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Abstract 

 Deoxyribonucleic acid (DNA) is the inheritance molecule, storing genetic 

information in its sequence of nucleic acids. The aggregate of an organism’s genetic 

material, or DNA, is called its genome. The genome contains the complete set of 

instructions to create and maintain an organism. Initially, it was thought that genomes 

were static entities, changing slowly over very large timescales; however, insights into 

evolution and discoveries made by sequencing DNA have dispelled this notion. The 

current understanding asserts that genomes are highly plastic and dynamic structures. 

Genomic alterations are broadly classified as variations and can even be found occurring 

among cells in the same tissue. Given the importance of DNA in the functioning of a cell, 

detecting and characterizing DNA variation is paramount in understanding disease, 

especially cancer. In this bipartite dissertation, I will describe a population-based method 

for detecting variation and characterizing the prevalence of copy number variation in 

human neurons. In Chapter 1, I will provide a brief overview of genetics and variation 

followed by an explanation of current methods of detecting variation in the genome. In 

Chapter 2, I will detail a novel framework that increases the sensitivity and specificity of 

genomic structural variation detection by using multiple samples. In Chapter 3, I will 

describe how single cell sequencing has been used to uncover mosaic copy number 

variation in human neurons. Finally, in Chapter 4, I will conclude with a discussion of 

future directions and ongoing experiments. 
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CHAPTER 1: 
GENERAL INTRODUCTION 
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Genetics and the Genome 

The basics and historical context 

 An organism’s genome encodes the instructions necessary for creating and 

maintaining life, and cataloging the differences between individual genomes is 

fundamental in the study of human disease, development, and evolution. Any alteration 

to a genome can be broadly categorized as a genetic variation, which may exist in only a 

single cell in one individual or conserved across an entire population or species. The 

effects of variations can range from silent to lethal, and it is the influence of variation on 

an organism’s fitness and form, also known as phenotype, which is crucial to 

evolutionary processes. Observing these phenotypic differences and their inheritance is 

what led to key insights that gave rise to what is now modern genetics. The work 

presented here expands current scientific knowledge by characterizing genetic variations 

at two extremes, namely, at the population scale level and at the single cell level.  

 The scientific study of genetic variation is generally recognized to have started in 

the middle of the 19th century with Mendel’s famous hybridizations of pea plants 

(Mendel, 1866). Mendel’s quantitative study allowed him to arrive at a particulate theory 

of inheritance, whereby he believed that discrete particles were responsible for imparting 

inheritance to offspring. Soon after this, Miescher unknowingly isolated this hypothetical 

particle, DNA, which he described as nuclein to Wilhelm His (His, 1869). Unfortunately, 

Mendel’s work, as well as the discovery of DNA, went largely unnoticed for years 

(Lander and Weinberg, 2000). In fact, Mendel’s observations were in direct opposition to 

the prevailing model of blending inheritance that stated traits were continuous, not 

discrete. In this model, traits were randomly inherited from the range of parental 
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phenotypes. At the same time, the attentions of the scientific community had also been 

fixed on the evolution controversy that had erupted the in the previous decade (Darwin 

and Wallace, 1858). Evolution had been widely accepted, but the process by which 

evolution occurs (natural selection vs. saltation) was hotly contested. Of the many extant 

explanations, Mendelian inheritance would not be considered as a potential contender 

until many years later. Furthermore, the marriage of Darwin’s ideas of evolution and 

Mendel’s ideas of inheritance would not occur until the middle of the 20th century with 

the advent of modern evolutionary synthesis (Huxley, 1942). A necessary condition for 

this union was the rediscovery of Mendel’s work (Lander and Weinberg, 2000), 

occurring in 1900 by three independent researchers (Correns, 1990; Tschermak, 1900; de 

Vries, 1900).  

 The resurgence of Mendel’s work prompted scientists to attempt to find a 

connection between inheritance and one of the many microscopic structures observed in 

the cell. This connection was established when the role of the nucleus was elucidated and 

then, more specifically, when it was determined that chromosomes inside the nucleus 

were responsible for carrying genetic material (Sutton, 1902; Boveri, 1902). Morgan’s 

fruit fly experiments (Morgan, 1910) cemented this relationship and validated the Sutton-

Boveri chromosome theory. One of Morgan’s students then created the first genetic map 

of chromosomes (Sturtevant, 1913). These maps defined distances between genes with 

the eponymous centiMorgan measurement, but it was still unclear whether DNA or 

protein maintained genetic information. At the time, protein was thought to be the 

heritable material of a cell because it was considered to be a more complex 

macromolecule. This resulted in protein being given a misnomer meaning “primary” or 
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“first.” Before a resolution of the DNA vs. protein debate could be reached, the one gene, 

one enzyme hypothesis (Beadle and Tatum, 1941) arose, linking genes to protein function 

and to the phenotype of the organism. It was not until after a few well-devised 

experiments, that DNA was confirmed as the inheritance molecule (Griffith, 1928; Avery 

et al., 1944). Following this confirmation, another milestone in understanding the 

function of DNA was made when Watson and Crick deduced its structure (Watson and 

Crick, 1953). Shortly thereafter, the triplet nature of codons and the genetic code was 

understood (Nirenberg and Matthaei, 1961). Amazingly, all of these discoveries were 

made before there was an effective means of analyzing DNA sequences; however, it 

became readily apparent that knowing the composition of nucleic acid sequences would 

be paramount in understanding biology.  

 Two sequencing methods debuted around the same time (Sanger and Coulson, 

1975; Maxam and Gilbert, 1977). These first-generation DNA sequencing technologies 

allowed researchers to interrogate long DNA fragments. Improvements to the Sanger 

method (Sanger, Nicklen, Coulson, 1977) quickly made it the more favored technique. 

Further modifications to Sanger sequencing, using expressed sequence tags as well as 

shotgun and automated sequencing, allowed researchers to uncover many human genes 

and the full sequence of organisms that had comparatively small genomes (Fleischmannet 

et al., 1995; The C. elegans Sequencing Consortium, 1998). The grand undertaking of 

sequencing the human genome was laboriously accomplished using the Sanger method 

and its modified versions, providing the first draft, or reference, of the human genome 

(International Human Genome Sequencing Consortium, 2001; Venter et al., 2001).  
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The reference genome 

 The goal of the Human Genome Project was to establish the sequences that make 

up the human genome and to identify the location and function of all genes within the 

genome. The complete sequence, now known as the human reference genome, was the 

haploid version of human sequences from the 22 autosomes and 2 sex chromosomes 

produced by de novo assembly. Assembly is the process of merging sequenced DNA 

fragments together to reconstruct the initial sequence. The current reference, or assembly, 

is called hg 19, build 37, the 19th iteration, and it is a composite of several individuals. 

There are an estimated 3.2 billion nucleotide bases (A: adenine, T: thymine, G: guanine, 

and C: cytosine) in the reference genome. One of the primary utilities of the reference 

genome is that it serves as a common point between sample genomes once they are 

aligned. Genome alignment is the process of matching DNA fragments from sample 

genomes to the reference genome. Having the reference allows the comparison between 

genomes without requiring de novo assembly with each new sample. Alignment is often 

preferred over assembly, which can be arduous, time-consuming, and highly variable 

between methods. Using an aligned sample, genetic variations can be observed by 

comparing the differences in the sample genome to the reference genome and, 

transitively, to other sample genomes. Finally, the reference can then be annotated with 

these variations and saved in personal or shared databases for later comparisons. 

  

Types of Genetic Variations 

How do variations manifest? 

The most common form of genetic variation in the human genome is also the 
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smallest. Single nucleotide variations (SNVs) occur when a nucleotide at a distinct 

position, is converted to a different nucleotide relative to the reference genome. SNVs 

can result from mismatches during replication and/or chemical changes to a base. SNVs 

can affect the regulation of genes as well as the resulting gene products. When SNVs are 

present in at least 1% of the population, they are known as single nucleotide 

polymorphisms (SNPs). In any individual, there is on the order of one million SNPs 

(Sachidanandam et al., 2001), equating to roughly one SNP every kilobase (kb). The next 

most frequent form of variation is small insertions and deletions (INDELs) of several 

bases (Mullikin et al., 2000; Dawson et al., 2001; Weber et al., 2002). There has been a 

tremendous focus on SNPs and INDELs, as these smaller variations have been somewhat 

easier to characterize and detect compared to other variations. Larger variations will 

typically arise from more complex mechanisms, affecting larger segments of the genome, 

and can yield effects that may be more difficult to discern.    

The class of variation that makes up larger events in the genome is called 

structural variation (SV). SVs are either copy neutral or change the number of copies of a 

particular DNA segment. Copy number variations (CNVs) are the class of SV, which are 

increases or decreases in the amount of DNA from a specific genomic locus (i.e., 

insertions, duplications, and deletions). Copy neutral forms of SV include inversions and 

balanced translocations, uniparental disomy, etc. (Feuk, Carson, Scherer, 2006). The 

largest variations consist of whole chromosomal alterations and can result in an 

aneuploidy state (e.g., non-disjunctions and unbalanced translocations). Aneuploidy is 

when the total number of chromosomes in a cell is not divisible by the haploid number of 

chromosomes for that organism. For instance, Trisomy 21 (or Down’s syndrome) is an 
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aneuploidy where an entire copy of chromosome 21 is gained due to missegregation in 

mitosis. Many mechanisms of SVs have been characterized, while others remain 

unknown (Onishi-Seebacher and Korbel, 2011). Generally, SVs are created by lapses in 

replication fidelity, mobile DNA elements, large-scale DNA damage, and the subsequent 

repair of that damage. These mechanisms and resulting SVs can be complex, most 

notably in cancer. When these variations are acquired during the lifetime of an individual, 

they are called somatic variations.  

 

Somatic mosaicism 

Variations of all sizes are classified as either germline or somatic (i.e., occurring 

in germline or somatic cells). Both germline and somatic variations can contribute to 

disease, phenotypic variability, and adaptation. Germline variation is present in every cell 

of an organism, while somatic variation occurs in non-gamete or non-reproductive cells 

and may not be seen in every cell (Youssoufian and Pyeritz, 2002; Lupski, 2013). An 

important distinction is that variations may arise by the same mechanism (i.e., 

homologous recombination) but will be either germline or somatic variations depending 

upon the context in which that variation occurs. Generally, germline variation is inherited 

and somatic variation is acquired. Germline variation must occur in gametes prior to 

fertilization and somatic variation occurs after the zygote, or fertilized egg, is formed. 

After the zygote is formed, all subsequent variants are somatic and will propagate to 

future daughter cells in a lineage-dependent pattern (Figure 1-1). Each round of mitotic 

division may contribute several somatic variations, creating multiple cell populations and 

lineages in a single organism. The presence of multiple cell populations in a tissue or  
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Figure 1-1 

Figure 1-1. “Acquiring mosaicism.” “Human development from a single fertilized cell 

to a multicellular organism requires many cell divisions and the genetic material to be 

replicated many times. Populations of cells (blue) can accumulate mutations at any stage 

in the life cycle (green, purple, and red). Some impair cellular fitness, and are 

consequently selected against (red cross); others survive and contribute to tissue 

mosaicism, which may serve physiological functions.” (Lupski, 2013) 

 

 

 

J.R.$Lupski,$Science$(2013)
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individual is known as somatic mosaicism. These populations can arise early in 

development with estimates as great as 90% in some embryos (Mantikou et al., 2012). 

While the incidence of mosaicism in a developing fetus may be high, it is unclear as to 

how many of these cells are viable because of cell competition (Figure 1-1). This is 

compounded by the fact that the biology of these early developmental variations is not 

evident, but they have the potential to influence phenotypes. While many of the causes 

and consequences of somatic mosaicism are unknown, there are two widely studied 

models of the phenomena:  immune system adaptation and carcinogenesis.  

 The human immune system is a genetic mosaic. Adaptive immunity occurs through 

a process called V(D)J recombination (Brack et al., 1978). In order to create diversity in 

immunoglobulin and T-cell receptors, immune cells induce somatic variations within 

their own genomes. This genetic shuffling permits the immune system to create new 

antibodies in order to recognize epitopes encountered on bacteria, fungi, viruses, and 

cancer cells so that they may be targeted for destruction. Ironically, cancer cells most 

often develop due to the accumulation of somatic variations. Outside of these two 

examples, the extent of somatic mosaicism is largely unstudied compared to germline 

variation. This has been primarily due to the fact that somatic variations are much more 

difficult to detect because they are usually present in only a subpopulation of cells 

analyzed. 
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Detecting Genetic Variations 

The big and the small of it 

 Microscopic genetic variations have been widely characterized and routinely 

identified by karyotyping (Tjio and Levan, 1956; Jacobs et al., 1959). While karyotyping 

methods have greatly improved since their inception, the resolution of detection has 

remained at larger than 3 Megabase (Mb) (Schaffer and Bejjani, 2004). This resolution is 

suitable for identifying the largest of genomic aberrations (e.g., non-disjunction and 

translocations events). An exception to this size cutoff may be made when using probes 

for known targets of specific sequence, but the sequence must be known a priori. Thus, 

other tools are required to detect events smaller than 3 Mb or at a submicrosopic level 

(Feuk, Carson, Scherer, 2006). As previously stated, first-generation sequencing 

technologies permitted detection of SNVs and small events (<1 kb). However, sample 

throughput was not sufficient to ascertain broad genomic structure in a meaningful way. 

The ability to analyze SVs was accomplished with the advent of second-generation 

sequencing technologies (Feuk, Carson, Scherer, 2006).  

  

Lagom: in the middle 

  Second-generation sequencing platforms are capable of detecting variations of all 

sizes. These platforms derive their utility through excellent economy and high-

throughput. Over the last decade, the cost of sequencing has continued to decrease at an 

increasing rate, and the volume of data produced in a single sequencing run is 

astronomical. This capacity for data production lends itself well to simultaneous whole 

genome sequencing, shedding light onto the prevalence of SVs in the human genome. 
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Today, the majority of second-generation sequencing data exists as paired-end (PE) 

reads. PE sequencing involves sequencing both ends of numerous DNA fragments from a 

collection of randomly generated fragments with an expected length. There are four 

prevailing computational SV detection strategies using PE reads: PE mapping (Figure 1-

2A), split-read mapping (Figure 1-2B), read-depth (RD) analysis (Figure 1-2C), and local 

assembly (Figure 1-2D). SV detection tools use these strategies to find distinct sequence 

alignment “signatures,” which then provide the location, as well as the type (e.g., 

deletion, inversion, translocation, etc.) of the rearrangement event (Alkan, Coe, and 

Eichler, 2011).   

 SV detection methods fundamentally rely on the reference genome. PE mapping 

analysis makes use of PE reads that have aberrant alignment configurations relative to the 

reference genome (Korbel et al., 2007; Korbel et al., 2009; Chen et al., 2009). 

Alignments with unexpected mappings are called discordant read-pairs. For example, 

Figure 1-2A shows what could be inferred as a deletion in the sample genome based on 

reads mapping to the reference as discordant. Split-read mapping is the assessment of 

gaps in aligned reads, where there are subalignments of a read separated by large 

distances in the genome (Ye et al., 2009; Abyzov and Gerstein, 2011; Wang et al., 2011). 

Local assembly is the processes of creating longer reads by optimally combining treads to 

form “contigs.” When used with the reference, assembly is particularly useful for refining 

SV locations (Quinlan et. al., 2010; Malhotra et al., 2011) and identifying novel 

sequences (Hajirasouliha et al., 2010). 

 No single approach is comprehensive in its ability to detect SV. Each of the four 

approaches has distinct advantages and disadvantages, contextualized by the type of 
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variation that one wishes to detect. As such, there are specific use cases for the 

application of each approach. In this work, principles of PE mapping, local assembly, and 

RD are used to detect variation in two specific situations. The first, found in Chapter 1, is 

a population-wide SV detection algorithm that incorporates data from many individuals 

to increase both sensitivity and specificity using PE mapping and local assembly. Second, 

RD is used in Chapters 3 and 4 to detect mosaic CNVs in single cells.  
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Figure 1-2 

Figure 1-2. Computational approaches to detect SV. In each approach, the grey bar (top) 

depicts the reference genome and the graphic (bottom) shows evidence of SV from the 

sample genome. (A) Paired-end (PE) mapping of aberrant or discordant read-pairs. The 

segment of the reference deleted compared to the sample, as the read-pairs align to 

positions in the reference greater than anticipated. (B) Split reads (purple) indicate a 

region was deleted from the sample genome. (C) The read depth (RD) approach detects 

CNVs by counting the number of reads mapped to each genomic region. In this instance, 

the third exon has been duplicated relative to the others because of the increased read 

counts observed. (D) The assembly-based method maps “contigs” to the reference 

genome.  Shown is a portion of the sample genome, which has been deleted relative to 

the reference genome (Zhao et al., 2013). 
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CHAPTER 2: 
A MULTI-SAMPLE STRUCTURAL VARIATION DETECTION FRAMEWORK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter is based on the following publications: 
MR Lindberg, Hall IM, and Quinlan AR (in press). Population-based structural variation 
discovery with Hydra-Multi. Bioinformatics. 
 
A Malhotra, Lindberg, MR, Faust, GG, Leibowitz, ML, Clark, RA, Layer, RM, Quinlan 
AR, and Hall IM (2013). Breakpoint profiling of 64 cancer genomes reveals numerous 
complex rearrangements spawned by homology-independent mechanisms. Genome 
Research, 23 (5):762–776.  
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Abstract 

 Methods for SNP and INDEL discovery typically incorporate signals from 

multiple datasets in order to improve sensitivity and specificity. It is widely accepted that 

this approach could similarly enhance SV detection; however, its effective 

implementation has been stymied by the fundamental difficulties of SV calling (e.g., data 

volume, non-allelic states, and scalability). In recognizing this, we created a novel 

algorithm that efficiently integrates all available datasets and ameliorates the 

aforementioned issues. Here, we present the accuracy and speed of the Hydra-Multi 

algorithm using datasets from high-coverage tumor-normal pairs from The Cancer 

Genome Atlas (TCGA) and low-coverage individuals of diverse world populations from 

The 1000 Genomes Project (1KGP).  
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Introduction 

 The ever-increasing accuracy and affordability of sequencing technologies have 

brought forth a nascent understanding of human genomic structure (Durbin et al., 2010). 

Interrogating chromosomal architecture in many individuals and samples has provided an 

operational map of SV in the human genome (Mills et al., 2011), garnered insight into 

mechanisms of SV (Quinlan and Hall, 2012), uncovered intricacies of cancer genome 

structure (Stephens et al., 2012), and challenged the canonical models of tumor 

development (Navin et al., 2011; Stephens et al., 2012).  

 Most SV discovery tools will compare a single sample genome to the human 

reference genome. However, tools that detect smaller genomic variations, namely SNPs 

and INDELs, have already shown improved sensitivity and specificity from including 

data from all available samples (Koboldt et al., 2009; Lee et al., 2010; McKenna et al., 

2010; Larson et al., 2011). The superiority of this strategy is a marked decrease in the 

number of false negatives. This is accomplished by affirming weak evidence in one 

sample with supporting data from other individuals (Figure 2-1A and B). The strength of 

this approach is obvious, so why hasn’t it been more widely adopted by SV detection 

tools? The primary limitations have been technical; SV calling is simply more 

complicated. As in the case of SNP detection, presence or absence of the event at a single 

base is the major concern. In detecting SVs, not only must the presence or absence be 

ascertained, but the type and size must also be distinguished. Additionally, the procedure 

for SNP calling is done by counting evidence for alleles in the alignment data at a 

particular locus. In contrast, SV calling must incorporate variability in both the alignment 

distances and sequencing libraries, as well as the primary alignment data when evaluating 
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evidence. Not only do these difficulties make SV detection in a single individual more 

complicated, they tend to compound when incorporating multiple samples.  

 Despite the complexities of the approach, cancer and population genomics have a 

clear benefit from the ability to confidently assess SV across many samples. The typical 

cancer genome analysis only considers the genome of a single tumor and the matched 

normal tissue from the same individual when identifying SV. These standard tumor-

normal comparisons are often fraught with somatic mutation false discoveries (i.e., a 

variant is predicted as somatic, when it is an inherited or germline variant). Somatic 

mutation false discoveries commonly occur when there is presence of SV evidence in the 

tumor and not the normal, but only because there was insufficient sequence coverage in 

the matched normal. Light physical coverage gained by common short-insert PE 

sequencing approaches can exacerbate the false discovery problem in the classical tumor-

normal comparison. Therefore, a multi-sample SV discovery framework would be more 

scrupulous in its ability to avoid somatic false discoveries. A multi-sample framework 

can use the supporting alignments that exist in the genomes of other “normal” samples in 

the experiment when they do not exist in the matched normal (Figure 2-1C and D). 

Similarly, this approach can be used to reduce the false de novo mutation candidates 

when performing pedigree studies. Rather than incorporating sequence data from other 

matched normal, one would include other pedigrees or unrelated individuals. 
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Figure 2-1. Conceptual overview of increased sensitivity conferred by multi-sample SV 

calling. (A) Owing to chimeric molecules and misalignments, all SV discovery 

algorithms set a support threshold dictating the minimum number of PE mapping 

alignments required to believe a putative event. As such, when SVs are identified 

individually in each sample, true SVs can be missed when there is insufficient evidence 

in a single sample. (B) However, when PE alignments are combined among samples, data 

can bed pooled to rescue real events that would otherwise have been missed. (C) When 

comparing a single tumor genome to its matched normal genome, insufficient evidence in 

the matched normal can cause what are actually inherited SVs to appear as somatic 

events. (D) Yet combining data from many tumor normal pairs can eliminate such 

somatic false discoveries by recognizing that, while missed in the matched normal, the 

event was observed in other normal samples indicating that the rearrangement is likely 

inherited. 
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Materials and Methods 

The following methods are identical to those found in the manuscript accepted: 
MR Lindberg, Hall IM, and Quinlan AR. (in press). “Population-based structural 
variation discovery with Hydra-Multi” Bioinformatics. 
 
Experiments and analyses were developed and/or performed by MR Lindberg under the 
guidance of AR Quinlan and IM Hall unless otherwise noted. AR Quinlan wrote most of 
the actual software source code and accompanying scripts. 
 
 
Data processing and implementation (performed with A Malhotra) 

 The data was obtained from TCGA and 1KGP available on dpGAP and the 

EBI/NCBI FTPs. In the analysis of TCGA datasets, data were processed slightly different 

than the standard Hydra-Multi analysis; a detailed explanation of how this was done can 

be found in Malhotra et al. and assumes that bam files may contain multiple sequencing 

libraries. Under this assumption, the sample statistics that are used to determine which 

read-pairs are proper pairs will be more accurate because they are evaluated by library. 

This is accomplished by several adjustments to parameters and changes to the overall 

workflow compared to the typical use of Hydra-Multi. 1KGP datasets analyzed separate 

from TCGA were processed using the more standard, user-friendly implementation, as 

described on the website: https://github.com/arq5x/Hydra, which maintains that bam files 

contain a single sequencing library.  

 

1KGP accuracy performance analyses 

 From the 1KGP datasets, the NA12878 dataset (50x coverage from EBI) of the 

CEU family cohort and 64 random bam files (~5x coverage from NCBI) were used for 

performance analyses. The 50x NA12878 dataset was randomly subsampled by read-
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pairs to roughly 5x coverage, simulating a comparable 5x low coverage dataset for this 

individual. The 64 datasets were of approximately similar size, between 12 and 27 Gb, to 

prevent large differences in coverage from dramatically changing runtimes or SV 

support. A necessary step was the realignment of both NA12878 datasets (5x and 50x) 

using BWA (Li and Durbin, 2009) and duplicate removal with SAMBLASTER (Faust and 

Hall, 2014) with default parameters. Realignment of these datasets was necessary due to 

the different reference genome versions used for original alignment of 1KGP and 

Illumina Platinum datasets. These datasets were then used to compare the relative 

performance of Hydra-Multi, GASVPro v2.0 (Sindi. et al., 2009), and an unpublished 

multi-sample version of DELLY v0.5.3 (Rausch et al., 2012, 

https://github.com/tobiasrausch/delly). In these comparisons, the number of true positives 

and false positives were measured for each tool in three scenarios: 1) analyzing NA12878 

at 5x coverage by itself, 2) NA12878 at 50x coverage by itself, and finally 3) NA12878 

(5x) with the 64 random datasets. To measure the true and false positive rates, we used a 

truth set consisting of 3,077 non-overlapping validated deletions in NA12878 from the 

Mills et al. study.  

 Putative calls from Hydra-Multi, GASVPro, and DELLY were generated in each 

of the analyses using similar parameters for each tool. In all analyses, a minimum 

mapping quality of 20 was required for each read. The input deviation parameter values 

across all tools were made to be equivalent. As such, the deviation parameters for Hydra-

Multi and DELLY were set to 5 and 8 MADs for each of the respective analyses. The 

corresponding computed Hydra-Multi values at these settings (5 and 8 median absolute 

deviations or MADs) were used as the input GASVPro’s “LminLxmax” values. This was 
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necessary because GASVPro calculates fragment size distributions using standard 

deviations from the input parameter, while the other two tools use MADs. Standard 

deviations can be significantly larger than MADs, making the comparison incongruous. 

The tool specific "punt" parameter for Hydra-Multi was set to a value corresponding to 5 

times the summed mean dataset coverage (e.g., 25 for one 5x dataset, or 250 for ten 5x 

datasets). At the outset of variant calling, a minimum support of two read-pairs (read-

pairs and/or split-reads for DELLY) was required for discovery. Because all three tools 

report breakpoints in three different output formats, the outputs for all tools were 

converted into BEDPE format using zero-based, half-open arithmetic to make a fair 

comparison. The GASVPro regions file reports the breakpoint boundary points of the 

final polygons constructed. The midpoint the left and right boundaries were calculated 

and padded with 100 bp in both directions to create a set of two 200 bp intervals. Next, 

the single base start and end coordinates reported by DELLY in VCF format were given 

100 bp of slop in both directions to make two intervals of 200 bp. The final reported 

Hydra-Multi breakpoint footprints were made into breakpoint intervals by drawing two 

200 bp intervals inward from the read-mapping "footprints" (i.e., end1 + 200 bp and 

start2 – 200bp). In each conversion to BEDPE intervals, the number supporting read-

pairs were tracked; however, this was not possible in the analysis using 64 datasets and 

NA12878 at 5x. First, GASVPro is not currently a multi-sample caller and therefore could 

not be evaluated in a multi-sample analysis. For DELLY, the presence or absence of a call 

in NA12878 from the multi-sample analysis was assessed by the reported genotype (GT) 

or whether NA12878 contributed at least one high-quality variant pair (DV) to the 

breakpoint. GT is equal to DV in a single sample with support of 4 – 10 read pairs, thus 
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only GT was reported For Hydra-Multi, a call was considered present in NA12878 when 

at least one original read-pair from NA12878 was used in making the final breakpoint 

call. Since both DELLY and Hydra-Multi report the total read support across all datasets, 

this was used as a filtering criterion in the ROC curves.  

  All putative breakpoint interval sets and the truth set were filtered to remove GL, 

MT, and Y chromosome calls, as well as any interval that overlapped with a set of 

exclude regions 

(https://github.com/cc2qe/speedseq/blob/master/annotations/ceph18.b37.lumpy.exclude.2

014-01-15.bed). These exclude regions are comprised of very high sequence coverage in 

the 17-member CEPH 1463 pedigree. The RD at these locations was greater than 2*mode 

+ 3 standard deviations, as found by aligning with BWA MEM (Li, 2013) and measuring 

the depth with BEDTools (Quinlan and Hall, 2010), whereby the autosomal and sex 

chromosomes were analyzed separately. The filtered call sets from each of the three tools 

(both 5 and 8 MADs) were evaluated at varying levels of total support (4 to 10 read-

pairs) in three scenarios. True positive were calculated by finding the number of uniquely 

identified truth set deletions. An identified truth set deletion was one with which the two 

truth set breakpoint intervals intersected with any pair of breakpoint intervals reported in 

a given comparison. A false positive was defined as the number of SVs reported by a tool 

that did not identify a truth set deletion. 	
  

 

TCGA tumor-normal false discovery rate estimations 

 Given c = n choose k, false discovery rates were calculated by using combinations 

of the total number of tumor-normal pairs, n, as more pairs, k, are considered across the 
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set of high-confidence breakpoints found in the TCGA datasets. For practical purposes, c 

was limited to 1000 random combinations due to it being very large for most values k. 

Therefore, c = 64 choose k for k = 1 to 64, where c ≤ 1000, which limits the number of 

combinations explored to 1000. Thus, for each c, false discoveries were determined by 

the presence or absence of somatic and germline in all breakpoints. A breakpoint is said 

to be a false discovery for any c if it is seen in a normal sample genome of any one 

tumor-normal pair and it is not in it’s matched tumor sample or another tumor-normal 

pair. Each breakpoint was tested to be a false discovery in all combinations c and the 

false discovery rate at each value k was calculated. The false discovery rate was the ratio 

of the total private normal sample breakpoints to the total private tumor sample 

breakpoints in each k. 

 

1KGP speed and scalability performance analyses 

 Maximum memory and runtimes were determined with the runit utility 

(https://github.com/lh3/misc/tree/master/sys/runit). The three previously described 

deletion detection scenarios were included in the speed and scalability performance 

analyses. The maximum memory usage and total runtime for the three scenarios with 8 

MADs were recorded. An additional analysis to simulate a large number of input datasets 

for Hydra-Multi and DELLY consisted of repeating instances of the NA12878 datasets. In 

all speed and scalability measurements, Hydra-Multi was allocated 8 processors, DELLY 

was permitted up to 32 threads, and GASVPro was given 20 Gb for the Java Virtual 

Machine. Hydra-Multi’s punt parameter was also adjusted to 5 times the summed mean 

input dataset coverage. Runtime measurement of each processor usage versus the number 
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of datasets as well as discordant read-pairs was done using 1KGP datasets. The previous 

64 datasets were sequentially subsampled at random 3 times (e.g., n = 1, 2, 4, 8, 16, and 

32) for each benchmark.  

 

Hardware specifications and utilities 

 All analyses were done using a single compute node running CentOS 2.6.32-

358.2.1.el6.x86_64 on 16 Intel Xeon E5-2670 CPUs with 128 Gb random access memory 

and an array of twelve 4 Tb hard disks spinning at 7200 rpm. All interval intersections 

were done with BEDTools (Quinlan and Hall, 2010).  

 

Hydra-Multi Algorithm (development by AR Quinlan) 

Set up and configuration  

 A configuration file is necessary to provide a unique identifier and file path 

defining the appropriate alignment file for each DNA library (or sample) interrogated for 

SV breakpoints. Before running Hydra-Multi, it is imperative that these bam files have 

duplicate reads (molecules) removed. The configuration file must define i) a central 

tendency statistic for the insert size for the library – mean or median are recommended, 

ii) a standardized measure of the variance in the library – typically the standard deviation 

or median absolute deviation, and iii) the number of units of variance (e.g., “6” for six 

standard deviations) that should be used to define a proper pair or concordant alignment 

when pairs align in the +,- (forward, reverse) orientation within expected genomic space.  
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Routing discordant alignments by genomic coordinates and strand  

 The algorithm begins by routing similar discordant alignments (i.e., PE mappings 

with either an unexpected insert size (greater than the central statistic + number of 

variance metrics) or an aberrant strand combination (-,+;+,+;-,- orientations), from all 

libraries (or samples) defined in the configuration file to common alignment files using 

the hydra-router tool). In effect, this step consolidates all mappings from each of the 

libraries (or samples) into discrete files that are likely to support the same breakpoints. 

For example, all PE mappings that indicate deletions on chromosome 10 would be place 

in a file called chr10.chr10.+.-. The benefit of this routing step is that each discrete file of 

discordant mappings can be processed independently, since the mappings therein can 

only support specific types of SV breakpoints involving the defined chromosomes. In 

turn, this independence facilitates a high degree of parallelism when screening for 

candidate breakpoints. 

 

Identifying candidate breakpoint “clusters”  

 Each routed file of discordant alignments is then sorted by each mapping’s 

“leftmost” start position (that is, the position with the lowest start coordinate). Sorting in 

this manner organizes the mappings from each library (or sample) such that alignments 

supporting the same breakpoint are aggregated. In order to maximize sorting efficiency, 

we developed a custom C++ implementation (https://github.com/arq5x/kway-mergesort) 

of the k-way, memory assisted merge-sort algorithm. Importantly, as sorting the 

discordant mappings is one of the more computationally intensive steps of our approach, 

this approach combines the benefits of a disk-based merge-sort algorithm with the speed 
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of in-memory sorting. This allows the user to define precisely how much memory should 

be allocated to the sorting step and avoids prohibitive memory consumption while 

providing fast sorting times. 

 

Greedy breakpoint reconstruction  

 After sorting mappings based on their start position, it is common for mappings 

supporting different rearrangement events to be sorted together, especially when 

integrating data from hundreds of samples and/or from highly rearranged genomes. 

Hydra-Multi addresses this in two phases. First, it scans each sorted file to build clusters 

with mappings that have the potential to support the same breakpoint based on the 

supplied variance statistics. A cluster is terminated once an a mapping is encountered 

whose start coordinate is to the “right” of the current cluster’s rightmost end coordinate; 

by definition, such a mapping cannot support the same breakpoint as the mappings 

already in the cluster. The clusters are then sorted by relative support and assembled into 

“contigs” which represents a larger interval of assembled space in the genome. Once 

assembled, the contributing cluster is removed from the pool of usable clusters that can 

corroborate subsequent breakpoints in further assemblies. A cluster may also be 

terminated in regions of overly complex genomic rearrangements. These regions can 

cause excessive runtimes and may be averted by “punting” once a certain number of 

mappings have been attributed to a putative cluster. A reasonable heuristic for this 

parameter is 5 multiplied by the summed mean coverage of the datasets to be analyzed 

(e.g., 250 for ten 5x genomes) 
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Punt parameter  

 The purpose of punting is to avoid needless increases in runtimes caused by the 

unnecessary analysis of regions that appear to have highly rearranged segments. These 

regions are often artifacts native to the genome assembly, but they may also be bona fide 

highly complex genomic rearrangements. As such, misassembles inherent to the genome 

and overly complex rearrangements will often lack the need and/or the ability to be 

interpreted. Under the provided usage parameters, nearly all germline variants will be 

included, but some somatic variants will be susceptible to being discounted. We stress 

that the punt parameter is tunable to the user’s experimental design; however, the 

recommended value is viable in most cases. The user also has the option to perform an 

exhaustive analysis by trading for an increase in total runtime. We recommend 5 times 

the summed mean coverage of all datasets in an analysis. For example, in an analysis of 

10 cancer genomes sequenced to 50x coverage, the punt parameter would be 2500. This 

setting should be able to detect an average (depending on ploidy) of about 10 copies per 

genome or roughly 100 copies in total. In the unlikely event that all genomes in the 

analysis contain a particular segment amplified more than 10 times, this variant will be 

punted and go undetected. However, it is more commonly seen that a single dataset or 

collection of datasets will contain the highly amplified region, while others do not. 

Therefore, in a more likely scenario where two genomes have 40 copies of a region and 

all other genomes contain 2 copies, this amplification will be detected. Thus, the punt 

parameter, like many other features of Hydra-Multi, benefits from the population-based 

framework, that is adding more datasets will temper the effects of any single dataset on 

incorrectly punting a bona fide variant. 
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Results 

 Here, we introduce Hydra-Multi, SV discovery software that simultaneously 

incorporates DNA sequence alignments from many individuals. Hydra-Multi is capable 

of determining the presence or absence of a genomic rearrangement in individual samples 

with high sensitivity. We illustrate a large reduction in somatic misclassifications in 64 

tumor genomes from TCGA and we show benchmark comparisons of Hydra-Multi to 

other state-of-the-art algorithms. 

 

Origins of the approach  

 Hydra-Multi is an extension of our PE mapping SV caller, Hydra, which was 

designed to detect SV in a single genome (Quinlan et al., 2010). Seeing the limitations of 

the single genome approach, Hydra was first used in a 2011 study of genome instability 

in mouse induced pluripotent stem cell lines (Quinlan et al., 2011). While bearing the 

conceptual framework for multi-sample SV calling, the implementation of Hydra in that 

study was not able of analyzing hundreds to thousands of samples nor capable of 

incorporating variably sized DNA libraries within or between samples. Hydra-Multi is 

specifically designed to ameliorate these weaknesses and integrate data from multiple 

individuals, conferring increased sensitivity for SV detection and sample genotyping.  

 Other investigators have since recognized the advantages in multi-sample SV 

calling. In 2011, Handsaker and colleagues developed a framework which genotypes 

deletions. Deletions are discovered in one or more samples and then subsequently 

examining in all other samples in order to infer genotypes, rather than at the outset of SV 

calling (Handsaker et al., 2011). This approach can suffer from a lack of sensitivity when 
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there is insufficient coverage in any one sample and the threshold for confidently 

detecting is not met. This post hoc assessment of breakpoints does not perform well on 

rearrangements arising from repetitive or duplicated DNA because the alignments present 

in one sample may differ from those present in another sample. Since Hydra-Multi has 

the same design principles of Hydra, it can evaluate multiple alignments from all 

samples, thereby improving sensitivity for both repetitive and unique genomic elements. 

Hormozdiari and colleagues developed a new multi-sample version of VariationHunter 

later that year. This version yielded increased sensitivity, but it is designed for a small set 

of related genomes; therefore, it does not scale well to many genomes	
   (Hormozdiari et 

al., 2011). Lastly, the best contender is an unpublished version of DELLY (Rausch, T. et 

al., 2012), which operates on several datasets and performs quite well, but it is eclipsed 

by the scalability performance of Hydra-Multi.  

 

Overview of computational framework  

 Hydra-Multi is intended to be an easy-to-use and effective software package for 

SV discovery among many samples in order to improve SV detection sensitivity. First, 

Hydra-Multi consults a configuration file, indicating the DNA fragment library statistics 

(e.g., median and median absolute deviation) for all of the sample alignment files. Hydra-

Multi is then capable of recognizing corroboration between and within samples for the 

same SV, despite variability in absolute mapping distances of discordant alignments. 

 The algorithm then separates all of the alignments from each sample by the 

chromosome and alignment orientation observed from each of the pairs (e.g., all paired 

alignments with +/- orientation on chromosome 1) based on the sample statistics.  
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This will cull the sets of alignments that have the potential to support each rearrangement 

class (e.g. deletions, inversions, etc.) on a given chromosome (or pair of chromosomes) 

(Figure 2-2). Alignments in each chromosome/orientation group are subsequently sorted 

by their chromosomal coordinate. To remain within the memory constraints of typical 

commodity computing hardware, we implemented a k-way merge-sort algorithm to 

permit population-scale SV discovery whereby hundreds to thousands of samples may be 

analyzed. By sorting discordant alignments by chromosome coordinate, the discovery 

algorithms can then search for clusters of aberrant alignments that support a common SV 

breakpoint by performing a “sweep” from the beginning to the end of a chromosome. 

After identifying clusters, we use a greedy algorithm to “assemble” a single breakpoint 

call, whilst keeping track of the sample and library of each supporting alignment. Hydra-

Multi can then report the number of supporting alignments observed in each sample for 

each breakpoint call.	
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Figure 2-2. Hydra-Multi workflow. The algorithm consists of the following steps: 

configuration, discordant alignment extraction, assembly and sorting, and 

combining for SV breakpoint finalizing. The extraction of discordant reads, as well 

as assembly and sorting occur in parallel.	
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Somatic mutation discovery in 129 datasets from TCGA 

 One of the main objectives of cancer genomics is to find somatic mutations that 

either initiated the carcinoma or developed during tumor progression. Thus, tools that 

discriminate somatic from inherited mutations are valuable, due to the cost and time 

associated with pursuing spurious calls; higher fidelity predictions can provide increased 

focus on the set of variants that are more likely to be phenotypically relevant and/or 

clinically actionable.  

 The canonical method for studying somatic mutations in tumor genomes is to do a 

one to one comparison of the mutations found in the tumor genome to those observed in 

normal tissue from the same individual. Unfortunately, mutations could be present in the 

normal genome and may have been missed because of insufficient coverage. Many 

studies have tried to address this weakness by deeply sequencing the matched normal. 

Here, we show that despite deep coverage for matched normal sample, inherited 

mutations are still frequently misinterpreted as somatic tumor mutation. Further, the 

Hydra-Multi framework can be used to substantially reduce the somatic false discovery 

rate (FDR) by incorporating data from other pairs of tumor and matched normal 

genomes. 

 Hydra-Multi was used to interrogate the mechanisms that drive complex genomic 

rearrangements (Malhotra et al., 2013). This study was made up of 12 invasive breast 

cancers, 3 colon adenocarcinomas, 18 glioblastomas, 6 lung adenocarcinomas, 13 lung 

squamous cell carcinomas, 11 ovarian cancers, and 2 renal adenomas. This study totaled 

129 PE sequencing whole genome datasets (64 tumors and 65 matched normal tissues) 

from TCGA. The discordant alignments were between 1 and 3 percent of datasets and 
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were processed as described previously (Quinlan et al., 2011; Malhotra et al., 2013). We 

applied standard filtering measures, found in Malhotra et al., excluding breakpoints in 

highly repetitive or misassembled regions of human genome. The final set of high-

confidence SV breakpoints for the 129 genomes was 33,218 in total.  

 Over 80% (27,039) of these breakpoints form Malhotra et al. were classified as 

germline meaning they were found in at least one of the matched normal genomes and 

most likely did not arise in a tumor genome. Owing to the fact that each tumor genome 

evolved from the normal somatic genome from the same individual, our expectation is 

that the distance between all 129 tumor and normal genomes would find that the tumor 

and normal genomes from the same individual are most closely related. To test this 

anticipation, we used previously described clustering strategy on 11,944 high-quality 

germline deletions and duplications that are smaller than 1 Mb in size. For each germline 

SV, we included 129 columns reflecting the presence or absence of the breakpoint in 

each tumor or normal sample. Meeting our expectation, each tumor-normal pair is most 

closely related to one another when using germline breakpoints as a measure of genetic 

distance (Supplementary Figure S2-1).  

 

Estimating the somatic mutation false discovery rate using 64 tumor-normal pairs 

 There were 6,502 structural rearrangements private to a single sample in Malhotra 

et al. study. Furthermore, over 95% (6,179) of these breakpoints were isolated events in 

an individual tumor genome, confirming the notion that solid tumor genomes are known 

harbor many rearrangements (Gandi et al., 2010). The other 323 (5%) breakpoints were 

unique in the genome of a single matched normal sample. Using the assumption that all 
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variants private to a normal genome are spurious, we can infer that the FDR for mutations 

specific to a single tumor was 5.2% (323 / 6,179) as found in Malhotra et al.. This 

estimation may be high, as the fraction of the normal only variants are probably real due 

to a loss of heterozygosity in the tumor. Furthermore, approximately half of the 5.2% of 

false positives are relatively small; these variants are more than likely misclassified due 

to differential resolution amongst samples from varying insert size distributions. 

However, a prediction of 5.2% is only possible by integrating data from all tumor and 

normal pairs simultaneously. If we had predicted somatic SVs using the common practice 

of comparing each tumor individually to its matched normal, about 89.1% of the 

predictions would have been false. Moreover, performing single-sample variant calling 

separately on all 129 genomes, 21.9% of somatic SV calls would have been incorrect 

(versus 5.2% for joint calling). The rate of somatic FDR is greatly decreased as more 

tumor-normal pairs in discovery (Figure 2-3). This argues that cancer genomics studies 

can reduce erroneous calls by adopting this variant detection strategy or directly using 

Hydra-Multi. 
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Figure 2-3. Reduction in the somatic SV FDR for tumor-specific mutations 

by simultaneously integrating data from 128 TCGA samples. The somatic 

FDR is the predicted rate at which somatic SV breakpoints are false, either 

due to false positive SV calls or due to inherited germline SVs that have been 

misclassified as somatic due to false negatives. For this experiment, we 

identify false somatic calls by their presence in a single normal genome but 

not in the paired tumor genome or any of N additional tumor-normal pairs 

(X-axis).	
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Deletion detection accuracy from NA12878 

 We compared two widely-used SV discovery tools, GASVPro (Sindi et al., 2009) 

and DELLY (Rausch et al., 2012), against Hydra-Multi to evaluate relative accuracy and 

SV detection performance. These two methods have been used in the analysis of large-

scale datasets from TCGA and 1KGP and outperform other extant methods. Multi-sample 

variant calling is a relatively new and unpublished feature of DELLY, and the current 

version of GASVPro is not capable of multi-sample calling. Each tool’s ability to detect 

deletions was measured by analyzing NA12878 from the 1KGP CEPH (or Utah residence 

with Northern and Western European ancestry) population in three typical situations 

(Figure 2-4). The analysis was limited to detecting deletions in NA12878 as there is not a 

reliable truth set for hundreds to thousands of samples. As such, a trusted set of 3,077 

validated, non-overlapping deletions in NA12878 were used (Mills et al., 2011).  

Overall DELLY was found to have the highest sensitivity and specificity when analyzing 

a single dataset alone (Figure 2-4A and 2-4B); however, Hydra-Multi has the best 

performance in a multi-sample analysis (Figure 2-4C). DELLY’s marginal superiority in 

analyzing a single dataset is not surprising as it utilizes several signals during SV 

discovery. In contrast, Hydra-Multi and GASVPro use PE alignments alone. Further, 

Hydra-Multi was specifically designed to do multi-sample analyses, and it has a greatly 

improved sensitivity in this use case. Nevertheless, Hydra-Multi has competitive 

performance in single dataset usage scenarios, attaining near parity with DELLY and 

besting GASVPro in most cases. For the single dataset comparisons (Figure 2-4A and 2-

4B), the true positive rates were fairly consistent across all tools and performance 

primarily deviated by the number of false positives. A high false positive rate was seen 
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for all tools using the minimum evidence parameters, but this permitted much higher 

sensitivity. False positive ranges under stricter settings suggest that this can be assuaged 

through filtering and parameter tuning. This underscores the well-known problem of 

performing both sensitive and accurate SV detection using short-read sequencing data. 

However, the 1KGP truth set from Mills et al. is incomplete and the number of false 

positives is therefore an upper bound estimate.  

 Co-analyzing multiple samples is clearly beneficial, as there is dramatic 

improvement in SV detection sensitivity for both Hydra-Multi and DELLY when 5x 

NA12878 data is jointly analyzed with 64 additional 5x genomes (Figure 2-4C) when 

compared to the 5x NA12878 in isolation (Figure 2-4A). Hydra-Multi has substantially 

higher sensitivity than DELLY in this comparison, but this also comes with a tolerable 

increase in the number of false positives. In summary, Hydra-Multi is competitive with 

other best-in-class SV detection tools when run on a single dataset by itself, and Hydra-

Multi eclipses all other tools in multi-sample SV calling. 
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Figure 2-4. Receiver operating characteristic (ROC) curves describing deletion 

detection in NA12878 from three scenarios. The relative accuracy of Hydra-Multi (red) 

was compared to both DELLY (blue; GT or purple; DV) and GASVPro (green) in three 

analyses that each compared fragment size parameters of 5 and 8 MADs (See Methods 

and Materials). Each plot displays the relationship between the number of true and false 

positives at varying levels of minimum alignment support (4 -10 read-pairs). A true 

positive was defined as detection of one of the 3,077 non-overlapping truth set deletions 

where both intervals from a predicted deletion breakpoint intersected with both of the 

truth set deletion breakpoint intervals. In order to make a fair comparison across all tools, 

each predicted breakpoint was represented as two 200bp intervals that faithfully represent 

the region implicated by the original SV call. A list of regions to exclude based on 

excessively high read-depth were used on both the truth set and putative call sets. The 

three situations used to assess the three tools are as follows: (A) The 50x NA12878 

dataset was subsampled to 5x and analyzed. (B) The 50x NA12878 data was analyzed. 

(C) The subsampled 5x NA12878 dataset was analyzed concurrently with 64 randomly 

selected datasets of ~5x coverage from 1KGP. Total support was evaluated as the total 

number of read-pairs across all datasets analyzed. The presence of a deletion in NA12878 

by DELLY was inferred by the reported genotype (GT) and/or by observing at least one 

high-quality variant pair (DV) in NA12878. Only GT was reported in the single dataset 

analyses, as GT and DV are functionally the same when requiring 4 – 10 read-pairs of 

support. In both single and joint analyses using Hydra-Multi, the contribution of at least 

one read-pair by NA12878 was required. Note: GASVPro does not simultaneously run on 

multiple datasets. 	
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Scalability and performance	
  

  Hydra-Multi was designed around having fast runtimes and scalable 

performance, and it significantly outperforms other tools in these measures. In the same 

scenarios presented in Figure 2-4, Hydra-Multi ran 2-13x (2.2, 2.3, and 12.5x) faster than 

DELLY and 12-14x (12.8 and 13.9x) faster than GASVPro, and required merely 3.2 hours 

to analyze the set of 65 5x datasets (Table 2-1), whereas DELLY required 39.9 hours. 

Hydra-Multi is capable faster runtimes while simultaneously using a substantially smaller 

memory footprint than the other tools: for example, in the 65 dataset comparison (Table 

2-1), Hydra-Multi used merely 1.9 Gb of memory while DELLY used 41.3 Gb, which is 

nearly a 22-fold difference. Hydra-Multi's lesser resource requirements also allows for a 

much larger number of datasets to be jointly analyzed on a single machine. Generally, 

each additional sample included into analysis improves the overall variant detection 

sensitivity. A simulation of a large input dataset experiment was done using 500 repeated 

inputs of the 5x NA12878 dataset, yielding tractable runtime (~30 hours) and memory 

usage (6.9 Gb) for Hydra-Multi on a single commodity server with 128 Gb of RAM. In 

comparison, DELLY requires more than two weeks and >70Gb of RAM to analyze the 

500 NA12878 datasets (Table 2-1).  

 The small memory footprint incurred by Hydra-Multi's is garnered mostly by 

using a memory assisted, k-way merge sorting algorithm and its speed is obtained largely 

through parallelization at the discordant extraction and assembly steps (Figure 2-2). 

Coarse parallelization is used for extraction and assembly (i.e., one processor for each 

dataset and chromosome/orientation set, respectively). With recommended parameters, 

discordant PE extraction predominates algorithm and scales near linearly with input data 
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when given a single processor (Supplementary S2-2). Supporting this assertion is the 

direct relationship between the number of discordant PE reads and runtime 

(Supplementary S3-2). The cost of examining additional data is ameliorated by 

parallelism. Scalability is a central strength of Hydra-Multi, which is gained through the 

disk-based sort and parallelization, enabling incorporation of an extremely large number 

of datasets for SV discovery. 

 With the ever-increasing number of genomes sequenced and the rapid 

accumulation of whole-genome sequencing data, the benefits of joint sample variant 

discovery will become evermore evident. Hydra-Multi is perfectly poised for use on very 

large-scale projects. 
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Table 2-1 

Table 2-1. Memory usage and runtime performance from four scenarios. The 

relative speed and scalability of Hydra-Multi was compared to the other tools by 

measuring the maximum memory used per process and runtime with Runit 

(https://github.com/lh3/misc/tree/master/sys/runit). Hydra-Multi (8 processors) and 

DELLY were parallelized (32 threads). GASVPro ran as a single process/thread, never 

exceeding the Java Virtual Machine allocation of 20 Gb. From top, we analyzed the 

following datasets: a 5x NA12878 dataset obtained by subsampling the 50x NA12878 

dataset; the 50x NA12878 dataset; the 5x NA12878 dataset combined with 64 

additional ~5x datasets from 1KGP; 500 copies of the 5x NA12878 dataset. Note: 

GASVPro cannot jointly analyze multiple datasets (indicated by "N/A"). 	
  

Hydra-MultiHydra-Multi DELLYDELLY GASVProGASVPro

Max 
Mem.

Tot. 
Runtime 

Max 
Mem.

Tot. 
Runtime

Max 
Mem.

Tot. 
Runtime 

NA12878 
(5x)

1.9 Gb 17 min 1.6 Gb 37 min 1.1  Gb 217 min

NA12878 
(50x)

1.8 Gb 145 min 7.1 Gb 337 min 7.8 Gb 2017 min

NA12878 (5x) + 
64 Datasets (5x)

1.9 Gb 192 min 41.3 Gb 2392 min N/A N/A

500 NA12878 
(5x)

6.9 Gb 1817 min 70.7 Gb 21258 min N/A N/A
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Discussion 

 Hydra-Multi is the first SV discovery framework to employ the strategies used by 

SNP and INDEL discovery tools such as the GATK (McKenna et al., 2010), SAMTools 

(Li, 2009), MoGUL (Lee et al., 2010), VarScan (Koboldt et al., 2009), and FreeBayes 

(Garrison et al., unpublished). The software maximizes discovery sensitivity by 

combining PE sequencing alignments from hundreds of individual genomes. While 

Hydra-Multi solely examines PE alignment evidence for SVs, it maintains high 

sensitivity by combining information across many samples. Therefore, it is tailored to 

perform well on many samples with low genome coverage, whereas poor sensitivity 

would be garnered when identifying SVs in each sample individually. 

 We have demonstrated the strength of the approach in analyzing 64 tumor-normal 

genomes whereby the number of somatic misclassifications was dramatically reduced. 

Additionally, Hydra-Multi is sensitive and fast when compared to current tools such as 

DELLY (Rausch et al., 2012) and GASVPro (Sindi, S. et al., 2009), showing its aptness 

and scalability for many samples. Finally, Hydra-Multi can be used to detect SVs in 

tumor datasets, as well as discern the whether the variant is somatic or germline. This 

utility is advantageous when identifying spontaneous mutations in disorders within a 

familial study or one of a large population. 
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Supplementary Figure S2-1. Clustergram of tumor and matched normal germline 

breakpoints. Hierarchical clustering of 64 tumor-normal genome pairs from The Cancer 

Genome Atlas based on 11,994 high-quality germline deletions (blue) and duplications 

(red), ≤ 1 Mb in size, made with the Matlab Clustergram function using Spearman 

correlation distance and Ward linkage. The y-axis is the 11,994 breakpoints, where the 

number of reads supporting the event is the value, indicated by the intensity of the cell 

color. Along the X-axis are the samples used in this study: 12 invasive breast cancers 

(BRCA), 3 colon adenocarcinomas (COAD), 18 glioblastomas (GBM), 6 lung 

adenocarcinomas (LUAD), 13 lung squamous cell carcinomas (LUSC), 11 ovarian 

cancers (OV), and 2 renal adenomas (READ) where tumor-normal pairs (denoted by 

T_N). The tumor-normal pairs are seen to cluster together given their breakpoints, as they 

are most genetically similar to each other.  
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Supplementary Figure S2-2. Runtimes and speed-up with respect to input size and 

processor usage with 32 1KGP samples. Random sequential subsets of 1 to 32 (e.g., n = 

1, 2, 4, 8, 16 and 32 dataset(s) were analyzed 3 times to create each of the dataset 

benchmarks). Runtimes were determined with an increasing number of processors 

(1:blue, 2:red, 4:green, and 8:black). Hydra-Multi was executed using the specified 

number of processes spawned on each subset and the runtime was measured in minutes. 

(A) The average runtime (minutes) across 3 random samplings at each dataset benchmark 

subset. Error bars represent 95% confidence intervals. (B) All runtimes (minutes) of the 

random samplings, 3 at each dataset benchmark, plotted against the number of discordant 

read-pairs (Millions) analyzed and a least-squares regression line.	
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CHAPTER 3: 
GENOME-WIDE SINGLE CELL ANALYSIS OF HUMAN NEURONS 
UNCOVERS MOSAIC COPY NUMBER VARIATION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter is based on the following manuscript: 
MJ McConnell, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, 
Shumilina S, Lasken R, Vermeesch, J, Hall IM, and Gage F. “Mosaic copy number 
variation in human neurons.” Science (2013), 342 (6158):632-637. 
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Abstract 

 The extent of endogenous somatic variation in the human body remains an open 

question. Here, we sought to evaluate and characterize the prevalence of somatic 

variation in human neurons. We employed newly developed single cell genomic 

approaches to detect copy CNVs in neurons obtained from human induced pluripotent 

stem cell (hiPSC) lines and postmortem human frontal cortex (FCTX). We identified 

numerous subchromosomal CNVs by single cell sequencing (SCS) of endogenous human 

frontal cortex neurons revealed that roughly 13 to 41% of neurons have at least one Mb-

scale de novo CNV, that deletions occur twice as often as duplications, and that a portion 

of neurons have highly altered genomes marked by many CNVs. This work shows that 

mosaic CNVs are detected by SCS in human neurons. 
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Introduction 

Investigators have postulated that somatic DNA variation in neurons may be a 

source of cellular diversity in the human brain (Ostertag et al., 2005; Martin, 2009; 

Bushman and Chun, 2013). Such speculation of genetic variation among individual 

neurons arose from several studies reporting a higher incidence of retrotransposition 

(Muotri et al., 2005; Baillie et al., 2011) and aneuploidy (Rehen et al., 2001; Rehen et al., 

2005; Yurov et al., 2007) in neuronal genomes compared to other cell types. However, 

accurately assessing somatic variation is difficult. Somatic variants exist in only a small 

subset of cells within the whole population, making their identification in bulk tissue 

exceedingly error-prone, time-consuming, and expensive. Fortunately, two single cell 

methods have been developed to investigate genome-wide somatic variation: analysis of 

multiple displacement amplification (MDA) products on microarrays (Vanneste et al., 

2009) and single cell sequencing (Navin et al., 2011). These methods assuage the 

aforementioned inhibitory factors when analyzing bulk tissue by isolating, amplifying, 

and analyzing copy number variations across the whole genome of a single cell. While 

these methods were developed for other cell types, we made adjustments and 

improvements to investigate somatic variation in neurons.  

Researchers had already used single cell sequencing approaches to investigate 

somatic variation neuronal genomes. In 2012, Evrony et al. sought to investigate and 

confirm the reports of the increased retrotransposition in human neuronal genomes by 

mapping the frequency of L1 insertions. In this study, authors isolated single neurons and 

created sequencing libraries enriched for L1 insertions to assess the number of unique L1 

retrotransposition events within each individual neuron. In doing so, the authors detected 
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bona fide somatic variation and mosaicism, but reported fewer than 0.6 insertions per 

neuron (n=300) and concluded that L1 insertions are not a major generator of neuronal 

diversity in the cortex and caudate (Evrony et al., 2012). However, this study was limited 

in its scope, as the authors only investigated L1 insertions, leaving the extent of genome-

wide somatic variation unanswered.   

Here, we demonstrate that human neuronal genomes are likely to exhibit somatic 

mosaicism at a relatively high incidence. We achieve this by improving two independent 

strategies of single cell analysis: the Vanneste et al. and Navin et al. methods. First, we 

show the robustness of our altered methods by identifying CNVs human fibroblasts. 

Next, we positively identify hemizygosity and trisomy in karyotypically confirmed in 

human trisomic fibroblasts. We then use our approaches to examining genome-wide 

somatic CNVs in two different sources of human neurons: human induced pluripotent 

stem cells (hiPSC) differentiated into neurons and human post-mortem frontal cortex 

(FCTX) neurons. Finally, we characterize these CNVs and illustrate their abundance at 

varying levels of experimental stringency. Concisely, these CNVs do not appear to be 

enriched in known genomic features and we only detected a single in vivo reoccurring (or 

clonal) CNV in the FCTX experiments. 

 

Materials and Methods  

The following methods are identical to those found in the manuscript: 
MJ McConnell, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, 
Shumilina S, Lasken R, Vermeesch, J, Hall IM, and Gage F. “Mosaic copy number 
variation in human neurons.” Science (2013), 342(6158):632-7. 
 
Experiments and analyses were developed and/or performed by MR Lindberg under the 
guidance of IM Hall and MJ McConnell unless otherwise noted. Co-authors provided the 
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neuron and fibroblast sources, as well as microarray data. S Shumilina assisted in the 
creation of FCTX sequencing libraries alongside MR Lindberg. MR Lindberg performed 
the analysis of all data shown (microarray and sequencing), unless attributed. 
 
Human cell culture (performed by co-authors) 

 The human fibroblasts, human induced pluripotent stem cell (hiPSC)-derived 

neural progenitor cells (NPCs), and hiPSC-derived neurons used in this study were 

parallel cultures of the neurotypic control lines reported previously in Brennand et al.. 

Reagents for cell culture were purchased from Life Technologies and their subsidiaries 

(San Diego, CA) unless noted otherwise. Human fibroblasts from AG09319 (referred to 

as “D” herein), AG09429 (referred to as “C” herein), AG03651 (referred to as “E” 

herein), and GM01920 (trisomic male) were obtained from the Coriell Institute (Camden, 

NJ) and grown in DMEM with Glutamax supplemented with 15% FBS (Atlanta 

Biologicals, Atlanta, GA).  

 Briefly, reprogramming was initiated using a cocktail of 5 tetracycline-inducible 

lentivirus (LV) vectors expressing human OCT4, SOX2, c-MYC, KLF4, and LIN28 

cDNAs. Human fibroblasts were infected every day for five days. Following infection, 

fibroblasts were plated on a mouse embryonic fibroblast (MEF) feeder layer and switched 

to HUES media (KO-DMEM, 10% KO-Serum Replacement, 10% Plasminate, 1x 

Glutamax, 1x NEAA, 1x 2-mercaptoethanol and 20 ng/ml bFGF2 (Peprotech, Rocky 

Hill, NJ), supplemented with 1ug/mL doxycycline (Sigma, St. Louis, MO). Successful 

reprogramming was confirmed by human embryonic stem (ES) cell-like morphology, by 

expansion and maintenance of a euploid karyotype beyond 15 passages, by expression of 

endogenous pluripotency genes (e.g., OCT4, SOX2, NANOG, REX1, and CRIPTO 

mRNA) and proteins (OCT, SOX2, NANOG, and TRA-1-60), and, importantly, by 
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repression of LV genes in the absence of doxycycline. Karyotypically normal hiPSCs 

were used to derive NPCs. hiPSCs were enzymatically dissociated from the MEF feeder 

layer using Collagenase type IV and grown in suspension as embryoid bodies (EBs) in 

N2/B27 media (DMEM/F12-Glutamax, 1X N2, 1XB27). After 1 week, EBs were 

transferred onto polyornithine (PORN)/laminin-coated plates in N2 media containing 1 

µg/ml laminin. After an additional week of differentiation, neural rosettes formed; these 

were manually dissected, dissociated, and plated onto PORN/laminin-coated plates in 

NPC media (N2/B27 media with 1 µg/ml laminin and 20 ng/ml FGF-2) to expand NPCs. 

hiPSC-derived NPCs (passages 7 and 8) were differentiated into neurons in neural 

differentiation media (DMEM/F12-Glutamax, 1X B27-RA, 1X N2 with 20 ng/ml BDNF, 

20 ng/ml GDNF (Peprotech), 1 mm dibutyrl-cyclicAMP (Sigma), 200 nm ascorbic acid 

(Sigma)) for 7 weeks. Karyotyping and FISH were performed by WiCell Cytogenetics 

(Madison, WI). FISH probes for chromosomes (Chrs)  ChrX (Chr (Kallman probe set) 

were obtained from Abbott Laboratories (Abbott Park, IL). The ChrX p arm probe is 

specific for ChrXp22.3. The centromeric Chr20 probe is from Cytocell (Cambridge, UK). 

The Chr20 q arm probe is specific for Chr20q21 (RPCI-11 702M8-552, Empire 

Genomics, Buffalo, NY).  

 

Isolation of single cells (developed and performed by co-authors, providing fibroblasts 

and neurons microarray data) 

 Confluent fibroblast cultures (passage 7 – 10) were serum-starved for 72 hours; 

G1 arrest was confirmed on a subset of this population using flow cytometry. NPCs 

(passages 9 and 10) were refractory to serum starvation; therefore, possible analysis of 
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some S or G2 cells cannot be excluded. Single cells were picked by hand using a 

micropipette (“the Stripper”) and 75 uM glass pipettes (Origio Midatlantic Devices, Mt. 

Laurel, NJ). Five-week-old hiPSC-derived neuronal cultures were infected twice with a 

LV construct (Brennand et al., 2011) where GFP expression is driven by a synapsin 

promoter (Syn::GFP). Two weeks later, cells were dissociated using TrypLE and 

counterstained with 10 ug/mL propidium iodide (PI). GFP-positive, PI-negative cells 

were isolated via fluorescence activated cell sorting (FACS) on a FACS Aria II (BD 

Biosciences, San Jose, CA). Neurons were sorted into DMEM with 10% FBS and 10% 

DMSO and then frozen at -80C in Styrofoam. Frozen vials of hiPSC-derived neurons 

were thawed and individual cells isolated manually as before (2). Single cells were lysed 

and genomic DNA amplified via multiple displacement amplification (MDA) using phi29 

polymerase (Genomiphi V2, GE Healthcare, Piscataway, NJ) as described (11). MDA 

products (5 ng) were examined for even amplification (e.g., +/- 5% of the Ct for 5 ng 

bulk genomic DNA) using qPCR (Applied Biosystems, San Diego, CA). To test for even 

amplification, we used a 10 locus subset of the 47 single copy loci used in Hosono et al. 

(34) (here, Chr1p, Chr2p, Chr3q, Chr7p, Chr10p, Chr11p, Chr14q, Chr17q, Chr19p, and 

Chr21q), similar to the approach employed previously for MDA QC (35, 36).  

 

Detection of copy number variations from microarray data (data provided by co-authors) 

 MDA products passing qPCR quality control (QC) measures were analyzed on 

Affymetrix 250K NSP chips (Affymetrix, San Jose, CA). Partek Genomics Suite 

Software (version 6.6 beta, Partek, St. Louis, MO) was used to calculate predicted copy 

numbers for each probe set intensity. A custom copy number model composed of 161 
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MDA single cell experiments (from this and other studies) was generated to perform 

quantile normalization of the calculated copy numbers. The background-adjusted values 

were then subjected to GC correction in windows of 10 Mb, and artifact-prone probes 

were removed according to the Pugh et al. probe list. We then performed smoothing by 

taking the median copy number value in non-overlapping genomic windows composed of 

100 probes. On average, each 100-probe bin corresponds to 666 kb of genome sequence. 

At this stage we also excluded 6 out of 107 samples that had excessively "noisy" copy 

number profiles, defined as having a median absolute deviation (MAD) greater than 0.7. 

To detect CNVs we used the circularly binary segmentation (CBS) algorithm (Olshen et 

al., 2004) from the DNAcopy package in R, with the following parameters: alpha=0.001, 

undo.splits="sdundo", undo.SD=1. We defined CNVs as segments composed of 10 or 

more contiguous genomic windows whose copy number value differed from the dataset's 

median copy number by at least 1 MAD. We did not attempt to detect CNVs on the Y 

chromosome.  

 

Isolation of post-mortem neuronal nuclei (protocol developed by MJ McConnell and J 

Piper; performed alongside MJ McConnell and J Piper) 

 Postmortem human frontal cortex from UMB#5125 (a neurotypic 24-year-old 

female, 9 hour post-mortem interval), UMB#1846 (a neurotypic 20-year-old female, 9 

hour post-mortem interval) and UMB#1583 (a neurotypic 26-year-old male, 18 hour 

post-mortem interval) were obtained from the NICHD Brain and Tissue Bank for 

Developmental Disorders at the University of Maryland. Tissue samples were placed in 

nuclear isolation medium [(NIM) 25 mM KCl, 5 mM MgCl2, 10 mM Tris-Cl, 250 mM 
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sucrose, 1mM dithiothreitol (DTT), and 1X protease inhibitor cocktail (Roche)] and 

homogenized with a polytron tissue homogenizer (Kinematica, Inc., Bohemia, NY). 

Homogenized tissue was supplemented with 0.1% TritonX-100, and further processed 

using a dounce homogenizer. Samples were centrifuged (1,000xg, 8 min) and the pellet 

was resuspended in 10:5:1 NIM:Iodixanol (Sigma):OptiPrep Diluent for Nuclei [(ODN) 

150 mM KCl, 30 mM MgCl2, 60 mM Tris-Cl, 250 mM sucrose)]. Samples were layered 

onto a 29% Iodixanol in ODN cushion using a 1 mL syringe and centrifuged (10,300xg, 

20 min, 4°C) in a Beckman L8-M ultracentrifuge with SW55 Ti rotor. Pellets were 

resuspended in nuclei storage buffer [(NSB), 5 mM MgCl2, 50 mM TrisCl, 166 mM 

sucrose, 1 mM DTT, and 1X protease inhibitor cocktail. Free nuclei and purity were 

confirmed visually by microscope.  

 Neuronal nuclei were purified from bulk brain nuclei using NeuN 

immunostaining (Spalding et al., 2005; Westra et al., 2010). Immunostaining was 

performed for 1 hour at 4°C with gentle agitation in PBS containing 5 ug/mL (1:2000). 

AF488-conjugated NeuN (Chemicon, Billerica, MA). Nuclei were then stained for DNA 

content with 10 ug/mL DAPI and analyzed by FACS (primarily performed by the 

University of Virginia Flow Cytometry Core). Single cells from the NeuN and DAPI 

positive population were sorted into 96 well plates alongside 1 water control per row. For 

benchmarking experiments, trisomic male fibroblasts were similarly sorted into 96 well 

plates based on size and their propidium iodide exclusion. 

 

Single cell sequencing (protocol developed by S Shumilina, under IM Hall; performed 

alongside S Shumilina) 
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 Isolated single nuclei or cells were lysed and amplified using the WGA4 

GenomePlex Single Cell Whole Genome Amplification Kit (Sigma), using 15 cycles of 

PCR amplification. Subsequent WGA4 products were purified with Qiagen mini-elute 

columns (Qiagen, Germantown, MD). Illumina-compatible sequencing libraries were 

constructed using the Nextera Sample Prep (Epicentre Biotechnologies, Madison, WI and 

Illumina, San Diego, CA) according to the manufacturer's protocol, with the modification 

that we used a 1:200 dilution of the "transposome" enzyme complex in the 

"tagmentation" reaction (which helps control the fragment size distribution in single cell 

reactions). Tagmented DNA fragments were purified with mini-elute columns (Qiagen) 

and subjected to 12-15 cycles of PCR, during which barcodes were added to each library 

to facilitate pooled sequencing. The resulting barcoded sequencing libraries were purified 

with mini-elute columns (Qiagen). Each library was run on a 2% Low Range Ultra 

Agarose gel (Bio-Rad, Hercules, CA) with TAE and stained with SYBR Gold 

(Invitrogen) for 10-40 minutes. The 200-600 bp size fraction was isolated by gel 

extraction and purified with the QIAquick kit (Qiagen). Frontal cortex nuclei libraries 

were sequenced with PE sequencing on an Illumina GAIIx (performed by the University 

of Virginia DNA Sequencing Core) with 38-39 bp reads and fibroblast cell libraries were 

sequenced by single-end sequencing on an Illumina MiSeq with a read length of 59 bp. 

 

Detection of copy number variations from single cell sequencing data 

 Copy number was assessed in dynamically sized genomic windows containing 

500 kb of uniquely-mappable DNA sequence, as defined by the 

wgEncodeCrgMapabilityAlign40mer track from the UCSC Genome Browser (Meyer et 
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al., 2013). The mean absolute window size was 687 kb. PE reads were aligned to the 

human genome (NCBI Build 37) using BWA (version 0.5.10) with default settings (Li 

and Durbin, 2009) and duplicates were removed using MarkDuplicates from the Picard 

software suite (http://picard.sourceforge.net/). RD analysis was performed similarly to 

those described in previous works (Quinlan et al., 2010; Quinlan et al., 2011; Malhotra i, 

2013). RD was assessed using coverageBed from the BEDTools software suite (Quinlan 

and Hall, 2010). Since Illumina sequence coverage is known to vary due to GC content, 

to obtain the predicted copy number of each genomic window we divided the RD of that 

window by the genome-wide median RD of all windows with similar GC content, as 

measured in 1-3% intervals, then multiplied by 2. CNVs were identified using the CBS 

algorithm (Olshen et al., 2004) with the aforementioned parameters. We defined CNVs 

as segments composed of 5 or more contiguous genomic windows whose copy number 

value differed from the dataset's median copy number by at least 2 MADs. CNVs were 

not called on the Y chromosome. For putative CNVs on the X chromosome in the male 

sample, the median and MAD of the X chromosome were used to filter CNV calls.  

The final CNV callset only includes datasets that passed the following QC 

criteria: 1) the dataset contained more than 5x105 reads following duplicate removal; 2) 

the median absolute deviation of predicted copy number values in autosomal genomic 

windows was not more than 0.35; and 3) the dataset had a confidence score of at least 

0.85, as defined below. In total, 110 of 208 datasets passed all of these QC filters. The 

confidence score, S, is a measure of the extent to which a given datasets adheres to the 

expectation of integer-like copy number measurements. The rationale for this QC 

measure is that we are using a digital technology (DNA sequencing) to measure copy 
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number in single cells, and thus there is a strong expectation that copy number profiles 

should display approximately integer values. Non-integer copy number values may 

potentially occur due to regional variability in DNA amplification efficiency or flow-

sorting errors that result in multiple nuclei being deposited into a single well. 

 

 

Confidence Score, S:  

 

 

C: the median predicted copy number of a given genomic interval (i) after copy number 

segmentation  

n: the total number of genomic windows in the dataset 

 

This score is the average distance between the predicted absolute copy number of 

each genomic segment in the dataset (as defined by the CBS algorithm) to the nearest 

integer value. This computed average is then multiplied by a factor of two in order to 

compare the actual distances to the worst-case distance (0.5) for every interval. This 

actual to worst-case ratio is then subtracted from 1 to yield a score between 0 and 1, 

where the more digital the dataset, the closer this score is to 1. Therefore, a dataset with a 

score of 0.85 or higher is very close to the assumed model of containing integer copy 

number values.  

 

S = 1� 2

nP
i=0

min(dCie�Ci,Ci�bCic)

n
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Single cell sequencing and microarray clustering 

 Both SCS and microarray analysis were performed for 7 of the hiPSC-derived 

neurons. To enable straightforward comparison of these two data types across the same 

genomic intervals, for this analysis we aggregated SNP array data in the same genomic 

windows as SCS data (rather than 100-probe windows). The mean window size is 687 kb, 

and the windows contained a mean of 57.8 probes (median 58). Only 6 of the windows 

had zero probes and these were assumed to have a copy number of 2. The microarray 

data processed in this manner are somewhat more noisy than those analyzed with a 100-

probe window, but overall data quality is similar. To assess the concordance between 

SCS and microarray methods, the raw per-window copy number values of these 14 

datasets were subjected to unsupervised clustering using the pvclust package 

(http://www.is.titech.ac.jp/~shimo/prog/) in R, using default parameters: 

distance=correlation, linkage=average. 

 

Enrichment Analyses 

 For enrichment analyses we used the BITS algorithm (Layer et al., 2013) to count 

the observed number of overlaps between CNVs and various genome annotations. The 

fragile sites track was obtained from Fungtammasan et al., while all other tracks were 

downloaded from the UCSC Genome Browser (Meyer et al., 2013). For these analyses 

we used CNVs less than 20 Mb in size, which reduces the total callset from 148 to 133. 

We then conducted Monte-Carlo simulations to find the expected number of intersections 

by shuffling both the CNVs and annotation track 1000 times. The log2 enrichment ratio 

was caclulated as the observed number of overlaps divided by the median (or mean if the 
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median was 0) number of intersections observed in simulations. Analyses of telomeric 

enrichment were performed in a similar way, however, only the CNVs were shuffled for 

the 1000 iterations.  

 

Estimating the false discovery rate of copy number variant detection by read-depth 

analysis 

 To estimate the FDR for CNV detection by RD analysis, we performed Monte-

Carlo simulations in which the relative order of genomic windows was shuffled 1000 

times for each dataset. Shuffled datasets were subjected to copy number segmentation 

and filtering exactly as for real data, with the caveat that we excluded the X and Y 

chromosomes from these analyses to avoid sex-related effects. The FDR was calculated 

as the mean number of CNVs detected in simulated data, adjusted for the exclusion of sex 

chromosomes (based on their size). This FDR estimation strategy specifically measures 

the specificity of CNV detection with respect to random sources of noise, however, it 

does not account for potential systematic or regional effects and therefore should be 

considered a lower bound.  

  

Estimating the false negative rate of copy number variations detection by read-depth 

analysis 

 It is difficult to estimate the false negative rate (FNR) because our CNV size 

detection limits (~3.4 Mb) greatly exceed the size of known germline CNVs, and 

therefore we do not have access to a set of true CNVs with which to measure sensitivity. 

However, for the 41 cells derived from male individual 1583 we expect to detect the X 
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and Y chromosomes as single copy "aberrations" relative to autosomes. We exploited this 

feature to develop a simulation-based approach to measure FNR in these 41 datasets. For 

example, to simulate a single deletion comprising 5 genomic windows, we randomly 

selected 5 contiguous genomic windows from the X chromosome, extracted their 

predicted copy number values, and used these values to replace the copy number values 

of 5 contiguous windows from a randomly selected autosomal location. To simulate 

duplications we used a similar approach, but instead of replacing the 5 autosomal copy 

number values, we simply added the autosomal values to the values extracted from the X 

chromosome. The resulting simulated dataset was then subjected to copy number 

segmentation and CNV filtering precisely as for the real data. To calculate the FNR for 

CNVs of a given size (e.g., 5 windows) in a given dataset, we simulated 1000 CNVs of 

that size and assessed the fraction of simulations in which we detected the synthetic 

CNV. Detection was defined as a reciprocal overlap of 50% between the simulated and 

detected genomic segment. 

 

Results 

 We investigated human neurons from hiPSC-derived neurons and FCTX neurons 

(Figure 3-1). We used fluorescence activated cell sorting (FACS) on neuronogenic 

hiPSCs expressing synapsin::GFP and post-mortem tissue based on NeuN Immunostainin 

(Spalding et al., 2005). Single hiPSC-derived neurons were subjected to multiple 

displacement amplification (MDA) (Dean et al., 2002) and hybridized to Affymetrix 

250K SNP arrays (Vanneste et al., 2009). Nuclei from post-mortem tissue were subjected 

to Illumina DNA sequencing using a custom version of the protocol developed by 



74	
  
	
  

(Navin, et al., 2011) that combines the GenomePlex whole-genome amplification method 

with Nextera-based library preparation (Adey et al., 2010). Stringent QC measures were 

developed to ensure that only the highest quality amplification reactions and datasets 

were included in downstream analyses (see Materials and Methods).  

 

Design and detection 

 We detected CNVs by partitioning the genome into intervals 10 to 100 times 

larger than the local amplification biases reported for single cell DNA amplification 

(Lasken and Stockwell, 2007; Lasken, 2009). In the SNP microarray data, median copy 

numbers of every 100 consecutive probes, with a mean genomic interval of 666 kb, was 

calculated. For the sequencing data, we created bins of 500 kb of uniquely mappable 

sequence, with a mean size of 687 kb, and counted RD. Circular binary segmentation 

(Olshen et al., 2004) was used to produce distinct segments for CNV detection.  

Rigorous filtering based on the amplitude of the segments relative to the noise (median 

absolute deviation) of each dataset, the number of reads, and the overall quality  
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Figure 3-1 

Figure 3-1. Single cell analysis by SNP array and DNA sequencing. Summary of the 

single cell approaches used.  

*Indicates personal contribution to McConnell et al. (detailed in Materials and Methods) 
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determined by a confidence score were applied. Furthermore, a minimum consecutive bin 

threshold for putative CNVs (see Materials and Methods). The mean CNV detection 

resolution minimum of 6.7 Mb for SNP array data and 3.4 Mb for sequencing data. 

In order to establish concordance between the two methods, 7 MDA-amplified hiPSC-

derived neurons were analyzed by both SNP array and sequencing (Figure 3-1, Figure 3-

2, Supplementary Figure S3-1 and Supplementary Figure S3-2). Sub-chromosomal 

deletions (Figure 3-2A and 3-2C) and duplications (Figure 3-2B and 3-2D) were found 

using both methods and both sources of neurons. 

 

In vitro hiPSC microarray analysis  

 We analyzed 40 neurons from three human hiPSC lines, known hereafter as C 

(n=21), D,(n=6) and E (n=13). These cell lines originated from three different individuals 

that are regarded as neurotypic controls for a human hiPSC-based disease model 

(Brennand et al., 2011). In examining bulk DNA from the C and D line donor fibroblasts 

or human hiPSC-derived NPCs, we did not observe genomic aberrations of clonal origin. 

Additionally, we found that 27 of the 40 hiPSC-derived neurons had copy number 

profiles similar to that of bulk DNA. In contrast, we observed 13 unique genomes that 

had the following genomic rearrangements: four whole chromosome losses, seven whole 

chromosome gains, and 12 sub-chromosomal CNVs, ranging from 7.0 Mb to 156 Mb 

(Figure 3-3A and 3-3B). All CNVs were unique in each of the neurons, which would 

imply that the CNVs are likely not early clonal events, but instead developing in later 

lineages or are private to individual cells. 
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Figure 3-2; A and B data provided by co-authors 

Figure 3-2. Mosaic CNV detected in human neurons. (A and B) Subchromosomal 

deletions (green down arrow) and duplications (red up arrow) are observed in hiPSC-

derived neurons. (A) Neuron Dn_1 has a deletion on chromosome (chr) 4q (bottom); 

neuron Dn_2 has no CNV on Chr4 (top). Small gray dots show the predicted copy 

number at individual SNPs; red dots show every 30th SNP. (B) Neuron Cn_32 has a 

duplication on ChrXq (bottom); neuron Cn_2 does not (top). (C and D) Single-cell 

sequencing reveals subchromosomal deletions (green down arrow) and duplications (red 

up arrow) in FCTX neurons. (C) FCTX079 has a deletion on Chr1p (bottom); FCTX080 

does not (top). Blue dots show raw copy number predictions obtained by read-depth 

analysis (mean window size ~687 kb; see methods) (D) Neuron FCTX197 has a 

duplication on Chr2p (bottom), whereas FCTX185 does not (top). There is another 

possible duplication on Chr2q in FCTX197 (white arrow), which is comprised only four 

consecutive bins and therefore failed our five-bin confidence threshold. 
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CNVs seen in the C and D line human hiPSC-derived neurons were different than from 

those in C and D line fibroblasts or NPCs (Figure 3-3A). Among the 29 fibroblasts, one 

was aneuploid, missing Chr22 and ChrX, and six had single CNVs, ranging from 5.2 Mb 

to 27.7 Mb (Figure 3-3A). In the 19 hiPSC-derived NPCs, six duplications were 

observed. Furthermore, deletions were only seen in hiPSC-derived neurons and not in 

hiPSC-derived NPCs. Cumulative distributions of CNVs in the three cell types (Figure 3-

3B) showed that distribution of neurons are significantly different than that of fibroblasts 

(Kolmogorov-Smirnov test, P< 0.001). 

 We wanted to confirm that CNVs and basal aneuploidy occurred in single 

fibroblasts. To do this, we used limiting dilution to seed single fibroblasts for expansion. 

Over seven days, the fibroblasts were allowed to expanded to roughly 20 sister cells and 

sister clones were isolated. One clonal expansion underwent a chromosome 

missegregation of Chr2, where one cell had an additional copy and a loss was observed in 

the sister cell (Supplementary Figure S3-3A). We also observed non-clonal CNVs and 

decided to use fluorescence in situ hybridization (FISH) for a common hiPSC CNV on 

Chr20 (Laurent et al., 2011) and for ChrX to corroborate these findings. In performing 

metaphase spreads, 20 karyotyped as euploid, 13/200 were aneuploid for ChrX 

(Supplementary Figure S3-3B), and 26/200 nuclei had a Chr20 CNV (Supplementary 

Figure S3-3C). These data show that CNVs can be detected in single human cells in 

culture by SNP array and FISH. 
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Figure 3-3; data provided by co-authors 

 



80	
  
	
  

Figure 3-3. Large CNVs are found in hiPSC-derived neurons. (A) Whole and 

subchromosomal duplications (red) and deletions (green) are summarized for 40 hiPSC-

derived neurons (top). The y axis value represents the number of times each genomic 

interval was deleted (below in green) or duplicated (above in red). CNVs were detected 

in 9 out of 21 C neurons (Cn), 2 out of 6 D neurons (Dn), and 2 out of 13 E neurons (En). 

In donor hiPSC-derived NPC populations (middle), CNVs were detected in 1 out of 10 D 

NPCs (Dp) and 3 out of 9 C NPCs (Cp). In donor fibroblast populations (bottom), CNVs 

were detected in 7 out of 20 D fibroblasts (Df) and 0 out of 9 C fibroblasts (Cf). Note that 

chromosomes are not plotted to scale because data are summarized in 100-SNP bins. (B) 

The distribution of subchromosomal CNVs in fibroblasts were significantly different than 

in hiPSC-derived neurons (Kolmogorov-Smirnov test, P< 0.001). No deletions were 

observed in NPCs. Deletions are denoted with blue markers; all other markers indicate 

duplications. Aneuploidies are not included in this plot. For completeness, 

subchromosomal CNVs from clonal fibroblasts (Supplemental Figure S3-4) were 

included in this plot, bringing the total n to 42 fibroblasts.  
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In vivo neuron single cell sequencing 

 We then wanted to determine if mosaic CNVs were seen in vivo and were not 

simply some unforeseen artifact of cell culture. We adapted the SCS method (Navin et 

al., 2011) to use on FCTX neurons because the digital readout of DNA sequence data 

offers superiority over the noisiness of microarrays (Navin et al., 2011; Baslan et al., 

2012). We benchmarked our sequencing method with trisomic, male fibroblasts 

(47XY21+) (Supplementary Figure S3-3D; Supplementary Figure S3-4; Supplementary 

Figure S3-5). Subsequently, we sequenced 110 FCTX neurons originating from three 

different individuals [(a 24 year-old female (NICHD Brain Bank ID#5125; n = 19), a 26 

year-old male (ID#1583; n = 41), and a 20 year-old female (ID#1846; n = 50)] 

(Supplementary Figure S3-6). Genomic profiles of some of these cells can be viewed in 

Figure 3-4. We imposed a strict set of filtering criterion to identifying high confidence 

CNVs (see Materials and Methods), where each CNV had to be comprised of five or 

more consecutive bins. In the 41 male neurons, our protocol positively identified 100% 

monosomy X and Y and identified 100% three copies of 21 and a single copy of X in the 

fibroblasts (Supplementary Figure S3-7). Furthermore, simulation experiments present us 

with a predicted mean FNR of 17% and a predicted mean FDR of 0.6% (Supplementary 

Figure S3-8; see Materials and Methods) illustrating that our methods can detect CNVs at 

a relatively high sensitivity and specificity. We cannot know our true FNR and FDR 

rates, but our predicted FNR rate indicates that we may be too conservative and 

underestimating the true incidence of CNVs.   
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Figure 3-4; S Shumilina assisted in FCTX library preparation   
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Figure 3-4. Identification of CNVs in postmortem neurons using single cell 

sequencing. Genome-wide copy number profiles of five male (top) and five female 

(bottom) neurons from two individuals, no. 1583 and no. 1846, respectively. DNA copy 

number (y axis) was calculated by RD analysis of variably sized genomic windows 

containing 500 kb of uniquely mappable sequence (blue), and CNVs were detected by 

circular binary segmentation (orange). Green (down) and red (up) arrows denote 

deletions and duplications, respectively, that were identified by segmentation and passed 

filtering criteria. Reported CNVs comprise five or more consecutive bins and exceed two 

median absolute deviations (MADs). Dotted gray lines show 1 and 2 MADs from the 

median copy number of each data set. Arrows denote deletions (green, down and at an 

angle in FTCX195 and 155) and duplications (red, up) that were identified by copy 

number segmentation and passed filtering criteria. Note that single-copy “losses” of ChrX 

in cells from male individual no. 1583 are not indicated by arrows, but were identified in 

100% of cells. All neuronal genomes can be found in McConnell et al.. 
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 Of the 110 FCTX neurons we sequenced, 45 or roughly 41% harbored one or 

more somatic CNVs (Figure 3-5A, see Supplementary Figure S3-5A and S3-5D for 

different stringencies). The overwhelming majority of somatic CNVs were 

subchromosomal, ranging in size from 2.9 Mb to 75 Mb (Figure 3-5B); however, three 

CNVs affected >50% of the chromosome (e.g., FCTX155, Figure 3-4) and may be of a 

different mechanistic origin than the subchromosomal CNVs. Only in one instance did 

two CNVs share the same breakpoints (a 3 Mb subtelomeric deletion on Chr16 in 

FCTX198 and FCTX224. CNVs were predominantly smaller in size, less than 20Mb 

(n=133), and often (23.3%) occurred at telomeres (Figure 3-5C, 2067-fold enrichment by 

Monte-Carlo simulation experiments; see Materials and Methods). These small CNVs are 

not enriched at features known to affect genome stability such as transposons, segmental 

duplications or fragile sites. Additionally, these relatively small somatic CNVs were not 

enriched with germline CNVs or known genes (Supplementary Figure S3-9). On average, 

subchromosomal deletions were twice as common as duplications across the three 

individuals, suggesting a bias towards DNA loss in post-mitotic neurons. However, 

#1846 showed far more duplications than the other two individuals (Figure 3-5B and 3-

5C, Supplementary Figure S3-6E). These results illustrate that somatic CNVs are a 

feature of neuronal genomes, but the CNV type and rate may be variable among 

individuals.  

 The seemingly high mutational burden reported is due to few cells with highly 

rearranged genomes. FCTX neurons typically exhibited 0 (59%) or 1-2 CNVs (25%), 

while 17 cells (15%) exhibited 108 of the 148 total CNV calls (73%) and seven cells 

exhibited nearly half (49%) of all CNVs (Figure 3-5A). These highly aberrant cells 
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contained multiple discrete copy number oscillations between altered and unaltered 

segments on the same Chr. As expected, these switches maintained integer-like copy 

number values, an attribute of digital DNA sequencing technology. This was also 

observed, to a lesser degree, in hiPSC neurons, where a number of cells contained 

multiple CNVs on the same chromosome. This phenomenon of a few cells harboring 

many CNVs is illustrated by the fact that two of the FCTX neurons had more than 10 

events. FCTX155 has nearly all of Chr2 affected, along with a single duplication and 18 

deletions (Figure 3-4). In sequencing the 16 control fibroblasts, we did not observe this 

phenomenon where a few cells were highly aberrant, accounting for many of the CNVs 

calls (Supplementary Figure S3-5 and S3-7E). This may be due to insufficient sampling 

of the fibroblasts. Should more fibroblast have been sequenced, it is possible that we may 

have observed; however, these findings suggest that a subset of neurons may be more 

susceptible to (or undergo more) CNVs.  

 While single cell genome analysis is attractive and technically impressive, the 

approach makes orthogonal experimental validation impossible because the initial state of 

a single cell’s genome cannot be knowable once it is amplified. However, we maintain 

that our bona fide set of CNVs is conservative and is most likely real due to the following 

lines of reason. First, we based our methods in those, which had been validated on 

clonally related cell populations: eight cell embryos (Vanneste et al., 2009) and tumors 

(Navin et al., 2011). Second, the CNVs we report are several orders of magnitude larger 

than the amplicons produced by whole genome amplification. Previous studies have 

reported amplification artifacts to be small (less than 10 kb) and located relatively 

uniformly throughout the genome (Laskin and Stockwell, 2007; Laskin, 2009); therefore, 
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biases in amplification cannot account for the large-scale CNVs we see. Furthermore, 

simple amplification artifacts should not create both gains and losses of DNA at integer 

copy number values when sequenced. Third, DNA degraded during the post-mortem 

interval, the length of time elapsed from death to freezing of brain tissues, could not 

generate duplications. Additionally, the large deletions seen in FCTX were also observed 

in hiPSC-derived neurons. Fourth, Monte-Carlo simulation experiments demonstrated 

that our CNV detection strategy effectively identified single copy gains and losses at high 

sensitivity in control experiments. Fifth, enacted conservative QC measures to exclude 

datasets that may have exhibited uneven or suboptimal amplification. We also employed 

scrupulous filtering reflecting inherent physical constraints imposed by the nature 

sequencing data, thereby requiring integer-like copy number profiles (see Materials and 

Methods). Lastly, the CNV calls appear to be of very high quality based on their size, 

amplitude (deviation from the MAD), and integer-like properties (Figure 3-4). 

Additionally, when increase the stringency of our CNV detection requirements, a portion 

(30-56%) of the CNVs do not change (Supplementary Figure S3-7D). Even at the highest 

level of stringency, the central findings remain: somatic CNVs exist in a portion of 

human neurons (13-24%), there are more deletions than duplications (Figure 3-5C and 

Supplementary Figure S3-7A), and a small number of neurons marked copy number 

switches account for much of the observed variation (Figure 3-4 and Supplementary 

Figure S3-7D). Although it is still possible that some unknown single cell amplification 

or technical artifacts may confound aspects of this study, the aforementioned 

justifications and rationale underscore the strength of our core results and bolster our 

conclusions. 
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Figure 3-5; S Shumilina assisted in FCTX library preparation 
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Figure 3-5. Characterization of CNVs in postmortem neurons using single cell 

sequencing. (A) The number of individual neurons (Y-axis) that exhibited a given 

number of CNVs (X-axis). (B) Cumulative frequency of CNV sizes found per individual 

(deletions in green, duplications in red). (C) Whole and subchromosomal duplications 

(red) and deletions (green) are summarized for the 110 FCTX neurons.  
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Discussion 

 Through single cell genomic analysis of human neurons, we have characterized 

somatic mosaicism in the nervous system and extended its characterization to the single 

cell level. Previous studies using bulk DNA from somatic tissues, including brain, 

identified CNVs among monozygotic twins (Bruder et al., 2008) and in different organs 

or brain regions from the same individual (O’Huallachain et al., 2012; Piotrowski et al., 

2008). These studies were limited in their ability to detect CNVs because they used bulk 

tissue. The authors reported less than 10% of cells harboring CNVs and only provided a 

rough assessment of somatic mosaicism, while our study shows that mosaic copy number 

variation is prevalent in human neurons. Further work is required to explore the 

mechanism and function of somatic mutation in neurons, as well as other cell lineages. 

For instance, neuronal lineages develop genomic instability during development and 

propagate them or individual neurons may become prone to CNVs due to persistent DNA 

damage. Reports have implicated electrophysiological activity as a source of DNA 

double stranded-breaks in neurons (Suberbielle et al., 2013), and small circular DNAs 

caused by excision have been seen in multiple somatic cell types, including neurons 

(Shibata et al., 2012; Maeda et al., 2004). Furthermore, sub-chromosomal deletions and 

other rearrangements in human cells can be caused by retrotransposition (Gilbert, Lutz-

Prigge, and Moran, 2002; Callinan et al., 2005; Gilbert et al., 2005; Symer et al., 2002) 

whereby the increased rates of retrotransposon during human neurogenesis (Baille et al., 

2011; Coufal et al., 2009) could lead to the preponderance of CNVs observed in neuronal 

genomes, thus supporting our observed ratio of deletions to duplications. 
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 The patterns of CNVs observed in neurons were different than those observed in 

fibroblasts. Using three independent single cell approaches (SNP array, sequencing, and 

FISH) we detected Mb-scale CNVs in human cultured fibroblasts. Previous studies 

estimated CNVs (no larger than 1 Mb) to occur in skin fibroblasts at a frequency of 30% 

(Abyzov et al., 2008). In order to study single cells, Abyzov et al. used stem cell 

reprogramming on single fibroblasts and then performed deep whole-genome sequencing 

on the group of cells from the hiPSC cell lines. This differs from our approach because 

they used a population of cells in their analysis, where as we used single cells. Their 

method afforded high resolution (2-5 kb); however, the reprogramming process may have 

served as a bottleneck event. This is because cells harboring many large CNVs may not 

be efficiently reprogrammed or clonally expanded, thus becoming underrepresented 

genomes. This leads us to believe that our findings may not be in contradiction with 

theirs. However, both studies did not see a subset of fibroblasts with highly aberrant 

genomes like those in neuronal genomes. 

 The consequence of somatic mosaicism on the function of neurons is not 

understood. The simplest hypothesis is that neurons will have well defined cellular 

phenotypes with distinct transcriptional or epigenetic programs based on their differing 

genomes. Future advances in single cell technologies should allow for this hypothesis to 

be tested by concomitantly analyzing the genome, epigenome, transcriptome, and the 

proteome of a single neuron. Moreover, somatic mutations and mosaicism in neurons has 

been shown to cause neurological disorders (Fishler, K. and Koch, R., 1991; Poduri et al., 

2012; Lee et al., 2012). Existence or effects of somatic variation and mosaicism in 
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neurons could explain complex neurological disorders (e.g., autism, schizophrenia, and 

Alzheimer’s). 
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Supplementary Data 

Supplementary Figure S3-1. Single cell analysis using SNP array and sequencing. A 

cluster dendrogram shows concordance in copy number profiles for seven neurons 

mapped by SNP array hybridization intensity (“SNP”) or sequencing read depth (“SEQ”). 

Numbers at tree nodes reflect the significance values reported by the R pvclust package 

for bootstrap resampling (1000 iterations) and can be interpreted as the percentage of 

simulated trees with the observed topology 

 
Supplementary Figure S3-1; data provided by co-authors 
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Supplementary Figure S3-2; data provided by co-authors 

Supplementary Figure S3-2. Concordance between SNP array and DNA sequencing. 

(A) Scatter plots comparing raw copy number values between the seven neurons 

subjected to MDA-based whole-genome amplification followed by both SNP array 

analysis (“SNP”) and DNA sequencing (“SEQ”). Copy number values were directly 

compared using the same ~687 kb windows used to measure read-depth (see methods). 

(B) Correlation matrix reporting pairwise Pearson correlation coefficients for every 

“SNP” and “SEQ” combination. Note that replicate SNP/SEQ experiments have 

dramatically larger correlation coefficients than non-replicate combinations. 
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Supplementary Figure S3-3; A, B, ad C provided and analyzed by co-authors  
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Supplementary Figure S3-3. Large CNVs are found in cultured fibroblasts. (A) Single 

fibroblasts obtained by limiting dilution were expanded to a population of ~20 clonal 

fibroblasts after 7 days in vitro (DIV). In one clonal population, a reciprocal chromosome 

missegregation event was detected. One fibroblast was trisomic for Chr2 (top) and a 

sister was monosomic for Chr2 (bottom). Chromosome 1 is shown alongwith the third 

euploid cell. (B and C) Two groups of Df (passages 7 and 8) were summarized in (Fig. 

2A); a parallel culture of the p7 group was sent for karyotyping and FISH. Out of 20 

metaphase chromosome spreads, 20 were euploid. (B) FISH was performed for a ChrX p 

arm telomere (green) and ChrX centromere (red). Out of 200 nuclei, 13 were aneuploid. 

(C) FISH was performed for the Chr20 centromere (green) and Chr20 CNV (red). Out of 

200 nuclei, 26 had the CNV. (D) Single-cell sequencing of two male fibroblasts with 

karyotypically defined trisomy 21. Genome-wide copy number profiles show that, in both 

cells, most of the genome is present at two copies, Chr21 is present at three copies, and 

ChrX is present at one copy. In addition, we identified a large deletion on Chr7q in 

FIBR030. DNA copy number (y axis) was calculated by read-depth analysis of variably 

sized genomic windows containing 500 kb of uniquely mappable sequence (blue), and 

CNVs were detected by circular binary segmentation (orange). Green (down) and red 

(up) arrows denote deletions and duplications, respectively, that were identified by 

segmentation and passed filtering criteria. Reported CNVs comprise five or more 

consecutive bins and exceed two median absolute deviations (MADs). Dotted gray lines 

show 1 and 2 MADs from the median copy number of each data set.  
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Supplementary Figure S3-4 
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Supplementary Figure S3-4 Single cell sequencing of trisomy 21 human fibroblasts. 

(A) Flow chart of the single fibroblast sequencing experiment. The top section shows the 

protocol for sequencing 3 cells in replicate (corresponding to B and the top half of 

Supplementary Figure S3-5), accomplished by splitting each sample after 8 cycles of 

the whole-genome amplification (GenomePlex WGA) PCR step. The standard protocol 

used for neurons and the 13 single fibroblasts (corresponding to the bottom half of 

Supplementary Figure S3-5) is shown in the bottom section. QC filtering was 

performed exactly as for neurons. (B) Scatter plots comparing concordance between 

replicate experiments (corresponding to the top half of Supplementary Figure S3-5), 

where each data point represents the predicted copy number of a single genomic window.  
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Supplementary Figure S3-5 
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Supplementary Figure S3-5. Identification of CNVs in male trisomy 21 fibroblasts 

using single cell sequencing. Genome-wide copy number profiles of the three replicate 

fibroblasts (top) and six single fibroblast cells (bottom). RD analysis, copy number 

segmentation and CNV filtering were performed exactly as for neurons. These plots 

follow the conventions of Figure 3-4. Blue dots represent the predicted copy number (Y-

axis) of each individual genomic window, and orange lines show the results of copy 

number segmentation. Dotted gray lines show 1 and 2 MADs from the median copy 

number of each dataset. Reported CNVs comprise five or more consecutive bins and 

exceed two MADs. Arrows indicate CNV calls that passed filtering criteria (deletions in 

green and duplications in red).  
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Supplementary Figure S3-6; S Shumilina assisted in FCTX library preparation 
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Supplementary Figure S3-6. Single cell analysis of FCTX neurons. (A) Flow chart of 

the protocol. (B, C) FACS-based identification of large nuclei that stain positive for 

NeuN (C), relative to unstained controls (B). Sorted nuclei are gated from the pink circle. 

(D, E, F) Summary of duplications and deletions for each individual (number indicated) 

plotted as in Figure 3-5C. The Y-axis represents the number of times each genomic 

interval was deleted (below in green) or duplicated (above in red). 
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Supplementary Figure S3-7; S Shumilina assisted in FCTX library preparation 
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Supplementary Figure S3-7. Effect of increased CNV calling stringency. (A) Table 

showing the effect of increasingly stringent CNV detection thresholds on the level and 

types of CNVs found in FCTX neurons. From left we show the total number of CNV 

calls detected, the number of deletions and duplications, the number and percentage of 

cells that were found to have at least 1 CNV, the predicted FNR as calculated in the same 

manner as for Supplementary Figure S3-8 (see Materials and Methods), and the fraction 

of male neurons, which monosomy X was detected at the given thresholds. Note that the 

false negative rate is calculated using simulated CNVs that are the same size as the 

minimum number of bins that could be detected according to the bin thresholds at far left 

(either 5 or 10), and therefore FNR actually decreases with the 10-bin threshold because 

larger CNVs are easier to detect. (B) The effect of increased stringency on the 13 control 

fibroblast cells. (C) The effect of increased stringency on the 3 single fibroblasts 

subjected to the replicate single cell sequencing experiment. In addition to the columns 

described above, this table includes the number of concordant and discordant CNVs 

detected at each indicated threshold. Concordant CNVs are defined as those detected in 

both replicate cells; discordant CNVs are those detected in merely one replicate cell, 

according to the filtering thresholds shown at left. In one case two CNV calls in one 

replicate dataset were concordant with a single call in the pair, hence the odd number of 

concordant calls. (D) Bar chart showing the number of individual neurons (Y-axis) that 

exhibited a given number of CNVs (X-axis) at the four CNV detection thresholds 

indicated in the legend. (E) Bar chart showing the number of fibroblasts (Y-axis) that 

exhibited a given number of CNVs (X-axis) at the four CNV detection thresholds 

indicated in the legend.  
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Supplementary Figure S3-8 
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Supplementary Figure S3-8. Estimated FDR and FNR for single cell sequencing 

experiments. In each case, CNVs were identified using precisely the same methods and 

criteria as for real data (see Materials and Methods), and the FDR or FNR shown is the 

mean value obtained from 1000 simulation experiments. Deletions are shown in green 

and duplications in red. (A) FDR for each dataset, as determined by randomly shuffling 

copy number values across all autosomal bins and then calling CNVs. (B) FNR for all 

cells derived from the male individual (1583). FNR was calculated by randomly selecting 

5 contiguous bins from the X chromosome and either replacing (deletion) or adding 

(duplication) the copy number values from the these bins at a randomly chosen genomic 

location. 
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Supplementary Figure S3-9; S Shumilina assisted in FCTX library preparation 
 

 
Supplementary Figure S3-9. Enrichment of CNV calls at various genome annotations. 

Monte-Carlo simulations were used to determine whether CNVs identified in post-

mortem neurons preferentially overlapped various genomic features. Enrichments are 

displayed as the log2 ratio of the observed number of intersections between each CNV 

class (X-axis) and each genome annotation (Y-axis), relative to the expected number of 

random intersections calculated by the simulations. A positive correlation between CNVs 

and a given annotation will result in a red-colored positive value; a negative correlation 

will result in a blue-colored negative value. The highest level of enrichment observed was 

between deletions and CpG islands, whereas the lowest level of enrichment observed was 

between deletions and fragile sites. 
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CHAPTER 4:  
FUTURE DIRECTIONS AND ONGOING EXPERIMENTS 
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The Role of Neuronal Phenotype in Genetic Mosaicism 

Background and proposed research 

 Human neurons that originate from post-mortem brains of healthy individuals 

harbor somatic DNA CNVs and have been characterized at the single cell level 

(McConnell et al., 2013; Cai et al., 2014). The mechanisms and effects underlying 

somatic CNVs in neuronal genomes are still outstanding. While many have offered 

explanations (Gilbert, Lutz-Prigge, and Moran, 2002; Callinan et al., 2005; Gilbert et al., 

2005; Symer et al., 2002; Shibata et al., 2012; Maeda et al., 2004; Shibata et al., 2012; 

Suberbielle et al., 2013), there is very little agreement or evidence to conclusively 

identify the causes and consequences of the phenomenon. One way to begin addressing 

this gap in knowledge would be to analyze neuronal genomes from a wide array of 

sources. The rationale being that a broader and more developed investigation of neuronal 

genomic variability could not only serve to uncover incidences somatic variation within 

individuals, but also between individuals. A characterization of differential or recurrent 

CNVs in neurons originating from a myriad of sources may elucidate the process and/or 

biological function of neuronal somatic variation.  

 In order to make such an undertaking possible, it would be imperative to improve 

the economy and accuracy of our SCS method. After doing so, an exhaustive study of 

mosaicism in a cohort of normal individuals could be performed. First, it is possible there 

is a neurotransmitter-specific and/or spatial influence on the patterns of neuronal genomic 

mosaicism. In our previous study, we had investigated a paucity (n = 110) of FCTX 

neurons of unknown neurotransmitter-type. Second, the location (e.g., frontal cortex, 

cerebellum, hippocampus, etc.) or layer of origin for a given neuron may be related to the 
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prevalence or pattern of somatic CNVs. Current models of corticogenesis state that 

neurons radially migrate with defined laminar fates (Thomson and Bannister, 2003; 

Kreigstein and Alvarez-Buylla, 2011). It is then reasonable to believe that the CNVs in 

each neuron could follow a genetic lineage-specific inheritance pattern. Another, but 

related, hypothesis is that the microenvironment could dictate neuronal specificity, as 

well as the expressed neurotransmitter profile. This would then be reflected by the 

genomic, or perhaps epigenomic, landscape observed in each neuron. The added benefit 

by performing this experiment is that these data could be recycled as controls for 

investigating the role of somatic CNVs and mosaicism in complex phenotypes and 

diseases if no specific enrichment or pattern emerges from the various neuronal types. 

 Mosaic CNVs have been found to cause rare neurological phenotypes with 

quantifiable clinical presentations, such as mosaic Down syndrome (Fishler, K. and 

Koch, R., 1991) and hemimegalencephaly (Poduri et al., 2012; Lee et al., 2012). 

Accordingly, somatic mosaicism may also be involved in other more prevalent complex 

neurological conditions. This hypothesis is bolstered by a growing body of evidence 

implicating somatic variation as the underlying cause of many diseases other than cancer 

(Poduri et al., 2013). Rare germline and de novo CNVs have already been associated 

diseases such as epilepsy (Olson, H. et al., 2014), autism (Sebat et al. 2007; Szatmari et 

al. 2007; Christian et al. 2008; Sanders et al., 2012; Iossifov et al., 2014), and 

schizophrenia (International Schizophrenia Consortium 2008; Kumar et al. 2008; 

Marshall et al. 2008; Stefansson et al. 2008; Walsh et al. 2008; Weiss et al. 2008; Kirov 

et al. 2009; Mefford et al. 2009; Stefansson et al., 2014; Bundo et al., 2014); however, 
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the precise role and abundance of somatic mosaicism in the development and progression 

of these complex neurological disorders has not been fully answered.  

 Recently, a cursory assessment of somatic deletions in bulk brain tissue has been 

performed to characterize the differences in regional (prefrontal cortex vs. cerebellum) 

and schizophrenic neuronal genomes (Kim et al., 2014). The authors identified 106 

putative somatic deletions by sequencing bulk tissues to very high-depth. The study was 

perfunctory and inconclusive to many questions raised here; yet, the basic experimental 

design of Kim et al. is useful as a model. The experimental design could be modified to 

employ single cell methods, rather than bulk tissue, and then adapted to other disorders 

such as age-related neurodegenerative diseases. Diseases with an age onset dependency, 

may relate the effect of aging on the incidence of somatic CNVs and disease. Currently, it 

is not definitively known as to whether the number of somatic CNVs increases with age. 

Our previous study, McConnell et al., comprised of “normal” or “neurotypic” individuals 

ranging in age 20 to 26. The youngest individual, unexpectedly, exhibited the most CNVs 

and most CNVs per neuron. While this observation may have been due to a sampling bias 

(i.e., this individual had the most neurons sequenced making it possible to discover the 

population of cells with highly aberrant genomes), but there may be genuine biology 

underpinning this observation. Genome instabilities, particularly in microsatellites 

(Eshleman, J. R. and Markowitzm, S. D., 1995), have been found to be inherited and will 

often manifest themselves sporadically during the lifetime of an individual. Therefore, it 

is plausible that there is an undiscovered relationship between age and the abundance of 

somatic CNVs in neurons.  
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Materials and methods 

The following methods are modified from those found in the manuscript: 
MJ McConnell, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, 
Shumilina S, Lasken R, Vermeesch, J, Hall IM, and Gage F. “Mosaic copy number 
variation in human neurons.” Science (2013), 342(6158):632-7. 
 
Experiments and analyses were developed and/or performed by MR Lindberg under the 
guidance of IM Hall and MJ McConnell unless otherwise noted. 
 
 A modified Isolation of post-mortem neuronal nuclei (see Chapter 3: Materials 

and methods, pg. 62; McConnell et al., 2013) was performed on FCTX tissue from one of 

the three used in the McConnell et al. study, UMB#1846 (a neurotypic 20-year-old 

female, 9 hour post-mortem interval). The isolation procedure was performed identically 

until FACS (performed by the University of Virginia Flow Cytometry Core). At this 

stage, single nuclei from the NeuN and DAPI positive population were sorted based on 

their relative DNA content as reported by DAPI. The cells from the “left” and “right” 

tails of the distribution were gated deposited into 96 well plates alongside 1 water control 

per row. The “left” and “right” tails were the extremes of the DNA content distribution, 

determined by the percentage (around 5-10%) of events relative to the whole population 

of cells. These cells would ostensibly have an overall DNA content less than or greater 

than the center of the distribution. Ian Blurbis provided MALBAC sequencing libraries. 

The SCS procedure and subsequent analyses were consistent with the McConnell et al. 

protocols in all experiments. 

 

Preliminary results 

 In the McConnell et al. study, we reported 110 FCTX neuronal genomes; 

however, well over 400 sequencing libraries were prepared. This rate (nearly one in four) 
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was predicated on the QC measures imposed on the sequencing libraries. The first QC 

requirement eliminated nearly one-third of sequencing libraries prepared, as they did not 

produce a high enough DNA concentration, and could not be sequenced. The remaining 

fraction failed because they did not pass the MAD and confidence score thresholds (see 

Chapter 3: Materials and methods, pg. 67; McConnell et al., 2013). The low success rate 

was tolerable for this study because SCS is a nascent technology and the goal of our 

study was to simply detect the presence of somatic mosaicism in human neurons. 

However, a broader study with several hundred or even thousands of neurons derived 

from a variety of sources would be prohibitively expensive if one were to use those in 

employed in McConnell et al.. 

 Here, we have begun to explore two ways to potentially make SCS more 

affordable. Both approaches are based on the fact that minimizing the number of cells 

analyzed will substantially lower costs. The first approach identifies the fact that the most 

liberal CNV detection parameters putatively show that only 43% of neurons contained at 

least one CNV (McConnell et al., 2013), or that zero CNVs were detected in over half of 

all neurons. This means that if a study were to be concerned with neurons with CNVs, not 

the rate of occurrence, then one could preferentially analyze the cells with the most 

aberrant genomes. We have made preliminary attempts to do exactly this by using FACS 

on FCTX neurons stained for NeuN and DAPI (see Methods and materials) to select 

ostensibly aneuploid neurons only. The basis of the approach comes from the fact that 

neurons with aberrantly measured FACS DNA content would likely be aneuploid. As 

such, we gated on the tails (left and right) or edges of the cell cycle normal distribution 

measuring DNA content (NeuN positive nuclei are in G0 because the are derived from 
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post-mitotic neurons). These tails were thought to reflect the relative extremes of the 

DNA content distribution as measured by DAPI binding. Previous reports have claimed 

that neuronal genome content measured in cells of the right tail of the distribution make 

up an enriched subpopulation of about 250 Mb extra DNA (Westra et al., 2010), albeit 

we have yet to observe any enriched subpopulation or a non-normal neuronal DNA 

content distribution. Regardless, the left and right tails were sorted alongside neurons 

from the center of the distribution and sequencing libraries were prepared.  
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Figure 4-1 

Figure 4-1. FACS sorting of FCTX neurons. The forward and side scatters of all events 

are shown and nuclei are selected in the singlet distribution. Nuclei populations are 

isolated by gating DAPI positive and NeuN positive events. Single nuclei are then 

selected from the left (red) and right (purple) populations of DNA content and then 

analyzed with SCS.  
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 Unfortunately, we found that the libraries prepared from the left and right tails 

pass QC measures at a markedly lower rate than the standard SCS approach (less than 

10%). The sequencing libraries from the left and right tail sequencing libraries were also 

abundant in duplicate sequencing molecules, which would require far deeper sequencing 

to obtain unique measurements for necessary CNV detection (data not shown). Moreover, 

the neurons sorted from the center of the distribution did not these exhibit similar 

characteristics and displayed typical duplicate and QC failure rates seen in previous 

experiments. Although there may be true biology underpinning these observations, using 

this approach would be more expensive than our current protocol. It is more likely that 

these differences between the tails and center of the cell cycle distribution technical in 

nature and this avenue may be cost-effective in the future if these technical artifacts could 

be understood and skirted.  

 A second strategy for increasing the economy of SCS is to directly improve the 

quality of sequencing libraries. An increase in the proportion of cells passing the imposed 

QC requirements would reduce the burden of library preparation and number of cells 

sequenced. Changing the step that introduces the most technical variation and errors will 

make for the most effective improvements of SCS, (i.e. initial amplification of genomes). 

Recently, the MALBAC method was used to amplify the genomes of single cancer cells 

and sperm with high fidelity (Zong et al., 2012; Lu et al., 2012). Not only do the authors 

boast a high signal to noise ratio, they also claimed to have robustly detected single 

nucleotide variation. MALBAC or another method could allow additional variant 

analysis and discovery using different signals and evidence. Our preliminary applications 
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of MALBAC have not yet yielded results meeting the QC thresholds, but furthered fine-

tuning of MALBAC will likely yield high-quality data, making it a promising prospect. 

 

Discussion 

 While technically impressive, the SCS assay is expensive and still being 

developed. There are necessary advances in the protocol before scaling to a larger, more 

comprehensive study of neurons from a spectrum of sources. Since a concern of 

accomplishing any research project is the incurred cost, the two aforementioned avenues 

aim to improve SCS by reducing the number of sequencing libraries prepared and 

sequenced, thereby abating the total financial burden. The first approach, preferentially 

selecting for a higher putative mutational load or aneuploidy would be a more expensive 

method in its current practice. Although this approach may be detecting true genomic 

variation in the neuronal nuclei that appear to have higher and lower DNA content by 

FACS, it is more likely that technical limitations occlude a faithful and accurate analysis. 

Artifacts may originate from any step in the nuclear isolation or FACS itself and would 

require extensive investigation. Therefore, more robust initial whole-genome 

amplification (i.e., MALBAC) would likely be a more viable option for improvement. 

Not only would such a method drive down costs, it could also provide the ability to detect 

SNVs or obtain base-pair resolution of breakpoints. Conceivably, Hydra-Multi, or 

another SV caller, could be used to simultaneously analyze the genomes of neurons given 

sufficiently high data quality. Finally, the continued development of sequencing 

platforms may allow higher accuracy by not using a whole genome amplification and/or 

PCR-free preparation. With an improved SCS method or platform, a broad study on 
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many individuals, including those with diseases, could be performed. The work proposed 

here will provide insight into the possible causes and effects of mosaic variation in 

human neurons.  

 

Somatic Variation and Mosaicism in Human Cardiac Myocytes 

Background and proposed research  

 The full extent of somatic variation in human tissues remains largely 

unknown. We have used SCS to show that normal human neuronal genomes contain 

mosaic CNVs (McConnell et al., 2013); however, many other tissues have yet to be 

analyzed. We have begun the cursory evaluation of healthy human myocardium, or heart 

muscle, and have found that it is possible that the human heart may also harbor somatic 

variation and mosaicism. The investigation of the heart is an important step towards 

understanding the entire landscape of somatic variation in human tissues. 

We had chosen to analyze cardiac myocytes because heart muscle cells bear some 

superficial similarities to neurons. Foremost, muscle cells in the myocardium undergo 

electrochemical action potentials like neurons in the brain. While cardiac potentials are 

different than neuronal, the persistent electrophysiological stress that both cells undergo 

may serve as a common source of DNA double-stranded breaks. This 

electrophysiological stress has already been identified in neurons (Suberbielle et al., 

2013). An additional commonality between the cell types is the turnover of cells in adult 

hearts and brains. Cardiac myocytes, like the neurons, experience limited replacement 

and regeneration over a lifetime (Bergmann, O. et al., 2009; Gage, F. and Temple, S. 

2013). This low rate of cellular replacement and relative longevity of the constituent cells 
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in these organs may contribute to the accumulation of aberrant genomes in senescent 

cells. Somatic variation in affected tissue has been reported to be a common pathology 

between congenital heart defects (Reamon-Buettner, S. and Borlak, J., 2004; Reamon-

Buettner, S. and Borlak, J., 2004; Reamon-Buettner, S. et al., 2004, Reamon-Buettner 

and Borlak, J. 2006). It is therefore reasonable to hypothesize that age-related 

cardiomyopathies and cardiovascular disorders could be the result of acquired somatic 

variation. 

Here, we demonstrate the beginnings of an investigation into somatic variation in 

the human myocardium and show evidence for their putative existence. We applied SCS 

methods to otherwise healthy human heart cells and found large-scale CNVs, affecting 

whole chromosomes or chromosome arms. These preliminary results show that tissues 

may contain a genetic mosaic and warrants deeper exploration. Future experiments would 

affirm the existence of somatic variation in human heart muscle cells. Following works 

would consist of a survey of various myocardial tissue sources originating from both 

healthy individuals and those with cardiomyopathies.  

 

Materials and methods 

The following methods are modified from those found in the manuscript: 
MJ McConnell, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, 
Shumilina S, Lasken R, Vermeesch, J, Hall IM, and Gage F. “Mosaic copy number 
variation in human neurons.” Science (2013), 342(6158):632-7. 
 
Experiments and analyses were developed and/or performed by MR Lindberg under the 
guidance of IM Hall and MJ McConnell unless otherwise noted. Co-authors provided 
isolated heart cells and S Shumilina assisted in sequencing library creation. 
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A modified Isolation of post-mortem neuronal nuclei (see Chapter 3: Materials 

and methods, pg. 62; McConnell et al., 2013) was performed on human myocardial tissue 

from one of the three used in the McConnell et al. study, UMB#5125 (a 24-year-old 

female, 9 hour post-mortem interval). The isolation procedure was performed identically 

until the FACS. At this stage, single cells were instead stained with only Propidium 

Iodide and sorted solely on DNA content (performed by co-authors). Following the 

modified FACS, the SCS procedure and subsequent analyses were consistent with those 

in Chapter 3 and McConnell et al.. Additional MAD and confidence score calculations 

were used to reflect the ploidy differences in the heart cells. The MAD calculation was 

calculated by taking the weighted average of all segment MADs. A second confidence 

score was also used. 

 

Confidence Score, S:  

 

C: the median predicted copy number of a given genomic interval (i) after copy number 

segmentation  

n: the total number of genomic windows in the dataset 

j: each iteration between j1 and jn, (e.g., 0.01 to 1.00)  

 

1 max(S)= 2- 

for j = 0.01 ... 1.00 
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This confidence score reflects a step-wise approximation to determine the highest 

confidence score in an iterative process. The ploidy approximation per dataset is adjusted 

based on the maximum confidence score. 

 

Preliminary results  

 We sought to perform a cursory analysis of the prevalence of somatic variation in 

the human heart. A similar SCS strategy to the one found in Chapter 3 and McConnell et 

al. was used to investigate the genome of single cardiac myocytes. The FACS isolation 

strategy and staining was altered slightly, consisting of only staining nuclei with 

Propidium Iodide and sorting on DNA content. Future work can easily improve the 

FACS single cell isolation step used in these preliminary analyses. After sequencing 76 

cells from the heart, an abysmal 13 of 76 datasets passed using the previously 

circumscribed QC filters of a MAD less than or equal to 0.35 and a confidence score 

greater than or equal to 0.85. To improve this, bioinformatic corrections to the analysis 

would require changing the genomic ploidy assumption and making the QC filters reflect 

that change.  

 Currently, we see that these 13 cells passing previous QC did not exhibit a single 

somatic CNV. This low pass rate likely stems from the incongruous ploidy assumption 

that was applied when analyzing neurons. These 13 cells all had a ploidy of 2N, but many 

of the other datasets of the 76 had genomes that appeared to be other than 2N. These 

genomes contained very large alterations consisting of entire chromosomes and 

chromosome arms; these massive CNVs provide a total genomic content that was 

consistently fewer than 46 chromosomes. By removing the MAD filter, we see that 23 of 
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the 76 datasets would have passed filtering criteria. This may be due to the large losses in 

these cells, which increase the value of the dataset autosomal MAD. Adjustments on how 

MAD threshold is calculated and/or using a different signal-to-noise metric will be 

needed for an accurate assessment.  The global autosomal MAD is not an appropriate 

absolute measurement when the genomes are highly rearranged. A possible solution is to 

simply calculate the local signal-to-noise ratios using the appropriately weighted average 

of all segment MADs. This metric would not be influenced by global fluctuations 

between chromosomes and represents only local differences. Using this strategy, 22 

datasets had a weighted MAD lower then 0.35. For example, HERT002 (Figure 4-2) is a 

characteristic dataset that has a high autosomal MAD of 1.66, but the average local-

adjusted segment MAD is 0.28. The confidence score of HERT002 was also low (0.33), 

which is also due to the current ploidy estimation as the multiplier after GC normalization 

is 2 for 2N. To ameliorate this, increments of 0.01 were subtracted iteratively from the 

copy number values to find the maximum confidence score. The values at each genomic 

bin can then be adjusted by subtracting the step size with the highest confidence score. 

With the maximum confidence scores, 39 genomes had a confidence score over 0.85. 

This procedure may be used to explore the space of ploidy multipliers suitable for each 

dataset after GC normalization; which may even be more accurate than the previously 

described method in all analyses. Many of these genomes passing the new MAD and 

confidence score measures contained numerous whole-chromosome and arm deletions. 

Overall, we detected 3 copy number states, denoting loss of either one or both copies at 

many loci in heart cells. These aberrant copy number profiles are greatly enriched in 

heart cells compared to neuron 
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Figure 4-2. 

Figure 4-2. Genome-wide CNV profile of a human heart cell. Genome-wide copy 

number profile of a typical human heart cell sequenced. Read-depth analysis, copy 

number segmentation and CNV filtering were performed exactly as for neurons. Blue 

dots represent the predicted copy number (Y-axis) of each individual genomic window, 

and orange lines show the results of copy number segmentation. Dotted gray lines show 1 

and 2 MADs from the median copy number of each dataset. Reported CNVs comprise 

five or more consecutive bins and exceed two MADs.  
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 It is important to confirm the origin of the nuclei with these numerous large-scale 

CNVs. In our preliminary experiments, we naively sorted nuclei from heart tissue, even 

though the heart is composed of multiple cell types (i.e., fibroblasts, epithelial, smooth 

and cardiac muscle cells). Given the frequency of aberrant cells and the abundance of 

cardiac myocytes in the heart, it is likely that at least some of these aberrant cells are in 

fact cardiac myocytes. To validate this one could refine the FACS by using cardiac 

myocyte-specific markers such as cTroponin T or I antibody (Bergmann, O. et al., 2009) 

in combination with very conservative gating. This will provide verification of cell types 

because cTroponin positive events would be cardiac myocytes. We anticipate that these 

genomic profiles will be similar to the ones we have already observed; however, if 

cardiac myocyte nuclei do not produce these CNV profiles, and exhaustive attempt to 

discover the cell-type origin of aberrant nuclei, and their relationship to the heart will be 

necessary.  

 Having performed these essential experiments and confirmed the nuclei producing 

these profiles are indeed from cardiac myocytes, a larger study of somatic variation in the 

heart can be performed. Sequencing heart cell nuclei from 2 relatively young (<30 years) 

and 2 old (>70 years) individuals and identify CNVs. Sequencing such a large number of 

nuclei from 4 individuals will allow one to address a number of important questions 

regarding somatic variation in the heart. For example, are CNV-laden heart cells 

observed in all individuals, or is the first individual an exceptional case, or is it really just 

a technical artifact? Does the frequency of CNVs in heart cells vary among human 

individuals? Does the frequency of CNVs increase with age? Are certain chromosomes 

more prone to aneuploidy and CNVs than others? Are there defined “hotspots” in the 
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genome, where CNVs arise at very high rates? How do the level and patterns of somatic 

CNV in the heart compare to other tissues such as neurons? 

 There are follow-up experiments that can confirm and extend the SCS observations. 

For example, given the frequency of aberrant cells in preliminary experiments, it should 

be possible to detect losses of the most variable chromosomes or chromosomal regions 

using simple FISH experiments. By probing for the copy number of 3 different 

chromosomes (or loci) using 3-color FISH, it will be possible to observe a frequency of 

loss that is similar to our SCS data, as the very large-scale CNVs should be easily 

ascertained by FISH. Additionally, differentiating hiPSC cells to be become cardiac 

myocyte-like cells, much like the hiSPC neurons previous described, can also enable 

validation of the SCS results.  

 

Discussion 

 This unexpected result in the human mycardium is novel and very interesting, but 

it is also difficult to explain. Continuing forward, it will be necessary to rule out all 

possible artifacts. It is not possible to explain these large-scale copy number differences 

by known SCS artifacts, such as uneven amplification, since amplification artifacts 

produce much smaller-scale fluctuations. These CNVs cannot also not be due to DNA 

contamination, since we perform nuclei-free negative controls in each experiment, and 

these exhibit very few reads that align to the reference genome. Interestingly, genomes 

with aberrant CNV profiles could be multi-nucleated or have undergone polyploidization 

during cardiac myocyte development (Adler and Frideburg, 1986). For example, if CNV 

generation is related to these processes, CNV-laden nuclei will be enriched in certain 
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cardiac myocytes, rather than being distributed randomly as expected under the null 

model.  

 Taken together, performing these experiments will lead to a better understanding of 

the levels and origin of somatically acquired copy number variation in the human heart, 

and will suggest future studies aimed at determining the presence and functional 

consequences of this extraordinary phenomenon.  
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