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Abstract 

Volumetric muscle loss injuries occur when the degree of tissue loss exceeds the endogenous regenerative 

capacity of skeletal muscle. These injuries result in permanent cosmetic and functional deficits, and current 

treatment options are ineffective for restoring muscle function. To solve this issue, new tissue-engineered 

solutions are being developed to improve skeletal muscle regeneration. To design an effective treatment, 

skeletal muscle repair must be better understood. Specifically, macrophages play an important role in the 

timing and mechanisms of functional recovery. The goal of the project was to develop an automated 

quantification program for macrophages that would permit more rigorous establishment of metrics for 

evaluating the participation and role of macrophages in wound healing following implantation of tissue 

engineered constructs. An automated quantification method was designed on MathWork’s MATLAB using 

image thresholding techniques and a density based spatial clustering algorithm that could quantify 

macrophages on a slide image, and distinguish between the M1 and M2 phenotypes. To test the accuracy 

of the code, 20 digital slide images of macrophages stained with CD68 (pan macrophage marker), and 

CD163 (M2 macrophage marker) were analyzed using a manual counting method on NIH’s ImageJ 

software, and using the developed automated method. The outcomes, including number of M1 

macrophages, number of M2 macrophages, and the ratio of M2/M1 macrophages, were compared between 

the two methods. There was not sufficient evidence to suggest differences between automatic and manual 

measurements for M1 macrophages (P = 0.07; paired sample t-test) or M2 macrophages (P = 0.92; paired 

sample t-test). However, further analysis indicated that the automated program produced approximately 

equal numbers of false positive and false negative values. There was not sufficient evidence to suggest 

differences between automated and manual measurements for the M2/M1 ratio (P = 0.76; paired sample t-

test), indicating that the M2/M1 ratio was conserved between methods. 
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Introduction 

War fighters suffer extensive loss of skeletal muscle tissue 

during traumatic injuries suffered on the battlefield. When 

the degree of tissue loss exceeds the endogenous 

regenerative capacity, permanent cosmetic and functional 

deficits result which is referred to as volumetric muscle loss 

(VML). There are few current treatment options for 

restoration of VML injuries, and the efficacy of present 

therapies for skeletal muscle healing is extremely limited. 

The standard of care for VML injury involve physical 

rehabilitation, orthotics, or the placement of free or 

rotational flaps of muscle onto the site of large skeletal 

muscle defects. These procedures have proved ineffective 

in replacing lost skeletal muscle tissue and in restoration of 

skeletal muscle function1. A report detailing the wounding 

patterns in recent US conflicts found that 54% of combat 

wounds were located in the extremities, which often involve 

severe musculoskeletal injury2. These injuries contribute 

the most to the long-term disability of service members3, 

and the lack of effective therapies presents a significant 

need for a regenerative solution that will restore the function 

of skeletal muscle for those suffering from these injuries. To 
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address this problem, we seek to develop new tissue 

engineered technology to improve muscle regeneration. 

In order to develop effective tissue-engineered solutions for 

VML injuries, the physiology of skeletal muscle 

regeneration and wound healing environment must be better 

understood. Specifically, macrophages are a major player in 

functional regeneration of muscle due to their remarkable 

plasticity with diverse functions in tissue repair. There are 

two main macrophage phenotypes which can be observed at 

the wound site after skeletal muscle injury. These are the 

‘classically activated’ macrophage phenotype, also known 

as ‘M1’ and the ‘alternatively activated’ phenotype, or 

‘M2’. Their presence depends on different external stimuli. 

M1 macrophages are produced in response to inflammatory 

stimuli and promote myoblast proliferation while also 

reducing fibroblast collagen production4. About 1-2 days 

after an injury, skeletal muscles recruit monocytes from the 

blood, which become inflammatory M1 macrophages5. 1-3 

days after their recruitment, a phenotype switch takes place, 

and the macrophages transition to an anti-inflammatory M2 

type6. Studies that demonstrated this sequence of 

macrophage phenotypes during skeletal muscle 

regeneration provided insight as to the benefits of anti-

inflammatory drugs during the first days after muscle 

injury7. Similarly, the ability to accurately quantify and 

compare macrophage phenotypes at early timepoints after 

administration of a tissue-engineered treatment will provide 

useful data for recording the progression of the VML injury 

and the efficacy of the different applied therapies.  

Distinguishing between M1 or M2 phenotype can be done 

through immunohistochemical staining. CD68 and CD163 

are used to identify macrophages in tissue sections. CD68 is 

a membrane protein used as a pan-macrophage marker5. In 

vitro studies suggest that CD163 is an M2 marker6. To stain, 

tissue sections are subjected to antigen retrieval, 

autofluorescence reduction protocol, and overnight 

blocking. Samples are incubated with antibodies against 

CD68 and CD163, followed by incubation with 

fluorescence dye conjugated secondary antibodies. The 

stained sections are then digitized using confocal 

microscopy, and are can be quantified. For this project, 

CD68+/CD163- macrophages will be considered M1 

macrophages, and CD68+/CD163+ macrophages will be 

considered M2 macrophages. Macrophages contain a 

central round nucleus, which is identified using DAPI, a 

fluorescent stain that visualizes nuclear DNA in living and 

fixed cells8.  

There is currently no standardized approach for quantifying 

M1 and M2 macrophages. A common method is to 

manually count cells through the microscope or produce 

digital images of the stained sections and manually counting 

and marking the cells on ImageJ. This time-consuming 

method is subject to inter-user variability and error from 

repeated human judgement. The use of digital imaging in 

pathology for quantification of macrophages has been used 

in a recent study for rapid quantification of the number of 

macrophages in heart tissue sections immunostained with 

macrophage marker F4/809.  However, this method required 

several calibration steps for each individual image in order 

to provide a macrophage count within 5% of the true value, 

suggesting that the most reliable method for quantification 

is manual identification by lab personnel. In addition, this 

method is unable to distinguish between M1 and M2 

macrophages. The automated quantification program 

developed in this project herein is novel in that it will be 

able to accurately quantify M1 and M2 macrophages in 

skeletal muscle sections. This will be a significant 

improvement over other methods because of its potential to 

reduce the time required for analysis, improve accuracy by 

eliminating human bias and inter-user variability, and 

provision of information about the macrophages’ 

phenotype.  

There are several digital pathology techniques that can be 

used for imaging of digital pathology slides. For this 

project, a combination of image thresholding and spatial 

analysis was used to create a MATLAB program that can 

identify locations of M1 and M2 macrophages. Image 

thresholding is a technique that segments a stained digital 

slide image by quantifying the staining intensity at each 

point on the image. If the intensity is above a certain 

threshold, a value is added to this area, and if the intensity 

is below the threshold, no value is given to this area on the 

image10. This approach was used to separate stained regions 

of the slide images from unstained or background regions. 

Spatial analysis is a broad range of imaging techniques that 

includes spatial clustering, which can be used to detect 

groups or clusters on an image. This approach was also used 

while developing this program to automatically identify 

clusters of macrophages, and then identify the phenotype 

based on the staining present in the clusters11.  

The goal of this project was to design an automated 

method for quantification of M1 and M2 macrophages by 

developing a MATLAB code capable of segmenting 
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images based on CD68+ immunofluorescent stain, 

CD163+ immunofluorescent stain, and DAPI stain, and 

identify individual macrophages on the segmented images 

through the use of a density-based spatial clustering algo  

rithm. The goal of the program was to output data including 

the number of M1 macrophages, and the number of M2 

macrophages. Then, using images from different 

timepoints, these data would be used to produce a graph of 

the change in M2/M1 macrophage ratio overtime. This 

analysis can be used in computational models that can 

predict the macrophage phenotype response for tissue-

engineered treatments for VML injury in animal model 

studies.  

Results 

The MATLAB program developed requires the user to input 

a digital slide image stained with DAPI, CD68 and CD163. 

The program then will use the mentioned strategies to 

quantify the macrophages in the image, outputting CD68+, 

CD68+/CD163+, M1 and M2 values. To test the 

effectiveness of the MATLAB program, 20 digital images 

of skeletal muscle tissue sections stained with DAPI, CD68 

and CD163 were tested. The images were obtained from in 

vivo rodent studies that were investigating the influence of 

a tunable Hyaluronic acid (HyA)-based biomaterial, alone 

or in combination with existing Tissue Engineered Muscle 

Repair (TEMR) technology on skeletal muscle regeneration 

after injury creation and biomaterial implantation. To 

simulate a VML injury, 20% of the rodent’s tibialis anterior 

(TA) muscle was removed. The biomaterial was then 

implanted, and muscles were explanted and observed at 

various time points including 2 weeks, 6 weeks, and 12 

weeks. Digital images were obtained from all three of these 

groups: 10 images from 12 weeks, 6 images from 6 weeks, 

and 4 images from 2 weeks. Manual macrophage 

quantification was performed on each image using ImageJ. 

Then, automated macrophage quantification was done using 

the MATLAB program for each image, and the results for 

CD68+/CD163- (M1) macrophages and CD68+CD163+ 

(M2) macrophages were compared between methods. 

Paired sample t-tests were performed to detect differences 

in quantified clusters between manual and automated 

measurements. P values below 0.05 were considered 

statistically significant. Table 1 summarizes the 

comparisons between manual and automated macrophage 

quantification of CD68+/CD163- macrophages, and 

CD68+/CD163+ macrophages. No significant differences 

were found between automatic and manual measurements 

for CD68+/CD163- clusters (P = 0.07; paired sample t-test). 

No significant differences were found between automatic 

Table 1. Comparison Between Manual and Automated 
Measurements of CD68+/CD163- macrophages and 
CD68+/CD163+ macrophages. 

Fig. 1. Density-based clustering plot produced by MATLAB 
overlayed on Manual Quantified Image from ImageJ.  
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and manual measurements for CD68+/CD163+ clusters (P 

= 0.92; paired sample t-test). These results show that the 

automated program produces macrophage cluster counts 

comparable to the manual ones, because there is not 

sufficient evidence to coclude that there are significant 

differences in the counts between manual and automated 

methods.  

To further explore the relationship between the manual 

macrophage counts and the automated quantification 

program, data points for true positive counts, false positive 

counts, and false negative counts were taken. This was done 

by overlaying the density-based clustering plot produced by 

the MATLAB program with the manual quantified image 

from ImageJ, shown in Fig. 1. True positives were recorded 

at points where a manually counted cluster was correctly 

identified by the MATLAB program. Points where a 

manually counted cluster was identified, but the MATLAB 

code failed to quantify were classified as false negatives, 

and points where a manually counted cluster was not 

identified, but the MATLAB code quantified one was 

classified as a false positive. Fig. 2 shows these numbers for 

the CD68+ Clusters identified by the MATLAB code, and 

these numbers for the CD68+/CD163+ macrophages 

identified by the MATLAB code. These results show the 

code’s tendency to overcount CD68+ clusters, and 

undercount CD68+CD163+ macrophages. Due to the 

automated nature of the MATLAB program, the numbers 

determined for M1 and M2 macrophages did not differ 

significantly from the manual counts. However, the false 

positive and false negative data show that the code does not 

correctly identify every single macrophage. 

 

One important application of macrophage quantification, 

mentioned previously, is the change in M2/M1 ratio 

overtime. Using the quantification data obtained, the ratio 

of M2/M1 macrophages was calculated for each image 

using both manual and automated counts. Fig. 3 shows how 

this ratio changes at 2-, 6-, and 12-week timepoints in the 

manual and automated counts. The MATLAB program’s 

accuracy in determining the M2/M1 ratio was tested using 

a paired sample t-test to detect differences in the ratio 

obtained by the manual quantification method and 

automated method. No significant differences were found 

between automated and manual measurements for the 

M2/M1 ratio (P = 0.76; paired sample t-test). This result 

shows that the automated program produces M2/M1 ratios 

comparable to the manual ones.  

Along with accuracy, the time required to quantify 

macrophages using each method was recorded. On average, 

it took around 13.5 minutes to complete the manual 

macrophage counts, and on average it took about 4.2 

minutes for the MATLAB code to run. Significant 

differences were found between automated and manual 

measurements for the time required to obtain M1 and M2 

counts. This shows that the user of this program could 

conduct the same analysis in about a quarter of the time. In 

addition, during the time that the MATLAB code is being 

run, the user does not need to be monitoring the program; 

most of this time is saved by the user as well.  

Discussion 

Initial results comparing automatic and manual 

measurements for CD68+ clusters, CD163+ clusters, 

CD68+/CD163- macrophages and CD68+/CD163+ 

macrophages showed that there were no significant 

differences in the manual and automated quantification. 

However, when examining the results closer, it became 

evident that this may have been due to the consistency of 

the automated program, rather than its ability to actually 

identify each individual macrophage. When the density-

based clustering plot produced by the MATLAB program 

was overlayed with the manual quantified image from 

ImageJ, it became clear that not all the points identified by 

the MATLAB code were accurate, or true positives. Instead, 

many of the points produced by the MATLAB code were 

false positives, meaning the code counted areas that were 

not actually negatives. In addition, many of the actual points 

that were manually counted on the images were not 

Fig. 2. CD68+ Macrophages Identified by MATLAB Code and 
CD68+/CD163+ Macrophages identified by MATLAB Code. True 
positive, false positive, and false negative shown for both groups.  

Fig. 3. Average M2/M1 Ratio over time for both manual and 
automated count. Data points from 3 different time points.  
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identified by the MATLAB code, resulting in false 

negatives. Since the percentage of false negative points is 

close to the percentage of false positive points, these errors 

cancel each other out, resulting in the code outputting values 

that were not significantly different between manual and 

automated counts. Because of this, the way that the 

automated program is being used will affect the accuracy of 

the results. The automated program has proved to be 

accurate when the overall number of identified 

macrophages on an image is used. One important 

application of that quantification is the ratio of M2/M1 

macrophages overtime. Testing showed that there were no 

significant differences in this ratio between the automated 

method and the manual method. The ability to obtain these 

values in a fraction of the time it would take for the manual 

counting method makes this program an extremely valuable 

tool for determining the modulation macrophage phenotype 

has on skeletal muscle regeneration for VML treatments. 

This data can be paired with data on muscle regeneration or 

functional recovery to show the effects that macrophage 

phenotypes have on the efficacy of the tissue-engineered 

solution.  

Despite the abilities of the program to accurately quantify 

the ratio of M1/M2 macrophages, there are limitations to 

this program. If a user wanted a precise depiction of the 

location of each individual macrophage on the image, the 

program would not produce accurate results because of the 

numbers of false negatives and false positives that the 

program identifies. If the goal of the project being done was 

to explore the locations of macrophages in relation to the 

wound site, or to each other, this program would not provide 

accurate results. Instead, the program would need to be used 

as a semi-automated method for macrophage quantification. 

The program is able to successfully identify 82.3% of the 

manually counted macrophages, but human judgement 

would still be required to get rid of false negative and false 

positive counts in the final data set. 

An additional limitation is the requirement of entering 

parameters for the density-based spatial clustering 

algorithm used in the program. This algorithm identifies 

clusters of points in an image based on the density within a 

certain region. Two parameters are set for the algorithm to 

start its analysis. First is epsilon, which is the distance 

around each point that the algorithm searches for another 

point. The other is the minimum number of points, which is 

used to determine core, border, and noise points. The 

algorithm begins by searching around each point, using the 

radius specified by the epsilon parameter. If there are the 

minimum number of points within that epsilon distance of 

each other, the algorithm determines the point is a core 

point. Those that are within epsilon distance of a core point, 

but do not contain the minimum number of points with an 

epsilon radius, are labeled as border points. Those that are 

not within epsilon distance of a core point are considered 

noise, and are not counted as part of a cluster. The algorithm 

identifies clusters by looking at how many groups of core 

points, surrounded by border points, are contained in a 

single image. It then will output the number of clusters, 

which was used in the code to get the automated count for 

the clusters and macrophages. The two parameters in this 

algorithm, epsilon and minimum points, must be set by the 

user, and can be adjusted based on the size of the objects in 

the image. This provides more flexibility with the code, 

enabling it to be more precise for identification of smaller 

objects, however it also introduces human judgement and 

variability into the program. Adjusting the parameters even 

slightly has the potential to produce different quantities of 

clusters or macrophages on the images. Therefore, if a set 

of images from the same experiment was analyzed by 

several individuals, there is the possibility for variability in 

the results if the clustering algorithm parameters are not 

coordinated among the members working on the project. 

One of the original goals of the automated program was to 

remove the potential for human error when the manual 

counting was being done. The automated process mostly 

mitigates this error, but due to the parameter adjustments 

that must take place, it does not completely eliminate the 

need for human judgement.  

This program was designed as a tool for quantifying 

macrophages in order to explore their effects on skeletal 

muscle regeneration after VML injuries. To do this, the 

program segments the images based on the color and 

intensity of the staining, and then clusters the objects to 

perform the automated count. Therefore, this program could 

be used for quantifying any type of cell or histological 

endpoint that can be stained using antigen retrieval, as long 

as fluorescence dye conjugated secondary antibodies are 

used at the end of the procedure. This has the potential to be 

used as a quantification tool for building predictive models. 

Macrophages are important for skeletal muscle 

regeneration, but they are not the only component that plays 

into muscle remodeling. Other inflammatory cells such as 

neutrophils, as well as the interactions of macrophages with 

native muscle cells such as satellite stem cells and 

fibroblasts all play roles in regeneration of skeletal muscle 

after injury12,13. With proper staining, detection and 

quantification of these cells would be possible with this 

program, and could be useful for future work with 

predictive modeling. The data obtained in this project about 
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the M2/M1 macrophage ratio overtime can be fed into a 

predictive model. Building a computational model of 

muscle regeneration using data collected about neutrophils 

and native muscle cells as well could provide an insightful 

basis for predicting muscle regeneration, which is useful 

information for designing or improving upon tissue-

engineering solutions for skeletal muscle regeneration and 

functional recovery.  

The automated program in its current state is useful for 

determining the overall number of macrophages on a slide 

image, or the overall ratio of macrophages phenotypes on a 

set of slide images, however it is not accurate enough to 

determine the precise location of each cell. This project is a 

great starting point for quantification of the number and 

location of macrophages, and future work could incorporate 

additional steps after the image thresholding and spatial 

analysis methods that were used. Future iterations to 

improve on this program could implement machine 

learning. This is the use of computer algorithms that 

automatically improve as the algorithm uses more data. As 

the program gains more experience, it would be able to 

accurately identify all macrophages on a slide image, and 

data regarding the macrophage’s location in proximity to 

the injury site, and in relation to other macrophages could 

be extracted using the program.  

 

Materials and Methods 

20 digital images were obtained from in vivo rodent studies that 
were investigating the influence of a tunable Hyaluronic acid 
(HyA)-based biomaterial, alone or in combination with existing 
Tissue Engineered Muscle Repair (TEMR) technology on skeletal 
muscle regeneration after injury creation and biomaterial 
implantation. A VML injury model was created by surgically 
excising ~20% of the tibialis anterior muscle of Lewis rats. After 

surgical excision, the animals were placed into one of the four 
treatment groups: (1) no repair, (2) repair with HyA biomaterial, (3) 
repair with TEMR implant, (4) repair with HyA + TEMR implant. 
Animals were allowed to recover before being euthanized at 
varying time points, including: 2 weeks, 6 weeks, and 12 weeks. 
TA muscles were explanted at sacrifice. Next, the muscles were 
sectioned and stained for CD68 and CD163. The sections were 
subjected to antigen retrieval, autofluorescence reduction 
protocol, and overnight blocking at 4ºC. Samples were incubated 
with antibodies against mouse CD68 (1:100, MCA341R; Bio-Rad) 
and rabbit CD163 (1:400, ab182422; Abcam) overnight at 4ºC. 
Secondary antibodies were then applied for 2-6 hours at 4ºC using 
Alexa Fluor 594 goat α-rabbit (1:500, A11017; Invitrogen) and goat 
α-mouse Alexa Fluor 488 F(ab’)2 fragment (1:500, A11017; 
Invitrogen). The antibodies were diluted in Dako Antibody Diluent 
(Dako Antibody Diluent S0809; Agilent Technologies). The stained 
sections were then digitized using confocal microscopy, and the 
images were ready for analysis.  

The first part of the analysis was the manual counts of the digitized 
images. This was done using NIH’s ImageJ image processing 
program. Each digitized image was a Z-stack of confocal images, 
which displays 3D data. This was converted to a 2D image by 
using the maximum intensity projection tool. The 2D image for the 
DAPI stain and the CD68 stain were then merged to create a 2D 
image for quantifying CD68+ macrophages. Similarly, the 2D 
images for the DAPI stain and the CD163 stain were merged to 
create a 2D image for quantifying CD163+ macrophages. To 
manually count the images, ImageJ’s point tool was used. This 
adds a circle with a number to the location on the image where the 
user clicks, so each macrophage was identifiable by a white 
(CD68+) or yellow (CD163+) circle on the image. After quantifying 
CD68+ and CD163+ macrophages, the images were overlayed to 
visualize which macrophages contained both CD68 and CD163 
staining. From here, numbers of CD68+/CD163- macrophages 
and CD68+/CD163+ macrophages were produced. This was 
repeated for each of the digital images, and the amount of time to 
conduct this analysis was noted.  

The second part for the analysis was the automated counts of the 
same digitized images. MathWorks’s MATLAB program was used 

Fig. 4. Conversion of ORP15 Image 1 (A) into a binary image (B) and then into a plot of points that correspond to the binary image (C). 
All is done through the MATLAB code developed.  
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to write a code that would automatically quantify macrophage 
images. In designing the code, the first step was to create a section 
where the digitized image could be imported. This includes three 
steps to insert the file name for the images of the maximum 
intensity projected Z-stack of the DAPI stain, the CD68 stain, and 
the CD163 stain. Next, the code binarizes each of the images. This 
creates a binary image from the 2D image that was imported by 
replacing all the values above a globally determined threshold with 
1s and setting all other values to 0s. This was done by the use of 
Otsu’s method, which is an algorithm that determines a threshold 
that will minimize the variance between the image background and 
foreground. This threshold was computed using a 256-bin image 
histogram, and separates the image so that only the stained 
sections are visible. The logical array that the image is stored in 
consists of 1s where there was staining above the threshold, and 
0s where there was staining below the threshold.  

Next, the logical array was used to find the overlap of staining 
between DAPI and each of the macrophage marker stains. To do 
this, the logical arrays of the two groups were multiplied together. 
This works because any areas that contained staining on both 
images would be the product 1x1 = 1. Any other areas that did not 
contain staining on one image or the other would be multiplied by 
0 and therefore result in 0. Before multiplication took place, the 
code first adds 1s values to pixels that are adjacent to pixels with 
a current value of 1. This was done so that areas where DAPI and 
CD68 stain were next to each other, for example, but did not 
completely overlap, were still present in the image being analyzed. 
The goal of this was to eliminate areas of staining that contained 
only CD68 or only CD163, which would be background staining 
because macrophages are identified by the nuclear DAPI stain 
surrounded by the CD68 and/or CD163 stain. Multiplying DAPI 
and CD68 stain together found areas that contained a nuclear 
stain and the CD68 pan macrophage marker and multiplying DAPI, 
CD68 and CD163 stain together found areas that contained a 
nuclear stain and the pan macrophage marker and the CD163 M2 
macrophage marker, representing CD68+/CD163+ macrophages. 
Next, these logical arrays were converted into a set of points based 
on where values of 1 were located. This allows for a plot of points 
to be created that represents where staining exists. Fig. 4 shows 
the conversion of a CD68 stained image into the binary image, and 
then into a set of points.  

With the points of interest that contain relevant staining plotted in 
a graph, the spatial analysis method of density-based clustering is 
then implemented. The code uses a density-based spatial 
clustering algorithm to automatically quantify the number of 
clusters on the DAPI and CD68 plot, and on the DAPI, Cd68 and 
CD163 plot. This algorithm performs clustering on an input data 
matrix and returns the cluster indices that indicates which pixels 
are core points, which are border points, and which are noise 
points. Core points are located in the middle of the cluster, border 
points are those that are on the outside of the cluster, neighboring 
the core points, and noise points do not belong to a cluster; they 
are outliers. These are important to consider in this automated 
method because there is often off target staining that occurs which 
should not be counted as a macrophage. Two parameters are set 
which will determine which points are classified as core, border, or 
noise. The first is the epsilon neighborhood, which is specified as 
a numeric scalar that defines a neighborhood search radius 
around the point. The second is the minimum number of neighbors 
required for a core point. This epsilon neighborhood of a core point 

in a cluster must contain at least the minimum number of 
neighbors, but the epsilon neighborhood of a border point can 
contain fewer neighbors than the minimum number of neighbors. 
Each cluster detected after the entire image is analyzed is counted 
as a macrophage. This algorithm is run on the plots of CD68 and 
DAPI intersection, and also the plots for CD68, DAPI, and CD163 
overlap. The result is numbers of clusters for CD68+ macrophages 
from the first plot, and CD68+/CD163+ macrophages from the 
second plot. From here, M1 macrophages are calculated by 
subtracting the CD68+/CD163+ clusters from the CD68+ clusters, 
and M2 macrophages are the number of clusters from the second 
plot. M1 and M2 macrophages counts appear as an output in the 
MATLAB command window once the analysis is complete. The 
time for each  

As described in the results section, the accuracy of the automated 
code was tested by comparing the outcomes for M1 and M2 
macrophages. Paired sample t-tests were performed to detect 
differences in quantified clusters between manual and automated 
measurements. The accuracy was further explored by identifying 
data points for true positive counts, false positive counts, and false 
negative counts. This was done by overlaying the density-based 
clustering plot produced by the MATLAB program with the manual 
quantified image from ImageJ. Lastly, the ratio of M2/M1 
macrophages overtime were compared between the two methods. 
The MATLAB program’s accuracy in determining the M2/M1 ratio 
was tested using a paired sample t-test to detect differences in the 
ratio obtained by the manual quantification method and automated 
method. 
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