort to optimize memory accesses for high performance. GPU’s

specialized memories (shared, constant, and texture memories) present different access patterns

and require specialized mappings. GPUs’ SIMD architectures require efficient memory coalesc-

ing for inter-thread data locality. Furthermore, for efficient heterogeneous computing, different

architectures and multithreading models may favor different memory mappings, which brings up

performance portability issues across devices.

Dymaxion addresses these concerns with a set of high-level software abstractions, APIs, and

underlying mechanisms to ease programmer burden while improving memory access efficiency in

unoptimized code. Dymaxion currently targets GPUs, but can be targeted to any platform. Dymax-

ion is also helpful for increasing the efficiency at each node for high performance computing, given

the growing use of GPUs. For instance, as with any GPU cluster, an MPI process launched on each

node can make use of GPUs by making CUDA calls. We find that optimizing access patterns yields

substantial performance improvement by effectively hiding memory remapping latency.

This work makes the following contributions:

56
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• We present an API framework and a data index transformation mechanism that allows users to

reorganize the layout of data structures such that they are amenable to localized, contiguous

access by simultaneous GPU threads. In CUDA, this implies that thread accesses can be

coalesced efficiently.

• We show how to hide the overhead of layout remapping during PCI-E transfer, taking advan-

tage of simultaneous CUDA streams. Memory layout transformation is divided into separate

chunks and overlaps with PCI-E memory transfer. We also compare it to a technique which

takes advantage of the zero copy feature on the GPU.

• We evaluate several representative access patterns common in many scientific applications

and use several case studies to present the use of our framework in achieving better coupling

of access patterns and actual memory layouts.

• We present a case study of spreading work simultaneously across the CPU and the GPU,

in which the two platforms prefer different mappings of data layouts and access patterns

respectively. We show that our framework is a clean abstraction and convenient software-

level building block to ensure cross-device data coherency.

An API-based remapping mechanism has the benefit of giving programmers more control and

flexibility over data mapping. Dymaxion allows hints to be provided to the system to influence

memory mapping based on programmers’ knowledge of the algorithms.

Another advantage of an API-based approach is portability across platforms, as an API can be

optimized for different architectures. We develop Dymaxion as an extension to NVIDIA’s CUDA;

however, the same framework can be extended to other GPU or heterogeneous programming mod-

els, such as OpenCL [64]. Four diverse applications from the Rodinia suite are used in our eval-

uation [14]. Using Dymaxion on a GTX 480 GPU, an average of 3.3× speedup is achieved on

compute kernels and a 20% performance improvement is achieved, including the PCI-E transfer,

when compared with their original CUDA implementations. Additionally, the extra programming

effort involved in using Dymaxion is trivial.

The work of this chapter has been published in Supercomputing 2011 [18].
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5.1 Motivation

The impetus for Dymaxion lies in three key observations, discussed here.

5.1.1 CUDA Coalescing

One important performance optimization for GPUs (supported on NVIDIA hardware starting with

the GT200 generation) is the coalescing of global memory accesses generated by streaming multi-

processors (SMs). The SMs schedule and execute threads in lock-step groups of 32 threads called

warps. Global memory accesses within a half-warp will be coalesced into the minimum number

of memory transactions [27]. Figure 5.1 shows a simple example: if the kth thread accesses the kth

word in a segment, a single 64-byte transaction is required. Different scenarios and requirements

for memory coalescing are documented in detail in the NVIDIA technical guides [25, 27].

5.1.2 Memory Locality of Inter-thread Accesses

The following code segment shows two simple examples of CUDA code that loop over the data

elements of a 2-D array and assigns their values to another array. In each iteration, a strip of data

elements is accessed concurrently.

/* The CUDA implementation */

int bx = blockIdx.x; /* thread block ID */

int tx = threadIdx.x; /* thread ID */

int tid = BLOCK_SIZE * bx + tx;

//Example 1: access different rows (row-major)

for (i = 0; i < N; i++) {

des[cols * tid + i] = src[cols * tid + i];

}

//Example 2: access contiguous data elements (column-major)

for (i = 0; i < N; i++) {

des[cols * i + tid] = src[cols * i + tid];

}
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In this implementation, the accesses are parallelized, each thread responsible for processing one

element. One important observation is that if the thread id, tid, is used as the lowest dimension

of the index to access an array, as in array[cols * i + tid] (See Example 2), multiple simulta-

neous threads will access contiguous memory locations. Thus, the memory accesses of the second

loop manifest better inter-thread spatial locality than those of the first. In fact, the need for both

types of accesses comes up in many applications (e.g. matrix multiplication).

Figure 5.1: The memory coalescing concept. If threads access contiguous data elements, multiple
thread accesses can be coalesced. Each element is 4 bytes in this example.
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Figure 5.2: The x-axis represents feature size while the y-axis represents execution time [18]. Exe-
cution time is one iteration of the k-means distance kernel with an input of 64 k data objects. More
features mean more uncoalesced memory accesses.

An example shows how poor locality of concurrent memory accesses leads to poor performance

and scalability of GPU applications. Figure 5.2 shows the performance of two versions of a k-means
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GPU implementation, which we will discuss in Section 5.4.1 in more details. One version assigns

each thread to compute a row of the main data structure, which is row-major. In this version, each

row represents a data element while each column represents a feature; different data elements can

be processed in parallel. This organization results in suboptimal memory coalescing for threads

within a warp. In contrast, the other implementation uses a column-major layout, in which threads

within a warp access adjacent data elements and achieve better inter-thread locality. We vary the

number of features in the main data structure and measure execution times on NVIDIA GeForce

GTX 480 and 285 GPUs.

The column-major organization achieves better performance on both platforms. But when the

number of features surpasses 16, the 480, a more powerful GPU running a row-major based k-

means, actually yields poorer performance than the 285; this application is memory-bound and

benefits from coalescing, which requires a column-major organization so that warps access con-

tiguous data. This example illustrates how much impact memory access patterns play in GPU per-

formance. To solve this issue, Dymaxion enables programmers to match memory access patterns

and data layouts automatically through a simple programming interface that declares the access

pattern in terms of the original data structure. This high-level knowledge then permits transparent

memory layout remapping to optimize bandwidth (assuming that all accesses to the data structure

are mediated by the API).

On the other hand, CPUs and GPUs may prefer different data layouts for certain applications.

This is due to the fact that better cache locality is needed for contiguous memory accesses issued

by individual CPU threads, while an efficient GPU memory transaction is desirable to feed data to

multiple simultaneous SIMD threads. For instance, for the same k-means problem, CPUs, in con-

trast, favor a row-major layout, as we discuss in Section 5.5. Furthermore, in contrast to the CPU,

GPU has a distinct memory hierarchy with specialized memories, each of which prefers a different

mapping between data layout and access pattern. For example, a typical texture unit design adopts

a Morton-curve access pattern. An efficient use of constant memory requires simultaneous thread

accesses from a single warp to touch the same cache lines; therefore, hand-optimizing memory

mappings for different platforms is not only tedious, but also the relevant code may need rewritten
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Table 5.1: Fraction of total execution time devoted to PCI-E transfers [18]
Applications PCI-E Transfer GPU Kernel
K-means 51% 49%
Needleman-Wunsch (NW) 32% 68%
SpMV 77% 23%
Nearest Neighbor (NN) 70% 30%

for good performance and portability across platforms. To resolve these issues, we need a high-level

abstraction to define memory mappings.

5.1.3 Making Data Ready on the GPU During PCI-E transfer

Often GPU applications expend significant time on data transfer between system and GPU device

memory [23,27]. Because PCI-E transfers have less available bandwidth than DRAM accesses, and

also because of the device call overhead associated with each transfer, an efficient implementation

should minimize data transfer, both instances and volume.

Table 5.1 shows the fractions of total execution time dedicated to CPU-GPU memory trans-

fer and GPU kernel execution. PCI-E transfers consume a large fraction of execution time in all

four applications. In order to both leverage and reduce this overhead, we propose that additional

functionality, such as memory remapping, be implemented during PCI-E communication in order

to increase memory locality for subsequent GPU computation. Such functionality can be imple-

mented either in software (the driver), hardware (the DMA mechanism), or both. Ideally, these

operations would be programmable to maximize their generality. Because we do not have access

to proprietary GPU drivers, our prototype Dymaxion implementation takes advantage of CUDA

stream functionality to aid data reorganization. Furthermore, the data structure is also broken into

chunks to hide the latency of memory remapping, described further in the next section.

5.2 Dymaxion Design and Implementation

In this section we describe the design and implementation of Dymaxion.
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5.2.1 CPU-GPU Data Transfer and Remapping

In our framework, programmers start by calling remapping functions on the target data structures.

This launches a series of operations to transfer data between the CPU and the GPU in a remapped

order that yields efficient data access for the GPU compute kernel (see Figure 5.3). The memory

layout transformation brings new overhead, which we attempt to minimize while trading it off for

improvements in GPU data locality. If the reorganization overhead is less than the time required

for PCI-E transfer, most of it can be hidden through pipelining. We found that CPU exhibits lower

bandwidth than the PCI-E transfers, so we decided to take advantage of the high bandwidth and

deep multithreading features of the GPU for layout reorganization.

Figure 5.3: Memory layout reorganization. The entire data structure is broken into small chunks
and transfered from the CPU and the GPU chunk by chunk. After each chunk completes transfer,
layout reorganization is applied to that particular chunk on the GPU. We assume memcpy is executed
sequentially.

Currently, the remapping flow can be broken down into two major components:

1. Break the data into small chunks and transfer each chunk asynchronously from the CPU to

the GPU one by one.

2. Immediately after data transfer of each chunk, launch remapping kernels to reorganize data

layout; each thread is responsible for relocating one data element.

Figure 5.3 illustrates the idea of overlapping PCI-E transfer and layout transformation on the

GPU. In this example, we assume the PCI-E implementation is serial. In reality, it can be im-

plemented more efficiently using parallelism. However, we are missing implementation details

necessary to take advantage of that organization. Because there is a one-to-one mapping between
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the original and remapped locations, and because the remappings do not overlap, the remapping

of data are independent; however, the latter invariant introduces storage overhead, mitigated by

chunking.

Figure 5.4 shows sample code illustrating one possible implementation with CUDA streams.

CUDA applications often manage concurrency through streams [27]. A stream, in CUDA, is a

sequence of commands that execute in order. Distinct streams are only partially ordered [27]. To

use streams, we allocate our host memories with cudaMallocHost(). This example is similar

to the stream example in the CUDA programming guide [27], the difference being that, for each

CUDA stream, stream[i], we first copy a chunk and then execute a specific kernel to perform

layout remapping for that chunk. The chunk index i and chunk size are used to determine which

data to reorganize. In Section 5.4.7, we compare this approach with an alternative one using the

zero-copy feature.

Note that data reorganization is one of the implementation options for memory remapping

in Dymaxion, designed as a high-level abstraction. Other possible approaches include physical-

address-to-physical-address translations and associated latency hiding techniques [85]. Another

possibility is to leverage MMU for layout transformation, avoiding the extra CPU-GPU copy, but

that doing the transformation across the PCI-E hub may not be as efficient as a bulk copy onto the

GPU card, from which the GPU’s massive bandwidth and parallelism can be leveraged to speed up

the transformation.

5.2.2 Index Transformation

Following the layout transformation, a GPU device memory pointer for the reorganized data struc-

ture is returned for the user to pass to the compute kernel. Because of the change in layout, the

indices of future accesses must also be transformed. For each type of layout transformation, we

provide a corresponding index transform function to achieve this functionality. For example, in-

dexing a specific data element, array[index], is achieved after the layout transformation with

array[index transform(index)]. This is the only change required to apply to the original GPU

kernel code.
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/* divide the work into chunks */
int chunk_size = size / num_kernels;

/* create CUDA streams */
cudaStream_t *stream = (cudaStream_t *) malloc(num_kernels

* sizeof (cudaStream_t));

for (i = 0; i < num_kernels; i++)
cudaStreamCreate(&stream[i]);

/* launch the asynchronous memory copies and map kernels */
for (i = 0; i < num_kernels; i++)
cudaMemcpyAsync(array_d + i * chunk_size,

array_h + i * chunk_size,
sizeof (float) * chunk_size,
cudaMemcpyHostToDevice,
stream[i]);

for (i = 0; i < num_kernels; i++)
map_kernel<<<grid, block, 0, stream[i]>>>

(array_d_map, /* remapping destination */
array_d, /* input array */
i, /* chunk index */
chunk_size, /* chunk size */
num_kernels /* num simultaneous kernels */);

Figure 5.4: CUDA streams are utilized to overlap chunk transfer with remapping. This example
assumes that the entire work size can be evenly divided by the number of chunks
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//Original Version

__global__ kmeans_distance(float *feature_d, ...){

//feature_d is the original array

int tid = BLOCK_SIZE * blockIdx.x + threadIdx.x;

/* ... */

for (int l = 0; l < nclusters; l++) {

index = tid * nfeatures + l;

...feature[index]...

}

}

//Dymaxion Version

__global__ kmeans_distance(float *feature_remap, ...){

//feature_remap is the remapped array

int tid = BLOCK_SIZE * blockIdx.x + threadIdx.x;

/* ... */

for (int l = 0; l < nclusters; l++) {

index = tid * nfeatures + l;

...feature_remap[transform_row2col(index,

npoints,

nfeatures)]...

}

}

//Manually Mapped Version

__global__ kmeans_distance(float *feature_remap, ...){

//feature_remap is the remapped array

int tid = BLOCK_SIZE * blockIdx.x + threadIdx.x;

/* ... */

for (int l = 0; l < nclusters; l++) {

index = l * npoints + tid;

...feature_remap[index]...

}

}
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The above code snipplets shows an example of the necessary changes to the k-means dis-

tance kernel and its associated index transformation function (a row-major to column-major

transformation). We apply the layout transformation on the feature array, which is the pri-

mary data storage structure in this implementation. To access an element, the general form

feature remap[transform row2col(index, npoints, nfeatures)] is used in place of the

basic feature[index] lookup. Programmers can choose to manually modify the index without

using a Dymaxion index transformation function (e.g. swapping the loop index), only if they know

exactly how a specific layout is optimized by the remapping function on a particular platform (e.g.,

DRAM parallelism and memory alignment). Because different platforms may prefer different lay-

outs, the index transform function is preferable, as it maintains code portability across platforms

without any need of manual effort. It is also a convenient tool to help programmers transform com-

plicated index term and will be needed when implementation details are hidden from programmers.

5.2.3 Dymaxion API Design

Dymaxion currently optimizes single-dimension linear memory accesses (e.g. array[index]) to

GPU global memory for various access patterns. The framework can be extended to support other

memories, for example texture memory. There are several important design goals we used to guide

our API development:

• Dymaxion should provide abstractions for specifying various access patterns, and the im-

plementation of Dymaxion should rely on and can be optimized for different architectural

details.

• Programmers should not be required to program with Dymaxion, which is primarily for op-

timization.

• The implementation should be an API, with a small set of extensions to existing languages,

not an entirely new language.
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Map Functions:

void map_row2col( void *dst,

const void *src,

unsigned height,

unsigned width

type_t type);

void map_diagnal( void *dst,

const void *src,

unsigned dim,

type_t type);

void map_indirect( void *dst,

const void *src,

const void *index,

unsigned size,

type_t type);

void map_arrstruct(void *dst,

const void *src,

unsigned argc,

arg_list *list);
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Index Transform Functions:

unsigned transform_row2rcol(unsigned index,

unsigned height,

unsigned width,

type_t type);

unsigned transform_diagonal(unsigned index

unsigned height,

unsigned width,

type_t type);

void *transform_struct( void *array,

unsigned tid,

unsigned num_mem,

unsigned num_nodes,

unsigned mem_offset,

type_t type);

Dymaxion is not restricted to GPU use, but also applicable to other heterogeneous platforms.

Compared with compiler-based tools, Dymaxion gives programmers more control while saving

them significant optimization effort. The Dymaxion framework consists of two major parts: 1. A set

of remapping functions to direct data remappings, and 2. associated index transformation functions.

The function list shows the current API functions implemented in Dymaxion. So far we have

implemented our API for row-major order to column-major order, diagonal-strip, indirect, and

array-of-struct transformations, which cover the access patterns common in many scientific appli-

cations. Note that API functions such as cudaMemcpy() in CUDA and clEnqueueMapBuffer() in

OpenCL are special cases of memory mappings which map a linear region of memory space in the

host to a region on the device. We do not think this is an complete list of API functions; Dymaxion

is extensible to other access patterns (e.g. Morton and other space-filling curves, graph traversal), a
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task we leave for future work.

At the same time, there is a way in Dyamxion for programmers to define their own memory

mapping that is not supplied by the API. For instance, programmers can write a GPU remapping

function (equivalent to map kernel in Figure 5.4), following the declaration rules of user-defined

function in Dymaxion. As shown in the following example, the function pointer to this GPU remap-

ping function will be used to pass to a Dymaxion map user function, which automatically handles

the overlapping of memory transfer and remapping.

void map_user(void *dst,

void *src,

unsigned int height,

unsigned int width,

type_t type,

usr_func_ptr map_kernel)

Our study is restricted to loop-based algorithms, which possess a single major access pattern

that dominates computation and thus typically requires only one copy for each remapped data struc-

ture. A challenge arises when applications present multiple access patterns in accessing a single data

structure. Sometimes it is beneficial to keep separate mappings for each pattern, and special care

is needed to maintain consistency among the copies. But even in the presence of multiple access

patterns, one desirable layout for the “major” access pattern may still generate better overall perfor-

mance. Determining the performance benefits of one or many remappings depends on the degree

of reuse of different access patterns in each particular application. We leave this for future work.

5.3 Experiment Setup

Our results are based on execution on NVIDIA GeForce GTX 285 and 480 GPUs. The 285 has

240 cores with a 1.48 GHz shader clock, 16 kB shared memory and 1 GB device memory. The

480 has 480 cores, a 1.4 GHz shader clock, 64 kB configurable on-chip cache (shared memory +

hardware cache), 768 kB shared L2 cache and 1.6 GB device memory. We use CUDA 3.1 and GCC
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4.2.4 with the -O3 flag to compile our programs. To demonstrate the benefits of our framework, we

also report the number of global memory loads and stores before and after using Dymaxion. This

is measured by using the CUDA profiler with CUDA PROFILE=1 on the 285. The CPU we use is

an Intel Core2 Quad CPU with a clock of 2.66GHz and a 3MB L2 cache. The results are timed

on the main computational loops of the applications and include PCI-E transfer and GPU kernel

execution. Also, this study is restricted to cases in which the combined memory spaces consumed

by an applications working set and memory remapping does not surpass the capacity of GPU device

memory.

5.4 Access Patterns and Experimental Results

In this section, we report the performance improvements of Dymaxion for different memory pat-

terns, each with a widely used, representative application.

5.4.1 Row-Major Order to Column-Major Order Remapping

Figure 5.5 shows a conceptual view of a row-major to column-major transformation. Essentially,

a 2-D array with column-major order is a 90-degree transpose of a row-major version of the same

data. From an algorithmic perspective, programmers see no difference in the two layouts (assuming

of course that the program accesses the data to match the layout!); however, for regular row-wise

or column-wise accesses, these two organizations are crucial to memory locality and performance.

Switching from row-major order to column major order, the relationship between the new and old

array index is described with

new_index = height * (old_index % width) +

(old_index / width)

where all operations are integer and implemented by the index transform function

transform row2col() in the API list.
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MAP

threads threads

Figure 5.5: Row-major to column-major transformation.

5.4.1.1 K-means

In the single-device Rodinia [14] GPU implementation, data are partitioned according to thread

blocks, with each thread associated with one data element. The task of searching for the nearest

centroid to a given element is independent of all others. We discuss the k-means implementation in

detail in an earlier work [14, 15].

Programmers often prefer to store data in a 2-D arrays with each row representing a data object

and each column representing a feature. Such a layout tends to be inefficient on the GPU; for

instance, when threads calculate the distance of individual elements to centroids, they access whole

array rows, which are often spread among multiple memory transactions. This is shown on the

left in Figure 5.5. On the other hand, inter-thread locality is improved through coalescing after

remapping the array into column-major order, shown on the right in Figure 5.5. This example

presents a mismatch between the data affinity relationships inherent in the algorithm and the locality

characteristics imposed by the mapping of SIMD operations to the DRAM organization.

We applied Dymaxion to the naı̈ve k-means GPU implementation from Rodinia. Figure 5.6

shows the performance we obtained for the naı̈ve implementation and the one using Dymaxion.

This figure also gives the breakdown of execution time in terms of PCI-E transfer, remapping, and

computation. We vary input sizes from 64 k to 256 k elements. In our experiments, the perfor-

mance of the new version always outperformed the original implementation. On the GTX 480, the
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Figure 5.6: The y-axis represents the execution time of one iteration of the k-means distance cal-
culation [18]. Execution time is measured for both the original implementation and the port to
Dymaxion. Memcpy+MAP represents the total amount of time due to layout remapping and data
transfer. Because these two operations overlap and CUDA only provides timing for the completion
of a whole stream, we measure the end-to-end time and compare it against the original data transfer
(i.e. Memcpy)

performance of the GPU kernel improves by an average of 3.11× due to better coalesced memory

accesses. Considering layout remapping and PCI-E overheads, the overall performance improves an

average of 30.6%. The combined PCI-E transfer plus layout transformation incurs only an average

of 5.8% overhead when compared with the PCI-E transfer of the original implementation.

5.4.2 Diagonal-Strip Remapping

Often in dense linear algebra and in dynamic programming algorithms, loops manifest memory

access patterns other than regular row- or column-wise traversals; however, their access patterns are

well defined. For example, some applications traverse arrays with constant, non-unity strides. One

example is a diagonal strip traversal, which is the result of a constant stride with size (columns−1).

Such patterns tend to have very poor data locality. A diagonal strip is a special case of a strided

access.
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Figure 5.7: Diagonal strip matrix transposition.

5.4.2.1 Needleman-Wunsch

Needleman-Wunsch is a global optimization method for DNA sequence alignment. Potential se-

quence pairs are organized in a 2-D matrix. The algorithm has two major phases: 1. the algorithm

fills the matrix with scores in parallel, which represent the value of the maximum weighted path

ending at that cell; and 2. a traceback process is used to find the optimal alignment for the given

sequences [15]. Our implementation [15] takes advantage of the GPU’s on-chip shared memory to

improve program locality and reduce memory latencies; block-level parallelism within Needleman-

Wunsch is also exploited. We focus on optimizing Needleman-Wunsch through efficient memory

coalescing starting from a Rodinia version with only global memory accesses.

Figure 5.7 illustrates the memory access patterns of Needleman Wunsch. This figure shows the

upper-left triangular region of the 2-D matrix and its associated transformation under Dymaxion.

For this particular access pattern, the relationship between the new and old array index can be

described by the equation

new_index = dim * ((old_index % dim) +

(old_index / dim)) +

old_index / dim

This transformation is achieved via the transform diagonal() function in the API list. Prior to

the layout transformation, parallelism exists within each diagnal strip, and each thread is assigned

to compute one data element. Using our API function, programmers can make a 45 degree transpo-
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sition of the matrix. The resulting layout allows threads to concurrently access data elements within

the same row. In Needleman-Wunsch, the result of the GPU computation must be copied back to

the CPU for the serial trace back; therefore, at the end of the GPU kernel, a reverse transposition is

applied.
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Figure 5.8: The y-axis represents the execution time of the Needleman-Wunsch kernel [18]. Execu-
tion time is measured for both the original and the Dymaxion implementations.

We applied Dymaxion on the original, naı̈ve Needleman-Wunsch GPU implementation. Fig-

ure 5.8 shows a performance comparison between the original implementation and the one using

Dymaxion. We varied the input sizes from 20482 to 40962 data elements. On the GTX 480, the

kernel performance improves by an average of 42.2%. The overall improvement averages 14.0%

after accounting for PCI-E transfer and layout reorganization. The combined PCI-E transfer plus

layout transformation incurs an average of 16.1% overhead when compared with the PCI-E transfer

of the original implementation. Also, the best-performing Needleman-Wunsch version in Rodinia

is 25% faster than the current Dymaxion version, because it uses the GPU shared memory, which

Dymaxion does not support now, and which we leave for future work.
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Figure 5.9: Indirect remapping for gather.

5.4.3 Indirect Remapping

Scatter and gather are two fundamental operations in many scientific and enterprise computing ap-

plications. They are very common in sparse matrix, sorting and hashing algorithms [31]. Accessing

randomly-distributed memory locations makes poor use of GPU memory bandwidth. We evalu-

ate a sparse matrix-vector multiplication (SpMV) to demonstrate Dymaxion’s support for gather

operations. A similar approach can be applied to scatter operations as well.
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Figure 5.10: The y-axis represents the execution time of SpMV, not including reduction [18].
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5.4.3.1 Sparse Matrix-Vector Multiplication

Our implementation adopts the compressed row format (CSR) to represent the sparse matrix [5,31].

A 2-D sparse matrix, M, is encoded using three arrays: DATA, ROWS, and COLUMN. The non-zero

elements of M are stored in the compressed data array DATA. Data in ROWS[i] indicate where the

ith row begins in DATA. COLUMN[i] indicates the column of M from which the element stored in

DATA[i] comes [85].

We use a similar algorithm to those described in previous work [31, 84], which computes the

multiplication W = M * V. The algorithm computes W in two steps: 1. compute the partial multipli-

cation results and store them in array R where R[i] = (DATA[i] * V[COLUMN[i]]); 2. perform

a reduction stage on the partial results in R [31]. In the first stage, V is first transfered to the GPU

and then we perform the indirect transformation on COLUMN, which is chunked and transfered to

the GPU, overlapping with a gather from V to V’; this stage is handled by the map indirect()

function. On the kernel side, after remapping, users can directly access V’[i] with continuously

gathered data, instead of V[COLUMN[i]].

Figure 5.10 shows the performance improvements and execution time breakdowns for the sparse

matrix-vector multiply. We varied the input sizes from 64 k to 256 k data elements. Again, the

performance of the implementation with Dymaxion outperforms the original implementation for

all inputs. The new GPU kernel, benefiting from coalesced memory accesses, improves 4.1× from

the original GPU kernel on the GTX 480. The overall performance, including the PCI transfer and

layout remapping, improves by an average of 15.6%. The combined PCI-E transfer plus layout

transformation incurs an average of 10.2% overhead when compared with the PCI-E transfer of the

original implementation.

5.4.4 Struct-Array Transformation

A record or structure (struct in C) is an aggregate type which can store multiple data members

grouped together under one name. The code on the left above shows an array of structures of length

NUM ELEM, each of which contains two floating point and two integer members. In algorithms where

the elements are independent, each can be assigned individually to a thread for computation. But



Chapter 5. Dymaxion 77

#define NUM_ELEM 256
struct my_struct_t {
float a;
float b;
int c;
int d;

} mystruct[NUM_ELEM];

#define NUM_ELEM 256
struct my_struct_t {

float a[NUM_ELEM];
float b[NUM_ELEM];
int c[NUM_ELEM];
int d[NUM_ELEM];

} my_struct;

because the structure members were laid out contiguously, multiple thread accesses to the same

member of different structs may exhibit poor data locality.

Organizing data as a structure of arrays is often preferable to an array of structures for memory

access efficiency. We provide a simple API which facilitates this transformation for GPU com-

putation. Currently, Dymaxion only supports structures that contain non-aggregate data members,

because C provides limited capability to determine the type of variables at runtime. We created an

enumerated type which numbers various commonly used built-in types. Users are asked to provide

structure details by passing a list of members and their types to the API function. The transfor-

mation is achieved by moving data from the array of structures to a single linear memory region,

saving all the raw data. For the GPU kernel, we provide index transform functions to access data

elements with information such as number of nodes and member offset. The kernel returns a pointer

to the location of the resultant value.

5.4.4.1 Nearest Neighbor

Nearest neighbor (NN) is an algorithm to find the k-nearest neighbors of a data element in an abstract

space. Our parallel NN implementation has two major phases: 1. the parallel phase calculates the

Euclidean distances from all the data to specified data; and 2. the reduction phase sorts data in order

of ascending distance. We are interested in the first phase. Its distance calculation is similar to that

of k-means, differing primarily in representation, as NN uses an array of structures.

Figure 5.11 shows the performance we obtained for the naı̈ve implementation and the one with

reorganized structures. The input sizes are varied from 64 k to 256 k elements. For all inputs, the

performance of the optimized version outperforms the original implementation. On the GTX 480,

the GPU kernel was able to achieve 4.4× speedup over the original version, and the performance,
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Figure 5.11: The y-axis represents the execution time of the first phase of the NN implementa-
tion [18].

including remapping and the data transfer, increases by 20%. The combined PCI-E transfer plus

layout transformation incurs only an average of 3.4% overhead when compared with the PCI-E

transfer of the original implementation.

5.4.5 The Benefits of Memory Remapping

To further evaluate the benefits of Dymaxion, we also perform the same set of experiments on

an NVIDIA GTX 285 GPU. Figure 5.12 shows the speedups of the GPU kernels with Dymaxion

against their original implementations for our applications on both the GTX 480 and GTX 285. The

speedups range from 1.4× to 4.4× on the 480 and from 2.1× to 3.0× on the 285. The performance

benefits are due to a better match between the memory access patterns and layouts of data structures

after applying Dymaxion, which leads to improved memory coalescing in CUDA. We also use

NVIDIA’s CUDA profiler to characterize the GPU kernels. As shown in Table 5.2, the number

of global memory loads and stores is reduced significantly using Dymaxion, with approximate

reductions of 4.2× for k-means and 3.6× for SpMV.
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Table 5.2: Total number of loads and stores of different application-input pairs reported by the
CUDA profiler [18]

Application Input Size Without Remapping Opt. With Remapping Opt.

k-means
64 k 289600 68224
128 k 590784 133824
256 k 1193152 267648

NW
2048 1536 325
3072 2432 497
4096 3200 625

SpMV
64 k 9042 2496
128 k 19084 4896
256 k 35846 9792

NN
64 k 188032 60800
128 k 376064 124132
256 k 744896 250496
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Figure 5.12: The y-axis represents the speedup of the GPU kernels with Dymaxion against the
original implementation [18].

5.4.6 Chunking Overhead and Parameters for Remapping

Using a microbenchmark, we measured the overhead of conducting PCI-E transfers by breaking

up the data into chunks. We consider two scenarios: one in which chunks are transferred with

synchronous cudaMemcpy() versus another combining streaming and cudaMemcpyAsync(). We
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repeatedly iterate over the loop, transferring one chunk per iteration. Figure 5.13 shows the nor-

malized throughputs measured while transferring a total of 16 MB of contiguous data. We varied

the number of chunks from 1 to 512. Conducting smaller data transfers incurs more performance

overhead, and the throughputs of both scenarios begins to degrade significantly at about 16 chunks.

The latter scenario, streaming + cudaMemcopyAsync(), achieves better throughput with an average

of 16.7% improvement over the case using synchronous transfers. The benefit is due to multiple

streams of chunks and reduced overhead due to the queuing of asynchronous memory calls.
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Figure 5.13: The y-axis represents the normalized throughput comparing chunking with syn-
chronous memory transfers and chunking with asynchronous memory transfers (streaming) [18]

We also investigate an approach to optimize the performance of remapping, which maps the

locations of data elements from one memory space to another. In the GPU implementation of

Dymaxion, the remapping is achieved through a call to a GPU kernel. Though these kernels are

simple, the performance can vary considerably depending on the amount of work done per thread.

Merrill et al. [60] use a set of techniques to optimize GPU-to-GPU data movements. Figure 5.14

shows the normalized performance of a row-major order to column-major order remapping as a

function of the number of bytes (4–64 B) each thread reads and writes with a thread-block size

of 256. The performance differences between best and worst performing points can be as large as
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24%.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

float float2 float4 2-float4 4-float4

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Figure 5.14: The vertical axis represents the performance of remapping (row2col) as a function of
the number of bytes (4–64 B) each thread reads and writes [18]. The execution times are normalized
to the best performance point. The input is a 16 k×16 float matrix.

5.4.7 Gathering Data through Zero-Copy

In Section 5.2.1, we discussed the approach of hiding remapping latency by overlapping PCI-E

data transfer and remapping each chunk, which can be applied in general circumstances. In this

section, we use a CUDA-specific feature, zero copy, to achieve the same goal of gathering data

into contiguous segments. Zero copy allows GPU threads to directly access host memory which

are page-locked [25]. In the former approach, we transfer each chunk from system memory to an

intermediate staging buffer on the GPU and subsequently perform a remapping by saving the final

remapped data to a destination buffer.

Using zero copy, we launch the remapping kernel with threads sourcing data directly from sys-

tem memory and then storing the data into the destination buffer in GPU device memory. This

saves the memory duplication overhead on the GPU and also obviates the need for each data el-

ement to be read and written twice; however, the drawback is that many smaller transactions are
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Figure 5.15: The y-axis represents the normalized execution time of three types of data trans-
fers [18]. The baseline is the time consumed by the bulk data transfer in the original implementation

needed. Figure 5.15 shows normalized performance results comparing three types of data transfers.

Zero copy gathers data from non-contiguous memory regions and incurs an average of 7% perfor-

mance degradation when compared with chunking + remapping; however, all of our applications

still get an average speedup of 16.2% on the overall performance due to improved GPU kernel

execution time. In other words, our proposed remapping approach has an advantage–despite the

extra copy step–because the GPU, working from GPU memory, can achieve higher throughput on

data layout transformation than attempting to perform transformation as part of the PCI-E transfer.

This is thanks to the GPU’s higher memory bandwidth and parallelism, coupled with the chunking

approach’s ability to hide this latency.

5.5 Case Study: CPU-GPU Simultaneous Execution

In the previous section, we show the performance improvements of offloading work to the GPU

and applying our Dymaxion framework. In this section, we present a case study using k-means,

spreading the workload simultaneously across the CPU and the GPU, which is desirable for two



Chapter 5. Dymaxion 83

reasons: some CPUs are capable enough to contribute meaningfully to overall performance, and

using the CPU will reduce the amount of data that needs to be transferred to the GPU. Some pro-

gramming models, such as OpenCL [64], support heterogeneous systems, allowing programmers

to write one piece of code that is portable to multiple platforms. Unfortunately, one implementation

of the compute kernel is usually developed assuming a single data layout, suggesting that it would

not work well across diverse platforms.

The Dymaxion framework is useful in this regard, maintaining data coherence while optimizing

access patterns across the CPU and GPU. For instance, in a multithreaded k-means CPU implemen-

tation, each CPU thread is responsible for processing one region of data. Each thread processes one

data element and proceeds to process the next element and so on within its own region. Therefore,

on the CPU, k-means favors a row-major array organization, and the features of a single data ele-

ment can reside contiguously in cache lines to generate better data locality for distance calculations.

This is quite different from the GPU’s preference, as discussed previously, for a column-major or-

dering. Our tests show that a column-major layout degrades CPU performance approximately 2×

compared with row-major order, while a row-major layout degrades GPU performance approxi-

mately 50% compared with column-major order.

Previous work, including Qilin [56] and Merge [52], presents work-spreading across the CPU

and the GPU, but we are unaware of any previous work evaluating the performance impact of

different memory mappings when concurrently scheduling workloads on heterogeneous compute

resources.

Figure 5.16 illustrates this concept with the k-means implementation. To ease the computational

domain partitioning over multiple devices, we divide the main data structure into smaller chunks and

schedule them on different devices. Load balancing across devices is an interesting research issue

in itself and is not the focus of this work. In our experiment, the baseline is a CPU implementation

whose data structure is stored in a row-major order; for each chunk dispatched onto the GPU,

Dymaxion is applied to remap the chunk into column-major order for efficient GPU execution.

Figure 5.17 shows the normalized execution time for the k-means distance kernel with 1.25

M data points and 16 features. When both the CPU and GPU use row-major order, the simulta-
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neous CPU-GPU execution improves the performance by 20% over GPU-only execution. After

applying Dymaxion to obtain column-major layout, the GPU-only execution obtains 15% perfor-

mance improvement over simultaneous CPU-GPU execution with row-major-only order layout. If

the CPU uses the row-major layout and GPU uses column-major layout, scheduling k-means on

the CPU and the GPU further improves the performance by 18% over the GPU-only, column-major

layout. As shown in Table 5.3, for the CPU + GPU (row-major order) configuration, the portions

of the workloads mapped to the CPU and GPU are 35% and 65%, respectively. Switching to the

CPU (row-major order) + GPU (column-major order) configuration, the portions of the workloads

mapped to the CPU and GPU change to 25% and 75%.

CPU GPU

Chunks in Row-major Order

Device MemorySystem Memory

Map Chunks in Col-major Order

Figure 5.16: The CPU and the GPU prefer different mappings. We divide the data structure into
smaller chunks and schedule them onto the CPU and the GPU

Table 5.3: Workload Ratios of K-means [18]
Core Combination CPU GPU
CPU + GPU (Row-major Order) 35% 65%
CPU + GPU (Column-major Order) 25% 75%

5.6 Development Cost

The goal of Dymaxion development is to improve the productivity of programmers in optimizing

memory accesses. Programming effort must be taken into account in the evaluation of our API’s

utility. Because it is difficult to get accurate development-time statistics for coding applications, we

use Lines-of-Code (LOC) as our metric to estimate programming effort. Table 5.4 shows the number
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Figure 5.17: The normalized execution time of the CPU-GPU simultaneous execution for one itera-
tion of k-means [18]. In all the cases, the CPU uses row-major order. For the GPU implementation,
we use two layouts: R represents row-major order while C represents column-major order

of changed lines of code for the four applications used in this study. For all of the applications,

Dymaxion required only 6-20 lines of changes. This suggests the programmer effort of applying

our API is trivial compared with the performance gains.

Applications Kmeans NW NN SpMV
LOC 7 18 20 6

Table 5.4: Development cost measured by number of modified lines of code [18].

5.7 Conclusions & Future Work

In this chapter, we propose the Dymaxion framework to optimize the efficiency of DRAM accesses

through memory layout remapping and index transformation. We hide the overhead of remap-

ping through data structure chunking and by overlapping with the CPU-GPU PCI-E data transfer.

Usage of our API requires only minimal changes to the original implementations. The four ap-

plications we evaluate, each with a unique access pattern, achieve an average of 3.3× speedup

on the compute kernels and 20% overall performance improvement, including the PCI-E transfer,

on an NVIDIA GTX 480 GPU when compared with their original implementations. The overall
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benefit is limited by PCI-E overhead, so the benefit will improve as the PCI-E protocol improves

or the GPU becomes a peer with the CPU. Also, Dymaxion is a convenient building block to en-

sure data coherence between the CPU and the GPU for heterogeneous computing; a remapping

is needed when writing data to the GPU while a reverse-remapping is needed when reading data

from the GPU. We plan to extend Dymaxion to support the transformation of multidimensional

arrays and special memories such as texture and shared memory. Dymaxion is available online at

http://lava.cs.virginia.edu/dymaxion.

Today’s GPU programming models require programmers to manually optimize memory access

patterns. Commercial GPU compilers do not yet support Dymaxion-like memory-remappings. We

anticipate that the techniques used in this work can be further integrated into compiler frameworks

for automated memory remapping. For instance, an OpenMP-like directive can be used to specify

the preferred data structure organization for the CPU or the GPU. The compiler can then automati-

cally insert the Dymaxion-like remapping and transformation.

There are also several other directions of future work we plan to explore. This work focuses

on a single machine node. Although MPI can launch the same CUDA operations (including Dy-

maxion remappings) on each node in a cluster, a global, cross-cluster approach may allow further

optimizations, especially when cross-node data transfers and system-level interconnect are con-

sidered. Additionally, the dynamic detection of application access patterns is a very promising

research direction. Currently, Dymaxion requires programmers to manually choose the appropriate

API calls for data rearrangement; fortunately, Dyamxion allows programmers to easily roll back to

the original version whenever the performance is not satisfactory. Also, because remapping of very

large data arrays may introduce additional power overhead, future work will explore the energy effi-

ciency. We also wish to explore opportunities for remapping among different levels of the memory

hierarchy, especially when heterogeneous processors share memory (e.g. in AMD Fusion [1]) or

even a last-level cache.
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GPU Performance Prediction

With increasing use of GPGPU, research challenges include understanding GPUs’ application be-

haviors, identifying first-order metrics capturing their performance, and designing methodologies

for predicting performance. A better understanding of these issues is not only useful for analyzing

and comparing different hardware platforms, but also can guide users to choose the best platforms

that serve their computation needs.

An important way of helping understand GPUs’ performance behaviors is through benchmark-

ing. Because users’ applications may not exist in standard benchmark suites, one important goal

of benchmark design is allowing users to predict their own applications’ performance based on the

benchmarks’ performance on different platforms. However, predicting performance of arbitrary

applications using benchmarks remains an open problem. For instance, in an extreme case, suppose

that application A and B present opposite scaling trends; when users intend to purchase a system to

improve B’s performance, they will make an incorrect decision if they directly use A’s benchmark

scores.

This work strives to analyze GPU performance on arbitrary user applications by taking advan-

tage of data available for existing benchmarks. Our hypothesis is that, with a set of key metrics and

a well-designed benchmark repository, effective performance prediction is possible by sampling

and interpolating the benchmark space. Studying this approach also has its practical usefulness.

For example, due to limited benchmark mix offered by vendors, customers may sometimes need

vendors to port and time applications before customers make large-scale purchases [29], which is a

87
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costly procedure. Furthermore, for individual users, they may not have access to hardware before

committing the purchase.

To address these concerns, our framework determines the most similar GPU benchmarks as

the proxies to an application of interest based on their mutual similarity in the workload space.

The predicted performance is expressed as a linear combination of the performance of the proxy

benchmarks through interpolation. Our work focuses on manycore architectures e.g. GPUs, and

uses a similar approach to the study by Hoste et al. [37] for single-thread CPU applications. We

also examine how well the applications included in today’s GPU benchmark suites can represent the

characteristics of real workloads, which we believe will facilitate a more scientific way for future

benchmark suite construction.

Our work makes the following contributions:

• We identify a set of simple, first-order application characteristics for the GPU platform, and

analyze their impacts on performance. We then demonstrate the entire flow of the perfor-

mance prediction framework based on program similarity.

• We use the Rodinia benchmark suite and workloads from other benchmark suites for perfor-

mance prediction.

• We evaluate the effectiveness of our prediction approach using different processor configura-

tions, program inputs and numbers of nearest neighbors.

• We finally discuss important directions for future benchmark construction. We point out that

future benchmark design should adopt a collaborative approach to improve overall feature

coverage. One metric to evaluate how well a suite is designed can be its workload space

coverage and how effective it can be used for performance projection.

The framework can accurately predict GPUs’ application performance except for the applications

that are isolated in the workload space. Our experiment result shows an arithmetic mean of 21.6%

prediction error across different GPU configurations. In addition, the predicted performance shows

a strong correlation with the actual performance from the Spearman Ranking analysis.
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6.1 Motivations and Background

6.1.1 Motivations

Users’ applications are their best benchmarks. However, because most of these applications are

not included in standard benchmark suites, users sometimes need to predict the performance of

their applications by referring to benchmark scores of standard benchmarks [37]. Therefore, re-

searching mutual relationships among applications becomes important. One challenge is that it is

almost impossible for users to run their applications on all the systems available in the market [29]

due to accessibility and costs. Users sometimes have to rely on hardware specifications or white

papers to roughly estimate the performance of a platform, which tends to be less accurate than well-

designed performance prediction models. Furthermore, most users do not have experience or skills

to configure and change architectural simulators to model hardware of interest. Also, simulators

are time-consuming and prone to their own inaccuracies.

These issues motivate the need for researching methodologies to correlate the performance of

a particular application with that of existing benchmarks to accurately predict the performance of

the target application. Gustafson et al. [29] did an early study of performance correlations among

benchmarks. Hoste et al. [37,42] pioneered the research of benchmark suite coverage and used stan-

dardized benchmarks to conduct performance prediction for single-thread CPU workloads. Carring-

ton et al. [12] predicted application performance using single, simple synthetic metric (i.e. diverse

compute kernels) and a linear combination of these simple metrics. For all of these works, one

common requirement is to first build a benchmark repository covering diverse application behav-

iors. As far as we know, there is no previous work studying this issue for manycore architectures

such as GPUs.

6.1.2 Prediction for GPU Kernels

A classic debate for CPU benchmarks is whether today’s benchmarks can represent the real work-

loads being used. This issue is well documented in the literature [29] for CPU benchmarking.

One major reason is that benchmark designers usually pick relatively smaller problems (e.g. small
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applications and small inputs) so that the benchmarks can fit all kinds of machines and be gener-

ally adopted. However, simple problems sometimes lose important characteristics of real applica-

tions [29]. This in turn brings the challenge of predicting the performance of “big” applications

with “small” ones, or, in other words, real applications with kernels [12].

However, this is less an issue for benchmarking and predicting GPUs. Today’s GPU pro-

gramming models like CUDA and OpenCL require programmers to explicitly map algorithms and

data structures to their domain-based compute models. GPU applications themselves are a set of

well-defined, small compute kernels, accelerating compute-intensive loops. In addition, develop-

ers sometimes have to divide a large logical function into constituent smaller kernels due to the

global synchronization requirement. Furthermore, the scaling behavior relative to input size, unlike

CPU’s input-vs-cache behavior, is predictable once the input is sufficiently large to fill the GPU;

processing of the entire dataset will be divided into batches of thread blocks, distributed onto GPU’s

processing elements. Therefore, all these features make accurate performance prediction for GPU

kernels possible and practical.

6.2 High-Level Framework

In this section, we discuss the overall flow of performance prediction and the metrics we use to

determine program similarity. We also use microbenchmarks to study sensitivities of GPU perfor-

mance to uncoalesed memory accesses and unfilled warps.

6.2.1 The Flow of Performance Prediction

Figure 6.1 illustrates our high-level prediction framework. This approach is in dual with the frame-

work proposed by Hoste et al. [37] for CPU performance prediction. This work differs from their

work by targeting manycore architectures and identifying a set of first-order program metrics for

GPU applications.

As shown in the diagram, performance prediction is achieved through correlating the charac-

teristics of the application of interest with those of existing benchmarks in the workload space,
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Figure 6.1: Benchmark statistics are first collected in order to construct a workload space. An
application of interest is profiled with exactly the same set of metrics and mapped into the workload
space. Prediction is achieved with the nearest proxy benchmarks to the application of interest [37].

whose performance scores are known before prediction. Program statistics are collected in order to

construct a workload space and calculate pair-wise similarity values across different applications.

Given an application of interest, we profile it with exactly the same metrics, map the application into

the workload space and use the similarity information to determine its nearest proxy benchmarks

from the benchmark repository [65]. Finally, the performance of the target application is predicted

by interpolating the performance of proxy benchmarks. For example, many computer system ven-

dors report performance scores of their systems by instrumenting the SPEC benchmark suite [71];

these scores can be used for prediction and reference purposes for CPUs. The SPEC HPG group

has been developing a standard benchmark suite for GPGPU [76], and we anticipate that vendors

may use them similarly to report benchmark scores for their GPU platforms in near future.

Two issues are of particular importance to accurate prediction in our approach:

• How effectively can the chosen metrics capture the major behaviors of the GPU and represent

similarity?

• How diverse are the benchmarks included in today’s benchmark suites? How well do they

cover the workload space?

The first issue is important for accurately determining if two applications are similar, while the

second issue is important to ensure the existence of appropriate proxy benchmarks to the application

of interest. The rest of this chapter endeavors to address these two problems.
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6.2.2 Application Profiling and Metrics

To determine the similarity among different applications, we use a set of metrics which are funda-

mental to the GPU performance. Our choice of metrics are based on the observations of previous

experiences of benchmarking GPUs [4, 22, 44]. These metrics have proved to be capable of captur-

ing the program behaviors of both NVIDIA and AMD GPUs effectively. However, this does not

preclude other important metrics, which can make the performance prediction more accurate. The

following list illustrates the metrics used in this study. They represent degrees of compute intensity,

memory locality, branch divergence, etc.

• Instruction Throughput This metric demonstrates the aggregate throughput of an applica-

tion. We use instruction per cycle (IPC) in this work. Note that different applications can

achieve a similar level of IPC but quite different scaling behaviors, which suggests additional

metrics are needed to present other aspects of application behaviors.

• Computation/Memory Access Ratio A higher ratio implies that an application stresses more

arithmetic units, while a low ratio suggests more stresses on memory interface. This metric

is a widely-used factor to determine if an application is compute-bound or memory-bound.

• Memory Instruction Mix A GPU application may take advantage of multiple memory

spaces on the GPU. Significant global memory accesses lead to poor performance and scal-

ability. A high ratio of memory accesses to GPU caches (scratchpad, constant and texture)

generally means a better usage of data locality, fewer off-chip accesses and better program

scalability.

• Memory Efficiency One important performance optimization for GPUs is the coalescing of

global memory accesses [27]. A high ratio of uncoalesced memory accesses suggests a waste

of effective memory bandwidth and thus degrades the overall application performance.

• Warp Occupancy Warp occupancy captures the average number of active threads over all

issued warps over the entire runtime of the benchmarks [4]. We classify this metric into four
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buckets, namely [1−8], [9−16],[17−24] and [25−32]. A higher warp occupancy means a

better utilization of GPUs’ computation resources.
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Figure 6.2: The y-axis represents throughput (instructions per cycle) while x-axis represents the
number of threads active within a warp. Unfilled warps lead to lower instruction throughput.
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Figure 6.3: The y-axis represents normalized throughput to the stride-1 case. The total throughput
degrades as the stride size increases. The results are reported with GPGPUsim.

As discussed in previous chapters, among these metrics, warp occupancy and memory coalesc-

ing are two distinctive features limiting GPU’s throughput. Low warp occupancy means a majority

of threads are inactive, leading to low instruction throughput. The reasons for unfilled warps can

be due to different reasons, such as branch divergence and parallel reduction [17]. We measure a

microbenchmark by controlling the number of active threads within a warp. Figure 6.2 shows in-
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struction throughput we collect with the GPGPUsim simulator varying the number of active threads

from 8 to 32. The total throughput increases linearly with increasing numbers of active threads.

We also measure the impact of uncoalesced memory accesses on total throughput. For instance,

many applications present access patterns to array structures with non-unit strides, i.e. array[stride

* tid + offset]. Such access patterns will lead to undesirable memory coalescing behaviors on

the GPU, because adjacent threads are accessing non-contiguous data elements [27]. We use a

microbenchmark to measure the variations of total throughput versus the changes of the stride

size. Figure 6.3 shows the normalized throughput varying the size of stride from 1 to 16. The

performance degrades significantly with increasing number of uncoalesced memory accesses. This

behavior is also well documented in NVIDIA’s best practice guide [26].

6.3 Methodology

In this section, we discuss our methodology, including the experiment environment, the workloads

used in this work and how we calculate similarity among benchmarks and further use it for perfor-

mance prediction.

6.3.1 Experiment Setup

To measure program characteristics, we use GPGPU-Sim [4] from the University of British

Columbia. GPGPU-Sim provides a detailed simulation model of contemporary GPUs. We use

GPGPUsim to report program statistics such as IPC, instruction mix, warp occupancy, uncoalesced

memory accesses, etc., which will be used for subsequent performance predictions. We also use

GPGPUsim to simulate the performance of GPU systems with 4, 8, 16, and 28 shader cores.

A GPU application usually consists of CPU parts, CPU-GPU PCI-E transfers and GPU kernels.

We restrict our performance prediction work to GPU kernels and leave CPU execution time as

a constant variable. In addition, time spent on PCI-E transfers is proportional to the data size

transferred across the CPU and the GPU. Therefore, the transfer time can be easily predicted by

dividing data size with the PCI-E bandwidth.
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Table 6.1: Rodinia, GPGPUsim and NVIDIA CUDA SDK applications
Application Abbrev Suite Input Size
Back Propagation BP Rodinia 65536 input nodes
CFD Solver CFD Rodinia 97k elements
Heart Wall Tracking HW Rodinia 609×590 pixels/frame
HotSpot HS Rodinia 500×500 grid
LU Decomposition LUD Rodinia 256×256 matrix
Needleman-Wunsch NW Rodinia 2048×2048 data points
SRAD SRAD Rodinia 512×512 data points
Stream Cluster SC Rodinia 2048×2048 data points
LIBOR Monte Carlo LIB GPGPUsim 4096 paths, 15 options
Neural Network NN GPGPUsim 28 digits
NQueen Solver NQU GPGPUsim 10×10 grid
Ray Tracer RAY GPGPUsim 256×256 image
Weather Prediction WP GPGPUsim 10 timesteps
BlackScholes BLK NVIDIA SDK 4M options
DXTC DXTC NVIDIA SDK 512×512 image
Matrix Multiply MM NVIDIA SDK 80×48, 48×128
FastWalshTransform FWT NVIDIA SDK 32 k data points
MersenneTwister MT NVIDIA SDK 24000000 samples

6.3.2 Workloads

Accurate performance prediction requires the workload repository to include a sufficient number

of benchmarks to construct a training set. These benchmarks also need to be diverse in application

characteristics and ideally distributed evenly in the workload space. We use real workloads with

diverse characteristics for training. For this study, we first evaluate the effectiveness of using only

Rodinia [14] for performance prediction, and then we will take other workloads into account, which

provides a richer workload space.

The input sizes we choose for all the benchmarks can make full use of the GPU. We also restrict

our study to applications which do not take advantage of GPU’s texture memory space. CUDA and

OpenCL allows programmers to bind big read-only data structures to texture memory, which is

cached and optimized for arbitrary memory access patterns. Texture units present a unique access

pattern, which we leave for future work.

6.3.3 Similarity and Proxy Benchmarks

We define similarity between two benchmarks as their mutual euclidean distance in the n-

dimensional workload space. Each benchmark is represented by a data vector with multiple dimen-

sions; each dimension of the workload space represents one characteristic. We calculate pairwise
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distances for all the benchmarks. For each benchmark, we search the entire workload space to find k

(k≥ 1) closest benchmarks for the interpolation purpose —we use the k-nearest neighbor algorithm

for searching [65]. K benchmarks will be used as the proxy benchmarks for the application of in-

terest. The values of different metrics vary in the range. Therefore, when calculating the Euclidean

distances among benchmarks, normalization is first applied to raw data for all characteristics across

all benchmarks.

The choice of the value k is also important to prediction accuracy, which we will discuss in

details in section 6.4.4. We use MATLAB [79] to process data for collected characteristics, calculate

similarities among benchmarks (i.e. pdist) and search nearest neighbors for individual benchmarks.

6.3.4 Scaling Prediction

Weight(i) =
1

dist(i)
n

∑
i=1

1
dist(i)

(6.1)

SpeedupPred =
n

∑
i=1

Weight(i)∗Speedupi (6.2)

Error =
|SpeedupPred−SpeedupReal|

SpeedupReal
∗100% (6.3)

After we determine the most similar benchmarks to an application of interest, we predict its rel-

ative performance: the speedup of running an application on one platform against another platform.

The predicted speedup is calculated with the above equations (1, 2). The predicted speedup of the

application of interest can be represented by a linear combination of its nearest neighbors, each con-

tributing a component to the overall predicted value. The weights of the neighboring applications

are assigned to be inversely proportional to the distances to the application of interest [37]. This

means that the more similar a benchmark is to the application of interest, the more weight should

it be given for prediction. If we can obtain the run times on one platform, we can also predict the

run times on another platform by multiplying the speedups. To evaluate how accurate the predic-

tion is, we compare the predicted speedup with the real speedup achieved. The absolute prediction



Chapter 6. GPU Performance Prediction 97

error can be calculated with equation (3). In addition, we choose the arithmetic mean of absolute

prediction errors because we are reporting results that are samples from the overall population of

application behaviors.

6.4 Performance Prediction and Results

In this section, we report performance prediction results with different number of benchmarks and

across multiple processor configurations and multiple application inputs. We also study the impact

of the number of proxy benchmarks and verify statistical significance of prediction accuracy.

6.4.1 Performance Prediction with Existing GPGPU Benchmarks

In real-world practice, users may rely on standard benchmarks with widely-accessible information

and performance scores. There are several benchmark suites released for GPGPU [4, 14, 20, 75].

However, how representatively they can be used as references has not been sufficiently understood

by prior works.

In the first experiment, we consider eight benchmarks from the Rodinia benchmark suite. To

predict the performance of a particular application, the rest of applications are deemed as the train-

ing set. We use a “leave-one-out” approach for each application [37,65], and calculate its pair-wise

distances with the rest of Rodinia applications. We subsequently calculate the nearest neighbors of

the target application and predict its scaling behavior with determined proxies. Figure 6.4 shows the

predicted and actual speedups for eight Rodinia applications, which tends to be inaccurate. This is

attributed to the small application space covered by these benchmarks both in number and feature.

In addition, the experiment result suggests that in order to evaluate the prediction framework, we

should consider more benchmarks enriching the application coverage.

In the second experiment, we take some other applications from the GPGPUsim suite and

NVIDIA’s CUDA SDK into consideration. We report the results for the benchmarks we are able

to simulate successfully and exclude those making use of the texture memory. We also did not

consider simple kernels such as vector add and matrix transpose from the CUDA SDK. Figure 6.5
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shows the prediction results comparing the predicted speedups versus the actual speedups. The

prediction accuracy is significantly improved by including new applications. The results show an

average of 21.9% absolute errors. In particular, NQU (50.3%) and LUD (133.0%) are poorly pre-

dicted. The following PCA and workload space study also shows that they are two of the outlier

applications.

1.5

2

2.5

3

3.5

4

Actual Speedup Predicted Speedup

0

0.5

1

BP CFD HW HS LUD NW SRAD SC

Figure 6.4: The predicted speedups (28 shaders v.s. 8 shaders) and measured speedups. We use
only Rodinia benchmarks in this experiment.
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Figure 6.5: The predicted speedups (28 shaders v.s. 8 shaders) v.s. measured speedups for all the
applications. Prediction is conducted with real workloads from Rodinia, GPGPUsim and NVIDIA
CUDA SDK.

To better illustrate similarity/dissimilarity among benchmarks, we conduct a principal compo-

nent analysis (PCA) across all benchmarks for all characteristics. PCA transforms a number of

possibly correlated variables (or dimensions) into a set of uncorrelated variables, called principal

components [42]. PCA has the ability to describe a big data set along a limited number of dimen-

sions while still capturing the essence of the entire data set. We plot all the benchmarks in the 3-D

PCA space representing a 78% of total variance. It is interesting to notice that some outlier bench-
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marks (e.g. NN and NW) in the workload space are not necessarily badly predicted. Similar to their

scaling behaviors, the nearest neighbors determined by the framework (See Table 6.3) also exhibit

relatively poor scalings, making prediction relatively accurate. From our experiment, the worst pre-

dicted benchmarks (LUD and NQU), though also belonging to the category of outlier benchmarks,

are located at the “transition” region in the workload space; the nearest neighbors to LUD and NQU

both include benchmarks which scale well (i.e. over prediction).
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Figure 6.6: Applications in the 3-D PCA space

6.4.2 Spearman’s Ranking

Using the metric of absolute error alone is not sufficient to justify accurate prediction; the evalu-

ation of correlation between predicted and real values is needed. We use Spearman’s Rank Cor-

relation [37], a non-parametric statistical measure of mutual relationship and dependence between

two variables. What’s more, it does not require that samples meet any specific distribution require-

ments, e.g. normal distribution. Figure 6.7 illustrates 2-D views with the x-axis representing the
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predicted speedup while the y-axis represents the actual speedup. The predicted speedups show a

strong correlation with the actual speedups across all applications. Ideally, all the points should be

on the y = x line (i.e. perfect prediction). For instance, to evaluate the significance of prediction

for the experiment shown in Figure 6.5, we rank all the predicted and actual speedups and calculate

Spearman’s Rank Correlation Coefficient, which results in a high ρ value of 0.738. And then we

determine the “critical value”. We use the common significance level of α = .05. The correspond-

ing significance value is 0.429 (0.582 when α = .01 ). Our calculated correlation efficient, 0.738,

is much higher than this value, which means that our approach is reasonably accurate.
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Figure 6.7: Actual speedups (x-axis) and predicted speedups (y-axis). Each dot in the graph repre-
sents one benchmark.

6.4.3 Prediction with Different GPU Configurations

We also predict the scalings of applications under different GPU configurations. Table 6.2 shows

the prediction results for the speedups of a 28-shader GPU against GPUs with 4, 8 and 16 shaders.

The arithmetic mean of the absolute prediction errors ranges from 15.8% to 27.3% and the ρ values

range from 0.620 to 0.774. In particular, the four-shader case (27%) shows relatively higher average

prediction errors. The 16-shader case shows a relatively lower average absolute error as well as a

lower ρ. Figure 6.7 shows the prediction results for three GPU configurations. Each dot in the

graph represents one benchmark.
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GPUs 4 shaders 8 shaders 16 shaders
Arith. Mean Pred. Errors 27.3% 21.9% 15.8%
Significance: ρ 0.774 0.738 0.620

Table 6.2: Prediction errors and Spearman ranking results over different GPU configurations

6.4.4 Number of Proxies

The number of proxies is an important parameter critical to accurate prediction. We compute the

speedup for the application of interest using a number of proxies. The actual proxies, as discussed

in Section 6.3.3, are determined by the k-nearest neighbors algorithm. It is not feasible for the

sample space to include all the points (i.e. essentially all the theoretical applications), therefore

our assumption of the framework is that we will need more than one nearest neighbor ( k > 1) for

interpolation purpose. On the other hand, if k is too large, it will adversely degrade the accuracy of

prediction; using a large k risks that some applications dissimilar to the application of interest may

be treated as proxies.

Figure 6.8 quantifies the sum prediction error as a function of number of proxies. The predic-

tion error improves when increasing the number of proxies and then starts to degrade with larger

numbers, which proves our hypothesis. The best predictions happen when we use three proxies in

our experiment.

6.4.5 Different Input Sizes

In this section, we predict performance using different application input sizes. The GPU schedules

thread execution by dispatching thread blocks on multiple streaming multiprocessors. As discussed

in Section 6.1.2, when the number of thread blocks are sufficiently large to fill the GPU, further

increasing the input size will not influence the scaling behavior much (i.e. approximately linear

relationship between run time and input). We show two applications, SRAD and Needleman Wun-

sch, as examples and vary their input sizes from 512×512 to 2048×2048 and from 1024×1024 to

2048×2048 respectively. We measure the execution time in cycles on a 8-shader GPU and calculate

the execution time of different inputs on a 28-shader GPU with the predicted speedup. Figure 6.9

shows the results comparing the actual cycles versus the predicted cycles. SRAD achieves an av-
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Figure 6.8: The changes of prediction errors while increasing the number of nearest neighbors (i.e.
proxies).

erage of 19.3% absolute prediction error while Needleman Wusnch achieves an average of 11.6%

error. Of course, this is only restricted to those applications whose behaviors are not data dependent.
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Figure 6.9: The actual and predicted execution times (in cycles) of SRAD and Needleman Wunsch
with different input sizes.
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Table 6.3: The three proxies and their weights for each benchmark
first proxy second proxy third proxy

benchmark weight benchmark weight benchmark weight
Needleman Wunsch LU Decomposition 0.3423 N-Queen Solver 0.3330 Backpropagtion 0.3247
HotSpot DXTC 0.4522 Backpropagation 0.2925 SRAD 0.2553
Backpropagation SRAD 0.3755 Heartwall 0.3417 DXTC 0.2828
SRAD Heartwall 0.4004 fastWalshTransform 0.3572 Monte Carlo 0.2424
Streamcluster Heartwall 0.3477 SRAD 0.3429 Monte Carlo 0.3094
CFD Solver MersenneTwister 0.4733 Monte Carlo 0.2735 StreamCluster 0.2532
LU Decomposition Matrix Multiply 0.3916 StreamCluster 0.3208 NQueen Solver 0.2876
Heartwall Monte Carlo 0.4023 SRAD 0.3317 fastWalshTransform 0.2660
Monte Carlo Heartwall 0.4769 fastWalshTransform 0.2849 SRAD 0.2382
Neuro Network NQueen Solver 0.3549 Needleman Wunsch 0.3265 Backpropagation 0.3186
Ray Tracer HotSpot 0.3921 CFD Solver 0.3096 DXTC 0.2983
Weather Prediction CFD 0.3682 MersenneTwister 0.3440 Ray Tracer 0.2878
BlackScholes Monte Carlo 0.3757 fastWalshTransform 0.3326 Heartwall 0.2917
DXTC HotSpot 0.3794 SRAD 0.3362 Backpropagation 0.2844
NQueen Solver CFD Solver 0.3574 Streamcluster 0.3311 Backpropagation 0.3115
fastWalshTransform SRAD 0.3689 Heartwall 0.3315 Monte Carlo 0.2996
MersenneTwister CFD Solver 0.4790 BlackScholes 0.2661 Monte Carlo 0.2549
Matrix Multiply LU Decomposition 0.3915 Streamcluster 0.3147 DXTC 0.2938

6.4.6 Discussion

Our analysis show that one challenge of this performance prediction approach is its difficulty to pre-

dict an application of interest that is isolated in the workload space (as discussed in Section 6.4.1).

The same observation has been made by Hoste et al. [37]. For these applications, their proxy bench-

marks determined by the framework are relatively farther away from the application of interest than

those applications in “richer” areas of workload space, which means the benchmarks might not

accurately represent the application behavior of the target application. We have shown that pre-

dictions can be poor with inappropriately determined nearest neighbors. Therefore, constructing a

comprehensive benchmark repository for training is critical to accurate prediction.

This in turn raises an important question of benchmark suite design in general: what programs

we should select for inclusion in a standard benchmark suite [37] and how many benchmarks are

sufficient in terms of both feature coverage and cost. Several prior works have examined similar

issues for today’s research workloads. Phansalkar et al. [66] make the argument that the SPEC

CPU benchmark suite only covers a subset of application behaviors and its workloads exhibit re-

dundant behaviors. Hoste et al. [36] use microarchitecture independent characteristics and PCA

to characterize single-threaded workloads. Heirman et al. [32] use a cycle stack approach to com-

pare multithreaded CPU workloads including SPLASH2 [82], Parsec [9] and Rodinia. Goswami
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et al. [22] and Che et al. [17] analyze GPU workloads and their coverage. Their findings are all in

agreement with our observations: a thorough examination for benchmark construction requires a

comprehensive evaluation and comparison of all the current benchmark suites to establish a single

set of workloads with sufficient coverage and little redundancy. The benefit of this framework is

that it can be used as a method to test how well the benchmark suite is constructed by following

the prediction process discussed in this work. The size and workload coverage of a suite can be

determined by trading off between prediction accuracy and instrumentation cost. Another inter-

esting open research question is whether some real-world applications indeed exist to cover those

“desert” areas of application space. This issue might be partially resolved by developing synthetic

benchmarks to mimic diverse application behaviors.

6.5 Other Potential Metrics

Our work has shown promising trends of predicting GPUs’ application performance with existing

benchmarks. We hope to address some limitations in future work. In this work, we only consider

a few first-order characteristics which impact GPU performance. Other factors might make perfor-

mance prediction more accurate. We plan to study metrics capturing memory access efficiency of

other GPU caches (e.g. texture and Fermi’s hardware caches). We also plan to consider synchro-

nization overhead within each thread block (e.g. syncthread()) and across thread blocks (i.e. global

synchronization). On the other hand, in certain cases, some of these factors might not influence

prediction results a lot (e.g. first-order metrics). For instance, when syncthread()s are used at the

points of exchanging data between global memory and shared memory, interleaved warp executions

may hide most synchronization overheads. Global synchronization overhead is caused by different

finishing times of thread blocks dispatched to multiple SMs. If there are a sufficiently large number

of thread blocks evenly distributed to SMs, synchronization overhead is negligible – the execution

time of one or few thread blocks. Finally, part of the program characteristics can be directly col-

lected through GPU hardware counters; we leave instrumentation and analysis of GPU hardware

for future work.
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6.6 Related Work

Gustafson and Todi [29] performed an early work in correlating the performance of benchmarks

with others. Hoste et al. conducted a benchmark suite coverage study [42] and they used standard-

ized benchmarks to conduct performance prediction [37]. The framework they proposed for pre-

diction is based on principal component analysis (PCA) and genetic algorithms. Snavely et al. [70]

studied an approach to predict parallel application performance on HPC systems. They collected

machine profiles and application signatures, and combined them for prediction with a convolution

method. Carrington et. al. [12] predicted application performance using single, simple synthetic

metric (i.e. compute kernel) and a linear combination of these simple metrics as well. The individ-

ual “metrics” are namely small synthetic benchmarks such as LINPACK [54], STREAM [73] and

HPC Challenge Benchmarks [6], etc. All of these prior works mainly focused on CPU workloads.

Hong et al. [35] proposed an analytical model that estimates the execution time of massively

parallel programs on GPUs. Similarly, Baghsorkhi et al. [3] proposed a performance model captur-

ing performance effects of major GPU microarchitecture features using an approach based on the

program dependence graph (PDG). Kerr et al. evaluated a set of metrics for GPU workloads [44]

and used them to analyze the behavior of GPU programs. They further used PCA and regression

modeling to predict GPU performance [45].

Meng et al. [57] proposed GROPHECY, a GPU performance projection framework that can

estimate the performance benefit of GPU acceleration without actual GPU programming or hard-

ware. Users only need to skeletonize pieces of CPU code as targets for GPU acceleration, which

are further transformed in various ways to tune GPU code in the optimization space. The code char-

acteristics are further used by an analytical model to project GPU performance. Zhang et al. [86]

developed a microbenchmark-based performance model which allows programmers and architects

to identify GPU program bottlenecks and predict the benefits of potential program optimizations

and architectural improvements. Different from these works, our approach predicts GPUs’ applica-

tion performance by taking advantage of the characteristics and performance numbers of existing

benchmarks.
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6.7 Conclusions and Future Work

In this chapter, we study an approach of using existing benchmarks to predict performance of arbi-

trary GPU applications. For instance, users can take advantage of performance scores of a variety

of standard GPU benchmarks provided by GPU vendors (e.g. CPU vendors report performance

scores for standardized CPU benchmarks such as SPEC [71]). Given a target application, predic-

tion is conducted by collecting a set of important GPU characteristics for all the benchmarks in

the repository, identifying the most similar proxy benchmarks in the workload space, and using the

performance of proxy benchmarks to predict that of the target application. We predict performance

speedups of various applications across different GPU configurations. The predicted value for a

particular benchmark is represented with a weighted sum of the speedups of its proxy benchmarks.

We allocate the contribution of each benchmark to be inversely proportional to its distance to the

target application. We consider workloads from Rodinia, GPGPUsim and NVIDIA CUDA SDK

to construct a richer benchmark space. The experimental results show that accurate performance

prediction is possible for the proposed metrics and the methodology based on nearest neighbors.

We are able to achieve an arithmetic mean of 21.6% prediction error across different GPU config-

urations. Much of the error is due to outlier applications in the workload space. In addition, the

predicted performance shows a strong correlation with the actual performance from the Spearman

Ranking analysis.

This approach requires a well-constructed GPU benchmark suite with sufficient diversity and

feature coverage, which requires a holistic approach for benchmark suite construction. Further-

more, studying mutual relationships among benchmarks allows users to focus on understanding

and analyzing the most important and relevant proxy benchmarks, which helps them make appro-

priate design and purchasing decisions. In addition, the entire flow of our framework, including

program profiling, data collection and processing (e.g. pair-wise distance and nearest neighbors)

and performance prediction, can be automated as an integrated tool for easy use. Understanding

the robustness of our prediction approach with different programming styles and architectures is an

open research question, which we leave for future work.
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Conclusion

7.1 Dissertation Summary

Heterogeneous computing with accelerators (e.g. GPUs) opens up new challenges and opportuni-

ties for application performance improvement. These accelerators are significantly different from

CPUs in architecture and programming models, which requires researchers to leverage their unique

features to achieve diverse computation needs.

How to program and adapt various applications to run efficiently on a heterogeneous platform

with these emerging devices has not been sufficiently studied by prior works. First, understanding

and performance engineering, e.g. benchmarking and performance modeling, for parallel programs

are essential to achieve optimization goals. Secondly, high performance of a heterogeneous system

requires per-device optimizations as well as efficient cross-platform collaborative processing. Par-

ticularly, challenges include mapping tasks to their most appropriate devices and spreading work-

loads proportionally to individual devices with regard to their computation rates. Additionally, CPU

and GPU may prefer different memory layouts, which raises the important performance portability

issue.

To address these concerns, this dissertation endeavors to understand and optimize the perfor-

mance of heterogeneous system using GPU as a case study. However, major principles in program

analysis and performance optimizations can be adapted to other platforms as well. A summary of

this dissertation and its contributions are as follows:

107
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• To address the research challenges in heterogeneous computing, researchers first need a set

of well-designed workloads for their research. We developed Rodinia, a benchmark suite for

heterogeneous computing. The Rodinia benchmark suite is designed to target multiple plat-

forms, e.g. multicore CPUs and GPUs, and takes advantage of different languages - OpenMP,

CUDA and OpenCL. We also did a preliminary study comparing GPU and FPGA efficiency

for diverse application characteristics [16]. Rodinia includes the state-of-art implementations

of 17 applications from different application domains and leverages various optimizations

techniques from our research. It spans a diverse range of parallelism and compute patterns

and stresses different hardware components. The initial version of Rodinia was part of my

masters thesis work. My Ph.D. work extended it with diverse applications [17] as well as

support for OpenCL.

• Part of the Rodinia research is to study formal analysis approaches and methodologies for

workload characterization and construction of parallel benchmark suite with sufficient di-

versity. In addition, as Rodinia sees higher levels of acceptance, it becomes important that

researchers understand this new set of benchmarks, especially how they differ from previous

works. We characterize the Rodinia benchmarks and show the diverse behaviors exhibited

(e.g. IPC, memory instruction mix, warp occupancy, etc). The analysis also include analyz-

ing performance results on an NVIDIA GeForce GTX480 with configurable first-level caches

and characteristics for different incremental optimized versions. Furthermore, we also com-

pare and contrast Rodinia with Parsec to gain insights into the similarities and differences of

the two benchmark collections; we apply principal component analysis to analyze the appli-

cation space coverage of the two suites. Our analysis shows that many of the workloads in

Rodinia and Parsec are complementary. We concluded that benchmark construction should

consider various workloads from all suites and create a final set of benchmarks with sufficient

feature coverage and minimum redundancy.

• To take advantage of all the available resources in a heterogeneous system, we study an

approach to execute parallel compute kernels simultaneously on the CPU and the GPU and
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allow efficient data partitioning and load balancing across devices. There has been growing

research efforts to investigate this issue for heterogeneous platforms. However, most previous

works solve this problem manually or their approaches are not adaptable to run-time resource

changes. To address these concerns, our framework adopts a method of hierarchical domain

partitioning with chunking and work queues. The computation domain is divided into chunks

with hierarchical domain partitioning. The scheduler is responsible for dispatching chunks

on the CPU and the GPU by checking the progress of each compute device at runtime. Our

solution has the advantage of adapting to runtime resource changes and reaching a desirable

balanced workload ratio. The performance improvement of CPU-GPU load balancing over

GPU-only execution varies across applications, e.g. SRAD (11.7%) and Kmeans (29%),

depending on their CPU-GPU speed gaps.

• GPUs offer a large number of parallel cores and have access to high memory bandwidth;

however, data structure layouts in GPU memory often lead to sub-optimal performance for

programs designed with a CPU memory interface. This implies that application performance

is highly sensitive irregularity in memory access patterns. This issue is all the more important

due to the growing disparity between core and DRAM clocks; memory interfaces have in-

creasingly become bottlenecks in computer systems. To address these concerns, we proposed

a high-level abstraction to define memory mappings and access patterns for heterogeneous

computing. We developed a framework, Dymaxion, and associated techniques, to allow pro-

grammers to easily optimize the access patterns for better memory bandwidth utilizations

in a heterogeneous system with CPUs and GPUs. Memory layout reorganizations are ab-

stracted in a high-level API extending the CUDA programming model. The runtime system

is responsible for optimizing memory layouts accordingly and then transforming subsequent

memory access addresses as necessary. To minimize the layout transformation overhead

across devices, we hid the latency through chunking data structures and overlapping their

data transfers with layout reorganizations. With Dymaxion, four applications with a variety

of access patterns achieve an average of 3.3× speedup on GPU kernel computations and 20%

performance improvement when taking PCI-E transfers and layout reorganization into ac-
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count. Furthermore, the codes with Dymaxion maintain portability across CPUs and GPUs.

• GPUs present significantly different architectures from CPUs and require specific mappings

and optimizations to achieve high performance. This makes GPU workloads demonstrate

application characteristics different from those of CPU workloads. Therefore, it is critical

for researchers to understand the first-order metrics that influence GPU performance and

scalability most. Furthermore, methodologies and associated tools are needed to analyze and

predict the performance of GPU applications and will help users to make proper purchase

decisions.

In this work, we study an approach of predicting the performance of GPU applications by

correlating them to existing workloads. One tenet of benchmark design, also a motivation of

this paper, is that users should be given capabilities of leveraging standard workloads to infer

the performance of applications of their interest – an important issue neglected by most of

today’s benchmark suite designers. We first identify a set of important GPU application char-

acteristics and then use them to predict performance by determining the most similar proxy

benchmarks to the target application. We demonstrate the prediction methodology and con-

duct prediction with benchmarks from different suites to achieve a better workload coverage.

The experiment results show that we are able to achieve satisfactory performance predic-

tions except for certain outlier applications. The arithmetic mean of prediction error is 21.6%

across different GPU configurations. Finally, we discuss several important considerations for

systematically constructing future benchmark suites in general.

7.2 Future Research Challenges and Directions

One challenge in mapping traditional CPU applications efficiently onto the GPU is that traditional

data structures, e.g. list, tree and graph, do not directly fit to the GPU. For many data structures,

e.g. stack and queue, the operations are inherently sequential, which leads to significant efforts in

rewriting the applications and redesigning the algorithms to achieve parallelism. To tackle these

challenges, researchers need to revisit various traditional CPU applications, especially those with
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complicated and irregular data structures, and explore opportunities and techniques to perform easy

mappings to GPU. Interesting research directions include studying alternative parallel solutions to

operations on these data structures, discovering efficient parallel data structures and algorithms for

common problems, and further developing transformation routines and software building blocks to

ease programming [59].

In this dissertation, applications require the programmers to decide mappings of tasks to differ-

ent platforms: which regions of code to run on the CPU and which to run on the GPU and to actually

write the CUDA or OpenCL kernels for offloading to the GPU. On the other hand, as a future re-

search direction, existing legacy codes can be taken as inputs for compiler analysis to generate task

partitionings across platforms. This requires profiling the types of heterogeneous parallelism in-

herent in a variety of applications and possibly performing affinity analysis on different code types

and their favorable architectures. Other important factors that need taking into account also include

input data sizes and communication overheads (e.g. PCI-E transfers) which are important for mak-

ing correct offloading decisions. Some related works in this regard include PGI Accelerator [24],

OpenACC [63], OpenMPC [47] programming models and the work by Szafaryn et al. [46], which

all require programmers to make offload decisions by adding pragmas to particular regions of codes

by specifying parallelism and data mappings.

Furthermore, a comprehensive analysis on the sources of poor cross-platform performance

portability is also needed. Our Dymaxion work tackles this issue from the memory layout per-

spective. An API and automatic layout and index transformation are applied to applications to

achieve optimized memory accesses for CPU and GPU, when they prefer different layouts. In ad-

dition, certain optimization techniques appropriate for the CPU may yield bad performance on the

GPU, or vice versa, which suggests each device has its own strategies for optimizations. Thus, a

single code implementation (e.g. OpenCL) cannot guarantee satisfactory performance across all the

platforms. Researchers need to evaluate the performance portability issue from other perspectives,

such as data structures and algorithms, compiler techniques and different multithreaded models,

which is an interesting future research.

In this work, we use systems with multicore CPUs and discrete GPUs as case studies. How-



Chapter 7. Conclusion 112

ever, some techniques can apply to other heterogeneous organizations (e.g. AMD Fusion) as well.

For instance, our load balancing approach can be used in platforms with heterogeneous devices in

general. The approach based on chunking and work queues is able to respond to diverse compu-

tation rates of different devices to achieve load balancing. In addition, for dymaxion, integrating

programmability into memory management units may enable Dymaxion-like transformation across

different memory hierarchies. Dymaxion-like memory remapping can be enabled in memory/cache

controllers, with data prefetching mechanisms for latency hiding.

My Ph.D. research has focused on understanding the unique features of emerging devices, espe-

cially GPUs, exploring their optimization strategies and leveraging heterogeneity for cross-platform

performance improvement. In addition, our study was restricted to a single system node, however,

techniques and principles discussed in this dissertation can be adapted to larger scale systems (e.g.

heterogeneous compute clusters) as well:

• Future work can extend the Rodinia benchmark suite to support heterogeneous compute clus-

ters. Interesting research issues include explorations of additional node-level parallelism,

per-node data locality, cross-node load balancing and approaches to minimize cross-node

data communications.

• Supporting multiple compute nodes implies new requirements and metrics for workload char-

acterization. Especially, characterizing runtime data flows (between CPU and GPU within

one node and among different nodes), dynamically changing resource demands, causes for

load imbalance as well as performance bottlenecks will be critical to optimize overall system

performances.

• Studying how to program heterogeneous clusters is also an interesting question. To efficiently

leverage such systems, programmers will need to reason about multi-level parallelism, data

locality and task mappings. Our load balancing framework uses CUDA/OpenCL-like hi-

erarchical domain partitioings. A similar idea can be extended to support multiple nodes

by introducing another layer of hierarchy with efficient work scheduling and load balancing

support.
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• The Dymaxion approach is not limited to one compute node. For example, MPI can launch

memory remappings on each node in a cluster. Also, a global, cross-cluster approach may

allow further optimizations, especially when cross-node data transfers and system-level in-

terconnect are considered.

In summary, to understand and optimize the performance of heterogeneous systems, we explore

the following research problems in this dissertation:

• We develop the Rodinia benchmark suite to fill the gap of benchmarking heterogeneous plat-

forms including both the CPU and the GPU.

• We characterize the Rodinia benchmarks and show the diverse behaviors exhibited. We com-

pare Rodinia with other benchmark suites (e.g. Parsec) and evaluate how Rodinia differ from

the suites designed for multicore CPUs.

• We study an approach to allow applications to run on both the CPU and the GPU simultane-

ously and study the load-balancing issue.

• We design a set of APIs, layout/index transformation and latency hiding techniques to opti-

mize memory access patterns for heterogeneous systems.

• We design and evaluate the methodology of predicting the performance of a GPU application

by correlating to that of existing benchmarks.
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