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ABSTRACT 

 As concerns about long term effects of concussions in contact and collision sports 

have grown, similar concerns have started to extend to the repetitive subconcussive head 

impacts that athletes experience in sport. While the quantity and severity of 

subconcussive head impact has been studied in football for over a decade, little research 

has been done to quantify these head impacts in other contact and collision sports. Even 

less is known about the effects that subconcussive head impacts have on the brains of 

athletes. This dissertation contains a review of the biomechanical and neuroimaging 

literature related to head impact in sports. We present a quantification of the relative 

burden of head impact in college football, men’s soccer, and men’s lacrosse players. 

Using wearable accelerometers, it was determined that college football received the 

highest quantity of moderate and severe head impacts, and had the highest average 

impact severity. We also address whether the burden of head impacts in college football 

may have spatially heterogeneous effects on functional connectivity in the brains of 

college football players. Subconcussive head impacts may not be entirely benign, but 

their effects on brain connectivity are still controversial. Using mass-univariate and 

multivariate analyses, the results indicate that the subconcussive head impact load in 

college football seems to be sufficient to affect local functional connectivity and low-

frequency fluctuations in the brain, and that these effects are be spatially heterogeneous. 

In total, this dissertation presents novel comparison of subconcussive head impact in 

different college men’s sports, and indicates that the subconcussive burden in college 

football may be sufficient to produce spatially heterogeneous changes in the brain.  
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 INTRODUCTION 

In 2005, Dr. Bennet Omalu published the first case of chronic traumatic encephalopathy 

(CTE) in a former National Football League (NFL) player141. CTE is a neurodegenerative 

tauopathy, previously termed dementia pugilistica or “punch drunk,” and it was thought 

to be restricted to boxers and not other athletes121,127,141. Since then, concerns about the 

effects of repetitive head impacts in sports have been discussed everywhere from local 

school board meetings to the White House. Much of the concern has been driven by 

evidence that repetitive head impacts might have short-term and long-term effects on 

brain function and physiology. While much of the discussion has focused on sports-

related concussions (SRC), the vast majority of head impacts are subconcussive, i.e. they 

do not result in any acute signs or symptoms. Even in the absence of a clinical 

concussion, there are growing concerns that multiple subconcussive hits to the head 

might cause damage to the brain. 

 One way to study subconcussive head impacts is to quantify the number and 

severity of head impacts in sports, using biomechanical sensors on the athletes. Most of 

this research has focused on American football, due to its popularity and high level head 

impact exposure. Chapter II of this dissertation expands the quantification of head impact 

to the college sports of soccer and lacrosse, and compares the burden of head impact in 

these sports to the well-studied sport of college football. A central goal of this research is 

to expand the quantification of head impact beyond football and determine the relative 

head impact burden of athletes in soccer and lacrosse compared to football. 

 The biomechanical research on head impact in football has focused on answering 

questions about the relative impact burden of different player positions23,26,45,131,163, 
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 playing level40,49,163,206, and event-types 26,45,49. These findings in football have led to 

practice and rule changes to reduce football players’ burden of head impact. Expanding 

quantification of head impact to soccer and lacrosse could deepen the understanding of 

subconcussive burden in these sports, which in the future could provide data for athletes, 

coaches, and sport regulatory agencies to, if necessary, make changes aimed at reducing 

head impact. To begin this expansion into other sports, Lynall et al. (2016) collected head 

impact data from women’s soccer that showed that practices result in fewer head impacts 

than in games115 and McCuen et al. (2015) showed that high school girls’ soccer players 

sustain fewer impacts than college women’s soccer players126.  

 Biomechanical impact data in football has been primarily collected using the head 

impact telemetry (HIT) system56, which consists of six accelerometers spring mounted 

inside the padding of a football helmet. For studies using this device in college football 

the mean/median number of head impacts per player per season ranged from 257 to 1354, 

the peak resultant linear acceleration (PRLA) per impact ranged from 20.5g to 32.0g, and 

the peak resultant rotational acceleration (PRRA) per impact ranged from 1355rad/s2 to 

2213rad/s2 26,45,56,131,162,163. As previously mentioned, these studies also addressed 

differences in player positions23,26,45,131,163, playing level40,49,163,206, and event-types26,45,49. 

 The biomechanical research on head impacts in sport has been primarily driven by 

concerns about the long-term effects of multiple concussions. Most of this research either 

has been focused on determining the biomechanical threshold for concussive 

injury57,66,70,73,160 or has used the burden of head impact as a biomechanical proxy for 

relative concussion risk25,26,125,131,155. The high incidence of concussion in 

football67,78,98,105,166 and the development of a helmet-based accelerometer system more 
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 than a decade ago56 have combined to make football the primary focus of the 

biomechanical head impact research up to this point.  

At the same time, there has been increased interest in the effects of subconcussive 

impacts separate from their relationship to concussion20,22,49,50,74. Other sports like soccer 

and lacrosse also have relatively high rates of concussion incidence67,78,98,105,166, leading 

some to wonder if the overall burden of head impact may also be high in these sports. 

The recent development of biomechanical sensors that can be used in non-helmeted 

sports47,115,126 has enabled the quantification of head impact in soccer and lacrosse. We 

can now directly test if the burden of subconcussive head impact in soccer and lacrosse is 

commensurate to their high rates of concussion. 

There has been no live-action biomechanical data collected in college men’s 

soccer or lacrosse to determine if the impact burden in these sports is similar to football. 

For soccer, the level of subconcussive head impact burden has been inferred from studies 

using a helmet-based accelerometer in a laboratory setting137, video analysis and 

biomechanical reconstruction205, and a modified helmet-based accelerometer in a 

controlled scrimmage75. Similarly, the impact burden in lacrosse has been inferred from 

biomechanical reconstructions43, and video capture of live lacrosse play30,104. To perform 

an adequate comparison between the sports, data should be collected, cleaned, and 

processed in the same manner. Currently, the differences in the device settings and 

methodological differences in data cleaning, preprocessing, and analysis make it difficult 

to compare findings across studies95.  

Chapter II of this dissertation presents data collected from college football, men’s 

soccer and men’s lacrosse players, and compares quantity and severity values between 
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 the sports. The hypothesis was that college football receives a higher number of impacts 

and a higher average impact severity than soccer and/or lacrosse. Results showed that 

college football players experienced the most or second-most impacts per athletic event 

depending on event-type and severity of impact. Football also resulted in the highest 

average peak resultant linear and rotational acceleration per impact, and highest 

cumulative linear and rotational acceleration per athletic event. For average peak 

resultant linear and rotational acceleration per individual impact, college football was 

followed by college lacrosse and then college soccer, with similar trends in both practices 

and games. While the absolute accuracy of the sensor used in this study needs further 

validation, the results strongly suggest that college football players experience a 

categorically higher burden of head impact compared to soccer and lacrosse. 

Repetitive head impacts in sports have been linked to long-term cognitive and 

clinical effects, particularly in retired football players who have sustained high levels of 

subconcussive impact and who have often had multiple concussions over their careers. 

Lehman et al. (2012) found that while retired NFL players have lower overall mortality 

compared to the general population, the players had 3.9 and 4.3 times higher mortality 

rates for Alzheimer’s disease and Amyotrophic Lateral Sclerosis (ALS)101. Additionally, 

there is a growing body of evidence that a history of repetitive brain trauma is a necessary 

component for developing CTE: a neurodegenerative tauopathy with emotional, 

cognitive, and motor symptoms27,127,140,181. Concussion has received much of the blame 

for these effects, but it is still unknown what role subconcussive impacts play in the 

development of these outcomes.    
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 While the idea of subconcussive head impacts affecting change in the brain is still 

controversial, there is substantial research that links subconcussive impacts to clinical, 

cognitive, and/or physiological effects. In the short term, subconcussive head impacts 

have been shown to increase susceptibility to concussion by lowering an athlete’s 

tolerance to a subsequent concussive impact13,203, and/or by a separate mechanism where 

concussive symptoms are the direct result of multiple subconcussive impacts10,14. 

Subconcussive impacts have also been shown to affect cognitive performance, even in 

the absence of a diagnosed concussion, with Hwang et al. (2016) showing decreases in 

balance performance 24 hours after heading ten soccer balls82. Multiple studies have 

shown decreased task performance and have found changes in task-related brain activity 

using task-based functional magnetic resonance imaging (fMRI) after exposure to 

subconcussive impacts20,157,187. Researchers have also shown subconcussion effects in 

resting-state fMRI (rs-fMRI) connectivity, particularly default mode network 

connectivity1,89. Subconcussion has also been implicated in changes to brain structure, 

with studies showing correlations between measures of head impact and white matter 

structural metrics50,51,106. In spite of these findings, many clinicians and researchers still 

consider subconcussive head impacts to be of little to no clinical relevance. Research that 

provides further clarity on the subconcussive impact load in sports and on the 

physiological mechanisms underlying these effects should increase confidence in the 

ability of subconcussion to produce relevant effects.  

 In concussion, a patient can present with any number or combination of 

concussion’s symptoms and signs16 and heterogeneity in clinical presentation may 

indicate an underlying spatial heterogeneity in the brain158. We believe that 
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 subconcussion is likely to exhibit a similar spatial heterogeneity of effect as concussion. 

Functional MRI has shown some ability to detect changes related to subconcussion, but 

the locations of statistically significant changes have been inconsistent1,20,89,157,187, 

possibly due to heterogeneity in affected areas across participants. If subconcussion does 

produce different spatial effects across participants, arbitrarily choosing a single task or 

resting state network may reduce the chances of finding a significant result. However, 

metrics of spontaneous brain activity and functional brain connectivity can be calculated 

for every grey matter voxel in the brain, allowing for analyses that survey changes across 

the brain without a priori selection of a subset of brain regions. These metrics have been 

successfully used to identify changes that occur in the brain after a concussion129,222-224, 

and could therefore also provide a way to compare the effects of concussion to those 

from subconcussion. While most fMRI research relies on mass-univariate analysis 

methods, they perform poorly when faced with spatial heterogeneity across participants. 

Conversely, multivariate analysis methods are more resilient to spatial heterogeneity and 

may be more effective and detecting the changes that occur in response to subconcussive 

impacts. 

 Chapter III of this dissertation presents preseason and postseason rs-fMRI data 

collected from college football, men’s soccer, and men’s lacrosse players, and a group of 

college-age controls. Amplitude of low-frequency fluctuations (ALFF) and fractional 

ALFF (fALFF) were used as measures of spontaneous neural activity in the brain. 

Regional homogeneity (ReHo) and degree centrality (DC) were used as measures of local 

and global brain connectivity, respectively. ALFF, fALFF, ReHo, and DC were analyzed 

using mass-univariate and multivariate analyses. The hypothesis is that exposure to 
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 repetitive subconcussive head impacts can produce spatially heterogeneous effects on 

brain function. To test this hypothesis, rs-fMRI data was acquired from college football 

players, soccer players, lacrosse players, and controls at preseason and postseason time 

points. For each participant at each time point, voxel-wise measures of spontaneous brain 

activity (ALFF/fALFF) and local (ReHo) and long-range (DC) functional connectivity 

were calculated. A combination of standard voxel-wise analysis and paired support vector 

machine (SVM) classification studied the effects of subconcussion on spontaneous brain 

activity and functional brain connectivity. Results from the voxel-wise analyses 

demonstrated no changes, but SVM classification showed changes in college football 

players’ ALFF, fALFF, and ReHo values. Multivariate analyses also indicated changes in 

the control group’s ALFF and fALFF values, but subsequent analysis indicated that the 

changes in the college football players ALFF and fALFF values demonstrated different 

trends than controls. This research does not directly link subconcussive impacts to these 

changes, but the results suggest that the effects of subconcussion may be on the same 

spectrum as sports-related concussion. 
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 CHAPTER 1: BACKGROUND 

BACKGROUND FOR BIOMECHANICS  

One way to study concussion and subconcussion is by measuring the 

biomechanical properties of head impacts in sport. The most common sport in which to 

study this is football, because football has a high incidence of concussion, and players 

sustain significant numbers of subconcussive impacts8,105,162,220. Early biomechanical 

research in football studied the effectiveness of a helmet to prevent skull fractures, 

subdural hematomas, and other life-threatening traumatic brain injuries. Since helmets 

were first introduced into football in the early 1960’s, there has been concern that 

wearing a helmet might make the players feel invincible and exacerbate their aggressive 

play. In support of this, Clarke et al. (1998) showed that the incidence of head and neck 

fatality rose after the mass implementation of helmets in football39. While fatalities have 

dropped considerably since then, many experts think that as football players have become 

bigger and faster they also hit harder than their predecessors.  

In response to concerns about the short-term and long-term effects of SRC, the 

NFL formed a committee on mild traumatic brain injury (mTBI)146. In 2003, the NFL 

mTBI Committee started publishing a series of experiments studying the biomechanical 

properties of concussion by reconstructing concussive and non-concussive impacts from 

video analysis147-149,194-198. It represents a significant conflict of interest for the NFL to 

commission research on concussions and the studies have received criticism regarding 

many of their conclusions139. However, these studies proved useful to prime future 

research and resulted in some interesting observations about concussions. For example, 

football players will frequently line up their head, neck, and torso while in the act of 
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 tackling and lead with their helmeted head to deliver maximum force by increasing the 

effective weight behind their impact and distributing the force they experience194. This is 

one reason why, in open field tackles, the striking player sustains concussion at a much 

lower rate than the player who is struck, and why tackling is responsible for 67.7% of 

concussions in football149,194. While these observations resulted in rule changes regarding 

helmet-to-helmet impacts in the NCAA and the NFL (for example, the elimination of 

“spearing”), video reconstruction was insufficient to characterize the biomechanical 

causes of concussion. 

In 2005, Duma et al. published the first study to use the head impact telemetry 

(HIT) system to analyze impacts sustained by college football players. The HIT system is 

a helmet-based accelerometers system that is used to measure the acceleration of an 

athlete's head as they participate in live-action practice and game events56. The 

accelerometers are spring-mounted inside the padding of the helmet as to maintain 

contact with the player’s head during an impact, to ensure that the sensors measure the 

acceleration of the head as opposed to the acceleration of the helmet118. This technology 

was quickly implemented by several research teams and has become a significant source 

of data on the biomechanics of head impact in football. The HIT system’s integration into 

required equipment allowed quantification of head impact in football to be easily 

deployed to teams across the country, leading to a rapid expansion of live play 

biomechanical impact data in football. 

Soon it became evident that not all football players experience impacts in the 

same location, severity, or quantity, and differences could be seen in between practices 

and games, player positions, and levels of competition. For instance, football players 
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experience twice the number of impacts during a game as they do during practice, and 

game impacts are on average more severe26,45. When it comes to differences in playing 

position, linemen receive 1.5-2 times the number of impacts as other positions. However, 

skill players (quarterback, offensive back, defensive back, etc.) receive more high impact 

hits (>60G) than linemen, and running backs sustain the highest impacts 

overall23,26,45,131,163. In regard to playing level differences, college players have higher 

average impact severities and sustain more high impact hits (>60g) than high school 

players in similar positions163. For youth football, high impact hits are infrequent, but do 

still occur40,49,206. In contrast to higher levels of competition, youth football players 

experience more impacts during practice than during games, and nearly all of their high 

severity hits occur during practice49. These findings have led to changes in practice 

regulations, heads-up tackling interventions, and a movement to raise the minimum age 

for tackling in youth football. 

In addition to these findings, many research groups tried to identify a 

biomechanical threshold for concussion23,25,142,149,160,220. Many thresholds for concussion 

have been proposed: developed from data from the HIT system, impact reconstruction, or 

computer simulations. The published peak resultant linear acceleration (PRLA) 

thresholds range from 70-106g23,25,72,149,220; and the peak resultant rotational acceleration 

(PRRA) thresholds range from 4,500-7,900 radians per second2 (rad/s2)23,142,160,220. At 

first glance, these thresholds seem reasonable with the distribution of head accelerations 

in football impacts highly positively skewed with only 3-4% of impacts exceeding 80G131 

and since the average concussive PRLA and PRRA values are similar at 81-105g and 

5312-7230rad/s222,25,56,73,149,197,220. However, concussions occur at varying impact 
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magnitudes and impacts that exceed these values rarely result in a diagnosed 

concussion73, and it has been reported that less than 0.5% of >80g impacts result in a 

diagnosed concussion56,73,131,163. This has led to speculation that players may have a 

unique threshold based on their own physiological characteristics23,70.  

Part of the difficulty in defining an accurate threshold may be due to 

subconcussive impacts. There is evidence to support that the accumulation of 

subconcussive impacts makes an athlete more susceptible to sustain a concussion, or that 

repetitive impacts cause injury in the absence of single severe impact22,131,155. To this 

point, Beckwith et al. (2012 and 2013) noted that several athletes developed concussive 

symptoms hours after they sustained a significant impact, whereas concussion symptoms 

usually immediately succeed the concussive impact13,14. Concussed athletes were 

separated into two groups: those who were diagnosed immediately and those with a 

delayed diagnosis. Altogether, both groups had more impacts on days with a concussion 

diagnosis than on days without an injury, indicating that the increased number of impacts 

may have played a role making the athletes more susceptible to concussion. Furthermore, 

they found that players with an immediate diagnosis sustained a higher peak PRLA than 

those with a delayed diagnosis, 112g versus 103g, and players with a delayed diagnosis 

received more impacts above the 50th percentile of impact severity on the day and week 

preceding the concussion than those who were immediately diagnosed13,14. This 

discrepancy in injury presentation indicates that subconcussive impacts modify 

susceptibility to subsequent concussion, and/or that multiple subconcussive impacts can 

result in a concussion in the absence of a single concussive impact. with more players 

receiving a delayed diagnosis than an immediate diagnosis, with a reported ratio of 4:3, 



 

 

12 
this pathway to concussion may actually be more common than concussion resulting 

from a single impact13,14. This research suggests that subconcussive head impacts may 

not be benign events, but may cause subclinical damage that can accumulate. 

While this research has revealed many important aspects concerning the 

biomechanical properties of concussion, answers to many important questions remain 

elusive, for example the biomechanical threshold for concussion. Part of the reason for 

this may be due to some of the inherent limitations in this research. First, in recent years 

there have been several concerns raised about the accuracy of the HIT system. The first 

concern is with the methods used to validate the HIT system. The initial HIT system was 

only validated for impacts up to 50g, but used to record impacts in excess of 100g118. The 

second generation HIT system was validated with higher impacts, but the helmet that was 

used to validate the HIT system was too small for proper fit on the headform, leading to a 

tight fit that is not reflective of the way that football players wear their helmets12,47,84,161. 

Taking these and other issues into account, validation studies have shown the root mean 

square errors (RMSE) for the HIT system are 11%-198% for PRLA and 27%-208% for 

PRRA, and varies with impact location13,47,84. These issues do not invalidate the studies 

using the HIT system, and every biomechanical sensor deployed in live play athletic 

events has non-trivial error rates47,208. However, these issues should be considered when 

designing future biomechanical studies and when interpreting data from these sensors.  

While football receives the most attention for head impacts and concussion, there 

is growing recognition that these issues may also be present in other contact and collision 

sports, like soccer and lacrosse. Soccer is the most popular sport in the world and lacrosse 

is one of the most rapidly growing contact sports in the United States, and have the third 
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and fourth highest concussion rates in men’s collegiate sports, respectively78. Soccer and 

lacrosse players have a higher concussion incidence than their counterparts in basketball, 

field hockey, wrestling, track & field, and baseball42,105,119,211. It is unknown if the 

number or average severity of subconcussive head impacts follows the same incidence 

pattern as concussion, and frequency and severity of subconcussive head impact has not 

been directly measured in men’s collegiate soccer and lacrosse. Some studies have 

attempted to quantify the severity of head impact in soccer and lacrosse, but much like 

the early research into head impact in football, most of these measurements have 

occurred outside live play situations. For soccer, helmet-based accelerometers have 

measured header acceleration in a laboratory setting137, video analysis and biomechanical 

reconstruction have studied head impacts caused by player contact with instrumented 

dummies205, and a modified helmet-based accelerometer has recorded head impacts in 

controlled scrimmages75. For lacrosse, researchers have attempted to infer similar data 

from laboratory-based biomechanical reconstructions43 or video capture of live lacrosse 

play30,104. Recent advancements in biomechanical sensor miniaturization has produced 

accelerometers that can be worn unobtrusively to quantify head impact during live play in 

either helmeted or un-helmeted sports. This research uses one of these sensors: the xPatch 

from X2 Biosystems (Seattle, WA). The xPatch is worn on the skin covering the mastoid 

process and it contains a triaxial high impact linear accelerometer and a triaxial 

gyroscope to capture biomechanical impact data similar to the HIT system. 

The quantification of head impact in football developed a greater understanding 

the risks and led to rule changes that have made football safer. Now, with a 

biomechanical impact sensor that is not helmet-based, other unhelmeted sports can 
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experience the same rapid expansion of knowledge that occurred with the HIT system in 

football. There are many open questions regarding subconcussive head impact exposure 

in soccer and lacrosse. The main focus of this research is: how does the quantity and 

severity of head impact compare between college football, soccer, and lacrosse players? 

With the concerns about the long-term detrimental effects of head impacts in football 

spreading to other contact and collision sports like soccer and lacrosse, it is important to 

understand the relative levels of subconcussive exposure in these sports. Each of these 

sports have a top five concussion incidence, but it is unknown if the level of 

subconcussive impact exposure these sports is also similarly high. This research attempts 

to quantify head impact in college football, soccer, and lacrosse and compare the number 

and average severity of impacts that occur in their respective practices and games. We 

hypothesize that the number of head impacts and their average severity will be higher for 

lacrosse than for soccer, but both will be substantially lower than college football. This 

would indicate that concussion incidence is not a good proxy measure for subconcussive 

impact exposure, and when it comes to subconcussive head impact in these sports, 

college football is exceptional. 

 

BACKGROUND FOR MAGNETIC RESONANCE IMAGING 

Neuroimaging is often used as an objective measure of neural change, damage, or 

degeneration in several neurological processes, diseases, and disorders. While many 

patients receive a computed tomography (CT) or magnetic resonance imaging (MRI) 

scan when they present with an mTBI, the scan’s primary purpose is to eliminate the 

possibility of a more serious injury, for example intracranial hemorrhage or cerebral 
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contusion. CT and structural MRI have shown little efficacy in the evaluation of a 

concussion, because these techniques are only able to detect gross structural changes52. 

However, other neuroimaging techniques are better suited to directly investigate the 

underlying physiological effects of SRC and subconcussion. These techniques are able to 

detect subtle changes in brain function or structure, which makes them better suited to 

detect the type of changes that might occur in response to SRC and subconcussion.  

Functional MRI. One such neuroimaging technique is functional magnetic resonance 

imaging (fMRI), which is a non-invasive imaging technique that probes neural function 

in the brain. Functional MRI is usually a blood oxygen level dependent (BOLD) imaging 

technique that uses the increase of oxygenated hemoglobin that occurs shortly after 

neural firing as a proxy for neural activation. When neurons fire, astrocytes detect the 

local release of neurotransmitters and signal the blood vessels to increase blood flow to 

the area, which creates a local surplus of oxygen. This excess oxygen increases the T2* 

magnetic resonance (MR) signal from the area63,111,117. Historically, the functional 

deficits arising from SRC have been more readily found than structural changes, and if 

subconcussive impacts result in a similar functional disruption that is similar to 

concussion, then fMRI may also be well suited for the study of subconcussion.  

The majority of fMRI research is task-based, which involves a research 

participant performing a specific task while fMRI data is collected. This technique 

measures the activation of the brain caused by performing the experimental task and 

results in an activation map specific to the task. These activation maps can be statistically 

compared between groups performing identical tasks, to identify differences in cognitive 

processing between the groups. The most common task in concussion and subconcussion 
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fMRI research is an n-back task. During the n-back task the participant is presented with 

a series of stimuli (letters, numbers, pictures, etc.) and is asked to respond if the current 

item was presented previously. The n-back task usually involves trials of 1-back, 2-back, 

and 3-back. For example, in the 2-back trial the participant would respond if the stimuli 

matched a stimuli presented 2 items previously (A-B-R-D-R). N-back tasks assess 

aspects of attention, working memory, and executive function, which is why it is often 

used as an assay for general cognitive functioning. When performing an n-back task or a 

similar broad task, mTBI patients have been found to experience an increase in the area 

of fMRI activation and/or an increase in the magnitude of 

activation36,37,60,85,99,123,124,145,175,177,218 However, some researchers found decreases in the 

area of fMRI activation and/or a decrease in the magnitude of activation in those with an 

mTBI or SRC when compared to a control group33,34,36,37,60,69,184. It is unknown whether 

this discrepancy in results is due to methodological differences or real differences in the 

populations under study. 

In order to study the effects of subconcussion, Talavage et al. (2010) collected 

neuropsychological testing (ImPACT) and n-back fMRI data from high school football 

players. Before the season they collected data from all participants, and each week during 

the season they recollected data from 1-3 players. Using this protocol, they were able to 

collect in-season data from athletes who received a concussion and from more who did 

not. Using the neuropsychological tests, they identified players who were not diagnosed 

with a concussion but demonstrated functional impairment. They showed that the non-

concussed but functionally impaired athletes exhibited a reduction of activation in areas 

associated with working memory, indicating a functional impairment in this area187. A 



 

 

17 
follow up study, demonstrated that the undiagnosed yet functionally impaired athletes 

received 450 more impacts than those who were not functionally impaired20. This 

indicates that subconcussive impacts result in functional impairment that separate from 

concussion and is not being detected by the current clinical evaluations. It also suggests 

that fMRI may be more sensitive to the cognitive effects of subconcussive impact than 

current evaluation measures.  

One limitation of task-based fMRI studies is that minor changes to the task make 

comparisons between studies ineffectual. While many of these studies used n-back tasks, 

there were differences in their design; the studies used auditory or visual presentation of 

letters, numbers, or pictures. These minor variations in the specific task make it difficult 

to determine whether the differences between studies are related to the differences in 

methodology or whether they reflect the heterogeneity of the underlying processes28. 

Additionally, task-based fMRI is only able to probe areas associated with the specific 

task. A functional method that is easily replicable across research groups and that probes 

more than one functional network would be better suited for the study of subconcussion. 

Resting-state fMRI. Resting-state functional MRI (rs-fMRI) is a task independent 

method of BOLD fMRI, which lacks some of the issues of task-based fMRI. Resting-

state fMRI experiments capture spontaneous low frequency (0.01-0.10 Hz) fluctuations in 

the BOLD signal that occurs in the absence of a task or stimulus178. Biswal et al. (1995) 

was the first to determine the neural significance of these fluctuations and identify 

resting-state networks (RSN): disparate functional regions that fluctuate with temporal 

synchronicity100. Several RSNs have been identified: default mode network (DMN)71, 

somatosensory network17, visual network11,114,151,176,212, language network189, dorsal 
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attention network62,151,167,189, ventral attention network62, frontoparietal control 

network199, and the cingulo-opercular network55,151. The benefits of rs-fMRI over task-

based fMRI is that, collectively, these RSNs geographically cover the majority of the 

cortex, assessing global features of brain function, and the absence of a task allows this 

technique to easily replicable across research groups. Resting-state fMRI only requires 

that the patient remain still and awake, thus allowing a researcher or clinician to collect 

data that probes the functional connectivity of various networks with one simple scan. 

While rs-fMRI research is still burgeoning, studies have shown high test-retest reliability 

in rs-fMRI data18,38,168,188,  

Patients with mTBI and SRC show abnormal connectivity in a few resting-state 

networks88,122,136,173,174,182,188,217,225. Participants with mTBI or SRC have shown increased 

RSN connectivity173,188, decreased RSN connectivity88,136, or both increased and 

decreased RSN connectivity122,182,217. In studying the effects of subconcussive impacts, 

Johnson et al. (2014) collected rs-fMRI data from 24 college rugby players 24 hours 

before and after a full contact rugby game, and found changes in the functional 

connectivity of the DMN. Similarly, Abbas and Shenk et al. (2016) found increases and 

decreases in DMN connectivity in high school football players when comparing in-

season and postseason time points to a preseason baseline. Without the variability of a 

task, the heterogeneity of these results in mTBI, SRC, and subconcussion may suggest 

that head impacts produce heterogeneous effects across subjects. While the DMN is a 

popular RSN in which to probe functional connectivity of the brain, focusing on a single 

RSN limits the ability of rs-fMRI to probe the functional connectivity of the entire brain.  
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Metrics of spontaneous brain activity and functional brain connectivity. Another 

way to probe resting-state functional activity and connectivity in the entire brain is with 

the use of metrics that summarize the spontaneous brain activity and functional 

connectivity for each and every cortical voxel. Four such metrics are amplitude of low-

frequency fluctuations (ALFF), fractional ALFF (fALFF), degree centrality (DC), 

regional homogeneity (ReHo). ALFF is a measure of the power spectrum in the range 

representing spontaneous neural activity (0.01-0.10Hz), and fALFF is the ratio of that 

power spectrum to that of the entire frequency range216,227. ALFF and fALFF have been 

used to study several disease states, including: autism83, depression87,107,170 Tourette 

syndrome46, and various dementia disorders81,152,226. Regional homogeneity (ReHo) is the 

Kendall’s coefficient of concordance93 of a given voxel and the 26 surrounding voxels in 

three-dimensional space: 

𝑊 =
12 (𝑅')) − 𝑛(𝑅))

𝐾)(𝑛- − 𝑛)  

where W is the strength of concordance, with a value of 1 indicating perfect 

agreement and a value of 0 indicating no agreement, 𝐾 is the number of voxels in the 

cluster (𝐾 = 27), 𝑛 is the number of time points in the resting-state sequence (𝑛 = 470), 

𝑅'	represents the sum rank of the 𝑖th time point (1 − 470), and 𝑅 is the mean of the 𝑅'’s 

(	 456 7
)

	)215. ReHo is a measure of local functional connectivity. ReHo has been used to 

study several disease states, including: autism spectrum disorder48,144,171, attention deficit 

hyperactivity disorder3,201 schizophrenia108,214, depression79,103, and various dementia 

disorders58,110,152,217. Degree centrality (DC) is the sum of the Pearson correlation 

coefficients between each voxel and all other voxels, measuring of global functional 
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connectivity in the brain29. DC has been used to study several disease states, including: 

autism53, attention deficit hyperactivity disorder53,209, epilepsy109, psychosis113, and 

various dementia disorders2,6,152. 

A few recent studies have used these metrics of spontaneous brain activity and 

functional connectivity to study the effects of mTBI and concussion. Zhou et al. (2014) 

found lower fALFF in the frontal, temporal and occipital cortices when they compared 

mTBI patients weeks after their injury (mean: 23 days) to a healthy control group224. 

Using ALFF and fALFF, Zhan et al. (2016) found decreases in one region, and increases 

in three other regions when they compared mTBI patients days after their injury (mean: 

3.6 days) to a healthy control group222. To study local and global connectivity after SRC, 

Meier, Bellgowan, and Mayer (2016) measured ReHo and DC brain at multiple time 

points (mean days after injury: T1=1.7, T2=8.4, T3=32.4) and compared those measures 

to those found in a healthy athlete (HA) control group. Concussed athletes had increased 

ReHo in eight regions and decreased ReHo three regions at one-month post injury, and 

no changes in DC at any time point relative to the athlete control group129. No published 

studies have used these metrics of functional activity and connectivity to study the effects 

of subconcussion. 

While ALFF, fALFF, ReHo, and DC metrics measure spontaneous brain activity 

and functional connectivity across the entire cortex, traditional mass-univariate analyses 

may not be adequate to account for the heterogeneity of effects in subconcussion. Mass-

univariate, or voxel-wise, analyses perform an independent statistical test for each voxel, 

requiring spatial homogeneity across participants. Many neurological processes and 

disorders have a similar spatial effects across the population, for example the n-back task 
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activates premotor and prefrontal regions, Parkinson’s disease results in neural death in 

the substantia nigra, and temporal lobe epilepsy results in neural death in the 

hippocampus. This spatial homogeneity across participants makes voxel-wise analyses 

well-suited to detect relevant differences in group analyses. However, if subconcussion 

affects different brain regions in different participants, a voxel-wise approach might have 

insufficient statistical power to detect these changes.  

Some fMRI researchers have started using multivariate analyses as a complement 

to standard mass univariate analyses116. Multivariate analyses are often performed as a 

supervised learning classifier, using a training set of data to create an algorithm that 

discriminates between two known groups, before testing classifier accuracy on novel 

data116. The resulting algorithms differentially weight voxels across the brain that might 

collectively discriminate between multiple groups of interest. This general approach is 

more robust in detecting changes that are spatially heterogeneous or spatially distributed 

across a group. Linear support vector machine (SVM) classification is an increasingly 

common technique in fMRI that tries to create a hyperplane decision boundary that 

separates the two groups’ feature sets with the maximum possible margin41,192. For fMRI 

data, the strength of linear SVM lies in its ability to deal with high dimensionality data 

and resistance to overtraining61,130. 

This study uses measures of spontaneous brain activity (ALFF/fALFF), local 

connectivity (ReHo), and global connectivity (DC) calculated from rs-fMRI scans 

collected from college football players, other college sport athletes, and college-age 

controls at preseason and postseason time points. To investigate the effects of 

subconcussion, which may be heterogeneous, both voxel-wise and SVM classification 
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will be performed to determine if changes are occurring in these metrics over the course 

of the season. To determine which regional trends are driving overall changes, the 

regional effects of the resulting t-statistic and SVM weight maps will be compared using 

a measure of ranking distance. We hypothesize that:  

1) college football players will experience a mixture of increases and decreases in ALFF, 

fALFF and ReHo, similar to what is seen in response to concussion, 2) multivariate 

analyses will be more sensitive than mass-univariate analyses to the changes, due to 

underlying spatial heterogeneity on the effects, and 3) other college sport athletes may 

experience similar changes but to a lesser extent than college football, and college-age 

controls will not experience any longitudinal changes. If these hypotheses are correct, it 

would indicate that the increased subconcussive exposure in college football is producing 

spatially heterogeneous neural changes over the course of the single season. This method 

could also be used to monitor the functional effects of other physiological processes 

disorders with heterogeneity across patients, which is difficult with current methods.  
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CHAPTER II: QUANTIFICATION OF HEAD IMPACT IN CONTACT AND 

COLLISION SPORTS 

INTRODUCTION 

  Despite unknown significance, concern about the detrimental effects of 

subconcussion has fueled a movement to quantify head impacts in contact and collision 

sports. There are dozens of studies analyzing head impact in American football, both 

using laboratory simulations/ 

recreations64,148,149,194,197,205,220 and live play biomechanical measurements14,20,26,40,44-

45,49,56-57,65,70,73,76,120,125,131,162-163,191,207. A much smaller number of studies have quantified 

head impact in soccer and lacrosse, primarily using self-report questionnaires106, video 

analysis30,104,205, and/or laboratory simulations/recreations9,43,75,137,153. No published 

studies present live play biomechanical data in lacrosse and although a couple of studies 

have reported head impact measured during live play in soccer115,126. No studies have 

quantified subconcussion in multiple sports with the same biomechanical sensor and 

directly compared the sports’ quantity and severity of head impacts.  

 Recent advances in biomechanical sensor technology have miniaturized 

accelerometers enough to be unobtrusively attached to the mastoid process with an 

adhesive patch, expanding the number of sports where head impact can be measured 

during live play. The present study compares biomechanical sensor data collected during 

one season for each of the following sports teams: college football, high school football, 

college men’s lacrosse, and college men’s soccer. These sports each have a 

comparatively high concussion incidence42,54,67,78,228, with football typically near the top 

of all male sports. However, the relative amount of subconcussive head impact in these 
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sports is unknown, although football is widely assumed to have the highest 

subconcussive burden of all non-combat sports. The collected data are used to 

quantitatively investigate head impact differences between these teams during practices 

and games. 

 

METHODS 

Participants. During 2013 and 2014, 16 college football players, 15 high school football 

players, 15 college men’s lacrosse players, and 15 college men’s soccer players (mean 

(SD) age: 20.1 (1.3) years, 16.5 (1.2) years, 20.1 (1.1) years, and 20.2 (1.3) years, 

respectively) wore head impact sensors during official practices and games of their 

respective sport. College participants were volunteers from Division I teams and high 

school football players were from a small private high school. No athlete had a history of 

developmental or neurological disorder, or moderate to severe traumatic brain injury.  

Standard protocol approvals, registrations, and patient consents. The University of 

Virginia Institutional Review Board for Health Science Research approved the research 

protocol. All participants gave written informed consent; if participant was under 18 

years old at the time of enrollment, a parent or legal guardian also gave written informed 

consent. 

Biomechanical measurements. Study participants wore the xPatch impact sensing skin 

patch (X2 Biosystems, Seattle, WA) on the skin covering their mastoid process (left or 

right side was decided by the athlete) (Figure 1A). Impact to the body or head can result 

in head acceleration; however, for simplicity we will henceforth refer to impacts that 

result in acceleration of the head as “head impacts.” The sensor was to be worn during all 
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official team practices and games (soccer players only wore sensors for home games), 

although the athletes maintained the right to refuse at each event. The xPatch contains a 

triaxial high impact linear accelerometer and a triaxial gyroscope to capture six degrees 

of freedom for linear and rotational accelerations (one kilohertz sampling rate). If an 

accelerometer exceeded a predetermined 10g linear acceleration threshold, 100ms of data 

(10ms pre-trigger and 90ms post-trigger) from each accelerometer and gyroscope were 

recorded to onboard memory. Raw accelerometer data were then transformed to calculate 

peak resultant linear acceleration (PRLA) and peak resultant rotational acceleration 

(PRRA) at the head center of gravity by X2 Biosystems’ Injury Monitoring System using 

a rigid body transformation for PRLA and a five point stencil for PRRA. False impacts 

are removed by X2 Biosystems’ proprietary algorithm, which compares the waveform of 

each impact to a reference waveform using cross-correlation. Impacts with peak resultant 

linear acceleration less than 10g were removed. Impact data were then time filtered to 

include only impacts that occurred during a practice or game. Impact burden measures, 

PRLA sum and PRRA sum, were calculated per athletic exposure (a single practice or 

game event) by multiplying each impact by its linear or rotational severity and then 

summing them over each athletic event (ex. impacts of 10g, 10g, 20g, and 30g result in a 

PRLA sum of 70g), as in Broglio et al., 201122. Studies investigating the biomechanical 

validity of the xPatch have found appreciable error in the measurement of PRLA and 

PRRA in individual impacts47,126,208, discussed further in the limitations section. 

However, comparing relative values between two conditions with large numbers of 

impacts per condition has been demonstrated to provide reliable composite results126. 
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Individual impact severity values reported by any head impact sensor should be 

considered approximate. 

Game Data. All players participate in practices but not all players participate in every 

game. To account for this issue, athletes needed to meet a minimum playing time 

threshold for a game to include that player’s data in the game analysis. Due to differences 

in substitution patterns and structure of the playing time for each sport, the thresholds are 

necessarily different. To be counted as a game player, a college football athlete needed to 

participate in at least one play, a college lacrosse player needed to play more than 33% of 

the game, and a soccer player needed to play more than 45 minutes in the game for the 

event to be included in the analysis. Detailed records of playing time were not available 

for high school football players, but on the small team under study, most players played 

at least some part of the game; therefore all recorded high school football games were 

analyzed. Additional supplementary analyses were performed that included all recorded 

game events, without any minimum playing time threshold for inclusion, to investigate 

whether the inclusion criteria substantially biased the results. 

Statistical Methods. 

Data summarization: Categorical scaled data were summarized by frequencies and 

percentages, while continuous scale data were summarized either by the mean and 

standard deviation, or the geometric mean, the median, and range of the empirical 

distribution.  

Impacts per practice event: A negative binomial generalized estimate equation (GEE) 

model was utilized to compare the number of impacts per practice that the players 

experienced between college football, high school football, college lacrosse, and college 
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soccer. With regard to model specification, the GEE model only included a single 

indicator variable, which distinguished players from different teams. Since each player 

participated in several practices, each player’s impact data was considered a cluster of 

potentially non-independent observations in the GEE analysis. The sandwich variance-

covariance estimator of Huber and White80,202 was utilized to estimate the GEE model 

variance-covariance matrix. With respect to hypothesis testing, the GEE version of the 

Wald test was used to test the null hypothesis that mean number of impacts per practice 

was the same for all teams, and a two-sided p≤0.05 decision rule was used as the null 

hypothesis test rejection criterion.  

Analysis of PRLA per impact: Average peak resultant linear acceleration (PRLA) per 

impact per practice event was analyzed on the natural logarithmic scale via a Gaussian 

GEE model. The natural logarithmic transformation was applied in order to rescale the 

data to a scale in which the measurement distributions were more symmetric in shape (i.e. 

bell shaped). With regard to model specification, the GEE model included one indicator 

variable that distinguished players from different teams. Since each player participated in 

several practices, each player’s PRLA data was considered a cluster of potentially non-

independent observations in the GEE analysis. The sandwich variance-covariance 

estimator of Huber and White80,202 was utilized to estimate the GEE model variance-

covariance matrix. With respect to team differences in geometric mean PRLA per impact 

per practice, we tested the null hypothesis that the geometric mean is the same for players 

from different teams. A two-sided p≤0.05 rejection rule was used as the null hypothesis 

criterion.  
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Analysis of PRRA per impact: Average peak resultant rotational acceleration (PRRA) 

per impact per practice event was analyzed on the natural logarithmic scale in exactly the 

same way as the PRLA per impact data. 

Analysis of PRLA threshold: A negative binomial GEE model was utilized to analyze 

the number of impacts per practice in which a player experienced an impact with PRLA 

greater than 10g, 20g, 30g, 40g, 50g, 60g, 70g, 80g, 90g, and 100g. With regard to the 

GEE model specification, two indicator variables were utilized, one to distinguish 

between players from different teams, and one to distinguish between the 10 different 

PRLA thresholds. A set of indicator variables for team by PRLA threshold interaction 

was also a component of the model specification. To account for intra-player 

measurement correlation, the GEE model variance covariance matrix was specified in the 

unstructured form; i.e. a variance-covariance matrix form that places no restriction of the 

variance-covariance structure. With regard to hypothesis testing, the GEE version of the 

Wald test was utilized to test the global hypothesis that for practice events the number of 

impacts per PRLA threshold was uniformly (i.e. across all PRLA thresholds) the same for 

the players from different teams. Wald tests were additionally used to examine on a per 

PRLA threshold bases, team differences in the mean number of impacts per practice 

event in which the PRLA was greater than the defined threshold. A Bonferroni correction 

was applied to all pairwise tests as a means to restrict the simultaneous type I error rate to 

be ≤0.05. 

Analysis of PRRA threshold: A negative binomial GEE model was utilized to analyze 

the number of impacts per practice event in which the athletes experience a peak resultant 

rotational acceleration greater than 0rad/s2, 2000rad/s2, 4000rad/s2, 6000rad/s2, 
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8000rad/s2, 10000rad/s2, 12000rad/s2, and 14000rad/s2. The GEE analysis was conducted 

in exactly the same way as the analysis PRLA threshold. 

Analysis of cumulative impact burden per practice event: Impact burden measures, 

PRLA sum and PRRA sum, were calculated per athletic exposure (a single practice or 

game event) by summing each impact linearly weighted by its severity as a measure of 

“cumulative impact burden22.” There is currently no widely accepted metric specifically 

for the quantification of cumulative impact burden. Many studies that try to quantify 

impact burden use the summation of a metric that was developed for individual 

impacts22,50,57,126,185,191. This study chooses to use PRLA sum and PRRA sum, for their 

ease of calculation, and to match similar studies with the same accelerometer25,126. The 

GEE version of the Cox proportionate hazard model was used to compare the empirical 

cumulative distribution for PRLA sum per practice between players from different teams 

as well as to compare the empirical cumulative distribution of PRRA between players 

from different teams. This approach was utilized so that the intra-player measurement 

correlation would be accounted for in the null hypothesis test that the underlying PRLA 

sum per practice cumulative distribution is the same for players from different teams.  

Analyses of team differences in game events: Team differences in the number of impacts 

experienced by the players during games, and team differences in the impact forces 

experienced by the players during games were analyzed in the same way as the practice 

impact frequency data and practice impact force practice data. The only major differences 

were that this set of analyses focused on game event as opposed to practice events and 

this set of analyses focused only on the athletes who had game data that met the 

aforementioned inclusion criteria. To account for differences that were possibly caused 
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by different game inclusion criteria for the teams, additional analyses were performed 

with the same inclusion criteria used for all teams: the athlete wore the sensor during the 

game event. Hereafter, this analysis will be referred to as: “all games included” analysis. 

Supplemental table S1 contains a detailed account the “all games included” athletic 

exposures. 

Software package: SAS version 9.4 (SAS Institute Inc., Cary, NC) was used to conduct 

the statistical analyses. Graphic displays were created with statistical software of Spotfire 

S plus (TIBCO Inc., Palo Alto, CA).  

 

RESULTS 

Participants. Results include data from 788 practices and 102 games from college 

football, 369 practices and 104 games from high school football, 943 practices and 37 

games from college men’s lacrosse, and 480 practices and 28 games from college men’s 

soccer. Table 1 contains a detailed account of all captured athletic exposures. 

Number of impacts per event. For practices, college football (CF) resulted in the most 

impacts per athlete per event, followed by college soccer (CS), followed by high school 

football (HF), and then college lacrosse (CL) (mean impacts/practice: 13.2; 95% CI: 

[10.3, 16.9], 7.4; 95% CI [5.1, 10.9], 5.3; 95% CI [3.3, 8.5], and 3.1; 95% CI [2.4, 4.0], 

respectively). However for games, CS > CF > HF > CL (mean impacts/game: 31.1; 95% 

CI: [15.3, 63.0], 24.2; 95% CI [17.4, 33.8], 14.3; 95% CI [9.2, 22.3], and 11.5; 95% CI 

[8.3, 16.0], respectively). Pairwise comparisons show Bonferroni-corrected significant 

differences in the ratio of means (RoM) for number of head impacts per event for HF:CF 

practices (RoM: 0.41, p=0.012), CL:CF practices (RoM: 0.24, p<0.001), CL:CS practices 
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(RoM: 0.42, p=0.001), and CL:CF games (RoM: 0.47, p=0.010) (Figure 1B). Analysis 

with all games included did not add or remove any significant team differences in number 

of impacts per game (Supplemental Figure 1A). 

Geometric mean PRLA per event. For practices, CF resulted in the highest geometric 

mean peak resultant linear acceleration (PRLA) per athlete per event, followed by HF, 

followed by CL, and then CS (geometric mean PRLA/practice: 26.8g; 95% CI: [25.0, 

28.7], 25.2g; 95% CI [23.4, 27.2], 21.3g; 95% CI [19.9, 22.8], and 18.5g; 95% CI [17.2, 

19.9], respectively). The same order held true for games, CF > HF > CL > CS (geometric 

mean PRLA/game: 29.3g; 95% CI: [26.0, 32.9], 27.1g; 95% CI [25.2, 29.1], 21.1g; 95% 

CI [18.6, 24.0], and 17.6g; 95% CI [15.7, 19.8], respectively). Pairwise comparisons 

show Bonferroni-corrected significant differences in the ratio of geometric mean PRLA 

per event for CL:CF practices (RoM: 0.80, p<0.001), CS:CF practices (RoM: 0.69, 

p<0.001), CS:HF practices (RoM: 0.74, p<0.001), CS:CL practices (RoM: 0.87, 

p<0.001), CL:HF practices (RoM: 0.85, p<0.001), CL:CF games (RoM: 0.72, p=0.003), 

CS:CF games (RoM: 0.60, p<0.001), CS:HF games (RoM: 0.65, p<0.001), and CL:HF 

games (RoM: 0.78, p=0.009) (Figure 1C). Analysis with all games included resulted in 

lost significance between CL:CF (RoM: 0.84, p=0.259) and CL:HF (RoM: 0.89, 

p=0.682) games and increased effects between CS:CL (RoM: 0.74, p=0.004) games in 

geometric mean PRLA per game (Supplemental Figure 1B). 

Geometric mean PRRA per event. For practices, CF resulted in the highest geometric 

mean peak resultant rotational acceleration (PRRA) per athlete per event, followed by 

HF, followed by CL, and then CS (geometric mean PRRA/practice: 5140.0; 95% CI: 

[4676.4, 5649.5], 4327.1; 95% CI [3817.9, 4811.2], 3817.9; 95% CI [3470.1, 4200.5], 
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and 2960.4; 95% CI [2674.2, 3277.2], respectively). The same order held true for games, 

CF > HF > CL > CS (geometric mean PRRA/game: 5805.8; 95% CI [5030.9, 6700.0], 

4796.6; 95% CI [4056.2, 5672.1], 3603.1; 95% CI [2756.6, 4709.4], and 2713.8; 95% CI 

[2617.9, 2813.2], respectively). Pairwise comparisons showed Bonferroni-corrected 

significant differences in the ratio of geometric mean PRRA per event for all practices 

HF:CF (RoM: 0.84, p<0.001), CL:CF (RoM: 0.74, p<0.001), CS:CF (RoM: 0.58, 

p<0.001), CS:HF (RoM: 0.68, p<0.001), CS:CL (RoM: 0.78, p<0.001), CL:HF (RoM: 

0.88, p=0.036), and CL:CF games (RoM: 0.62, p=0.018), CS:CF games (RoM: 0.47, 

p<0.001), and CS:HF games (RoM: 0.56, p<0.001) (Figure 1D). 

Analysis with all games included resulted in lost significance between CL:CF games 

(RoM: 0.74, p=0.052) and increased effects between CS:CL games (RoM: 0.72, p=0.011) 

in geometric mean PRRA per game (Supplemental Figure 1C). 

Number of impacts above thresholds. For practices, the distributions for number of 

impacts per athlete per event, with respect to multiple linear and rotational acceleration 

thresholds, differed between CF, HF, CS, and CL (p<0.001 for all pair-wise comparisons) 

(Figures 2A-B). Threshold by threshold post hoc pair-wise ratio of means comparisons 

showed sport differences in the mean number of impacts per practice at several linear and 

rotational acceleration thresholds after Bonferroni correction (Figures 2C-D and 

supplemental table S2). Compared to CF practices, trends across multiple PRLA and 

PRRA thresholds have practices for HF at ~26%, CS at ~18%, and CL at ~11% the 

number of CF impacts, with the percentage generally dropping as the thresholds increase. 

For games, the distributions for number of impacts per athlete per event, with respect to 

multiple linear and rotational acceleration thresholds, differed between CF, HF, CS, and 
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CL (p≤0.017 for all pair-wise comparisons) (Figures 3A-B). Threshold by threshold post 

hoc pair-wise ratio of means comparisons showed sport differences in the mean number 

of impacts per game at several linear and rotational acceleration thresholds after 

Bonferroni correction (Figures 3C-D and supplemental table S3). Compared to CF 

games, trends across multiple PRLA and PRRA thresholds have games for HF at ~54%, 

CS at ~42%, and CL at ~20% the number of CF impacts, with the percentage generally 

decreasing as the thresholds increase. Analysis with all games included resulted in lost 

significance between HF:CF games (p=0.332) in the distributions for number of impacts 

per athlete per event, with respect to multiple linear acceleration thresholds(Supplemental 

Figure S2A). Analysis with all games included did not add or remove any significant 

team differences in the distributions for number of impacts per athlete per event, with 

respect to multiple rotational acceleration thresholds. (Supplemental Figure S2B). 

Threshold by threshold post hoc pair-wise ratio of means comparisons showed changes in 

sport differences in the mean number of impacts per game at some linear and rotational 

acceleration thresholds after Bonferroni correction (Supplemental Figures S2C-D and 

supplemental table S4). 

Cumulative impact load per event. The Kaplan Meier forms of the cumulative 

distributions for impact burden (a summation of the impacts which are each weighted by 

severity) per athletic exposure are shown in Figures 4A-B with regard to linear 

acceleration, and in Figures 4C-D with regard to rotational acceleration. During practice, 

linear acceleration cumulative distributions differed between all pairwise comparisons 

(Bonferroni corrected p≤0.05) with the exception of the comparison of HF-to-CS, with 

the median of the linear acceleration distribution being greatest for CF (277.3g; 95% CI 
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[249.4, 309.6]), followed by HF (63.1g; 95% CI [56.0, 73.5]) and CS (84.9g; 95% CI 

[73.0, 94.9]), and then CL (41.6g; 95% CI [36.8, 46.9]) (Figure 4A). During games, 

linear acceleration cumulative distributions differed for comparisons of CF-to-CS, CF-to-

CL, CS-to-CL, and HF-CL (Bonferroni corrected p≤0.05), but not between any other 

pairwise comparisons, with CL resulting in the lowest linear acceleration distribution 

(median: CF-567g; 95% CI [453, 691], CS-410g; 95% CI [261, 471], HF-202g; 95% CI 

[128, 302], CL-101g; 95% CI [55, 144]) (Figure 4B). Analysis with all games included 

resulted in lost significance between CF-to-CS games in cumulative linear impact load 

per event (Supplemental Figure S3A). During practice, rotational acceleration cumulative 

distributions also differed between all pairwise comparisons (Bonferroni corrected 

p≤0.05) with the exception of the comparison of HF-to-CS, again with the median of the 

rotational acceleration distribution being greatest for CF (53,800rad/s2; 95% CI [47,200, 

61,700]), followed by HF (11,200rad/s2; 95% CI [9,200, 13,400]) and CS (13,900rad/s2; 

95% CI [11,800, 16,300]), and then CL (7,600rad/s2; 95% CI [6,800, 8,600]) (Figure 4C). 

During games, rotational acceleration cumulative distributions differed for comparisons 

of CL-to-CS, CL-to-HF, and CL-to-CF (Bonferroni corrected p≤0.05), but not between 

any other pairwise comparisons, again with CL resulting in the lowest rotational 

acceleration distribution median (median: CF-111,800rad/s2; 95% CI [90,200, 139,700], 

CS-61,700rad/s2; 95% CI [33,300, 68,600], HF-41,800rad/s2; 95% CI [29,300, 59,700], 

CL-40,200rad/s2; 95% CI [27,300, 55,000]) (Figure 4D). Analysis with all games 

included did not add or remove any significant team differences in cumulative linear 

impact load per event (Supplemental Figure S3B). 
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Table 1. Summary for each subject’s captured athletic events. 
For each athlete the following information is provided: player position, number of 
captured events for each event type, mean number of impacts for each event type, 
geometric mean peak resultant linear acceleration (PRLA) per impact per event and peak 
resultant rotational acceleration (PRRA) per impact per event.  

    Practice Summary  Game Summary  

Participant 
Number Position Number 

of Events 

Mean Hits 
per 

Practice 

Geometric 
Mean 

PRLA per 
Hit per 

Practice 
(g) 

Geometric 
Mean 

PRRA per 
Hit per 

Practice 
(rad/s2) 

Number 
of 

Events 

Mean 
Hits 
per 

Game 

Geometric 
Mean 

PRLA per 
Hit per 

Practice 
(g) 

Geometric 
Mean 

PRRA per 
Hit per 
Game 

(rad/s2) 

CF1 FB 57 9.5 34.8 6411.6 12 13.6 35 7165.6 

CF2 FB 61 13.8 29.1 5098.3 8 12.3 33.1 6250.8 

CF3 SS 48 18.3 32.7 6708.6 9 32.2 32.5 7148.4 

CF4 DT 63 18.2 25.6 5408.3 3 10 20.8 4439.1 

CF5 WR 56 5.6 24 4794.5 10 19.6 27.2 5203 

CF6 LB 32 15.2 23.8 4267.5 7 23.7 27.4 5084.8 

CF7 FS 23 8.2 25.1 5206.1 - - - - 

CF8 DE 58 13.4 27.5 5471.7 11 15.3 32.4 5878.3 

CF9 WR 60 9.4 17.8 2593.3 8 33 17.1 3084.7 

CF10 DT 41 23.2 25.8 4890.9 4 36 27.2 5253.6 

CF11 T 29 15.6 23.5 4698.1 1 23 31.6 4427.4 

CF12 TE 50 6.5 21.5 4617.9 8 20.3 26.2 5341.6 

CF13 DT 63 27.1 32.3 6432.8 11 55.5 33.5 7519.2 

CF14 LS 39 4.2 22.1 5056.5 1 1 15.2 3644.7 

CF15 CB 60 8.8 29.7 5128.7 - - - - 

CF16 LB 48 10.7 45.7 9239.5 9 17.4 35.1 7087.9 

Mean (SD) or GM† 47.0 
(12.9) 13.8 (12.3) 27.2† 5212.9† 7.3 

(3.6) 
24.2 

(13.2) 29.3 † 5805.8 † 

Median  50.5 12 25.7 5113.5 8 19.9 29.5 5297.6 

Range  [22, 61] [4.2, 27.1] [17.8, 
45.7] 

[2593.3, 
9239.5] [1, 12] [1, 

55.5] 
[15.2, 
35.1] 

[3084.7, 
7519.2] 

HF1 WR and 
CB 14 3.6 24.9 4136.7 3 13.3 29.8 6335.1 

HF2 WR and FS 20 2.2 29.1 4443.8 5 2.6 29.8 6708.8 

HF3 WR and 
CB 28 1.6 26.3 4743.5 10 16.2 30.2 5484.4 

HF4  QB 31 1.1 26.3 3309.3 10 3.3 22.4 3105.7 

HF5 DL 24 1.4 30.4 7022.9 8 3.3 33.9 9023.3 

HF6 OL and LB 20 6.2 25.8 4403.1 6 31 26.3 3745.7 

HF7 WR and 
CB  22 2.7 24.7 4506.8 5 2.4 21.7 2723.4 

HF8  WR 26 4.7 31 6433.7 10 4.3 29.7 5765.6 

HF9  WR 33 3.2 21.6 2568.3 9 38.1 25.6 4736.6 

HF10  G 38 8.2 21.9 4761.9 9 17.6 25.4 4896.5 

HF11  OL and DT 19 5.3 23 4316.6 6 28 33.2 6224.4 
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HF12  C 29 16.8 27.1 5590.3 6 27.3 25.6 4134.9 

HF13  LB 21 1.8 20.4 2942.1 5 5.2 26.5 4890.2 

HF14  OL and DL 23 6.1 23.1 4085.9 7 2.6 24.8 2947.1 

HF15  RB and 
WR 21 3.3 23.4 3441.8 7 14.6 25.8 5357.9 

Mean (SD) or GM† 24.6 (6.2) 4.8 (7.5) 24.9† 4307.8† 7.1 
(2.2) 

14.3 
(11.9) 27.1 † 4796.6 † 

Median  23 3.3 24.9 4403.1 7 13.3 26.3 4896.5 

Range  [14, 38] [1.1, 16.8] [20.4, 
31.0] 

[2568.3, 
7022.93] [3, 10] [2.4, 

38.1] 
[21.7, 
33.9] 

[2723.4, 
9023.3] 

CL1 Midfield 47 2.6 21.8 3959.3 4 13.3 26.3 4377.4 

CL2 Attack 60 2.5 27.2 4883 -   - - 

CL3 Midfield 73 3.3 22.4 4099.8 - - - - 

CL4 Attack 77 3.8 23.5 4614 11 12.1 23.2 4591.8 

CL5 Attack 20 7 26.4 5996.7 - - - - 

CL6 Midfield 63 2 15.7 2222.8 - - - - 

CL7 Midfield 63 2 24.6 4323.6 - - - - 

CL8 Midfield 63 3.9 21.5 4052.7 - - - - 

CL9 Midfield 66 1.4 18.7 3212.8 11 6.4 20.4 3627.4 

CL10 Midfield 74 3 20.5 4201.7 - - - - 

CL11 Midfield 59 1.4 21.7 4015 - - - - 

CL12 Midfield 81 5.9 14.8 1938.5 - - - - 

CL13 Midfield 74 5.5 17.3 2796.1 11 15.4 17.7 2438.5 

CL14 Defense 67 2.1 31.2 5806.9 - - - - 

CL15 Defense 56 1.3 24.9 4594.8 - - - - 

Mean (SD) or GM† 24.6 (6.2) 3.1 (4.4) 21.3† 3751.9† 9.3 
(3.5) 

5.5 
(6.1) 24.6† 4350.7† 

Median  23 2.6 21.8 4099.8 11 2.4 24.7 4365 

Range  [14, 38] [1.3, 7.0] [14.8, 
31.2] 

[1938.5, 
5996.7] [4, 11] [0, 

10.8] 
[14.4, 
33.3] 

[947.2, 
6687.6] 

CS1 Goalkeeper 18 14.4 24.3 4843.1 - - - - 

CS2 Defense 13 8.2 20.3 3373.7 - - - - 

CS3 Defense 11 1.1 34.3 5974.3 - - - - 

CS4 Midfield 16 5.1 19.2 3264.5 - - - - 

CS5 Midfield 8 3.1 24.4 4096 - - - - 

CS6 Defense 50 5.5 16.3 2290.3 7 20.9 18.1 2589.8 

CS7 Midfield 52 6.5 15.2 2115.1 - - - - 

CS8 Forward 43 6.2 17.1 2625.5 7 18 19.9 2726.6 

CS9 Midfield 49 3.4 18.6 3354.8 - - - - 

CS10 Defense 46 5.7 18.4 2759.8 5 17 19.7 2825.6 

CS11 Defense 50 19.8 15.7 2795 7 71 15.1 2817 

CS12 Goalkeeper 30 7 19.5 3544.7 - - - - 

CS13 Defense 27 5.7 17.3 2852 - - - - 

CS14 Goalkeeper 35 5 15.9 2366.2 - - - - 

CS15 Goalkeeper 32 7.7 18.3 3337.2 2 8.5 13.7 2494.1 
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Mean (SD) or GM† 32.0 

(15.9) 7.4 (9.6) 17.8† 2862.1† 5.6 
(2.2) 

31.1 
(23.2) 17.6 † 2713.8 † 

Median  32 5.7 18.4 3264.5 7 18 18.1 2726.6 

Range  [8, 52] [1.1, 19.8] [15.2, 
34.3] 

[2115.1, 
5974.3] [5, 7] [8.5, 

71.0] 
[13.7, 
19.9] 

[2494.1, 
2825.6] 

 
 

 
Figure 1. Average Quantity and Severity of Impacts. Picture of an athlete wearing the 
xPatch (A). Graph showing impact rates per athletic event, according to sport and event 
type (B). Geometric mean PRLA (g) (C) and PRRA (rad/s2 /1000) (D) per individual 
impact. Black circles identify the mean impact rate or geometric mean peak acceleration 
per impact, and vertical lines identify the 95% confidence interval. Brackets with an 
asterisk indicate that the indicated sports’ differed at the p ≤ 0.05 Bonferroni corrected 
level of statistical significance for that measure. 
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Figure 2. Impacts per Practice at Multiple Thresholds. Graphs of the mean number of 
impacts greater than the PRLA (A) or PRRA (B) threshold for CF, HF, CL, and CS 
practices. Vertical lines identify the 95% confidence interval for the mean number of 
impacts per practice greater than threshold. Graphs showing the ratio of means for 
comparing the mean number of impacts greater than the PRLA (C) or PRRA (D) 
threshold between CF practices and HF, CL, and CS practices. Data points identify the 
mean impact rate ratio (e.g., HF:CF practices) and vertical lines identify the Bonferroni 
corrected 95% confidence interval. Dotted line identifies the line of equality (i.e. ratio 
equals 1). 
 
 
  



 

 

39 

 
Figure 3. Impacts per Game at Multiple Thresholds. Graphs of the mean number of 
impacts greater than the PRLA (A) or PRRA (B) threshold for CF, HF, CL, and CS 
games. Vertical lines identify the 95% confidence interval for the mean number of 
impacts per game greater than threshold. Graphs showing the ratio of means for 
comparing the mean number of impacts greater than the PRLA (C) or PRRA (D) 
threshold between CF games and HF, CL, and CS games. Data points identify the mean 
impact rate ratio (e.g., HF:CF games) and vertical lines identify the Bonferroni corrected 
95% confidence interval. Dotted line identifies the line of equality (i.e. ratio equals 1). 
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Figure 4. Impact Burden per Athletic Exposure. Graphs showing cumulative 
distributions per event for the PRLA sum during practices (A) and games (B) and PRRA 
sum during practices (C) and games (D). The cumulative distribution is expressed as 
cumulative probability for observing a single athletic exposure PRLA or PRRA sum 
greater than X. Curves with different lowercase letters (a–c) differed at the p ≤ 0.05 
Bonferroni corrected level of statistical significance. 
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Table 2. Ratio of Mean Impacts per Practice at Multiple Thresholds. Ratio of mean 
impacts per practice at multiple PRLA and PRRA thresholds. For each pairwise team 
comparison and each PRLA or PRRA threshold the following information is provided: 
ratio of mean impacts per practice, uncorrected and Bonferroni corrected 95% confidence 
limits (95% CL), uncorrected and Bonferroni corrected p-values. For each PRLA and 
PRRA pairwise global test degrees of freedom (DF), Wald statistic, and p-values are also 
provided. 
High School Football vs. College Football     

  Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(g) Impacts per Practice 95% CL 95% CL p-value Lower 95% CL Upper 95% CL p-value 

10 0.36 0.20 0.65 0.001 0.16 0.83 0.006 

20 0.32 0.16 0.66 0.002 0.12 0.89 0.018 

30 0.28 0.14 0.57 <0.001 0.10 0.77 0.004 

40 0.26 0.13 0.51 <0.001 0.10 0.69 0.001 

50 0.23 0.12 0.44 <0.001 0.09 0.58 <0.001 

60 0.23 0.12 0.44 <0.001 0.09 0.59 <0.001 

70 0.22 0.12 0.41 <0.001 0.09 0.54 <0.001 

80 0.21 0.12 0.37 <0.001 0.10 0.46 <0.001 

90 0.21 0.11 0.41 <0.001 0.08 0.54 <0.001 

100 0.15 0.06 0.35 <0.001 0.04 0.50 <0.001 

Global Test: HF vs CF DF = 10 Wald Statistic = 78.5 p < 0.001   

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per Practice 95% CL 95% CL p-value Lower 95% CL Upper 95% CL p-value 

0 0.36 0.20 0.65 0.001 0.16 0.85 0.008 

2000 0.36 0.18 0.71 0.003 0.13 0.97 0.038 

4000 0.33 0.16 0.69 0.003 0.11 0.97 0.038 

6000 0.29 0.14 0.61 0.001 0.10 0.87 0.014 

8000 0.28 0.13 0.59 0.001 0.09 0.84 0.011 

10000 0.26 0.12 0.54 <0.001 0.09 0.76 0.004 

12000 0.24 0.12 0.50 <0.001 0.08 0.71 0.002 

14000 0.25 0.11 0.54 <0.001 0.08 0.77 0.005 

16000 0.21 0.09 0.49 <0.001 0.06 0.72 0.003 

18000 0.25 0.10 0.60 0.002 0.07 0.91 0.025 

20000 0.26 0.10 0.70 0.007 0.06 1.09 0.086 

22000 0.29 0.10 0.82 0.019 0.06 1.32 0.234 

Global Test: HF vs CF DF = 12 Wald Statistic = 158.3  p < 0.001   

        
College Lacrosse vs. College Football         

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 
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(g) Impacts per Practice 95% CL 95% CL p-value Lower 95% CL Upper 95% CL p-value 

10 0.24 0.17 0.34 <0.001 0.14 0.39 <0.001 

20 0.15 0.10 0.22 <0.001 0.08 0.27 <0.001 

30 0.12 0.08 0.19 <0.001 0.06 0.24 <0.001 

40 0.11 0.06 0.18 <0.001 0.05 0.23 <0.001 

50 0.09 0.05 0.17 <0.001 0.04 0.22 <0.001 

60 0.08 0.04 0.15 <0.001 0.03 0.20 <0.001 

70 0.07 0.04 0.13 <0.001 0.03 0.17 <0.001 

80 0.05 0.03 0.12 <0.001 0.02 0.16 <0.001 

90 0.06 0.03 0.12 <0.001 0.02 0.17 <0.001 

100 0.05 0.02 0.12 <0.001 0.01 0.17 <0.001 

Global Test: CL vs CF DF = 10 Wald Statistic = 331.7 p < 0.001   

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per Practice 95% CL 95% CL p-value Lower 95% CL Upper 95% CL p-value 

0 0.24 0.17 0.34 <0.001 0.14 0.39 <0.001 

2000 0.18 0.13 0.25 <0.001 0.11 0.30 <0.001 

4000 0.15 0.10 0.23 <0.001 0.08 0.27 <0.001 

6000 0.14 0.08 0.22 <0.001 0.07 0.27 <0.001 

8000 0.12 0.07 0.21 <0.001 0.05 0.27 <0.001 

10000 0.11 0.06 0.21 <0.001 0.05 0.28 <0.001 

12000 0.10 0.05 0.19 <0.001 0.04 0.25 <0.001 

14000 0.09 0.05 0.19 <0.001 0.03 0.26 <0.001 

16000 0.08 0.04 0.16 <0.001 0.03 0.22 <0.001 

18000 0.08 0.03 0.20 <0.001 0.02 0.32 <0.001 

20000 0.05 0.02 0.17 <0.001 0.01 0.28 <0.001 

22000 0.06 0.01 0.25 <0.001 0.01 0.49 0.002 

Global Test: CL vs CF DF = 12 Wald Statistic = 151.4 p < 0.001   

        
College Soccer vs. College Football 

  
    

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(g) Impacts per Practice 95% CL 95% CL p-value Lower 95% CL Upper 95% CL p-value 

10 0.56 0.36 0.87 0.010 0.30 1.06 0.103 

20 0.21 0.13 0.33 <0.001 0.10 0.41 <0.001 

30 0.14 0.09 0.24 <0.001 0.07 0.29 <0.001 

40 0.14 0.08 0.23 <0.001 0.06 0.29 <0.001 

50 0.12 0.07 0.21 <0.001 0.06 0.27 <0.001 

60 0.12 0.07 0.22 <0.001 0.05 0.29 <0.001 

70 0.13 0.07 0.24 <0.001 0.05 0.31 <0.001 

80 0.13 0.07 0.25 <0.001 0.05 0.34 <0.001 
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90 0.12 0.05 0.27 <0.001 0.04 0.38 <0.001 

100 0.11 0.04 0.32 <0.001 0.03 0.49 <0.001 

Global Test: CS vs CF DF = 10 Wald Statistic = 120.9 p < 0.001   

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per Practice 95% CL 95% CL p-value Lower 95% CL Upper 95% CL p-value 

0 0.56 0.36 0.87 0.010 0.30 1.07 0.123 

2000 0.38 0.23 0.62 <0.001 0.18 0.78 0.002 

4000 0.22 0.13 0.36 <0.001 0.10 0.45 <0.001 

6000 0.16 0.10 0.26 <0.001 0.08 0.32 <0.001 

8000 0.14 0.08 0.23 <0.001 0.07 0.29 <0.001 

10000 0.14 0.08 0.26 <0.001 0.06 0.34 <0.001 

12000 0.13 0.07 0.23 <0.001 0.05 0.30 <0.001 

14000 0.12 0.06 0.23 <0.001 0.04 0.31 <0.001 

16000 0.11 0.05 0.24 <0.001 0.04 0.34 <0.001 

18000 0.07 0.03 0.18 <0.001 0.02 0.27 <0.001 

20000 0.05 0.02 0.16 <0.001 0.01 0.28 <0.001 

22000 0.03 0.00 0.19 <0.001 0.00 0.47 0.003 

Global Test: CS vs CF DF = 12 Wald Statistic = 825.8 p < 0.001   

  
    

  
College Lacrosse vs. High School Football 

  
    

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(g) Impacts per Practice 95% CL 95% CL p-value Lower 95% CL Upper 95% CL p-value 

10 0.65 0.40 1.06 0.081 0.32 1.30 0.813 

20 0.46 0.29 0.75 0.002 0.23 0.92 0.017 

30 0.43 0.27 0.67 <0.001 0.22 0.82 0.003 

40 0.42 0.27 0.65 <0.001 0.22 0.79 0.001 

50 0.40 0.26 0.61 <0.001 0.21 0.74 <0.001 

60 0.33 0.22 0.51 <0.001 0.18 0.61 <0.001 

70 0.31 0.20 0.47 <0.001 0.17 0.57 <0.001 

80 0.26 0.14 0.48 <0.001 0.10 0.63 <0.001 

90 0.28 0.13 0.61 0.001 0.09 0.85 0.013 

100 0.31 0.11 0.89 0.029 0.07 1.39 0.289 

Global Test: CL vs HF DF = 10 Wald Statistic = 54.9 p < 0.001   

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per Practice 95% CL 95% CL p-value Lower 95% CL Upper 95% CL p-value 

0 0.65 0.40 1.06 0.081 0.32 1.32 0.976 

2000 0.51 0.31 0.85 0.009 0.25 1.07 0.109 

4000 0.45 0.27 0.75 0.002 0.22 0.95 0.027 

6000 0.47 0.29 0.77 0.003 0.23 0.97 0.035 
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8000 0.43 0.27 0.69 0.001 0.21 0.86 0.006 

10000 0.45 0.28 0.71 0.001 0.23 0.87 0.007 

12000 0.40 0.26 0.62 <0.001 0.21 0.76 <0.001 

14000 0.37 0.23 0.62 <0.001 0.18 0.78 0.001 

16000 0.36 0.23 0.56 <0.001 0.19 0.69 <0.001 

18000 0.31 0.17 0.56 <0.001 0.13 0.74 0.001 

20000 0.2 0.09 0.41 <0.001 0.07 0.58 <0.001 

22000 0.2 0.07 0.53 0.001 0.05 0.85 0.017 

Global Test: CL vs HF DF = 12 Wald Statistic = 48.1 p < 0.001   

        
College Soccer vs. High School Football 

  
    

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(g) Impacts per Practice 95% CL 95% CL p-value Lower 95% CL Upper 95% CL p-value 

10 1.55 0.86 2.81 0.145 0.67 3.63 1.000 

20 0.64 0.34 1.21 0.170 0.26 1.59 1.000 

30 0.51 0.28 0.95 0.034 0.21 1.24 0.339 

40 0.53 0.29 0.97 0.040 0.22 1.26 0.404 

50 0.54 0.31 0.95 0.034 0.24 1.22 0.337 

60 0.53 0.30 0.94 0.029 0.24 1.20 0.289 

70 0.58 0.34 0.99 0.045 0.27 1.25 0.450 

80 0.61 0.34 1.09 0.096 0.26 1.41 0.965 

90 0.55 0.22 1.40 0.208 0.14 2.09 1.000 

100 0.77 0.25 2.32 0.641 0.16 3.74 1.000 

Global Test: CS vs HF DF = 10 Wald Statistic = 84.1 p < 0.001   

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per Practice 95% CL 95% CL p-value Lower 95% CL Upper 95% CL p-value 

0 1.55 0.86 2.81 0.145 0.65 3.69 1.000 

2000 1.06 0.54 2.08 0.863 0.40 2.84 1.000 

4000 0.65 0.33 1.30 0.223 0.24 1.78 1.000 

6000 0.54 0.28 1.07 0.078 0.20 1.46 0.931 

8000 0.50 0.26 0.96 0.036 0.20 1.29 0.432 

10000 0.56 0.30 1.03 0.063 0.23 1.37 0.752 

12000 0.52 0.30 0.92 0.025 0.23 1.19 0.294 

14000 0.47 0.24 0.92 0.027 0.17 1.26 0.33 

16000 0.51 0.26 1.01 0.052 0.19 1.37 0.623 

18000 0.29 0.12 0.68 0.004 0.08 1.01 0.053 

20000 0.19 0.06 0.62 0.006 0.03 1.06 0.069 

22000 0.1 0.01 0.67 0.018 0.01 1.64 0.215 

Global Test: CS vs HF DF = 12 Wald Statistic = 139.5 p < 0.001   
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College Lacrosse vs. College Soccer 

  
    

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(g) Impacts per Practice 95% CL 95% CL p-value Lower 95% CL Upper 95% CL p-value 

10 0.42 0.27 0.65 <0.001 0.22 0.79 0.001 

20 0.72 0.48 1.08 0.115 0.41 1.29 1.000 

30 0.84 0.54 1.28 0.413 0.45 1.55 1.000 

40 0.79 0.50 1.26 0.323 0.41 1.54 1.000 

50 0.73 0.45 1.20 0.219 0.36 1.49 1.000 

60 0.62 0.35 1.11 0.107 0.27 1.42 1.000 

70 0.54 0.30 0.94 0.031 0.24 1.21 0.308 

80 0.42 0.21 0.85 0.017 0.15 1.16 0.166 

90 0.51 0.22 1.20 0.122 0.15 1.73 1.000 

100 0.41 0.12 1.36 0.143 0.07 2.28 1.000 

Global Test: CL vs CS DF = 10 Wald Statistic = 40.9 p < 0.001   

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per Practice 95% CL 95% CL p-value Lower 95% CL Upper 95% CL p-value 

0 0.42 0.27 0.65 0.000 0.22 0.80 0.002 

2000 0.48 0.31 0.75 0.001 0.25 0.92 0.015 

4000 0.69 0.44 1.10 0.118 0.36 1.35 1.000 

6000 0.87 0.56 1.35 0.533 0.45 1.66 1.000 

8000 0.85 0.55 1.34 0.491 0.44 1.64 1.000 

10000 0.80 0.50 1.26 0.333 0.41 1.56 1.000 

12000 0.77 0.46 1.27 0.300 0.37 1.60 1.000 

14000 0.80 0.44 1.47 0.470 0.33 1.94 1.000 

16000 0.70 0.36 1.36 0.290 0.27 1.84 1.000 

18000 1.07 0.46 2.51 0.868 0.31 3.72 1.000 

20000 1.02 0.33 3.12 0.975 0.20 5.24 1.000 

22000 2.04 0.25 16.65 0.507 0.09 43.94 1.000 

Global Test: CL vs CS DF = 12 Wald Statistic = 84.2 p < 0.001   
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Table 3. Ratio of Mean Impacts per Game at Multiple Thresholds. Ratio of mean 
impacts per game at multiple PRLA and PRRA thresholds. For each pairwise team 
comparison and each PRLA or PRRA threshold the following information is provided: 
ratio of mean impacts per game, uncorrected and Bonferroni corrected 95% confidence 
limits (95% CL), uncorrected and Bonferroni corrected p-values. For each PRLA and 
PRRA pairwise global test degrees of freedom (DF), Wald statistic, and p-values are also 
provided. 

High School Football vs. College Football     
  Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(g) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

10 0.59 0.34 1.03 0.062 0.28 1.24 0.369 
20 0.61 0.35 1.08 0.089 0.29 1.31 0.534 
30 0.57 0.32 1.02 0.059 0.26 1.25 0.356 
40 0.54 0.3 0.97 0.039 0.24 1.19 0.233 
50 0.48 0.26 0.87 0.016 0.21 1.07 0.095 
60 0.47 0.26 0.87 0.016 0.21 1.07 0.094 
70 0.43 0.22 0.84 0.014 0.18 1.06 0.083 
80 0.47 0.23 0.95 0.034 0.18 1.21 0.206 

Global Test: HF vs CF DF = 
8 Wald Statistic = 18.6 p = 0.017   

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

0 0.59 0.34 1.03 0.062 0.28 1.24 0.369 
2000 0.59 0.34 1.04 0.067 0.28 1.26 0.401 
4000 0.61 0.34 1.08 0.087 0.28 1.31 0.524 
6000 0.59 0.33 1.06 0.075 0.27 1.29 0.451 
8000 0.57 0.31 1.05 0.069 0.25 1.29 0.413 

10000 0.51 0.27 0.97 0.041 0.22 1.22 0.248 
12000 0.53 0.25 1.10 0.087 0.20 1.41 0.523 
14000 0.47 0.20 1.10 0.082 0.15 1.47 0.493 

Global Test: HF vs CF DF = 
8 Wald Statistic = 27.6  p < 0.001   

        
College Lacrosse vs. College Football         

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(g) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

10 0.47 0.30 0.76 0.002 0.25 0.89 0.010 
20 0.32 0.19 0.53 <0.001 0.16 0.63 <0.001 
30 0.20 0.10 0.41 <0.001 0.08 0.52 <0.001 
40 0.13 0.07 0.25 <0.001 0.06 0.31 <0.001 
50 0.09 0.05 0.18 <0.001 0.04 0.23 <0.001 
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60 0.08 0.03 0.24 <0.001 0.02 0.34 <0.001 
70 0.09 0.03 0.25 <0.001 0.02 0.35 <0.001 
80 0.10 0.02 0.43 0.002 0.01 0.71 0.012 

Global Test: CL vs CF DF = 
8 Wald Statistic = 2025.4 p < 0.001   

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

0 0.47 0.30 0.76 0.002 0.25 0.89 0.010 
2000 0.36 0.24 0.54 <0.001 0.21 0.62 <0.001 
4000 0.25 0.14 0.45 <0.001 0.12 0.55 <0.001 
6000 0.20 0.10 0.39 <0.001 0.08 0.50 <0.001 
8000 0.17 0.07 0.39 <0.001 0.06 0.51 <0.001 

10000 0.16 0.06 0.39 <0.001 0.05 0.54 <0.001 
12000 0.11 0.05 0.26 <0.001 0.03 0.34 <0.001 
14000 0.03 0.00 0.15 <0.001 0.00 0.28 <0.001 

Global Test: CL vs CF DF = 
8 Wald Statistic = 264.1 p < 0.001   

        
College Soccer vs. College Football 

  
    

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(g) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

10 1.28 0.59 2.80 0.531 0.45 3.67 1.000 
20 0.49 0.30 0.78 0.003 0.26 0.92 0.017 
30 0.37 0.19 0.70 0.003 0.15 0.88 0.015 
40 0.30 0.13 0.68 0.004 0.10 0.90 0.023 
50 0.19 0.09 0.42 <0.001 0.06 0.55 <0.001 
60 0.16 0.08 0.30 <0.001 0.07 0.37 <0.001 
70 0.19 0.10 0.37 <0.001 0.08 0.46 <0.001 
80 0.13 0.04 0.45 0.001 0.02 0.69 0.008 

Global Test: CS vs CF DF = 
8 Wald Statistic = 408.0 p < 0.001   

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

0 1.28 0.59 2.80 0.531 0.45 3.67 1.000 
2000 0.86 0.39 1.87 0.698 0.30 2.45 1.000 
4000 0.47 0.26 0.85 0.013 0.22 1.05 0.077 
6000 0.35 0.18 0.68 0.002 0.15 0.85 0.010 
8000 0.24 0.13 0.46 <0.001 0.10 0.57 <0.001 

10000 0.20 0.09 0.43 <0.001 0.07 0.57 <0.001 
12000 0.14 0.05 0.38 <0.001 0.04 0.54 0.001 
14000 0.08 0.03 0.21 <0.001 0.02 0.29 <0.001 
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Global Test: CS vs CF DF = 
8 Wald Statistic = 233.1 p < 0.001   

  
    

  
College Lacrosse vs. High School Football 

  
    

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(g) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

10 0.80 0.46 1.39 0.433 0.38 1.68 1.000 
20 0.52 0.30 0.88 0.015 0.25 1.06 0.090 
30 0.36 0.18 0.73 0.004 0.14 0.93 0.026 
40 0.25 0.14 0.45 <0.001 0.11 0.55 <0.001 
50 0.19 0.10 0.37 <0.001 0.08 0.46 <0.001 
60 0.18 0.06 0.49 0.001 0.04 0.70 0.006 
70 0.21 0.08 0.56 0.002 0.06 0.79 0.011 
80 0.21 0.05 0.90 0.035 0.03 1.48 0.212 

Global Test: CL vs HF DF = 
8 Wald Statistic = 1333.9 p < 0.001   

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

0 0.80 0.46 1.39 0.433 0.38 1.68 1.000 
2000 0.60 0.38 0.96 0.033 0.32 1.13 0.196 
4000 0.42 0.23 0.75 0.003 0.19 0.91 0.019 
6000 0.34 0.18 0.64 0.001 0.14 0.80 0.005 
8000 0.30 0.14 0.65 0.002 0.10 0.85 0.013 

10000 0.31 0.13 0.71 0.006 0.10 0.95 0.034 
12000 0.20 0.10 0.42 <0.001 0.08 0.53 <0.001 
14000 0.05 0.01 0.29 0.001 0.01 0.51 0.004 

Global Test: CL vs HF DF = 
8 Wald Statistic = 232.4 p < 0.001   

        
College Soccer vs. High School Football 

  
    

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(g) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

10 2.17 0.94 5.00 0.068 0.71 6.67 0.407 
20 0.80 0.48 1.31 0.371 0.41 1.56 1.000 
30 0.64 0.33 1.25 0.192 0.26 1.57 1.000 
40 0.56 0.26 1.23 0.151 0.19 1.62 0.903 
50 0.40 0.18 0.86 0.019 0.14 1.12 0.112 
60 0.33 0.18 0.61 <0.001 0.15 0.75 0.002 
70 0.45 0.25 0.82 0.009 0.20 1.01 0.055 
80 0.28 0.08 0.94 0.039 0.05 1.43 0.236 

Global Test: CS vs HF DF = Wald Statistic = 148.3 p < 0.001   
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8 

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

0 1.71 0.72 4.04 0.224 0.51 5.68 1.000 
2000 1.15 0.50 2.64 0.749 0.36 3.67 1.000 
4000 0.62 0.31 1.24 0.175 0.23 1.63 1.000 
6000 0.46 0.21 0.97 0.042 0.16 1.31 0.335 
8000 0.32 0.15 0.68 0.003 0.12 0.91 0.024 

10000 0.31 0.14 0.66 0.003 0.10 0.90 0.021 
12000 0.23 0.10 0.52 <0.001 0.08 0.71 0.003 
14000 0.14 0.05 0.35 <0.001 0.04 0.50 <0.001 

Global Test: CS vs HF DF = 
8 Wald Statistic = 247.5 p < 0.001   

  
    

  
College Lacrosse vs. College Soccer 

  
    

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(g) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

10 0.37 0.17 0.80 0.012 0.13 1.05 0.073 
20 0.65 0.42 1.00 0.048 0.36 1.16 0.291 
30 0.56 0.26 1.20 0.133 0.20 1.56 0.799 
40 0.44 0.19 0.99 0.048 0.15 1.32 0.288 
50 0.49 0.21 1.13 0.093 0.16 1.50 0.560 
60 0.53 0.19 1.51 0.234 0.13 2.17 1.000 
70 0.47 0.18 1.22 0.123 0.13 1.70 0.735 
80 0.76 0.13 4.45 0.758 0.07 8.22 1.000 

Global Test: CL vs CS DF = 
8 Wald Statistic = 2437.1 p < 0.001   

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

0 0.25 0.10 0.64 0.004 0.07 0.92 0.030 
2000 0.34 0.13 0.88 0.026 0.09 1.28 0.209 
4000 0.51 0.22 1.23 0.135 0.15 1.73 1.000 
6000 0.57 0.23 1.44 0.237 0.16 2.07 1.000 
8000 0.69 0.27 1.75 0.438 0.19 2.53 1.000 

10000 0.78 0.28 2.19 0.638 0.19 3.29 1.000 
12000 0.94 0.33 2.64 0.903 0.22 3.97 1.000 
14000 1.22 0.47 3.22 0.680 0.32 4.71 1.000 

Global Test: CL vs CS DF = 
8 Wald Statistic = 423.7 p < 0.001   
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Table 4. Summary for each subject’s captured athletic events – All Games Included. 
Summary for each subject’s captured athletic events for the all games included analysis. 
For each athlete the following information is provided: player position, number of 
captured events for each event type, mean number of impacts for each event type, 
geometric mean peak resultant linear acceleration (PRLA) per impact per event and peak 
resultant rotational acceleration (PRRA) per impact per event. 

    Game Summary  

Participant 
Number Position Number 

of Events 
Mean Hits 
per Game 

Geometric 
Mean PRLA per 
Hit per Practice 

(g) 

Geometric 
Mean PRRA 
per Hit per 

Game (rad/s2) 

CF1 FB 12 13.6 35 7165.6 
CF2 FB 11 9.5 29.4 4990.1 
CF3 SS 9 32.2 32.5 7148.4 
CF4 DT 7 7 25.3 5844.9 
CF5 WR 10 19.6 27.2 5203 
CF6 LB 8 21.4 27.3 5072.2 
CF8 DE 11 15.3 32.4 5878.3 
CF9 WR 8 33 17.1 3084.7 

CF10 DT 6 24.3 29.7 6288.6 
CF11 T 4 6.5 21.1 3720.4 
CF12 TE 9 18.1 27.8 5560.1 
CF13 DT 11 55.5 33.5 7519.2 
CF14 LS 9 12.8 19.7 3860.8 
CF16 LB 9 17.4 35.1 7087.9 

Mean (SD) or GM† 8.9 (2.2) 21.2 (13.0) 28.7 5669 
Median  9 17.8 28.6 5702.5 
Range  [4, 12] [6.5, 55.5] [17.1, 35.1] [3084.7, 7519.2] 

CL1 Midfield 4 13.3 26.3 4377.4 
CL2 Attack 7 1.6 33.3 5900.4 
CL3 Midfield 10 10.8 23.3 4268.2 
CL4 Attack 11 12.1 23.2 4591.8 
CL6 Midfield 10 2 27.6 3711 
CL7 Midfield 7 0.6 40.6 6409.1 
CL8 Midfield 11 3.1 24.8 4573.1 
CL9 Midfield 11 6.4 20.4 3627.4 

CL10 Midfield 10 8.1 27.6 5531.4 
CL11 Midfield 8 0.4 18.7 1849.8 
CL12 Midfield 11 2.6 17.4 2714.9 
CL13 Midfield 11 15.4 17.7 2438.5 
CL14 Defense 6 0.8 37.9 7621.2 
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CL15 Defense 9 0.6 40 9632.5 

Mean (SD) or GM† 9.0 (2.3) 5.8 (5.1) 24.2 4615.2 
Median  10 2.9 25.6 4475.3 
Range  [4, 11] [0.4, 15.4] [17.4, 40.6] [1849.8, 9632.5] 

CS6 Defense 7 20.9 18.1 2589.8 
CS7 Midfield 6 4.7 14.7 3013.6 
CS8 Forward 7 18 19.9 2726.6 
CS9 Midfield 4 4.3 18.7 3706.6 

CS10 Defense 5 17 19.7 2825.6 
CS11 Defense 7 71 15.1 2817 
CS12 Goalkeeper 2 2.5 32.9 4659.6 
CS14 Goalkeeper 1 2 19.2 5133.1 
CS15 Goalkeeper 3 6 15.9 2984 

Mean (SD) or GM† 4.7 (2.3) 22.0 (22.9) 17.9 2815.6 
Median  5 6 18.7 2984 
Range  [1, 7] [2.0, 71.0] [14.7, 32.9] [2589.8, 5133.1] 
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Figure 5. Average Quantity and Severity of Impacts per Game – All Games 
Included. For the all games included analysis, graph showing impact rates per game 
according to sport (A). Geometric mean PRLA (g) (B) and PRRA (rad/s2 /1000) (C) per 
individual impact. Black circles identify the mean impact rate or geometric mean peak 
acceleration per impact, and vertical lines identify the 95% confidence interval. Brackets 
with an asterisk indicate that the indicated sports’ differed at the p ≤ 0.05 Bonferroni 
corrected level of statistical significance for that measure. 
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Figure 6. Impacts per Game with Respect to Multiple Thresholds – All Games 
Included. For the all games included analysis, graphs of the mean number of impacts 
greater than the PRLA (A) or PRRA (B) threshold for CF, HF, CL, and CS games. 
Vertical lines identify the 95% confidence interval for the mean number of impacts per 
game greater than threshold. Graphs showing the ratio of means for comparing the mean 
number of impacts greater than the PRLA (C) or PRRA (D) threshold between CF games 
and HF, CL, and CS games. Data points identify the mean impact rate ratio (e.g., HF:CF 
games) and vertical lines identify the Bonferroni corrected 95% confidence interval. 
Dotted line identifies the line of equality (i.e. ratio equals 1). 
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Figure 7. Impact Burden per Game – All Games Included. For the all games included 
analysis, graphs showing cumulative distributions per game for the PRLA sum (A) and 
PRRA sum (B). The cumulative distribution is expressed as cumulative probability for 
observing a single athletic exposure PRLA or PRRA sum greater than X. Curves with 
different lowercase letters (a–b) differed at the p ≤ 0.05 Bonferroni corrected level of 
statistical significance. 
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Table 5. Ratio of Mean Impacts per Game at Multiple Thresholds – All Games 
Included. Ratio of mean impacts per game at multiple PRLA and PRRA thresholds for 
the all games included analysis. For each pairwise team comparison and each PRLA or 
PRRA threshold the following information is provided: ratio of mean impacts per game, 
uncorrected and Bonferroni corrected 95% confidence limits (95% CL), uncorrected and 
Bonferroni corrected p-values. For each PRLA and PRRA pairwise global test degrees of 
freedom (DF), Wald statistic, and p-values are also provided. 

High School Football vs. College Football     
  Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(g) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

10 0.68 0.39 1.18 0.171 0.32 1.44 1.000 
20 0.71 0.4 1.25 0.234 0.33 1.53 1.000 
30 0.67 0.37 1.24 0.202 0.30 1.52 1.000 
40 0.64 0.34 1.19 0.157 0.28 1.47 0.942 
50 0.57 0.3 1.08 0.085 0.24 1.34 0.509 
60 0.57 0.3 1.09 0.088 0.24 1.36 0.527 
70 0.52 0.26 1.05 0.07 0.20 1.34 0.417 
80 0.57 0.27 1.2 0.14 0.21 1.56 0.840 

Global Test: HF vs CF DF = 
8 Wald Statistic = 9.2 p = 0.332   

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

0 0.68 0.39 1.18 0.171 0.32 1.44 1.000 
2000 0.68 0.39 1.20 0.185 0.32 1.46 1.000 
4000 0.72 0.39 1.30 0.270 0.32 1.59 1.000 
6000 0.69 0.38 1.28 0.242 0.31 1.58 1.000 
8000 0.67 0.35 1.28 0.228 0.28 1.60 1.000 

10000 0.61 0.31 1.19 0.147 0.25 1.50 0.880 
12000 0.63 0.30 1.36 0.239 0.23 1.77 1.000 
14000 0.56 0.24 1.34 0.193 0.18 1.80 1.000 

Global Test: HF vs CF DF = 
8 Wald Statistic = 23.6 p = 0.003   

        
College Lacrosse vs. College Football         

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(g) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

10 0.27 0.15 0.49 <0.001 0.12 0.60 <0.001 
20 0.21 0.12 0.38 <0.001 0.10 0.47 <0.001 
30 0.15 0.08 0.28 <0.001 0.07 0.35 <0.001 
40 0.12 0.06 0.23 <0.001 0.05 0.29 <0.001 
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50 0.10 0.05 0.20 <0.001 0.04 0.25 <0.001 
60 0.12 0.06 0.25 <0.001 0.04 0.32 <0.001 
70 0.08 0.04 0.16 <0.001 0.03 0.21 <0.001 
80 0.08 0.03 0.23 <0.001 0.02 0.32 <0.001 

Global Test: CL vs CF DF = 
8 Wald Statistic = 103.6 p < 0.001   

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

0 0.27 0.15 0.49 <0.001 0.12 0.60 <0.001 
2000 0.23 0.13 0.40 <0.001 0.11 0.49 <0.001 
4000 0.18 0.10 0.34 <0.001 0.08 0.43 <0.001 
6000 0.15 0.08 0.29 <0.001 0.06 0.37 <0.001 
8000 0.13 0.06 0.26 <0.001 0.05 0.33 <0.001 

10000 0.12 0.06 0.26 <0.001 0.04 0.34 <0.001 
12000 0.10 0.04 0.22 <0.001 0.03 0.29 <0.001 
14000 0.04 0.02 0.12 <0.001 0.01 0.18 <0.001 

Global Test: CL vs CF DF = 
8 Wald Statistic = 73.1 p < 0.001   

        
College Soccer vs. College Football 

  
    

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(g) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

10 1.04 0.44 2.46 0.930 0.33 3.32 1.000 
20 0.40 0.21 0.75 0.005 0.17 0.94 0.027 
30 0.31 0.14 0.67 0.003 0.11 0.88 0.018 
40 0.25 0.10 0.64 0.004 0.07 0.89 0.023 
50 0.16 0.06 0.40 <0.001 0.05 0.56 0.001 
60 0.13 0.05 0.29 <0.001 0.04 0.39 <0.001 
70 0.16 0.07 0.36 <0.001 0.05 0.48 <0.001 
80 0.11 0.03 0.41 0.001 0.02 0.65 0.007 

Global Test: CS vs CF DF = 
8 Wald Statistic = 178.4 p < 0.001   

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

0 1.04 0.44 2.46 0.93 0.33 3.32 1.000 
2000 0.71 0.30 1.65 0.424 0.23 2.22 1.000 
4000 0.41 0.20 0.83 0.013 0.16 1.06 0.081 
6000 0.30 0.14 0.65 0.002 0.10 0.85 0.015 
8000 0.20 0.09 0.45 <0.001 0.07 0.59 <0.001 

10000 0.17 0.07 0.41 <0.001 0.05 0.56 <0.001 
12000 0.13 0.05 0.35 <0.001 0.04 0.50 <0.001 
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14000 0.07 0.02 0.20 <0.001 0.02 0.29 <0.001 

Global Test: CS vs CF DF = 
8 Wald Statistic = 160.9 p < 0.001   

  
    

  
College Lacrosse vs. High School Football 

  
    

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(g) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

10 0.40 0.21 0.77 0.006 0.17 0.96 0.034 
20 0.30 0.17 0.55 <0.001 0.14 0.68 0.001 
30 0.23 0.12 0.41 <0.001 0.10 0.51 <0.001 
40 0.18 0.10 0.34 <0.001 0.08 0.42 <0.001 
50 0.18 0.10 0.33 <0.001 0.08 0.41 <0.001 
60 0.21 0.10 0.41 <0.001 0.08 0.52 <0.001 
70 0.15 0.08 0.29 <0.001 0.06 0.37 <0.001 
80 0.14 0.06 0.37 <0.001 0.04 0.52 <0.001 

Global Test: CL vs HF DF = 
8 Wald Statistic = 74.1 p < 0.001   

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

0 0.40 0.21 0.77 0.006 0.17 0.96 0.034 
2000 0.33 0.18 0.61 <0.001 0.15 0.75 0.002 
4000 0.26 0.14 0.47 <0.001 0.11 0.58 <0.001 
6000 0.22 0.12 0.39 <0.001 0.10 0.48 <0.001 
8000 0.19 0.10 0.35 <0.001 0.08 0.43 <0.001 

10000 0.20 0.10 0.38 <0.001 0.08 0.47 <0.001 
12000 0.16 0.08 0.29 <0.001 0.07 0.36 <0.001 
14000 0.08 0.04 0.18 <0.001 0.03 0.24 <0.001 

Global Test: CL vs HF DF = 
8 Wald Statistic = 92.4 p < 0.001   

        
College Soccer vs. High School Football 

  
    

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(g) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

10 1.54 0.62 3.80 0.353 0.45 5.20 1.000 
20 0.57 0.30 1.08 0.085 0.24 1.35 0.512 
30 0.46 0.21 0.99 0.047 0.16 1.29 0.284 
40 0.39 0.16 0.96 0.040 0.12 1.31 0.242 
50 0.28 0.11 0.67 0.005 0.08 0.92 0.028 
60 0.22 0.10 0.49 <0.001 0.08 0.64 0.001 
70 0.30 0.14 0.66 0.003 0.10 0.86 0.015 
80 0.19 0.05 0.69 0.012 0.03 1.08 0.070 
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Global Test: CS vs HF DF = 
8 Wald Statistic = 85.1 p < 0.001   

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

0 1.54 0.62 3.80 0.353 0.45 5.20 1.000 
2000 1.04 0.43 2.48 0.934 0.32 3.36 1.000 
4000 0.57 0.28 1.15 0.115 0.22 1.46 0.690 
6000 0.43 0.21 0.89 0.022 0.16 1.14 0.135 
8000 0.30 0.15 0.61 0.001 0.11 0.79 0.006 

10000 0.28 0.13 0.60 0.001 0.10 0.79 0.007 
12000 0.21 0.09 0.48 <0.001 0.07 0.64 0.001 
14000 0.12 0.05 0.29 <0.001 0.04 0.40 <0.001 

Global Test: CS vs HF DF = 
8 Wald Statistic = 387.6 p < 0.001   

  
    

  
College Lacrosse vs. College Soccer 

  
    

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(g) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

10 0.26 0.10 0.66 0.004 0.08 0.90 0.026 
20 0.53 0.28 1.03 0.060 0.22 1.29 0.358 
30 0.49 0.23 1.06 0.068 0.17 1.38 0.411 
40 0.47 0.19 1.21 0.117 0.14 1.66 0.702 
50 0.65 0.26 1.63 0.358 0.19 2.23 1.000 
60 0.93 0.39 2.23 0.877 0.29 3.02 1.000 
70 0.50 0.22 1.13 0.095 0.17 1.49 0.570 
80 0.78 0.18 3.41 0.739 0.11 5.69 1.000 

Global Test: CL vs CS DF = 
8 Wald Statistic = 57.6 p < 0.001   

Threshold Ratio of Mean Lower Upper Uncorrected Bonferroni Bonferroni Bonferroni 

(rad/s2) Impacts per 
Game 

95% 
CL 

95% 
CL p-value Lower 95% 

CL 
Upper 95% 

CL p-value 

0 0.26 0.10 0.66 0.004 0.08 0.90 0.026 
2000 0.32 0.13 0.77 0.010 0.10 1.04 0.063 
4000 0.45 0.22 0.92 0.030 0.17 1.19 0.179 
6000 0.51 0.23 1.10 0.087 0.18 1.44 0.522 
8000 0.63 0.29 1.37 0.244 0.22 1.79 1.000 

10000 0.70 0.30 1.65 0.417 0.22 2.22 1.000 
12000 0.74 0.31 1.77 0.496 0.23 2.40 1.000 
14000 0.67 0.23 1.89 0.446 0.16 2.71 1.000 

Global Test: CL vs CS DF = 
8 Wald Statistic = 29.4 p < 0.001   
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DISCUSSION 

 This study quantitatively describes differences in head impact frequency and 

severity during live play of college football (CF), high school football (HF), college 

men’s soccer (CS), and college men’s lacrosse (CL). While the majority of these impacts 

do not result in a clinical diagnosis of concussion, the hypothesized short-term and long-

term effects of repetitive subconcussive head impacts on brain structure50,97,106,221 and 

function20,89,106,187, coupled with their proposed role in increasing susceptibility to 

neurodegenerative disorders101,140, suggest that quantification of subconcussion may be 

important for assessing each sport’s overall safety. Previous studies have measured the 

frequency and severity of subconcussive head impacts in these sports, but methodological 

differences in impact measurement or estimation have generally made it difficult to 

compare their results. This is the first study to use the same biomechanical sensor to 

quantify subconcussion in disparate sports to provide data for a direct comparison 

between them. 

 CF has the most impacts per practice and second most per game, as well as the 

highest average linear and rotational impact severity. These high values for CF cause it to 

have the highest impact burden (PRLA and PRRA sum per event) of all of the quantified 

teams. HF has the third most impacts per event, but an average linear and rotational 

impact severity per game and average linear impact severity per practice that is on par 

with CF. CS has the second most impacts per practice and most impacts per game, but 

has the lowest average linear and rotational impact severity. Interestingly, HF’s moderate 

impact rate with high average impact severity and CS’s high impact rate with low 

average impact severity results in statistically equivalent impact burden curves. CL has 



 

 

60 
the fewest impacts per event and the third lowest average linear and rotational impact 

severity per practice and per game. Ultimately, the low impact rate and relatively low 

impact severity causes CL to have the lowest impact burden in both practices and games. 

 The ratio of means plots at multiple linear and rotational acceleration thresholds 

for practices and games shows that differences in the number of impacts per event are 

consistent across multiple thresholds. The exception is CS, which experiences a sharp 

drop in number of impacts as the linear acceleration threshold increased from 10g to 20g. 

At 10g, CS is second to, or higher than CF in number of impacts per event (CS:CF RoM 

= 0.56/practice, 1.28/game), but is much lower at 20g (CS:CF RoM = 0.21/practice, 

0.49/game). McCuen et al. (2015) hypothesized that head accelerations of 10g-20g in 

soccer could be caused by “hard stops, cuts, and hard kicks126.” Both football and 

lacrosse have hard stops and cuts, but hard kicks are unique to soccer and may be 

responsible for the higher proportion of low severity head accelerations in soccer. While 

these head accelerations may not be caused by a direct impact to the head, the lower 

limits of physiological relevance for head acceleration is not known, thus this study 

analyzed all impacts recorded by the sensor, which triggers at 10g.  

 The present study has several notable points of agreement and disagreement with 

published live play data using the helmet-based HITS in football. CF’s 13.2 impacts per 

practice and 24.2 impacts per game are a little higher than the reported range for college 

football from Crisco et al. (2010), 4.8 to 7.5 impacts per practice and 12.1 to 16.3 impacts 

per game44. CF’s PRLA per impact of 26.8g and 29.3g for practices and games is similar 

to published values for PRLA per impact in college football, which range from 20.5g to 

32.0g45,56,131,162, but CF’s PRRA per impact of 5140.0rad/s2 and 5805.8rad/s2 for practices 
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and games is substantially higher than the published values for PRRA per impact, in 

college football which range from 1355rad/s2 to 1400rad/s2 45,162. Similarly, HF’s 5.3 

impacts per practice and 14.3 impacts per game are similar to published values for high 

school football, which range from 3.1 to 10.7 impacts per practice and 15.7 to 28.7 

impacts per game25,26,120,185. HF’s PRLA per impact of 25.2g and 27.1g for practices and 

games were also similar to published values in high school football, which range from 

21.9g to 28.6g24-26,120,185,191, but HF’s PRRA per impact values, 4327.1rad/s2 for practices 

and 4796.6rad/s2 for games, are more than double the highest published values in high 

school football, which range from 973rad/s2 to 1777rad/s2 24-26,120,185,191. While the 

difference between the presented data and the published data could reflect true head 

impact differences in our population, it is more likely due to differences between the 

xPatch and HITS. HITS is a helmet-mounted sensor system that was used to collect most 

of the published football data, but its helmet-mounted nature does not allow for use in 

non-helmeted sports like lacrosse and soccer.  

CS’ impact data values of 7.4 impacts per practice with an average PRLA and 

PRRA per impact of 18.5g and 2960.4rad/s2, and 31.1 impacts per game with an average 

PRLA and PRRA per impact of 17.6g and 2713.8rad/s2 differ with some of the published 

data for soccer. One study used a modified accelerometer suite from HITS and measured 

head impacts during a small number of scrimmages; they reported an average PRLA and 

PRRA per impact of 19.4g and 1666.8rad/s2 for non-header impacts75. McCuen et al. 

(2015) also used the xPatch sensor to measure head impacts during high school (girls’) 

and college (women’s) soccer, and they reported an average PRLA and PRRA per impact 

of 37.6g-39.3g and 7523rad/s2-7713rad/s2 126. However, these differences are likely 
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driven by their decision to use a minimum threshold of 20g in their analysis; since the 

distribution of head impact severities is highly weighted toward lower values, differences 

in the minimum threshold can have large effects on the calculated average severity 

values. This reality makes it difficult to compare published results from biomechanical 

studies of head impact, as the minimum threshold is arbitrarily set for each study 

(although 10g, 15g, or 20g thresholds seem to be most common). In the present study, we 

chose to use the default 10g setting of the device, as the minimum threshold for 

physiologically significant impacts is unknown. Furthermore, a plurality of 

biomechanical head impact studies in sport use a 10g threshold95, which enables wider 

comparison to the existing literature across sports. 

 The most current analysis on the epidemiology of sports-related concussion in 

college sports reports that college football, soccer, and lacrosse have a concussion 

incidence rate of 30.07, 9.69, and 9.31 concussions per 10,000 games, and 4.20, 1.75, and 

1.95 concussions per 10,000 practices, respectively228. If the incidence of concussion is 

tied to head impact exposure, it would follow that one of the head impact metrics would 

mirror concussion incidence, with football much higher than soccer and lacrosse but with 

similar values for soccer and lacrosse. CF indeed has indeed the highest number of 

impacts per event, but for impacts per game CS is close to CF and much higher than CL. 

CF also has the highest average PRLA and PRRA per impact, and is significantly higher 

than CS and CL for both practices and games. CS and CL are differentiable in average 

PRLA and PRRA per impact in practices but not games. Median PRLA and PRRA sum 

per game is 567g and 111,800rad/s2 for CF, 410g and 61,700rad/s2 for CS, and 219g and 

40,200rad/s2 for CL. Median PRLA and PRRA sum per practice is 277.3g and 



 

 

63 
53,800rad/s2 for CF, 84.9g and 13,900rad/s2 for CS, and 41.6g and 7,600rad/s2 for CL. 

While none of these metrics exactly mirror the relative concussion rates, average impact 

severity comes closest to matching the pattern of concussive risk in these sports. 

Limitations. Several factors could affect the generalizability of the comparisons between 

these teams. This study reports findings from only one college football team, one high 

school football team, one college men’s lacrosse team, and one college men’s soccer 

team. The college teams were Division I, with a national championship men’s soccer 

team, a top 20 men’s lacrosse team, and an unranked football team. The high school 

football team was from a small private school in the Virginia Independent Schools 

Athletic Association Division II. In football, head impact can be affected by the style of 

offensive play120, and given that in this study only one team represents each sport, the 

results could be affected by team selection (i.e. less elite lacrosse or soccer teams could 

result in lower head impact values, and/or more competitive football teams could result in 

higher head impact values). Considering that CF had the highest impact burden, HF and 

CS tied in the middle, and CL had the lowest, it would stand to reason that choosing more 

competitive football teams or less competitive soccer and lacrosse teams would only 

further differentiate the teams’ head impact values. 

 The xPatch accelerometer used in the present study appears in six published 

studies47,94,126,185,186,208, three of which test biomechanical validity in different 

settings47,126,208. Wu et al. (2015) compared in vivo performance of the xPatch against 

video capture in a simulated low-impact soccer setting; that study examined 25 impacts, 

one impact location, one mastoid placement location, and one xPatch device. In one 

subject, they found the xPatch overestimated individual linear and rotational 
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accelerations (normalized root-mean-squared error (RMSE) of 120% for PRLA and 

290% for PRRA) in ways likely related to the viscoelastic properties of that individual’s 

soft tissues208. As prelude to a live play soccer study, McCuen et al. (2015) evaluated 

xPatch performance on a Hybrid 3 headform; this study examined 250 impacts, spread 

over five impact locations, in two mastoid placement locations, and included data from 

five different xPatch devices. McCuen et al. (2015) also found significant xPatch 

measurement error related to individual impacts (RMSE of ~50% for individual PRLA 

and PRRA values). McCuen et al. (2015) also looked at aggregate performance over 

larger numbers of impacts and concluded, "average values over a large number of 

acceleration events can be determined with good accuracy126.” 

 Cummiskey et al. (2016) performed the most thorough comparison to date of the 

reliability and accuracy of helmet-mounted and head-mounted accelerometer systems. 

The study included both the current gold-standard HIT system and the xPatch, among 

other accelerometer systems47. Cummiskey et al. (2016) used two devices for each 

system, used right and left sensor locations for the xPatch, and delivered 140 impacts 

across 7 impact locations to evaluate each device and sensor location. Root mean squared 

error (RMSE) was calculated for each device, sensor location, and impact location using 

the values generated from accelerometers inside a Hybrid III headform to which the 

devices were attached. The xPatch did produce considerable RMSE across impact 

locations (8%-58% for PRLA and 11%-350% for PRRA), but across devices, sensor 

locations, and impact locations the xPatch produced RMSE that were considerably lower 

than, or at least comparable to, the RMSE produced by the HIT system. Cummiskey et al. 

(2016) does rightly point out that the RMSE for the xPatch could have been 
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underestimated in their study as the Hybrid III headform does not realistically mimic the 

skin surface, which could shift slightly in response to a head impact. Cummiskey et al. 

(2016) also demonstrates that RMSE was consistently lower when the xPatch was applied 

behind the right ear47. This study includes data from collected from left and right sensor 

locations, but the majority of the data was collected when the sensor was behind the right 

ear as that was used as the default location.  

 A separate publication studying college football with the xPatch sensor156 

reported head impact quantities and linear acceleration severities comparable to similar 

studies using helmet-based systems26,45,131,162,163. But in the same study, discrepancies 

existed between rotational severity of head impact measured by the mastoid 

accelerometer and similar published data from helmeted systems, which could be a result 

of the high RMSE found in Wu et al. (2015), McCuen et al. (2015), and Cummiskey et al 

(2016). We believe the transformed values reported by all head impact sensors in live 

play settings should be viewed skeptically, as they probably do not reflect the “ground 

truth” biomechanical forces experienced by the brain. The xPatch data for individual hits 

is almost certainly noisy, but if the errors are systematic or random, comparison of across 

situations and groups with large numbers of impacts should still be valid. The present 

study addresses this limitation by testing relative impact comparisons (college vs. high 

school and football vs. soccer vs. lacrosse) rather than focusing on the absolute values 

reported. 

Conclusions. This study demonstrates how a mastoid patch accelerometer can be 

deployed in a variety of helmeted and non-helmeted sports to collect head impact data 

that can be used to compare the relative subconcussive head impact burden in each sport. 
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Although the concept of subconcussion is drawing increased attention from the scientific, 

medical, and athletic communities, it is still unclear how subconcussion relates to 

concussion incidence and what levels of subconcussive head impact are physiologically 

relevant. However, the variety and gravity of the research-supported consequences of 

subconcussion make the head impact profile of each sport (impacts/event, PRLA/impact, 

PRLA sum/event, etc.) an important aspect in the evaluation of a sport’s risk, just as the 

incidence of concussion or knee injuries has been for decades. In response to concerns 

about subconcussion, governing bodies for multiple sports are actively investigating ways 

to reduce their athletes’ unnecessary head contact. College football players may 

experience the highest values for nearly every head impact metric, but there is also a wide 

range of head impact that can occur among different contact or collision sports. Level of 

play (high school vs. college) and type of sport (football vs. soccer vs. lacrosse) each 

have sizable effects on head impact values, indicating that larger and more 

comprehensive studies are still needed for each sport at every level of play to understand 

the amount of head impact experienced by the athletes. Open topics that could be 

addressed by large-scale quantification of head impact in sport include determining the 

effects of: competition level (youth to professional), gender in similar sports, player 

position, rule changes, and changes to protective equipment. This information could be 

useful in reducing the head impact across all contact and collision sports. 
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CHAPTER III: EFFECTS OF SUBCONCUSSION ON THE FUNCTIONAL 

ACTIVITY AND CONNECTIVITY IN THE BRAIN 

INTRODUCTION 

Multiple concussions over the course of a long career in American football can 

affect a player’s brain long after participation in the sport has ended, possibly increasing 

the player’s susceptibility for multiple neurodegenerative disorders101,128,140,180. A patient 

with a concussion can present with any number or combination of concussion’s 

symptoms (dizziness, blurred vision, nausea, headache, etc.) and signs (balance 

abnormalities, reaction time deficits, etc.)16. Heterogeneity in clinical presentation likely 

indicates spatial heterogeneity in the underlying injury location in the brain158. Multiple 

biomechanical and biological factors play a role in where and how each unique head 

impact affects the brain149,219. The effects of repetitive subconcussive head impacts that 

athletes receive during routine competition are even less understood. The majority of 

sports-related head impacts do not cause concussion, but there is mounting evidence that 

even subconcussive head impacts can affect brain structure50,97,106,221, function1,20-

21,89,132,157,169,185,187, and performance82,92,190. Aggregately, these studies suggest that 

subconcussive head impacts might produce spatially heterogeneous effects on the brain, 

that are similar to, but less severe than, the effects from concussion7. 

Functional magnetic resonance imaging (fMRI) is a noninvasive method for 

measuring functional activity in the brain that had proven capable of detecting functional 

changes in the brain related to subconcussion. The first studies to indicate that 

subconcussive head impacts can cause functional changes in the brain used fMRI with a 

working memory task20,21,157,169,187. These studies identified a group of athletes who were 
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not diagnosed with a concussion but exhibited functional impairment in multiple regions 

and experienced a higher subconcussive head impact load compared to athletes without 

functional impairment. Using task-independent resting state fMRI (rs-fMRI), Johnson et 

al. (2014) found changes in functional connections between multiple regions in the 

default mode network (DMN)89, and Abbas et al. (2015) found changes in the number of 

regions connected to the DMN1 after exposure to repetitive subconcussive head impacts. 

Task-based fMRI has found changes in working memory and rs-fMRI has found changes 

in the functional connectivity of the DMN, but there is no reason to assume that these 

tasks and networks are the only, or even the primary, areas affected by subconcussion. If 

the physiological effects of subconcussion have heterogeneity similar to concussion158, 

then it may be more appropriate to use whole-brain fMRI analyses that are independent 

of specific brain functions and networks. 

Resting-state fMRI data can be used to calculate many aspects of functional 

activity and connectivity for each grey matter voxel, including metrics reflecting 

spontaneous neural activity, and short- and long range functional connectivity. Amplitude 

of low-frequency fluctuations (ALFF) is a commonly used measure spontaneous brain 

activity that calculates the strength of activity in the brain within a specific frequency 

range (0.01-0.10Hz) associated with neural activity216. Fractional ALFF (fALFF) is also a 

commonly used measure of spontaneous brain activity that calculates the power of the 

ALFF signal divided by the power of the entire frequency spectrum227. Regional 

homogeneity (ReHo) is a commonly used measure of local connectivity that calculates 

connectivity between a grey matter voxel and its immediate contiguous neighboring 

voxels. Degree centrality (DC) is a commonly used measure of global connectivity that 
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calculates connectivity between one grey matter voxel and all other grey matter voxels in 

the brain. Zhan (2016) recently investigated whether ALFF and fALFF changed after 

patients sustained a mild traumatic brain injury (mTBI). Their analyses revealed multiple 

brain regions that contained areas with statistically significant increases or decreases in 

ALFF or fALFF in the days following injury. Meier, Bellgowan, and Mayer (2016) 

recently investigated whether ReHo and DC changed after athletes sustain a concussion 

and made several compelling findings. Their analyses revealed several brain regions that 

contained areas with statistically significant increases or decreases in ReHo one-month 

after a concussion, but no areas experienced a significant change in DC129. If repetitive 

subconcussive head impacts affect changes similar to mTBI and concussion, then ALFF, 

fALFF, ReHo and DC may be useful metrics to detect those changes. 

In fMRI data analysis, mass-univariate application of the general linear model 

(GLM) accounts for the vast majority of publications over the last 20 years and all of the 

fMRI studies of mTBI publications to date. Mass-univariate analysis of fMRI data is 

most useful for identifying situations where the same region of interest shows the same 

type of change across the entire population under investigation. However, if the 

underlying change of interest exhibits spatial heterogeneity across participants, mass-

univariate application of the GLM becomes poorly matched to the problem under 

investigation, Studies of mTBI from different domains – clinical, biomechanical, and 

fMRI – support the idea that spatial heterogeneity of injury is likely a dominant feature of 

mTBI158. It is well-described that concussion presents with a variable set of signs and 

symptoms16, to the point that physicians who see concussion patients are fond of the 

statement, “If you have seen one concussion, you have seen one concussion”. Data from 



 

 

70 
both biomechanical simulations and live action sports competition suggest the clinical 

variability may exist because each unique head impact likely imparts different forces on 

different. brain regions14,25,44,149,160,203, The existing fMRI studies of concussion support 

this idea, with many reporting different areas of change in brain activity213, suggesting 

spatial differences between populations with similar mechanisms of injury. If we 

hypothesize that subconcussion affects similar brain regions as concussion, in a less 

severe manner, mass-univariate application of the GLM may be insufficient to detect 

changes related to subconcussion. 

To address some of the weaknesses of mass-univariate analysis, some fMRI 

researchers have started using multivariate analyses as a complement to standard mass 

univariate analyses116. For example, multivoxel pattern analyses (MVPA) can probe the 

information in distributed neural patterns without assuming a specific spatial model. 

MVPA is often performed within the framework of supervised learning classification, 

using a training set of data to create classification algorithms that discriminate between 

two known groups, before testing classifier performance on novel data116. The resulting 

algorithms differentially weight voxels across the brain that might collectively 

discriminate between two (or more) groups of interest. This general approach has the 

benefit of being more robust in detecting changes that are spatially heterogeneous or 

spatially distributed across a group. Linear support vector machine (SVM) classification 

is an increasingly common technique in fMRI that tries to create a hyperplane decision 

boundary that separates the two groups’ feature sets with the maximum possible 

margin41,192. For fMRI data, the strength of linear SVM lies in its ability to deal with high 

dimensionality data and resistance to overtraining61,130; but a significant weakness is the 
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open question of whether resulting classifier weight maps contain useful information 

about spatial distribution of effects in the brain77. 

We hypothesize that the hundreds of subconcussive head impacts sustained in 

college football produce spatially heterogeneous changes in brain functional connectivity 

that should be measurable with resting state fMRI (rs-fMRI). To test this hypothesis, the 

present study collected preseason and postseason rs-fMRI data from college football, 

soccer, and lacrosse players and a matched control group. At each time point, ALFF, 

fALFF, ReHo, and DC were respectively used as voxel-based measures of spontaneous 

brain activity, local functional connectivity, and global functional connectivity 

throughout the brain. Changes in ALFF, fALFF, ReHo, and DC between the two time 

points were tested with both: 1) mass-univariate application of the GLM and 2) paired 

implementation a linear SVM classification. In addition, a ranking distance measure was 

used to test if the spatial information resulting from the mass-univariate analysis shared 

any information with the weight maps resulting from the SVM classification, despite the 

disparate ways these maps are generated. 

 

METHODS 

Participants. From 2013 to 2015, preseason and postseason resting-state fMRI data was 

collected from 31 college football players (CF), 18 college men’s lacrosse players (CL), 

14 college men’s soccer players (CS), and 30 male controls (MC) (mean (SD) age: 20.3 

(1.5) years, 20.2 (1.2) years, 20.4 (1.2) years, 21.7 (3.3) years, respectively). For the 

college athletes, preseason data was collected less than one week into the sports season; 

postseason data was collected less than two weeks after the final game or practice of the 
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season or postseason (mean (SD) days between scans: CF=133.5(9.2), CL=63.6(13.2), 

CS=86.6(4.5)). Football player data was collected during their fall competitive season, 

while lacrosse and soccer player data was collected during their respective fall and spring 

practice seasons. For male controls, the two scanning sessions were separated by 3-4 

months to approximate the length of an athletic season (mean (SD) days between scans: 

108.7 (6.4)). College athletes were volunteers from NCAA Division I teams without a 

history of developmental or neurological disorder, or moderate to severe traumatic brain 

injury. Nineteen CF, seven ML, and six MS players had a history of concussion prior to 

the start of the season. Male controls were excluded if they had a history of concussion. 

Four football players sustained an injury or illness that resulted in substantial lost playing 

time, and three additional players were diagnosed with a concussion during the season; 

these athletes were excluded from further analyses. For the rs-fMRI analyses, the 

participants were divided into three groups: college football players (CF), other sports 

(OS) including both college lacrosse and soccer players, and male controls (MC). The 

three groups represented high, medium, and low subconcussive exposure, respectively. 

Six football players had a position and playing status that resulted in little to no expected 

head impact exposure (ex. redshirt quarterback or back-up kicker), and were therefore 

excluded from further analysis. The OS athletes also serve as a college athlete control 

group to account for possible aerobic training confounds, or other factors that may 

differentiate college athletes from their non-athlete peers. 

Standard protocol approvals, registrations, and patient consents. The University of 

Virginia Institutional Review Board for Health Science Research approved the research 

protocol. All participants gave written informed consent. 
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Data acquisition. Data for this study was collected at the University of Virginia Health 

System on a Siemens MAGNETOM Trio MRI. A whole brain multiband BOLD 

sequence (University of Minnesota, CMMR sequence, https://github.com/CMRR-

C2P/MB)59,133,210 (TR/TE=1000ms/32ms, slice thickness=3mm, slice spacing 0.75mm, 

in-plane dimensions 3x3 mm, flip angle=90˚, matrix=64x64, multiband factor=4, 

volumes=480) was acquired during an eyes-open resting state: the participants were 

instructed to lie still and remain awake. A three-dimensional high resolution T1 

magnetization-prepared rapid gradient-echo (MPRRAGE) sequence (TR/TE=1200/2.27, 

slice thickness=1mm, in-plane dimensions=0.977x0.977 mm, flip angle=9˚, 

matrix=256x256) was acquired as an anatomical reference. 

Data preprocessing. Each participant’s anatomical image was brain extracted using 

Advanced Normalization Tools (ANTs)5 antsBrainExtraction.sh script. A college athlete 

and control (CAC) template was created from a random selection of 30 participants’ 

anatomical scans using antsMultivariateTemplateConstruction2.sh. The Desikan-

Killiany-Tourville (DKT) atlas96 was applied to the CAC template using 

antsJointLabelFusion.sh and twenty hand-labeled brains from the OASIS-TRT dataset96. 

The following preprocessing steps were performed in ANTs with R (ANTsR)4 unless 

otherwise specified. The first 10 time points of the rs-fMRI were removed to allow the 

MRI to reach signal equilibrium. White matter signal, CSF signal, grey matter noise15, 

six-degrees of motion parameters and their squares, and derivatives of original and 

squared motion parameters were regressed from the rs-fMRI images. Time points that 

exceeded a framewise displacement of 0.5mm were removed from subsequent analyses, 

along with the following time point, and were replaced with ß-spline interpolation. If 
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either a participant’s preseason or postseason scan had a mean translation across all time 

points greater than 0.25mm compared to the participant’s average BOLD image, that 

participant was removed from further analyses; this excluded three football players, two 

lacrosse players, two soccer players, and one control. rs-fMRI images were then 

transformed to the CAC template using antsRegistration and antsApplyTransforms 

commands.  

Calculating measures of spontaneous brain activity and functional brain 

connectivity (Figure 1). Preprocessed BOLD images were used to calculate measures of 

functional connectivity using the Data Processing Assistant for Resting State fMRI 

(DPARSF) version 4.0 32. A cortical grey matter mask, segmented from the CAC 

template, was used to mask the data before metric calculation. Amplitude of low-

frequency fluctuations (ALFF) and fractional amplitude of low-frequency fluctuations 

(fALFF) for each set of BOLD images. ALFF is a measure of the strength of spontaneous 

activity in the brain within a specific frequency range (0.01-0.10Hz) associated with 

neural activity216. Fractional ALFF (fALFF) is a measure of the power of the ALFF 

signal divided by the power of the entire frequency spectrum227. BOLD images were then 

bandpass filtered (0.01-0.10 Hz) before calculation of the two metrics. Regional 

homogeneity (ReHo) and degree centrality (DC) were calculated for each set of BOLD 

images. ReHo is the Kendall’s coefficient of concordance (KCC) for a 27 voxel cube, and 

is a measure of local functional connectivity within that small neighborhood220. Weighted 

degree centrality (DC) is the sum of Pearson correlations between a voxel’s time series 

and that of all other voxels, and is a measure of global functional connectivity. The 

resulting ALFF, fALFF, ReHo and DC brain maps were then Fisher z-transformed by 
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subtracting the mean of the brain map from each voxel, and then dividing each voxel’s 

resulting value by the standard deviation of the brain map. Metric difference maps (ex. 

∆ReHo) were created, by subtracting a participant’s preseason metric map from their 

postseason metric map (ex. 𝑝𝑜𝑠𝑡𝑅𝑒𝐻𝑜 − 𝑝𝑟𝑒𝑅𝑒𝐻𝑜 = ∆𝑅𝑒𝐻𝑜). 

Mass-univariate analyses. Individual metric post-pre difference maps for subjects 

within a group were merged into 4D images using the Oxford Centre for Functional MRI 

of the Brain (FMRIB) Software Library’s (FSL) fslmerge command86. In order to identify 

voxel clusters of statistically significant metric change over the course of the season, a 

permutation-based one-sample two-tailed t-test was performed with FSL’s randomise 

(v5.0, 5000 permutations)204 using threshold-free cluster enhancement176 with a ten voxel 

cluster threshold.  

Multivariate analyses. Linear support vector machine (SVM) classification was chosen 

as the multivariate analysis method134,143. Classifier training and testing was implemented 

using Pattern Recognition for Neuroimaging Toolbox (PRoNTo v2.0)165. A linear kernel 

was used to avoid overtraining due to the high dimensionality of the data set (1000s of 

voxels) with relatively few examples (participants)19,135,193. A paired version of the SVM 

was implemented to distinguish between a participant’s metric difference map (ex. 

∆ReHo) and its opposite (ex. -∆ReHo)179. Pioneered by Sripada et al. (2013)179, the 

paired SVM is analogous to a paired t-test, in which the mean of a subject’s two 

observations is subtracted from their values. For the paired SVM, the metric difference 

map (ex. ∆ReHo) and the negative metric difference map (ex. -∆ReHo) are used as 

classes for the algorithm to differentiate between, rather than the preseason and 

postseason metric maps; accounting for the within-subjects design of the study. The 
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paired SVM ensures that the algorithm output for each subject’s difference metric maps 

(ex. ∆ReHo and -∆ReHo) are centered around the classification decision line, resulting in 

equivalent class accuracy and total accuracy for each particular group and metric. The 

SVM classifier is trained through leave-one-out cross-validation (LOOCV) on all but one 

subject’s difference maps and then the classifier it tested on the left-out subject. LOOCV 

is a method to train with the maximum number of examples without testing the classifier 

on a subject on which the classifier was trained. Each LOOCV iteration results in a 

weight map, this weight map is multiplied by the difference map being classified and 

then summed to get a single classifier value that indicates the predicted class. Further 

weight map analysis uses the average weight map among all LOOCV iterations. For 

permutation testing, the classification labels were permuted 5000 times to determine the 

statistical strength of the classifier’s accuracy, with a significance level of p<0.05 

68,150,165. 

Ranking distance comparisons. Ranking distance is a measure of correspondence 

between any two rankings that consist of the same items102, in this case brain regions. 

Schrouff et al. (2013a) used a very similar measure to compare the correspondence 

between SVM weight maps164. Unthresholded t-statistic and SVM weight maps were 

divided into 66 regions using the DKT atlas. The regions were ranked according to each 

region’s average t-statistic or SVM weight values, resulting in a t-statistic region (TROI) 

ranking and SVM weight region (WROI) ranking for each group and metric. The 

correspondence between the 𝑇ABC and 𝑊ABC rankings for a particular group and functional 

connectivity metric was calculated using a measure of distance: 
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𝑅𝐷 𝑇ABC,𝑊ABC =
2

𝑛 ∗ (𝑛 − 1) 𝐼 HIJK,LIJK (𝑖, 𝑗)
4

NO6

4

'O6

 

where 

 if 𝑇ABC 𝑖 < 𝑇ABC(𝑗) and 𝑊ABC(𝑖) > 𝑊ABC(𝑗), then  

 𝐼 HIJK,LIJK 𝑖, 𝑗 = 1 

 else 

  𝐼 HIJK,LIJK 𝑖, 𝑗 = 0  

with RD(TROI, WROI) as the distance between the TROI and WROI rankings, and n as the 

number of ROI (66). The ranking distance values range from 0 (identical rankings) to 1 

(exactly opposite rankings)164. If the rankings have low ranking distance values, it 

indicates the mass-univariate and multivariate analyses are converging on similar 

underlying trends in the data. Statistical significance of the ranking was determined by 

randomly shuffling the rankings for 5000 permutations and identifying how many 

random permutations had a lower ranking distance than the actual rankings. Statistical 

tests were two-tailed, with significantly high ranking distances signifying anti-

correspondence, such as regional increases in one group but decreases in another group. 

The ranking distance was calculated for WROI rankings between all measures in CF to 

determine if the spontaneous activity and functional connectivity metrics are 

experiencing similar spatial trends in college football. The ranking distance was 

calculated for WROI rankings between CF and MC for ALFF and fALFF to determine if 

those groups are experiencing similar spatial effects in these metrics. 

College football metric difference maps. To visualize and compare college football’s 

longitudinal trends related to subconcussion with previous findings in concussion129,222-
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224, we created a region average brain map where group mean ∆ALFF, ∆fALFF, ∆ReHo 

and ∆DC values were averaged over each region in the DKT atlas. 

 

RESULTS 

Mass-univariate analyses. For the voxel-wise analyses, testing for spatially 

homogeneous preseason to postseason differences in ALFF, fALFF, ReHo and DC, no 

statistically significant clusters with more than ten voxels were found in any group.  

Multivariate analyses (Table 6). For the paired SVM classifier trained with a linear 

kernel with LOOCV, a few metrics and groups produced statistically significant 

accuracy. CF had a significant class accuracy for ALFF (80%, p=0.012), fALFF(87%, 

p=0.006), and ReHo (87%, p=0.009) (Figures 9A, 9B, 10A, and 10C), but was not 

significantly accurate for DC (73%, p=0.084) (Figures 10B and 10D). OS did not have 

significant class accuracy for ALFF (57%, p=0.323), fALFF (64%, p=0.116), ReHo 

(50%, p=0.617), or DC (57%, p=0.317).  MC had significant class accuracy for ALFF 

(76%, p=0.003) and fALFF (72%, p=0.017), but not for ReHo (62%, p=0.102) or DC 

(55%, p=0.311). 

Mass-univariate and multivariate ranking distance comparisons. While SVM weight 

maps are not considered to be spatially interpretable, spatial information is a key 

component of t-statistic maps output from mass-univariate analyses. Ranking distance is 

a way to test if the spatial information of an SVM weight map is similar to the spatial 

information of the corresponding t-statistic map. A low ranking distance would indicate 

that these mass-univariate and multivariate approaches are converging upon similar 

underlying effects in the data. All groups and metrics had statistically significant low 
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ranking distances between SVM weight map and t-statistic map region rankings: 

ALFF(CF: RD=0.131, p<0.001; OS: RD=0.100, p<0.001; MC: RD=0.146, p<0.001), 

fALFF(CF: RD=0.067, p<0.001; OS: RD=0.082, p<0.001; MC: RD=0.082, p<0.001), 

ReHo(CF: RD=0.120, p<0.001; OS: RD=0.145, p<0.001; MC: RD=0.122, p<0.001), and 

DC (CF: RD=0.073, p<0.001; OS: RD=0.142, p<0.001; MC: RD=0.089, p<0.001) (Table 

7). These ranking distance values were substantially lower than all values calculated 

during permutation testing, indicating a very high level of correspondence between the t-

statistic and SVM weight maps (Figure 3).  

Ranking distance between metrics for college football (Table 8). While the SVM did 

not produce a significantly high classification accuracy for DC in college football, there 

appeared to be a trend toward significance. To determine if the findings in CF in ALFF, 

fALFF, ReHo, and trends in DC exhibited a similar spatial pattern, WROI rankings were 

compared using ranking distance with 5000 iterations of permutation testing to determine 

significance. All comparisons of fALFF, ReHo, and DC in college football’s WROI 

rankings resulted in a significantly low ranking distances (fALFF vs. ReHo: RD=0.283, 

p<0.001; fALFF vs. DC: RD=0.336, p<0.001; ReHo vs. DC: RD=0.398, p<0.014). ALFF 

only yielded a significantly low ranking distance when compared to fALFF (RD=0.341, 

p<0.001), but not when compared to ReHo (RD=0.449, p=0.223) or DC (RD=0.462, 

p=0.369). 

Ranking difference comparisons for ALFF and fALFF (Table 9). To determine if the 

findings for ALFF and fALFF in CF, OS, and MC are demonstrating similar spatial 

changes, WROI rankings between the groups were compared for these metrics. 

Comparisons of CF vs. MC and OS vs. MC did not exhibit significantly low ranking 
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distances for either metric(CF vs. MC ALFF: RD=0.506, p=0.862; CF vs. MC fALFF: 

RD=0.450, p=0.260; OS vs. MC ALFF: RD=0.4876, p=0.431; OS vs. MC fALFF: 

RD=0.5179, p=0.339), indicating that the region trends for these groups and metrics are 

not experiencing similar effects. Conversely, comparisons of CF vs. OS did result in 

significantly low ranking distances for (ALFF: RD=0.3483, p<0.001; fALFF: 

RD=0.3706, p=0.001). 

College football metric difference maps (Figure 12). In college football among the 66 

regions in the DKT atlas, the five most increased regions for ALFF are (in order) the left 

paracentral lobule, right paracentral lobule, right cuneus, left cuneus, and the left medial 

orbitofrontal cortex. The five most decreased regions for ALFF are the right temporal 

pole, right parahippocampal gyrus, left pars triangularis, right pars triangularis, and left 

parahippocampal gyrus (Table 10). The five most increased regions for fALFF are the 

right cuneus, left pericalcarine cortex, right lateral occipital cortex, right lingual gyrus, 

and left lingual gyrus. The five most decreased regions for fALFF are the right temporal 

pole, left rostral anterior cingulate, left caudal anterior cingulate, right rostral anterior 

cingulate, and right caudal anterior cingulate(Table 11). The five most increased regions 

for ReHo are the left pericalcarine cortex, right lingual gyrus, left lingual gyrus, right 

pericalcarine cortex, and left postcentral gyrus. The five most decreased regions for ReHo 

are the right rostral anterior cingulate, left caudal anterior cingulate, right pars 

triangularis, left rostral anterior cingulate, and left pars orbitalis (Table 12). The five most 

increased regions for DC are the right parahippocampal gyrus, right entorhinal cortex, left 

temporal pole, right fusiform gyrus, and left parahippocampal gyrus. The five most 

decreased regions for DC are the right pars triangularis, right rostral middle frontal gyrus, 
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right supramarginal gyrus, right inferior parietal gyrus, and left caudal anterior cingulate 

(Table 13). Results for ALFF and fALFF in the male control group are presented in 

figure 13 and tables 14 and 15, respectively. 

 

 
Figure 8. Analysis framework. At each time point (preseason and postseason), 
amplitude of low-frequency fluctuations (ALFF), fractional ALFF (fALFF), regional 
homogeneity (ReHo) and degree centrality (DC) metrics are calculated for each 
participant’s preprocessed rs-fMRI data, resulting in ALFF, fALFF, ReHo, and DC 
values for each grey matter voxel. To control for variability between subjects, metric 
difference maps (∆Metric) are created by subtracting the participants’ preseason metric 
map from their postseason metric map. Then metric difference maps are analyzed using 
mass-univariate (general linear model) and multivariate (support vector machine) 
analyses, resulting in group t-statistic and SVM weight maps. 
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METRIC GROUP CLASS 

ACCURACY 
TOTAL 
ACCURACY 

P-VALUE 

ALFF CF 80.00% 80.00% 0.001 
OS 57.14% 57.14% 0.323 
MC 75.86% 75.86% 0.003 

fALFF CF 86.67% 86.67% 0.006 
OS 64.29% 64.29% 0.116 
MC 72.41% 72.41% 0.017 

ReHo CF 86.67% 86.67% 0.009 
OS 50.00% 50.00% 0.617 
MC 62.07% 62.07% 0.102 

DC CF 73.33% 73.33% 0.084 
OS 57.14% 57.14% 0.317 
MC 55.17% 55.17% 0.311 

 
Table 6. Support vector machine classification results. CF=college football, OS=other 
sports (soccer and lacrosse), MC=male controls, ALFF=amplitude of low-frequency 
fluctuations, fALFF=fractional ALFF, ReHo=regional homogeneity, DC=degree 
centrality. 
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Figure 9. SVM classification ALFF and fALFF. College football’s (CF) SVM 
classification confusion matrix for ALFF (A) and fALFF (B) and the control group’s 
(MC) SVM classification confusion matrix for ALFF (C) and fALFF (D) depict the 
number of correct and incorrect predictions for each class (ex. ∆ALFF vs -∆ALFF).  
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Figure 10. SVM classification for college football. College football’s SVM 
classification confusion matrix for ReHo (A) and DC (B) depict the number of correct 
and incorrect predictions for each class (ex. ∆ReHo vs -∆ReHo). The SVM prediction 
plot for ReHo (C) and DC (D) shows result of the SVM decision function for each 
participant. Dotted line at zero represents the decision threshold which is zero-centered 
by the paired nature of the SVM. Closed black squares represent metric difference maps 
(ex. ∆ReHo) and open circles represent their opposite (ex. -∆ReHo). ReHo=regional 
homogeneity, DC=degree centrality 
 

 

 



 

 

85 
 
METRIC GROUP RANKING 

DISTANCE 
P-VALUE 

ALFF CF 0.131 <0.001 
OS 0.100 <0.001 
MC 0.146 <0.001 

fALFF CF 0.067 <0.001 
OS 0.082 <0.001 
MC 0.082 <0.001 

ReHo CF 0.120 <0.001 
OS 0.145 <0.001 
MC 0.122 <0.001 

DC CF 0.073 <0.001 
OS 0.142 <0.001 
MC 0.089 <0.001 

Table 7. Ranking distance for each group’s comparison of TROI and WROI rankings. 
Ranking distance of 0 indicates identical rankings and 1 indicates opposite rankings. 
CF=college football, OS=other sports (soccer and lacrosse), MC=male controls, 
ALFF=amplitude of low-frequency fluctuations, fALFF=fractional ALFF, 
ReHo=regional homogeneity, DC=degree centrality. 
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Figure 11. Ranking distance results and permutation testing. Twelve tests are shown 
for four metrics (ALFF, fALFF, ReHo and DC) in three groups (CF, OS, MC).Vertical 
lines on the left of the figure depict the calculated ranking distance for each group’s 
comparison of TROI and WROI rankings. Curves on the right depict the distribution for 
each of the twelve permutation tests (5000 iterations) of ranking distance. Thick black 
vertical line (actually six superimposed vertical lines) represents the p<0.05 decision line 
for the twelve permutation tests. CF=college football, OS=other sports(soccer and 
lacrosse), MC=male controls, ALFF=amplitude of low-frequency fluctuations, 
fALFF=fractional amplitude of low-frequency fluctuations, ReHo=regional homogeneity, 
DC=degree centrality. 
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Figure 12. College football ALFF, fALFF, ReHo and DC trends for each region. 
Longitudinal changes for college football’s metrics were averaged over each region in the 
DKT atlas. Trends are depicted with warm colors depicting increases and cool colors 
depicting decreases. In preprocessing functional connectivity metric were Fisher-z 
transformed, therefore values indicate preseason-to-postseason changes in the Fisher-z 
value. ALFF=amplitude of low-frequency fluctuations, fALFF=fractional ALFF, 
ReHo=regional homogeneity, DC=degree centrality. 
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Figure 13. Control group’s ALFF and fALFF trends for each region. Longitudinal 
changes for the control group’s metrics were averaged over each region in the DKT atlas. 
Trends are depicted with warm colors depicting increases and cool colors depicting 
decreases. In preprocessing functional connectivity metric were Fisher-z transformed, 
therefore values indicate preseason-to-postseason changes in the Fisher-z value. 
ALFF=amplitude of low-frequency fluctuations, fALFF=fractional amplitude of low-
frequency fluctuations. 
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METRIC METRIC 

COMPARISON 
RANKING 
DISTANCE 

P-VALUE 

College Football ALFF vs fALFF 0.341 <0.001 
ALFF vs ReHo 0.448 0.111 
ALFF vs DC 0.462 0.185 
fALFF vs ReHo 0.283 <0.001 
fALFF vs DC 0.336 <0.001 
ReHo vs DC 0.398 0.007 

Table 8. Ranking distance for comparisons between college football’s metrics. 
Ranking distance of 0 indicates identical rankings and 1 indicates opposite rankings. 
ALFF=amplitude of low-frequency fluctuations, fALFF=fractional ALFF, 
ReHo=regional homogeneity, DC=degree centrality. 
 

METRIC GROUP 
COMPARISON 

RANKING 
DISTANCE 

P-VALUE 

ALFF CF vs. OS 0.3483 <0.001 
CF vs. MC  0.5063 0.431 
OS vs. MC 0.4876 0.393 

fALFF CF vs. OS 0.3706 0.001 
CF vs. MC  0.4503 0.130 
OS vs. MC 0.5179 0.339 

Table 9. Ranking distance for comparisons between groups for ALFF and fALFF. 
Ranking distance of 0 indicates identical rankings and 1 indicates opposite rankings. 
CF=college football, OS=other sports, MC=male controls, ALFF=amplitude of low-
frequency fluctuations, fALFF=fractional ALFF. 
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Table 10. Region rankings for college football players’ amplitude of low-frequency 

fluctuations. 

SVM Weight Ranking T Statistic Ranking ∆FC Metric 

Left Paracentral 0.0044 Left Paracentral 0.8244 Left Paracentral 0.2049 

Right Cuneus 0.0043 Right Paracentral 0.7411 Right Paracentral 0.1750 

Left Cuneus 0.0038 Left Cuneus 0.5898 Right Cuneus 0.1604 

Right Paracentral 0.0033 Right Cuneus 0.5544 Left Cuneus 0.1413 

Left Medial Orbitofrontal 0.0026 Left Precuneus 0.5135 Left Medial Orbitofrontal 0.0976 

Right Pars Orbitalis 0.0023 Right Pericalcarine 0.4956 Left Postcentral 0.0936 

Right Lateral Occipital 0.0022 Left Medial Orbitofrontal 0.4693 Left Precuneus 0.0914 

Right Pericalcarine 0.0018 Right Precuneus 0.3716 Left Pericalcarine 0.0754 

Right Medial Orbitofrontal 0.0017 Left Pericalcarine 0.3622 Right Pericalcarine 0.0753 

Left Postcentral 0.0017 Left Postcentral 0.3597 Right Postcentral 0.0721 

Left Precuneus 0.0017 Right Postcentral 0.2732 Right Precentral 0.0700 

Left Pericalcarine 0.0016 Right Precentral 0.2365 Right Precuneus 0.0604 

Left Pars Orbitalis 0.0015 Right Medial Orbitofrontal 0.2344 Left Precentral 0.0584 

Right Precentral 0.0014 Right Fusiform 0.2317 Right Superior Parietal 0.0545 

Left Lateral Orbitofrontal 0.0014 Right Superior Parietal 0.2236 Right Medial Orbitofrontal 0.0544 

Right Postcentral 0.0014 Left Insula 0.2051 Right Lateral Occipital 0.0530 

Right Fusiform 0.0012 Left Precentral 0.1972 Right Insula 0.0458 

Left Lateral Occipital 0.0008 Right Pars Orbitalis 0.1720 Right Pars Orbitalis 0.0425 

Left Precentral 0.0008 Right Insula 0.1457 Right Fusiform 0.0399 

Left Caudal Anterior Cingulate 0.0008 Left Superior Parietal 0.1315 Left Insula 0.0384 

Right Precuneus 0.0007 Right Lateral Occipital 0.1095 Left Superior Parietal 0.0262 

Right Superior Parietal 0.0007 Left Pars Orbitalis 0.0946 Left Lateral Orbitofrontal 0.0245 

Right Insula 0.0004 Left Lingual 0.0866 Left Lateral Occipital 0.0214 

Left Lingual 0.0004 Left Lateral Orbitofrontal 0.0656 Left Pars Orbitalis 0.0178 

Right Lateral Orbitofrontal 0.0003 Right Isthmus Cingulate 0.0598 Right Caudal Anterior Cingulate 0.0158 

Left Transverse Temporal 0.0003 Right Caudal Anterior Cingulate 0.0543 Left Lingual 0.0143 

Right Middle Temporal 0.0003 Left Transverse Temporal 0.0475 Left Supramarginal 0.0107 

Left Posterior Cingulate 0.0002 Left Pars Opercularis 0.0352 Left Pars Opercularis 0.0066 

Right Inferior Temporal 0.0002 Left Supramarginal 0.0308 Right Caudal Middle Frontal 0.0024 

Right Caudal Anterior Cingulate 0.0002 Right Lingual 0.0040 Left Transverse Temporal 0.0022 

Left Superior Parietal 0.0001 Left Temporal Pole 0.0031 Right Isthmus Cingulate -0.0005 

Left Supramarginal 0.0001 Left Caudal Anterior Cingulate 0.0024 Left Isthmus Cingulate -0.0026 

Right Lingual 0.0000 Right Caudal Middle Frontal -0.0047 Right Lingual -0.0027 

Left Insula 0.0000 Left Isthmus Cingulate -0.0121 Left Caudal Anterior Cingulate -0.0033 
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Right Isthmus Cingulate -0.0001 Left Lateral Occipital -0.0290 Right Inferior Temporal -0.0054 

Right Supramarginal -0.0003 Left Inferior Parietal -0.0389 Left Inferior Parietal -0.0065 

Right Posterior Cingulate -0.0003 Right Inferior Temporal -0.0402 Left Posterior Cingulate -0.0067 

Left Superior Frontal -0.0003 Right Middle Temporal -0.0450 Left Temporal Pole -0.0101 

Left Isthmus Cingulate -0.0005 Left Middle Temporal -0.0755 Right Middle Temporal -0.0104 

Right Caudal Middle Frontal -0.0005 Right Inferior Parietal -0.0812 Left Middle Temporal -0.0113 

Left Rostral Middle Frontal -0.0005 Left Posterior Cingulate -0.0934 Right Inferior Parietal -0.0161 

Left Inferior Parietal -0.0005 Left Caudal Middle Frontal -0.0963 Right Posterior Cingulate -0.0192 

Left Rostral Anterior Cingulate -0.0006 Right Supramarginal -0.0983 Left Caudal Middle Frontal -0.0224 

Left Middle Temporal -0.0007 Right Lateral Orbitofrontal -0.1293 Right Supramarginal -0.0237 

Right Rostral Anterior Cingulate -0.0007 Right Rostral Middle Frontal -0.1398 Right Lateral Orbitofrontal -0.0242 

Left Fusiform -0.0008 Left Rostral Anterior Cingulate -0.1514 Right Rostral Anterior Cingulate -0.0258 

Right Frontal Pole -0.0008 Left Superior Frontal -0.1634 Left Rostral Anterior Cingulate -0.0368 

Right Inferior Parietal -0.0009 Right Rostral Anterior Cingulate -0.1677 Left Inferior Temporal -0.0372 

Right Entorhinal -0.0010 Left Rostral Middle Frontal -0.1728 Right Entorhinal -0.0382 

Left Caudal Middle Frontal -0.0011 Right Posterior Cingulate -0.1763 Left Fusiform -0.0385 

Left Pars Opercularis -0.0011 Right Superior Frontal -0.1862 Left Entorhinal -0.0406 

Left Entorhinal -0.0012 Right Entorhinal -0.1909 Left Superior Frontal -0.0406 

Left Temporal Pole -0.0012 Left Entorhinal -0.2010 Left Rostral Middle Frontal -0.0477 

Left Inferior Temporal -0.0013 Right Transverse Temporal -0.2399 Right Transverse Temporal -0.0494 

Right Rostral Middle Frontal -0.0013 Left Superior Temporal -0.2446 Right Rostral Middle Frontal -0.0563 

Right Superior Frontal -0.0014 Left Inferior Temporal -0.2967 Left Superior Temporal -0.0613 

Right Transverse Temporal -0.0014 Right Superior Temporal -0.2986 Right Frontal Pole -0.0661 

Left Parahippocampal -0.0016 Right Pars Opercularis -0.3043 Right Superior Frontal -0.0689 

Right Pars Opercularis -0.0018 Left Fusiform -0.3413 Right Pars Opercularis -0.0743 

Left Superior Temporal -0.0019 Right Frontal Pole -0.3713 Left Frontal Pole -0.0911 

Right Superior Temporal -0.0019 Right Pars Triangularis -0.3999 Right Superior Temporal -0.0963 

Right Pars Triangularis -0.0025 Left Pars Triangularis -0.4226 Left Parahippocampal -0.0973 

Left Frontal Pole -0.0025 Left Frontal Pole -0.4829 Right Pars Triangularis -0.1127 

Right Parahippocampal -0.0032 Left Parahippocampal -0.5944 Left Pars Triangularis -0.1193 

Left Pars Triangularis -0.0038 Right Parahippocampal -0.7868 Right Parahippocampal -0.1528 

Right Temporal Pole -0.0149 Right Temporal Pole -1.5747 Right Temporal Pole -0.6138 
 
 

 

 



 

 

92 
Table 11. Region rankings for college football players’ fractional amplitude of low-

frequency fluctuations. 

SVM Weight Ranking T Statistic Ranking ∆FC Metric 

Right Cuneus 0.0038 Right Lingual 0.5791 Right Cuneus 0.1514 

Left Pericalcarine 0.0035 Left Lingual 0.5468 Left Pericalcarine 0.1484 

Left Cuneus 0.0033 Left Pericalcarine 0.5205 Right Lateral Occipital 0.1305 

Right Lingual 0.0032 Right Cuneus 0.4739 Right Lingual 0.1284 

Left Frontal Pole 0.0032 Right Fusiform 0.4699 Left Lingual 0.1251 

Left Lingual 0.0029 Right Pericalcarine 0.4466 Left Frontal Pole 0.1241 

Right Lateral Occipital 0.0027 Right Lateral Occipital 0.4238 Left Cuneus 0.1179 

Right Pericalcarine 0.0025 Left Frontal Pole 0.4221 Right Postcentral 0.1175 

Right Precentral 0.0025 Left Cuneus 0.4099 Right Pericalcarine 0.1072 

Right Transverse Temporal 0.0024 Right Postcentral 0.4037 Right Precentral 0.1072 

Left Postcentral 0.0020 Right Transverse Temporal 0.3950 Right Fusiform 0.1012 

Right Postcentral 0.0020 Right Precentral 0.3378 Left Postcentral 0.0926 

Right Fusiform 0.0019 Right Parahippocampal 0.3172 Right Transverse Temporal 0.0870 

Left Lateral Occipital 0.0014 Left Postcentral 0.3071 Left Lateral Occipital 0.0720 

Right Parahippocampal 0.0013 Right Medial Orbitofrontal 0.2490 Right Parahippocampal 0.0638 

Right Medial Orbitofrontal 0.0012 Right Frontal Pole 0.2241 Right Medial Orbitofrontal 0.0574 

Right Superior Parietal 0.0011 Left Lateral Occipital 0.2191 Right Frontal Pole 0.0472 

Right Pars Orbitalis 0.0010 Right Pars Orbitalis 0.1584 Right Middle Temporal 0.0415 

Left Temporal Pole 0.0009 Left Medial Orbitofrontal 0.1491 Right Inferior Temporal 0.0385 

Left Precentral 0.0008 Right Middle Temporal 0.1419 Right Pars Orbitalis 0.0360 

Right Middle Temporal 0.0008 Right Inferior Temporal 0.1309 Left Precentral 0.0337 

Right Frontal Pole 0.0007 Left Pars Opercularis 0.1244 Left Medial Orbitofrontal 0.0320 

Left Superior Parietal 0.0006 Right Superior Parietal 0.1095 Right Superior Parietal 0.0293 

Left Supramarginal 0.0006 Left Lateral Orbitofrontal 0.0965 Left Pars Opercularis 0.0285 

Left Lateral Orbitofrontal 0.0005 Left Precentral 0.0824 Left Supramarginal 0.0192 

Left Medial Orbitofrontal 0.0005 Left Supramarginal 0.0668 Left Lateral Orbitofrontal 0.0186 

Left Pars Opercularis 0.0004 Left Precuneus 0.0502 Left Precuneus 0.0155 

Right Inferior Temporal 0.0003 Left Isthmus Cingulate 0.0438 Left Fusiform 0.0143 

Right Entorhinal 0.0001 Left Fusiform 0.0368 Right Precuneus 0.0110 

Left Precuneus 0.0001 Right Precuneus 0.0290 Left Isthmus Cingulate 0.0066 

Left Fusiform -0.0001 Left Superior Parietal 0.0218 Left Superior Parietal 0.0026 

Right Superior Temporal -0.0001 Left Temporal Pole -0.0116 Right Entorhinal -0.0013 

Right Precuneus -0.0001 Right Entorhinal -0.0155 Left Temporal Pole -0.0058 

Right Supramarginal -0.0001 Right Rostral Middle Frontal -0.0530 Right Superior Temporal -0.0100 
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Left Transverse Temporal -0.0001 Right Supramarginal -0.0587 Right Lateral Orbitofrontal -0.0116 

Left Caudal Middle Frontal -0.0003 Right Lateral Orbitofrontal -0.0608 Right Isthmus Cingulate -0.0152 

Left Insula -0.0003 Right Superior Temporal -0.0650 Right Rostral Middle Frontal -0.0164 

Right Lateral Orbitofrontal -0.0004 Left Transverse Temporal -0.0762 Left Transverse Temporal -0.0187 

Left Rostral Middle Frontal -0.0004 Right Isthmus Cingulate -0.0769 Right Supramarginal -0.0189 

Right Rostral Middle Frontal -0.0004 Left Inferior Parietal -0.0812 Left Insula -0.0200 

Right Isthmus Cingulate -0.0006 Left Insula -0.0841 Left Middle Temporal -0.0238 

Left Inferior Parietal -0.0006 Left Rostral Middle Frontal -0.0995 Left Inferior Parietal -0.0250 

Left Pars Orbitalis -0.0006 Left Caudal Middle Frontal -0.1091 Right Insula -0.0294 

Left Isthmus Cingulate -0.0007 Left Middle Temporal -0.1248 Left Rostral Middle Frontal -0.0302 

Left Parahippocampal -0.0008 Right Insula -0.1269 Left Caudal Middle Frontal -0.0303 

Left Superior Temporal -0.0008 Right Paracentral -0.1997 Left Parahippocampal -0.0440 

Right Insula -0.0009 Right Pars Opercularis -0.2036 Right Pars Opercularis -0.0474 

Right Paracentral -0.0009 Left Pars Orbitalis -0.2042 Left Pars Orbitalis -0.0514 

Left Middle Temporal -0.0009 Right Caudal Middle Frontal -0.2141 Left Superior Temporal -0.0516 

Right Caudal Middle Frontal -0.0009 Left Superior Temporal -0.2289 Right Paracentral -0.0535 

Right Pars Opercularis -0.0012 Left Parahippocampal -0.2481 Right Caudal Middle Frontal -0.0558 

Left Superior Frontal -0.0012 Left Superior Frontal -0.2519 Left Inferior Temporal -0.0571 

Left Paracentral -0.0012 Left Paracentral -0.2931 Left Superior Frontal -0.0666 

Left Entorhinal -0.0016 Right Inferior Parietal -0.3001 Left Paracentral -0.0808 

Right Posterior Cingulate -0.0017 Left Pars Triangularis -0.3395 Right Posterior Cingulate -0.0816 

Right Inferior Parietal -0.0017 Right Posterior Cingulate -0.3478 Left Pars Triangularis -0.0869 

Left Inferior Temporal -0.0020 Left Inferior Temporal -0.3552 Right Inferior Parietal -0.0878 

Left Pars Triangularis -0.0020 Right Superior Frontal -0.3742 Left Entorhinal -0.0886 

Right Superior Frontal -0.0021 Right Pars Triangularis -0.4039 Right Superior Frontal -0.1013 

Left Posterior Cingulate -0.0022 Left Posterior Cingulate -0.4691 Right Pars Triangularis -0.1015 

Right Pars Triangularis -0.0024 Left Entorhinal -0.5189 Left Posterior Cingulate -0.1064 

Left Caudal Anterior Cingulate -0.0025 Right Caudal Anterior Cingulate -0.6262 Right Caudal Anterior Cingulate -0.1502 

Right Caudal Anterior Cingulate -0.0029 Left Caudal Anterior Cingulate -0.6307 Right Rostral Anterior Cingulate -0.1565 

Right Rostral Anterior Cingulate -0.0031 Right Rostral Anterior Cingulate -0.6744 Left Caudal Anterior Cingulate -0.1608 

Left Rostral Anterior Cingulate -0.0034 Left Rostral Anterior Cingulate -0.7849 Left Rostral Anterior Cingulate -0.1966 

Right Temporal Pole -0.0036 Right Temporal Pole -0.9232 Right Temporal Pole -0.2035 
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Table 12. Region rankings for college football players’ regional homogeneity. 

SVM Weight Ranking T Statistic Ranking ∆FC Metric 

Left Pericalcarine 0.0061 Right Lingual 1.3128 Left Pericalcarine 0.2868 

Right Lingual 0.0046 Left Pericalcarine 1.1220 Right Lingual 0.2642 

Left Lingual 0.0045 Left Lingual 1.1046 Left Lingual 0.2324 

Left Postcentral 0.0043 Left Temporal Pole 0.9067 Right Pericalcarine 0.2236 

Left Cuneus 0.0034 Right Pericalcarine 0.8287 Left Postcentral 0.1734 

Right Cuneus 0.0030 Left Postcentral 0.6967 Left Temporal Pole 0.1582 

Right Frontal Pole 0.0029 Right Frontal Pole 0.6718 Right Frontal Pole 0.1359 

Right Pericalcarine 0.0026 Right Parahippocampal 0.6243 Right Parahippocampal 0.1196 

Right Precentral 0.0025 Left Transverse Temporal 0.6221 Right Fusiform 0.1104 

Left Temporal Pole 0.0021 Right Fusiform 0.5884 Left Transverse Temporal 0.1091 

Left Precentral 0.0019 Left Parahippocampal 0.5511 Left Cuneus 0.1004 

Left Rostral Middle Frontal 0.0018 Left Isthmus Cingulate 0.4948 Right Cuneus 0.0952 

Left Pars Opercularis 0.0015 Left Cuneus 0.4509 Left Isthmus Cingulate 0.0940 

Right Pars Opercularis 0.0015 Right Transverse Temporal 0.4104 Right Lateral Occipital 0.0912 

Right Caudal Middle Frontal 0.0015 Left Entorhinal 0.3556 Left Parahippocampal 0.0908 

Left Entorhinal 0.0013 Right Inferior Temporal 0.3507 Left Rostral Middle Frontal 0.0783 

Right Lateral Occipital 0.0012 Right Cuneus 0.3471 Right Transverse Temporal 0.0728 

Right Parahippocampal 0.0011 Right Lateral Occipital 0.3361 Left Precentral 0.0721 

Right Fusiform 0.0011 Left Rostral Middle Frontal 0.3128 Left Pars Opercularis 0.0647 

Left Transverse Temporal 0.0010 Left Precentral 0.2722 Right Precentral 0.0643 

Right Inferior Temporal 0.0009 Right Precentral 0.2341 Left Entorhinal 0.0599 

Right Paracentral 0.0009 Left Pars Opercularis 0.2287 Right Inferior Temporal 0.0565 

Left Caudal Middle Frontal 0.0008 Left Superior Temporal 0.2231 Right Pars Opercularis 0.0502 

Right Precuneus 0.0007 Left Middle Temporal 0.2216 Right Isthmus Cingulate 0.0459 

Left Middle Temporal 0.0007 Right Isthmus Cingulate 0.2206 Left Lateral Occipital 0.0452 

Left Isthmus Cingulate 0.0005 Right Pars Opercularis 0.2019 Right Postcentral 0.0451 

Right Postcentral 0.0005 Right Precuneus 0.1846 Left Middle Temporal 0.0416 

Left Parahippocampal 0.0004 Right Postcentral 0.1831 Right Precuneus 0.0414 

Right Transverse Temporal 0.0003 Right Superior Temporal 0.1629 Left Superior Temporal 0.0413 

Right Superior Temporal 0.0002 Left Lateral Occipital 0.1587 Right Paracentral 0.0350 

Left Superior Temporal 0.0002 Right Paracentral 0.1255 Right Superior Temporal 0.0307 

Left Precuneus 0.0000 Left Precuneus 0.1141 Left Fusiform 0.0301 

Left Supramarginal -0.0001 Left Fusiform 0.1047 Left Precuneus 0.0227 

Right Isthmus Cingulate -0.0002 Left Caudal Middle Frontal 0.0058 Left Caudal Middle Frontal 0.0111 

Right Rostral Middle Frontal -0.0002 Left Inferior Temporal -0.0205 Right Entorhinal -0.0025 
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Left Superior Parietal -0.0003 Left Paracentral -0.0353 Left Inferior Temporal -0.0038 

Right Entorhinal -0.0005 Right Entorhinal -0.0636 Left Paracentral -0.0094 

Left Inferior Temporal -0.0005 Right Middle Temporal -0.1139 Right Middle Temporal -0.0249 

Left Lateral Occipital -0.0006 Right Caudal Middle Frontal -0.1305 Right Caudal Middle Frontal -0.0293 

Left Paracentral -0.0008 Left Supramarginal -0.1367 Left Supramarginal -0.0336 

Right Middle Temporal -0.0008 Left Pars Triangularis -0.1410 Left Pars Triangularis -0.0344 

Left Fusiform -0.0011 Right Rostral Middle Frontal -0.1726 Right Rostral Middle Frontal -0.0448 

Left Superior Frontal -0.0013 Left Posterior Cingulate -0.2676 Right Insula -0.0534 

Left Pars Triangularis -0.0014 Left Medial Orbitofrontal -0.2986 Left Medial Orbitofrontal -0.0534 

Right Medial Orbitofrontal -0.0015 Left Superior Frontal -0.3182 Left Posterior Cingulate -0.0586 

Right Superior Parietal -0.0016 Right Insula -0.3302 Right Medial Orbitofrontal -0.0610 

Right Insula -0.0016 Right Posterior Cingulate -0.3683 Left Frontal Pole -0.0752 

Left Inferior Parietal -0.0016 Left Superior Parietal -0.3703 Right Posterior Cingulate -0.0779 

Left Posterior Cingulate -0.0017 Right Medial Orbitofrontal -0.3718 Left Superior Frontal -0.0800 

Left Frontal Pole -0.0017 Right Superior Frontal -0.4097 Left Insula -0.0820 

Left Insula -0.0018 Left Frontal Pole -0.4347 Left Lateral Orbitofrontal -0.0822 

Right Pars Orbitalis -0.0018 Left Lateral Orbitofrontal -0.4372 Right Superior Frontal -0.0940 

Right Superior Frontal -0.0019 Left Inferior Parietal -0.4866 Right Temporal Pole -0.1020 

Right Supramarginal -0.0020 Left Insula -0.4996 Right Pars Orbitalis -0.1037 

Left Lateral Orbitofrontal -0.0021 Right Supramarginal -0.5188 Left Inferior Parietal -0.1110 

Left Medial Orbitofrontal -0.0021 Right Pars Orbitalis -0.5469 Left Superior Parietal -0.1180 

Right Posterior Cingulate -0.0024 Right Temporal Pole -0.5738 Right Lateral Orbitofrontal -0.1224 

Right Inferior Parietal -0.0025 Right Lateral Orbitofrontal -0.6534 Right Supramarginal -0.1249 

Right Lateral Orbitofrontal -0.0029 Right Superior Parietal -0.6686 Right Caudal Anterior Cingulate -0.1569 

Right Caudal Anterior Cingulate -0.0034 Right Inferior Parietal -0.7150 Right Inferior Parietal -0.1799 

Left Rostral Anterior Cingulate -0.0043 Right Caudal Anterior Cingulate -0.7866 Right Superior Parietal -0.1909 

Right Rostral Anterior Cingulate -0.0046 Left Pars Orbitalis -0.9185 Left Pars Orbitalis -0.2018 

Left Caudal Anterior Cingulate -0.0050 Right Pars Triangularis -1.0133 Left Rostral Anterior Cingulate -0.2119 

Right Pars Triangularis -0.0053 Left Caudal Anterior Cingulate -1.0455 Right Pars Triangularis -0.2230 

Right Temporal Pole -0.0054 Left Rostral Anterior Cingulate -1.0721 Left Caudal Anterior Cingulate -0.2257 

Left Pars Orbitalis -0.0054 Right Rostral Anterior Cingulate -1.2675 Right Rostral Anterior Cingulate -0.2525 
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Table 13. Region rankings for college football players’ degree centrality. 

SVM Weight Ranking T Statistic Ranking ∆FC Metric 

Right Parahippocampal 0.0047 Right Parahippocampal 0.9829 Right Parahippocampal 0.2786 

Left Frontal Pole 0.0044 Right Entorhinal 0.8406 Right Entorhinal 0.2091 

Left Temporal Pole 0.0038 Left Parahippocampal 0.7401 Left Temporal Pole 0.2031 

Right Isthmus Cingulate 0.0037 Left Temporal Pole 0.7240 Right Fusiform 0.2029 

Right Entorhinal 0.0036 Right Fusiform 0.6972 Left Parahippocampal 0.2017 

Right Fusiform 0.0035 Right Medial Orbitofrontal 0.6737 Right Transverse Temporal 0.1917 

Left Parahippocampal 0.0034 Right Isthmus Cingulate 0.6512 Right Isthmus Cingulate 0.1905 

Right Lingual 0.0030 Left Entorhinal 0.6189 Left Frontal Pole 0.1815 

Right Transverse Temporal 0.0030 Right Transverse Temporal 0.5701 Right Medial Orbitofrontal 0.1800 

Left Isthmus Cingulate 0.0029 Right Lingual 0.5593 Right Lingual 0.1760 

Left Entorhinal 0.0027 Left Lingual 0.5468 Left Lingual 0.1741 

Right Medial Orbitofrontal 0.0026 Left Frontal Pole 0.5292 Left Entorhinal 0.1548 

Left Lingual 0.0025 Right Inferior Temporal 0.5190 Left Isthmus Cingulate 0.1481 

Left Cuneus 0.0024 Left Isthmus Cingulate 0.5173 Left Cuneus 0.1406 

Right Pars Orbitalis 0.0022 Left Fusiform 0.4484 Left Fusiform 0.1328 

Right Cuneus 0.0021 Left Lateral Orbitofrontal 0.4447 Right Inferior Temporal 0.1313 

Right Inferior Temporal 0.0020 Right Lateral Orbitofrontal 0.4445 Right Cuneus 0.1171 

Left Fusiform 0.0019 Left Medial Orbitofrontal 0.4436 Left Medial Orbitofrontal 0.1165 

Left Middle Temporal 0.0017 Left Cuneus 0.4295 Left Lateral Orbitofrontal 0.1115 

Right Middle Temporal 0.0016 Right Pars Orbitalis 0.3917 Right Lateral Orbitofrontal 0.1087 

Right Lateral Orbitofrontal 0.0014 Right Cuneus 0.3506 Right Pars Orbitalis 0.1069 

Left Lateral Orbitofrontal 0.0014 Left Middle Temporal 0.3025 Left Middle Temporal 0.0911 

Left Lateral Occipital 0.0014 Left Inferior Temporal 0.2448 Left Lateral Occipital 0.0850 

Left Medial Orbitofrontal 0.0014 Left Lateral Occipital 0.2385 Left Postcentral 0.0776 

Left Paracentral 0.0013 Left Pericalcarine 0.2382 Left Pericalcarine 0.0768 

Left Postcentral 0.0013 Left Superior Temporal 0.2332 Left Superior Temporal 0.0713 

Left Transverse Temporal 0.0011 Left Postcentral 0.2259 Right Middle Temporal 0.0671 

Right Superior Temporal 0.0011 Right Middle Temporal 0.2250 Left Paracentral 0.0645 

Left Superior Temporal 0.0009 Right Superior Temporal 0.2152 Left Transverse Temporal 0.0636 

Left Precuneus 0.0009 Left Transverse Temporal 0.1966 Left Inferior Temporal 0.0628 

Right Insula 0.0008 Left Paracentral 0.1883 Right Superior Temporal 0.0611 

Left Inferior Temporal 0.0004 Left Precuneus 0.1484 Left Precuneus 0.0399 

Left Pars Opercularis 0.0004 Right Insula 0.1109 Right Insula 0.0374 

Left Inferior Parietal 0.0003 Left Pars Orbitalis 0.0910 Left Pars Orbitalis 0.0248 

Left Insula 0.0001 Left Pars Opercularis 0.0872 Left Pars Opercularis 0.0187 

Left Pericalcarine 0.0001 Left Inferior Parietal 0.0280 Left Inferior Parietal 0.0065 
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Right Precuneus -0.0002 Right Precuneus 0.0096 Right Paracentral 0.0014 

Left Pars Orbitalis -0.0002 Right Paracentral 0.0014 Right Precuneus 0.0008 

Right Paracentral -0.0004 Right Postcentral -0.0035 Left Insula -0.0020 

Left Superior Parietal -0.0006 Right Pericalcarine -0.0051 Right Postcentral -0.0069 

Right Caudal Middle Frontal -0.0006 Left Insula -0.0080 Right Pericalcarine -0.0081 

Left Precentral -0.0006 Right Lateral Occipital -0.0951 Right Lateral Occipital -0.0282 

Right Postcentral -0.0007 Left Precentral -0.0973 Left Precentral -0.0356 

Right Caudal Anterior Cingulate -0.0007 Right Precentral -0.1503 Right Precentral -0.0509 

Right Lateral Occipital -0.0008 Left Superior Parietal -0.1688 Right Superior Frontal -0.0548 

Right Precentral -0.0008 Right Superior Frontal -0.1907 Left Superior Parietal -0.0641 

Right Superior Frontal -0.0008 Left Rostral Anterior Cingulate -0.2724 Left Rostral Anterior Cingulate -0.0728 

Left Rostral Anterior Cingulate -0.0008 Right Caudal Middle Frontal -0.2755 Right Frontal Pole -0.0784 

Right Pars Opercularis -0.0012 Left Supramarginal -0.2874 Right Caudal Middle Frontal -0.0833 

Left Supramarginal -0.0014 Right Superior Parietal -0.2887 Right Caudal Anterior Cingulate -0.0981 

Right Pericalcarine -0.0014 Right Frontal Pole -0.2980 Right Temporal Pole -0.0987 

Right Superior Parietal -0.0014 Left Posterior Cingulate -0.3141 Right Superior Parietal -0.0992 

Right Rostral Anterior Cingulate -0.0015 Right Caudal Anterior Cingulate -0.3157 Left Supramarginal -0.1010 

Left Superior Frontal -0.0016 Right Pars Opercularis -0.3185 Left Superior Frontal -0.1011 

Left Caudal Middle Frontal -0.0021 Right Temporal Pole -0.3303 Left Posterior Cingulate -0.1060 

Left Posterior Cingulate -0.0022 Left Superior Frontal -0.3442 Right Rostral Anterior Cingulate -0.1070 

Left Rostral Middle Frontal -0.0024 Right Posterior Cingulate -0.3676 Right Pars Opercularis -0.1127 

Right Posterior Cingulate -0.0025 Right Rostral Anterior Cingulate -0.4030 Right Posterior Cingulate -0.1224 

Right Inferior Parietal -0.0028 Left Caudal Middle Frontal -0.4511 Left Caudal Middle Frontal -0.1421 

Right Supramarginal -0.0029 Left Rostral Middle Frontal -0.5034 Left Rostral Middle Frontal -0.1504 

Left Caudal Anterior Cingulate -0.0030 Right Supramarginal -0.5294 Left Pars Triangularis -0.1868 

Left Pars Triangularis -0.0033 Right Inferior Parietal -0.5940 Left Caudal Anterior Cingulate -0.1886 

Right Rostral Middle Frontal -0.0033 Left Pars Triangularis -0.6052 Right Inferior Parietal -0.1925 

Right Pars Triangularis -0.0036 Right Rostral Middle Frontal -0.6542 Right Supramarginal -0.1940 

Right Frontal Pole -0.0043 Right Pars Triangularis -0.6572 Right Rostral Middle Frontal -0.1970 

Right Temporal Pole -0.0054 Left Caudal Anterior Cingulate -0.6597 Right Pars Triangularis -0.2029 
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Table 14. Region rankings for controls’ amplitude of low-frequency fluctuations. 

SVM Weight Ranking T Statistic Ranking ∆FC Metric 

Right Frontal Pole 0.0062 Right Frontal Pole 2.4602 Right Frontal Pole 0.2722 

Right Pars Opercularis 0.0037 Right Pars Opercularis 0.7343 Right Pars Opercularis 0.1111 

Left Frontal Pole 0.0036 Right Middle Temporal 0.6627 Right Superior Temporal 0.1015 

Right Superior Temporal 0.0026 Right Insula 0.6099 Right Pars Triangularis 0.0936 

Right Pars Triangularis 0.0025 Right Pars Triangularis 0.5453 Right Middle Temporal 0.0838 

Left Superior Parietal 0.0025 Right Superior Temporal 0.4795 Right Insula 0.0739 

Right Lateral Orbitofrontal 0.0025 Left Frontal Pole 0.4154 Right Lateral Orbitofrontal 0.0607 

Right Middle Temporal 0.0023 Right Lateral Orbitofrontal 0.3544 Left Frontal Pole 0.0580 

Left Inferior Parietal 0.0021 Right Pars Orbitalis 0.3457 Left Inferior Parietal 0.0549 

Right Supramarginal 0.0021 Right Parahippocampal 0.2842 Right Pars Orbitalis 0.0519 

Right Postcentral 0.0019 Right Supramarginal 0.2434 Right Supramarginal 0.0390 

Left Medial Orbitofrontal 0.0019 Left Medial Orbitofrontal 0.2261 Right Parahippocampal 0.0378 

Right Insula 0.0016 Right Postcentral 0.2115 Right Postcentral 0.0377 

Left Lateral Orbitofrontal 0.0015 Right Transverse Temporal 0.1901 Left Medial Orbitofrontal 0.0376 

Right Pars Orbitalis 0.0013 Left Lateral Orbitofrontal 0.1850 Left Lateral Orbitofrontal 0.0362 

Right Superior Parietal 0.0012 Left Insula 0.1787 Left Superior Parietal 0.0357 

Right Medial Orbitofrontal 0.0012 Left Inferior Parietal 0.1773 Right Rostral Middle Frontal 0.0353 

Right Inferior Parietal 0.0011 Left Superior Temporal 0.1463 Left Superior Temporal 0.0319 

Left Insula 0.0008 Right Fusiform 0.1423 Right Transverse Temporal 0.0267 

Right Parahippocampal 0.0008 Right Entorhinal 0.1372 Right Entorhinal 0.0244 

Right Caudal Middle Frontal 0.0007 Right Caudal Middle Frontal 0.1351 Left Pars Triangularis 0.0242 

Right Rostral Middle Frontal 0.0007 Right Inferior Parietal 0.1330 Right Inferior Parietal 0.0227 

Left Lateral Occipital 0.0006 Left Pars Triangularis 0.1269 Right Caudal Middle Frontal 0.0219 

Right Precentral 0.0005 Right Rostral Middle Frontal 0.1091 Left Insula 0.0213 

Left Superior Temporal 0.0005 Left Transverse Temporal 0.1087 Left Transverse Temporal 0.0195 

Left Paracentral 0.0004 Right Medial Orbitofrontal 0.0760 Right Medial Orbitofrontal 0.0107 

Left Pars Triangularis 0.0004 Right Pericalcarine 0.0692 Right Superior Parietal 0.0099 

Right Lateral Occipital 0.0002 Left Superior Parietal 0.0556 Left Lateral Occipital 0.0089 

Right Pericalcarine 0.0002 Right Lateral Occipital 0.0468 Right Precentral 0.0068 

Left Temporal Pole 0.0001 Left Lateral Occipital 0.0437 Right Fusiform 0.0065 

Right Entorhinal 0.0001 Right Precentral 0.0373 Right Lateral Occipital 0.0044 

Left Transverse Temporal -0.0001 Right Inferior Temporal 0.0200 Left Pars Opercularis -0.0003 

Right Paracentral -0.0002 Left Pars Opercularis 0.0106 Right Pericalcarine -0.0020 

Left Pars Orbitalis -0.0002 Left Cuneus -0.0071 Left Rostral Middle Frontal -0.0023 

Right Fusiform -0.0003 Right Superior Parietal -0.0465 Left Paracentral -0.0026 

Left Isthmus Cingulate -0.0003 Left Rostral Middle Frontal -0.0522 Left Cuneus -0.0033 
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Left Pars Opercularis -0.0004 Left Pericalcarine -0.0561 Right Inferior Temporal -0.0034 

Left Cuneus -0.0004 Left Parahippocampal -0.0691 Left Pars Orbitalis -0.0087 

Right Rostral Anterior Cingulate -0.0005 Left Superior Frontal -0.0761 Right Lingual -0.0102 

Right Inferior Temporal -0.0005 Left Pars Orbitalis -0.0780 Left Middle Temporal -0.0103 

Left Rostral Middle Frontal -0.0005 Left Rostral Anterior Cingulate -0.1069 Left Superior Frontal -0.0108 

Left Lingual -0.0005 Left Middle Temporal -0.1090 Left Parahippocampal -0.0114 

Left Pericalcarine -0.0005 Left Paracentral -0.1135 Left Lingual -0.0115 

Left Posterior Cingulate -0.0006 Right Lingual -0.1618 Left Isthmus Cingulate -0.0128 

Left Middle Temporal -0.0006 Left Caudal Middle Frontal -0.1742 Left Rostral Anterior Cingulate -0.0165 

Left Rostral Anterior Cingulate -0.0007 Left Lingual -0.1917 Left Pericalcarine -0.0195 

Left Parahippocampal -0.0008 Left Temporal Pole -0.1996 Right Isthmus Cingulate -0.0210 

Right Isthmus Cingulate -0.0008 Right Rostral Anterior Cingulate -0.2084 Left Fusiform -0.0226 

Right Lingual -0.0009 Right Superior Frontal -0.2119 Left Caudal Middle Frontal -0.0270 

Right Posterior Cingulate -0.0009 Left Isthmus Cingulate -0.2139 Right Rostral Anterior Cingulate -0.0286 

Right Transverse Temporal -0.0009 Right Cuneus -0.2263 Right Superior Frontal -0.0312 

Left Caudal Middle Frontal -0.0010 Left Caudal Anterior Cingulate -0.3121 Left Posterior Cingulate -0.0327 

Left Caudal Anterior Cingulate -0.0011 Right Isthmus Cingulate -0.3311 Right Paracentral -0.0339 

Left Fusiform -0.0011 Left Fusiform -0.3372 Right Posterior Cingulate -0.0348 

Left Precuneus -0.0013 Left Precuneus -0.3827 Left Caudal Anterior Cingulate -0.0375 

Left Supramarginal -0.0013 Left Inferior Temporal -0.3871 Left Inferior Temporal -0.0384 

Left Superior Frontal -0.0014 Left Supramarginal -0.3988 Right Cuneus -0.0416 

Left Postcentral -0.0015 Right Posterior Cingulate -0.4103 Left Temporal Pole -0.0428 

Left Inferior Temporal -0.0015 Right Paracentral -0.4142 Left Precuneus -0.0545 

Right Cuneus -0.0016 Left Posterior Cingulate -0.4171 Right Caudal Anterior Cingulate -0.0567 

Right Superior Frontal -0.0019 Left Precentral -0.4173 Left Precentral -0.0592 

Left Precentral -0.0020 Left Entorhinal -0.4279 Left Supramarginal -0.0602 

Right Precuneus -0.0022 Left Postcentral -0.4740 Left Entorhinal -0.0634 

Right Caudal Anterior Cingulate -0.0023 Right Caudal Anterior Cingulate -0.4896 Left Postcentral -0.0714 

Left Entorhinal -0.0032 Right Precuneus -0.5353 Right Precuneus -0.0878 

Right Temporal Pole -0.0090 Right Temporal Pole -0.9173 Right Temporal Pole -0.2291 
 

 

 

 

 

 



 

 

100 
Table 15. Region rankings for controls’ fractional amplitude of low-frequency 

fluctuations. 

SVM Weight Ranking T Statistic Ranking ∆FC Metric 

Right Temporal Pole 0.0048 Right Frontal Pole 1.0021 Left Inferior Parietal 0.1386 

Left Inferior Parietal 0.0042 Right Temporal Pole 0.8994 Right Frontal Pole 0.1316 

Left Temporal Pole 0.0038 Left Temporal Pole 0.7934 Right Temporal Pole 0.1270 

Left Cuneus 0.0036 Left Inferior Parietal 0.6407 Left Cuneus 0.1090 

Left Superior Parietal 0.0028 Left Cuneus 0.5464 Left Temporal Pole 0.0980 

Right Frontal Pole 0.0028 Left Superior Parietal 0.3986 Left Superior Parietal 0.0893 

Left Pars Orbitalis 0.0022 Right Parahippocampal 0.3659 Left Pars Orbitalis 0.0583 

Left Paracentral 0.0020 Left Pars Orbitalis 0.3646 Right Pericalcarine 0.0548 

Right Lateral Occipital 0.0020 Left Lateral Orbitofrontal 0.3626 Right Lateral Occipital 0.0532 

Left Lateral Orbitofrontal 0.0019 Right Pericalcarine 0.3103 Left Lateral Orbitofrontal 0.0484 

Left Medial Orbitofrontal 0.0018 Left Superior Temporal 0.3100 Left Superior Temporal 0.0477 

Left Superior Temporal 0.0017 Left Medial Orbitofrontal 0.3043 Left Lateral Occipital 0.0451 

Left Lateral Occipital 0.0017 Left Rostral Anterior Cingulate 0.2798 Left Paracentral 0.0450 

Right Pericalcarine 0.0017 Left Paracentral 0.2672 Right Parahippocampal 0.0444 

Left Frontal Pole 0.0016 Left Parahippocampal 0.2642 Left Medial Orbitofrontal 0.0431 

Right Parahippocampal 0.0016 Right Lateral Orbitofrontal 0.2610 Left Rostral Anterior Cingulate 0.0415 

Left Caudal Anterior Cingulate 0.0016 Right Lateral Occipital 0.2560 Left Caudal Anterior Cingulate 0.0337 

Left Pars Opercularis 0.0015 Left Posterior Cingulate 0.2529 Left Posterior Cingulate 0.0336 

Left Rostral Anterior Cingulate 0.0013 Right Fusiform 0.2454 Left Pars Opercularis 0.0336 

Left Parahippocampal 0.0013 Left Pars Opercularis 0.2313 Right Lateral Orbitofrontal 0.0335 

Right Lateral Orbitofrontal 0.0012 Left Caudal Anterior Cingulate 0.2279 Right Inferior Parietal 0.0330 

Left Posterior Cingulate 0.0012 Left Lateral Occipital 0.2115 Left Lingual 0.0292 

Left Insula 0.0010 Left Lingual 0.2076 Left Pericalcarine 0.0272 

Right Inferior Parietal 0.0009 Right Insula 0.2037 Right Insula 0.0270 

Right Fusiform 0.0007 Left Pericalcarine 0.1782 Right Fusiform 0.0256 

Left Lingual 0.0007 Right Entorhinal 0.1650 Left Parahippocampal 0.0237 

Left Pars Triangularis 0.0007 Right Inferior Parietal 0.1541 Left Frontal Pole 0.0208 

Right Entorhinal 0.0006 Left Insula 0.1517 Right Entorhinal 0.0203 

Right Insula 0.0006 Left Entorhinal 0.1481 Left Insula 0.0202 

Right Transverse Temporal 0.0005 Left Frontal Pole 0.1390 Right Posterior Cingulate 0.0153 

Left Entorhinal 0.0004 Right Posterior Cingulate 0.1280 Left Entorhinal 0.0137 

Left Pericalcarine 0.0004 Right Middle Temporal 0.0803 Right Middle Temporal 0.0096 

Right Supramarginal 0.0002 Right Inferior Temporal 0.0634 Left Pars Triangularis 0.0079 

Left Caudal Middle Frontal 0.0002 Left Pars Triangularis 0.0611 Left Precuneus 0.0069 
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Right Posterior Cingulate 0.0002 Right Transverse Temporal 0.0342 Right Superior Parietal 0.0063 

Left Precuneus 0.0001 Right Lingual 0.0315 Right Lingual 0.0056 

Right Middle Temporal 0.0001 Left Precuneus 0.0274 Right Transverse Temporal 0.0048 

Right Inferior Temporal 0.0001 Right Superior Parietal 0.0272 Right Inferior Temporal 0.0017 

Right Caudal Anterior Cingulate 0.0000 Right Isthmus Cingulate -0.0006 Right Isthmus Cingulate -0.0007 

Right Superior Parietal -0.0002 Right Supramarginal -0.0209 Right Superior Temporal -0.0077 

Right Lingual -0.0002 Left Caudal Middle Frontal -0.0370 Right Supramarginal -0.0082 

Left Transverse Temporal -0.0004 Right Superior Temporal -0.0430 Left Supramarginal -0.0088 

Left Fusiform -0.0004 Left Fusiform -0.0455 Right Cuneus -0.0089 

Right Superior Temporal -0.0004 Right Cuneus -0.0462 Right Pars Orbitalis -0.0093 

Right Postcentral -0.0005 Left Supramarginal -0.0575 Left Fusiform -0.0101 

Left Precentral -0.0005 Right Pars Orbitalis -0.0648 Left Caudal Middle Frontal -0.0106 

Right Isthmus Cingulate -0.0005 Left Precentral -0.0672 Left Isthmus Cingulate -0.0130 

Right Pars Orbitalis -0.0006 Right Precuneus -0.0688 Right Caudal Anterior Cingulate -0.0133 

Left Supramarginal -0.0006 Left Isthmus Cingulate -0.0793 Left Precentral -0.0158 

Left Postcentral -0.0006 Right Caudal Anterior Cingulate -0.0860 Right Precuneus -0.0170 

Left Isthmus Cingulate -0.0006 Left Middle Temporal -0.1204 Left Middle Temporal -0.0191 

Right Medial Orbitofrontal -0.0007 Right Paracentral -0.1247 Left Transverse Temporal -0.0212 

Right Precuneus -0.0009 Right Postcentral -0.1456 Left Inferior Temporal -0.0222 

Left Inferior Temporal -0.0009 Right Pars Opercularis -0.1506 Right Medial Orbitofrontal -0.0248 

Left Middle Temporal -0.0010 Left Transverse Temporal -0.1594 Right Paracentral -0.0259 

Right Paracentral -0.0011 Left Inferior Temporal -0.1595 Right Pars Opercularis -0.0332 

Right Cuneus -0.0012 Right Medial Orbitofrontal -0.1618 Right Rostral Anterior Cingulate -0.0332 

Right Pars Opercularis -0.0013 Left Postcentral -0.1850 Right Postcentral -0.0343 

Right Pars Triangularis -0.0013 Right Rostral Anterior Cingulate -0.1929 Left Postcentral -0.0356 

Right Rostral Anterior Cingulate -0.0013 Right Pars Triangularis -0.1986 Right Pars Triangularis -0.0365 

Right Caudal Middle Frontal -0.0014 Right Caudal Middle Frontal -0.2202 Right Caudal Middle Frontal -0.0506 

Right Precentral -0.0018 Left Superior Frontal -0.2780 Left Superior Frontal -0.0538 

Left Superior Frontal -0.0020 Right Precentral -0.2871 Right Precentral -0.0623 

Right Superior Frontal -0.0022 Right Superior Frontal -0.3230 Right Superior Frontal -0.0627 

Left Rostral Middle Frontal -0.0029 Right Rostral Middle Frontal -0.4651 Right Rostral Middle Frontal -0.0956 

Right Rostral Middle Frontal -0.0029 Left Rostral Middle Frontal -0.4906 Left Rostral Middle Frontal -0.0992 
 

 

 

 



 

 

102 
DISCUSSION 

This study used a combination of mass-univariate and multivariate analyses 

applied to rs-fMRI data to investigate effects of subconcussion effects on metrics thought 

to represent proxies for spontaneous brain activity (ALFF/fALFF), and local (ReHo) and 

long-range (DC) functional connectivity. The college-age male control (MC) group 

served as a low-to-no subconcussive exposure control group. Mass-univariate analyses 

found no significant changes in any of the twelve statistical tests (i.e. 4 metrics in 3 

groups), but the paired SVM found significantly high class accuracy for preseason-to-

postseason changes in ALFF in CF (80%, p=0.012) and MC (76%, p=0.003), fALFF in 

CF (87%, p=0.006) and MC (72%, p=0.017), and ReHo in CF (87%, p=0.009). At a 

superficial level this finding agrees with prior studies in concussion129,222-224, although 

direct comparison is limited by the nature of the spatial information resulting from SVM 

analyses. However, our ranking distance finding of significant correspondence between 

the t-statistic maps and SVM weight maps for all six statistical tests supports the ideas 

that: 1) these disparate analyses are converging upon similar underlying effects and 2) 

meaningful spatial information may exist in the SVM weight maps. Further ranking 

distance analyses indicated that fALFF, ReHo, and DC may be experiencing similar 

trends for the college football athletes, and that college football and control groups are 

not experiencing similar trends in ALFF and fALFF. 

Comparing mass-univariate and multivariate analyses. While mass-univariate 

analyses were unable to detect changes in any group or metric, paired SVM classification 

demonstrated significantly high classification accuracy for CF’s ALFF, fALFF, and 

ReHo difference maps. The high accuracy of SVM classification for CF’s ALFF, fALFF, 
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and ReHo indicates that over the course of a single season college football players’ 

spontaneous brain activity and local functional connectivity are changing. The fact that 

the multivariate analysis, which can use information from across the brain, was able to 

detect a change that was undetectable for mass-univariate analyses agrees with the 

hypothesis that changes affected by subconcussion are spatially heterogeneous across 

subjects and/or spatially distributed within subjects. The inability of mass-univariate 

analyses to identify effects, when they were identifiable in response to concussion, 

suggests that subconcussion may produce similarly distributed (but more subtle) effects 

than concussion. 

Mass-univariate and multivariate ranking distance comparisons. The results from the 

ranking distance analyses showed that the mass-univariate analyses and paired SVM 

classification have a remarkable level of spatial correspondence. Every comparison 

between t-statistic and SVM weight region rankings resulted in a ranking distance that 

was substantially lower than the lowest value calculated in permutation testing (Figure 

11). It is surprising that these maps have such a high level of agreement, as they use 

vastly dissimilar processes to produce their results. While voxel-wise analyses ostensibly 

treat the effects in each voxel independently, the SVM classifier is trained to weight a 

number of spatially distributed voxels to discriminate between the two groups. The 

resulting SVM weight maps are not generally considered to be spatially interpretable77, 

but the high spatial correspondence with the t-statistic maps suggests that valuable spatial 

information may be contained in the weight maps. 

Similarity to findings in concussion. Zhou et al. (2014) measured fALFF in mTBI 

patients 3-58 days after injury and compared those measures to those found in healthy 
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controls (HC). Zhou et al. (2014) found multiple clusters showing fALFF decreases in the 

frontal, occipital, and temporal cortices224. Zhan et al. (2016) measured ALFF and fALFF 

in mTBI patients 0.5-12 days after injury and compared those measures to those found in 

healthy controls (HC). Zhan et al (2016) found mTBI patients had increased ALFF in the 

right middle frontal gyrus, and decreased ALFF in the right lingual gyrus (LgG) and 

fusiform gyrus (FuG), left occipital gyrus, and left cuneus and LgG, compared to 

controls. For fALFF, there was an increase in the left precuneus, and decreases in the 

right LgG and FuG, and left middle occipital gyrus222. Similar to Zhan et al. (2016), CF’s 

ALFF and fALFF region average brain maps (Figure 13) indicated ALFF decreases in the 

right LgG, and fALFF increases in the left precuneus. However, all other Zhan et al 

(2016) findings disagreed with the trends found in the region average brain maps. Zhou et 

al. (2014) did not provide enough regional information for direct comparison with our 

data. 

Zhan et al. (2015) measured ReHo in patients diagnosed with a mild traumatic 

brain injury (mTBI) a few days after injury and compared them to matched controls. 

Patients with mTBI, compared to the control group, had lower ReHo values in the left 

insula, left precentral (PrG) and postcentral gyri (PoG), and the supramarginal gyrus 

(SMG)223. Meier, Bellgowan, and Mayer (2016) measured DC and ReHo at multiple time 

points after athletes had sustained a sports-related concussion (SRC) (mean days after 

injury: T1=1.7, T2=8.4, T3=32.4) and compared those measures to those found in a 

healthy athlete (HA) control group. Similar to our data, they found no changes in DC at 

any time point relative to the athlete control group. At one-month post injury (T3) 

concussed athletes, compared to the HA control group, had increased ReHo at the 
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bilateral postcentral gyri (PoG), left paracentral lobule (PCL), right LgG, right FuG, right 

superior temporal gyrus (STG), right middle temporal gyrus (MTG), and the right 

supplementary motor area (SMA), and decreased ReHo in the right middle frontal gyrus 

(MFG), right superior frontal gyrus (SFG), and superior medial frontal gyrus (SMFG)129.  

Similar to the published results from Zhan et al. (2015) and Meier, Bellgowan, 

and Mayer (2016) the region average brain map (Figure 12) indicated increased ReHo in 

bilateral PoG, right LgG, right FuG, right STG, and ReHo decreased in left insula and 

SMG, and right superior and medial frontal gyri (Table 10). In the DKT atlas, the SMA 

and SMFG are included in the superior frontal gyrus, disallowing direct comparison to 

those regions in which Meier et al. showed increases and decreases, respectively. The 

only direct contradictions are with Meier et al.’s increases in the right MTG and left PCL, 

and Zhan et al.’s decreases in the left PrG and PoG.  

Across the regional findings for ALFF and fALFF, our trends matched 2 of 9 

previously published region findings. For ReHo, our trends matched 9 of 13 previously 

published region findings, with agreement in two additional regions unable to be 

determined. If the effects of concussion are spatially heterogeneous as indicated by 

heterogeneity in concussion’s clinical presentation158, then then the previously published 

voxel-wise analyses for ALFF, fALFF, and ReHo may only be detecting a subset of the 

changes occurring in their participants. The areas of change found in their studies may, or 

may not, be more susceptible to head impacts than other regions, and different 

populations may result in different findings. In this study of subconcussion, the spatial 

heterogeneity combined with subtler overall effects result in no significant clusters from 

voxel-wise analysis. While the underlying spatial trends in ReHo seem to agree 
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remarkably well with the published findings in concussion, the spatial trends for ALFF 

and fALFF appear to diverge from previous findings.  

Ranking difference comparisons for ALFF and fALFF. Both of the college football 

and control groups had significantly high accuracies in SVM classification for ALFF and 

fALFF. The presence of a change in the control group casts doubt on whether the changes 

seen in CF’s ALFF and fALFF values are abnormal. The findings in both groups 

underscore the importance of collecting control group data, even with longitudinal 

measures. It cannot be assumed that change itself is exceptional. To determine if the two 

groups were experiencing a similar change, the ranking distance was calculated between 

the college football and control groups’ and MC’s WROI rankings for ALFF and fALFF. 

The insignificant ranking distance between the two groups (RD=0.506, p=0.862; 

RD=0.450, p=0.260, respectively) suggests that the groups are not experiencing similar 

changes in ALFF and fALFF. While some longitudinal changes in controls may be 

normal, the changes experienced by college football players seem to be abnormal.  

 Ranking distance between metrics for college football. The low ranking distance for 

CF’s fALFF, ReHo, and DC rankings suggest that the effects for these metrics may be 

similar. Although the SVM classifier does not reach a significantly high accuracy for 

CF’s DC difference maps there seems to be a trend (p=0.084). ALFF and fALFF are very 

similar measures, which alone could account for their short ranking distance. ALFF is 

known to contain more physiological noise than fALFF216, and that noise could account 

for why it does not have significantly short ranking distance with ReHo or DC. Increased 

spontaneous brain activity could result in increased local or global functional 

connectivity, or some other physiological changes in these regions could independently 
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cause changes in these metrics. Resting-state measures of spontaneous activity and 

functional connectivity are sensitive to a large number of underlying physiological 

changes in the brain. Previous research in mTBI, concussion, and subconcussion suggest 

several possible injury mechanisms that may be the cause of these disruptions in 

spontaneous activity and functional connectivity in the brain, including glial activation 

and chronic inflammation172, cytoskeletal disruption in neural axons and somas91,112. 

In athletes with a concussion, a disruption in the functional connectivity of the 

default mode network has been associated with increased cerebrovascular reactivity 

(CVR): a measure of how cerebral blood flow increases in response to a stimulus132. 

Svaldi et al. (2016) found that CVR was decreased in high school girls’ soccer, and those 

players who experienced greater subconcussive impact load were more affected185. While 

any of the proposed mechanisms could play a role in subconcussion’s effect on ALFF, 

fALFF, or ReHo, CVR has the most direct pathway to affect fMRI-measured functional 

connectivity, and has already been found to be affected by subconcussive head impacts. 

Furthermore, the lack of a strong effect in global functional connectivity indicates that 

damage to long-range white matter tracts is not the primary method of subconcussive 

injury, as global functional connectivity should theoretically be more sensitive to white 

matter damage than spontaneous activity or local connectivity. 

Limitations. There are a few factors about our participant groups that may affect the 

generalizability of our findings. First, the athlete populations in this study are relatively 

small and are all from the same Division I university. Second, previous research in 

football has shown that head impact can be affected by player position10, offensive 

style120, or practice types156, all of which could be different at other universities or teams. 



 

 

108 
It is possible that different results could be obtained at another university, and there are 

likely differences at lower levels of collegiate competition or for other levels of play 

(youth, adult amateur, and professional). Youth athletes tend to experience less severe 

subconcussive head impacts but may be more susceptible to their effects49. Third, while 

our subset of athletes represents a wide variety of player positions, it may not offer an 

accurate cross-section of the entire team. 

To control for differences between a collegiate athlete population and a non-

athlete population, such as higher cardiorespiratory fitness200, we also collected data from 

athletes in lower impact sports like soccer and lacrosse. However, it is possible that other 

differences exist between CF and OS/MC groups that may be responsible for the 

differential longitudinal changes in the groups. Some factors that could be different 

between our two group samples and could affect functional connectivity include: caffeine 

use154,207, alcohol use31, cannabis use35, wakefulness during the rs-fMRI scan183, 

prescription medications179, and possibly others. Given the longitudinal nature of the 

study, these uncontrolled confounds would need to change between time points to 

produce the demonstrated effects. While these alternative explanations cannot be entirely 

ruled out, the authors believe that the correspondence with ReHo changes in concussion 

make a strong argument that subconcussive head impacts are the most likely cause of 

these effects. 

Conclusions. This study demonstrates how mass-univariate analyses and paired SVM 

classification of rs-fMRI data can be combined to provide insight on the effect of 

subconcussion on spontaneous brain activity and brain functional connectivity. While 

American football was the high-impact sport under study, it is unlikely to be the only 
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sport in which these subconcussive effects occur; other high-impact sports like ice 

hockey, rugby, and combat sports may also result in similar effects. One of the main 

concerns regarding head impact in sports is its possible role in increasing the risk for 

developing chronic traumatic encephalopathy and other neurodegenerative 

disorders101,140. It is not known whether concussion and/or subconcussion is responsible 

for the increased susceptibility to neurodegenerative disorders later in life, but this study 

suggests that the effects of subconcussion may be on the same spectrum as sports-related 

concussion, but with a smaller magnitude of change. Concussion and subconcussion’s 

acute effects on functional connectivity could insidiously lay the foundation for these 

neurodegenerative diseases. Further research will be needed to determine the quantity and 

severity of subconcussive exposure needed to produce these disruptions in spontaneous 

brain activity and functional connectivity by biomechanically measuring head impact and 

acquiring longitudinal rs-fMRI in the same cohort. Furthermore, the neurophysiological 

underpinnings of these changes should be studied by acquiring multiple MRI modalities 

in the same cohort, and comparing their effects across modalities.  
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CHAPTER IV: CONCLUSIONS AND FUTURE DIRECTIONS 

 The first goal of this research was to quantify subconcussive head impact in 

college football, high school football, college soccer, and college lacrosse. Researchers 

have measured the quantity and severity of head impacts in football for over a decade 

using helmet-based accelerometer systems14,20,26,40,44-45,49,56-57,65,70,73,76,120,125,131,162-

163,191,207, but until recently it was not feasible to quantify head impact in non-helmeted 

sports. Chapter II presents an analysis of biomechanical impact data from the xPatch 

sensor in college football, soccer, and lacrosse players collected during their live-action 

practices and games. As concerns about the amount of subconcussive head impacts in 

football have risen, those concerns have spread to other contact and collision sports like 

soccer and lacrosse. The analyses show that college football players receive more head 

impacts and higher average impact severity than their counterparts in soccer and lacrosse. 

The only exception is that college soccer players receive more impacts in games than 

football players, but analysis at multiple thresholds shows that this effect is only true for 

the lowest impact thresholds (10g and 0rad/s2). At all other impacts thresholds, college 

football players again receive more impacts than college soccer or lacrosse players. When 

quantity and severity are both accounted for in measures of impact burden, college 

football is the clear outlier compared to high school football, college soccer, and college 

lacrosse. The data shows that while high school football and college soccer and lacrosse 

players do not receive a trivial amount of head impact, the burden of head impact in 

college football is much higher. 

The xPatch sensors used in this study47,126,208, and other head impact sensor 

systems47,84,208, have substantial error on individual impacts, which reduces potential uses 
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for these sensors. For example, much of the biomechanical research in sports has been to 

find the acceleration threshold at which a concussion is likely to occur70,138,159,160, but 

unpredictable discrepancies between the measured accelerations and the actual 

acceleration experienced by the head make this all but impossible. However, researchers 

can still use this data to find relative differences between two conditions (practice vs. 

game, high school vs. college, etc.)23,26,45,131,163; as long as the error in the two conditions 

is constant, any significant comparative findings are reliable.  

There are still important open questions regarding subconcussion in sports. First, 

this data was collected from a limited number of participants from one university and one 

small private high school, which may limit the generalizability of the results. Multi-site 

replication of these results with more participants and teams will help to further our 

understanding about subconcussive impact in these sports. Second, there is still little to 

no biomechanical head impact data for many other sports that have a high incidence of 

concussion, including: rugby, ice hockey, wrestling, cheerleading, and martial arts. Third, 

most of the biomechanical research focuses on the collegiate level, though many more 

children and teens participate in these sports, and it is possible that younger ages may be 

more affected by these head impacts. To address these questions research can and should 

at quantify head impact in different sports, at more competitive levels (youth, high 

school, college, etc.)126,163, in different gendered versions of the same sport (ex. men’s vs. 

women’s soccer), to test the effects of particular head impact reduction programs186, etc. 

While biomechanical engineers work to improve the accuracy of these head impact 

sensors, researchers can utilize the current generation of sensors to further our 

understanding about the relative amount of head impact in sport. 
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This is the first study to present live action biomechanical data in college men’s 

soccer or lacrosse, and is also the first set of data that allows for direct comparison of the 

head impact values between these contact and collision sports. This type of research is 

vital to identify the relative head impact risk that different sports may pose to the athletes. 

Research using biomechanical sensors in unhelmeted sports could lead to an 

understanding of head impact that helps the relevant regulating agencies make informed 

decisions regarding how to limit unnecessary subconcussive impacts.  

 Functional MRI (fMRI) has shown particular sensitivity to the effects caused by 

concussion and subconcussion. First, researchers used task-based approaches to 

determine if changes in these task-based networks had occurred in response to 

subconcussion20,21,157,169,187. Next, resting-state fMRI (rs-fMRI) was used to probe 

changes in the connectivity of the default mode network in response to subconcussion, 

but produced heterogeneous results1,90. This research used ALFF, fALFF, ReHo, and DC, 

as metrics of functional activity, local connectivity, and global connectivity, to 

characterize changes in the brains of the athletes experiencing these subconcussive 

impacts. These metrics had previously been used to help characterize the effects of 

concussion, with differences found in spontaneous brain activity222,224 and local 

functional connectivity129, but not global functional connectivity129. 

 Chapter III presents data and analyses to determine if any changes in functional 

activity or connectivity were occurring in these athletes in response to the subconcussive 

head impacts. Although a voxel-wise analyses did not show any significant changes, the 

paired SVM revealed that ALFF, fALFF, and ReHo were changing over the course of the 

season for the football players, but not for the soccer and lacrosse players. The control 
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group did demonstrate changes as well, but subsequent analysis suggested that the 

changes in college football were different than those in the control group. Further 

analyses using the relationship between SVM weight region rankings, indicated that the 

spatial patterning of effects in fALFF, ReHo, and DC was very similar. These results 

suggest that long-range white matter tracts are not the primary location for subconcussive 

damage. If it were, we would have expected DC to be more affected than ReHo. One 

mechanism that does not directly involve changes in neural activity, but agrees well with 

these results is the perturbation of cerebral blood flow, particularly cerebrovascular 

reactivity (CVR). Recent research has shown that CVR can change in response to 

subconcussive impacts185, and that in concussion changes in CVR may underlie changes 

in functional connectivity132. The goal of this research is to determine whether 

subconcussive head impacts affects brain function, and if they do, what is the underlying 

physiology of these changes. These results show that changes functional changes can 

occur in college football players, but only provide preliminary data on the underlying 

physiological mechanisms. 

 This research presents changes in functional activity and local connectivity in a 

group of football players over the course of a single season, but there are limitations to 

the research. First, while no differences were found for soccer and lacrosse players, it is 

possible that soccer and lacrosse athletes are experiencing changes similar to those in 

football players, but are beneath the detection threshold for these methods. Second, the 

increases in ALFF, fALFF and ReHo could be short lived and inconsequential, and it is 

unknown if these changes indicate microstructural damage of some kind or if they play 

any role in increased susceptibility to neurodegeneration or any other clinical effects 
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associated with repetitive brain injury. Third, while we believe the burden of 

subconcussive impact is the primary difference between these two groups and responsible 

for the functional changes, we are unable to definitively show that the changes are a 

direct result of the subconcussive head impacts. While the OS group is intended to 

control for inherent differences between college athletes and their non-athlete peers, the 

changes seen in CF could possibly be the result of another difference between the CF and 

OS groups, such as caffeine use154,207, alcohol use31, cannabis use35, wakefulness during 

the rs-fMRI scan183, prescription medications179, or other possibilities. However, the 

longitudinal nature of the study partially accounts for confounds of this nature as these 

factors would need to be change between time points to produce the demonstrated effects. 

To address the limited participant sample, future research should attempt to 

replicate these findings in a larger sample. Using other neuroimaging techniques, such as 

diffusion tensor imaging, CVR, positron emission tomography, magnetic resonance 

spectroscopy, could help to further characterize the physiology of the changes occurring 

in response to subconcussion. Without understanding the underlying physiological 

effects, it is difficult to develop solutions to protect or restore the brain from these 

functional changes. Future studies should also attempt to measure head impact and rs-

fMRI in the same cohort to determine whether these effects are linked to the burden of 

subconcussive head impact. Future research should also expand into different sports and 

levels of competition, because it seems unlikely that college football players are the only 

group that would experience these changes. Children participating in these sports could 

possibly be much more susceptible to effects from subconcussive impacts.  



 

 

115 
 In total this thesis presents data showing that college football players receive more 

impacts with greater average impacts severity than college soccer and lacrosse players, 

and that college football players where the only group to experience changes in 

spontaneous brain activity and local functional connectivity over the course of the season. 

The implication of this research is that the burden of subconcussive head impact 

experienced in college football is affecting brain function in a way that may predispose 

these athletes to develop cognitive issues later on life. The hypothesis that subconcussion 

can affect brain function may be far from proven, but the research contained within this 

dissertation supports a connection between the two. 
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