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Abstract 

Water resources management (WRM) is essential to sustainably improve prosperity in developing 
nations. WRM requires reliable estimates of key hydrometeorological variables to monitor changes in 
water availability. Thus, one of the biggest challenges in WRM at the national scale is accurate and 
timely observations of these variables from the ground networks (referred to as local datasets) that 
usually have low density. Without boundary restriction and global coverage, satellite-based and outputs 
from land surface models datasets (referred to as global datasets) are promising and can estimate these 
variables. However, there are several barriers to use global datasets in local WRM: (i) global datasets 
usually have large sizes and are not easy to handle, (ii) they often have coarse resolutions that are not 
suitable to local-scale WRM applications, and (iii) they have heterogeneous quality depending on 
climatic and geographic conditions. Therefore, large-scale validation of a global dataset is an area of 
research that requires more attention to provide practical insights about the usefulness of these assets 
over different regions. This dissertation aims to better understand the capacity of global datasets to 
support WRM in Vietnam–a tropical country that faces many water stresses in a warming climate and 
does not have a good observational network to monitor key hydrometeorological variables. 
Specifically, we examine satellite- and re-analysis- based precipitation products and satellite-based soil 
moisture products in hydrologic impact studies over a large number of catchments.  

There are four key findings yielded from the four independent large-sample studies conducted within 
this dissertation. First, satellite-based precipitation products (e.g., TMPA; Tropical Rainfall 
Measurement Mission Multi-satellite Precipitation Analysis) accurately estimated rainfall in wet season 
compared to the dry season (rain gauge as a base reference) in the Red-Thai Binh River basin, the 
second largest river basin in Vietnam. The quality of TMPA datasets could be improved based on a 
climatology-topography-based linear-scaling approach, especially to reduce their bias. Second, high-
spatial resolutions (at 1-km) of re-analysis dataset (e.g., MERRA-2; Modern-Era Retrospective analysis 
for Research and Applications version 2) could be useful to detect percentage drought areas as well as 
to quantify drought trends across Vietnam. This finding reveals the feasibility of using a model-based 
drought index in data-sparse areas to assess drought conditions, and for practical applications of 
advanced re-analysis products in WRM. Third, the Global Precipitation Mission (GPM) Integrated 
Multi-satellitE Retrievals for GPM (IMERG) final run version 6 (GPM IMERGv6) could be the input 
precipitation for a hydrological model (SWAT; Soil and Water Assessment Tool) to simulate 
streamflow. Also, the Climate Hazards group Infrared Precipitation with stations (CHIRPS) dataset 
demonstrates a relatively low bias and could benefit long-term water resources planning for droughts. 
These conclusions were based on a comprehensive hydrologic model study (a total of 54 simulated 
scenarios) across Vietnam basins. Fourth, remotely sensed soil moisture data assimilation in a 
hydrologic model streamflow simulation could increase the accuracy of streamflow simulation. The 
benefits of high-spatial resolution soil moisture (e.g., SMAP, Soil Moisture Active and Passive), at a 
spatial resolution of 1 km in the data assimilation framework, is outperformed by that data assimilation 
using SMAP at a spatial resolution of 9 km. This finding is based on an experiment using eight 
catchments with varying sizes and runoff patterns across contrasting climate zones in Vietnam. 
Overall, this dissertation is beneficial to water practitioners in developing nations, as a guide to decide 
whether publicly available global datasets are useful for local applications, and if so, which data sources 
would be the most suitable to consider. 

Keywords: Earth Observations; Vietnam; SWAT; large samples; precipitation; soil moisture; drought  
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Chapter 1: Introduction 

In developing nations, good water resources management (WRM) is fundamental to sustainably develop socio-economic, 
protecting public health, and ensuring food security and is thus a strategic key to reduce poverty. For instance, 
inadequate water supply and sanitation could cause economic losses of an estimated $260 billion per 
year in developing countries (Hulton, 2012). Under the water resources constraint scenario, China’s 
overall economic growth rate can be dropped by 0.15% (Zhang et al., 2020). According to the World 
Economic Forum’s 2015 Global Risk reports (Drzik et al., 2015), water crises are the most serious 
societal risk in the twenty-first century. If developing countries do not manage their water 
infrastructure and resources in a proper manner, they are likely not prepared for the complex 
challenges in the upcoming century and may lose the economic growth that has been achieved in the 
past decades (Borgomeo et al., 2018; García et al., 2016).  

To inform WRM decision-making, it is essential to build a synthetic system to measure and monitor changes in water 
availability. This system requires reliable estimates of key hydrometeorological variables such as streamflow, water 
level, groundwater, precipitation, soil moisture, actual evapotranspiration, potential evapotranspiration, snow and ice, 
and water quality (Sheffield et al., 2018). Also, these variables have to be delivered in a timely fashion 
for the system to help the decision-makers in real-time. Commonly, these variables are collected from 
in-situ observation networks (referred to as local datasets). For example, rain gauge networks and stream 
gauge networks are essential sources to provide long-term records of precipitation and streamflow 
that are important to the design of flood control. Crop monitoring requires real-time water needs and 
soil moisture which can be provided by field crop sampling and soil moisture probes (García et al., 
2016; Sheffield et al., 2018). 

However, WRM-based local datasets systems confront risks that ground observation networks are substantially 
decreased. For example, one of the largest collected rain-gauge databases across the globe – the Global 
Precipitation Climatology Centre (GPCC) has experienced a reduction in available rain gauges. From 
49,470 rain gauge stations in 1970, GPCC vs 7.0 database only has 30,000 in 2005 and about 10,000 
by 2012 (Sun et al., 2018) and the reduction varied in different continents. Between 1990 and 2005, 
the available stations in GPCC vs 5.0 dataset were nearly constant over North America and Australia. 
On the other hand, significant drops in the number of gauges were observed in Europe (40% 
reduction as compared to the year 1990), Asia (60%), Africa (65%), and South America (85%) (Lorenz 
and Kunstmann, 2012). A decline in available rain gauges could seriously impact the ability to quantify 
changes in precipitation in the future. Similar declining trends for other in-situ measurements (e.g., 
stream gauges) have been also observed (Sheffield et al., 2018). The decline of such 
hydrometeorological networks is due to a lack of investment in infrastructures or human capacity to 
monitor (Sun et al., 2018), or restrictions in data-sharing policies (Du et al., 2020). 

Moreover, it is challenging for the WRM-based local datasets systems in managing international transboundary river 
basins as a whole. Although there was evidence that water stress of downstream parts of a river system 
could be associated with the upstream water use (Munia et al., 2016; Munia et al., 2020), data sharing 
is a long-standing barrier to good WRM practice across transboundary river basins–a home of 40% 
of the total world population and accounting for 60% of global water flow (UN-Water, 2013; UNU-
INWEH, 2013). Specifically, water resources managers in the downstream countries often have little 
information about changes in hydrometeorological conditions in the upstream countries (Munia et al., 
2020). In cases when the upstream countries provide their ground observation datasets – for the 
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downstream countries – the deliverables are usually not promptly to inform operational decisions. 
With insufficient spatial and timely ground monitoring networks, potential water stress could not be 
predicted, leading to numerous consequences including water-borne illnesses, water shortage, 
pollution, and ecosystem damage.  

For the above-mentioned limitations of local datasets, the focus in recent years on WRM has shifted to global datasets 
that are publicly available. These global datasets include remote sensing (or earth observation, EO) and 
outputs from global land surface models, which can provide estimates of nearly all key 
hydrometeorological variables (Lettenmaier et al., 2015; McCabe et al., 2017). For example, 
precipitation within latitude from 60°S to 60°N could be estimated by Tropical Rainfall Measurement 
Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA; 3-hour, 0.25°, Huffman et al. (2007)) 
based on thermal infrared calibrated with precipitation radar and microwave data. TMPA’s successor–
the Global Precipitation Measurement Mission (GPM; Hou et al. (2014)) can distinguish rain and snow 
globally every half-hour at 10-km spatial resolution with GPM Microwave Imager and Dual-Frequency 
Precipitation Radar equipped in the GPM Core Observatory satellite and with support from several 
constellation satellites. For soil moisture, active and passive microwave sensors carried in satellites can 
observe radar backscatter or brightness temperature that can be converted to soil moisture retrievals 
at the 0-5 cm soil layer (Lakshmi, 2013; Njoku and Entekhabi, 1996). Several soil moisture products 
from active/passive microwave sensors include ASCAT (Advanced SCATterometer) (Bartalis et al., 
2007), SMOS (Soil Moisture and Ocean Salinity) (Kerr et al., 2001), AMSR-E (Advanced Microwave 
Scanning Radiometer for the Earth Observing System onboard the Aqua satellite) (Kawanishi et al., 
2003), and SMAP (Soil Moisture Active Passive) (Entekhabi et al., 2010). Meteo-hydrological variables 
(as states and fluxes that participate in processes happening at the Earth’s surface) also can be obtained 
as outputs from Land Surface Models (LSMs). High-quality LSMs’ datasets could provide useful 
information in predicting weather and investigating the water cycle from a global scale to a regional 
scale. Several LSMs datasets include Global Land Data Assimilation System (GLDAS, 
https://ldas.gsfc.nasa.gov/, Rodell et al. (2004)); Famine Early Warning Systems Network 
(FEWSNET) Land Data Assimilation System (FLDAS; https://ldas.gsfc.nasa.gov/fldas; McNally et 
al. (2017)); and ERA5-Land (https://www.ecmwf.int/en/era5-land; Muñoz-Sabater et al. (2021)). 

Freely accessible global datasets are considered the new asset to effectively characterize water resources and help decision-
makers in hydrologic impact analysis (Van Dijk and Renzullo, 2011), due to their wealth of information. For 
example, Goddard Earth Sciences Data and Information Services Center (GES DISC) is archiving 
approximately 150 million remotely sensed data files, or about 3,400 TBs of data (statistics on April 
04, 2022). More importantly, these datasets can reveal much important information about water 
resources across the globe. For instance, the Gravity Recovery and Climate Experiment (GRACE) 
has been used to reveal considerable trends in freshwater resources across the globe and provide 
quantitative changes in freshwater resources at regional scales (Rodell et al., 2018). Without GRACE, 
several water scarce regions (e.g., north India, North China Plain, and the Middle East) could be 
predicted due to intensified human activities but the total water storage (TWS) depletion’s magnitude 
at these hotspots regions was unknown due to sparse observational records or restricted data-access 
policies (Du et al., 2020). TRMM rainfall is useful in describing the spatio-temporal distribution of 
floods and landslides at the global scale (Hong et al., 2010), providing a better understanding of the 
characteristics and potential forecast of floods and rainfall-triggered landslides. In a regional study 
(Lower Mekong River basin), Mohammed et al. (2022) utilized various earth observation products to 
analyze the potential impacts of climate change on regional hydrology and water management. Pham 
et al. (2021) combined satellite observations for altimetry, land surface temperature, soil moisture, and 
rainfall to estimate daily water level in sparsely gauged catchments. In sub-Sahara, McNally et al. (2017) 

https://ldas.gsfc.nasa.gov/
https://ldas.gsfc.nasa.gov/fldas
https://www.ecmwf.int/en/era5-land
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proved the capability of the FLDAS dataset in monitoring drought conditions to cope with food 
security in the studied region. Based on different 16 experiments, Jung et al. (2017) suggested that 
water balance in the Upper Blue Nile basin can be represented by FLDAS and Catchment LSM 
version Fortuna 2.5 (CLSMF2.5).  

Although the benefits of global datasets are promising, there are several concerns about their limitations and reliability. 
As the view from space, Earth observations (EO) indirectly measure hydro-metrological variables and 
have issues with their high-frequency sampling. For example, the averaged revisit time of TRMM 
Microwave Image (TMI) that provides quantitative rainfall information is approximately three hours. 
If between a TMI’s revisit period, there is a rainfall event, this rainfall event will not be recorded from 
the TMI sensor. Some other satellites even have longer revisit time–3 days for SMAP soil moisture 
(Entekhabi et al., 2010) and 8 days for MODIS evapotranspiration (Justice et al., 1998; Vermote, 2015). 
Along with low-frequency sampling, missing spatial data is a common problem for microwave sensors, 
especially with the regions having a high degree of cloud coverage (Ahamed and Bolten, 2017; Mu et 
al., 2011). Satellite data quality is also heterogeneous across climatic and topographical conditions. For 
example, the global monthly rainfall quality index score of rainfall estimated from the GPM IMERG 
product indicated that large regions (except for the Eastern U.S., Europe, parts of India, parts of South 
Africa, and Thailand) have high uncertainties in rainfall estimates (Huffman et al., 2018). In these 
regions, adjustment of GPM IMERG product is suggested (Huffman et al., 2018). When using global 
datasets on hydrologic impact studies, inconsistent results have been discussed. As compared to the 
rain gauge driven hydrologic model, several studies indicated that satellite-based precipitation driven 
hydrologic models have poorly performed in streamflow simulations (Duan et al., 2018; Li et al., 2018; 
Nguyen et al., 2018); while other studies exhibited an opposite conclusion (considerably 
outperformed) (Ren et al., 2018; Luo et al., 2019). Based on simulation results from hydrologic models 
in more than 70,000 catchments worldwide, Beck et al. (2017b) highlighted the importance of selection 
of precipitation from global datasets in both research and operational applications.  

Large-scale validation of global datasets is an area of research that requires more attention, and Vietnam is a compelling 
example due to the pressing demand for using global datasets to support the development and implementation of new 
WRM policies. The primary source of hydro-meteorological information to support WRM in Vietnam 
is still in-situ observations, although these local datasets have limited coverage in both time and space 
(NAWAPI, 2017b; NAWAPI, 2018). The averaged rain gauge network in Vietnam (about 400 km² 
per gauge) is far behind the standard of the World Meteorological Organization (WMO) (WMO, 
1994), especially in the mountainous areas (100-250 km² per gauge). The density of the active stream 
gauge network in Vietnam has decreased more than twice during the past several decades (from ~ 
1,900 km² per gauge to ~4,000 km² per gauge) and is also much lower than WMO’s standard (1,000 
km² per gauge for mountainous areas and 1,870 km² per gauge for low-land areas) (Tran Thanh Xuan 
et al., 2012). Additionally, WRM in Vietnam also faces the challenges of transboundary basins. Among 
the total areas of the Vietnam River basin (~ 1,100,000 km²), seventy-two percent of areas and sixty 
percent of water resources are located outside of Vietnam territory (Nguyen and Bui, 2016; Tran, 
2006). Looking at the two largest rivers in Vietnam – the Mekong River and the Red-Thai Binh River, 
these rivers only have 11% and 51% of total basin areas located in Vietnam, respectively (Tran, 2006).  

The global datasets can be complementary to local datasets in quantifying water availability in such a sparse-ground 
hydro-meteorological network region as Vietnam but very few studies have investigated the usefulness and appropriateness 
of using these datasets in this region. Most of the studies in Vietnam have been conducted on a typical 
climate region or a river basin, such as the Srepok River basin (Nguyen et al., 2018), North Vietnam 
(Hiep et al., 2018; Nguyen, 2021), Ca River basin (Kha et al., 2020). In addition, studies that investigate 
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a combination of multiple global datasets in improving hydrologic simulations are also rare. Ha et al. 
(2017) is perhaps one of the most notable studies that has taken this approach. The authors attempted 
to calibrate a hydrological model with multiple objectives using observed streamflow and remotely 
sensed products of evapotranspiration, and remotely sensed products of leaf area index over two 
catchments of the Day River Basin. It also found that no study in the Vietnam region has investigated 
the usefulness of assimilating remotely sensed products to inform the hydrological model – which is 
also a very promising approach to improve the efficiency of water prediction and forecasting. Low-
spatial resolution of satellite-based precipitation products have been discussed as the main limitation 
on the usage of global datasets in hydrologic applications in several studies in Vietnam (Vu et al., 
2018), however, no study attempts to assess high spatial resolutions of global datasets (at a spatial 
resolution smaller than 10km) in Vietnam region. Soil moisture content is an essential variable in the 
land surface hydrology model (Sheikh et al., 2009) and is proved as an important factor affecting 
drought conditions in Vietnam (Le et al., 2019c), but the capabilities of remotely sensed soil moisture 
product was not investigated for Vietnam’s catchments. 

This dissertation aims to fill these gaps through four studies that investigate different applications of global datasets in 
Vietnam. The purpose of these studies was to bring the global datasets closer to the scale of WRM 
applications that generally require information on water availability at a scale of several square 
kilometers to hundreds of square kilometers (Sheffield et al., 2018). The insights of this dissertation 
will be beneficial to water practitioners in developing nations, especially Vietnam, as guidance to decide 
whether publicly available datasets could be useful, and if so, which data sources would be the most 
suitable to consider. 

The first study (Chapter 2) aims to understand error information of Tropical Rainfall Measurement Mission (TRMM) 

Multi-satellite Precipitation Analysis (TMPA) on spatio-temporal scale of the Red–Thai Binh River basin, the second 
largest river basin of Vietnam. Although the Red–Thai Binh River basin plays an essential role in Vietnam’s 
economic and social development, a large proportional area of this basin does not have rain gauges 
due to complex topography to install instruments or cannot collect the rain gauge network (from 
upstream countries) due to limited data access. Therefore, it is challenging to estimate rainfall 
throughout the entire basin if we only use the ground networks. The first objective of this study is to 
compare two TMPA products (i.e., 3B42V7 and 3B42RT) with ground observation data over the 
lower part of the Red–Thai Binh River basin (where the ground data is available) to understand the 
errors of these two products. The second objective is to develop a linear-scaling bias correction using 
climate–topography indices for both datasets to better estimate rainfall using TMPA products at places 
where rain gauges are absent.  

The second study (Chapter 3) focuses on the capability of a reanalysis product–The Modern-Era Retrospective Analysis 
for Research and Applications, version 2 (MERRA-2) in capturing drought conditions across Vietnam with different 
spatial resolutions. Specifically, this study aims to examine a hypothesis question that does high spatial 
resolution data have the advantages of capturing drought events and drought trends better than low 
spatial resolution data? The Standardized Precipitation Evapotranspiration Index (SPEI) derived from 
the MERRA-2 datasets was employed to estimate the drought percentage areas time series and these 
timeseries were validated with drought records from local authorities. 

To further advance applications of satellite-based precipitation estimates in hydrologic modelling, the third study (Chapter 
4) proposes a framework to examine eight satellite-based precipitation estimates products in an hydrologic model study. 
Specifically, these products were forced as precipitation inputs for the Soil and Water Assessment 
Tool (SWAT) model in simulating streamflow in six different catchments in Vietnam. The simulated 
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streamflow was then compared to the observed streamflow and a good streamflow performance 
metric from the simulation could be a metric for the usefulness of the precipitation product forcing 
input. Also, a large number of catchments examined in this study enables us to draw a general 
conclusion about the suitability of satellite-based precipitation estimates products in hydrologic 
modelling.  

To improve hydrologic model streamflow simulation, we conducted an experiment that assimilates remotely sensed soil 
moisture products into the top-soil layer (0-500 mm) during the soil water routing process of the hydrological SWAT 
model (Chapter 5). Eight catchments with different basin sizes, contrasting climate conditions, and 
varied runoff patterns have been selected to employ the experiment. Two satellite-based soil moisture 
products – 9km Soil moisture Active and Passive (SMAP) and its downscaled 1km SMAP are 
investigated to examine whether spatial–temporal resolution has a substantial impact on the 
performance of the hydrological model to simulate streamflow through a data assimilation framework. 
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Chapter 2: Comparison and Bias Correction of 

TMPA Precipitation Products over the Lower Part 

of Red–Thai Binh River Basin of Vietnam1 

2.1. Introduction 

Precipitation is the most crucial input variable enforced in water prediction models. Reliable 
precipitation is required for model calibration, forecast, and simulation (Brutsaert, 2005; Kumar and 
Lakshmi, 2018; Yilmaz et al., 2005). Gauge observation is the primary collection approach to obtain 
precipitation information (Kidd, 2001). However, gauge network is often sparse and nonexistent in 
many parts of the globe (Rana et al., 2015; Xie and Arkin, 1996). Moreover, it is often challenging to 
obtain gauge data, especially in developing countries and transboundary rivers, due to technical and 
administrative reasons (Gerlak et al., 2011; Plengsaeng et al., 2014; Viglione et al., 2010). In addition, 
gauge observations only provide point measurements of precipitation and cannot capture the full 
spatial variability. Space-based precipitation estimations, therefore, have great potential application to 
enhance the capacity of measuring this vital water cycle component (García et al., 2016; Sun et al., 
2018). 

Several satellite-derived datasets have been used in previous studies, such as the Tropical Rainfall 
Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) (Huffman et al., 2007), 
the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks 
(PERSIANN) (Sorooshian et al., 2000), the Climate Hazards Group Infrared Precipitation with 
Stations (CHIRPS) (Funk et al., 2014), and National Oceanic and Atmospheric 
Administration/Climate Prediction Centre (NOAA/CPC) morphing technique (CMORPH) (Joyce et 
al., 2004) products. Among them, TPMA—the first space-borne product of the Earth Science Mission 
aimed at studying tropical and subtropical rainfall—has performed well in a wide range of applications, 
such as hydrological modeling (Adjei et al., 2015; Ha et al., 2018; Xue et al., 2013), drought monitoring 
(Sahoo et al., 2015; Zhang and Jia, 2013), and agronomy (Arvor et al., 2014; Cashion et al., 2005). 
TMPA products have also been evaluated as having better performance than other satellite-based 
rainfall products. For example, the TMPA 3B42V7 data is generally a better input in a distributed 
hydrological model compared to CMORPH and TMPA 3B42RT (real time) for multiple hydrological 
purposes, including annual water budgeting, monthly and daily streamflow simulation, and extreme 
flood modeling (Li et al., 2015). Similarity, Tong et al. (2014) showed that 3B42V7 was a better driving 
force of hydrological model for both monthly and daily streamflow simulation over the Tibetan 
Plateau compared to CMORPH, PERSIANN, and 3B42RT. Moazami et al. (2013) used six statistical 
indices and contingency table to evaluate 3B42V7, concluding it was a better estimation of daily 
precipitation than PERSIAN and 3B42RT over Iran. Simons et al. (2016) identified that monthly 
TMPA 3B43 rainfall product was the most suitable satellite dataset compared to CHIRPS and 
CMORPH over the Red River Basin of Vietnam.  

 
1 This chapter has been published as Le, H. M., Sutton, J. R., Bui, D. D., Bolten, J. D., & Lakshmi, V. (2018). Comparison 
and Bias Correction of TMPA Precipitation Products over the Lower Part of Red-Thai Binh River Basin of Vietnam. 
Remote Sensing, 10(10), 1582. https://doi.org/10.3390/rs10101582. 
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Table 2. 1 Rainfall station descriptions for the ground observation stations over Red–Thai Binh River Basin 
(March 2000–December 2016). 

No Station  
Name 

Long. Lat. Elev. AR SDR NRD 

(°) (°) (m) (mm/year) (mm/day) (day) 

1 Baccan 105.82 22.13 241 1389 11.29 250 

2 Bacninh 106.05 21.20 8 1537 13.27 248 

3 Baolac 105.67 22.95 348 1201 9.91 263 

4 Caobang 106.23 22.67 244 1417 11.5 251 

5 Dienbien 103.02 21.40 487 1535 11.75 248 

6 Hagiang 104.98 22.82 117 2333 17.15 222 

7 Bavi 105.37 21.08 535 1791 14.61 234 

8 Lang 105.85 21.02 17 1686 14.5 246 

9 Phuxuyen 105.90 20.77 9 1516 13.16 272 

10 Sontay 105.50 21.13 14 1600 13.27 244 

11 Chilinh 106.38 21.07 1 1489 12.51 250 

12 Haiduong 106.30 20.95 3 1530 13.6 249 

13 Hoabinh 105.33 20.82 48 1861 14.69 239 

14 Maichau 105.07 20.60 579 1859 18.79 251 

15 Muongte 102.63 22.47 354 2433 17.1 229 

16 Tamduong 103.15 22.05 303 2333 14.49 216 

17 Chilang 106.57 21.65 124 1324 11.9 267 

18 Langson 106.77 21.83 263 1315 11.55 253 

19 Thatkhe 106.47 22.25 157 1484 12.33 243 

20 Vanmich 106.37 22.10 238 1341 11.33 240 

21 Laocai 103.95 22.50 152 1810 14.11 229 

22 Ninhbinh 105.98 20.27 3 1725 15.16 242 

23 Baichay 107.03 20.97 59 1898 17.93 246 

24 Mongcai 107.97 21.52 7 2735 24.5 230 

25 Tienyen 107.44 21.33 16 2139 19.04 231 

26 Sonla 103.90 21.33 709 1364 10.96 252 

27 Thainguyen 105.50 21.60 784 1760 15.02 238 

28 Tuyenquang 105.20 21.82 29 1575 14.02 242 

29 Yenbai 104.87 21.70 41 1796 14.97 222 

Note: “AR” Annual Rainfall, “SDR” Standard Deviation of Rainfall, “NRD” No. of rain days 

Differences between TMPA products and rain gauge observation analysis have been a cause of 
concern recently. Zad et al. (2018) pointed out that 3B42V7 tended to overestimate rainfall 
measurement by approximately 26.95% at Pahang River Basin of Malaysia and that 3B42V7 was likely 
to have a high accuracy of detecting rainfall events at high-altitude and mid-altitude areas compared 
to low-altitude regions. Kneis et al. (2014) analyzed that 3B42V7 and 3B42RT datasets were 
moderately correlated with their gauged-based counterpart at sub-basin level (4000 to 16,000 km2) at 
the lower Mahanadi River Basin of India but that the 3B42V7 and 3B42RT data often do not reflect 
gauge observation at high-intensity level (>80 mm/day). The TMPA product is also likely to perform 
better on a monthly scale when compared to the ground data. Curtarelli et al. (2014) found that 
monthly 3B43 dataset had a great consistency (correlation coefficient >0.97) with ground observation 
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data over the Itumbiara Reservoir drainage area in Central Brazil but that 3B43 tended to overestimate 
rainfall by 1.24%. Comparing monthly 3B43 dataset with 56 observations in Yangtze River Delta, Cao 
et al. (2018) also showed an inclination of 3B43 to overestimate monthly rainfall, with the bias ranging 
between −10% and 10% most of the study area; its correlation coefficient with observation was found 
to peak in March (0.96) and reach bottom in August (0.79). Although the TRMM satellite has not been 
operated since 2014, TMPA products are still being generated regardless (Huffman, 2016). 

Following the highly successful TMPA, the Global Precipitation Measurement (GPM) mission was 
developed to continuously increase precipitation estimation over most of the globe (Huffman et al., 
2018). A range of studies in many regions have demonstrated that GPM outperforms TMPA by having 
a better spatial resolution, coverage area, and lower systematic bias error (He et al., 2017; Kim et al., 
2017; Xu et al., 2017). However, GPM has only been available for a short time (since 2014), while 
TMPA products date back to January 1998. In addition, GPM is just a slight improvement over TMPA 
products (Tan and Duan, 2017). Huffman et al. (2018) aim to extend the GPM data to the same length 
as the longest TMPA data. Therefore, assessments on TMPA products are of paramount importance 
to gain insights into their performance at various regions so that their algorithms can be improved 
and the next generation GPMs can be developed. 

 

Figure 2. 1 Overview of Red–Thai Binh River Basin. The stations with black dots at the middle were used for 
calibration climatology–topography-based linear-scaling approach. 

While there is a clear advantage of having a high temporal and spatial resolution using TMPA products, 
extra work is required because bias correction needs to be performed prior to application of any 
TMPA products in environmental, water resources, and ecological studies (Zad et al., 2018). 
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Climatology and topography are likely factors to induce errors in remote sensing retrievals (Khan et 
al., 2014). Consequently, their effects on the quality of TMPA products are inevitable. Based on the 
moderate inverse linear relationship between the monthly 3B43 bias and elevation, Hashemi et al. 
(2017) developed a linear model between 3B43 bias and elevation, especially for stations that have 
elevations above 1500 m above mean sea level in the U.S. The corrected monthly 3B43 product 
showed a significant improvement in the high elevation area. Thus, the empirical bias correction model 
using climatology and topography seems to be a potential investigation direction, although relatively 
little research has been conducted so far. 

In Vietnam, ground observations provide poor spatial and temporal measurement of rainfall due to 
the lack of a dense network for rain gauge measurement. The average rain gauge network in Vietnam 
is around 400 km2 per rain gauge, which is below the World Meteorological Organization standard 
(area per rainfall station of 100–250 km2 for mountainous areas; area per rainfall station of 600–900 
km2 for lowland areas) (WMO, 1994). Moreover, the rain gauge distribution in Vietnam is uneven, 
with insufficient gauged stations at high elevation areas. According to the Vietnam Meteorological and 
Hydrological Administration, most rain gauge stations (75%) are concentrated at low elevation areas 
(<200 m), which only cover half of Vietnam’s land (Dang Dinh Duc, 2017). With these perspectives, 
satellite-based precipitation is an indispensable alternative source of precipitation data for Vietnam. 
Preliminary studies on satellite-based precipitation products in the country have been conducted 
recently. However, these studies either focused on monthly rainfall (Poortinga et al., 2017; Simons et 
al., 2016) or used directly satellite-derived rainfall without bias correction analysis (Nguyen et al., 2018). 
Therefore, further research on satellite-based precipitation products is still of fundamental importance 
for the country. 

This study selected the Red–Thai Binh River Basin—one of the largest river systems in Vietnam—as 
a case study. Although it plays an essential role in Vietnam’s economic and social development, many 
parts of this basin do not have rainfall monitoring from ground, causing difficulties for basin rainfall 
estimation and water resources management. The first objective of this study was to compare the 
TMPA products 3B42V7 and 3B42RT with ground observation data over Red–Thai Binh River Basin 
in various aspects, such as calculating error statistics on a daily scale, monthly scale, dry and wet 
seasons, detecting rainfall events ability, and evaluating rainfall intensity. The second objective was to 
develop a linear-scaling bias correction model using climate–topography indices for both 3B42V7 and 
3B42RT datasets. The results of the assessment and bias correction of TMPA precipitation products 
could help in supporting its potential application in hydrological modeling and drought monitoring in 
the studied region. 

2.2. Materials 

2.2.1. Study Area 

The Red–Thai Binh River Basin is a transboundary river that flows through three countries—Vietnam, 
China, and Laos—with a total area of 169,000 km2 (Figure 2. 1). The area of this in Vietnam is 88,680 
km2, which makes up 51.3% of the total area. In this study, due to the lack of observation data, 
description of water resource characteristics and evaluation results of TMPA 3B42V7 and TMPA 
3B42RT data only focused on the Vietnamese part of the basin. There are two primary river systems 
in the Red–Thai Binh River. The Red River system originates in China and flows into Vietnam through 
three main tributaries—Da, Lo, and the Thao River—while the Thai Binh River system is entirely 
located in Vietnam. The Red–Thai Binh River belongs to a tropical climate with two distinct seasons: 
the wet season and the dry season. The total annual rainfall is approximately 1700 mm, with high 
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rainfall amounts (>2000 mm) observed in the mountainous areas between the Vietnam and China 
border. The annual total flow of the Red–Thai Binh River is 131.4 billion m3—the Chinese territory 
part generates 48.3 billion m3, while the rest 83.1 billion m3 is generated in the Vietnamese side 
(NAWAPI, 2017b). As the second largest river system in Vietnam, the Red–Thai Binh River is home 
to 29.1 million Vietnamese (2015 figure), making up for 22.6% of Vietnam’s GDP (2010 figure) 
(General Statistics of Vietnam) (NAWAPI, 2017a). 

 

Figure 2. 2 Monthly rainfall distribution over Red–Thai Binh River Basin (March 2000–December 2016). Cross 
symbol indicates average monthly rainfall. 

2.2.2. Data 

2.2.2.1. Observation Data 

Rainfall measurements from a total of 29 daily rainfall stations (March 2000 to December 2016) within 
or neighboring the basin were collected from the Vietnam Meteorological and Hydrological 
Administration. The distribution of rainfall stations is presented in Figure 2. 1, and their characteristics 
can be found in Table 2. 1. The stations were selected due to their reliable data and low missing values 
(5–10%).  

In Vietnam, daily ground rainfall data is often collected twice per day at 7.00 a.m. UTC + 7 and 7.00 
p.m. UTC + 7, and the daily accumulation is calculated as accumulated rainfall from 7.00 p.m. UTC 
+ 7 to the same time next day (MONRE, 2012). Figure 2. 1 shows monthly rainfall distribution over 
Red–Thai Binh River Basin from gauge observation data. Wet season (May–October) has a high 
amount of rainfall, accounting for 85–90% of total annual rainfall. Very high amounts of rainfall are 
often observed during June, July, and August. During these periods, tropical storms often occur, with 
the accumulated rainfall reaching 200–600 mm within several days (NAWAPI, 2017a). During the dry 
season (November–April), the total amount of rainfall only accounts for 10–15% of total annual 
rainfall. 
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2.2.2.2. TMPA Products 

The TRMM is a low Earth orbits (LEO) satellite with sensors used to analyze and understand the 
characteristics of precipitation. The satellite is equipped with various instruments, such as Precipitation 
Radar (PR), TRMM Microwave Imager (TMI), Visible and Infrared Scanner (VIRS), and Lightning 
Imaging Sensor (LIS) (Huffman et al., 2007). The spatial coverage of TRMM is mainly in tropical and 
subtropical zones (50°S to 50°N) from an altitude of 400 km. The TMPA products used in this study 
were TMPA 3B42V7 and its real-time version TMPA 3B42RT at 0.25° spatial resolution. Detailed 
description of 3B42V7 can be found in Reference (Huffman et al., 2007) and that of 3B42RT can be 
found in Reference (Huffman and Bolvin, 2013). The 3B42V7 dataset ranges from January 1998 to 
present, while the 3B42RT product ranges from March 2000 to present. However, for comparison 
purpose, a consistent data length was required and data was therefore collected from March 2000 to 
December 2016 for both TMPA 3B42V7 and TMPA 3B42RT. Both products were downloaded 
through NASA Goddard Space Flight Center (https://pmm.nasa.gov/data-
access/downloads/trmm/). In order to match the satellite rainfall products with the daily precipitation 
gauge data, the 3-hourly 3B42 products were accumulated to daily values at 12.00 UTC (equivalent to 
7.00 p.m. UTC + 7).  

2.3. Method 

The comparison of TMPA 3B42V7 and TMPA 3B42RT precipitation against the ground observation 
data involved the extraction of data time series of TMPA products at the corresponding locations of 
the 29 meteorological stations. As one TMPA pixel contained one rainfall station, a total of 29 TMPA 
pixels were extracted to form the time series corresponding to the ground observation data. 

2.3.1. Error Metric Assessment 

To compare rainfall values between TMPA products and ground observation data, widely accepted 
error metrics—correlation coefficient (CC), Nash–Sutcliffe efficiency (NSE), root mean square error 
(RMSE), and percent bias (PBIAS)—were used (Legates and McCabe, 1999; Moriasi et al., 2007). The 
formulas for the statistical metrics are presented as follows: 

𝐶𝐶 =  
∑ (𝑂𝐵𝑆𝑖 − 𝑂𝐵𝑆̅̅ ̅̅ ̅̅ )(𝑇𝑀𝑃𝐴𝑖 − 𝑇𝑀𝑃𝐴̅̅ ̅̅ ̅̅ ̅̅ )𝑁

𝑖=1

√∑ (𝑂𝐵𝑆𝑖 − 𝑂𝐵𝑆̅̅ ̅̅ ̅̅ )2𝑁
𝑖=1 ∑ (𝑇𝑀𝑃𝐴𝑖 − 𝑇𝑀𝑃𝐴̅̅ ̅̅ ̅̅ ̅̅ )2𝑁

𝑖=1

 
(2.1) 

𝑁𝑆𝐸 =  1 − 
∑ (𝑇𝑀𝑃𝐴𝑖 − 𝑂𝐵𝑆𝑖)

2𝑁
𝑖=1

∑ (𝑂𝐵𝑆𝑖 − 𝑂𝐵𝑆̅̅ ̅̅ ̅̅ )2𝑁
𝑖=1

 (2.2) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑇𝑀𝑃𝐴𝑖 − 𝑂𝐵𝑆𝑖)

2

𝑁

𝑖=1

 (2.3) 

𝑃𝐵𝐼𝐴𝑆 =  100 
∑ (𝑇𝑀𝑃𝐴𝑖 − 𝑂𝐵𝑆𝑖)

𝑁
𝑖=1

∑ 𝑂𝐵𝑆𝑖
𝑁
𝑖=1

 (2.4) 

where N is the total of samples, 𝑂𝐵𝑆𝑖 and 𝑇𝑀𝑃𝐴𝑖 represent the rainfall values for the ground 

observation data and the TMPA data, respectively, and 𝑂𝐵𝑆̅̅ ̅̅ ̅̅  and 𝑇𝑀𝑃𝐴̅̅ ̅̅ ̅̅ ̅̅  represent the mean of the 
corresponding variables. CC ranges from −1 to 1, with strong positive correlation when the CC value 

https://pmm.nasa.gov/data-access/downloads/trmm/
https://pmm.nasa.gov/data-access/downloads/trmm/
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is closer to 1 and strong negative correlation when the CC value is closer to –1. NSE varies between 
−∞ to 1, indicating how well the plot of satellite product values and ground values fit the 1:1 line. A 
NSE value closer to 1 indicates a more perfect match between satellite product and ground data. 
RMSE is unit-based and would shed further light on the accuracy of the TMPA products. PBIAS 
measures the average tendency of the satellite values to be larger or smaller than the corresponding 
ground observations.  

Table 2. 2 Contingency table to measure the correspondence between ground observation data and Tropical 
Rainfall Measurement Mission Multi-satellite Precipitation Analysis (TMPA) product concerning the threshold 
intensity of 0.6 mm/day of a point-to-point event (Wilks, 2006). 

 
Ground Observation 

Yes No 

T
M

P
A

  

P
ro

d
u

c
t Yes Hit False Alarm 

No Miss Correct Rejection 

2.3.2. Detection Metric Assessment 

The probability of detection (POD), false alarm ratio (FAR), the probability of false detection 
(POFD), and critical success index (CSI) were used to compare the occurrence and nonoccurrence of 
rainfall events between TMPA products and ground data (Schaefer, 1990; Xu et al., 2017; Zad et al., 
2018). The POD was the ratio of the total number of rainfall events correctly detected by the TMPA 
products to the total number of actual rainfall events. The FAR evaluated the ratio of the number of 
rainfall falsely detected by the TMPA products to the total rainfall events estimated by the TMPA 
products. The POFD was a fraction of false events detected by the TMPA products versus the correct 
observations of no rainfall events by the TMPA products. The CSI, which is a function of POD and 
FAR, was the most accurate detection metric. The rainfall day threshold was set as 0.6 mm/day, which 
was defined as a threshold between no rainfall event and low rainfall event within 24 h based on long-
term rainfall analysis over Vietnam (NCHMF, 2000). These detection metrics can be computed as 
follows: 

𝑃𝑂𝐷 =  
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑠
 (2.5) 

𝐹𝐴𝑅 =  
𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠

𝐻𝑖𝑡𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠
 (2.6) 

𝑃𝑂𝐹𝐷 =
𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 (2.7) 

𝐶𝑆𝐼 =
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑠
 (2.8) 

The Hit, Miss, False Alarm, and Correct Rejection are presented in a contingency table in Table 2. 2. 
The perfect scores of the POD and CSI are 1, while the perfect scores of the POFD and FAR are 0. 
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2.3.3. Rainfall Intensity Evaluation 

To evaluate the rainfall intensity, we used probability density function (PDF) to classify the daily 
rainfall amounts into six categories based on Vietnam’s regulation on rainfall classification (NCHMF, 
2000): (1) 0 to 0.6 mm; (2) 0.6 to 6 mm; (3) 6 to 16 mm; (4) 16 to 50 mm; (5) 50 to 100 mm; (6) >100 
mm. The PDF analysis has been previously applied for comparing satellite rainfall products and 
ground data in several studies (Tan and Duan, 2017; Xu et al., 2017). 

2.3.4. Climate–Topography-Based Linear-Scaling (CTLS) Bias Correction 

Approach 

The linear-scaling (LS) approach (Lenderink et al., 2007; Teutschbein and Seibert, 2012) was based on 
monthly correction factor, which was the ratio between long-term monthly mean data for ground 
observation and TMPA.  

𝐶𝐹𝑚 =  
𝑂𝐵𝑆̅̅ ̅̅ ̅̅

𝑚

𝑇𝑀𝑃𝐴̅̅ ̅̅ ̅̅ ̅̅
𝑚

 (2.9) 

𝑇𝑀𝑃𝐴𝑖,𝑚
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  𝑇𝑀𝑃𝐴𝑖,𝑚 × 𝐶𝐹𝑚 (2.10) 

where 𝐶𝐹𝑚 is the monthly mean change factor at month 𝑚, 𝑂𝐵𝑆̅̅ ̅̅ ̅̅
𝑚 and 𝑇𝑀𝑃𝐴̅̅ ̅̅ ̅̅ ̅̅

𝑚 represent the mean 

of ground observation and TMPA data at month m, respectively. 𝑇𝑀𝑃𝐴𝑖,𝑚
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 and 𝑇𝑀𝑃𝐴𝑖,𝑚 are 

the corrected TMPA data and original TMPA data at day 𝑖 of month 𝑚, respectively. In this study, 

we developed a set of multiple linear models that predicted correction factors 𝐶𝐹𝑚 from climatology–
topography characteristics. We acquired station information as longitude (LONG), latitude (LAT), 
elevation (ELEV), annual rainfall (AR), standard deviation of rainfall (SDR), and the number of 

rainfall day (NRD). The 𝐶𝐹𝑚 can be computed as follows: 

𝐶𝐹𝑚 =  𝛼0𝑚 + 𝛼1𝑚𝐿𝑂𝑁𝐺 +  𝛼2𝑚𝐿𝐴𝑇 + 𝛼3𝑚𝐸𝐿𝐸𝑉 + 𝛼4𝑚𝐴𝑅 + 𝛼5𝑚𝑆𝐷𝑅 + 𝛼6𝑚𝑁𝑅𝐷 (2.11) 

where 𝛼0𝑚, 𝛼1𝑚, 𝛼2𝑚, 𝛼3𝑚, 𝛼4𝑚, 𝛼5𝑚, 𝛼6𝑚 are regression coefficients corresponding to correction 
factor at month m. In other words, we developed a set of 12 multiple linear models to estimate 
correction factors from climatology–topography data. In order to select the most suitable candidates 
for each multiple linear model, we analyzed the relationship between the correction factor and 
climatology–topography for a single month and selected the significant correlation candidates. We 
used 23 meteorological stations (80%) to develop the abovementioned multiple linear models and six 
meteorological stations (20%) to verify the models.  

2.4. Results and Discussion 

2.4.1. Comparison between TMPA Products and Ground Observation Data 

2.4.1.1. Daily and Monthly Scale Assessment 

Table 2. 3 presents the TMPA 3B42V7 and TMPA 3B42RT data in daily scale and monthly scale 
performance over the Red–Thai Binh River compared to the ground observation stations for 17 years 
(March 2000–December 2016). The results showed that daily rainfalls from both 3B42V7 and 3B42RT 
had very weak correlations with the ground observation data; the average of the CC and the average 
of NSE were 0.387 and −0.152 for 3B42V7 data and 0.304 and −0.521 for 3B42RT data, respectively. 
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The negative NSE values demonstrated that TMPA values were less accurate than the mean of 
observed data and were therefore very poor estimations.  

Table 2. 3 Descriptive statistics for observation rain gauge and TMPA data in daily and monthly scale. 

 n 

TMPA 3B42V7 TMPA 3B42RT 

Daily Scale Monthly Scale Daily Scale Monthly Scale 

Max Min Mean Max Min Mean Max Min Mean Max Min Mean 

CC 29 0.510 0.320 0.387 0.959 0.833 0.896 0.395 0.216 0.304 0.900 0.731 0.842 

NSE 29 0.207 −0.507 −0.152 0.884 0.593 0.765 0.002 −0.968 −0.521 0.792 0.131 0.480 

RMSE 29 21.7 11.4 15.1 111.6 36.2 66.5 24.5 13.7 17.3 143.6 76.4 96.0 

PBIAS 29 33.2 −21.5 3.2 33.2 −21.5 3.2 38.5 −18.1 14.8 38.5 −18.1 14.8 

Note: n is total number of stations. RMSE unit on a daily scale is mm/day. RMSE unit on a monthly scale is mm/month. 

Table 2. 4 Descriptive statistics for daily and monthly observation rain gauge and those of TMPA data during 
the dry and wet seasons. 

 n 

TMPA 3B42V7 TMPA 3B42RT 

Dry Season Wet Season Dry Season Wet Season 

Max Min Mean Max Min Mean Max Min Mean Max Min Mean 

Daily              

CC 29 0.487 0.289 0.407 0.494 0.264 0.344 0.423 0.196 0.317 0.364 0.141 0.255 

NSE 29 −0.048 −0.884 −0.325 0.185 −0.601 −0.201 −0.076 −1.237 −0.612 −0.031 −1.107 −0.598 

RMSE 29 8.8 5.8 7.0 29.1 14.7 20.0 10.2 6.4 7.7 32.8 17.9 22.9 

PBIAS 29 18.9 −38.6 −10.4 37.2 −19.4 6.1 31.7 −47.3 −14.1 43.2 −13.3 20.7 

Monthly              

CC 29 0.957 0.657 0.827 0.924 0.588 0.796 0.873 0.551 0.718 0.817 0.358 0.691 

NSE 29 0.881 0.191 0.586 0.788 0.276 0.566 0.672 −0.381 0.199 0.618 −0.845 0.009 

RMSE 29 44.9 16.8 29.0 152.8 48.0 88.7 57.1 26.7 41.0 198.3 100.6 128.6 

PBIAS 29 18.9 −38.6 −10.4 37.2 −19.4 6.1 31.7 −47.3 −14.1 43.2 −13.3 20.7 

Note: n is the total number of stations. RMSE unit on a daily scale is mm/day. RMSE unit on a monthly scale is mm/month. 

The statistics metric for monthly scale showed a significant improvement for both 3B42V7 and 
3B42RT compared to ground data (Table 2. 3). However, the PBIAS did not change from a daily to 
monthly scale. Monthly 3B42V7 and monthly 3B42RT had similar CC, with an average value of 0.896 
and 0.842, respectively. However, monthly 3B42V7 data greatly outperformed monthly 3B42RT data 
regarding NSE, RMSE, and PBIAS. Average NSE of monthly 3B42V7 was 0.765 and no single station 
had a value smaller than 0.5, while average NSE of monthly 3B42RT was only 0.480. The monthly 
CC and NSE scores of 3B42V7 compared to ground data in this case study were very similar to the 
results of monthly 3B43 data compared to observations in the same basin (Simons et al., 2016). 
Average RMSE of monthly 3B42V7 was 66.5 mm/month, equivalent to 30% less than the figure of 
monthly 3B42RT. Average PBIAS of monthly 3B42V7 was approximately 5 times less than that of 
monthly 3B42RT, with values of 3.2% and 14.8% respectively. The positive of PBIAS also indicated 
that both TMPA products overestimated compared to ground observation data. This finding was 
consistent with the study at the Black Volta Basin of West African countries (Adjei et al., 2015) or 
Pahang River Basin of Malaysia (Zad et al., 2018), but it was contrary to the study in Iran (Alijanian et 
al., 2017). It should be mentioned that although belonging to the same South East Asia region, the 
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3B42V7 data over the Red–Thai Binh River Basin performed better than that for Malaysia’s basin as 
the PBIAS of 3B42V7 for Malaysia’s basin was up to 26.95% on average (Zad et al., 2018).  

 

Figure 2. 3 Percentage bias (PBIAS) score’s spatial performance of TMPA products (a) 3B42V7 and (b) 
3B42RT against observation data on both daily and monthly scales from March 2000 to December 2016 over 
Red–Thai Binh River Basin. The grey line is the Red–Thai Binh River Basin boundary within the Vietnam 
territory. 

 

Figure 2. 4 PBIAS score’s spatial performance of TMPA rainfall data against observation data during (a) the 
dry and (b) the wet season from March 2000 to December 2016 over the Red–Thai Binh River Basin. The grey 
line is the Red–Thai Binh River Basin boundary within Vietnam territory. 

We calculated various error metrics—CC, NSE, RMSE, and PBIAS. However, for TMPA’s spatial 
performance purpose, we only showed the spatial PBIAS score distribution. There were two reasons 
for this: (1) PBIAS is recommended in water resources planning projects because the overall difference 
between observed and estimated values is a criteria of paramount importance (NAWAPI, 2018); (2) 
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PBIAS is precisely aimed at defining a poor model performance and has immense variation between 
seasons (Gupta et al., 1999).  

Looking at the PBIAS distribution, the PBIAS of 3B42V7 data mostly ranged within ±10%, while the 
PBIAS of 3B42RT data mostly fell in the range of 10–40% (Figure 2. 3). The poor performance of 
3B42RT data was observed at the center of the Red–Thai Binh River Basin. Moderate performances 
for both TMPA products were found at the northwestern mountainous area between Vietnam and 
Chinese border as well as the northeast coastal area. 

 

Figure 2. 5 Average rainfall detection measurement of TMPA 3B42V7 and TMPA 3B42RT over the Red–Thai 
Binh River Basin from March 2000 to December 2016. 

2.4.1.2. Dry and Wet Season Assessment 

Table 2. 4 presents the performances of both daily and monthly 3B42V7 and 3B42RT during the dry 
season (November–April) and wet season (May–October) over the Red–Thai Binh River Basin. 
Generally, 3B42V7 data was better than 3B42RT data in all statistical metrics compared to ground 
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stations, especially NSE, RMSE, and PBIAS. For example, monthly 3B42V7 had moderate NSE 
metric compared to ground observation, with averages of 0.586 and 0.566 in the dry season and wet 
season, respectively. In contrast, the figures of monthly 3B42RT were quite low, with 0.199 and 0.009, 
respectively. Interestingly, although RMSE of daily 3B42V7 during both dry and wet seasons were 
quite similar to those of daily 3B42RT, aggregation daily 3B42V7 to monthly was significantly less 
than monthly 3B42RT during both dry and wet seasons, with a reduction of approximately 30% for 
each. Regarding PBIAS, 3B42V7 and 3B42RT had almost the same bias during the dry season; 
however, in the wet season, 3B42V7 had significantly low PBIAS, with a value of 6.1% compared to 
20.7% PBIAS of 3B42RT. In regard to the dry and wet seasons, although CC and NSE were slightly 
higher during the dry season than during the wet season, it was not clearly evident. On the other hand, 
RMSE during the dry season was observed to be much smaller than during the wet season. This can 
be explained as dry season receives a small amount of rainfall (10–15% of total annual rainfall), and 
its rainfall variation is not high as the fluctuation during the wet season.  

Both TMPA products showed overall negative PBIAS values during the dry season and overall 
positive PBIAS values during the wet season, indicating overall underestimations during the dry season 
and overall overestimations during the wet season. 3B42V7 was observed to underestimate ground 
observation at 20 out of 29 stations, and this figure was 24 out of 29 stations for 3B42RT (Figure 2. 
4). When we used scatter plot to compare monthly dry season of TMPA products and that of ground 
observation (data not shown), we found that TMPA products reported zero values in many months. 
The wrong no-rainfall reported by TMPA data was also found at Chindwin River Basin of Myanmar 
(Yuan et al., 2017). The underestimation of TMPA rainfall during the dry season was consistent with 
previous studies in Southwestern of China (Hu et al., 2014). On the other hand, during the wet season, 
22 out of 29 stations experienced overestimations for 3B42V7 data and 24 out of 29 stations 
experienced overestimation for 3B42RT data. The northwest mountain region and the northeast 
coastal area were the only places where both TMPA products underestimated ground observation data 
during two seasons. The overestimation of rainfall during the wet season agreed with a case study in 
Malaysia (Zad et al., 2018) but was contrary to a study involving the southwestern region of China 
(Hu et al., 2014). 

Although they had a generally positive PBIAS score, TMPA products seemed to underestimate large 
rainfall amounts. One possible explanation for this could be their spatial resolution. With a rather low 
0.25° spatial resolution (approximately 25 km), rainfall observed in a grid was averaged over about 
625 km2. However, rainfall can vary dramatically even with a few kilometers, and the resolution of 
TMPA products are often unable to pick up these differences. If we consider the complexity of terrain, 
this variation can be harder to estimate. Additionally, many convective storms can have a rapid 
evolution that a satellite will often not be able to observe accurately (Ebert et al., 2007). 

2.4.1.3. Rainfall Detection Assessment 

The capacity of 3B42V7 and 3B42RT data regarding rainfall detection over the Red–Thai Binh River 
Basin from March 2000 to December 2016 is presented in Figure 2. 5. Generally, the detection capacity 
of daily TMPA products during the wet season was much better than during the dry season, and 
3B42V7 data had slightly better score than 3B42RT data. This may be associated with the temporal 
resolution of TMPA data as short-duration rainfall events are a typical characteristic of the dry season. 
Indeed, with 3-hourly products, it is easy for TMPA to miss events lasting less than this figure. On 
the other hand, TRMM is meant to capture and estimate convective precipitation rather than other 
types because of its on-board sensors. In Vietnam, precipitation is generally associated with heavier 
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storms and cloud coverage during the wet season (Nguyen et al., 2014), meaning the precipitation is 
more likely to be detected. In contrast, in the dry season, there will be much lighter rainfall with less 
cloud coverage and convection, meaning that it will be more difficult to detect (Ebert et al., 2007).  

The POD for the whole daily TMPA data was stable over the years, with the average values of about 
0.61 and 0.58 for 3B42V7 and 3B42RT, respectively. The POD scores for the daily time series in the 
wet season period were higher, with average values of 0.71 and 0.69 for 3B42V7 and 3B42RT, 
respectively. The POD scores of 3B42V7 and 3B42RT for the daily time series in the dry season 
period were typically low, with average values of 0.32 and 0.30, respectively. In the year 2012, the 
POD scores during the dry season were the lowest at about 0.2. The FAR of the daily time series and 
the daily values in wet season were moderate, with average values of 0.37 and 0.36 corresponding to 
3B42V7 and 0.40 and 0.38 corresponding to 3B42RT. However, the FAR of the time series in the dry 
season was high, with an average of 43% of 3B42V7 rainfall prediction being wrong (FAR = 0.43). 
The wrong prediction of 3B42RT was even more than that of 3B42V7, with average FAR being 0.50. 
Interestingly, FAR scores of 3B42V7 and 3B42RT had great fluctuation over the years, reaching 0.6 
and 0.62 in the year 2000, respectively, but the wrong prediction was reduced to only 0.30 for 3B42V7 
and 0.42 for 3B42RT in the year 2014. The POD scores were moderate for both TMPA products, 
with average values of 0.15 and 0.16 for 3B42V7 and 3B42RT, respectively. The POD scores during 
the dry season were relatively low, with all years reporting values less than 0.1 for both TMPA 
products. During the wet season, POD scores were higher than those of the dry season, with a range 
of 0.2–0.3. The CSI scores showed that there was no single year during the study time where the CSI 
scores of both 3B42V7 and 3B42RT were over 0.5. During the wet season, the average CSI values 
were around 0.52 and 0.50 for 3B42V7 and 3B42RT, respectively. Regarding the dry season, the CSI 
were only about 0.24 and 0.21 for each TMPA product, and the lowest CSI scores in the dry season 
were observed in 2006 and 2012.  

 

Figure 2. 6 Critical success index (CSI) score’s spatial performance of TMPA rainfall data against observation 
data from March 2000 to December 2016 over the Red–Thai Binh River basin. The grey line is the Red–Thai 
Binh River Basin boundary within Vietnam territory. 

As CSI combines different aspects of POD and FAR to give an overall assessment of TMPA 
performance, we used this metric to investigate the detection metric of TMPA products on the spatial 
scale (Figure 2. 6). The lowland central part of the basin experienced the worst CSI score, while the 
northwestern mountainous part of the basin had moderate CSI score (>0.5). The better detection 
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capacity at high elevation region than the lower land area was consistent with the study in Malaysia’s 
basin (Zad et al., 2018).  

2.4.1.4. Rainfall Intensity Analysis 

The rainfall frequency distributions of ground observations, 3B42V7, and 3B42RT over the Red–Thai 
Binh River Basin are presented in Figure 2. 7. Generally, rainfall intensity of both TMPA products 
followed the intensity of ground observations for the whole time series. Based on ground observation 
data, no rainfall (≤0.6 mm/day) accounted for 68.8% of total rainfall events, and 3B42V7 and 3B42RT 
data had similar figures. During the dry season, low rainfall intensity (0.6–6 mm/day) detected by 
TMPA datasets were relatively low (4.8% and 5.3% corresponding to 3B42V7 and 3B42RT) compared 
to the figure from ground measurement (13.1%). However, the no rainfall (≤0.6 mm/day) detected 
in the dry season was a different situation. The 3B42V7 estimated 86.4% of daily rainfall events during 
this season as no rainfall. Similarly, 88% of rainfall events during the dry season were considered as 
no rainfall events by 3B42RT. In contrast, the observations data only reported a figure of 79%. During 
the wet season, the no rainfall events by 3B42V7 and 3B42RT were relatively low (approximately 52% 
for both products), while the figure for observation data was nearly 60%. Regarding high rainfall 
events (50–100 mm/day) and heavy rainfall events (>100 mm/day), TMPA products had a high 
accuracy of detecting these, with the PDFs of both TMPA products almost the same as those of 
observation. The slight underestimation of low rainfall event (0.6–6 mm/day) was contrary to the 
overestimation conclusion of this rainfall intensity in a case study in Singapore (Tan and Duan, 2017).  

 

Figure 2. 7 Average probability density function (PDF) of ground observation, TMPA 3B42V7, and TMPA 
3B42RT for rainfall in daily, daily (dry season), and daily (wet season) over the Red–Thai Binh River Basin from 
March 2000 to December 2016. 

As no rainfall and low rainfall intensity during the dry season and wet season experience significant 
differences between ground observations and TMPA data, we exploited the differences by analyzing 
seasonal spatial low rainfall and light rainfall’s intensity of TMPA products. PDF differences between 
each TMPA data and ground observation were calculated and are presented in Figure 2. 8. The 
3B42V7 and 3B42RT data had similar characteristics, which overestimated no rainfall during the dry 
season (10–15%) and low rainfall intensity during the wet season (0–5%). On the other hand, the 
TMPA products underestimated no rainfall during the wet season (10–13%) and low rainfall intensity 
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during the dry season (10–15%). It was noticed that the above characteristics occurred similarly for 
areas throughout the basin and were not specific to a typical region.  

2.4.2. Development of Bias Correction Model Using Climatology–Topography 

Characteristics-Based Linear-Scaling (LS) Approach 

2.4.2.1. Correlation Analysis between Climatology–Topography Characteristics and 

Correction Factors of LS Approach 

In the LS approach, the correction factor is an important key to adjust satellite data closely to 
observation. Correction factors between TMPA products and observations were calculated for each 
month. In total, we had 12 group correction factors for 3B42V7 and 3B42RT data. Table 2. 5 and 
Table 2. 6 present the relationship between correction factors in each month with climatology–
topography characteristics. Based on the significant levels of the correlation coefficient, we found that 
topographical characteristics (LONG, LAT, and ELEV) were often associated with correction factors 
during dry months (except for April), while climate characteristics (AR, SDR, and NRD) were often 
linked with correction factors during wet months. A larger correction factor indicates larger error 
between satellite data and observations. ELEV (elevation) had a significant inverse relationship with 
the correction factor, meaning satellite data at higher elevation areas probably had a smaller error with 
observations compared to lower areas. This result agreed with an observation in Iran that compared 
3B43V7 with rain gauge over this country (Moazami et al., 2013). Similarly, LAT (latitude) also had 
significant negative relationship with the correction factor. This meant that the higher the latitude area, 
the smaller was the satellite error.  

 

Figure 2. 8 Percentage difference of PDF between TMPA 3B42V7, TMPA 3B42RT, and observation at (a) no 
rainfall intensity (0–0.6 mm/day) and (b) low rainfall intensity (0.6–6 mm/day) over the Red–Thai Binh River 
Basin from March 2000 to December 2016. 

The frequency occurrence of clouds can affect the accuracy of satellite rainfall estimation (Ochoa-
Sánchez et al., 2014), and NRD (a number of the rainy days) is a variable that reflects this frequency. 
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As the number of rainy days had significant correlations with the correction factors with negative 
values, it seemed that the higher the number of rainy day stations, the more error of satellite-based 
rainfall there were. In addition, from Tables 5 and 6, AR (annual rainfall rate) and SDR (standard 
deviation of rainfall) had significant positive correlations with the correction factors. This means the 
higher the rainfall rate area, the higher was the correction factor, implying a more substantial error. 
This feature was the same as previous literature (Almazroui, 2011). As a result, the correction factor 
for each month could be estimated from significant climatology–topography candidates.  

Table 2. 5 Correlation coefficient between correction factors of TMPA 3B42V7 against climatology–
topography characteristics. 

 LONG LAT ELEV AR SDR NRD 

𝐶𝐹1 −0.46 ** −0.32 −0.35 0.18 0.27 −0.21 

𝐶𝐹2 0.47 ** −0.61 ** −0.48 ** 0.09 0.29 −0.02 

𝐶𝐹3 0.43 * −0.58 ** −0.42 * −0.03 0.11 0.07 

𝐶𝐹4 0.01 0.00 −0.11 0.52 ** 0.47 * −0.57 ** 

𝐶𝐹5 0.01 0.07 −0.02 0.66 ** 0.56 ** −0.65 ** 

𝐶𝐹6 −0.04 0.02 −0.09 0.63 ** 0.45 * −0.46 * 

𝐶𝐹7 0.03 0.12 −0.08 0.69 ** 0.60 ** −0.44 * 

𝐶𝐹8 0.06 −0.16 −0.34 0.53 ** 0.54 ** −0.50 ** 

𝐶𝐹9 −0.29 0.17 0.25 0.52 ** 0.50 ** −0.58 ** 

𝐶𝐹10 0.26 −0.42 * −0.40 * 0.58 ** 0.68 ** −0.47 * 

𝐶𝐹11 0.29 −0.05 −0.47 ** 0.31 0.33 −0.32 

𝐶𝐹12 0.39 * −0.39 * −0.41 * 0.12 0.23 −0.17 

Note: * 0.05 significant level; ** 0.01 significant level 

Table 2. 6 Correlation coefficient between correction factors of TMPA 3B42RT against climatology–
topography characteristics. 

 LONG LAT ELEV AR SDR NRD 

𝐶𝐹1 −0.02 −0.50 ** −0.10 0.29 0.28 −0.30 

𝐶𝐹2 0.48 ** −0.69 ** −0.56 ** −0.03 0.16 0.23 

𝐶𝐹3 0.25 −0.55 ** −0.42 * −0.06 0.01 0.05 

𝐶𝐹4 −0.15 0.22 −0.16 0.61 ** 0.43 * −0.57 ** 

𝐶𝐹5 −0.22 0.37 −0.03 0.69 ** 0.47 * −0.59 ** 

𝐶𝐹6 −0.28 0.44 * 0.02 0.68 ** 0.39 * −0.53 ** 

𝐶𝐹7 0.10 −0.13 −0.30 0.61 ** 0.56 ** −0.18 

𝐶𝐹8 0.48 ** −0.30 −0.52 ** 0.58 ** 0.74 ** −0.23 

𝐶𝐹9 0.30 0.04 −0.03 0.54 ** 0.69 ** −0.34 

𝐶𝐹10 0.19 −0.42 * −0.34 0.57 ** 0.66 ** −0.35 

𝐶𝐹11 0.55 ** −0.22 −0.51 ** 0.46 * 0.62 ** −0.24 

𝐶𝐹12 0.64 ** −0.37 −0.45 * 0.23 0.43 * −0.16 

Note: * 0.05 significant level; ** 0.01 significant level. 

2.4.2.2. Multiple Linear Model Development to Estimate Correction Factors 

As climatology–topography characteristics have various units, before building the multiple linear 
regression models for correction factors, we made it dimensionless for all input climatology–
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topography data by scaling them to a range [0.1, 0.9]. The multiple linear models for the correction 
factors of 3B42V7 and 3B42RT are presented in Table 2. 7 and Table 2. 8. All p-values were smaller 
than 0.5, indicating that sets of linear models using climatology–topography characteristics could well 
predict correction factors. 

Table 2. 7 Multiple linear models to predict correction factors of TMPA 3B42V7 data. 

Formulas CC p-Value 

𝐶𝐹1 =  1.004 ∗ 𝐿𝑂𝑁𝐺 + 0.947 0.446 0.045 

𝐶𝐹2 =  0.736 ∗ 𝐿𝑂𝑁𝐺 − 2.331 ∗ 𝐿𝐴𝑇 − 1.347 ∗ 𝐸𝐿𝐸𝑉 + 3.256 0.779 <0.001 

𝐶𝐹3 =  0.242 ∗ 𝐿𝑂𝑁𝐺 − 1.298 ∗ 𝐿𝐴𝑇 − 0.735 ∗ 𝐸𝐿𝐸𝑉 + 2.200 0.768 <0.001 

𝐶𝐹4 =  0.103 ∗ 𝐴𝑅 +  0.134 ∗ 𝑆𝐷𝑅 − 0.262 ∗ 𝑁𝑅𝐷 + 0.921 0.604 0.003 

𝐶𝐹5 = 0.046 ∗ 𝐴𝑅 +  0.218 ∗ 𝑆𝐷𝑅 − 0.404 ∗ 𝑁𝑅𝐷 + 1.068 0.748 0.001 

𝐶𝐹6 =  1.019 ∗ 𝐴𝑅 −  0.528 ∗ 𝑆𝐷𝑅 + 0.116 ∗ 𝑁𝑅𝐷 + 0.662 0.712 0.003 

𝐶𝐹7 =  0.937 ∗ 𝐴𝑅 −  0.170 ∗ 𝑆𝐷𝑅 + 0.140 ∗ 𝑁𝑅𝐷 + 0.615 0.733 0.002 

𝐶𝐹8 =  −0.351 ∗ 𝐴𝑅 + 0.544 ∗ 𝑆𝐷𝑅 − 0.393 ∗ 𝑁𝑅𝐷 + 1.093 0.694 0.006 

𝐶𝐹9 =  −0.491 ∗ 𝐴𝑅 +  0.636 ∗ 𝑆𝐷𝑅 − 0.563 ∗ 𝑁𝑅𝐷 + 1.182 0.687 0.006 

𝐶𝐹10 =  −0.286 ∗ 𝐿𝐴𝑇 − 0.291 ∗ 𝐸𝐿𝐸𝑉 − 0.665 ∗ 𝐴𝑅 +  0.965 ∗ 𝑆𝐷𝑅 − 0.678 ∗ 𝑁𝑅𝐷 + 1.488 0.840 <0.001 

𝐶𝐹11 =  −0.755 ∗ 𝐸𝐿𝐸𝑉 + 1.373 0.600 0.003 

𝐶𝐹12 =  0.437 ∗ 𝐿𝑂𝑁𝐺 − 1.422 ∗ 𝐿𝐴𝑇 − 1.202 ∗ 𝐸𝐿𝐸𝑉 + 2.671 0.564 0.038 

Note: p-value shows significant level between predicted correction factors using multiple linear models and calculated correction factors. 

Table 2. 8 Multiple linear models to predict correction factors of TMPA 3B42RT data. 

Formulas CC p-Value 

𝐶𝐹1 = −1.537 ∗ 𝐿𝐴𝑇 + 2.582 0.501 0.041 

𝐶𝐹2 =  1.102 ∗ 𝐿𝑂𝑁𝐺 − 3.343 ∗ 𝐿𝐴𝑇 − 2.204 ∗ 𝐸𝐿𝐸𝑉 + 4.038 0.875 <0.001 

𝐶𝐹3 =  −2.871 ∗ 𝐿𝐴𝑇 − 2.045 ∗ 𝐸𝐿𝐸𝑉 + 4.432 0.748 0.001 

𝐶𝐹4 =  1.041 ∗ 𝐴𝑅 − 0.515 ∗ 𝑆𝐷𝑅 − 0.003 ∗ 𝑁𝑅𝐷 + 0.672 0.720 0.003 

𝐶𝐹5 = 1.197 ∗ 𝐴𝑅 − 0.687 ∗ 𝑆𝐷𝑅 − 0.082 ∗ 𝑁𝑅𝐷 + 0.545 0.761 <0.001 

𝐶𝐹6 =  0.215 ∗ 𝐿𝐴𝑇 + 1.524 ∗ 𝐴𝑅 − 0.909 ∗ 𝑆𝐷𝑅 +  0.386 ∗ 𝑁𝑅𝐷 + 0.147 0.875 <0.001 

𝐶𝐹7 =  0.605 ∗ 𝐴𝑅 +  0.112 ∗ 𝑆𝐷𝑅 + 0.696 0.608 0.002 

𝐶𝐹8 =  0.196 ∗ 𝐿𝑂𝑁𝐺 − 0.241 ∗ 𝐸𝐿𝐸𝑉 − 0.011 ∗ 𝐴𝑅 + 0.580 ∗ 𝑆𝐷𝑅 + 0.676 0.877 <0.001 

𝐶𝐹9 =  −0.311 ∗ 𝐴𝑅 +  1.037 ∗ 𝑆𝐷𝑅 + 0.681 0.712 0.003 

𝐶𝐹10 =  −0.664 ∗ 𝐴𝑅 +  0.429 ∗ 𝑆𝐷𝑅 + 0.587 ∗ 𝑆𝐷 + 0.948 0.674 0.007 

𝐶𝐹11 =  1.233 ∗ 𝐿𝑂𝑁𝐺 − 0.638 ∗ 𝐸𝐿𝐸𝑉 + 0.720 ∗ 𝐴𝑅 + 0.616 ∗ 𝑆𝐷𝑅 + 0.250 0.838 <0.001 

𝐶𝐹12 =  2.233 ∗ 𝐿𝑂𝑁𝐺 − 0.978 ∗ 𝐸𝐿𝐸𝑉 + 0.936 ∗ 𝑆𝐷𝑅 + 0.842 0.729 0.002 

Note: p-value shows significant level between predicted correction factors using multiple linear models and calculated correction factors. 

2.4.2.3. Calibration and Validation of the CTLS Bias Correction Approach 

Table 2. 9 compares the TMPA products before and after using the LS and CTLS approaches against 
the observations on a daily scale. Both calibration and validation data showed that LS and CTLS 
performed very well in reduction PBIAS scores but had moderate performances regarding NSE 
scores, slight improvements in RMSE scores, and almost no change in CC scores. Moreover, the 
linear-scaling model seemed to reduce errors better for 3B42RT data compared to that for 3B42V7 
data. The reason for this may be that 3B42V7 data had already passed through the correction stage 
before the online public, meaning other bias correction approaches did not improve this product’s 
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quality significantly. The good performances during calibration and validation stations of the CTLS 
approach indicated that empirical correction factors calculated by climatology and topography 
characteristics could be applied for the satellite-based data bias correction process throughout the 
Red–Thai Binh River Basin. 

Table 2. 9 The average performance of calibration and validation for climatology–topography-based linear-
scaling approach (CTLS) with TMPA 34B42V7 and TMPA 3B42RT on a daily scale. 

 
Before Bias Correction LS CTLS 

CC NSE RMSE PBIAS CC NSE RMSE PBIAS CC NSE RMSE PBIAS 

3B42V7             

Calibration 0.389 −0.147 15.2 3.0 0.389 −0.130 15.2 1.1 0.389 −0.119 15.2 0.8 

Validation 0.378 −0.175 14.8 4.0 0.375 −0.153 14.7 1.5 0.372 −0.165 14.8 1.7 

3B42RT             

Calibration 0.303 −0.509 17.3 13.5 0.309 −0.299 16.3 −0.2 0.306 −0.342 16.6 2.2 

Validation 0.307 −0.565 17.1 19.4 0.308 −0.299 15.8 0.8 0.300 −0.409 16.4 7.4 

Regarding bias correction models on a monthly scale, similar results were observed as the daily scale, 
with a significant reduction in PBIAS scores after bias correction (Table 2. 10). Moreover, the NSE 
scores of corrected monthly 3B42RT improved profoundly compared to those before bias correction. 
Before applying bias correction, the average monthly NSE for calibration and validation stations for 
3B42RT data were 0.488 and 0.447, respectively. After using the LS approach, these figures improved 
to 0.734 and 0.713, respectively. Also, the empirical CTLS approach had considerable monthly NSE 
improvement, with values of 0.677 and 0.642 corresponding to calibration and validation stations. 

Table 2. 10 The average performance of calibration and validation for CTLS with TMPA 34B42V7 and TMPA 
3B42RT on a monthly scale. 

 
Before Bias Correction LS CTLS 

CC NSE RMSE PBIAS CC NSE RMSE PBIAS CC NSE RMSE PBIAS 

3B42V7             

Calibration 0.899 0.767 66.7 3.0 0.904 0.816 59.5 1.1 0.899 0.799 62.1 0.8 

Validation 0.881 0.755 65.8 4.0 0.883 0.778 63.2 1.5 0.873 0.755 65.9 1.7 

3B42RT             

Calibration 0.843 0.488 96.1 13.5 0.866 0.734 71.8 −0.2 0.850 0.677 78.8 2.2 

Validation 0.838 0.447 95.9 19.4 0.854 0.713 71.3 0.8 0.831 0.642 79.3 7.4 

Table 2. 11 presents the performance of TMPA products regarding the PBIAS score before and after 
bias correction using LS and CTLS during the dry and wet seasons. The wet season seemed to benefit 
from bias correction more than the dry season. Using the LS approach, PBIAS scores for both 
3B42V7 and 3B42RT were equal to 0, while the figures for the dry season were up to 10%. With the 
CTLS approach, PBIAS scores during the wet season also observed a significant decrease, ranging 
from 0.07% to 4.55%. During the dry season, highly positive PBIAS scores (up to 24%) were 
observed, indicating a high overestimation of dry season after bias correction. 

Table 2. 12 shows the CSI scores for TMPA products against observations before and after bias 
correction using LS and CTLS during daily, daily (dry season), and daily (wet season). Generally, there 
was no significant change in CSI scores after bias correction compared to before bias correction for 
both products and for both bias correction approaches. By analyzing the intensity metric before and 
after doing bias correction (data not shown), we also obtained the same results as that of detection 
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metric, i.e. after doing bias correction, there was no significant change in the intense rainfall for TMPA 
products. 

2.5. Conclusions 

TMPA products are recommended for wide use over the tropical and subtropical regions due to their 
high temporal–spatial resolution. Therefore, this study carried out a comparison and bias correction 
between TMPA 3B42V7 and TMPA 3B42RT data and 29 ground observations over the lower part of 
the Red–Thai Binh River Basin from March 2000 to December 2016.  

Table 2. 11 The average PBIAS score’s performance of calibration and validation for CTLS with TMPA 
34B42V7 and TMPA 3B42RT during the dry and wet seasons. 

 Before Bias Correction LS CTLS 

 Dry Season Wet Season Dry Season Wet Season Dry Season Wet Season 

3B42V7       

Calibration −10.32 5.75 6.97 0.00 3.37 0.51 

Validation −10.92 19.29 9.63 0.00 12.67 0.07 

3B42RT       

Calibration −14.48 7.32 −0.58 0.00 5.59 1.71 

Validation −12.75 26.23 5.59 0.00 24.32 4.55 

Based on various error metrics—CC, NSE, RMSE, and PBIAS—we compared 3B42V7 and 3B42RT 
against observations at different scales, including daily and monthly scales and dry and wet seasons. 
Our analysis showed that both products had relatively weak relationships with observations on a daily 
scale but this significantly improved on a monthly scale. Except for the CC score, 3B42V7 data was 
considerably better than 3B42RT data in the rest of the error metrics on a monthly scale. In addition, 
3B42V7 data showed better performance than 3B42RT data during both dry and wet seasons, 
especially regarding NSE and PBIAS measurements. Both products showed overall underestimations 
during the dry season and overestimations during the wet season. Spatial analysis of the PBIAS score 
indicated significant bias of TMPA products at the lowland area of the Red–Thai Binh River Basin, 
while the northwestern mountainous area and the northeast coastal area had low PBIAS for both 
products. 

Table 2. 12 Average CSI score’s performance of calibration and validation for CTLS with TMPA 34B42V7 and 
TMPA 3B42RT for daily, daily (dry season), and daily (wet season). 

 Before Bias Correction LS CTLS 
 Daily Daily 

(Dry 

Season) 

Daily 

(Wet 

Season) 

Daily Daily 

(Dry 

Season) 

Daily 

(Wet 

Season) 

Daily Daily 

(Dry 

Season) 

Daily 

(Wet 

Season) 
3B42V7          

Calibration 0.450 0.258 0.531 0.449 0.259 0.529 0.448 0.259 0.529 

Validation 0.429 0.225 0.519 0.428 0.225 0.516 0.428 0.226 0.518 

3B42RT          

Calibration 0.422 0.226 0.505 0.422 0.226 0.505 0.422 0.226 0.505 

Validation 0.402 0.202 0.492 0.402 0.205 0.492 0.402 0.206 0.492 

The comparison between 3B42V7 and 3B42RT was also viewed from a different angle using detection 
metrics—POD, FAR, POFD, and CSI—against observations on daily time series, daily time series in 
the dry season, and daily time series in the wet season. In this case, the 3B42V7 showed a slightly 
better performance compared to 3B42RT for the metrics mentioned. Both products had better 
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detection metrics in the wet season compared to the dry season. Spatial CSI score distribution showed 
that the lowland area of the central basin had the lowest score compared to other parts. 

From the perspective of the assessment on rainfall intensity on daily time series for the dry and wet 
seasons, it was found out that 3B42RT performed the same as 3B42V7 data. Both products 
overestimated no rainfall (≤0.6 mm/day) during the dry season and underestimated rainfall intensity 
during the wet season. The overestimation and underestimation compromised the daily time series for 
the dry and wet seasons, meaning the frequency distributions of no rainfall events were almost the 
same for TMPA products and ground observations. On the other hand, TMPA products 
underestimated low rainfall intensity (0.6–6 mm/day) during the dry season and overestimated rainfall 
intensity during the wet season. The underestimation of low rainfall was more significant than the 
overestimation, resulting in a slightly lower rainfall estimation by TMPA products at the daily time 
series compared to observations. 

In addition, we used the LS approach to do bias correction for 3B42V7 and 3B42RT products. In this 
approach, the correction factor is an important key to adjust satellite rainfall data closely to 
observations. We found that the correction factors of the LS approach were associated with 
climatology–topography characteristics. Therefore, a set of multiple linear regression models was 
developed to predict correction factors from climatology–topography characteristics for 3B42V7 and 
3B42RT. After bias correction using LS and CTLS approaches, corrected TMPA products showed 
significant improvement compared to the results before bias correction, especially for the 3B42RT 
dataset with PBIAS and NSE scores. However, we found that both bias correction approaches did 
not improve the TMPA products significantly on other measurement scores. 

In conclusion, 3B42V7 and 3B42RT data should be a good alternative source for a wide range of 
hydrological purposes on a monthly scale. The 3B42V7 data is also a good source for typical analysis 
of dry and wet seasons, although these datasets should be used with caution for daily scale purposes. 
The post-TMPA products after using climatology–topography characteristics are promising sources, 
especially for total water resource estimation. 

The biggest advantage of the LS approach was to reduce PBIAS score; however, other error scores 
remained almost the same. Future studies may merge satellite-based and ground-based rainfall product 
to further improve rainfall product quality (Nerini et al., 2015). The finding of this paper gives an 
overview of the capacity of TMPA products in the lower part of the Red–Thai Binh River Basin 
regarding water resource application and provides a simple bias correction that can be used to improve 
the correctness of TMPA products. Additionally, the study is beneficial for regions, such as Vietnam, 
that are seeking alternative rainfall sources. The reason for this is that approximately 60% of Vietnam’s 
water resources come from abroad, and hydro-climatology acquisition from upstream countries faces 
many challenges due to limited administration interaction (Tran Thanh Xuan et al., 2012). 
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Chapter 3: Assessment of drought conditions 

over Vietnam using standardized precipitation 

evapotranspiration index, MERRA-2 re-analysis, 

and dynamic land cover2 

3.1. Introduction  

The slowly evolving nature of drought and its multiple drivers contribute to the various definitions 
adopted for different purposes and diverse conclusions in identifying the trends under changing 
climate (Dai, 2011; Van Loon et al., 2016). While a global trend of drought over the last century 
remains debatable (Greve et al., 2014; Orlowsky and Seneviratne, 2013; Sheffield et al., 2012), some 
regions of the world have observed robust tendencies that droughts are becoming more frequent and 
severe. Drying trends were found in equatorial Africa (Diem et al., 2014; Kawase et al., 2010), South 

Asia (Krishnan et al., 2016), and the Mediterranean (Hoerling et al., 2012; Valdes‐Abellan et al., 2017) 
in contrast to wetting trends in high latitude regions (Sheffield and Wood, 2008; Zhang et al., 2013). 
Notably, in recent years several extreme droughts have been observed—California (Ganguli and 
Ganguly, 2016; Mazdiyasni and AghaKouchak, 2015), Australia (Herold et al., 2016), China (Yuan et 
al., 2019), Europe (Miralles et al., 2019), and India (Sharma and Mujumdar, 2017). These droughts 
occurred concurrently with extreme heatwaves, causing severe socioeconomic and ecological damages 
and are likely to occur with increased frequency. Such possibly intensified impacts of drought, 
compounded by its intricate characteristics, demands a substantially improved quality of observations 
for proper monitoring and management in many regions of the world. 

While impacts of varying temporal scales on the efficiency of drought indices are well-documented 
(Raziei et al., 2013; Zhu et al., 2016; Zuo et al., 2018), only a few studies have investigated the 
performances of drought indices at different spatial scales. Golian et al. (2019) found that the values 
of Critical Success Index (CSI) derived from products of Multi-Source Weighted-Ensemble 
Precipitation (MSWEP) at coarser resolution (0.5° and 1°) as significantly lower skill in drought 
detection for severe drought events compared to the CSI computed from the MSWEP data at 0.1°. 
Additionally, Raziei et al. (2013) demonstrated that the dependence of the spatial patterns of droughts 
on time scales increased when using higher spatial resolution data. In light of this, it seems that the 
drought indices computed from the high-resolution data have greater potential to accurately describe 
the spatial characteristics of drought conditions than those derived from coarser-resolution data. 
Previous studies have focused on drought indices based on the data sets with relatively coarser-
resolution (e.g., larger than 10km), while the analyses that assess the performance of the drought 
indices at finer spatial resolutions (e.g., less than 10km) have seldom been studied. 

Drought risk in agricultural regions is essential information; however, this information is currently 
limited by using static datasets. For example, when Rojas et al. (2011) and Winkler et al. (2017) 

 
2 This chapter has been published as Le, M. H., Kim, H., Moon, H., Zhang, R., Lakshmi, V., & Nguyen, L.B (2020). 
Assessment of drought conditions over Vietnam using standardized precipitation evapotranspiration index, MERRA-2 
re-analysis, and dynamic land cover. Journal of Hydrology: Regional Studies, 100767. 
https://doi.org/10.1016/j.ejrh.2020.100767. 
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investigated agricultural areas affected by drought, they only used a typical year to represent land cover 
for the entire study period. However, land cover, especially for agricultural land, is subjected to change 
over time due to international trade, climate adaptation, urbanization, industrialization, food security 
and economic policies (Rutten et al., 2014). Therefore, in order to accurately evaluate drought 
conditions in agricultural locations, it is required to use a dynamic land cover database to reflect spatial 
changes in land cover over time. To the best of our knowledge, previous studies have not used 
dynamic land cover for drought assessment. 

 

Figure 3. 1 Boundaries of eight sub-regions (R1-R8) in Vietnam and data lengths of in-situ precipitation and 
temperature stations. 

In this study, we aim to examine three hypotheses, viz. — (1) Does high spatial resolution data detect 
drought trends better than low spatial resolution data? (2) Does high spatial resolution data have 
advantages of capturing drought events better than low spatial resolution data? (3) Does dynamic land 
cover provide better information on agricultural lands affected by drought over the years? We selected 
the country of Vietnam as a case study to test our hypotheses. Firstly, drought investigation is of 
paramount importance for Vietnam as this disaster ranked third among economic losses amongst 
natural hazards in the country (Nguyen and Shaw, 2011). Secondly, most of the studies which assessed 
droughts in Vietnam are either based on sparsely distributed in-situ observations (Le et al., 2019b; Vu-
Thanh et al., 2014) or relatively coarse spatial resolution data (Vu and Mishra, 2016; Vu et al., 2018). 
Therefore, high spatial resolution drought datasets are unexplored in Vietnam. Moreover, we can 
obtain annual land cover information for Vietnam for the past 30 years from SERVIR-Mekong land 
use land cover portal. This land cover database could enable us to examine our third hypotheses 
mentioned above. 
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This study selected the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano 
et al., 2010) to estimate drought conditions in Vietnam. This index is an appropriate drought index in 
examining changes in droughts under global warming (Le et al., 2019a; López-Moreno et al., 2013; 
Wang et al., 2018), and in representing different drought types such as meteorological, agricultural, 
hydrological, and socioeconomic droughts (Chen and Sun, 2015). We estimated the SPEI at three 
spatial resolutions (1-, 9- and 36-km) using precipitation and air temperature from the second Modern-
Era Retrospective analysis for Research and Applications (MERRA-2). One of the main reasons that 
we chose MERRA-2 is that the data has been widely validated, showing good performance globally. 
Readers will find representative research at https://gmao.gsfc.nasa.gov/reanalysis/MERRA-
2/pubs/. Furthermore, as MERRA-2 is open to the public and allows the downloading of near-real-
time data, it has great potential for practical application in drought analysis. To investigate agricultural 
drought areas, we extracted agricultural land cover in each year from SERVIR-Mekong land use land 
cover database, and re-sampled the data to 1-, 9-, and 36-km. To explore the possible trends in a time 
series, we applied the Mann-Kendall test, which is commonly used to detect trends in hydro-
meteorological time series (Joshi et al., 2019; Mondal et al., 2015; Velpuri and Senay, 2013). 

This study is organized as follows. Section 3.2 introduces the Study Area. Section 3.3 presents the 
Datasets. Section 3.4 presents the Methodology. Results and Discussions, and Conclusions are 
presented in Section 3.5 and Section 3.6, respectively. 

Table 3. 1 Descriptive statistics of precipitation and air temperature from MERRA-2 and in-situ data in eight 
sub-regions. The MERRA-2 data were extracted at the same in-situ locations.  

Annual 
Precipitation 

In-situ MERRA-2 

Max (mm) Min (mm) Mean (mm) Max (mm) Min (mm) Mean (mm) 

R1 (n = 25) 2,411 1,129 1,764 1,563 939 1,352 

R2 (n = 18) 3,775 1,170 1,775 1,481 1,231 1,361 

R3 (n = 25) 1,793 1,239 1,533 1,502 1,374 1,453 

R4 (n = 24) 3,889 1,320 2,063 2,122 1,342 1,604 

R5 (n = 27) 3,738 841 2,069 2,140 1,166 1,532 

R6 (n = 36) 2,538 1,267 1,834 1,602 834 1,100 

R7 (n = 16) 2,779 1,288 1,914 1,496 1,175 1,369 

R8 (n = 44) 2,459 809 1,628 2,006 1,124 1,569 

Annual Air  
Temperature 

In-situ MERRA-2 

Max (°C) Min (°C) Mean (°C) Max (°C) Min (°C) Mean (°C) 

R1 (n = 6) 24.6 23.1 24.0 23.0 20.0 21.3 

R2 (n = 10) 24.4 20.7 22.9 23.2 18.9 21.2 

R3 (n = 5) 24.2 23.6 23.9 23.9 23.0 23.4 

R4 (n = 14) 25.1 21.9 24.2 25.1 21.7 23.6 

R5 (n = 15) 27.5 24.6 26.5 26.3 24.2 25.0 

R6 (n = 6) 25.2 21.8 23.2 24.5 21.9 23.5 

R7 (n = 7) 28.2 26.0 27.1 27.3 26.4 26.8 

R8 (n = 11) 28.0 27.0 27.4 27.5 26.7 27.0 

3.2. Study Area 

Vietnam has a total area of 331,212 km2, extending from 8.2°N – 23.5°N, 101.1°E – 110.3°E, and a 
home of more than 95 million people (In 2018 ranked 15th in global population). In order to assess 
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drought condition in Vietnam, previous studies often divided it into seven sub-regions that are based 
on differences in climatic conditions (Le et al., 2019b; Vu et al., 2018). This study, however, divided 
Vietnam into eight sub-regions based on a sub-national administrative level. This allows for easy 
comparison with existing agricultural drought statistics. These eight sub-regions are Northwestern 
Region (R1); Northeastern Region (R2); Red River Delta (R3); North Central Region (R4), South 
Central Region (R5); Central Highlands (R6); Southeastern Region (R7); and the Mekong Delta (R8) 
(Figure 3. 1).  

Table 3. 2 Mean elevation and Gini-Simpson index (Simpson, 1949) in eight sub-regions. The Gini-Simpson 
index is calculated to reflect heterogeneity of surface land for each sub-region. Higher Gini-Simpson index 
corresponds to greater variation in land surface. 

Sub-region R1 R2 R3 R4 R5 R6 R7 R8 

Mean Elevation (m) 801.6 387.1 22.3 298 334.4 660.5 89.4 3.9 

Gini-Simpson Index 0.939 0.92 0.451 0.926 0.933 0.914 0.897 0.015 

3.3. Data Sets 

3.3.1. Ground Observations 

This study collected monthly data from 215 precipitation stations and 74 temperature stations from 
multiple sources, including Vietnam Meteorological and Hydrological Administration (VMHA), 
Mekong River Commission (MRC), and Japan International Cooperation Agency (JICA) (Figure 3. 1). 
All data has passed quality checks. We used these in-situ observations to compare with precipitation 
and air temperature from MERRA-2 datasets. Data availability at each station varied between 40 and 
360 months (Figure 3. 1). Descriptive statistics of observed precipitation and air temperature in each 
sub-region can be found at Table 3. 1. 

We obtained 1989-2014 data on agricultural land affected by drought for the R4 and R5 regions from 
the Vietnamese Ministry of Agriculture and Rural Development (MARD). The Decree 
No.01.2008/ND-CP on responsibilities, tasks, authorities and organization structure of MARD: 
“Ministry of Agriculture and Rural Development is a state agency, carrying out tasks of state management on such 
fields as agriculture, forestry, salt industry, aquaculture, water resource and rural development in the country; of state 
management on public services and fields under the management of the Ministry”. The MARD has its department 
located in each province through Vietnam. Officials from these departments conduct annual surveys 
on agricultural activities lands within their provinces to obtain statistical records on natural disasters 
and the development of these activities. 

3.3.2. The Modern-Era Retrospective Analysis for Research and Applications, 

Version 2 (MERRA-2) 

The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), is the 
latest atmospheric reanalysis of the modern satellite era produced by NASA’s Global Modeling and 
Assimilation Office (GMAO). The goals of MERRA-2 are to provide a regularly-gridded, 
homogeneous record of the global atmosphere, and to incorporate additional aspects of the climate 
system (Gelaro et al., 2017). The superior feature of MERRA-2 over its predecessor, MERRA, is that 
it assimilates several observation types and includes updates to the Goddard Earth Observing System 
(GEOS) model and analysis scheme; this allows it to provide a feasible ongoing climate analysis. 
MERRA-2 includes ground-based remotely sensed data and numerous satellite observations both 
before and after the introduction of NOAA-18 satellite in 2005. The complete set of input 
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observations assimilated in MERRA-2 is summarized in Table 3. 1 in Gelaro et al. (2017) and detailed 
description of these data uses shown in McCarty et al. (2016). In this study, the bilinear transform was 

used to produce  0.01˚×0.01˚ (~1-km), 0.09˚×0.09˚ (~9-km), and 0.36˚×0.36˚ (~36-km) spatial 

resolutions of MERRA-2-derived precipitation and air temperature forcing data using the Land 
surface Data Toolkit (LDT) (Kumar et al., 2006). For further information regarding LDT, please refer 
to Arsenault et al. (2018); and visit https://lis.gsfc.nasa.gov”. 

 

Figure 3. 2 Percentage of agricultural land based on different spatial resolutions in eight sub-regions during 
1989-2018. The black line is the agricultural land area derived from the 30-m original land cover dataset. 

3.3.3. Agricultural Land Cover Dataset 

High resolution (30m) land cover data for Vietnam during 1989-2018 were obtained from the land-
cover portal website maintained by SERVIR-Mekong (https://rlcms-servir.adpc.net/en/landcover/). 

https://lis.gsfc.nasa.gov/
https://rlcms-servir.adpc.net/en/landcover/
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This system provides consistent land cover products at regular intervals, with quality control from 
multiple sources. Based on these yearly land cover data, we determined agricultural land areas (sum of 
croplands and rice paddies from SERVIR-Mekong's classification) and calculated the area percentage 
of drought on a monthly basis. This work enables us to precisely estimate drought areas for agricultural 
regions only and not for other land covers. Since we used MERRA-2 datasets with three different 
spatial resolutions (1-, 9-, and 36-km), the land cover datasets were also re-sampled from 30m to these 
corresponding resolutions.  

The temporal percentage change of agricultural land in Vietnam at three spatial resolutions is given in 
Figure 3. 2. The R3 and R8 are two deltas corresponding to the two largest river basins in Vietnam - 
Red-Thai Binh River and Mekong River, respectively. Therefore, agricultural lands in these regions 
account for a large proportion of the total land over the years. For 30 years, agricultural land in R7 
experienced a significant reduction while that land in R6 exhibited a considerable increase. Comparing 
agricultural land estimated from three spatial resolutions (1-, 9-, and 36-km), higher spatial resolution 
land cover datasets seem to have smoother inter-annual changes over 1989-2018, and to be closer 
with these figures of original land cover dataset (Figure 3. 2). Different agricultural land resolution 
datasets can result in a significant difference in percentage of total agricultural land. For example, in 
R8, the agricultural land was around 90% of the total land with a 36-km land cover dataset but 73% 
with the 1-km land cover dataset. The large inhomogeneous distribution of land cover is probably a 
result of the different agricultural land estimations given when we used different spatial resolutions. 
An example of agricultural land in R3 in different spatial resolutions is given in Appendix 1. 

In short, the agricultural land in Vietnam exhibited a great variation in both temporal and spatial scales. 
Therefore, drought evaluation in agricultural land in Vietnam requires a rigorous information for a 
better estimate. 

3.4. Methodology 

3.4.1. Temporal Trend Analysis 

The Mann-Kendall (MK) test was performed to analyze the trends of precipitation, temperature, and 
drought conditions. The MK test is a non-parametric test that statistically assesses the monotonic 
trends in data over time (Hirsch and Slack, 1984; Kendall, 1938; Mann, 1945). We selected this non-
parametric test because our data sets are not normally distributed, and this test is distribution-free 
(Gocic and Trajkovic, 2014). For purpose of robustness, in the presence of autocorrelation time series 
which could affect trend interpretation results (Yue et al., 2002), we removed the serial correlation 
effect using the pre-whitening method before applying the MK test (Gocic and Trajkovic, 2014). Then, 
the Sen’s slope (Sen, 1968) was used to examine the magnitude of trends. 

3.4.2. Characteristics of Drought Dynamics 

From MERRA-2’s precipitation and air temperature for each grid cell, we calculated the SPEI 
throughout Vietnam, at three spatial resolutions - 1-, 9-, and 36-km. We employed three-parameter 
log-logistic distribution for fitting SPEI. A negative value of SPEI indicates that a particular value of 
the water-related variable is lower than the median of the total distribution. A drought event occurs 
when the SPEI value reaches -1 or lower. The water-related time series - SPEI requires a deficit 
between precipitation (P) and potential evapotranspiration (PET). We calculated PET from air 
temperature data based on the Thornthwaite method (Thornthwaite, 1948).  
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In the present study, we used a 3-month timescale, which was estimated by accumulating three 
consecutive months of P-ET. This 3-month timescale often reflects a shortage of water availability 
for agricultural uses (Svoboda et al., 2012). 

Temporal drought characteristics were analyzed using drought frequency (F) and drought severity (S) 
(Le et al., 2019b). The details regarding these drought characteristics are the following Equation (1) 
and Equation (2). 

𝐹 =  
∑ 𝐷𝑢𝑖

𝑚
𝑖=1

𝑁
× 100% (3.1) 

Where 𝐷𝑢𝑖 is 𝑖𝑡ℎ drought duration, which is the number of consecutive months in which the SPEI is 
below -1; m is the number of drought duration, N is the total months.  

𝑆 = ∑ 𝐷𝐼𝑖|𝐷𝐼𝑖 < −1

𝐷𝑢

𝑖=1

 (3.2) 

Where 𝐷𝐼𝑖 is SPEI at month i. 

For assessing drought in space, we used a binary approach to represent drought state 𝐷𝑠(𝑡) at time 
step t for each grid cell as follows:  

𝐷𝑆(𝑡) = {1 𝑖𝑓 𝐷𝐼(𝑡) ≤ −1;  0 𝑖𝑓 𝐷𝐼(𝑡) > −1 (3.3) 

Where 𝐷𝐼(𝑡) is the value of drought index at time step 𝑡. 

For a given region, the percentage drought area at time step t, 𝑃𝐷𝐴(𝑡) (%), is a ratio between total 

number cells in drought and the total number of cells in the region 𝑁𝑡𝑜𝑡𝑎𝑙. 

𝑃𝐷𝐴(𝑡) =  
∑ 𝐷𝑆(𝑡)|𝐷𝐼(𝑡) ≤ −1

𝑁𝑡𝑜𝑡𝑎𝑙
𝑖=1

𝑁𝑡𝑜𝑡𝑎𝑙
× 100% (3.4) 

We estimated three monthly percentage drought area (PDA) datasets. The first dataset is the 
percentage drought area for the entire region (hereafter referred to as PDA-E), which is equivalent to 
the total land area of a region. The second dataset is the percentage of drought area for agricultural 

land using static land cover (hereafter PDA-AS). 𝑁𝑡𝑜𝑡𝑎𝑙  in the second case is equivalent to total 
agricultural land of 2005 which represents for the period 1989 and 2018. The cells in drought are 
counted for the agricultural land in the year of 2005. The third dataset is the percentage of drought 

area for agricultural land using dynamic land cover (hereafter PDA-AD). 𝑁𝑡𝑜𝑡𝑎𝑙 in the third case is 
equivalent to total agricultural land of the year i (i =1989, 1990, …, 2018). The cells in drought are 
counted for the agricultural land each year. We compared these three estimated PDAs with record 
PDAs in R4 and R5 regions. Since the record PDAs datasets are only available annually, we averaged 
monthly PDAs from our estimations to an annual basis to have the same temporal time step as the 
actual data. 
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Figure 3. 3 (a) Correlation coefficient and (b) Mean absolute error between MERRA-2 datasets and observed 
precipitation (right) and observed air temperature (left). 

3.5. Results and Discussion 

3.5.1. Assessment on MERRA-2‘s Precipitation and Air Temperature in Vietnam  

Over our region of interest, there is no prior research of validating MERRA-2 using in-situ 
measurement; therefore, we conducted a validation study before applying MERRA-2 data for drought 
analysis. To do that, we extract grid values of MERRA-2 to ground observation points using the 
nearest neighbor method. We used this method to preserve the values at different spatial resolutions. 
In total, for each precipitation and air temperature dataset, three comparisons were made between 
MERRA-2 datasets (1-, 9-, and 36-km) and in-situ measurements. Since the results were found similar 
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in each spatial resolution of MERRA-2 product, this section only presents evaluation results of 1-km 
MERRA-2 in terms of correlation coefficient (R-value) and mean absolute error (MAE) (Figure 3. 3). 
The results of 9- and 36-km MERRA-2 can be found in Appendix 2. 

 

Figure 3. 4 Validation of the MERRA-2 dataset against observation in (a) comparison of MERRA-2 and 
observed precipitation Sen’s slope, (b) comparison of MERRA-2 and observed air temperature Sen’s slope , (c) 
comparison of MERRA-2 and observed SPEI Sen’s slope . 

Generally, precipitation from MERRA-2 exhibited a good agreement with the precipitation from in 
situ data, with median R-value of 0.809 (Figure 3. 3a). The MERRA-2 precipitation exhibited relatively 
poor correlation with in-situ dataset in Central Highlands (R6), specifically in its northern part. This 
can probably be attributed to a combination of a typical bimodal South Asian summer monsoon 
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interacting with complex topography (Phan and Ngo-Duc, 2009; Tuan, 2019; Van Der Linden et al., 
2016). The MERRA-2 precipitation product itself observed many outlier values in the R6 region (see 
Appendix 3). Note that the R1, R2, and R5 regions also have high Gini-Simpson Indices but their 
monsoon circulation is not as complex as that of the R6 region (Nguyen and Nguyen, 2004). With 
respect to air temperature, a very good relationship between MERRA-2 and in-situ data was found, 
with a median R-value of 0.977. Among sub-regions, only the North Mekong Delta (North R8) 
exhibited a moderate relationship (median R-value of 0.75). 

 

Figure 3. 5 MK Statistics test of precipitation (upper) and air temperature (lower) during 1989-2018 in Vietnam 
in different spatial resolutions (1-, 9-, 36-km). 

The MAE values between precipitation and air temperature from MERRA-2 and these from in-situ 
data is given in Figure 3. 3b. The median MAE value of precipitation was 57.5 mm. High precipitation 
MAE values (>150 mm) were found at several stations in north R5 and in northwest R3 (Figure 3. 
3(b-1)). These high values can probably be attributed to the typical local rainfall problem. The stations 
in these areas are located at the base of mountains (i.e., Truong Son mountains and Tay Con Linh 
mountains), meaning they receive the highest rainfall amounts in Vietnam (3,500 - 4,300 mm annually) 



36 
 

due to orographic rainfall. With such typical very high rainfall observed, MERRA-2 often 
underestimates the rainfall during the rainy season. Previous studies also revealed large 
underestimation of satellite-based and re-analysis rainfall datasets in Central Vietnam where observed 
rainfall is extremely high (>3000 mm) (Le et al., 2020b). The median MAE values of MERRA-2’s air 
temperature was 1.14°C (Figure 3. 3(b-2)). Except for R6, MERRA-2 dataset generally underestimated 
air temperature over Vietnam (Table 3. 1). This underestimation is similar to the results from re-
analysis ERA-4.0 data (Phan and Ngo-Duc, 2009). It may be attributed to the lapse rate due to 
complex topography.  

 

Figure 3. 6 Sen’s slope of precipitation (upper) and air temperature (lower) during 1989-2018 in Vietnam in 
different spatial resolutions (1-, 9-, 36-km). 

We further assessed MERRA-2 datasets in terms of trend estimation at 31 stations that have both 
precipitation and air temperature datasets longer than 15 years. A comparison between MERRA-2 and 
observed precipitation trend is given in Figure 3. 4a. The estimated annual precipitation trend from 
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MERRA-2 exhibited a reasonable agreement with observed values, with a correlation coefficient of 
0.540 (p <0.01). The estimated annual air temperature from MERRA-2 demonstrated a slightly better 
relationship with observed air temperature (R-value = 0.600, p<0.001, Figure 3. 4b). The SPEI which 
were calculated from precipitation and air temperature at the same location, also exhibited a reasonable 
relationship between modelled and observed data (R-value 0.577, p<0.001, Figure 3. 4c).  

 

Figure 3. 7 Regionally averaged drought frequency estimated from SPEI in eight sub-regions of Vietnam in 
different spatial resolutions (1-, 9-, 36-km). Boxes represent the interquartile range, median, and outliers. The 
tops and bottoms of each box are the 10th and 90th percentiles of the data. The number on top of each box 
plot denotes sample sizes for each sub-region.  

In short, the above results demonstrate that MERRA-2 is adequate to investigate climate change and 
drought characteristics in Vietnam. Therefore, in the next sections, we will utilize the advantages of 
the MERRA-2 dataset in characterizing precipitation, air temperature, and drought trends over 30 
years in Vietnam.  
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3.5.2. Spatial-Temporal Assessment on Precipitation and Air Temperature 

Characteristics in Vietnam based on MERRA-2 Dataset 

Thirty-year trends in annual precipitation and air temperature are given in Figure 3. 5 and Figure 3. 6. 
Most of the northern parts of Vietnam (R1, R2, and R3) exhibited an increasing trend in precipitation. 
On the contrary, annual precipitation trends in the south of R6, R7, and R8 declined during the study 
period. The most significant decreasing trend of annual precipitation can be observed partially in R6, 
and the northern portion of R5 and a similar decreasing trend over these regions have also been 
observed during the winter season (Vu and Mishra, 2016). 

 

Figure 3. 8 Regionally averaged drought severity estimated from SPEI in eight sub-regions of Vietnam in 
different spatial resolutions (1-, 9-, 36-km). Boxes represent the interquartile range, median, and outliers. The 
tops and bottoms of each box are the 10th and 90th percentiles of the data. The number on top of each box 
plot denotes sample sizes for each sub-region. 

Overall, the total areas with significant increasing trends in precipitation were 25.7%, 25.7%, and 
26.5% in 1-, 9-, and 36-km resolutions, respectively. Significant decreasing trends in precipitation were 
also found in 11.4%, 11.8%, and 11.8% of the total area in 1-, 9-, and 36-km resolutions, respectively. 
Although different spatial resolutions of precipitation and air temperature MERRA-2 products 
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showed similar spatial patterns, the 1-km product provided more detailed spatial variation in trends 
compared to the other two. 

 

Figure 3. 9 MK Statistics of drought frequency (upper) and severity (lower) based on SPEI during 1989-2018 
in Vietnam in different spatial resolutions (1-, 9-, 36-km).  

In the past thirty years, the temperature in Vietnam went through a significant increase throughout 
the country, especially in the southern part (Figure 3. 5b, Figure 3. 6b). The highest increase rate was 
found in R6. The rapid increase of the temperature in southern Vietnam was also found in Nguyen et 
al. (2014). Our data show that 40.3%, 40.5%, and 40.2% of the total land area in Vietnam exhibited 
significant increasing trends based on 1-, 9-, and 36-km products, respectively. Again, the 1-km 
product could provide more variation details in temperature trends than the other two. 

3.5.3. Spatial-Temporal Assessment on Drought Characteristics in Vietnam based 

on MERRA-2 Datasets 

In this section, we assess drought characteristics and trends for the entire land in each sub-region of 
Vietnam. Figure 3. 7 and Figure 3. 8 show regionally averaged drought frequency and severity for 
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SPEI. Generally, regions with a higher frequency of drought show higher drought severity (in absolute 
values), inferring a possibly positive correlation between the two metrics of drought. The drought-
prone areas were found in the R5, R6, R7 and R8 regions. The drought problems in R5, R6, and R8 
were in line with observed records (Hoc, 2002; Ngo et al., 2020; Nguyen and Shaw, 2011). 
Interestingly, we detected high values in drought frequency and drought severity in R7. However, not 
many records of droughts were observed in this region by comparison with other regions. 

 

Figure 3. 10 Sen’s slopes of drought frequency (upper) and severity (lower) based on SPEI during 1989-2018 
in Vietnam in different spatial resolutions (1-, 9-, 36-km). 

The reason that drought is less noticeable in R7 may be that this region primarily cultivates cash crops 
(e.g., pepper, coffee, rubber, and cashew) which require less water supply and perform good drought 
resilience. Therefore, unfavorable climate conditions may not significantly affect the productivity of 
these crops. Note that R4 only ranked sixth of eight regions in terms of drought frequency and 
severity; it exhibited many outliers, possibly caused by large variations in rainfall and air temperature 
in this region (see Appendix 3). Overall, the three spatial resolutions provided similar drought 
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characteristics information; however, higher resolution datasets exhibited more spatial details in the 
variation of drought characteristics, demonstrating a higher number of outliers.  

 

Figure 3. 11 Comparison of Percentage Drought Area (PDA) estimated from simulated SPEI and observed 
records in different spatial resolutions (1-, 9-, 36-km) in R4 and R5. The gray dash line denotes a 1-1 line. The 
bold lines in red, green, and blue are the regression lines between PDA based on SPEI and PDA based on 
observed records. 

Trends of severity and frequency of droughts are presented in Figure 3. 9 and Figure 3. 10. Spatial 
patterns of these trends can roughly be characterized as having a north-south contrast, similar to the 
patterns found in the trends of precipitation and air temperature (Figure 3. 5 and Figure 3. 6). Both 
wetting in the northern region and drying in the southern region were found to be most significant 
based on SPEI. The increasing trend in drought frequency and severity in the southern part is more 
widespread, with the most significant areas (p <0.05) found in the northern and central part of R8, 
which might reflect the prevalent decreasing trend of precipitation and the increasing trend of air 
temperature in the same region.  

Table 3. 3 presents descriptive statistics of significant decreasing (increasing) trends in terms of 
drought frequency in different spatial resolutions during 1989-2018. The drought frequency exhibited 



42 
 

a significant reduction in R3 in 62.8%, 66.0%, and 60.0% of total land, based on 1-, 9-, and 36-km, 
respectively. On the contrary, significant increasing trends in drought frequency were found in the R5 
and R8 regions. According to 1-, 9, and 36-km products, drought frequency significantly increased to 
9.59%, 9.19%, and 10.69% of the total land in R5, respectively. These magnitudes for R8 regions were 
13.40%, 13.55%, and 17.39% of total land, respectively.  

Table 3. 3 Descriptive statistics of the Mann-Kendall test and Sen’s slope for drought frequency in different 
spatial resolutions (1-, 9-, and 36-km) in eight sub-regions. Significant trends occur when p-value < 0.05. 

Spatial 

Resolution 

Description R1 R2 R3 R4 R5 R6 R7 R8 

1-km 

n 43,964 43,622 12,071 43,598 36,293 45,503 18,998 31,688 

Sig. Decrease  
(% of total land) 

5.47 27.23 62.80 0.15 - - - - 

Sig. Increase  
(% of total land) 

0.22 - - 2.51 9.59 2.23 0.01 13.40 

Average Slope  
(%/year) 

-0.28 -0.80 -1.11 0.21 1.14 1.66 1.82 1.42 

9-km 

n 545 543 150 536 446 565 239 406 

Sig. Decrease  
(% of total land) 

6.06 28.55 66.00 0.19 - - - - 

Sig. Increase  
(% of total land) 

0.37 - - 2.61 9.19 1.95 0.00 13.55 

Average Slope  
(%/year) 

-0.27 -0.80 -1.12 0.21 1.15 1.69 1.82 1.41 

36-km 

n 36 33 10 30 29 36 14 23 

Sig. Decrease  
(% of total land) 

5.56 27.27 60.00 - - - - - 

Sig. Increase  
(% of total land) 

- - - 3.33 10.69 5.56 - 17.39 

Average Slope  
(%/year) 

-0.24 -0.78 -1.05 0.00 1.01 1.91 1.71 1.70 

Regarding drought severity (absolute values) during 1989-2018, descriptive statistics of significant 
decreasing (increasing) trends are given in Table 3. 4. A similar observation in drought severity 
compared to drought frequency, R3 exhibited the most decreasing trends in drought severity, while 
R5 and R8 experienced the most increasing trends. The proportion of land in decreasing (increasing) 
trends in drought severity were largely similar to these figures in drought frequency but averaged a 
difference of around 2%.  

3.5.4. Comparison between PDA Estimated from SPEI and Actual Agricultural 

Record PDA 

For each spatial resolution, when we compared PDA estimated from different land cover (PDA-E, 
PDA-AS, and PDA-AD), there was evidence that the PDA-AD exhibited better agreement with PDA 
from the data records Figure 3. 11 Comparison of Percentage Drought Area (PDA) estimated from 
simulated SPEI and observed records in different spatial resolutions (1-, 9-, 36-km) in R4 and R5. The 
gray dash line denotes a 1-1 line. The bold lines in red, green, and blue are the regression lines between 
PDA based on SPEI and PDA based on observed records.. First, the slopes from PDA-AD products 
were closer to the 1:1 line than these slopes from PDA-E and PDA-AS. Second, R-values between 
PDA-AD and PDA-observation were generally higher than R-values from others. Overall, a better 
estimation of percentage drought areas in agricultural lands based on SPEI was found at the higher-
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resolution dataset and in using dynamic land cover. Note that, using a constant land cover to estimate 
PDA also provided comparable results with using dynamic land cover. This validation has a limitation: 
we only examined PDA_AD in R4 and R5, which had no significant changes in agricultural land over 
the study period. However, they still provide the first identification of potential usefulness of using 
dynamic land cover (Figure 3. 11). 

Table 3. 4 Same as Table 3. 3 but for drought severity (absolute value). 

Spatial 

Resolution 

Description R1 R2 R3 R4 R5 R6 R7 R8 

1-km 

n 43,964 43,622 12,071 43,598 36,293 45,503 18,998 31,688 

Sig. Decrease  
(% of total land) 

5.36 29.46 61.94 0.61 - - - - 

Sig. Increase  
(% of total land) 

0.00 - - 2.77 9.00 1.40 0.27 16.13 

Average Slope  
(%/year) 

-0.07 -0.15 -0.21 0.06 0.22 0.30 0.35 0.27 

9-km 

n 545 543 150 536 446 565 239 406 

Sig. Decrease  
(% of total land) 

5.50 29.28 65.33 0.75 - - - - 

Sig. Increase  
(% of total land) 

0.00 - - 2.99 8.74 1.59 0.84 16.26 

Average Slope  
(%/year) 

-0.07 -0.15 -0.21 0.06 0.23 0.31 0.35 0.27 

36-km 

n 36 33 10 30 29 36 14 23 

Sig. Decrease  
(% of total land) 

2.78 27.27 60.00 3.33 - - - - 

Sig. Increase  
(% of total land) 

- - - 3.33 10.34 2.78 - 21.74 

Average Slope  
(%/year) 

-0.06 -0.15 -0.21 0.03 0.21 0.34 0.30 0.30 

3.5.5. Assessing Spatio-Temporal Dynamics Drought from High-Resolution Data 

Sets 

It is important to understand total agricultural land in drought in each month for the past 30 years 
1989-2018. In the previous section, 1-km PDA-AD exhibited the best overall among others in terms 
of estimation of PDA in agricultural land in the R4 and R5 region. Therefore, we used this product to 
explore the historical agricultural lands in drought conditions over Vietnam during 1989-2018 (Figure 
3. 12 and Figure 3. 13). Generally, droughts in agricultural land throughout sub-regions occurred every 
1-2 years, which is in agreement with the conclusions of Hoc (2002). After 2010, the PDA was found 
less severe in north Vietnam (R1-3), but more severe in south Vietnam (R7-8). During extreme El 
Niño conditions (1998, 2002, 2005, 2010, and 2014-16), drought nearly occurred in all sub-regions, 
with PDA up to 100% in many months. It was also found that extreme drought conditions (high PDA 
in consecutive months) during El Niño years were more pronounced in sub-regions from R5 toward 
the south, reflecting the fact that these sub-regions are more sensitive to El Niño conditions. This 
finding is in agreement with previous studies (Le et al., 2019b). During 1989-2018, agricultural land in 
Northern Vietnam went through the long-lasting drought in 1989-1991. In R2 and R3 regions, nearly 
100% of agricultural lands were in drought condition during May to December 1989 and May to 
December 1990. Note that the drought of 1989-1992 may not be directly linked to the El Niño event 
since the most recent El Niño condition during that time was 1987-1988 and was followed by a La 
Niña event from 1988-1989. Generally, El Niño conditions cause less rainfall and increased 
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temperatures for Vietnam, while La Niña conditions bring more rainfall. Nguyen and Shaw (2011) 
also reported droughts in R2, R3 and R5 over the course of 1989-1991. 

 

Figure 3. 12 Percentage drought area for agricultural land using dynamic land cover (PDA-AD) estimated from 
1-km spatial resolution in R1, R2, R3, and R4 sub-region based on SPEI during 1989-2018. Gray color denotes 
no drought condition. 

In Southern Vietnam, during the 30-year study period, the 2014-16 drought caused the worst 
conditions in agricultural regions in R6, R7, and R8. During summer – autumn – winter period (May-
November) of 2014 and 2015, the PDA-AD were estimated at around 80-100% in R6. This situation 
is even worse for R7 and R8. Extreme drought conditions (PDA > 80%) were found in July – August 
2013 for these both regions. Agricultural lands in drought conditions were continuously found from 
May to December (2014); May-December (2015), and January – April (2016). From 1-km PDA-AD, 
the end of 2014-16 historical drought seems to be at the end of April 2016 (lower PDA observed after 
that month). This is similar to the actual record as the reports in the losses due to drought for R6 and 
R8 were also estimated up to April 2016 (Ngo et al., 2020). Up to that month, total land losses due to 
2014-16 drought and saline intrusion in R5, R6, and R8 were 242,215 ha paddy rice, 55,651 ha fruit 
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trees, 104,106 ha perennial cash crops, and 4,641 ha aquaculture. More than 400,000 households 
(equivalent to 1.5 million people) were limited access to drinking water (Ngo et al., 2020). 

 

Figure 3. 13 Percentage drought area for agricultural land using dynamic land cover (PDA-AD) estimated from 
1-km spatial resolution in R5, R6, R7, and R8 sub-region based on SPEI during 1989-2018. Gray color denotes 
no drought condition. 

3.5.6. Limitations and Further Studies 

Although the MERRA-2 dataset exhibited an overall reasonable relationship with ground observation, 
it somehow overestimates or underestimates dryness and wetness, as well as often underestimates 
precipitation and air temperature in Vietnam. Therefore, trend analysis in high error areas should be 
judged carefully (for example, northern R6 and northern R5). Regarding the validation of PDA from 
agricultural land, this study could only obtain drought records data in R4 and R5, thus limiting a 
comprehensive assessment of PDA estimated from SPEI and actual agricultural record PDA for the 
entire study region.  

This study mainly explores drought conditions from a meteorological perspective, which is a 
combination between precipitation and potential evapotranspiration (i.e. calculated from air 
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temperature). Future study could work on a combination of multi-drought impact factors – actual 
evapotranspiration, runoff, soil moisture, and soil temperature. For such poorly gauged conditions, 
land surface models could be a potential approach to obtain these hydrological variables listed above.  

In this study, we focused on investigating the applicability of finer resolution disaggregated reanalysis 
data in drought analysis. It is worth noting that the original spatial resolution of MERRA-2 data is 
about 50-km, but we intentionally included only 36-km SPI results in this study because we plan a 
future comparison of the present research with satellite-based drought indices. Drought indices 
employing soil moisture data obtained from Soil Moisture Active Passive (SMAP) data will be 36-km 
because SMAP’s original spatial resolution is 36-km (Entekhabi et al., 2010). In the planned future 
study, the results shown here will be compared with drought indices from satellite-based soil moisture 
data. 

3.6. Conclusions 

In this study, we investigated the ability of a high-resolution re-analysis dataset and dynamic land cover 
to capture drought conditions over data-sparse areas in Vietnam. The 3-month SPEI was calculated 
to assess drought trends and its spatio-temporal characteristics using three different spatial resolution 
datasets from the MERRA-2 datasets on a monthly time scale from 1989 to 2018. 

By comparing with in-situ measurements, MERRA-2 exhibited an overall good relationship with these 
measurements (median R-value and MAE for precipitation: 0.809 and 57.5 mm, respectively; median 
R-value and MAE for air temperature: 0.977, and 1.14 °C, respectively). It suggests the adequacy of 
MERRA-2 for studies in Vietnam for drought analysis. 

Regarding trend analysis, along with the observed significant trends in precipitation and air 
temperature, SPEI showed increasing (decreasing) trends in drought severity and frequency in the 
southern (northern) part of Vietnam. The significant increasing trends of these drought characteristics 
were found mostly in R5 and R8. The high spatial resolutions of MERRA-2 used in this study allowed 
us to identify the contrast in drought trends between the northern (wetting/decreasing) and southern 
(drying/increasing) parts of Vietnam, which are generally shown in coarser climate model simulations. 

We designed an experiment which compared the percentage drought area (PDA) estimated based on 
different land use data sets with PDA from observed records. Overall, the results support the 
hypothesis that (1) Higher spatial resolution of drought indices, help to accurately characterize and 
monitor drought events, and (2) PDA using dynamic land cover scenarios results in better agreement 
with the observed records. 

Over the 30-year study period, southern Vietnam underwent unfavorable climate conditions, 
exhibiting a reduction in rainfall and an increase in temperature which consequently increased the risk 
of drought frequency and severity. In this region of Vietnam, the 2014-16 drought seems to have 
produced the worst conditions in terms of temporal duration and spatial extent. 

With the advent of higher spatial resolution data sets, specifically for soil moisture (Fang et al., 2018b; 
Kim and Lakshmi, 2018; Narayan and Lakshmi, 2008) add information to ecohydrology (Billah et al., 
2015; Hong et al., 2007; Lakshmi et al., 2011) and help to understand the connectivity between 
hydrology, meteorology and ecology. 
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In conclusion, this study emphasizes the feasibility of drought analysis using re-analysis datasets in 
areas where observations are scarce. As we currently have a wide range of re-analysis datasets produced 
by different institutions, we expect more accurate global-scale drought monitoring with high-
resolution model datasets to become possible in future studies. 
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Chapter 4: Adequacy of Satellite-derived 

Precipitation Estimate for Hydrological modelling 

in Vietnam Basins3 

4.1. Introduction 

The major uncertainties in hydrological modelling are associated with incorrect precipitation patterns 
over space (Sangati and Borga, 2009). Several studies indicated that a better representation of the 
spatial variability in precipitation could improve model performances (Emmanuel et al., 2012; 
Lobligeois et al., 2014; Zhao et al., 2013). Rain gauge-, radar-, and satellite-based products are popular 
methods to estimate precipitation across the globe. Rain gauges are the primary approach to obtain 
precipitation information, as they measure rainfall by directly on the ground and thus do not need 
transformation into any type of signal, nor need to be corrected (Kidd, 2001). However, rain gauge 
networks are often sparse, with irregular spatial coverage. In many parts of the world, they are non-
existent (Mondal et al., 2018; Rana et al., 2015). Moreover, it is often challenging to obtain rain gauge 
data, especially in developing countries and transboundary river basins, for technical and 
administrative reasons (Gerlak et al., 2011; Plengsaeng et al., 2014).  

Ground-based radar systems are useful and provide data with high temporal and spatial resolution. 
However, radar systems frequently have a limited spatial range (Michaelides et al., 2009), and are thus 
most useful for rapid events, typically in urban hydrology (Thorndahl et al., 2017). In addition, radar 
sensors are often not feasible in developing countries, due to high installment costs and complex 
maintenance demands. In an effort to cover large areas over long periods, regionally and globally, 
Satellite-derived Precipitation Estimate (SPE) products emerge as promising approaches to reflect the 
spatial pattern and temporal variability of rainfall. Several gridded SPE products have been developed 
over the last few decades, including PERSIANN (Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks) (Sorooshian et al., 2000); CMORPH (Climate 
Prediction Center(CPC) MORPHing technique) (Joyce et al., 2004); GSMaP (Global Satellite Mapping 
of Precipitation) (Ushio et al., 2009); TMPA (TRMM Multi-satellite Precipitation Analysis) (Huffman 
et al., 2007); and GPM (Global Precipitation Mission) (Hou et al., 2014). Moreover, several promising 
datasets incorporating gauge, satellite, and re-analysis observations, such as CHIRPS (Climate Hazards 
group InfraRed Precipitation with Station data) (Funk et al., 2015), and MSWEP (Multi-Source 
Weighted-Ensemble Precipitation) (Beck et al., 2017a), have also been released. 

Many studies have shown that gauge-based hydrological models outperform SPE-based models, in 
terms of streamflow simulation (Duan et al., 2018; Li et al., 2018a; Nguyen et al., 2018). However, 
SPE-driven hydrological simulations exhibit better performance in simulating streamflow than rain 
gauge-driven hydrological simulations, for example, in the Luanhe River (Ren et al., 2018), and Lower 
Mekong River basins (Luo et al., 2019; Mohammed et al., 2018). This is likely associated with the low 
density of rain gauges and poor-quality of ground rainfall data. For example, a low rain gauge density 
was observed at the Upper Yangtze River Basin of China, where stations were located approximately 

 
3 This chapter has been published as Le, M. H., Lakshmi, V., Bolten, J., & Bui, D. D. (2020). Adequacy of Satellite-
derived Precipitation Estimate for Hydrological modeling in Vietnam Basins. Journal of Hydrology, 124820. 
https://doi.org/10.1016/j.jhydrol.2020.124820. 
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every 30,000 km2 (Liu et al., 2017). Also, Le and Pricope (2017) reported the case of the Nzioa Basin, 
Western Kenya, where rain gauge data was missing (30%-65% records). Interpolating that data 
resulted in a poorer performance than that of the Climate Forecast System Reanalysis (Saha et al., 
2010) and the CHIRPS (Funk et al., 2015) datasets, in terms of streamflow simulation. Wang et al. 
(2016) indicated that satellite-based rainfall could be more suitable for driving distributed hydrologic 
models, particularly in basins with poor rain gauge conditions. The superiority of remote sensing in 
deriving precipitation products has become more pronounced as advanced algorithms have been 
developed. For example, the TMPA 3B42V7 has proven to be better, compared to its previous version 
TMPA 3B42V6 (Zhang et al., 2019). The increased spatial and temporal resolution of GPM IMERG 
follow the successes of TMPA (Hou et al., 2014), with an increase from 0.25° and 3 hours to 0.1° and 
half hour. Furthermore, a fine spatial scale of CHIRPS (0.05°, ~ 5 km) has been developed (Funk et 
al., 2015). These developments enable SPE to better characterize the spatial and temporal variability 
of precipitation. 

 

Figure 4. 1 Digital Elevation Model (DEM) and the distribution of hydrometeorological stations, at six basins, 
used in this study. S1 North West (XL basin of Ma River); S2 North East (LS basin of Kycung River); S3 North 
Delta (HT basin of Boi River); S4 North Central (NK basin of Hieu River); S5 South Central (AC basin of Ve 
River); and S6 Central Highland (GS basin of Krong Ana River).  

Each of the SPE products contains various versions, often divided into two groups: gauge-adjusted 
(gauge-corrected SPE) and gauge-unadjusted (gauge-uncorrected SPE). Gauged-corrected SPE 
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datasets use measured rain gauges or re-analysis data to adjust precipitation estimates at the locations 
of the gauges. Correction factors used at those rain gauge locations are then applied to the entire 
dataset, leading to a decrease or increase in rainfall estimates, so that the dataset fits the directly 
measured, more precise rain gauge data (Beck et al., 2018). However, the gauge networks used for 
corrections (e.g., GPCC-Global Precipitation Climatology Centre, CPC-Climate Prediction Center) 
were sparse in many areas, typical in developing countries. Therefore, rigorous comparisons between 
gauge-corrected SPE products and uncorrected SPE products should be performed, specifically in 
regions where few gauges are used for creating the adjusted SPE. 

In this study, six SPE products were evaluated, including the gauge-corrected SPE products (i.e., GPM 
IMERGF-V6, TMPA 3B42V7, and CHIRPS V2.0) and the uncorrected SPE products (i.e., GPM 
IMERGE-V6, TMPA 3B42RT, and CHIRP V2.0), on various climate regions of Vietnam. A 
hydrological model assessment of the SPE was performed, using the SWAT (Soil Water Assessment 
Tool) hydrological model. This model has demonstrated strong capabilities in hydrologic assessment 
throughout Vietnam, in many studies (Ha et al., 2018; Vu et al., 2012; Vu et al., 2017). The primary 
goal of this study is to obtain insight into the performances between gauge-corrected and uncorrected 
SPE products in: 1) comparisons to the rain gauge data; and 2) simulations of the monthly stream 
flow. In this paper, Section 2 introduces the case study. Section 3 presents material and methods. 
Section 4 presents the results and discussions, and the conclusions are presented in Section 5.  

4.2. Watersheds 

In this study, six basins with areas ranging from 684 km2 to 6042 km2 were selected (Figure 4. 1), based 
on the following criteria. Firstly, headwater basins were selected, to reduce the impact of human 
activities on the flow regime. Secondly, each basin is located entirely within a single climatological 
region of Vietnam; it allows to thoroughly examine the performance of SPE datasets over Vietnam. 
These sub-climatological regions include North West (S1); North East (S2); North Delta (S3); North 
Central (S4); South Central (S5); and Central Highland (S6). These regions were classified based on 
the duration of the rainy season; the three heaviest rainfall months; differences in solar radiation; and 
temperature (Nguyen and Nguyen, 2004), and are widely accepted by the climatological community 
(Nguyen-Xuan et al., 2016; Phan and Ngo-Duc, 2009; Trinh-Tuan et al., 2019b). Annual precipitation 
across basins ranges from 1400-3800 mm. There is a seasonal variability in precipitation in each basin, 
with 70%-85% total rainfall during May-August (MJJA) or September-December (SOND). For 
example, in the rainy season, MJJA in the S1 region is highly influenced by the summer monsoon, 
whereas the S4 region is dominated by the winter monsoon (Nguyen-Le et al., 2015). The average 
elevations of selected basins are also diverse, ranging from 3 m to more than 2000 m above mean sea 
level.  

4.3. Data and Methods 

The chosen approach contains two steps: 1) an inter-comparison of SPE products with in-situ rain 
gauge data; and 2) an evaluation of a hydrological model for monthly streamflow simulation, driven 
by rain gauge precipitation measurements and SPE products. Below, we describe the data and 
methodology used for these two steps. 

4.3.1. Ground hydro-meteorological data 

The hydro-meteorological data used in this study were obtained from the Vietnam Meteorological and 
Hydrological Administration (VMHA) (http://kttvqg.gov.vn/) and National Central for Water 

http://kttvqg.gov.vn/
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Resources Planning and Investigation (NAWAPI) (http://nawapi.gov.vn/). The data were recorded 
and have undergone quality control at regional meteorological and hydrological services before the 
post-processed version was delivered to the VMHA. This process depends on region and data types, 
which are varied from several days to several months (personal communication).  

 

Figure 4. 2 The observed monthly average runoff and different precipitation datasets (rain gauge; 3B42RT; 
IMERGE-V6; CHIRP; 3B42V7; IMERGF-V6; and CHIRPS), at the river outlets of a) XL, b) LS, c) HT, d) 
NK, e) AC, and f) GS basins. 

The daily 2002-2017 runoff data at six hydrological stations were collected corresponding to different 
climatological regions (Xala (XL) of Ma River; Langson (LS) of Kycung River; Hungthi (HT) of Boi 
River; Nghiakhanh (NK) of Hieu River; Anchi (AC) of Ve River; and Giangson (GS) of Krong Ana 
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River). The data quality of the streamflow was checked and assured with no gaps, during the given 
study period. Averaged monthly streamflow at different climate zones in Vietnam exhibits high 
variability in both time and space (Figure 4. 2). Examining Figure 4. 2 as we move from the northern 
part of Vietnam to the south, that is, from climate zone S1 to S6, we observe that the peak of the 
monthly runoff shifts from August (zones S1 and S2) to September (zones S3 and S4) to November 
(zones S5 and S6). We also observe that the AC (Ve River) basin of zone S5 has the largest runoff (by 
a factor of two as compared to the other river basins).  

We collected daily 2000-2017 precipitation data from 31 rain gauge stations across six basins (see 
Appendix 4). There are several rain gauges in each of these basins, and their number ranges from three 
to seven. The average missing values across all rain gauges were approximately 1.0%. The long-term 
mean values were used to substitute for the missing data. The rain gauge data were tested for 
homogeneity, using the double mass curve to exclude systematic errors over time in the datasets. 
Annual rainfall at each station was compared with the average annual rainfall of surrounding stations 
to detect inconsistencies. The results indicated no significant difference between the two curves at all 
rain gauge stations, ensuring consistency through recorded precipitation.  

Besides, at each basin, one to three air temperature datasets (minimum and maximum variables) were 
collected at meteorological stations, with the same duration as that of precipitation measured by the 
rain gauges. Since air temperature is less varied than precipitation, a small number of air temperature 
stations are adequate to represent temperature profiles throughout the basins.  

In conclusion, the data from rain gauges used in this study serve two purposes: 1) as a benchmark to 
compare with the SPE datasets; and 2) together with air temperature data, as inputs to the SWAT 
hydrological model for the simulations of streamflow. 

4.3.2. Satellite Precipitation Estimation (SPE) products 

4.3.2.1. TMPA precipitation datasets 

The Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), 
launched in late 1997, is a collaboration between the National Aeronautics and Space Administration 
(NASA) and the Japan Aerospace Exploration Agency (JAXA). It is the first space mission to measure 
rainfall in tropical regions. The TRMM is a low-Earth orbit satellite, equipped with Precipitation Radar 
(PR); TRMM Microwave Imager (TMI); Visible and Infrared Scanner (VIRS); and Lighting Imaging 
Sensor (LIS) (Huffman et al., 2007). The two TMPA products used in this study are the near real-time 
version TMPA 3B42RT (hereafter 3B42RT); and an adjusted version, using monthly gauge 
precipitation, TMPA 3B42V7 (hereafter 3B42V7) (Huffman and Bolvin, 2013; Huffman et al., 2007). 
The three hours 0.25° grid TMPA products were accessed from NASA’s Goddard Space Flight Center 
website (https://pmm.nasa.gov/data-access/downloads/trmm), then accumulated to a daily time 
step.  

4.3.2.2. GPM IMERG precipitation datasets 

The Global Precipitation Measurement (GPM) mission was developed as a continuation and 
improvement of the TRMM mission. The Integrated Multi-satellitE Retrievals for GPM (IMERG) 
product, is the Level 3 multi-satellite precipitation algorithm of GPM, which combines all of the 
microwave sensors in the constellation, and Infrared-based observations from geosynchronous 
satellites (Hou et al., 2014). The two latest products of GPM IMERG used in this study are GPM 
IMERG Early Run Version 6 (hereafter IMERGE-V6) and IMERG Final Run Version 6 (hereafter 

https://pmm.nasa.gov/data-access/downloads/trmm
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IMERGF-V6). The half-hour 0.1° gridded GPM IMERG products were accessed from NASA’s 
Goddard Space Flight Center website (https://pmm.nasa.gov/data-access/downloads/gpm), then 
accumulated to a daily time step. 

Table 4. 1 Summary of Satellite Precipitation Estimation datasets used in this study, with spatial-temporal 
characteristics and used period. 

Product Name 
Spatial 

coverage 

Spatial 

resolution 

Temporal 

coverage 

Finest 

Temporal  

resolution 

Latency Reference 

TMPA 3B42RT 50°N – 50°S 0.25°  2000 – present Every three 

hours 

Hours Huffman et al. (2007) 

GPM IMERGE-

V6 

65°N – 65°S 0.1° 2000 - present Every half hour Hours Hou et al. (2014) 

CHIRP V2.0 50°N – 50°S 0.05° 1981 - present Daily Days Funk et al, 2015 

PERSIANN 60°N – 60°S 0.25° 2000 - present Hourly Days Sorooshian et al, 2000 

TMPA 3B42V7 50°N – 50°S 0.25° 1998 – present Every three 

hours 

Months Huffman and Bolvin, 

2013 GPM IMERGF-

V6 

65°N – 65°S 0.1° 2000 - present Every half hour Months Hou et al., 2014 

CHIRPS V2.0 50°N – 50°S 0.05° 1981 - present Daily Days Funk et al, 2015 

PERSIANN CDR 60°N – 60°S 0.25° 1983 - present Daily Months Ashouri et al, 2015 

4.3.2.3. CHIRPS precipitation datasets 

University of California-Santa Barbara’s Climate Hazards Group developed the Climate Hazards 
group Infrared Precipitation (CHIRP), and the Climate Hazards group Infrared Precipitation with 
Stations (CHIRPS) datasets, which each provides a more than 30 years quasi-global rainfall dataset. 
These products aim to support the United States Agency for International Development Famine Early 
Warning System Network (FEWS NET). The CHIRP dataset estimates rainfall from infrared cold 
cloud duration (CCD) regression, calibrated by 2000-2013 TMPA pentadal precipitation product 
(Funk et al., 2015). The gauge-corrected grid CHIRPS dataset uses rain gauge station observations 
from various datasets, mainly in the USA, Central America, South America, and sub-Saharan Africa 
(Funk et al., 2015). This study obtained the daily 0.05° grid CHIRP V2.0 (hereafter CHIRP) and 
CHIRPS V2.0 (hereafter CHIRPS) datasets from the Climate Hazards Group website 
(http://chg.geog.ucsb.edu/data/chirps/). 

4.3.2.4. PERSIANN precipitation datasets 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks 
(PERSIANN) is developed at the Center for Hydrometeorology and Remote Sensing (CHRS) at the 
University of California, Irvine. This product uses artificial neural networks (ANNs) to estimate 
rainfall rates from cloud-top temperature, measured by long wave infrared imagery at a spatial 
resolution of 0.25° (Sorooshian et al., 2000). The Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) is 
PERSIANN’s adjusted version using Global Precipitation Climatology Project (GPCP) monthly 
product version 2.2. PERSIANN-CDR has a long-term data set with more than 30 years of data from 
1983 to the near present. However, this dataset degrades the temporal resolution to daily scale 
(Ashouri et al., 2015; Nguyen et al., 2019). This study acquired the daily 0.25° gridded PERSIANN 
and PERSIANN-CDR datasets from CHRS portal website (https://chrsdata.eng.uci.edu/). 

A summary of SPE is listed in Table 4. 1, and monthly rainfall distributions of SPE at each basin are 
presented in Figure 4. 2. The rainfall for the AC (Ve River) basin of Zone S5 is nearly two to three 

https://pmm.nasa.gov/data-access/downloads/gpm
https://chrsdata.eng.uci.edu/
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times of the other five river basins. This is reflected in the monthly runoff, which is twice as large in 
the AC (Ve River) basin, compared to the other five basins.  

Table 4. 2 Performance metrics for precipitation comparison and hydrological model assessment. 

 Statistic Equation 
Optimal 

Value 
Performance Evaluation 

Criteria 

Precipitation 
Performance 

Metrics 

𝑃𝑂𝐷 
𝑁11

𝑁11 + 𝑁01
 1  

𝐹𝐴𝑅 
𝑁10

𝑁11 + 𝑁10
 0  

𝐶𝑆𝐼 
𝑁11

𝑁11 + 𝑁01 + 𝑁10
 1  

𝐶𝐶 

∑ (𝑅𝐺𝑖 − 𝑅𝐺̅̅ ̅̅ )(𝑆𝑃𝐸𝑖 − 𝑆𝑃𝐸̅̅ ̅̅ ̅̅ )𝑁
𝑖=1

√∑ (𝑅𝐺𝑖 − 𝑅𝐺̅̅ ̅̅ )2𝑁
𝑖=1 ∑ (𝑆𝑃𝐸𝑖 − 𝑆𝑃𝐸̅̅ ̅̅ ̅̅ )2𝑁

𝑖=1

 
1  

𝑅𝐵 
𝑚𝑒𝑎𝑛(𝑆𝑃𝐸)

𝑚𝑒𝑎𝑛(𝑅𝐺)
− 1 0  

𝑅𝑀𝑆𝐸 √
1

𝑁
∑(𝑆𝑃𝐸𝑖 − 𝑅𝐺𝑖)2

𝑁

𝑖=1

 0  

Streamflow 
Performance 

Metrics 

𝑁𝑆𝐸 1 −  
∑ (𝑂𝐵𝑆𝑖 − 𝑆𝐼𝑀𝑖)𝑁

𝑖=1

∑ (𝑂𝐵𝑆𝑖 − 𝑂𝐵𝑆̅̅ ̅̅ ̅̅ )2𝑁
𝑖=1

 1 

VG:           𝑁𝑆𝐸 ≥ 0.80 

G: 0.70 ≤ 𝑁𝑆𝐸 < 0.80 

S: 0.50 ≤ 𝑁𝑆𝐸 < 0.70 

NS:            𝑁𝑆𝐸 < 0.50 

𝑃𝐵𝐼𝐴𝑆 1 −  
∑ (𝑂𝐵𝑆𝑖 − 𝑆𝐼𝑀𝑖)𝑁

𝑖=1

∑ 𝑂𝐵𝑆𝑖
𝑁
𝑖=1

 0 

VG:          𝑃𝐵𝐼𝐴𝑆 ≤ ±5 

G: ±5 <  𝑃𝐵𝐼𝐴𝑆 ≤ ±10 

S: ±10 < 𝑃𝐵𝐼𝐴𝑆 ≤ ±15 

NS:           𝑃𝐵𝐼𝐴𝑆 > ±15 

Note: 𝑁11 represents the precipitation observed by the rain gauge and satellite simultaneously. 𝑁10 represents the precipitation observed by the 

satellite, but not observed by the rain gauge. 𝑁01 is contrary to 𝑁10. 𝑂𝐵𝑆𝑖 is observed streamflow (m3/s) at the ith day or month, 𝑆𝐼𝑀𝑖 is 

simulated streamflow (m3/s) at the ith day or month. 𝑂𝐵𝑆̅̅ ̅̅ ̅̅  and 𝑆𝐼𝑀̅̅ ̅̅ ̅ are average observed streamflow and average simulated streamflow, 
respectively. “VG” Very Good, “G” Good, “S” Satisfactory, “NS” Not Satisfactory. 

4.3.3. SWAT Model and Setup  

SWAT (Soil and Water Assessment Tool) is a physically based, semi-distributed, eco-hydrological 
model that operates at various time-steps (i.e., daily, monthly, yearly) to simulate the streamflow, 
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sediment, and water quality of large complex river basins (Arnold et al., 1998). In the SWAT model, 
the smallest spatial unit is the Hydrologic Response Unit (HRU). Runoff is supposed to be predicted 
separately for each HRU, then routed to estimate the runoff for each sub-basin, as well as that of the 
entire basin. A detailed description of the SWAT model can be found in Neitsch et al. (2011).  

 

Figure 4. 3 Box plot of rainfall performance metrics a) POD, b) FAR, and c) CSI for six river basins. The red 
dash line indicates the optimal value. 

Determining HRUs requires data on elevation, land use, and soil properties. The 30 m Shuttle Radar 
Topographic Mission Digital Elevation Model (SRTM DEM), was used to estimate slope and delineate 
the basin boundary; it was obtained from United States Geological Survey (USGS) Earth Explorer 
(https://earthexplorer.usgs.gov/). The basin boundaries delineated by SRTM DEM were validated, 
using a reference from the Vietnamese national basin database. The average error between areas 
delineated from the SRTM DEM and those from the database was 3%, indicating reliable basin 
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boundaries from the SRTM DEM. The 30 m spatial resolution land-use map representing the year 
2010, was obtained from the land use portal for Lower Mekong Basin, which was maintained by 
SERVIR-Mekong (https://rlcms-servir.adpc.net/en/landcover/). A soil map developed by the 
Vietnam National Institute for Soil and Fertilizers, at 1:1,000,000 scale (National Institute for Soils 
and Fertilizers, 2002), was used in this study, resampled from polygons to a 30 m raster file. To prepare 
associated information of soil properties required in SWAT, a soil database using soil water 
characteristics equations, following the work of Saxton and Rawls (2006), was created. 

Table 4. 3 Median values of the performance metrics of six Satellite-derived Precipitation Estimation, based on 
daily rain gauge, during 2002 - 2017. For all the metrics, except for FAR and RMSE, larger values represent the 
better performance of SPE products. Values in bold represent the best score for each metric. 

  3B42RT 
IMERGE

_V6 
CHIRP 

PERSIAN
N 

3B42V7 
IMERGF

_V6 
CHIRPS 

PERSIANN
_CDR 

POD Dry 0.391 0.519 0.732 0.347 0.437 0.515 0.465 0.481 

 Wet 0.722 0.835 0.949 0.680 0.778 0.846 0.725 0.843 

 All 0.572 0.699 0.878 0.558 0.693 0.718 0.624 0.717 

FAR Dry 0.527 0.500 0.694 0.558 0.507 0.467 0.554 0.633 

 Wet 0.380 0.352 0.480 0.400 0.354 0.344 0.362 0.431 

 All 0.411 0.403 0.546 0.427 0.400 0.391 0.410 0.490 

CSI Dry 0.237 0.311 0.267 0.223 0.255 0.322 0.261 0.237 

 Wet 0.491 0.563 0.503 0.468 0.498 0.565 0.470 0.513 

 All 0.399 0.497 0.423 0.386 0.430 0.505 0.398 0.427 

CC Dry 0.315 0.497 0.302 0.245 0.430 0.550 0.341 0.302 

 Wet 0.317 0.610 0.316 0.257 0.420 0.635 0.364 0.351 

 All 0.358 0.605 0.362 0.296 0.472 0.651 0.394 0.389 

RB Dry -0.02 0.06 -0.09 -0.41 -0.08 -0.04 -0.02 0.07 

 Wet 0.18 -0.04 -0.01 0.01 0.07 0.05 0.00 0.17 

 All 0.17 -0.03 0.00 -0.03 0.07 0.05 0.00 0.20 

RMSE Dry 9.20 6.60 6.30 7.30 6.80 6.10 6.30 7.50 

 Wet 21.6 15.4 17.2 18.7 20.1 16.2 16.7 18.3 

 All 16.5 12.4 13.2 15.0 15.4 12.0 13.0 14.4 

Statistical descriptions of elevation, land use, and soil used for the SWAT input, are described in 
Appendix 5. Generally, evergreen forests, mixed forests, and orchards dominate land use, while 
Acrisols (ACf, ACu), Ferralsols (FRr), and Fluvisols (FLd) are the dominant soil types across basins. 
In this study, the watershed networks, sub-basins, and HRUs were generated by the QSWAT version 
1.7 plug-in in Quantum Geographical Information System (QGIS) version 2.6.1 (Dile et al., 2016). 
Several advantages of these software systems have been observed, compared to the commonly used 
Arc SWAT plug-in on the ArcGIS software (Mohammed et al., 2018; Tuo et al., 2016). The advantages 
are that QSWAT and QGIS are open source software, and QSWAT has additional features such as 
merging small sub-basins and static, and dynamically visualizing the outputs.  

A contributing area over a threshold of 25 km2 was applied for all basins, resulting in ranges from 15 
(HT) to 145 (XL) sub-basins. To create HRUs, the method of the filter by land use, soil, and slope 
was used, with a threshold of 10% percent of sub-basins chosen for each feature (see Appendix 5). 
Because solar radiation is not well-observed, we used the simple Hargreaves method (Hargreaves and 
Samani, 1982), which requires only air temperature data to calculate potential evapotranspiration. To 
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simulate surface runoff processes, the SCS curve number (USDA Soil Conservation Service, 1972) 
and Variable Storage Routing method (Williams, 1969), were used. By changing precipitation input 
datasets, including rain gauges; 3B42RT; IMERGE-V6; CHIRP; 3B42V7; IMERGF-V6; and CHIRPS 
for the SWAT model, seven simulation scenarios were established for each basin to investigate the 
effects of different rainfall inputs on monthly streamflow simulation. 

 

Figure 4. 4 Box plot of rainfall performance metrics a) CC, b) RB, and c) RMSE for six river basins. The red 
dash line indicates the optimal value. 

This study ran the SWAT model on both daily and monthly time scale, selecting the first two years 
(2000-2001) as the warm-up period; the next eight years (2002-2009) as the calibration period; and the 
last eight years (2010-2017) as the validation period. The calibration procedure was performed 
separately for each precipitation dataset. The automatic calibration was performed for streamflow 
simulation based on the Sequential Uncertainty Fitting algorithm version 2 (SUFI-2) (Abbaspour et 
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al., 2007), using the SWAT-CUP tool (Abbaspour et al., 2015). Fifteen sensitive parameters were 
identified and set up for the same initial range for all scenarios (see Appendix 6). For each scenario, a 
total of 1000 simulations were generated for the calibration process, using the Nash-Sutcliffe 
Efficiency (NSE, Nash and Sutcliffe (1970)) as the objective function.  

4.3.4. Performance metrics  

To compare SPE datasets and ground observations, we considered the following three performance 
metrics in terms of rainfall detection: 1) Probability of Detection (POD); 2) False Alarm Ratio (FAR); 
and 3) Critical Success Index (CSI). To evaluate the SPE datasets in terms of temporal dynamics, we 
considered the following three performance metrics: 1) Correlation Coefficient (CC); 2) Relative Bias 
(RB); and 3) Root Mean Square Error (RMSE). To evaluate hydrological model performance, we 
considered performance metrics, including Nash-Sutcliffe Efficiency (NSE) and Percentage Bias 
(PBIAS) (Moriasi et al., 2015). The POD provides the ratio of the total precipitation events, which 
SPE products detect among the actual precipitation events. The FAR evaluates the fraction of false 
rainfall events, detected by SPE products from the total rainfall events. The CSI, which is a function 
of POD and FAR, is the most balanced and accurate detection metric. The rainfall day threshold in 
this study was set as 0.6 mm.day-1 (NCHMF, 2000). The CC is a score of the similarity between the 
SPE products and ground observations, while the RB and RMSE demonstrate the bias and error of 
satellite estimates. The NSE indicates how well the observed streamflow and the simulated streamflow 
fits the 1:1 line. The PBIAS measures the average tendency of the simulated streamflow to be larger 
or smaller than its observed counterpart. The formulae and perfect scores for each performance metric 
are given in Table 4. 2. 

 

Figure 4. 5 Box plot of the number of rainy days retrieved from rain gauge and Satellite-derived Precipitation 
Estimation during the dry, the wet, and entire period. The red dash line indicates the median value from the 
rain gauge. 

This study aims to assess the quality of SPE in seasonal water balance. Therefore, we used one-way 
Analysis of Variance (ANOVA) and Dunnett’s Test (Ott and Longnecker, 2015), to compare mean 
values of SPE with that of the rain gauges. The one-way ANOVA test was first applied to determine 
whether significant differences exist between the means of rainfall datasets. If the difference was 
significant, Dunnett’s test was used. By comparing each SPE dataset with a single control (rain gauge), 
it was possible to specify which SPE dataset was significantly different from that of the rain gauge. 



59 
 

4.4. Results and Discussion 

4.4.1. Inter-comparison between rain gauges and Satellite Precipitation Estimate 

(SPE) datasets 

To assess the statistical characteristics of SPE, the precipitation data from the eight SPE products 
(3B42RT, IMERGE-V6, CHIRP, PERSIANN, 3B42V7, IMERGF-V6, CHIRPS, and PERSIANN-
CDR) were directly compared to the precipitation data from rain gauges in the six river basins. We 
matched precipitation values extracted from SPE’s grids to the rain gauge locations. If there were 
more than one rain gauge located in a grid, we averaged values from those gauges before the 
comparison. As we examined the GPCC gauges in Vietnam, 27/31 (~90%) rain gauges in our study 
were not used in the generation of the GPCC product. Therefore, our comparisons between SPE 
datasets and rain gauges are considered as an independent evaluation. 

 

Figure 4. 6 Statistically equal mean between Satellite-derived Precipitation Estimation products and rain gauge, 
during the dry, the wet, and the entire period (2002-2017). 

3.4.1.1. Detection metrics assessment 

Regarding rainfall detection metrics, the gauge-corrected IMERGF-V6 exhibited the best overall 
performance for the entire period (median POD of 0.718-rank 2; median FAR of 0.391-rank 1; median 
CSI of 0.505-rank 1; see Figure 4. 3 and Table 4. 3).The second-best dataset for the entire period was 
IMERGE-V6 (median POD of 0.699-rank 4; median FAR of 0.403-rank 3; median CSI of 0.497-rank 
2), reflecting the quality of the new IMERG retrieval algorithms on both real-time and research 
products (Huffman et al., 2014; Huffman et al., 2018). Note that uncorrected CHIRP obtained the 
highest POD score (median POD of 0.878), but the poorest FAR score (median FAR of 0.546), 
reflecting the imbalance of this rainfall retrieval algorithm. All SPE products exhibited better rainfall 
detection scores in the wet season than the dry season, which is in line with previous studies (Le et al., 
2018; Li et al., 2019; Wang and Lu, 2016). The average median values during the dry season for POD, 
FAR, and CSI were 0.486, 0.555, and 0.264, respectively. The average median values during the wet 
season for POD, FAR, and CSI were 0.797, 0.388, and 0.509, respectively (see Figure 4. 3 and Table 
4. 3). In conclusion, the newly released IMERG-V6 dataset outperformed other SPE datasets in terms 
of rainfall detection. The worst SPE performance was observed in the PERSIANN dataset. 
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Figure 4. 7 Performance measures a) NSE, b) PBIAS of daily streamflow SWAT simulations, driven by different 
precipitation input datasets, at the six basins in Vietnam. Total samples in each boxplot are 12 (six calibration 
and six validation values). Boxes represent the interquartile range and median and outliers are lower or higher 
than the 10th or 90th percentile, respectively. The performance explanation: VG Very Good, G Good, S 
Satisfactory. The evaluation period: Cal. Calibration (2002-2009), Val. Validation (2010-2017). 

3.4.1.2. Temporal dynamic metrics assessment 

In the assessment of temporal dynamic metrics (see Figure 4. 4 and Table 4. 3), the best overall 
correlation coefficient for the entire period was demonstrated by IMERGF-V6 (median CC of 0.650), 
followed by IMERGE-V6 (median CC of 0.605). Other SPE datasets exhibited moderate CC scores, 
ranging from 0.296 to 0.472. The CHIRPS and its uncorrected CHIRP product exhibited the best 
overall RB scores for the entire period (median RB of 0.0 for each product), in line with Beck et al. 
(2018). These were followed by the IMERGE-V6 and IMERGF-V6 datasets, with moderate RB 
scores. The best overall RMSE score for the entire period was achieved by IMERGF-V6 (median 
RMSE of 12.0 mm. d-1), followed by IMERGE-V6 and CHIRPS (median RMSE of 12.4 mm. d-1 and 
13.0 mm. d-1). Regarding seasonal assessment, the difference between the dry and wet seasons, in 
terms of temporal dynamic metrics, was not significant. The average median values during the dry 
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season for CC and RB were 0.373 and -0.066, respectively. The average median values during the wet 
season for CC and RB were 0.409 and 0.054, respectively (see Figure 4. 4 and Table 4. 3). The average 
median value of RMSE during the dry season was 7.01 mm. d-1, which was lower than the RMSE 
figure during the wet season (18.03 mm. d-1). This reflects less variability in rainfall during the dry 
season, compared to the wet season. The AC basin (South Central), exhibited the largest negative RB 
and extremely high RMSE values of all SPE products. This is attributed to the greater spatial-temporal 
rainfall variation of this region (Trinh-Tuan et al., 2019a). 

 

Figure 4. 8 Performance measures a) NSE, b) PBIAS of monthly streamflow SWAT simulations, driven by 
different precipitation input datasets, at the six basins in Vietnam. Total samples in each boxplot are 12 (six 
calibration and six validation values). Boxes represent the interquartile range and median and outliers are lower 
or higher than the 10th or 90th percentile, respectively. The performance explanation: VG Very Good, G 
Good, S Satisfactory. The evaluation period: Cal. Calibration (2002-2009), Val. Validation (2010-2017). 

3.4.1.3. Rain-no rain detection assessment 

Rain-no rain detection is an important aspect to assess the quality of SPE products. The 3B42V7 and 
3B42RT exhibited the most similar figures in terms of the number of rainy days, compared to the 
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observations from rain gauges, for the entire period (Figure 4. 5). Specifically, 32% of observations 
across six basins had rainfall events over the entire period; those figures from 3B42V7 and 3B42RT 
comprised 33% of the entire period. The rainy days detected by PERSIANN, CHIRPS, IMERGF-
V6, IMERGE-V6, accounted for 30%, 27%, 36%, and 37% of the entire period, respectively. CHIRP 
exhibited a large overestimation of rainy days, as 62% of its entire period measured rainfall events, 
respectively reflecting the impact of intercept values in its algorithm (Funk et al., 2015). The gauge-
corrected PERSIANN-CDR also highly overestimated the rainy days as these days accounted for 42% 
of its entire period. During the dry season, apart from CHIRP, all SPE datasets underestimated rainy 
days, reflecting the difficulty of SPE in terms of detecting short-term rainfall events. However, 
IMERG products exhibited significant improvement over the other SPE products. During 19% of 
the dry period, rain gauge data observed rainfall events, while those estimations from IMERGF-V6 
and IMEGRE-V6 were only 2% less (17% of the dry period), suggesting frequently temporal rainfall 
sampling (every 30 minutes) could benefit in capturing short-term rainfall events. On the other hand, 
the IMERG retrieval algorithm highly overestimated rainfall events during the wet season, suggesting 
a re-evaluation for this algorithm during this period.  

3.4.1.4. Mean annual rainfall assessment 

Figure 4. 6 compares average 2002-2017 rainfall values annually, during the wet season, and the dry 
season, between rain gauge and SPE products. It was found that CHIRPS product exhibited the most 
statistically equal mean with rain gauges, among SPE products (78.6% agreeing cases during the entire 
period). The following SPE products, which demonstrated significantly similar means with those from 
rain gauges, were CHIRP, IMERGF-V6, IMERGE-V6 (overall agreement 70.2%, 67.5%, and 59.5%, 
respectively). This finding is in line with the low RB scores of CHIRPS and its uncorrected 
counterpart, previously described, reflecting that CHIRPS’ retrieval algorithm is suitable for trend 
analysis and drought assessment. From another perspective, all SPE products achieved better 
agreement during the dry season, than the wet season. The worst mean estimation was observed at 
the PERSIANN dataset. 

4.4.2. Hydrological simulation driven by different precipitation data inputs 

4.4.2.1. Daily simulations 

Figure 4. 7 represents the performance measures for daily streamflow SWAT simulation, driven by 
different precipitation datasets. For the NSE scores (Figure 4. 7a), rain gauge-driven simulations 
exhibited the best overall performance (median NSE of 0.720). Two SPE-based models had moderate 
performances in simulating daily streamflow. These are IMERGF-V6-driven simulations; IMERGE-
V6-driven simulations, with median NSE scores of 0.600 and 0.500, respectively. Overall, based on 
the median NSE scores, the rain gauge-based models exhibited Good performances in a daily 
simulation; two SPE-based models (IMERF-V6 and IMERE-V6) demonstrated Satisfactory 
performances; while other SPEs driven simulations performed at Unsatisfactory levels (Moriasi et al., 
2015).  

The daily SPE-driven simulations performed better in terms of the PBIAS score (Figure 4. 7b.). The 
median PBIAS of IMERG-F-V6-driven simulations was -1.95%, followed by CHIRPS-driven 
simulations (2.05%); 3B42RT-driven simulations (2.50%); and rain gauge-driven simulations (4.65%). 
These performances were at Very Good levels (Moriasi et al., 2015). The daily simulation using rainfall 
inputs from PERSIANN-CDR exhibited at Good levels based on the PBIAS score (median PBIAS of 
-6.85%); the PBIAS scores of CHIRP-, and 3B42V7- driven simulations were at Satisfactory levels 
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(median PBIAS of 10.10 and 10.25%, respectively). With the median PBIAS scores greater than 15%, 
IMERGE-V6-, and PERSIANN-driven simulations were at Unsatisfactory levels (Moriasi et al., 2015). 
Details of the daily simulation results can be found at Appendix 7.  

 

Figure 4. 9 Comparison between daily observed streamflow and simulated streamflow, driven by a) 
rain gauge; b) TMPA precipitation datasets; c) GPM IMERG precipitation datasets; d) CHIRPS 
precipitation datasets; and e) PERSIANN precipitation datasets, at the XL basin, during 2002 – 2017. 
The calibration period is 2002-2009; the validation period is 2010-2017. Apart from panel a), blue 
texts denote performances of uncorrected-SPE-driven simulations, while red texts denote 
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performances of gauge-corrected-SPE-driven simulations. In the scatter plot, dash blue line exhibits 
linear regression between simulated streamflow from uncorrected SPE-based model and observed 
streamflow. Red line exhibits linear regression between simulated streamflow from gauge-corrected 
SPE-based model and observed streamflow. 

 

Figure 4. 10 Similar to Figure 4.9 but for monthly simulations. 

3.4.2.2. Monthly simulations 

Figure 8 presents the performance measures for monthly streamflow SWAT simulation, imposed with 
different precipitation datasets. Regarding the NSE scores (Figure 4. 8a), the best overall performance 
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was gained by rain gauge-driven simulations (median NSE of 0.875). The gauge-corrected SPE-based 
models had comparable performances in simulating monthly streamflow. The median NSE values of 
IMERGF-V6-driven simulations; 3B42V7-driven simulations; CHIRPS-driven simulations, 
PERSIANN-CDR-driven simulations were 0.770, 0.740, 0.705, and 0.645, respectively. Apart from 
PERSIANN-driven simulations, the uncorrected SPE-based model produced monthly streamflow at 
moderate levels. The median NSE values of IMERGE-V6-driven simulations, 3B42RT-driven 
simulations; and CHIRP-driven simulations were 0.680, 0.545, and 0.540, respectively. Overall, based 
on the median NSE scores, the rain gauge-based models exhibited Very Good performances; the gauge-
corrected SPE-based models demonstrated Good (IMERGF-V6, CHRIP, 3B42V7) and Satisfactory 
(PERSIANN-CDR) performances; and uncorrected SPE-based models performed at Satisfactory 
(IMERGE-V6, 3B42RT, CHIRP) and Unsatisfactory (PERSIANN) levels (Moriasi et al., 2015).  

 

Figure 4. 11 Exceedance probability of the daily observed streamflow and simulated streamflow, driven by 
different precipitation inputs, at the XL basin, during the validation period (2010-2017). The logarithm was 
applied for the y-scale. 

In terms of the PBIAS score (Figure 4. 8b), the median PBIAS of rain gauge-driven simulations was 
1.25%, followed by 3B42V7-driven simulations (1.55%); CHIRPS-driven simulations (1.70%); and 
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IMERGF-V6-driven simulations (2.60%). These performances were at Very Good levels (Moriasi et 
al., 2015). The models using rainfall inputs from uncorrected 3B42RT and CHIRP datasets exhibited 
at Good levels (median PBIAS of -6.25% for 3B42RT and 8.10% for CHIRP); the PBIAS scores of 
IMERGE-V6 driven simulations were at Satisfactory levels (mean PBIAS of 11.2%). The median 
PBIAS of PERSIANN-driven simulations (24.95%) indicated that these simulations performed at 
Unsatisfactory level. Details of the monthly simulation results can be found at Appendix 8. 

 

Figure 4. 12 Similar to Figure 4. 11 but for monthly dataset. 

3.4.2.4. SPE-driven simulations in a large basin 

Although rain gauge-driven simulations exhibited the best overall performance, compared to SPE 
datasets, the number of cases in which the PBIAS scores at Unsatisfactory level (|PBIAS| > 15%) from 
rain-gauge-driven simulations were high. These Unsatisfactory PBIAS scores were found at five and 
three cases in the daily time step and monthly time step, respectively. This reflects an insufficient 
estimation at the spatial scale from the rain gauge. On the other hand, the PBIAS’s Unsatisfactory figures 
for the IMERGF-V6-based model were observed at two simulations (daily time step, Figure 4. 7b.) 
and one simulation (monthly time step, Figure 4. 8b) only. In daily streamflow simulations at the large 
XL basin, gauge-corrected SPE-driven simulations exhibited comparable in performance as rain 
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gauge-driven simulations. The daily NSE scores of rain gauge-driven simulations during the calibration 
and validation period, at the XL basin, were 0.64 and 0.69, respectively (Figure 4. 9a.). Those figures 
from IMERGF-V6 were nearly similar, with the scores of 0.63 and 0.69, respectively (Figure 4. 9c). 
Interestingly, in monthly streamflow simulation at the XL basin, the SPE-based models were even 
slightly better than rain-gauge driven simulation. The daily NSE scores of rain gauge-driven 
simulations during the calibration and validation period, at the XL basin, were 0.80 and 0.74, 
respectively (Figure 4. 10a); those from the IMERGF-V6-driven simulations were 0.84 and 0.91, 
respectively (Figure 4. 10c). We also examined the exceedance probability of both daily and monthly 
streamflow, from observations and simulations driven by different precipitation datasets, at the XL 
basin (Figure 4. 11 and Figure 4. 12). Overall, the flow curves from simulated results followed the 
observation curves well, at low exceedance levels. At high exceedance level flow, the simulated curves 
began to look different from the observed curve. CHIRPS- and CHIRP-driven simulations produced 
better accurate curves than that from rain gauge-driven simulation, up to exceedance of around 85% 
flow for daily streamflow data and around 75% flow for monthly streamflow data, suggesting the 
capability of those products in terms of low-flow simulation.  

Table 4. 4 The difference in median of precipitation and streamflow performance metrics between uncorrected 
and gauge-corrected SPE products. For all performance metrics, except for FAR, RMSE, and PBIAS, a positive 
value represents a better performance gauge-corrected version over its uncorrected version. The bold value 
indicates the gauge-corrected version worse than its uncorrected counterpart. 

 Performances 
3B42V7-  
3B42RT 

IMERGF_V6-
IMERGE_V6 

CHIRPS- 
CHIRP 

PERSIANN
_CDR- 

PERSIANN 

Precipitation 
Performance Metrics 

POD +0.121 +0.019 -0.254 +0.159 

FAR -0.011 -0.012 -0.136 +0.063 

CSI +0.031 +0.008 -0.025 +0.041 

CC +0.114 +0.046 +0.032 +0.093 

RB -0.1 +0.08 0.0 +0.230 

RMSE (mm. d-1) -1.1 -0.4 -0.2 -0.6 

Daily Streamflow 
Performance Metrics 

NSE +0.07 +0.12 +0.06 +0.24 

PBIAS (%) -7.0 -7.6 -7.9 -18.7 

Monthly Streamflow 
Performance Metrics 

NSE +0.20 +0.09 +0.17 +0.33 

PBIAS (%) -4.7 -8.6 -6.4 -14.8 

3.4.2.4. SPE-driven simulations in basin frequently affected by typhoon and tropical storm 

Many poor scores were reported for the AC (Ve river) basin when we used SPE datasets as inputs to 
the SWAT model; whereas the rain gauge-driven simulations exhibited Good to Very Good 
performances in daily streamflow simulation and monthly streamflow simulation (daily NSE for 
validation: 0.72, monthly NSE for validation: 0.88; see Appendix 7 and Appendix 8). We initially 
expected that when the SWAT model was recalibrated with satellite precipitation data, the problem of 
underestimation would be mitigated. However, since the underestimations of the SPE products were 
extremely large at this basin, the re-calibrated SWAT model did not perform well. This large 
underestimation can be seen in Figure 4. 13. We used violin plots to examine the distribution of 
monthly basin rainfall; monthly streamflow from SPE-driven simulations without re-calibration (i.e., 
using rain gauge calibration parameters); and monthly streamflow from SPE-driven simulations, with 
re-calibration from each SPE dataset. Although SPE products demonstrated similar distribution at 
low to medium rainfall (<500 mm. month-1), a large discrepancy was found with high rainfall. The 
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maximum rainfall per month, measured by the rain gauge, was up to 2250 mm. month-1; while the 
figures from SPE datasets, ranged from only 800 to 1500 mm. month-1. When we used the rain gauge's 
calibrated parameters for models using SPE rainfall inputs, the distributions of simulated streamflow 
were significantly different from that of observed streamflow (Figure 4. 13b). On the other hand, by 
using re-calibrated parameters in each SPE dataset, the distributions of simulated streamflow were 
more similar to observed streamflow. However, a large dissimilarity between high streamflow 
distribution from models and observed data has been identified (Figure 4. 13c). In short, from the 
simulation results at the AC basin, we suggest a re-evaluation for SPE datasets at regions that are 
heavily influenced by the tropical cyclone and monsoon systems. The simulated results of SPE-based 
models without re-calibrated parameters were even worse, compared to the models using re-
calibration parameters, which is in line with previous studies (Alazzy et al., 2017; Li et al., 2018a).  

 

Figure 4. 13 Violin plots of a) monthly basin rainfall; b) streamflow simulation without re-calibration parameters 
(rain gauge parameters); c) streamflow simulation with re-calibration parameters using inputs from Satellite-
derived Precipitation Estimation, at the AC basin. The cross sign indicates the median value; the plus sign 
indicates the mean value. 

4.4.3. Gauge-corrected and Uncorrected SPE Products 

Table 4. 4 presents the differences in the median between gauge-corrected and uncorrected versions 
of SPE datasets, in terms of precipitation and streamflow performance metrics. The gauge-corrected 
products incorporated five-day gauge data (CHIRPS) and monthly gauge data (3B42V7, IMERGF-
V6, and PERSIANN-CDR) datasets. We expected that the late release of gauge-corrected products 
(often in several months’ latency) would result in these products outperforming the uncorrected 
products. However, by using various precipitation metrics, we detected that the gauge-corrected 
products exhibited little improvement, or even worse performances (e.g., CHIRPS – CHIRP for POD: 
-0.254, PERSIANN-CDR-PERSIAN for RB: +0.230), in a daily time step. This suggests the necessity 
of incorporating daily gauge observations to improve precipitation performance at this time step. The 
monthly streamflow performance metrics indicated a considerable improvement on the NSE scores 
in both daily and monthly simulation (averaged +0.13 for daily simulation and +0.20 for monthly 
simulation), and a significant reduction in the PBIAS scores (-10.3% for daily simulation and -8.6% 
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for monthly simulation). This reflects that corrections provide more benefits to hydrological 
applications.  

 

Figure 4. 14 Bivariate correlation analysis relative performance of SPE-driven simulations to rain gauge-driven 
simulation, elevation range, and rain gauge density. 3D surface denotes the performance's trend of SPE, 
compared to rain gauge (P%), as input for SWAT simulation. The black dot point indicates the relative size of 
the basin area. 

Note that, in principle, higher spatial resolution is better. However, CHIRPS uses only infrared data, 
and, typically, this dataset did not capture well the variability in precipitation in space. Therefore, the 
theoretical higher spatial resolution might not provide any practical benefit. Previous studies 
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comparing TMPA and CHIRPS performance (Luo et al., 2019; Wu et al., 2018) reached largely similar 
conclusions. PERSIANN precipitation datasets seem to not be comparable with other SPE products 
used in this study, probably because these datasets (1) also use infrared data as the CHIRPS dataset; 
(2) have a relative coarse spatial resolution. 

4.4.4. The relative performance of SPE to rain gauge for SWAT simulation. 

It is worth highlighting the rationale of “relative performance” when considering the gauge-based 
model as a benchmark to investigate the adequacy of SPE in driving hydrological modeling. We found 
evidence that the performances of SPE-based models relative to the rain gauge-based models (Prelative 

= (NSESPE-NSERG)/ NSERGx100), were to some degree functions of elevation range and rain gauge 
network density (Figure 4. 14). Larger basins tended to be poorly gauged, and streamflow simulations 
imposed with SPE at large basins had comparable simulation results with those using precipitation 
from rain gauges. The 3D surface, fitted from elevation range, rain gauge density, and Prelative, suggested 
that high Prelative values were observed at basins with a low rain-gauge density. On the other hand, 
several studies (Blöschl, 2013) indicated that hydrological simulations are performed better in large 
storage of watersheds. Because the relative variation in streamflow at these watersheds is small, it leads 
to better simulation results, compared to smaller watersheds. 

4.4.5. Limitations and Further Study 

In this study, we utilized the SPE products for monthly streamflow simulation, using their finest grid; 
however, we did not use the same grid size for different precipitation inputs. This is due to two factors. 
Firstly, Bai et al. (2018) revealed that the correlation of SPE with rain gauges, is different from various 
spatial resolutions. Secondly, the lack of advantage of GPM IMERG on streamflow simulation, 
compared to 3B42V7 at the Ganjiang River basin, might be due to the resampling of the grid size 
from 0.1° to 0.25° of GPM IMERG (Zhang et al., 2019). 

SPE-driven simulations did not perform well in our simulations at a daily time step. Further study 
should apply a bias-correction scheme for the SPE products on this time step. The study would greatly 
benefit examination of extreme analysis and disaster management. 

4.5. Conclusions 

This study evaluated the performances of eight Satellite Precipitation Estimation (SPE) datasets, 
including uncorrected versions (IMERGE-V06, TMPA 3B42RT, CHIRP, and PERSIANN) and 
gauge-corrected versions (IMERGF-V6, TMPA 3B42V7, CHIRPS, and PERSIANN-CDR), 
regarding six sub-climate zones of Vietnam. The work consists of two parts: 1) comparisons of the 
SPE products to rain gauges, and 2) using hydrological SWAT models to simulate monthly streamflow 
at the six basins, representative of the six climate zones. Our findings can be summarized as follows: 

(1) The SPE products exhibited a slightly better performance during the wet season, compared to 
the dry season, in terms of rainfall detection metric (POD, FAR, and CSI). However, the 
temporal dynamic performance (CC and RB) did not show any significant difference between 
the two seasons. 

(2) IMERGF-V6 exhibited the best overall performance among SPE products, in comparison 
with rain gauges, and as inputs to the SWAT models for streamflow simulations. Our study is 
the first attempt to evaluate the performance of GPM IMERG in Vietnam, suggesting strong 
capability for this product in hydrological application purposes. 
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(3) CHIRPS achieved the smallest bias among SPE products, compared to rain gauge data, 
reflecting the aim of this product as a drought-warning system and for trend analysis. 

(4) Gauge-corrected versions of SPE products exhibited slightly better over the uncorrected 
versions of SPE products, in terms of precipitation performance metrics. This suggests that 
the use of sub-monthly and monthly rain gauges did not significantly benefit SPE’s 
improvement at the daily time step. However, the gauge-corrected SPE products performed 
better than their uncorrected counterparts in both daily and monthly streamflow simulation. 

(5) SPE products can serve as alternative inputs to enhance the performance of hydrological 
models in basins, with a low rain-gauge network density.  

This study determines the ability of SPE products to estimate rainfall, and produce input data for 
streamflow simulations in Vietnam. Our findings could be used as a guide to select which SPE 
products are suitable for hydrological applications. Although this study is specific for hydro-climatic 
conditions in the river basins of Vietnam, the methodology can be applied to watersheds in other 
regions of the world. 
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Chapter 5: Assimilation of SMAP Products for 

Improving Streamflow Simulations over Tropical 

Climate Region – Is Spatial Information more 

Important than Temporal Information?4 

5.1. Introduction 

In recent years, soil moisture (SM) has been increasingly investigated in hydrological research as it has 
a strong influence on the interaction between different components within the hydrological cycle 
(Ahmad et al., 2010; Grayson et al., 1997; Western et al., 2002). The SM content is a key variable that 
controls most of the land surface hydrological processes and thus is considered one of the most 
important parameters in land surface hydrology models (Sheikh et al., 2009). The increased need for 
satellite-based soil moisture information has led to the launch of many satellite missions to provide 
more accurate SM estimates at the global scale (Kim et al., 2018; Kim et al., 2019) that could be used 
to substitute in-situ SM observations that only cover a very limited portion of the land surface (Dorigo 
et al., 2021). These SM products include ASCAT (Advanced SCATterometer) (Bartalis et al., 2007), 
SMOS (Soil Moisture and Ocean Salinity) (Kerr et al., 2001), AMSR-E (Advanced Microwave 
Scanning Radiometer for the Earth Observing System onboard the Aqua satellite) (Kawanishi et al., 
2003), AMSR-2 (Advanced Microwave Scanning Radiometer 2 onboard the Global Change 
Observation Mission – Water satellite) (Imaoka et al., 2010) and SMAP (Soil Moisture Active Passive) 
(Entekhabi et al., 2010). All of these SM data products are freely accessible, providing an opportunity 
to integrate SM information into hydrological models across the globe. 

Owing to the release of the above-mentioned data products, assimilation of soil moisture (SM) in 
hydrological simulations has received much attention within the past decade. Specifically, of 150 
studies conducted during the period of 2001–2021 on soil moisture assimilation in hydrology 
modelling, nearly ninety percent have been published since 2012 (see Appendix 9). A number of 
studies have assessed remotely-sensed SM assimilation in various hydrological applications, including 
flood prediction (Abbaszadeh et al., 2020; Patil and Ramsankaran, 2018), water balance estimation 
(Behera et al., 2019), and streamflow forecast (Patil and Ramsankaran, 2017; Sazib et al., 2020), along 
with agricultural monitoring and forecasting (Bolten et al., 2009; Mladenova et al., 2019). These studies 
have established a new frontier in hydrological research to take advantage of SM estimates from space 
to inform hydrological modeling. 

However, satellite-based SM products also have several limitations, including shallow penetration 
depth (typically shallower than or equal to 5 cm) and relatively coarse spatial resolutions (larger than 
or equal to 9km) (Entekhabi et al., 2010). Therefore, the SM observed from space may often improve 
the top-soil layer estimation, unless carefully integrated into a soil moisture or hydrologic model 
through direct insertion or data assimilation. Although several studies (Laiolo et al., 2016) have shown 
that coarse spatial resolutions of remote sensing soil moisture could be useful in improving streamflow 

 
4 This chapter has been published as Le, M.H., Nguyen Q.B., Pham, H.T., Patil, A., Do H.X., Ramsankaran R., Bolten, J. 
D., & Lakshmi, V (2022). Assimilation of SMAP products in streamflow simulations – Is spatial information more 
important than temporal information. Remote Sensing, 14(7), 1607. https://doi.org/10.3390/rs14071607. 
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simulations, many studies have pointed out the limitations of low spatial resolutions of soil moisture 
in data assimilation, especially in small catchments (Matgen et al., 2012) or in flash flood forecasting 
(Han et al., 2012). 

Table 5. 1 Summary of selected studies on remote sensing soil moisture data assimilation in hydrologic models. 
These studies were investigated in terms of climate region, number of studied catchments, used remotely sensed 
(RS) soil moisture (SM) datasets, data assimilation (DA) technique with hydrologic models.  

 
Climate 
Region 

Catchments
/ RS SM 
Datasets 

DA(*)/ 
Hydrological 
Models(**) 

Main Findings 

(Jadidoleslam 
et al., 2021) 

Cold 
131/  

SMAP, 
SMOS 

EnKF, 
EnKFV/  

HLM 

DA driven models reduce the peak error and could be useful for the 
application of satellite soil moisture for operational real-time streamflow 

forecasting. 

(Abbaszadeh 
et al., 2020) 

Temperate 4/ 
SMAP 

EPFM/ 
WRF-Hydro 

Assimilation of SM could improve streamflow simulation during flooding 
from hurricane Harvey in 2017, with a promising result from SM at 1km. 

(Baguis and 
Roulin, 2017) 

Temperate 1/ 
ASCAT 

EnKF/ 
SCHEME 

The DA algorithm could be a diagnostic tool to detect weakness in a model 
and to improve its performance. 

(Patil and 
Ramsankaran

, 2018) 

Temperate 
2/ 

SMOS, 
ASCAT 

EnKF/ 
SWAT 

A coupling Soil Moisture Analytical Relationship with EnKF could 
successfully update the sub-surface SM and streamflow components 

simulation. 

(Laiolo et al., 
2016) 

Temperate 
1/  

EUMET-
SAT H-SAF, 

SMOS 

Nudging/ 
Continuum 

Streamflow prediction for a small basin using a distributed hydrological 
model could be improved with the assimilation of soil moisture estimated 

from coarse spatial resolution remotely sensed products. 

(Behera et al., 
2019) 

Tropical 1/  
AMSR-E 

Kalman Filter/ 
VIC 

DA driven models could improve soil moisture in root zone and water 
balance estimation. 

(Azimi et al., 
2020) 

Temperate 
2/ 

SMAP, 
SACAT, 

CATSAR-
SWI 

EnKF/ 
SWAT 

Both active and passive-based SM driven simulation generally improved 
streamflow simulation. The impact of frequency of soil moisture observation 

on data assimilation performances in small catchments was discussed. 

(Lü et al., 
2016) 

Arid 
2/  

ASCAT 
EnKF/ 
HBV 

A combined surface soil moisture and snow depth data assimilation into a 
hydrological model was proposed to improve streamflow estimation in cold 

and warm season headwater watersheds. 

(Yang et al., 
2021) 

Temperate 
3/  

ESA CCI, 
SMAP 

EnKF/ 
DDRM 

Assimilation of soil moisture products in high spatial gridded modelling 
could increase DA performances in terms of simulating profile soil moisture. 

(De Santis et 
al., 2021) 

Cold, 
Temperate 

775/  
ESA CCI 

EnKF/ 
MISDc-2L 

An assessment of large-scale DA experiments in hydrological model 
streamflow simulation was carried out over Europe. This study also 

considered impacts of vegetation density, topographical complexity and basin 
area on the DA performances. 

(Loizu et al., 
2018) 

Temperate 
2/  

ASCAT 

EnKF/ 
MISDc, 

TOPLATS 

This study examined the impacts of three different re-scaling techniques on 
SM data assimilation for two hydrological models. A careful evaluation for 
observation error and re-scaling technique is recommended for successful 

implementation of a data assimilation framework. 

Note: 

(*) Acronyms for data assimilation techniques: ‘EnKF’ Ensemble Kalman Filter, ‘EnKFV’ EnKF include time-varying error variances, 
‘EPFM’ Evolutionary Particle Filter with Markov Chain Monte Carlo. 

(**) Acronyms for hydrologic models: ‘HLM’ Hillslope Link Model, ‘WRF-Hydro’ Weather Research and Forecasting Hydrological model, 
’SCHEME’ SCHEldt-MEuse, from the names of the two major rivers of Belgium, ‘SWAT’ Soil and Water Assessment Tool, ‘VIC’ 
Variable Infiltration Capacity, ’HBV’ Hydrologiska Byråns Vattenbalansavdelning, ‘DDRM’ Digital Elevation Model (DEM) based 
distributed rainfall-runoff model, ‘MISDc-2L’ Modello Idrologico Semi-Distribuito in continuo-2 layers, ’TOPLATS’ TOPMODEL-Based 
Land Surface-Atmosphere Transfer Scheme. 

To overcome the low spatial resolution of satellite-based SM products, several studies have proposed 
different downscaled algorithms to obtain a finer soil moisture dataset in space. These algorithms can 
be classified into three primary types, including (i) methods based on a satellite data combination of 
high and low resolution satellite data using active sensors (Narayan and Lakshmi, 2008; Narayan et al., 
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2006), and visible, infrared and thermal sensors (Fang et al., 2018b; Fang et al., 2013; Fang et al., 2020; 
Fang et al., 2019); (ii) methods based on the relationship between SM and other geophysical variables 
that exist at a finer spatial resolution (Busch et al., 2012; Ranney et al., 2015); (iii) methods based on 
mathematical modelling (e.g., land surface modelling) to simulate coarse resolution remotely sensed 
SM to a fine resolution model to update SM outputs (Bai et al., 2019; Yang et al., 2021). 

On the other hand, compared to native resolution satellite-based products, downscaled satellite-based 
SM products are prone to having shorter data records, complicating typical data assimilation 
methodologies. For instance, with the first downscaling method mentioned above, a widely-used 
algorithm is a thermal inertia principle-based algorithm (Fang et al., 2022). This algorithm utilizes the 
universal relationship between land surface temperature (LST), vegetation index, soil wetness, and 
evapotranspiration to quantify SM as a function of LST and normalized different vegetation index 
(NDVI). However, the LST dataset, which is often retrieved from earth observations, often has large 
spatial and temporal gaps, resulting from atmospheric conditions (e.g., cloud and cloud shadows) (Li 
et al., 2018b). Consequently, these LST’s gaps will cause gaps in space and time for downscaled SM 
product and result in an absence of temporal time series during the data assimilation process. Although 
efforts exist to fill the gaps from LST before the downscaling step (Fang et al., 2022; Pham et al., 
2019), the challenge of supplementing temporally-downscaled SM data for assimilation still remains. 

Investigation of the trade-offs between temporal and spatial resolution of remotely sensed SM 
products for constraining hydrologic models is an area of research that requires more attention. In a 
study of two catchments in Central Italy, Azimi et al. (2020) examined the benefit of having more 
frequent SM observations (temporal timescale) in streamflow simulation. The authors concluded that 
reduced temporal sampling from a remotely sensed soil moisture product could significantly reduce 
model performance, indicating that temporal resolution likely plays a more important role than spatial 
resolution in constraining the model. On the other hand, a study using SMAP soil moisture data 
assimilation in a community-based hydrologic model indicates that downscaled SMAP 1km would 
improve the accuracy of streamflow simulation (normal streamflow conditions), rather than the model 
using coarse resolution SMAP 9km data (Abbaszadeh et al., 2020). 

In addition, the impact of the number, size, and nature of the hydrologic catchment requires further 

investigation—few studies have addressed the potential impacts of catchment characteristics on SM-
based DA schemes. A majority of studies have examined the DA schemes in a focused area, and 
typically over relatively few catchments (e.g., < 4), making it difficult to make conclusive statements 
on the utility of such DA approaches (see Table 5. 1 Summary of selected studies on remote sensing 
soil moisture data assimilation in hydrologic models. These studies were investigated in terms of 
climate region, number of studied catchments, used remotely sensed (RS) soil moisture (SM) datasets, 
data assimilation (DA) technique with hydrologic models.  and Appendix 10). Several studies that have 
included large samples of catchments concluded that a hydrological model with a SM-based DA 
framework may not significantly improve streamflow simulations, compared to the hydrological 
model without the DA (De Santis et al., 2021; Jadidoleslam et al., 2021). 

Model complexity, and heterogeneous land surface characterization and meteorological forcing, can 
result in varying levels of uncertainty and model accuracy, issues not easily corrected through data 
assimilation. In fact, DA-driven hydrologic models often exhibit mixed results across climatic 
conditions. This is an active area of research, and more studies are encouraged. Currently, most studies 
focus on temperate regions (see Table 5. 1). In the tropical climate, streamflow is often of great 
variation, due to the impacts of large-scale phenomena such as ENSO on the seasonal and year-to-
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year variation in soil moisture, which results from the high variability in rainfall (Kumagai et al., 2009). 
Any technique such as DA that could enhance hydrological model performances in the tropical climate 
region is essential, but such studies have rarely been investigated (Fleischmann et al., 2021), owing to 
the difficulty of accessing streamflow records over these regions (Do et al., 2018). 

 

Figure 5. 1 Locations of eight catchments (red circle represents catchment centroid) in Vietnam, and their 
monthly averaged runoff (black bar), monthly averaged soil moisture estimated from SMAP 9km (SM9, blue 
line), and monthly averaged soil moisture estimated from SMAP 1km (SM1, red line). The runoff values were 
calculated based on the period of 2013–2019, while soil moisture values (volume soil moisture) were calculated 
based on the period of 2017–2019. A rescaling has been applied for the runoff time series to compare its 
variation across catchments. The circle size indicates relative size of the catchment. The Roman numerals 
indicate contrasting climate regions where the studied catchments located in. These regions are defined 
following (Nguyen and Nguyen, 2004). 

Here, we build off of these previous studies and attempt to demonstrate the utility of satellite-based 
soil moisture for streamflow simulation, as well as assessing the impacts of temporal and spatial 
resolution on the model accuracy. We carefully investigate the application of two remotely sensed SM 
products (SMAP 9km and downscaled SMAP 1km) to examine whether spatial–temporal resolution 
has a substantial impact on the performance of the hydrological model to simulate streamflow through 
a data assimilation (DA) framework. We carried out the experiment over eight catchments across 

Vietnam—a tropical country that is under-represented in the literature. The hydrological Soil and 
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Water Assessment Tool (SWAT) model (Arnold et al., 1998) is selected as it performs well in 
numerous studies in the studied region (Ha et al., 2018; Le et al., 2020a; Nguyen, 2021; Tan et al., 
2020; Vu et al., 2016), and there are several studies that have successfully implemented the DA 
framework in the SWAT model (Azimi et al., 2020; Liu et al., 2018). We selected the Ensemble Kalman 
Filter (EnKF) (Evensen, 2003) as the DA algorithm due to its popularity in many hydrological 
assimilation works (De Santis et al., 2021; Lü et al., 2015; Yang et al., 2021). 

Table 5. 2 Description of hydrological stations used in this study. Average runoff characteristics in each 
catchment (min, median, mean, max) are based on time series 2013–2019. NDVI is the average NDVI value 
for each catchment during 2017–2019 extracted from MODIS MOD13Q1 250m product. SM9 and SM1 stand 
for the percentage of available SMAP 9km and downscaled SMAP 1km during the data assimilation period 
(2017–2019), respectively. 

Full  
Name 

Short 
Name 

Long. Lat. Area Min Median Mean Max NDVI SM9 SM1 

(degree) (degree) (km²) (mm/d) (mm/d) (mm/d) (mm/d) (-) (%) (%) 

Giavong gvo 106.93 16.93 267 0.09 0.91 2.49 136.56 0.801 42.37 9.68 

Anhoa aho 108.90 14.57 383 0.36 1.87 7.54 254.91 0.628 31.78 10.41 

Banyen bye 103.03 21.27 638 0.21 0.65 1.51 33.04 0.740 42.56 21.46 

Songluy slu 108.34 11.19 964 0.04 0.51 2.02 42.30 0.808 41.74 5.84 

Chu chu 106.60 21.37 2090 0.02 0.25 1.79 99.22 0.736 31.78 12.24 

Giangson gso 108.19 12.51 3100 0.18 1.28 1.95 28.71 0.753 31.78 11.6 

Nghiakhanh nkh 105.41 19.22 4024 0.32 1.16 2.39 92.11 0.770 31.78 14.52 

Xala xla 103.92 20.94 6430 0.13 0.89 1.64 24.72 0.686 34.16 16.62 

Section 5.2 presents eight catchments together with the selected datasets while Section 5.3 provides a 
brief description of the hydrological SWAT model and data assimilation scheme that were used to 
conduct this study. Section 5.4 provides a comprehensive assessment of the findings, focusing on the 
discrepancies of model performance under different DA schemes. Section 5.5 concluded the study 
findings. 

5.2. Materials and Methods 

5.2.1. Catchment Sites and Its Streamflow Observations 

We collected daily 2013–2019 streamflow time series from eight hydrological stations across Vietnam 
with their characteristics presented in Table 5. 2. The in-situ streamflow datasets have been used to 
calibrate the hydrological models for each catchment, and evaluate the performance of hydrological 
simulations with and without DA. These catchments were selected based on several study objectives. 
Firstly, they have a variety of catchment sizes so that we could examine the impacts of the spatial 
resolution of SMAP products on the data assimilation algorithm. Secondly, they are in contrasting 
climate conditions and geographic coordinates. Therefore, they have different runoff regimes and soil 
moisture patterns (Figure 5. 2), which are useful for drawing a general conclusion on our experiment. 
Lastly, all catchments have passed homogeneity time series testing, and have natural runoff conditions 
due to the lack of manmade structures (i.e., weirs, dams, etc.). These conditions enable us to isolate 
the impact of the DA methods by removing potential changes in streamflow dynamics due to human 
activities. Details on testing of homogeneity time series and checking of natural catchment conditions 
can be found in Do H et al. (2022). 
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5.2.2. Climatic Datasets 

The climatic datasets forced into the hydrological model in this study are daily precipitation from 
GPM IMERG and daily maximum and minimum air temperature from NCEP CFSR V2. A detailed 
description of these datasets is given below. 

5.2.2.1. GPM IMERG Precipitation 

The half-hour 0.1 degree GPM IMERG Final run V6 (hereafter IMERG) (Hou et al., 2014) was 
downloaded from NASA Goddard Earth Science Data and Information Services Center (GES DISC, 
https://disc.gsfc.nasa.gov/). Daily precipitation totals were calculated by summing 24-h periods 
beginning at 19:00 UTC the day prior to the day of the record to match with the local daily rainfall 
collection time frame. Satellite precipitation has been shown to favorably compare with rain gages in 
various locations (Hashemi et al., 2017; Le et al., 2018; Mondal et al., 2018). 

5.2.2.2. NCEP CFSR V2 Air Temperature 

The 6-hour CFSR V2 for maximum and minimum air temperature (Saha et al., 2014) was downloaded 
from the National Center for Atmospheric Research (NCAR, https://rda.ucar.edu/) Data Archive. 
Depending on the parameters, the available resolution varies from 0.3 degrees to 2.5 degrees. In this 
study, we selected the finest resolution of 0.3 degrees. We obtained the maximum and minimum air 
temperature every 6 hours, and selected the maximum and minimum among these four periods per 
day to estimate the daily maximum and minimum air temperature, respectively. 

5.2.3. Remotely Sensed Soil Moisture Datasets 

We obtained two soil moisture (SM) products originating from Soil Moisture Active Passive (SMAP). 
These products have exhibited their potential use in water resources and hydrology in the studied 
region (Dandridge et al., 2020; Lakshmi et al., 2018), and are the data assimilation variables (i.e., state 
variables) which serve as the observed soil moisture to assimilate into the hydrological model. 

5.2.3.1. Soil Moisture Active Passive 

The 9km SMAP Level- 3 (hereafter SM9) was obtained from the National Snow and Ice Data Center 
(NSIDC DAAC, http://nsidc.org/data/smap). The SMAP provides, at approximately 06:00 and 
18:00 local time (LT), soil moisture data in descending and ascending orbits, respectively. In this study, 
to match with daily simulation time in the study region, the SMAP ascending overpass time (18:00 
LT) is selected as the observed soil moisture for a day. The accuracy for the SMAP data is designed 
with µRMSE of 0.04 m³/ m³ (Kim et al., 2018). 

5.2.3.2. Downscaled Soil Moisture Active Passive 

Based on the assumption that daily soil moisture was negatively associated with the change in daily 
temperature under varying vegetation conditions, Fang et al., 2018 (Fang et al., 2018a); Fang et al., 
2020 (Fang et al., 2020) proposed a linear regression model to estimate the daily soil moisture 
condition with known daily temperature and vegetation index. Using this linear regression model, we 
can create a finer spatial resolution for SM from high spatial resolutions of land surface temperature 
(reflecting the change in daily temperature) and of NDVI (reflecting the vegetation conditions). In 
this way, very high spatial soil moisture from SMAP —downscaled SMAP—has increased from 9-km 
to 1-km resolution (hereafter SM1). This SM1 product has been validated in CONUS (Fang et al., 
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2020), Australia (Fang et al., 2021), and at a global scale (Fang et al., 2022). In this study, we obtained 
SM1 from the global scale product (Fang et al., 2022), and extracted the 18:00 LT, similar to the SM9. 

5.3. Methodology 

5.3.1. Principle of the Hydrological SWAT Model in Streamflow Simulation 

The Soil and Water Assessment Tool (SWAT) is a physically based, semi-distributed hydrologic model 
that simulates various hydrologic variables at time steps (i.e., daily, monthly, and yearly) at catchment 
scale. The Hydrologic Response Unit (HRU) is the basic spatial unit of the SWAT model. Runoff 
generation is estimated at the HRU level, and is then routed to sub-basins and, subsequently, to the 
entire basin (Neitsch et al., 2011). In the SWAT model, runoff generation is the sum of three 

components—surface runoff (𝑄𝑠𝑢𝑟𝑓), lateral flow (𝑄𝑙𝑎𝑡) and groundwater (𝑄𝑔𝑤). The mathematical 

expression of these three components is described in the following. 

Table 5. 3 Description of data used for SWAT and data assimilation framework in this study. 

Attributes Data Type Description Period(s)/  
Resolution 

Sources 

Climatic  
data 

Precipitation IMERG Final Run 
V6 

2011–2019/0.10° (Hou et al., 2014) 

Max-, min- air temperature CFSR vs2 2011–2019/0.25° (Saha et al., 2014) 

Catchment  
attributes 

Land use land cover MCD12Q1 2016/500m (Friedl and Sulla-Menashe, 
2019) 

Soil HWSD -/1km (Nachtergaele et al., 2009) 

Digital Elevation Model HydroSHEDS -/90m (3sec) (Lehner et al., 2008) 

Data assimilation  
variable 

Soil moisture SMAP 2015–2019/9-km (Entekhabi et al., 2010) 

Soil moisture Downscaled 
SMAP 

2015–2019/1-km (Fang et al., 2022) 

Ground data Streamflow 
Eight hydrological 

stations 
2013–2019 VMHA* 

*VMHA Vietnam Meteorological and Hydrological Administration 

The surface runoff process is a function of daily rainfall (𝑅𝑑𝑎𝑦, unit in mm) and the retention 

parameter (𝑆, unit in mm) based on the empirical formula using Soil Conservation Service (SCS) Curve 
Number (CN) method (SCS, 1972). 

𝑄𝑠𝑢𝑟𝑓 =
(𝑅𝑑𝑎𝑦 − 0.2 ∙ 𝑆)

2

𝑅𝑑𝑎𝑦 + 0.8 ∙ 𝑆
 (5.1) 

 

 

The retention parameter S is calculated as follows. 



79 
 

𝑆 = 𝑆𝑚𝑎𝑥 (1 −
𝑆𝑊

𝑆𝑊 + exp (𝑤1 − 𝑤2 ∙ 𝑆𝑊)
) 

(5.2) 

 

 

Where 𝑆𝑚𝑎𝑥 is the maximum value the retention parameter can obtain from any given day (mm). SW 
is the total soil moisture (in mm) of the entire profile excluding the amount of water held at the wilting 

point. 𝑤1 and 𝑤2 are shape coefficients. 

The shape coefficients (𝑤1 and 𝑤2) are calculated as follows: 

𝑤1 = 𝑙𝑛 [
𝐹𝐶

1 − 𝑆3 ∙ 𝑆𝑚𝑎𝑥
−1

− 𝐹𝐶] + 𝑤2 ∙ 𝐹𝐶 (5.3) 

𝑤2 =
(𝑙𝑛 [

𝐹𝐶
1 − 𝑆3 ∙ 𝑆𝑚𝑎𝑥

−1 − 𝐹𝐶] − 𝑙𝑛 [
𝑆𝐴𝑇

1 − 2.54 ∙ 𝑆𝑚𝑎𝑥
−1 − 𝑆𝐴𝑇])

(𝑆𝐴𝑇 − 𝐹𝐶)
 

(5.4) 

Where 𝐹𝐶 is field capacity, 𝑆𝐴𝑇 is the amount of water when the soil profile is completely saturated 

(mm), and 2.54 is the retention parameter at the 𝐶𝑁 = 99. 𝑆3 (mm) and 𝑆𝑚𝑎𝑥 (mm) are retention 

parameters, calculated given 𝐶𝑁1 (dry condition) and 𝐶𝑁3 (normal condition) as follows. 

𝑆 = 25.4 ∙ (
1000

𝐶𝑁
− 10) (5.5) 

 

 

Where 𝑆𝑚𝑎𝑥 = 25.4 ∙ (
1000

𝐶𝑁1
− 10), and 𝑆3 = 25.4 ∙ (

1000

𝐶𝑁3
− 10) 

The 𝐶𝑁1 and 𝐶𝑁3 are calculated given 𝐶𝑁2value (given as SWAT model input) as follows: 

𝐶𝑁1 = 𝐶𝑁2 −
20 ∙ (100 − 𝐶𝑁2)

(100 − 𝐶𝑁2 + 𝑒𝑥𝑝[2.533 − 0.0636 ∙ (100 − 𝐶𝑁2)])
 (5.6) 

𝐶𝑁3 = 𝐶𝑁2 ∙ 𝑒𝑥𝑝[0.00673 ∙ (100 − 𝐶𝑁2)] (5.7) 

After the surface runoff is formed, the rest of water infiltrates the land to generate soil water inflow. 

Lateral flow (𝑄𝑙𝑎𝑡, unit in mm ) in each soil layer is given as follows: 

𝑄𝑙𝑎𝑡 = 0.024 ∙ (
2 ∙ 𝑆𝑊𝑙𝑦.𝑒𝑥𝑐𝑒𝑠𝑠 ∙ 𝐾𝑠𝑎𝑡.𝑙𝑦 ∙ 𝑠𝑙𝑝

𝜑𝑑 ∙ 𝐿ℎ𝑖𝑙𝑙
)  

 

(5.8) 

Where 𝐾𝑠𝑎𝑡.𝑙𝑦 is saturated hydraulic conductivity (mm/hr) at layer 𝑖 (𝑖 =1, 2, 3), 𝑠𝑙𝑝 is the steepness 

of a slope (m/m), 𝜑𝑑 is the drainable porosity of the soil layer (mm/mm), and 𝐿ℎ𝑖𝑙𝑙 is the hillslope 

length (m). In addition, 𝑆𝑊𝑙𝑦.𝑒𝑥𝑐𝑒𝑠𝑠 is the amount of soil water that exceeds field capacity at layer 𝑖 (𝑖 
=1, 2, 3), is given as follows. 

𝑆𝑊𝑙𝑦,𝑒𝑥𝑐𝑒𝑠𝑠 = 𝑆𝑊𝑙𝑦 − 𝐹𝐶𝑙𝑦 𝑖𝑓 𝑆𝑊𝑙𝑦 > 𝐹𝐶𝑙𝑦 

𝑆𝑊𝑙𝑦,𝑒𝑥𝑐𝑒𝑠𝑠 = 0 𝑖𝑓 𝑆𝑊𝑙𝑦 ≤ 𝐹𝐶𝑙𝑦 

(5.9) 
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Where 𝑆𝑊𝑙𝑦 and 𝐹𝐶𝑙𝑦 are the water content of the soil layer 𝑖 (𝑖 =1, 2, 3), on a given day (mm) and 

at field capacity (mm). 

The 𝑆𝑊𝑙𝑦, if it exists, also generates deep percolation (𝑄𝑝𝑒𝑟𝑐,𝑙𝑦, unit in mm) (from one layer to the 

underlying layer) as follows: 

𝑄𝑝𝑒𝑟𝑐,𝑙𝑦 = 𝑆𝑊𝑙𝑦,𝑒𝑥𝑐𝑒𝑠𝑠 (1 − 𝑒𝑥𝑝 ⌊
−∆𝑡 ∙ 𝐾𝑠𝑎𝑡,𝑙𝑦

𝑆𝐴𝑇𝑙𝑦 − 𝐹𝐶𝑙𝑦
⌋) (5.10)  

 

 

Where ∆𝑡 is the time step (hr). The soil water at the third layer percolates to vadose zones and 
groundwater (shallow aquifer layer). We focus on assimilating the soil moisture dynamic but do not 
consider the ‘revap’ process—water may move from shallow aquifers to overlaying unsaturated zones. 

5.3.2. Setup the Hydrological SWAT Model 

To set up the SWAT model across various catchment size basins, we (i) defined the same threshold 
to create a river network (i.e., 30 km²) when using the DEM to delineate watersheds; (ii) set up a 
similar slope band setup (0-, 5-, 10-, 30-, and 50- degree). 

For the climatic data inputs, using Thiessen polygon areal weighted average method (Thiessen, 1911), 
we calculated the mean areal precipitation for each sub-basin from gridded IMERG precipitation and 
the mean areal air temperature (i.e., maximum and minimum) for each sub-basin from gridded CFSR 
V2. Therefore, the precipitation and air temperature points as input for the SWAT models are equal 
to the total of the sub-basins. 

To create HRU units, DEM, land use, and soil data are required. The 90-m void-filled digital elevation 
model (DEM) has been obtained from the hydrological data and maps based on SHuttle Elevation 
Derivatives at multiple Scales (HydroSHEDS, hydrosheds.org) (Lehner, 2012; Lehner et al., 2008). 
The HydroSHEDS DEM has provided a reliable watershed delineation for the given studied basins 
with the difference between the catchment area generated from HydroSHEDS DEM and metadata 
being within ± 15%. The 500-m land use land cover presented in this study is obtained from Collection 
6 MODIS Land Cover (MCD12Q1 and MCD12C1) (Friedl and Sulla-Menashe, 2019) from the Land 
Processes Distributed Active Archive Center (LP DAAC, 
https://lpdaac.usgs.gov/products/mcd12q1v006/). The MODIS Land cover provides 17 different 
land cover types annually from 2001 to 2019. This study obtained 2016 land cover as representing the 
land use in the given studied areas. Furthermore, this study reclassified the original 17 land cover types 
to 10 land cover types to match with the SWAT format. This study used 1-km Harmonized World 
Soil Database (HWSD) version 1.2 maintained by the Food Agriculture Organization (FAO, 
http://www.fao.org) (Kansara and Lakshmi, 2021; Nachtergaele et al., 2009). To prepare soil inputs 
for SWAT, we reclassified the HWSD’s soil mapping unit (SMU) to the FAO soil symbol, assigned 
soil properties for each soil layer using the HWSD database, and used soil water characteristics 
equations from Saxton and Rawls (2006) to create a proper user soil format for SWAT. Normally, two 
soil layers’ profiles are created (i.e., 0–300mm, 300–1,000mm). However, SMAP can only measure soil 
moisture at the depth of 0–50 mm. Therefore, to have a realistic assimilation process, we re-classified 
the soil profile of SWAT from two layers to three layers (0–50 mm, 50–300mm, and 300–1000m) 
(Patil and Ramsankaran, 2017). All described spatial processing (watershed delineation and HRU 
creation) have been conducted in QGIS v2.6.1 and QSWAT v1.7 (Dile et al., 2016). Summarized 
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descriptions of previously described datasets in Section 2 and DEM, soil, land use datasets for setup 
SWAT model are given in Table 5. 3. The detailed climatic conditions, catchment attributes and model 
setup information (sub-basins and HRUs) are provided in the Appendix 12. 

With respect to the parameterization of the SWAT model, we selected the warm-up, calibration and 
validation periods as 2011–2012, 2013–2016, and 2017–2019, respectively. Thirteen different 
parameters (see Appendix 13), which impact surface runoff, evaporation, soil moisture, and channel 
routing in the SWAT model, have been chosen for the parameterization. The parameters’ turning 
process was undertaken with the SUFI-2 algorithm that is built in to the SWAT-CUP software 
(Abbaspour, 2013). In the end, we optimized the best suitable parameters for each catchment for daily 
streamflow simulation. The SWAT driven simulation at this step is considered as a deterministic 
SWAT model. 

 

Figure 5. 2 Flow chart of this study. EnKF-SM9 and EnKF-SM1 stand for streamflow simulations using the 
SWAT model with the state variable of SM9 and EnKF technique, and streamflow simulations using the SWAT 
model with the state variable of downscaled SM1 and EnKF technique, respectively. 

5.3.3. Data Assimilation - Ensemble Kalman Filter (EnKF) 

5.3.3.1. Bias Correction of Observed SM and Ensembles Generation 

The EnKF is a sequential data assimilation technique that is best applied using unbiased observations. 
To limit error covariance of the modeled and observed states in the EnKF, systematic errors between 
satellite SM retrievals and model states must be corrected before assimilation. It is assumed that long-
term statistics of model states are consistent with those of in-situ SM (Lievens et al., 2015), thus the 
model simulated states are normally used to correct biases in the satellite SM retrievals. We first 
estimated observed SM (from SM9 and SM1) for the topsoil layer (0–50 mm) for each HRU by 
calculating average satellite-observed SM at each sub-basin using the areal weighted average method 
(Thiessen, 1911). The systematic differences between modelled (i.e., open loop) and remote sensing 
of soil moisture were then corrected using a mean-variance approach (Patil and Ramsankaran, 2017). 
From the mean-variance matching, both model simulated SM and observed SM were estimated on 
monthly timescale and HRU spatial scale. The bias corrected SM was then used for the next analysis. 
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We generated 100 ensembles using the Latin Hypercube sampling technique (Patil and Ramsankaran, 
2017) and defined ranges of error variances used for generating ensemble of model forcing, soil field 
capacity and observed soil moisture states (see Appendix 14). Since we employed this EnKF data 
assimilation framework in multiple catchments with different climatic conditions, as well as with two 
different SM products, we assessed the error variances for each perturbed variable. 

5.3.3.2. EnKF algorithm 

The EnKF is a Monte Carlo approximation (i.e., ensemble) of the standard Kalman Filter for use in a 
non-linear model. It uses an ensemble of modelled states in a Bayesian-based auto-recursive analysis 
framework to optimally merge model estimates with state observations (i.e., SM). The EnKF was 
operated in two steps as follows. 

Step 1—Uncertainties from the ensemble of modeled forecasts and ensemble of observations 

During the soil water routing progress at any time step, at each HRU, the ensemble of model state 
(i.e., soil moisture) forecast is given as below. 

𝑥𝑘+1
𝑖− = 𝑴(𝑥𝑘

𝑖+, 𝑈𝑘
𝑖 ) + 𝑤𝑘+1 (5.11) 

 

 

Where 𝑴 is a non-linear model, which is the hydrological SWAT model in this study. The superscript 

𝑖 represents a matrix of state ensembles with the forecast state (sign ‘-‘), and analyzed state (sign ‘+’). 

The subscript 𝑘 represents the time step. 𝑈𝑘
𝑖  is an ensemble of the model forcing. In this case, 𝑈 is 

perturbed precipitation. 𝑤𝑘+1 is Gaussian white noise representing the error due to uncertainties of 
forcing and model structure. Further, the ensemble of observations using the ensemble of states is 
calculated as follows. 

�̂�𝑘+1
𝑖 = 𝑯𝑘𝑥𝑘+1

𝑖− + 𝑣𝑘+1 (5.12) 

 

 

Where �̂� is the model predicted observation ensemble at time 𝑘 + 1. 𝑯 is the observation operation 

to match the model states with the observations. Here, 𝑯 is the areal weighted average soil moisture 

at HRU. 𝑣 is the observation error, with separation of model errors and assumption of normally 

distributed with covariance ∑𝑧
𝑘+1 . 

Step 2- Data assimilation progress 

The model forecasts are updated towards observations using Kalman Gain matrix (𝑲) ‘s weights as, 

𝑥𝑘+1
𝑖+ = 𝑥𝑘+1

𝑖− + 𝑲(𝑧𝑘+1
𝑖 − �̂�𝑘+1

𝑖 ) (5.13) 

 

 

Where 𝑥𝑘+1
𝑖− , 𝑥𝑘+1

𝑖+  represent an ensemble of model forecasts and of state after assimilation, 

respectively. 𝑧𝑘+1
𝑖  is an observation ensemble generated using the observation covariance matrix 

∑𝑧
𝑘+1 . 

The best linear unbiased estimation of 𝑥𝑘+1
𝑖+  when the Kalma gain is calculated as, 
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𝑲 = ∑ [∑
𝑍𝑍

𝑘+1
+ ∑

𝑍

𝑘+1
]

𝑋𝑍

𝑘+1

−1

 (5.13) 

 

 

Where ∑𝑍𝑍
𝑘+1 is the covariance of the model predicted observation ensemble obtained from 𝑯𝑘𝑥𝑘+1

𝑖− . 

∑𝑋𝑍
𝑘+1 is the cross variance of the model forecast and observation prediction. After that, we resample 

the analyzed model state back into original layers at each HRU. The update retention parameters and 
soil moisture routing prior to the next step (t+1) are calculated as the equations (5.2) and (5.9), 
respectively. 

Figure 5. 2 Flow chart of this study. EnKF-SM9 and EnKF-SM1 stand for streamflow simulations 
using the SWAT model with the state variable of SM9 and EnKF technique, and streamflow 
simulations using the SWAT model with the state variable of downscaled SM1 and EnKF technique, 
respectively. presents the flowchart of this study with detailed steps for each of the simulation 
scenarios: the open-loop model (hereafter OL); the assimilation of SM9 into the SWAT model with 
the EnKF technique (hereafter EnKF-SM9); and the assimilation of SM1 into the SWAT model with 
the EnKF technique (hereafter EnKF-SM1). The DA evaluation is in the period of 2017–2019 because 
this is the same as the validation period of the deterministic SWAT model. 

5.3.4. Streamflow Performance Metrics 

The modified Kling–Gupta efficiency (𝐾𝐺𝐸, (Kling et al., 2012)) was used to evaluate streamflow 
simulations, with its formula as follows. 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 (5.14) 

 

 

In which: 

𝑟 is the Pearson correlation coefficient, reflecting the error in shape and timing between observed and 
simulated streamflow. 

𝛽 is the bias term, evaluating the bias between observed and simulated streamflow. 

𝛾 is the ratio between coefficients of variation in observed and simulated streamflow, assessing the 
flow variability error with bias consideration. 

We also calculated the benefit of the DA by using the Efficiency Index (𝐸𝑓𝑓)(Massari et al., 2015), 
expressed as 

𝐸𝑓𝑓 = 1 −
∑ (𝑄𝑑𝑎,𝑘 − 𝑄𝑜𝑏𝑠,𝑘)

2𝑛
𝑘=1

∑ (𝑄𝑜𝑙,𝑘 − 𝑄𝑜𝑏𝑠,𝑘)
2𝑛

𝑘=1

 (5.15) 

 

 

Where 𝑛 represents the total time steps. 𝑄𝑑𝑎,𝑘, 𝑄𝑜𝑙,𝑘, and 𝑄𝑜𝑏𝑠,𝑘 denote the simulated streamflow 

with data assimilation, simulated streamflow without data assimilation (open loop), and observed 
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streamflow at time step 𝑘, respectively. 𝐸𝑓𝑓 > 0 denotes an improvement in streamflow simulation 

after implementing the DA scheme and vice versa for 𝐸𝑓𝑓 ≤ 0. 

To focus on different aspects of flow time series, we transformed the flow time series before 

calculating 𝐾𝐺𝐸 or 𝐸𝑓𝑓, as follows (Santos et al., 2018). 

- Normal streamflow time series (hereafter 𝑄𝑛𝑜𝑟), to have more weights on high flow. 

- Square root streamflow time series (hereafter 𝑄𝑠𝑞𝑟), to have more weights on average flow. 

- Inverse streamflow time series (hereafter 𝑄𝑖𝑛𝑣), to have more weights on low flow. 

It is noted that with inverse streamflow transformation, to avoid zero flow, we added 1/100 of mean 
observed flow before the transformation. 

5.4. Results and Discussion 

5.4.1. Characteristics of Soil Moisture SMAP Products 

During the period of 2017–2019, apart from July, the average available data for SM9 across the studied 
catchments is approximately 35% in each month (Figure 5. 3). In July, a significant reduction in 
coverage of SM9 (below 25%) was observed. This is likely due to a large gap in July 2019 (see Appendix 
15) because SMAP satellite was in a safe mode and did not provide the observed soil moisture 
information (O'Neill et al., 2020). The averaged coverage of SM1 was only one third of that of SM9 
(approximately 11.5% in each month) and was 5% in July. The reason for SM1′s low coverage in July 
is similar to that of SM9 as the SM1 is the downscaled product of SM9 and therefore inherits the gap 
from SM9. 

 

Figure 5. 3 Radar chart of average soil moisture available data (in percent) over 8 catchments in each month 
for SMAP 9km (SM9) and SMAP 1km (SM1) during 2017–2019. 
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The relationship between estimated SM value from SM9 and SM1 presented in Figure 5. 4. Two small 
catchments—gvo and aho (<500 km², Figure 5. 4a, b)—exhibited weak correlation between the two 
SM datasets as compared to the larger catchments. In these small catchments, the SM1 product seems 
to estimate higher SM value as higher density points are observed at the lower part of 1-1 line. 

 

Figure 5. 4 Comparison between soil moisture volume metric estimated at sub-basins over eight catchments (a) 
gvo, (b) aho, (c) bye, (d) slu, (e) chu, (f) gso, (g) nkh, and (h) xla using SM9 and SM1. The points colors indicate 
points density, with more red meaning higher points density. The values in the bottom right indicate correlation 
values between the two soil moisture datasets. n is the total pair days which both SM9 and SM1 have values at 
a sub-basin. 

Figure 5. 5 illustrates the proficiency of two SM products for reflecting a dry-down event in a medium-
sized bye catchment. We used precipitation and SM to examine the drying of soil over time with 
respect to a rainfall event. After the rainfall event on April 4, 2018 (average 8.5 mm for the entire 
catchment), the catchment received less rainfall in subsequent days, and almost no rainfall after April 
8. During the same period, we noted that both SM products exhibited similar dry down patterns. It is 
possible that SMAP observed the near-surface soil moisture conditions as they transitioned from 
saturated to dry conditions. Inter-comparison between these two SM products highlights the 
additional spatial patterns in soil moisture provided by each product. The SM1 dataset provides 
detailed variation in SM in space as compared to the SM9 dataset, demonstrated by its high standard 
deviation values (Figure 5. 5c). However, we also see the coverage of SM1 was not complete for the 
entire catchment. This is because of the limited coverage of this product due to its dependence on 
LST data, which is influenced by cloud cover. 

5.4.2. Performances of Deterministic Hydrological SWAT Model in Simulating 

Streamflow 

The statistical metrics for the SWAT model are presented in Table 5. 4, and optimized parameter sets 
of the SWAT model for each basin are provided in Appendix 11. The model performances for high 

flow (𝑄𝑛𝑜𝑟) and average flow (𝑄𝑠𝑞𝑟) were satisfactory, with median KGE values of 

calibration/validation of 0.617/0.607 for high flow and 0.702/0.695 for average flow (Table 5. 4). The 
SWAT streamflow simulations are robust across the catchments (all KGE values were greater than 
0.5), except for aho and slu catchments. It is likely that the rainfall patterns in these basins could be 
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affected by topography (Le et al., 2020a; Trinh-Tuan et al., 2019a). The streamflow simulation for low 

flow (𝑄𝑖𝑛𝑣) was relatively poor, with a median KGE of -0.263 and -0.086 for the calibration and 
validation periods, respectively. This poor performance for low flow has also been observed in 
previous studies (De Santis et al., 2021). 

 

Figure 5. 5 Spatial variation in a dry-down event in bye catchment from April 4, 2018, to April 9, 2018, with 
soil moisture SMAP 9km (SM9, a1, a2, a3), soil moisture SMAP 1km (SM1, b1, b2, b3), and (c) time series of 
dry-down event at the same period from GPM IMERG (black bar) and SM9 (blue) and SM1(red). The error 
bars indicate standard deviation of SM variation in the catchment. 

5.4.3. Temporal Variation for Open Loop, EnKF-SM9, and EnKF-SM1 

Generally, soil moisture profiles across sub-basins in each catchment are mostly similar. For an 
illustrated purpose, we present here profiles of a sub-basin at xla river basin (>6,000 km²) in terms of 
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precipitation, estimated SM from the open loop, EnKF-SM9, and EnKF-SM1 models for topsoil layer 
(0-50 mm), during the year of 2019 (Figure 5. 6). It is interesting that variation in topsoil SM does not 
exhibit strong correlation with variation in precipitation. This observation is different from another 
study in the tropical regions (Patil and Ramsankaran, 2017).  

Table 5. 4 Statistical metrics for calibration and validation period with deterministic SWAT model. 𝐾𝐺𝐸𝑛𝑜𝑟, 
𝐾𝐺𝐸𝑠𝑞𝑟, and 𝐾𝐺𝐸𝑖𝑛𝑣 indicate performances with 𝑄𝑛𝑜𝑟 (more weight on high flow), 𝑄𝑠𝑞𝑟 (more weight on average 

flow), and 𝑄𝑖𝑛𝑣 (more weight on low flow), respectively. 

Station Name Calibration (2013–16) Validation (2017–19) 

KGE_nor KGE_sqr KGE_inv KGE_nor KGE_sqr KGE_inv 

gvo 0.623 0.703 0.413 0.670 0.686 0.674 

aho 0.486 0.613 -0.984 0.417 0.462 -0.382 

bye 0.786 0.864 0.176 0.575 0.796 0.259 

slu 0.334 0.598 0.419 0.303 0.410 -0.089 

chu 0.611 0.312 -2.708 0.694 0.470 -1.774 

gso 0.757 0.718 -2.727 0.639 0.704 -0.977 

nkh 0.542 0.700 -0.701 0.513 0.788 -0.082 

xla 0.698 0.786 0.479 0.681 0.750 0.650 

median 0.617 0.702 -0.263 0.607 0.695 -0.086 

 

Figure 5. 6 Profile of a sub-basin of xla river basin during the year of 2019 for temporal variation in (a) areal 
precipitation; (b) soil moisture at the topsoil layer (0–5 mm) of OL, EnKF-SM9 model and observed SM9; (c) 
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soil moisture at the topsoil layer (0–50 mm) of OL, EnKF-SM1 model and observed SM1; (d) zoom of the last 
ten days in January 2019 (box A); (e) zoom of the last ten days in September 2019 (box B). 

The relationship between topsoil SM and precipitation is even weaker when we examine it at smaller 
catchments (data not shown). Looking at details for typical 10-day periods in January 2019 (box A) 
and September 2019 (box B), we found the impacts of the DA framework on the SM simulations. 
Specifically, the SM simulations with the DA had drier down or more fluctuation as compared to 
simulations without DA, according to the variation in observed SM from SM9 and SM1. With respect 
to temporal simulated streamflow, the OL-based SWAT model produced results quite similar to the 
simulated time series from the deterministic SWAT model (Figure 5. 7a). On the other hand, the 
simulated streamflow from EnKF-SM9-SWAT and EnKF-SM1-SWAT are slightly better, with higher 

𝐾𝐺𝐸𝑠𝑞𝑟 values (Figure 5. 7a). When we examined the error density between the observed and 

simulated streamflow from different simulation scenarios, the error density from EnKF-SM1-SWAT 
had the peak closest to the zero-error vertical line (Figure 5. 7b). 

 

Figure 5. 7 (a) Streamflow hydrograph comparison, and (b) error density between observed and simulated 
streamflow from different hydrological SWAT simulation scenarios during the year of 2019 at xla river basin. 
The black dash line in (b) is the zero error vertical line. The inlet panel in (b) zooms in the peak error density 
from different simulation scenarios. 

5.4.4. Statistical Performances for Data Assimilation with SM9 and SM1 

Figure 5. 8 represents boxplots of streamflow simulations from the OL, EnKF-SM9, EnKF-SM1 
models in two cases- all catchments (n=8) and catchments > 500 km² (n=6). The defined error values 
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for each basin for EnKF-SM9 and EnKF-SM1 are provided in Appendix 17 and Appendix 18, 
respectively. Overall, in the high flow assessment metric (Figure 5. 8a), the EnKF-SM1 model was 
slightly better than the OL model at either consideration of all catchments or catchments greater than 
500 km². Meanwhile, the EnKF-SM9 model was only better than the OL model in the case of 
catchments greater than 500 km². We interpret this result as evidence that the high-spatial SM1 is 
robust in all types of catchments, while the SM9 is too-coarse for small watersheds. Furthermore, the 
assessment of average flow provided the same conclusion (Figure 5. 8b). This finding is similar to 
Abbaszadeh et al. (2020), as it implies the importance of spatial resolution over temporal resolution, 
but is in contrast to the work of Azimi et al. (2020). 

On the other hand, low flow assessment (Figure 5. 8c) revealed that the EnKF-SM9 model had a 
higher median KGE score than the OL-model, either at all catchments or at catchments > 500 km². 
This may be because the OL model considers forecast error by perturbing rainfall forcing only, while 
the EnKF-SM9 model considers both forecast error and model error by perturbing rainfall forcing 
and soil moisture. The soil water content changes are more sensitive with changes in low flow in dry 
conditions than high flow in wet conditions or average flow. 

 
Figure 5. 8 Performance metrics in streamflow simulation in (a) normal-, (b) square root-, and (c) inverse-time 
series for open loop (OL)-, EnKF-SM9-, and EnKF-SM1-based SWAT model during the period 2017-2019. 
With respect to all catchments, total simulated catchments are 8. With respect to catchments having an area 
greater than 500 km², total simulated catchments are 6. 

5.4.5. Assessment of Factors Impact on DA Performances 

We examined the relationship between the Efficiency index (𝐸𝑓𝑓) with the available SM for two DA 
models, EnKF-SM9 and EnKF-SM1 (Figure 5. 9). From all flow types (high, average, and low flow), 
the EnKF-SM1 models exhibited higher Eff scores than the EnKF-SM9 models. When we excluded 
small catchments (< 500 km²), higher Eff scores were observed for EnKF-SM models. Since SM1 has 
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a shorter data record, our results suggest that spatial information plays a more important role than 
temporal information. We also found that the SM1 available day has a significant positive correlation 

with 𝐸𝑓𝑓 scores, while this relationship for available SM9 is not significant (see Appendix 19), 
suggesting a potential approach for improving the high-spatial SM-based DA model that increases its 
temporal information. 

 

Figure 5. 9 Comparison between average efficiency index of streamflow simulation using assimilation of EnKF-
SM9 model and assimilation of EnKF-SM1 model and OL-based model for all catchments (a, b, c) and 
catchments > 500 km² (d, e, f). Points above zero-dash line indicate an improvement in streamflow simulation 
after implementing the data assimilation framework as compared with the OL-based model simulation. 

The relationships between the 𝐸𝑓𝑓 and normalized different vegetation index (NDVI) for average 
flow, high flow, and low flow are given in Figure 5. 10a, b and c. Catchments with dense vegetation 

(higher NDVI values) seem to have lower 𝐸𝑓𝑓 scores, reflecting the limitations of satellite-based SM 
to accurately capture soil water content at these dense vegetated catchments. This result is consistent 
with that of Azimi et al. (2020). However, our results provide new insight. When we compared the 
two SM-based models, the EnKF-SM1 seems to have less dependence with NDVI, demonstrated by 

its 𝐸𝑓𝑓 not being significantly reduced when NDVI values were high, as compared to the departure 

of 𝐸𝑓𝑓 of the EnKF-SM9 model. 

5.5. Conclusions and Further Studies 

As satellite-based remote sensing technology continues to advance, operational applications of 
satellite-based soil moisture products are becoming more routine. These valuable earth observations 
are proving to be a significant addition to several water resource management applications. However, 
there remain many unanswered questions regarding the most effective approach for integrating these 
data, as well as how temporal resolution, spatial resolution, and data record length affect their utility. 
The primary goal of this study was to address some of these questions and examine the trade-offs 
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between optimal spatial vs optimal temporal resolution for two remotely sensed soil moisture (SM) 
products in a hydrologic data assimilation framework. Two remotely sensed SM datasets—downscaled 
SMAP 1km (SM1) and SMAP 9km (SM9)—were assimilated in the hydrological model (Soil and Water 
Assessment Tool, SWAT) using the Ensemble Kalman Filter (EnKF) algorithm. The effect of basin 
size was assessed by comparing simulated streamflow performance in eight catchments ranging in size 
from 267km² to 6,430 km² across tropical Vietnam. 

 

Figure 5. 10 Relationship between efficiency of data assimilation for (a) 𝐸𝑓𝑓𝑛𝑜𝑟(high flow score); (b) 

𝐸𝑓𝑓𝑠𝑞𝑟(average flow score); and (c) 𝐸𝑓𝑓𝑖𝑛𝑣(low flow score) time series with average NDVI values over eight 

catchments. 

Model fidelity was influenced by both temporal and spatial resolution, however, the DA-based models 
were slightly better than the open-loop models in three aspects of flow assessment with KGE metrics 
(low, average, and high flow). In addition, the EnKF-SM1 model was more pronounced, especially 
for small catchments. This indicates that the improvement in the streamflow simulation due to 
assimilated soil moisture is more significant in catchments where downscaled SMAP 1km has fewer 
missing observations. We also found that the vegetation effects on soil moisture are less significant in 
the EnKF-SM1 models compared to EnKF-SM9 models, further demonstrating the reduced 
uncertainty in streamflow from applying the finer spatial resolution soil moisture product. To this end, 
this study demonstrates the potential benefits of higher spatial resolution remotely sensed SM for 
improving hydrologic applications. 

Overall, the results of this study provide useful information for developers of satellite-based SM 
product for improving their soil moisture retrieval algorithms at a global scale, especially in tropical 
regions. In addition, we conclude that optimal strategies for the integration of satellite-based soil 
moisture in hydrologic models must carefully consider basin size, climate, land cover, and, perhaps 
most importantly, the spatial and temporal resolution of the satellite-based products. 
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Chapter 6: Conclusions and further studies 

6.1. Conclusions 

As global datasets (observations from satellite-based remote sensing and outputs from land surface 
models) continue to advance, operational applications of global datasets-based products require 
increased scrutiny. These global datasets prove to be useful assets to support water resources 
management (WRM) at the local scale. However, there are still doubts on the reliability of global 
datasets across different regions in the globe, making it difficult for decision makers to confidently 
rely on information obtained from these data products. This dissertation fills this gap and provides 
large-scale validation of global datasets over an under-represented region for ground networks. The 
studies adopted a large sample approach to investigate the usefulness of different global datasets to 
support WRM across Vietnam. Table 6.1 provides a summary of investigated datasets, their utilities 
for WRM, and key findings obtained from this dissertation.  

Several novel methodologies and frameworks to utilize global datasets in different WRM applications 
have been proposed in this dissertation. In Chapter 2, an empirical climatology-topography-based 
linear-scaling approach (CTLS) was developed to correct TMPA rainfall products. Specifically, a linear 
scaling approach with a set of 12 empirical multiple linear regression equations was formed based on 
the moderate correlation between climatological- and topographical- characteristics and correction 
factors. The CTLS can reduce TMPA’s percentage bias (e.g., averaged |PBIAS| decreased by 15% in 
wet season for TMPA 3B42RT) and could be applied across the studied river basin even in areas 
without rain gauge. In Chapter 3, we characterize drought conditions derived from a re-analysis 
MERRA-2 dataset at a very high spatial resolution (1km), while previous studies often attempted 
drought conditions at a spatial resolution larger than or equal to 10km. The high spatial resolution 
dataset quantifies high spatial variation of drought conditions and brings the MERRA-2 dataset closer 
to the scale of WRM applications, which requires information over a few square kilometers. We 
proposed a study framework in Chapter 4 to select suitable gridded precipitation products to drive 
hydrological model streamflow simulations. A set of catchments (6 catchments) corresponding to six 
climate zones and 9 different precipitation products (rain gauge + 8 different gridded precipitation 
products) have been employed to form 54 different hydrologic models (6 x 9), where each model was 
separately calibrated to utilize each precipitation dataset input. With this intensive model experiment, 
this study exhibited that precipitation estimated from IMERG data could be an alternative forcing 
input to rain gauge (traditional forcing input) to drive hydrologic model streamflow simulation, 
especially for catchments with a low rain gauge density. In remotely sensed soil moisture data 
assimilation in a hydrologic model, there remains an unanswered question regarding how temporal 
and spatial resolution impact model performance. Therefore, we addressed this concern in Chapter 5 
by examining the trade-offs between optimal spatial versus optimal temporal resolution for two 
remotely sensed soil moisture products in a hydrologic data assimilation framework. These products 
include SMAP 9km with low spatial resolution, but more temporal values, and its downscaled SMAP 
1km that has high spatial resolution, but less temporal values. Additionally, we also employed the 
hydrologic data assimilation framework in a set of large sample catchments (8 catchments), while 
previous studies performed such evaluation over a few catchments.  
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Table 6. 1 Summary of four studies in this dissertation and their utilities for water resources management 
(WRM). 

Variables Global  
datasets* 

Local 
datasets  

Reference 
datasets 

Key  
Findings 

Utility for  
WRM 

Precipitation1 3B42RT (P) 
3B42V7 (P) 

Rain gauge Rain gauge (1) TMPA’s rainfall estimation in wet 
season is better than dry season. (2) 
TMPA’s rainfall estimation can be 
improved using climatology-topography-
based linear-scaling approach 

Adjusted TMPA products can 
reliably estimate rainfall at areas 
where rain gauge is absence 
over the Red-Thai Binh River 
basin. 

Drought 
indices2 

MERRA-2  
(P, T) 

Rain gauge 
Meteorologi
cal stations 

Official 
drought 
records 

(1) Drought characteristics was sensitive 
to spatial resolutions. (2) Validation of 
MERRA-2 data showed reasonable 
results. (3) Drought exhibited 
contradictory trends in North and South 
Vietnam during 1989-2019.  

Feasibility of using a model-
based drought index in data-
sparse areas for long-term trend 
drought analysis, and for 
practical applications of 
advanced re-analysis products 
in water resources 
management. 

Streamflow3 3B42RT (P) 
CHIRP (P) 
PERSIANN (P) 
IMERGE-V6 
(P) 
3B42V7 (P) 
CHIRPS (P) 
PERSIANN-
CDR (P) 
IMERGF-V6 
(P) 

Rain gauge Rain gauge 
Observed 
streamflow  

(1) IMERGF-V6 achieved the best overall 
performance among satellite-derived 
precipitation estimates (SPE) datasets. (2) 
There is a confidence for using SPE in 
determining monthly streamflow in large 
river basins. 

This study could be a guide to 
determine the suitability of 
different SPE products for 
hydrological simulations. For 
example, IMERGF-V6 can be a 
suitable precipitation forcing 
product for hydrological model 
streamflow simulation. 
CHIRPS can be a reasonable 
product for drought analysis. 

Streamflow4 IMERGF-V6 
(P) 
SMAP 9km 
(SM) 
SMAP 1km 
(SM) 

 Observed 
streamflow 

(1) High-spatial resolution of downscaled 
SMAP 1 km is more beneficial in the data 
assimilation framework in aiding the 
accuracy of streamflow simulation, as 
compared to that of SMAP 9 km, 
especially for the small catchments. (2) 
Improvement in the streamflow 
simulation with data assimilation is more 
significant at catchments where 
downscaled SMAP 1 km has fewer 
missing observations. 

High spatio-temporal 
resolution of remotely sensed 
soil moisture could be useful in 
a data assimilation hydrologic 
model streamflow simulation 
framework in small catchments. 

Note: 
1Materials from chapter 2; 2Materials from chapter 3; 3Materials from chapter 4; 4Materials from chapter 5. 
* Acronym for global datasets.  
“3B42RT” The Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) near real-
time version “3B42V7” The Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis 
(TMPA) research version 
“MERRA-2” The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2)  
“CHIRP” Climate Hazards group Infrared Precipitation  
“PERSIANN” Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks  
“IMERGE-V6” Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) 
Early Run V6 “CHIRPS” Climate Hazards group Infrared Precipitation with Stations 
“PERSIANN-CDR” Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-
Climate Data Records  
“IMERGF-V6” Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) Final 
Run V6  
“SMAP 9km” Original Soil moisture Active and Passive  
“SMAP 1km” Downscaled Soil moisture Active and Passive, extracted from Bin et al., 2022 
“P” Precipitation; “T” Air temperature; “SM” Soil moisture 
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6.2. Further studies 

Bias correction of near-real time satellite rainfall for the LMRB could be an interesting study. Such 
rainfall product could be beneficial to real-time operational water resources applications in the Lower 
Mekong River basin (LMRB), given a fact that in-situ monitoring network in the LMRB is limited due 
to restrictions in data-sharing between the riparian countries. The proposed near-real-time satellite 
rainfall product is IMERGE-V6 (0.1° in every half-hour with few hours latency). We proved that 
IMERGE-V6 driven hydrologic model could simulate streamflow comparably in Chapter 4. The 
proposal method will aim to provide corrected weights maps of IMERGE-V6 which are constraint 
by topography and seasonality. To build such maps, rain gauge across the basin should be collected 
to characterize rainfall error maps. Also, machine learning could be a potential model to make the 
corrected maps. Since long-term rain gauge records for the LMRB are rare, to utilize as many as 
possible the rain gauge dataset in the region, a smart training could be employed by training a machine 
learning model in selected years (normal year, high water year and low water year) in order to obtain 
a generalized weighted maps for all hydrologic conditions but using just a few years. The weighted 
maps will be validated by the years not included in the training period and the corrected IMERGE-
V6 could be further validated by examining it as input to a hydrologic model to simulate streamflow. 

Improvement of temporal data for high-spatial remotely sensed soil moisture could be another 
potential study. In Chapter 5, the performances of data assimilation hydrologic model streamflow 
simulation with downscaled SMAP 1km are significantly associated with the temporal available SMAP 
1km. Specifically, when we have more available SMAP 1km data during the assimilation process, a 
better streamflow is observed. The reason of having less available SMAP 1km is that land surface 
temperature dataset obtained from MODIS that participate in the downscaled process, often has 
missing values due to cloud coverage. Therefore, if we could propose a method to increase the 
availability of land surface temperature dataset, we perhaps could increase the availability of 
downscaled SMAP 1km as well. 
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Appendix 

Appendix 1 Original land cover dataset (30 m) and 1-km, 9-km, and 36-km agricultural land grid in the R3 
region. 
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Appendix 2 Comparison between 9-km and 36-km MERRA-2 datasets with ground observation. 

 

Figure S2.1. (a) Correlation coefficient and (b) Mean absolute error between 9-km MERRA-2 datasets and 
observed precipitation (right) and observed air temperature (left). Number inlets denote median values.  
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Figure S2.2. (a) Correlation coefficient and (b) Mean absolute error between 36-km MERRA-2 datasets and 

observed precipitation (right) and observed air temperature (left). Number inlets denote median values.  



98 
 

Appendix 3 Annual precipitation and temperature for each region based on MERRA-2 datasets (1-km, 9-km, 
36-km). 

 

Figure S3.1 Boxplot of annual precipitation in each region in different spatial resolutions (1-km, 9-km, and 36-
km). 
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Figure S3.2 Boxplot of annual temperature in each region in different spatial resolutions (1-km, 9-km, and 36-
km). 
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Appendix 4 List of rain gauges used in this study and their missing data during 2002-2017. 

Station Name Location Lat. Lon. Missing (%) 

a) XL (Ma River) basin 

Dienbien Thanhxuong, Dienbien city, VN 21.37 103.00 1.9 

Tuangiao Tuangiao town, Dienbien, VN 21.58 103.42 0.0 

Phadin Toatinh, Tuangiao, Dienbien, VN 21.57 103.52 1.4 

Songma Songma town, Sonla, VN 21.05 103.75 3.8 

Xala Chiengkhuong, Songma, Sonla, VN 20.94 103.92 4.3 

Muongang Muongang,Tuangiao, Dienbien, VN 21.52 103.23 5.3 

Thuanchau Chiengly, Thuanchau, Sonla, VN 21.43 103.70 1.4 

b) LS (Kycung River) basin 

Langson Quanglac, Langson city, Langson, VN 21.83 106.77 0.0 

Dinhlap Dinhlap town, Langson, VN 21.53 107.10 0.0 

Locbinh Locbinh town, Langson, VN 21.77 106.92 0.9 

c) HT (Boi River) basin 

Hoabinh Tanthinh, Hoabinh city, VN 20.82 105.33 0.7 

Kimboi Bo town, Kimboi, Hoabinh, VN 20.67 105.53 0.7 

Hungthi Hungthi, Lacthuy, Hoabinh, VN 20.52 105.67 0.7 

Bahangdoi Thanhnong, Kimboi, Hoabinh, VN 20.58 105.69 0.6 

Caophong Bung Town, Kyson, Hoabinh, VN 20.70 105.32 1.0 

Kimtien Kimtien, Kimboi, Hoabinh, VN 20.63 105.52 0.6 

d) NK (Hieu River) basin 

Tayhieu Tayhieu, Nghiadan, Nghean, VN 19.32 105.40 0.0 

Quychau Quychau town, Quychau, Nghean, VN 19.57 105.12 0.0 

Quyhop Quyhop town, Quyhop, Nghean, VN 19.33 105.18 0.0 

Nghiakhanh Nghiakhanh, Nghiadan, Nghean, VN 19.22 105.41 0.0 

NT1-5 Nghiabinh, Nghiadan, Nghean, VN 19.38 105.50 3.8 

NT3-2 Minhhop, Quyhop, Nghean, VN 19.32 105.28 0.0 

e) AC (Ve River) basin 

Bato Bato town, Quangngai, VN 14.77 108.73 0.0 
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Anchi Hanhphuoc, Nghiahanh, Quangngai, VN 14.99 108.81 0.0 

Giavuc Bavi, Bato, Quangngai, VN 14.70 108.57 0.0 

Minhlong Longhiep, Minhlong, Quangngai, VN 14.93 108.72 1.8 

f) GS (Krong Ana River) basin 

Giangson Hoahiep, Krongana, Daclac, VN 12.51 108.18 0.4 

Buonmethuot Buonmethuot City, Daclac, VN 12.68 108.08 0.3 

Buonho Buonho, Krongbuk, Daclac, VN 12.92 108.27 0.3 

Mdrak CuMTa,Mdrak, Daclac, VN 12.68 108.78 0.4 

Krongbuk Krongbuk, Krongpak, Daclac, VN 12.77 108.35 1.0 
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Appendix 5 Input description for the SWAT model used in this study. 

 Data Description Spatial, 
Resolution 

XL 

Ma River 

LS  

Kycung 
River 

HT 

Boi River 

NK  

Hieu 
River 

AC 

Ve River 

GS 

Krong 
Ana River 

Zone   S1  

North West 

S2  

North East 

S3  

North 
Delta 

S4  

North 
Central 

S5  

South 
Central 

S6  

Central 
Highland 

Area (km2)   6430 1560  664 4024 854 3020 

Dry Season/ 
Wet Season 

  XI-IV/V-X XI-IV/V-
X 

XI-IV/V-
X 

XII-V/VI-
XI 

I-VIII/IX-
XII 

XII-IV/V-
XI 

Precipitation Rain Gauge (stations)  7 3 6 6 4 5 

Uncorrected SPE /  

Gauge-corrected 
SPE 

TMPA 3B42RT/  

TMPA 3B42V7 
(grids) 

GPM IMERGE-V6/  

GPM IMERGF-V6 
(grids) 

CHIRP V2.0/  

CHIRPS V2.0 (grids) 

PERSIANN/ 

PERSIANN-CDR 
(grids) 

 

 

0.25° 

 

0.1° 

 

0.05° 

 

0.25° 

 

 

 

16 

 

76 

 

266 

 

16 

 

 

8 

 

26 

 

78 

 

8 

 

 

5 

 

16 

 

36 

 

5 

 

 

14 

 

53 

 

178 

 

14 

 

 

4 

 

13 

 

40 

 

4 

 

 

12 

 

44 

 

141 

 

12 

Air 
Temperature 

Minimum Temp, 
Maximum Temp 

(stations) 

 2 2 1 3 1 2 

Digital 
Elevation 
(DEM) 

Shuttle Radar 
Topography Mission 

(SRTM) 

30 m Min:279 m 

Max:2184 m 

Mean:959 m 

Min: 225 m 

Max: 1518 
m 

Mean: 430 
m 

Min:8 m 

Max:1194 
m 

Mean:254 
m 

Min: 29 m 

Max: 2417 
m 

Mean: 397 
m 

Min: 3 m 

Max: 1126 
m 

Mean: 350 
m 

Min: 387 m 

Max: 2424 
m 

Mean: 659 
m 

Land use1 Land use in 2010 
from SERVIR 

Mekong 

30 m  FRST (67.4) 

GRAS (13.1) 

CRGR (9.8) 

FRSE (7.8) 

CRGR 
(29.1) 

ORCD 
(23.2) 

ORCD 
(39.3) 

FRST 
(38.1) 

FRST 
(47.3) 

ORCD 
(25.6) 

FRSE 
(36.9) 

ORCD 
(33.8) 

FRST 
(33.2) 

FRSE 
(31.0) 
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FRSD 
(22.1) 

FRSE 
(18.7) 

CRGR 
(13.6) 

FRSE (8.4) 

CRGR 
(13.2) 

FRSE 
(12.8) 

FRST 
(24.5) 

CRGR 
(27.9) 

Soil2 Generated from 
vector layer of 

1:1,000,000 soil map 
of Vietnam  

30 m ACu (51.1) 

ACf (45.5) 

ACf (83.5) 

Cmd (6.5) 

ACf (74.7) 

FRr (21.2) 

ACf (82.8) 

FRr (8.0) 

ACu (5.6) 

ACf (87.2) 

ACu (5.9) 

FLd (4.4) 

ACf (41.4) 

FRr (20.8) 

ACu (18.7) 

Sub-basins, 

HRUs 

10% soil, 10% land 
use, 10% slope 

 145 sub-
basins 

735 HRUs 

31 sub-
basins 

288 HRUs 

17 sub-
basins 

149 HRUs 

107 sub-
basins 

845 HRUs 

15 sub-
basins 

98 HRUs 

58 sub-
basins 

673 HRUs 

Note: 

1 It presents the most dominant land use in the basin. The number in the blanket is the percentage of land use in a total. Symbol explanation: CRGR Cropland, FRSE Evergreen 
Forest, FRST Mixed Forest, GRAS Grassland, ORCD Orchard, and Plantation Forest. 

2 It presents the most dominant soils in the basin. The number in the blanket is the percentage of the soil type in a total. Symbol explanation: ACf Ferralic Acrisols, ACu Humic 
Acrisols, Cmd Dystric cambisols, FLd Eutric Fluvisols, FRr Rhodic Ferralsols.  
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Appendix 6 List of fifteen parameters considered for the calibration process, with their default values, calibrated 
range, and process. In SWAT-CUP, “r_”, “v_”, and “a_” refer to modify the default value by making a relative 
change to the default value, replacing the default value by the specific value and adding a specific value, 
respectively. 

Parameter 
Name 

Units Description Default Range Process 

r__CN2 none SCS runoff curve number HRU 
specific 

-0.1, +0.1 Surface Runoff 

r__SOL_AWC mm H2O 
/mm soil 

Available water capacity of 
the soil layer 

Soil layer 
specific 

-0.1, +0.1 Soil 

r__SOL_K mm/hr Soil conductivity Soil layer 
specific 

-0.3, +0.3 Soil 

r__SOL_Z mm Soil depth 300 -0.5, +0.5 Soil 

v__ESCO none Soil evaporation 
compensation factor 

0.95 0, +1.0 Evapotranspiration 

v__SURLAG none Surface runoff lag 
coefficient 

4 0, +25 Surface Runoff 

v__QWHT m Initial groundwater height 1 0, +1.0 Groundwater 

v__ALPHA_BF 1/days Baseflow alpha factor 0.048 0, +1.0 Groundwater 

a__GW_DELAY days Groundwater delay time 31 -1000, 
+1000 

Groundwater 

a__GWQMN mm H2O Threshold depth of water 
in the shallow aquifer 

1000 -1000, 
+5000 

Groundwater 

a__REVAPMN mm H2O Percolation to the deep 750 -750, +750 Groundwater 

v__GW_REVAP none Groundwater “revap” 
coefficient 

0.02 +0.02, +0.1 Evapotranspiration 

a__RCHRG_DP none Deep aquifer percolation 
fraction 

0.05 -0.05, +0.05 Groundwater 

a__CH_K2 mm/hr Effective hydraulic 
conductivity 

1 -0.01, +500 Channel 

a__CH_N2 none Manning coefficient for 
main channel 

0.014 0.0, +0.3 Channel 
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Appendix 7 Performance measures (NSE and PBIAS) of daily streamflow SWAT simulations, driven by 
different precipitation input datasets over the six basins of Vietnam. The evaluation period: Cal. Calibration 
(2002-2009), Val. Validation (2010-2017). 

Basin Rainfall Input NSE_cal PBIAS_cal (%) NSE_val PBIAS_val (%) 

XL 

Rain Gauge 0.64 -1.7 0.69 7.4 

3B42RT 0.58 -1.5 0.55 -1.5 

IMERGE_V6 0.58 22.3 0.62 17.1 

CHIRP 0.54 8.7 0.58 13.1 

PERSIANN 0.3 27.2 0.11 48.3 

3B42V7 0.62 6.9 0.64 13.6 

IMERGF_V6 0.63 13 0.69 -9.2 

CHIRPS 0.47 3.2 0.56 10.5 

PERSIANN_CDR 0.52 -2.1 0.56 6.9 

LS 

Rain Gauge 0.62 6.4 0.64 -12 

3B42RT 0.34 -12.6 0.3 -22.4 

IMERGE_V6 0.55 14.3 0.50 27 

CHIRP 0.21 19.5 0.24 11.5 

PERSIANN 0.08 -5.3 0.13 9.1 

3B42V7 0.33 -2.1 0.37 -8.5 

IMERGF_V6 0.58 -6.5 0.59 -17.3 

CHIRPS 0.32 5.8 0.39 5.3 

PERSIANN_CDR 0.29 -14 0.32 9 

HT 

Rain Gauge 0.84 -13.4 0.78 -19.5 

3B42RT 0.33 -40.8 0.24 -37.1 

IMERGE_V6 0.50 -1.2 0.43 6.4 

CHIRP 0.27 -5.5 0.15 -28 

PERSIANN 0.06 -12 0.05 -24.9 

3B42V7 0.47 -5.4 0.28 -11.1 

IMERGF_V6 0.64 -3.7 0.52 -5.7 

CHIRPS 0.37 -3 0.38 -8.5 

PERSIANN_CDR 0.45 -24.6 0.28 -20.1 

NK 

RainGauge 0.72 19.6 0.76 17.3 

3B42RT 0.36 29.8 0.29 6.5 

IMERGE_V6 0.37 23.4 0.51 22.7 

CHIRP 0.38 23.2 0.38 21.8 

PERSIANN 0.1 39.3 0.01 53.6 

3B42V7 0.52 19.6 0.41 35 

IMERGF_V6 0.56 6.8 0.55 -12.6 

CHIRPS 0.44 8 0.51 0.9 

PERSIANN_CDR 0.15 25.8 0.15 21.9 

AC Rain Gauge 0.91 1.6 0.72 -48.9 
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Basin Rainfall Input NSE_cal PBIAS_cal (%) NSE_val PBIAS_val (%) 

3B42RT 0.29 49.1 0.38 16.7 

IMERGE_V6 0.20 57.8 0.34 29.6 

CHIRP 0.19 46.1 0.14 14.9 

PERSIANN -0.01 68.4 0.04 55.8 

3B42V7 0.21 49.9 0.22 29.9 

IMERGF_V6 0.44 51.6 0.5 22.5 

CHIRPS 0.29 21.5 0.2 -13.8 

PERSIANN_CDR 0.26 37.3 0.28 16.5 

GS 

Rain Gauge 0.72 2.9 0.65 18.1 

3B42RT 0.3 35.1 0.16 42.7 

IMERGE_V6 0.47 -3.1 0.47 20.1 

CHIRP 0.5 7.4 0.4 -5.4 

PERSIANN 0.3 21.8 0.19 45.3 

3B42V7 0.51 4.6 0.41 25.1 

IMERGF_V6 0.68 4.9 0.61 -0.2 

CHIRPS 0.41 -14.1 0.39 -15.8 

PERSIANN_CDR 0.45 -2 0.49 6.8 
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Appendix 8 Performance measures (NSE and PBIAS) of monthly streamflow SWAT simulations, driven by 
different precipitation input datasets over the six basins of Vietnam. The evaluation period: Cal. Calibration 
(2002-2009), Val. Validation (2010-2017). 

Basin Rainfall Input NSE_cal PBIAS_cal (%) NSE_val PBIAS_val (%) 

XL 

Rain Gauge 0.80 -9.6 0.74 25 

3B42RT 0.82 1.7 0.82 1.5 

IMERGE_V6 0.75 17.8 0.82 6.4 

CHIRP 0.73 8.5 0.78 13 

PERSIANN 0.53 10 0.50 31.2 

3B42V7 0.86 -1.8 0.89 9.3 

IMERGF_V6 0.84 2.9 0.91 4.3 

CHIRPS 0.70 -0.1 0.78 10.3 

PERSIANN_CDR 0.77 16.2 0.86 6.7 

LS 

Rain Gauge 0.87 2.8 0.87 -9.7 

3B42RT 0.55 -13.9 0.61 -7 

IMERGE_V6 0.74 1.9 0.66 15.1 

CHIRP 0.53 16.8 0.52 7.7 

PERSIANN 0.33 4.7 0.34 28.1 

3B42V7 0.61 -7.3 0.71 -12.4 

IMERGF_V6 0.73 -10.7 0.75 3.3 

CHIRPS 0.6 0.4 0.67 3 

PERSIANN_CDR 0.55 -14.8 0.7 -3.9 

HT 

Rain Gauge 0.9 -0.3 0.89 -8.3 

3B42RT 0.53 -18.9 0.39 -38.3 

IMERGE_V6 0.57 -12.5 0.67 -5.3 

CHIRP 0.53 21.8 0.55 -10.8 

PERSIANN 0.24 -24.5 0.21 -20.9 

3B42V7 0.78 7.3 0.72 -7.8 

IMERGF_V6 0.77 7.6 0.74 -3.5 

CHIRPS 0.66 17 0.71 -8.8 

PERSIANN_CDR 0.65 4.5 0.64 -20.3 

NK 

Rain Gauge 0.90 10.1 0.96 4.1 

3B42RT 0.54 -18.7 0.52 -39.1 

IMERGE_V6 0.61 13.3 0.77 12.5 

CHIRP 0.71 18.1 0.72 5.6 

PERSIANN 0.24 45.3 0.11 49.6 

3B42V7 0.80 11.2 0.74 -3.6 

IMERGF_V6 0.77 13.7 0.83 -4.9 

CHIRPS 0.74 14.6 0.80 8.40 

PERSIANN_CDR 0.47 22.20 0.55 17.7 

AC Rain Gauge 0.96 9.8 0.88 -42.5 
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Basin Rainfall Input NSE_cal PBIAS_cal (%) NSE_val PBIAS_val (%) 

3B42RT 0.14 56.3 0.42 35.1 

IMERGE_V6 0.45 44 0.67 16.2 

CHIRP 0.34 41.6 0.33 -0.7 

PERSIANN -0.1 71.9 0.07 53 

3B42V7 0.48 45.1 0.64 16.8 

IMERGF_V6 0.47 45.6 0.70 2.3 

CHIRPS 0.57 15 0.42 -40.5 

PERSIANN_CDR 0.45 37.10 0.6 18.8 

GS 

Rain Gauge 0.8 -3.8 0.76 17.8 

3B42RT 0.71 9 0.79 -5.5 

IMERGE_V6 0.69 9.9 0.73 4 

CHIRP 0.65 -4.5 0.49 -12.2 

PERSIANN 0.51 0.5 0.54 21.8 

3B42V7 0.74 -6.6 0.84 4.9 

IMERGF_V6 0.80 -11.9 0.82 -3.3 

CHIRPS 0.72 0.3 0.74 -0.6 

PERSIANN_CDR 0.65 -15.80 0.78 -6.5 
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Appendix 9 Publications (peer-reviewed articles) per year related to topic of soil moisture data assimilation in 
hydrological model. We obtained this result through Web of science searching engine 
(https://www.webofscience.com/). Keywords are "soil moisture" + "data assimilation" + "hydrological 
model". Subjects are constraint as water resources or geosciences multidisciplinary or environmental sciences 
or remote. We also consider peer-reviewed articles only. 

 

  

https://www.webofscience.com/
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Appendix 10 The most currently studies (2015-present) on soil moisture data assimilation in hydrology using 
remotely sensed soil moisture as observed soil moisture in updating the model state variable. For studies that 
employed data assimilation framework for more than one catchment, approximately mean values of longitude 
and latitude is provided. 
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Appendix 11 Description of optimized SWAT model parameters for each basin. 

Parameter Name Default gvo aho bye slu chu gso nka xla 

CN2.mgt 74 50 50 50 50 50 40 47 65 

SURLAG.bsn 4 7.58 7.58 4 4 7.58 7 7 41.5 

HRU_SLP.hru 0.217 0.212 0.215 0.21 0.217 0.217 0.025 0.217 0.096 

GW_REVAP.gw 0.02 0.02 0.02 0.2 0.2 0.02 0.02 0.15 0.02 

ESCO.hru 0.95 0.85 0.85 0.95 0.33 0.85 0.8 0.8 0.95 

CH_N2.rte 0.014 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.28 

CH_K2.rte 0 15 15 150 150 15 5 5 4.5 

SOL_AWC(..).sol 0.1112 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.11 

SOL_K(..).sol 7.113 7.1 7.1 7 7 7.1 7 7 6.83 

ALPHA_BF.gw 0.048 0.9 0.95 0.95 0.95 0.9 0.9 0.9 0.56 

GW_DELAY.gw 31 200 200 200 200 177 50 50 192 

GWQMN.gw 1000 200 200 5000 5000 200 50 4000 1065 

RCHRG_DP.gw 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

  



112 
 

Appendix 12 Characteristics of climatic conditions and catchment attributes in eight studied catchments. The 
precipitation and potential evapotranspiration in each catchment are estimated from the calibrated SWAT 
model for the entire area of that catchment. 

Types 
Data 

Description 
Spatial 

Resolution 

gvo aho bye slu chu gso nkh xla 

Benhai 
River 

Trakhuc 
River 

Namnua 
River 

Luy River 
LucNam 

River 
Krong 

Ana River 
Hieu 
River 

Ma River 

Area (km2)   267 383 638 964 2,090 3,100 4,024 6,430 

Dry Season/  
Wet Season 

  I-VIII/ 
IX-XII 

I-VIII/ 
IX-XII 

XI-IV/ 
V-X 

XI-IV/ 
V-X 

XI-IV/ 
V-X 

XII-IV/ 
V-XI 

XII-V/ 
VI-XI 

XI-IV/ 
V-X 

Precipitation  
(unit in mm) 

IMERG Final 
v6 

~10km 1,911 2,165 1,644 1,577 1,807 1,798 1,755 1,629 

Potential 
Evapotranspiration 

(unit in mm) 

Hargreaves 
method with 

data from 
CFSR vs2 

~25km 1,024 849 1,051 788 1,258 1,223 1,018 1,402 

Digital Elevation 
(DEM)  

(unit in m) 
HydroSHEDs 90m 

Min: 10 Min: 19 Min: 470 Min: 25 Min: 7 Min: 407 Min: 33 Min: 282 
Max: 1213 Max: 1008 Max: 1736 Max: 1747 Max: 1003 Max: 2407 Max: 2416 Max: 2164 
Mean: 215 Mean: 366 Mean: 945 Mean: 451 Mean: 248 Mean: 658 Mean: 396 Mean: 958 

Land use* MODIS12Q1 500 m 

FRSE 
(50.36) 

FRSE 
(67.10) 

FRSE 
(32.07) 

FRSE 
(46.15) 

SHRB 
(70.67) 

CRGR 
(41.10) 

SHRB 
(45.94) 

SHRB 
(75.97) 

SHRB 
(47.18) 

SHRB 
(31.31) 

SHRB 
(63.75) 

CRGR 
(18.02) 

FRSE 
(27.84) 

SHRB 
(30.04) 

FRSE 
(42.85) 

FRSE 
(18.44) 

   SHRB 
(16.97) 

 FRSE 
(26.51) 

  

   FRSD 
(11.5) 

    

Soil** HWSD 1km 
Ao (100) Ao (98.67) Ao (100) Ao (77.26) Ao (92.95) Fr (39.62) Ao (98.85) Ao (100) 

   Lc (18.64) Af (5.58) Af (30.21)   
     Ao (30.09)   

Sub-basins, 
HRUs 

10% soil, 
10% land use, 

10% slope 

 
5 sub-
basins 

9 sub-
basins 

9 sub-
basins 

17 sub-
basins 

35 sub-
basins 

59 sub-
basins 

91 sub-
basins 

125 sub-
basins 

24 HRUs 50 HRUs 60 HRUs 116 HRUs 186 HRUs 314 HRUs 590 HRUs 579 HRUs 

Note: 

* Full name for land use- ‘FRSE’ Evergreen forests, ’FRSD’ Deciduous forests, ’SHRB’ shrubland, ‘CRGR’ cropland. Only 
major land use (>5% of total catchment area) or the first four major land use are listed. Values in blanket are percentage value 
over total catchment area. 

** Full name for soil data- ‘Ao’ Orthic Acrisols, ’Af’ Ferric Acrisols, ‘Fr’ Rhodic Ferralsols, ‘Lc’ Chromic Luvisol. Only major 
soil (>5% of total catchment area) or the first four major soil are listed. Values in blanket are percentage value over total catchment 
area. 
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Appendix 13 Name, description, range and control processes of SWAT parameters. “r_”, “v_”, and “a_” refer 
to modify the default value by making a relative change to the default value, replacing the default value by the 
specific value and adding a specific value, respectively. 

Parameter Name Units Description Default Range Process 

R_CN2.mgt none SCS runoff curve number 
HRU 

specific 
-0.25, +0.25 Surface Runoff 

V_SURLAG.bsn none Surface runoff lag time 4 0.05, +24 Surface Runoff 

R_HRU_SLP.hru m/m Average slope steepness 0.217 -0.25, +0.25 Surface Runoff 

V_GW_REVAP.gw none Groundwater “revap” coefficient 0.02 0.02, +2 Evapotranspiration 

V_ESCO.hru none 
Soil evaporation compensation 

factor 
0.95 0, +1 Evapotranspiration 

V_CH_N2.rte none 
Manning’s “n” value for the main 

channel 
0.014 0, +0.3 Channel 

V_CH_K2.rte mm/hr 
Effective hydraulic conductivity in 

main channel alluvium 
0 0, +500 Channel 

R_SOL_AWC(..).sol 
mm H2O 

/mm soil 

Available water capacity of the soil 

layer 
0.1112 -0.25, +0.25 Soil 

R_SOL_K(..).sol mm/hr Saturated hydraulic conductivity 7.113 -0.25, +0.25 Soil 

V_ALPHA_BF.gw days Base flow alpha factor  0.048 0, +1 Groundwater 

V_GW_DELAY.gw days Groundwater delay 31 0, +500 Groundwater 

V_GWQMN.gw mm H2O 

Threshold depth of water in the 

shallow aquifer 

required for return flow to occur  

1000 0, +5000 Groundwater 

V_RCHRG_DP.gw None Deep aquifer percolation fraction 0.05 0, +1 Groundwater 
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Appendix 14 Name, description and the range of perturbation defined errors of the EnKF data assimilation 
framework. 

Perturbation variables Description Range 

Observed soil moisture Observed soil moisture coefficient 50–200 

Precipitation Precipitation error coefficient 0.1–1.0 

Field capacity for soil layer 1 Field capacity for soil layer 1 coefficient 0.1-0.3 

Field capacity for soil layer 2 Field capacity for soil layer 2 coefficient 0.05–0.2 

Field capacity for soil layer 3 Field capacity for soil layer 3 coefficient 0.01–0.1 

Soil moisture layer 1 Soil moisture error standard deviation for layer 1 0.01–0.1 

Soil moisture layer 2 Soil moisture error standard deviation for layer 2 0.01–0.1 

Soil moisture layer 3 Soil moisture error standard deviation for layer 3 0.01–0.1 

Curve number Curve number error standard 1–5 

 

Appendix 15 Available soil moisture (grey rectangular) for SMAP 9km (SM9) and downscaled SMAP 1km 
(SM1) at each catchment during 2017–2019. The y-axis label is written as hydrological station name and soil 
moisture products. An available soil moisture day is counted as at least 30% of basin area has soil moisture 
pixels. 
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Appendix 16 Description of optimized SWAT model parameters for each basin. 

Parameter Name Default gvo aho bye slu chu gso nka xla 

CN2.mgt 74 50 50 50 50 50 40 47 65 

SURLAG.bsn 4 7.58 7.58 4 4 7.58 7 7 41.5 

HRU_SLP.hru 0.217 0.212 0.215 0.21 0.217 0.217 0.025 0.217 0.096 

GW_REVAP.gw 0.02 0.02 0.02 0.2 0.2 0.02 0.02 0.15 0.02 

ESCO.hru 0.95 0.85 0.85 0.95 0.33 0.85 0.8 0.8 0.95 

CH_N2.rte 0.014 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.28 

CH_K2.rte 0 15 15 150 150 15 5 5 4.5 

SOL_AWC(..).sol 0.1112 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.11 

SOL_K(..).sol 7.113 7.1 7.1 7 7 7.1 7 7 6.83 

ALPHA_BF.gw 0.048 0.9 0.95 0.95 0.95 0.9 0.9 0.9 0.56 

GW_DELAY.gw 31 200 200 200 200 177 50 50 192 

GWQMN.gw 1000 200 200 5000 5000 200 50 4000 1065 

RCHRG_DP.gw 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

 

Appendix 17 Description of best guess error defined values for EnKF-SM9 model for each basin. 

Error defined gvo aho bye slu chu gso nkh xla 

Observed soil moisture coefficient 120 80 80 180 120 120 100 200 

Precipitation error coefficient 1 1 1 1 0.2 0.5 0.1 1 

Field capacity for soil layer 1 coefficient 0.45 0.3 0.3 0.45 0.45 0.3 0.45 0.3 

Field capacity for soil layer 2 coefficient 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Field capacity for soil layer 3 coefficient 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Soil moisture error standard deviation for layer 1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Soil moisture error standard deviation for layer 2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Soil moisture error standard deviation for layer 3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Curve number error standard 1 1 1 3 1 1 1 1 
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Appendix 18 Description of best guess error defined values for EnKF-SM1 model for each basin. 

Error defined gvo aho bye slu chu gso nkh xla 

Observed soil moisture coefficient 30 50 120 180 200 120 80 200 

Precipitation error coefficient 1 1 0.5 1 0.2 0.5 0.5 0.5 

Field capacity for soil layer 1 coefficient 0.45 0.3 0.3 0.45 0.45 0.3 0.45 0.3 

Field capacity for soil layer 2 coefficient 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Field capacity for soil layer 3 coefficient 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Soil moisture error standard deviation for layer 1 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 

Soil moisture error standard deviation for layer 2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Soil moisture error standard deviation for layer 3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Curve number error standard 5 1 1 3 1 1 1 1 

 

Appendix 19 Relationship between the efficiency index and available soil moisture with the 𝑄𝑛𝑜𝑟 time series. 
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