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Abstract 

Although a comprehension of adsorption to transition metal surfaces is crucial to understanding 

the principles that control catalytic chemistry on these surfaces, the nature of the metal-adsorbate 

bond is not understood to the same extent as bonding in organic molecules and organometallic 

complexes.  This is due to the typical characterization of the metal-metal bonding within the 

transition metal surface as being delocalized over the entire crystal.  In this work, a formalism is 

introduced that describes metal-metal bonding in terms of local fractional bonds that interact 

with each other through conjugation. 

The resulting model is first used to describe the bonding in bulk    transition metals, using     

hybrid orbitals to form these bonds.  It is found that conjugative interactions between vicinal 

metal-metal bonds account for a large portion of the cohesive energy, indicating that a strictly 

local representation of metal-metal bonding is insufficient.  The trends in cohesive energy and 

surface energy of the (111) surface calculated from this model follow the same trend as the 

values calculated using density functional theory, indicating that the longer range delocalization 

excluded from this model is not required to describe the main features of the variation of bond 

strength among the different metals examined. 

Application of this model to the chemisorption of atomic hydrogen also yields values of the 

adsorption energy that follow the same trend as the values calculated by density functional 

theory.  The low adsorption energy on Au compared to the other    metals is found to be due to 

two effects.  The first of these is due to the fact that the entire d shell is filled in the ground state 

of the Au atom so that the relevant   orbital cannot participate in forming a metal-hydrogen bond 

unless part of an electron is first promoted from this orbital into the higher energy   orbital.  The 

second effect is due to the bond saturation of the Au atom by formation of a single bond to 

hydrogen so that it can no longer participate in conjugative interactions with neighboring metal 

atoms in the surface.  These insights are applied qualitatively to a variety of other adsorbates, 

explaining a wide range of chemisorption behavior on these surfaces. 
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Preface 

Due to the importance that metal surfaces play in heterogeneous catalytic reactions, a 

fundamental understanding of the chemical bonding on these surfaces is necessary to understand 

the chemistry and ultimately aid in the design of new materials.  The most important factor 

controlling this reaction chemistry is the binding of chemical intermediates to the metal surface.
1
  

The structure and composition of the binding site and its local environment has a significant 

effect on how strong these intermediates bind to the surface.  Thus a thorough understanding of 

the chemical effects by which these factors control binding of intermediates would lead to 

significant insight into the development of new catalysts. 

Metal surfaces, however, present a unique challenge to our fundamental understanding of 

chemical bonding.  While the bonding in organic molecules and transition metal complexes is 

well understood in terms of concepts such as hybridization, covalent bonding, and resonance,
2,3

 

the chemistry of metal surfaces has so far eluded such a description.  This is in a large part due to 

the complicated nature of the metallic bond which is commonly characterized as being 

delocalized over all the atoms in the system,
4
 making it difficult to utilize classic chemical 

bonding concepts.  As a consequence of this, metals have not been studied extensively by the 

theoretical chemistry community in the same way that molecules and transition metal complexes 

have. 

Most of our understanding of metals comes from the field of solid state physics where the 

electronic structure is described in terms of valence electrons occupying continuous bands of 

Bloch orbitals delocalized over all the atoms in the crystal.
4
  This description has been very 

successful at understanding nonlocal phenomena such as interactions with electromagnetic fields 

including electrical conductivity.  Chemical bonding, however, is a local phenomenon occurring 

between neighboring atoms, making it cumbersome to describe in terms of delocalized orbitals.  

Nonetheless, a considerable amount of effort has gone into understanding metal surface 

chemistry in terms of this delocalized representation of the electronic structure, starting with the 

earliest model developed independently by Newns and Grimley 
5,6

 to describe the chemisorption 

of atomic hydrogen on metal surfaces.  A simplified version of this model was subsequently 



9 

 

developed by Hammer and Nørskov to correlate chemisorption strength of hydrogen and other 

atoms and molecular fragments with the average energy of the d-band relative to the Fermi 

level.
7
  This latter model, the d-band center model, has found widespread use for examining 

catalytic processes on transition metal surfaces.
8–10

 

While the Bloch orbital based models of chemisorption do explain some trends in chemisorption 

correctly, they do so in the language of solid state physics.  Other approaches to understanding 

chemisorption, such as those by Hoffmann,
11

 van Santen,
12

 and Anderson,
13

 treat chemisorption 

in terms of charge transfer between molecular orbitals on the adsorbate and bands on the metal 

surface.  This approach is analogous to Frontier Molecular Orbital Theory
14,15

 between molecular 

fragments, except that the electrons in the metal surface reside in a continuous band of 

delocalized orbitals instead of molecular orbitals with discrete energies.  These interactions can 

be backed out from a band structure calculation using the crystal orbital overlap population 

analysis developed by Hoffman
11

 or they can be estimated from perturbation theory.  A 

drawback of this approach is that prior knowledge of the band structure of the surface is 

required.  This is undesirable from a chemical perspective because delocalized bands are being 

used to describe a local chemical bond.  Additionally, any predictive use of this approach is 

constrained to a perturbative treatment of the metal-adsorbate bond.  This is only valid if the 

metal-adsorbate bond is much weaker than the metal-metal bonds.  For adsorbates that are not 

stable species when not bound to the surface, including all atomic adsorbates, this assumption is 

not valid since the metal-adsorbate bond is significantly stronger than the metal-metal bonds.
12

 

Another conceptual model of chemisorption
12

 treats chemisorption in the surface-molecule limit 

in which the metal-adsorbate bond is much stronger than the metal-metal bonds.  In this model, 

the overall process of adsorption is broken into three sub-processes.  First, the metal atom in the 

adsorption site is removed from the surface to the vacuum, resulting in a loss of metal-metal 

bonding energy in the surface.  Then, the metal atom and the adsorbate form a “surface 

molecule” in vacuum, leading to an increase in binding energy due to formation of the metal-

adsorbate bond.  Finally, the surface molecule is placed back into the surface and some of the 

original metal-metal bond energy lost is regained.  In the limit of strong chemisorption in which 

the metal-adsorbate bond is much stronger than the metal-metal bonds, the chemisorption energy 
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can be approximated using a perturbative treatment.  While in many cases this limit is somewhat 

valid, the metal-metal bonding is still often too strong to treat using perturbation theory and a 

more rigorous method is required.  Also, even though this approach treats the metal-adsorbate 

bond in terms of valence bond concepts, it still does not treat the metal-metal bonding in such a 

manner. 

All of the chemisorption models discussed so far treat bonding in the metal surface in terms of 

band theory.  Since chemisorption is a local phenomenon,
12

 it is somewhat unnatural to describe 

part of the system in terms of completely delocalized bands.  It would be far better if a model of 

chemisorption could be developed using the traditional concepts of valence bond theory to treat 

all aspects of bonding in the system, including the metal-metal bond.  This would help to unify 

our understanding of the interactions in these systems with our understanding of the interactions 

in more traditional chemical systems, especially in transition metal complexes.  Until now, 

however, such a theoretical framework has not yet materialized.  Is this because metallic systems 

are fundamentally different from other systems including those studied in organometallic 

chemistry?  Or have the similarities simply been overlooked?  We will shortly see that both of 

these are partially true and that by thinking about bonding in a slightly different way we can 

circumvent these differences to develop a framework that for the first time describes bonding in 

metals using the same concepts used for molecular systems. 

To do so, we start out in Chapter 1 by reviewing some of the concepts of local bonding as 

applied to molecules and transition metal complexes.  Much of this discussion is based on the 

Natural Bond Orbital Theory of Weinhold and Landis.
3
  We will see how, to a zero-order 

approximation, bonding in these species can be described in terms of two center bonding orbitals 

and one center lone pairs.  In species that are well described by a single Lewis structure, this 

zero-order approximation is quite accurate in capturing the electronic structure.  Other species, 

including most transition metal complexes, do not fall into this category and require the inclusion 

of conjugative interactions between filled and unfilled bond orbitals in the zero-order structure.  

Having introduced the concepts of local bonding, we then explore the issues involved in 

applying them to bonding in a metal crystal.  We discover that it is necessary to use Lewis 

structures with fractional bonds to describe the zero-order bonding in metals.  To describe these 
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fractional bonds, we introduce the concept of fractional bonding orbitals which are an adaptation 

of the conventional bonding orbitals associated with integer-order bonds in Lewis structures to 

fractional bonds.  Finally, we extend the concepts of local bonding and conjugation discussed 

earlier to these fractional bonds. 

In Chapter 2, this framework is applied to bonding in fcc transition metal crystals.  We first 

determine a fractional hybridization scheme for the metal atoms that is consistent with the fcc 

symmetry of the unit cell and use these to form the fractional bonds in the zero-order structure.  

We then calculate the conjugative interactions between the fractional orbitals in the zero-order 

structure, which are found to contribute to the cohesive energy of the crystal to the same extend 

as the zero-order bonds.  In the last section, we explore the changes in these interactions that 

occur upon cleavage of the a (111) surface from the bulk in preparation for the application of this 

model to chemisorption in the next chapter. 

In the first part of Chapter 3, the semi-local model of bonding developed herein is used to 

examine chemisorption of atomic hydrogen on the atop site of the (111) surface of different 

transition metals.  Several general features of metal-adsorbate bond are identified that are then 

used to rationalize the behavior of more complex adsorbates on the surfaces of different 

transition metals. 
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Chapter 1  –  Development of a Local Bonding Description of Metallic 

Electronic Structure 

In this chapter, we develop a model that describes the electronic structure of metallic systems in 

terms of local bonding.  To begin, we review the concepts of local bonding first in molecules and 

then in transition metal complexes.  To describe the electronic structure of these species in terms 

local bonding, we use the ideas introduced by Weinhold and Landis in their Natural Bond Orbital 

Theory.
3
  In this theory, the zero order electronic structure of a species is described in terms 

electron pairs occupying two center bonding orbitals and one center lone pairs.  The zero order 

structure is improved by including conjugation involving electron transfer from filled bonding 

orbitals and lone pairs into empty antibonding orbitals.  In the original form of this method, the 

bonding orbitals and lone pairs in the zero order structure are extracted from the output of a full 

electronic structure calculation.  In this work, a modification is made allowing the zero order 

electronic structure to be determined directly from the one-electron Hamiltonian that describes 

the system, bypassing the need to perform a full electronic structure calculation. 

After introducing the local model of electronic structure in molecules and transition metal 

complexes, we explore the application of this model to metallic systems.  Due to the extreme 

hypervalency of metal atoms in the metallic state, we will see that it is necessary to describe the 

zero order structure of the metal in terms of fractional bonds and fractional lone pairs.  With this 

modification, the zero order structure is constructed by placing fractional electron pairs into 

fractional bonding orbitals and fractional lone pair orbitals.  We then develop a method of 

including conjugation between fractional bonds and lone pairs.  It will be seen that treating 

conjugation between fractional orbitals is not as straightforward as treating conjugation between 

non-fractional orbitals due to the presence of interactions that do not conserve the total number 

of electrons in the system. 
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1.1 Local bonding in molecular electronic structure 

In order to understand the bonding in metallic systems, we would first like to examine the less 

complicated bonding in molecular systems.  To describe the electronic structure of molecules, as 

well as the other systems examined in this work, we will use the Kohn-Sham formulation of 

density functional theory
16

 which is used in the vast majority of electronic structure calculations 

carried out on metals.
1
  In general, the electronic structure of a molecule in Kohn-Sham theory 

can be written in terms of a set of doubly occupied (for a species in a singlet state) mutually 

orthogonal molecular orbitals    that extend over all atoms of the molecule.  The total electronic 

energy is then given by the sum of the doubly occupied orbital energies plus a term     to cancel 

out the error due to double counting of electron-electron repulsion 

   ∑  

 

     (1.1) 

The energy of each molecular orbital is equal to the expectation value of the Hamiltonian 

operator   for that orbital 

        (  )      ⟨  | |  ⟩      ∫      
 ( ) ( )  ( ) 

(1.2) 

The above integral is carried out over all positions given by the vector coordinate   in three 

dimensional space.  The Hamiltonian is given in atomic units by 

 ( )   
 

 
    ( ) 

(1.3) 

In this expression for the Hamiltonian,  ( ) is an operator accounting for the combination of the 

local and nonlocal pseudopotentials, the Hartree potential, and the exchange correlation 

potential.  These terms are described in further detail in the literature.
17

  To find the set of 

molecular orbitals representing the ground state of the molecule, the forms of these orbitals are 
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varied to minimize the total electronic energy of the system according to the variational 

principle.
18

 

Calculations based on the Kohn-Sham introduced above are usually performed in such a way that 

the potential operator  ( ) in Equation (1.3) is consistent with the electron density  ( ) derived 

from the occupied molecular orbitals   , given by 

 ( )   ∑  
 ( )  ( )

 

 (1.4) 

where the sum is carried out over all doubly occupied molecular orbitals.  This type of 

calculation is referred to as a self-consistent field (SCF) calculation.  Through the potential 

operator  ( ), the Hamiltonian of such a calculation depends on the form of the occupied 

molecular orbitals, necessitating an iterative solution method.  We can simplify the model 

considerably by ignoring the variation of the Hamiltonian with the form of the molecular 

orbitals.  This is referred to as the tight binding model in solid state physics literature
4
 and the 

Extended Hückel model
19,20

 in theoretical chemistry literature.  It is found that while these non-

self-consistent calculations lead to energies that are quantitatively different from the self-

consistent calculations, general qualitative features and trends are not affected.
11

  Because of this 

and the much simpler model resulting from a tight binding or Extended Hückel calculation, we 

use this method in the remainder of this work. 

While the calculations just described produce fairly accurate energies (when performed self-

consistently) for a variety of systems,
1,21

 the extended nature of the molecular orbitals, as with 

the Bloch orbitals in metals, does not provide much insight into the bonding within the system.  

As an example, consider the seven occupied molecular orbitals shown in Figure 1.1 describing 

the ground state of ethane.  These orbitals have amplitude on all atoms of the molecule and bear 

little resemblance to the diatomic bonding orbitals that underlie most of our chemical intuition. 
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Figure 1.1  Occupied canonical molecular orbitals of ethane 

In general, the set of molecular orbitals that determines the ground state electronic structure of a 

molecule are undetermined up to a unitary transformation that mixes the occupied orbitals with 

one another.
22

  The extended molecular orbitals shown in Figure 1.1 actually correspond to the 

orbitals that are eigenstates of the Hamiltonian.  It is possible, using procedures in the 

literature,
23,24

 to obtain an equivalent set of molecular orbitals that very closely resemble the 

more familiar diatomic bonding orbitals.  These localized molecular orbitals are shown for 

ethane in Figure 1.2.  One can see that there are seven such orbitals in this set corresponding to 

the seven bonds in the molecule.  Unlike the canonical molecular orbitals, these localized orbitals 

are concentrated on the two atoms forming the corresponding bond, although they do have small 

nonzero amplitude on the neighboring atoms that are not visible in the figure, often called 

delocalization tails,
25

 that leads to some chemically significant effects as we will see later. 
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Figure 1.2  Occupied localized molecular orbitals of ethane 

Another way to describe the electronic structure of a molecule in a localized form is with the use 

of strictly localized molecular orbitals (SLMOs) such as the natural bond orbitals that Weinhold 

and Landis use in their Natural Bond Orbital Theory.
3
  SLMOs are molecular orbitals 

constructed from atomic orbitals located on at most two different atoms.  Every bond in a Lewis 

structure is associated with bonding (and antibonding) SLMO that is constructed from atomic 

orbitals on the two bound atoms.  Each lone pair in the Lewis structure is associated with a 

nonbonding SLMO constructed from atomic orbitals located on the atom containing the lone 

pair.  The natural bond orbitals (NBOs) of Weinhold and Landis
3,26,27

 are SLMOs constructed 

from the one electron density matrix of a full electronic structure calculation.  The optimal set of 

natural bond orbitals is the one that most closely reproduces this density matrix.  In their 

monograph,
3
 they use this method to rationalize a wide range of chemical behavior for both 

organic molecules and transition metal complexes in terms of localized bonding concepts.  
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Similar methods have been introduced by other authors,
28–30

 though the work herein is inspired 

mainly by the work of Weinhold and Landis. 

Like the localized molecular orbitals, there is one NBO corresponding to each bond or lone pair 

in the molecule.  The bonding NBOs (called bonding orbitals from here on) are formed from a 

linear combination of atomic orbitals on two bonded atoms, and unlike the localized molecular 

orbitals, have no amplitude on other atoms.  Such an orbital corresponding to a bond between 

atoms A and B can be written in terms of hybrid orbitals    and    on each of the two atoms 

              
(1.5) 

where each hybrid is a linear combination of the atomic orbitals   on the corresponding atom (  

in the upper limit of the sum denotes that the sum is carried out over all atomic orbitals on atom 

A). 

   ∑    

 

 

 
(1.6) 

The polarization coefficients    and    determine the amplitude of the bonding orbital on each of 

the two hybrids and the sum of their squares must equal one so that the orbital is normalized.  

The squares of the polarization coefficients determine the fraction of the electron pair in the 

bonding orbital that resides on each of the corresponding atoms.  We can get the partial charges 

on atoms A and B (    and    ) induced by this bond according to 

          
  

(1.7a) 

 

          
  

(1.7b) 

so that the total partial charge on an atom A is given by the sum of the charge given by this 

expression over all bonds with neighboring atoms B 
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   ∑   

 

 (1.8) 

The energy of the bonding orbital given by Equation (1.5) is determined by Equation (1.2) to be 

      
  (  )    

  (  )            
(1.9) 

where     is the resonance integral between the two hybrids  forming the bond (  is the 

Hamiltonian given by Equation (1.3) 

        ⟨  | |  ⟩      ∫      
 ( )  ( )  ( ) 

(1.10) 

and  (  ) and  (  ) are the energies of the two hybrids given by Equation (1.2).  If the 

reference state is taken to be the two separated hybrids, each containing one unpaired electron, 

the bond energy (positive for a stabilizing bond) associated with the doubly occupied bonding 

orbital is  

      (  
     

 )⏞      
        

, (  )   (  )-⏟                
     

       
⏞  

         

     ⏟        
        

 
(1.11) 

It can be seen that the bond energy is composed of separate ionic and covalent contributions.  

The ionic bond energy is the difference in energy between the two hybrids weighted by the 

ionicity of the bond.  The magnitude of the ionicity is zero for a purely covalent bond and one for 

a purely ionic bond, having a positive (negative) value for a bond polarized towards A (B).  The 

covalent bond energy is equal to twice the resonance integral weighted by the covalency of the 

bond, which is unity for a purely covalent bond and zero for a purely ionic bond.  The covalency 

and ionicity are related by the expression 

                       
(1.12) 
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showing that as one value increases, the other decreases. 

In addition to the bonding NBOs, there are also nonbonding NBOs (called nonbonding orbitals 

or lone pair orbitals from here on) that contain lone pairs.  These orbitals are formed from a 

linear combination of atomic orbitals   on the atom on which the lone pair resides.  Such an 

orbital on atom A,   , takes the form 

   ∑    

 

 

 
(1.13) 

For an atom with an     valence shell, the number of lone pairs will be equal to       

where   is the valence of the atom. 

The bond energy given in Equation (1.11) above was defined with respect to atoms containing 

one unpaired electron in each bonding hybrid and a pair of electrons in each nonbonding orbital.  

The energy of this reference state depends on the hybridization of the atoms so must be defined 

with respect to a reference configuration for each atom.  This leads to a total binding energy for 

the system that is composed of one sum of bond energies for all pairs of bound atoms A and B 

and another sum of hybridization energies over all atoms A 

   ∑    

  

 ∑   
 

 (1.14) 

where the hybridization energy of atom A is given by a sum over the energies of all singly 

occupied bonding hybrids and a sum over the energies of the doubly occupied lone pairs with 

respect to the reference energy of the atom   
 . 

      
  ∑ (  

 )

 

  ∑ (  
 
)

 

 (1.15) 
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In the method of Weinhold and Landis, the ground state electronic structure is determined by 

finding the set of polarization coefficients in Equation (1.5) and the hybridization coefficients in 

Equations (1.6) and (1.13) that lead to a one electron density matrix closest to that of the full 

electronic structure calculation.  The NBOs determined in this way, however, are limited in their 

usefulness because they are generated from a full electronic structure calculation rather than 

determined a priori.  This makes it difficult to determine how their forms are directly related to 

the structure of the molecule via the Hamiltonian.  Because of this, we choose in this work to 

instead determine the NBOs by finding the set that minimizes the total energy in Equation (1.15) 

subject to the constraint that the SLMOs are mutually orthogonal so that the overall 

wavefunction obeys the Pauli Exclusion Principle.  This method has similarities to the method 

Coulson and Goodwin.
31

 

The condition that the set of SLMOs must be mutually orthogonal is automatically met for any 

two SLMOs that have no atoms in common as long as an orthogonal set of atomic orbitals is 

used such as the natural atomic orbitals,
32

 also developed by Weinhold.  For two SLMOs that do 

have an atom in common such as     and     in the structure shown here 

 

the orthogonality condition is met if the two hybrids on atom B are orthogonal.  As a result, we 

can replace the orthogonality requirement for the SLMOs with a simpler requirement that the set 

of all bonding and nonbonding hybrids    and    on each atom A must be mutually orthogonal.  

As a consequence of this condition, a sum rule can be written for each atomic orbital of the form
3
 

∑(  
 )

 
 

 

   
(1.16) 

When applied to an atom with an     valence shell, this rule implies that the total amount of   

character among all the hybrids is conserved according to 
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∑(  
 )

 
 

 

   
(1.17) 

so that if one hybrid increases in   character, the other hybrids must decrease in   character. 

 

Figure 1.3  Bonding (top) and antibonding (bottom) SLMOs associated with the C-C bond 

and with one of the six C-H bonds in ethane 

Two of the seven bonding SLMOs of ethane, the C-C bonding orbital and one of the C-H 

bonding orbitals, are shown in Figure 1.3, where it can be seen that they are almost identical in 

shape to the corresponding localized molecular orbitals from Figure 1.2.  These SLMOs are built 

up from the atomic orbitals on carbon and hydrogen, as shown in Figure 1.4 for one of the C-H 

bonds.  First, a hybrid    is constructed on the carbon atom from the carbon   orbital and a   

orbital oriented towards the hydrogen atom. 
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(1.18) 

This hybrid then combines with the hydrogen   orbital to form a bonding orbital given by 

              
(1.19) 

Since the C-H bond is polarized towards the more electronegative carbon atom, the magnitude of 

the bond on the carbon atom given by   
  is equal to 0.59 and the corresponding magnitude on 

the hydrogen atom is 0.41, leading to a positive charge of 0.18 e- on each hydrogen atom and a 

negative charge of 0.54 e- on the carbon atoms as determined by Equation (1.8).  The amount of 

  character in the carbon hybrid is given by   
  and is equal to 0.24, very close to the value of 

0.25 corresponding to an ideal     hybrid. 

Likewise, the bonding orbital corresponding to the C-C bond can be written as a linear 

combination of hybrids     and     on the two carbon atoms 

    
 

√ 
(       ) 

(1.20) 

Each hybrid is a linear combination of the   orbital on the corresponding carbon atom and a   

orbital oriented in the direction of the C-C bond 

              (1.21a) 

 

              (1.21b) 

Since this bond is nonpolar, the magnitude of the bonding orbital on each of the two carbon 

atoms is equal to 0.5 (leading to the factor of  √ ⁄  in Equation (1.20)).  The amount of   

character in the carbon hybrid is equal to 0.28, again very close to an ideal     composition.  

Note that the   compositions of the C-C hybrid and the three C-H hybrids obey the sum rule in 

Equation (1.16). 
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In addition to these bonding orbitals discussed so far, there is a corresponding set of unoccupied 

antibonding orbitals  ̅  that take the form 

 ̅             
(1.22) 

and are orthogonal to the bonding orbitals.  There are seven of these antibonding orbitals in 

ethane, one corresponding to each of the bonds in the molecule.  The process of building up the 

antibonding orbitals is shown in Figure 1.4 for one of the C-H bonds.  Two of these orbitals are 

shown in Figure 1.3 – for the C-C bond and for one of the C-H bonds.  The energy of this 

antibonding orbital is equal to  

  ̅    
  (  )    

  (  )            
(1.23) 

where     is the resonance integral between the two hybrids given by Equation (1.10). 
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Figure 1.4  The construction of SLMOs for one of the C-H bonds in ethane begins by first 

forming an     hybrid    on the carbon atom according to Equation (2.6).  This hybrid 

then combines with the hydrogen   orbital to form bonding (   ) and antibonding ( ̅  ) 

orbitals according to Equation (1.60). 

Because the bonding orbitals were artificially constrained to have amplitude on only two atoms, 

the electronic structure derived from them is not the true ground state of the system.  The energy 

of the molecule can be further reduced by allowing the bonding orbitals to partially mix with the 

antibonding orbitals,
3
 as shown in Figure 1.5 for two such C-H orbitals on ethane, labeled    and 

 ̅ . 

               (1.24a) 

 

 ̅              (1.24b) 

This interaction results in a modified bonding orbital given by 

         ̅  
(1.25) 
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which has a lower energy than the zero order bonding orbital.  Although the antibonding orbital 

is higher in energy than the bonding orbital, the decrease in kinetic energy of the electron pair 

gained by delocalizing into the antibonding orbital more than compensates for this.  The amount 

of admixture represented by   can be obtained from perturbation theory according to 

   
⟨ ̅ | |  ⟩

 ( ̅ )   (  )
 

(1.26) 

where the numerator contains the resonance integral between the two orbitals 

⟨ ̅ | |  ⟩        ̅ ( ) ( )  ( ) 
(1.27) 

where   is the Hamiltonian operator given by Equation (1.3), and the denominator contains the 

difference in energies of the two orbitals given by Equation (1.2).  The resonance integral   Since 

the resonance integral is only appreciable if two atoms of the bonding and antibonding orbitals 

are close, these interactions are restricted to orbitals on bonds that have a vicinal relationship.  To 

second order in the resonance integral, the decrease in energy of the     orbital is equal to 

  (  )   
|⟨ ̅ | |  ⟩|

 

 ( ̅ )   (  )
 

(1.28) 

This decrease in energy comes from the delocalization of the electrons in the bonding orbital into 

the antibonding orbital, resulting in a modified bonding orbital that has amplitude on more than 

two atoms as shown in Figure 1.5 and is the origin of the delocalization tails in the localized 

molecular orbitals discussed earlier.  This delocalization energy offsets the energy required to 

promote an electron pair from the bonding orbital to the higher energy antibonding orbital.  

Weinhold and Landis refer to this mechanism as a donor-acceptor conjugative interaction in 

which an electron pair is donated from the occupied bonding orbital into the unoccupied 

antibonding orbital.
3
  This has the effect of weakening the two original bonds and strengthening 

the bond between the two vicinal atoms, described by the admixture of the following resonance 

structure 
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in which the two C-H bonds are heterolytically broken forming a C-C double bond. 

 

Figure 1.5  A C-H bonding orbital (blue/yellow) of ethane can mix with a C-H antibonding 

orbital (green/orange) forming a perturbed bonding orbital with lower energy than the 

original (degree of mixing is exaggerated so it is visible in the orbital isosurface).  This 

hyperconjugative interaction can be described as donation of an electron pair from the 

bonding orbital into the antibonding orbital.  

If we ignore any resonance integrals between atomic orbitals on non-bonded atoms, the integral 

in Equation (1.27) between the bonding and antibonding orbitals is proportional to the integral 

between the two hybrids on the carbon atoms 

⟨ ̅ | |  ⟩    
   

 ⟨  
 | |  

 ⟩ 
(1.29) 

If we write each of the hybrids in terms of the constituent atomic orbitals as in Equation (1.10), 

then the remaining resonance integral can be written as a sum of Slater-Koster integrals between 

the atomic orbitals, shown graphically in Figure 1.6 
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(1.30) 

The first four terms involve   interactions between the   orbitals and the   orbitals oriented 

along the bond axis (along the   axis), while the last two terms involve   interactions between 

the   orbitals perpendicular to the bond axis.  The first four terms can actually be reduced to two 

terms by taking appropriate combinations of the   and    orbitals to form the hybrids    
 and 

   
 shown in Figure 1.6.  The two    hybrids point inwards along the bond axis while the    

hybrids point outwards along the bond axis.  The    hybrid on one atom only has a nonzero 

resonance integral     with the    hybrid on the other atom, while the same is true for the    

hybrids with a resonance integral     - thus the    hybrid on one atom does not interact with the 

   hybrid on the other atom.  These two sets of hybrids, along with the two remaining sets of   

orbitals, constitute a set of characteristic interactions between the two carbon atoms.  The 

resonance integral between the two hybrids in Equation (1.30) can be written in terms of the 

three associated characteristic integrals. 

⟨  
 | |  

 ⟩  [  
⟨  

 |   
 ⟩⟨   

 |  
 ⟩    

     ⟨  
 |   

 ⟩⟨   
 |  

 ⟩    

 
    [⟨  

 |  
 ⟩⟨  

 |  
 ⟩  ⟨  

 |  
 ⟩⟨  

 |  
 ⟩]   

  ] 
(1.31) 

Since the    hybrids point inward along the bond axis, the associated resonance integral will be 

much larger than the resonance integral for the    hybrids, since they point outwards along the 

bond axis.  This can be seen in the values for the C-C bond in ethane where              and 

            .  The value of the resonance integral for the   interactions typically lies 

between these two – in ethane            .  In addition to the values of the characteristic 

integrals, it is also important to consider overlap integrals between the hybrids participating in 

the conjugative interaction (  
 ,   

 ) and the hybrids associated with the characteristic interactions 

(   
,    

,   ,   ), which we will refer to as the overlap of the hybrid with the characteristic 

interaction.  For ethane, the hybrids   
  and   

  have very little overlap with the    interaction 
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(⟨  
 |   

 ⟩  ⟨   
 |  

 ⟩      ) so that this interaction is only present at 0.3% of its full value 

and only contributes -0.03 eV to the resonance integral in Equation (1.31).  This makes sense 

because the    hybrid is very close in composition to the hybrids forming the C-C bond, which 

themselves are orthogonal to the hybrids forming the C-H bonds.  One can say that the    

interaction is already saturated by the C-C bond in the zero order electronic structure so it is not 

available to participate in conjugative interactions.  In contrast, the    interaction is present at 

33% of its full strength, but only contributes -0.10 eV to the resonance integral since    
 is so 

small.  The two   interactions account for almost all of the resonance integral, being present at 

67% of their full value and contributing -1.76 eV to the total value of the resonance integral of -

1.92 eV.  This means that the conjugative interaction between the two C-H bonds is almost 

entirely due to   interactions between the two carbon atoms and the   interactions can be 

ignored to a good approximation.  The sum of all eighteen conjugative interactions involving 

charge transfer across the C-C bond leads to an additional stabilization of the molecule by 0.60 

eV. 
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Figure 1.6  The resonance integral between the bonding and antibonding orbitals in Figure 

1.5 is approximated by the integral between the two corresponding carbon hybrids.  The 

resonance integral between these two hybrids can be decomposed into four characteristic 

interactions – two with   symmetry (top) and two with   symmetry (bottom). 

 

Looking back at Equation (1.26) that determines the degree of mixing between the bonding and 

antibonding orbitals participating in a conjugative interaction, one can see that this value is the 

ratio of the resonance integral to the difference in energy between the two orbitals.  Taking the 

energies of the bonding and antibonding orbitals from Equations (1.9) and (1.23) for two 

identical nonpolar bonds, this energy difference is equal to twice the value of the resonance 

integral between the two hybrids forming the bond given in Equation (1.10), so for the 

interaction in ethane, it is approximately equal to 
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 ( ̅ )   (  )    ⟨  | |  ⟩ 
(1.32) 

The resonance integral in this equation is equal to -8.89 eV, significantly greater than the 

resonance integral in the numerator of Equation (1.26) (-0.94 eV) that was mainly due to the   

interaction between the two carbon atoms.  This leads to a very small amount of the antibonding 

orbital being mixed with the bonding orbital with         and the stabilization energy from 

Equation (1.28) is only 0.05 eV.  This is due to the fact that the    interaction between the two 

carbon atoms is nearly saturated in the zero order electronic structure due to the C-C bond.  The 

remaining   interactions that are available are much weaker than the strong   interaction in the 

C-H bonds.  Therefore, it is very unfavorable to weaken the strong C-H bonds to form a 

relatively weak   bond between the two carbon atoms, leading to only weak conjugative 

interactions. 

1.2 Local bonding in transition metal complexes 

Transition metal complexes form a natural bridge between molecules and metal crystals.  For 

this reason, we would first like to look at the SLMO description of transition metal complexes 

before applying it to metallic systems.  We will see that the SLMOs of these species have many 

similarities to the SLMOs of molecular species, with two main differences.  First, the valence 

shell of a transition metal atoms consists of one   orbital and five   orbitals while the valence 

shell of the    atoms, which are the primary constituents of molecular species, consists of one   

orbital and three   orbitals.  This leads to several important differences in hybridization and 

geometric structure.
3,33,34

  The other difference is that, while conjugation involving   bonds 

(hyperconjugation) gave only a small correction to the zero order structure of molecular species, 

it leads to a much greater contribution in most common transition metal complexes due to 

hypervalency of the metal atom.  Both of these characteristics are present in metallic systems, so 

it is instructive to first examine them in the simpler transition metal complexes. 

As already mentioned, the transition metal atoms forms bonds using a valence   orbital and five 

valence   orbitals.  While historically, the   orbitals have been included in the valence space of 
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transition metal atoms, more recent computational studies show that they are too high in energy 

to participate in bonding and remain mostly unoccupied.
35

  Utilizing the set of one   orbital and 

five   orbitals for each transition metal atom, it can be predicted that these elements should 

follow a twelve-electron rule just as the main group elements follow an eight electron rule.
3,33,34

 

Figure 1.7  shows Lewis diagrams for the normal-valent (those that can satisfy the twelve-

electron rule by covalent bonding)    transition metals W to Au.  It is seen that W has six 

unpaired electrons and can thus form six covalent bonds, giving it a valence of six.  The 

additional electrons added from Re to Au go into lone pairs with entirely   character so that the 

valence decreases from six for W to one for Au.  At the same time, the ideal composition of the 

hybrids changes from     for W to     for Au as   orbitals are taken away to house the 

increasing number of lone pairs. 
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Figure 1.7  Lewis dot structures for the normal valent 5d transition metal atoms based on 

the 12 electron rule.  Hydrogen is used to represent any monovalent ligand.  Valence ( ) 

decreases from six to one moving right from W to Au while number of lone pairs ( ) 

increases from zero to five.  Adapted from Weinhold and Landis
3
 

The valences for the transition metal atoms shown in Figure 1.7 seem to be at odds with the 

structures that are actually found in nature.  For example, Pt would be predicted to form PtCl2 

molecules, since it is divalent, while it is known that this compound dissolves in aqueous 

solution as the square planar PtCl4
2-

 by combining with two Cl
-
 ions.  Traditionally, it was 

assumed that the Pt atom achieves this configuration by forming four equivalent      hybrids.
36

  

Weinhold and Landis show that this can alternately be achieved without including the metal   

orbitals by using three-center/four-electron hyperbonds.
3
  For PtCl4

2-
, there are two such 

hyperbonds connecting opposing pairs of Cl ligands as shown in Figure 1.8.  The two 

hyperbonds    and    are formed from     hybrids    
  and    

 
 on the Pt atom and     hybrids 
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  and    

 
 orbitals on the Cl ligands as shown in the figure.  The two Pt hybrids have     

composition, with the   component derived from the        orbital, which lies in the molecular 

plane.  As required for all the molecular orbitals to be mutually orthogonal, the two Pt hybrids 

   
  and    

 
 are orthogonal to each other.  Each set of three orbitals combines to form a filled 

bonding orbital, a filled nonbonding orbital, and an empty antibonding orbital, also shown in the 

figure.  Thus the approximate electronic structure of this complex can be described as two pairs 

of electrons occupying each of the two hyperbonds composed of Pt     hybrids with the other 

four lone pairs on Pt occupying nonbonding   orbitals. 
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Figure 1.8  An    hybrid on the Pt atom (green/orange) in PtCl4
2-

 mixes with the two     

hybrids (blue/yellow) on the Cl atoms to form three orbitals that make up a four electron / 

three center hyperbond.  The bonding and nonbonding orbitals are doubly occupied while 

the antibonding orbital is unoccupied.  Also shown is an additional set of     orbitals on 

the Cl atoms that contain lone pairs but do not participate in the hyperbond. 

Although the hyperbonds allow us to describe the electronic structure in transition metal 

complexes, they do so at the price of including three center bonds in addition to the more 

familiar two center bonds.  Actually, each hyperbond can be described as a resonance between 

two structures
3
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Each of these structures consists of a two-center bond between the Pt atom and the Cl ligand 

with the other Cl ligand along the bond axis existing as an unbound anion.  For PtCl4
2-

, then, 

there are in total four resonance structures 

 

In each of these structures, the Pt atom forms bonds with two adjacent Cl atoms while the other 

two Cl atoms are present as Cl
-
 anions.  Since these four resonance structures are equivalent, we 

can take any one of them to form a zero order model of the electronic structure built from only 

two-center bonding orbitals and one-center lone pairs.  One of these structures, shown in Figure 

1.9, has four of the eight electrons from the two hyperbonds in two bonding orbitals    and   , 

which have the compositions 

         
        

  (1.33a) 

 

         
 

       
 

 (1.33b) 

The other four electrons from the hyperbonds go into nonbonding orbitals on the Cl
-
 anions on 

the   and   axes, respectively.   
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Figure 1.9  Zero order Electronic structure of PtCl4
2-

 associated with one of the four 

resonance structures without use of hyperbonds.  Two electron pairs go into each set of Pt-

Cl bonding orbitals, Cl
-
   orbitals, and Cl

-
   orbitals.  There are also two unoccupied Pt-Cl 

antibonding orbitals.  

The zero-order binding energy from Equation (1.14) of this structure (8.47 eV) is significantly 

weaker than the zero-order binding energy of the structure composed of hyperbonds (13.67 eV).  

As it turns out, the higher energy of this structure is offset by stronger stabilization due to 

conjugation, since in the end, the exact ground state energies for these two representations must 

be the same.  The energy of the zero-order electronic structure can be reduced by considering 

donation of electrons from filled Cl
-
 lone pairs into empty Pt-Cl antibonding orbitals.  The 

electrons in the   or   orbital on one of the Cl
-
 can donate into either of the two Pt-Cl 



37 

 

antibonding orbitals leading to four unique conjugative interactions shown in Figure 1.10.  The 

first two interactions (as and ap)  involve donation into a Pt-Cl antibonding orbital in a trans 

orientation to the Cl
-
 while the other two interactions (bs and bp) involve donation into an 

antibonding orbital in a cis orientation to the Cl
-
.  These antibonding orbitals have the form 

 ̅        
        

  (1.34a) 

 

 ̅        
 

       
 

 (1.34b) 

and were shown in Figure 1.9.  The two trans interactions as and ap are particularly strong, each 

stabilizing the molecule by 0.81 eV and 2.19 eV, respectively, much stronger than the 

interactions present in ethane, as well as the cis interactions bs and bp which stabilize the 

molecule by less than 0.02 eV each.  The interactions involving donation from the Cl
-
   orbitals 

are significantly stronger than those involving the   orbitals because the   orbital is much lower 

in energy and is thus a weaker donor, as can be seen in Figure 1.9.  One set of the strong 

interactions (as and ap) is associated with each of the two formal hyperbonds, accounting for the 

large difference in zero order binding energy between the structure composed of hyperbonds and 

the structure that is not.  The stabilization calculated using perturbation theory is 6.01 eV, 

somewhat larger than the actual difference in zero order binding energies of 5.18 eV.  This is 

expected since second order perturbation theory tends to overestimate the stabilization energy 

when the interactions are particularly strong.  If one were to go to higher orders in perturbation 

theory, this error should eventually vanish. 
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Figure 1.10  Four of the eight conjugative interactions associated with the zero order 

electronic structure in Figure 1.9.  Two involve donation from a Cl
-
   orbital into a Pt-Cl 

antibonding orbital oriented either trans (ap) or cis (bp), while the other two involve 

donation from a Cl
-
   orbital (as and bs).  The two trans interactions are very strong and 

contribute significantly to the stability of the molecule.  

To understand why these two trans interactions are so strong, we separate the interaction 

between the Pt and Cl
-
 into a set of characteristic interactions as we did for the C-C interaction in 

ethane in the previous section.  Because the Pt atom contains an     valence shell, these 

interactions will be different from those between the two     carbon atoms in ethane.  As with 

ethane, there are four such interactions as shown in Figure 1.11, two having   symmetry and two 

having   symmetry.  The two   interactions are between the     and     orbitals on Pt (with the 

bond oriented along the   axis) and the    and    orbitals on Cl
-
, respectively, and have 

resonance integrals of -0.90 eV and -0.84 eV.  The two   interactions are between two     
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hybrids on Pt,    
   and    

  , and two     hybrids on Cl
-
,    

   and    
  .  The two   hybrids on Cl

-
 

are similar to those on the carbons atoms of ethane, however, the hybrids on Pt have quite 

different shapes as shown in Figure 1.11.  The    hybrid is concentrated along the axis between 

the Pt and Cl
-
 while the    hybrid is concentrated in a ring around the Pt atom in the    plane.  

As with ethane, the    interaction is stronger than both the   interactions and the    interaction, 

having a resonance integral of -4.20 eV, while the    interaction is weaker than all the other 

interactions, having a resonance integral of -0.25 eV. 

 

Figure 1.11  As with ethane in Figure 1.6, the resonance integral between the lone pair and 

antibonding orbital of interaction ap in Figure 1.10 is approximated by the integral between 

the Pt    hybrid and the Cl-   orbital.  The resonance integral between these two hybrids 

can be decomposed into two characteristic interactions with   symmetry (top).  For a 

generalized interaction between an     hybrid and an     hybrid,  there also exist two 

characteristic interactions with   symmetry (bottom).  A similar decomposition applies to 

the interaction in as. 
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The strong trans conjugative interaction between the Pt and Cl
-
 atoms (consider the pair along 

the   axis) is due to donation from the    orbital on Cl
-
 into the Pt-Cl antibonding orbital  ̅ .  

The overlap of the Pt hybrid    
  forming the antibonding orbital with the    interaction is 0.995, 

a very high value compared to the almost negligible value for ethane.  The overlap of the Cl
-
    

orbital with the    interactions is also high, having a value of 0.66, so altogether the    

interaction is present at 65% of its maximum strength so that the associated resonance integral 

between the Cl
-
    orbital and the Pt    

  orbital is -2.73 eV.  Why is this interaction so strong 

while the same interaction was negligible for ethane?  The difference is that in ethane, the    

interaction was already saturated by the C-C bond present in the zero order structure, while in 

PtCl4
2-

, there is no bond at all between the Pt and Cl
-
 to limit the strength of the conjugative 

interactions.  This suggests a concept that will be useful later on when we discuss transition 

metal crystals – the stronger the zero-order bond is between two atoms, the less potential there is 

for conjugative interactions between these two atoms. 

Unlike the trans conjugative interaction, the cis interactions bx and by in Figure 1.10 are much 

weaker.  Considering the interaction between the Pt and Cl
-
 that lies along the   axis, it involves 

donation from the Cl
-
    orbital (or   orbital) into the  ̅  Pt-Cl antibonding orbital.  The 

projection of the    
 

 hybrid forming the  ̅  orbital on the    interaction is only 0.10, much lower 

than the projection of these orbitals in a trans orientation.  This is not surprising since the    
   

hybrid is similar in shape to the    
  hybrid in the other Pt-Cl bond.  Since the    

  hybrid is 

orthogonal to the    
 

 orbital in the    acceptor orbital it is expected that the    
 

 would have very 

little overlap with the    
   orbital. 

1.3 Application of local bonding formalism to metallic systems 

Unlike transition metal complexes, in which the ligands are free to adopt a coordination structure 

consistent with the hybridization of the metal atom, the ligands of a metal atom in a transition 

metal crystal are constrained by the symmetry of the crystal lattice.  As will be seen shortly, this 

leads to significant complications when attempting to describe the zero order electronic structure 
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of these systems in terms of SLMOs, which we overcome by the introduction of fractional bonds 

and fractional orbitals. 

Most of the catalytically active late transition metals (groups VII – XI) adopt an fcc or hcp close 

packed structure in which each metal atom in the bulk is coordinated by twelve other metal 

atoms.  Since the valences of these elements according to the twelve electron rule range from one 

to five, none of these elements can accommodate twelve ligands using classical bonding 

concepts, even when using hyperbonds.  One way to overcome this would be to describe the 

bonding using multiple resonance structures such as 

 

In a large crystal, however, this requires an intractable number of resonance structures in order to 

describe the extensive hypervalency that is present.  For example, the coinage metal atoms have 

only one unpaired   electron that can be used to form covalent bonds, but each atom has a 

coordination of twelve in the fcc crystal structure – this would require on the order of     

resonance structures (where   is the number of atoms in the lattice).  Furthermore, these 

resonance structures are interconnected and thus cannot be separated into smaller subsystems.  

An attempt by Pauling to apply the valence bond model to metallic systems never achieved 

widespread use due to these complications.
37

 

An alternative to considering all possible resonance structures in a transition metal crystal is to 

choose only one of them to form a zero order electronic structure, much as we did when 

choosing one of the two resonance structures to describe a hyperbond in transition metal 

complexes.  This approach has problems of its own, however, even if one is not bothered by the 

fact that this electronic structure does not conform to the symmetry of the crystal lattice.  The 

problem with this approach is that the spatial arrangement of the ligands around a transition 

metal atom in the crystal is not consistent with its hybridization in many cases.  To illustrate this, 
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consider the fcc crystal of Ir in which each Ir atom has three   orbitals occupied with lone pairs 

and three     hybrid orbitals that can participate in bonding.  As shown in Figure 1.12, the     

orbitals are oriented along three perpendicular axes, having octahedral symmetry.  A transition 

metal complex in which the metal atom has the same hybridization would have ligands that 

occupy the vertices of an octahedron.  However, the coordination shell around an Ir atom in this 

crystal does not conform to an octahedron – it is not possible to pick out three (or six with 

hyperbonding) ligands that would overlap perfectly with these     hybrids.  Therefore, any zero 

order electronic structure constructed from these hybrids would have to have bent bonds and is 

unlikely to describe the true electronic structure well.  This was not a problem for transition 

metal complexes because the ligands are, in most cases, free to align with the hybrids; however, 

this rearrangement cannot occur in a crystal lattice for obvious reasons. 

 

Figure 1.12  The three     hybrids that are available for covalent bonding in an Ir atom 

cannot be oriented towards three pairs of collinear ligands in the fcc crystal lattice. 

Thus, we seem to be at an impasse in attempting to describe the bonding in a transition metal 

crystal in terms of valence bond concepts.  Before giving up this approach completely and 

resigning to be content with the cumbersome description of bonding using band theory, perhaps 

it is worth considering whether a modification of valence bond theory will make it more 

conformable to these systems.  As we have observed, the difficulty lies in the fact that it is not 

possible to construct a good Lewis structure, or even a good set of resonance structures, for a 

transition metal crystal so that the bonds in a given Lewis structure correspond to a set of 

mutually orthogonal diatomic bonding orbitals, each occupied by a pair of electrons.  As 

discussed already, this stems from the extreme hypervalency of transition metal atoms in a 

crystal caused by the fact that each metal atom has far more atoms in its coordination shell than it 
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has unpaired electrons with which it can form covalent bonds.  However, what if we could draw 

Lewis structures with fractional order bonds instead of only integer order bonds?  That would 

allow us to distribute the available unpaired electrons equally among all of the bonds to atoms in 

the first coordination shell.  If a metal atom has   unpaired electrons and   atoms in the 

coordination shell, then we could form a bond of order     with each neighboring atom using 

    of an electron pair.  In that case, it would be trivial to draw a single Lewis structure for a 

metal crystal regardless of the number of unpaired electrons on each metal atom.  This is similar 

in spirit to the depiction of benzene as consisting of six   carbon-carbon bonds and six half   

bonds. 

The difficulty introduced by including fractional bonds in the Lewis structure is that, in classical 

valence bond theory, each bond in a Lewis structure corresponds to a diatomic bonding 

molecular orbital that is orthogonal to the orbitals corresponding to the other bonds in the 

structure.  How does one, then, construct such an orbital for a fractional bond?  It turns out that 

there is a simple way to allow for this, which we discuss in the next section. 

1.3.1 Fractional bond orbitals 

A simple way to construct a diatomic bonding molecular orbital corresponding to a fractional 

bond in a Lewis structure is to do away with the usual constraint that the magnitude of such an 

orbital  , given by 

⟨ | ⟩  ∫      
 ( )  ( ) 

(1.35) 

be normalized to unity.  Instead, we set the magnitude equal to the magnitude of the fractional 

bond, which we denote  ( ).  Each fractional orbital   corresponds to a non-fractional properly 

normalized orbital    having the same shape, but a magnitude of unity 

  √     
(1.36) 
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The energy of the fractional orbital is obtained by scaling the energy of the corresponding non-

fractional orbital by the magnitude   

 ( )     (  ) 
(1.37) 

so that the bond energy of a fractional bond given by Equation (1.11) is directly proportional to 

the bond magnitude. 

As an illustration, we will represent the hyperbonds previously discussed for transition metal 

complexes in terms of fractional orbitals.  We can describe a hyperbond as consisting of two 

bonds, each of magnitude one half, between the hybrid on the metal atom and the two ligands as 

shown in Figure 1.13.  To describe the electronic structure, we can create two bonding orbitals of 

magnitude one half – one between the metal hybrid and an orbital on ligand X and the other 

between the metal hybrid and an orbital on ligand Y.  Additionally, there is a nonbonding orbital 

of magnitude one half on each of the two ligands.  One half of an electron pair is placed into 

each of these four orbitals for a total of four electrons. 
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Figure 1.13  A hyperbond between metal atom M and collinear ligands X and Y can be 

represented in terms of four fractional orbitals of magnitude   ⁄  (two bonding    /    

and two nonbonding   /  ), each occupied by one half of an electron pair.  Additionally, 

there are two unoccupied fractional antibonding orbitals  ̅   and  ̅  , each of magnitude 

  ⁄ .  

Recall that when introducing SLMOs we stated that each hybrid on an atom must be orthogonal 

to the other hybrids on that atom in order to preserve the Pauli Exclusion Principle.  Obviously, 

this constraint can no longer be met in this case since there are more bonds than there are atomic 

orbitals on a given atom.  One way around this is to introduce a virtual atomic orbital space in 

addition to the space associated with the normal atomic orbitals (which are referred to as the real 

atomic orbitals).  We specify that these virtual orbitals do not interact with each other or with the 

real atomic orbitals and have no physical meaning – they are simply a convenient mathematical 

tool for treating fractional orbitals in the same way as normal bond orbitals.  As an example, the 

hyperbond just discussed in Figure 1.8 can be described by introducing one extra virtual atomic 

orbital on each of the three atoms forming the bond.  We can then form two orthogonal fractional 

hybrid orbitals on each of the atoms by mixing the real atomic orbital with the virtual orbital.  
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The three hybrid orbitals forming the hyperbond (  ,   , and   ) are mixed with the 

corresponding virtual orbitals (  ,   , and   ) to create six mutually orthogonal fractional 

hybrids  

 
(1.38) 

 ̃   
 

√ 
(     )  ̃   

 

√ 
(     ) 

  

 ̃  
 

√ 
(     )  ̃  

 

√ 
(     ) 

  

 ̃  
 

√ 
(     )  ̃  

 

√ 
(     ) 

that can be used to form the two fractional bonding orbitals     and     and the two fractional 

lone pairs    and    

 
(1.39) 

 ̅      ̃      ̃         ̃      ̃  

  

    ̃      ̃  

Each fractional bonding orbital and lone pair is filled with one half of a real electron pair and one 

half of a virtual electron pair, since the magnitude of each fractional orbital is one half.  Like the 

virtual atomic orbitals, the virtual electrons have no real physical meaning and are introduced 

simply for convenience.  If the Hamiltonian describing the system does not contain any 

interactions between the real and virtual atomic orbitals, then the virtual orbitals will have no 

influence on the behavior of the real part of the system and can be completely ignored except for 

the fact that they make the fractional bond orbitals orthogonal to one another.  However, if one 

insists in assigning physical significance to the virtual orbitals, they can be thought of as forming 
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a Hilbert space that is entangled with the real Hilbert space in order to form a pure quantum 

state.  Without them, the fractional orbitals would describe a mixed quantum state in the real 

orbital space.  Since many of the tools in quantum chemistry only apply to pure quantum states, 

it is much easier to work with the entangled system. 

As a consequence of the orthogonality of the fractional orbitals, a set of sum rules can be written 

concerning the orbital content of the hybrids analogous to Equation (1.16) for non-fractional 

orbitals.  To illustrate this, consider a generalized set of hybrid orbitals on a transition metal atom 

written as a linear combination of the   orbital, the five   orbitals   , and a virtual orbital    

     
   ∑   

   

 

   
    (1.40) 

This hybrid has a real magnitude given by 

 (  )  (  
 )

 
 ∑.   

 /
 

 

 (1.41) 

For each of the six atomic orbitals, there is a sum rule of the following form: 

∑(  
 )

 

 

   (1.42) 

Thus there are six such sum rules for the six valence atomic orbitals indicating that the 

distribution of each atomic orbital across all of the hybrids on that atom is conserved.  These are 

exactly the same as the sum rules developed earlier for non-fractional orbitals in molecular 

systems.  Combining these sum rules with the expression for the magnitudes of the hybrids in 

Equation (1.41) leads to an additional sum rule 
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∑  (  )

       

 

       ∑  (  )

    
       

 

           
(1.43) 

which states that the sum of the magnitudes of all hybrids on an atom must be equal to the 

number of atomic orbitals in the valence shell of that atom.  If we then consider a transition 

metal atom that has a valence of   and       lone pairs, two more sum rules can also be 

written 

∑  (  )

       

 

       
(1.44) 

 

 

∑  (  )

    
       

 

       
(1.45) 

These state that the sum of the magnitudes of the bonding hybrids must equal the valence and the 

sum of the magnitudes of the nonbonding hybrids must be equal to the number of formal lone 

pairs.  It should be noted that these last two sum rules are just generalizations of the traditional 

concepts of valency to work with fractional orbitals. 

Before continuing, it is useful to introduce two functions to work with the real and virtual 

components of fractional orbitals.  The function   returns the normalized real component 

(denoted as    in Equation (1.36)) of a fractional orbital   while the function   returns the 

normalized virtual component.  Using these functions, a fractional orbital   with magnitude   

can be written as   

  √   ( )  √(   )  ( ) 
(1.46) 

The energy   of   can then be written as 
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  ⟨ | | ⟩         ⟨ ( )| | ( )⟩     ⟨ | | ⟩  
(1.47) 

since any Hamiltonian matrix elements involving the virtual space are zero.  We will use    as 

shorthand for the energy of the normalized real component of a fractional orbital.  Likewise, 

⟨  | |  ⟩
  is shorthand for the resonance integral between the normalized real components of 

two fractional orbitals and ⟨  |  ⟩
  is shorthand for the overlap integral between the normalized 

real components.  Using this notation, a resonance integral between two fractional orbitals    

and    with magnitudes    and    can be written as 

⟨  | |  ⟩  √     ⟨ (  )| | (  )⟩  √     ⟨  | |  ⟩
  

(1.48) 

This notation will be used in the next section when we discuss conjugation between fractional 

orbitals. 

1.3.2 Conjugation in systems containing fractional orbitals 

As with systems containing only integer order bonds, metal crystals employing fractional order 

bonds to describe the zero order electronic structure have a set of fractional antibonding orbitals 

that can interact with the filled bonding orbitals leading to conjugation and reduction in energy.  

The conjugative interactions in transition metal crystals are expected to be far more extensive 

than those in organic molecules and transition metal complexes due to the delocalized nature of 

metallic electrons.  Therefore, these interactions are expected to make a large contribution to the 

total binding energy of the metal crystal, as was the case with hyperbonds in the transition metal 

complexes, and ultimately should have a large effect on chemisorption energies. 

The fractional bond orbitals that we use to describe the zero order electronic structure of metals 

lead to a significant complication if we attempt to treat the conjugative interactions in metals in 

the same way we did for organic molecules and transition metal complexes by applying Equation 

(1.28).  The problem occurs because donating electrons from one fractional orbital to another 

leads to a change in the total number of electrons in the system if the two orbitals have different 

magnitudes, and the energy denominator of Equation (1.28) loses any physical meaning.  Thus 
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the individual donor-acceptor interactions between pairs of fractional orbitals are not 

independent since any changes in the total number of electrons must cancel out in the end. 

In order to avoid this problem, we need to approach the conjugative interactions in a different 

way.  Specifically, we must devise a set of donor-acceptor interactions that individually conserve 

the number of electrons in the system.  This can be done as follows.  Suppose there is an 

occupied fractional orbital   of magnitude    and an unfilled fractional orbital   of magnitude 

  .  If      , we can come up with an electron number conserving interaction by splitting   

into two additional fractional orbitals    and   .  The first orbital    has the same magnitude as   

while    contains the remainder of  , having a magnitude    
      .  We can then achieve 

an electron number conserving interaction involving donation from    into  .  The remaining 

orbital,   , does not participate in any interaction with  .  Using Equation (1.28), this leads to a 

second order interaction energy of 

        
|⟨  | | ⟩| 

      

 
(1.49) 

where the resonance integral in the numerator is equal to 

⟨  | | ⟩  (
  

  
)

 
 
⟨ | | ⟩    ⟨ | | ⟩  

(1.50) 

and the energy difference in the denominator is equal to 

      
    

  

  
     ,  

    
 - (1.51) 

where   
  and   

  are the energies of the normalized orbitals constructed from the real 

components of   and   

  
  ⟨ | | ⟩  

(1.52) 
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  ⟨ | | ⟩  

(1.53) 

The second order conjugation energy can now be written in terms of the normalized real 

components as 

               
     

|⟨ | | ⟩ | 

  
    

 
 

(1.54) 

In the case that      , the solution is similar, except   is split into two orbitals    and    with 

magnitudes        and          , with    interacting with  , giving a second order 

conjugation energy equal to 

               
     

|⟨ | | ⟩ | 

  
    

 
 

(1.55) 

Thus, the second order conjugation energy between two fractional orbitals is equal to the 

conjugation energy between the two orbitals formed from the normalized real components, 

scaled by the lowest magnitude of the two fractional orbitals.  We can write this generically as 

                
       

|⟨ | | ⟩ | 

  
    

 
 

(1.56) 

where      is the magnitude of the interaction given by 

     {
                

 
         

 
(1.57) 

and      
  is the energy of the interaction between the normalized real components of the two 

orbitals. 
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Even these individually electron number conserving interactions just described can still lead to a 

change in the total number of electrons if a single fractional orbital participates in separate 

interactions with two fractional orbitals in which the real components are not orthogonal.  To 

illustrate this, we introduce the electron number operator   which has matrix elements between 

two fractional orbitals   and   defined by 

    ⟨ | | ⟩  (    )
 
  ⟨ | ⟩  

(1.58) 

Thus, the electron number operator is just equal to the overlap of the unnormalized real 

components of the two fractional orbitals, with the diagonal elements     equal to the magnitudes 

  .  The total number of electrons in a system can then be determined by the expectation value of 

this operator on the system’s wavefunction 〈 〉. 

The electron number operator can be used to specify the change in the number of electrons 

associated with a set of conjugative interactions from occupied orbitals denoted by the indices   

and   into unoccupied orbitals denoted by the indices   and  , with the result accurate to second 

order in the conjugative interaction being equal to 

 〈 〉  ∑  
    

  

 ∑(  
 ) (     )

  

 ∑  
   

    

   

 ∑  
   

    

   

 (1.59) 

In order for a set of interactions to conserve the total number of electrons in the system, the 

change in the expectation value of the electron number operator  〈 〉 must be zero regardless of 

the values of the amplitudes of the individual interactions   
 .  This can only occur if the factors 

which multiply these amplitudes are all zero.  The factors in the first sum (   ) are zero as long 

as the orbitals donor and acceptor orbitals do not both have nonzero amplitude on any given 

atom.  The factors in the second sum (     ) are already zero for interactions of the type 

described earlier in which the donor and acceptor orbitals   and   have the same magnitudes. 

The factors in the third sum of Equation (1.59),    , arises from the coupling of two interactions 

    and     involving donation from the same orbital   to two different orbitals   and  .  
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This situation arises when   and   are two antibonding orbitals with amplitude on atom B that are 

interacting with either a lone pair or bonding orbital   having amplitude on neighboring atom A.  

If the real components of the two acceptor orbitals are orthogonal, then       and the two 

interactions independently conserve the number of electrons.  If   and   do not have amplitude 

on a shared atom     is automatically zero since the real components of the fractional hybrid 

orbitals making up the antibonding orbitals   and   are automatically orthogonal if the two 

hybrid orbitals are on different atoms. 

Similarly, the factors in the fourth sum of Equation (1.59),    , arises from the coupling of two 

interactions     and     from two different donor orbitals   and   into the same acceptor 

orbital  .  This situation occurs when   and   are bonding orbitals or lone pairs both having 

amplitude on a common atom A that are interacting with an antibonding orbital with amplitude 

on neighboring atom B.  If the real components of the two donor orbitals are orthogonal, then 

      and the interactions independently conserve the number of electrons.  Again, if   and   

do not have amplitude on a common atom, then     is automatically zero. 

We can now state three requirements for composing a set of conjugative interactions between 

fractional orbitals that independently conserve the number of electrons in the system. 

1. For an interaction    , the donor and acceptor orbitals must have equal magnitudes so 

that      . 

2. For two interactions     and     involving donation from the same donor orbital 

into two different acceptor orbitals, the real components of the two acceptor orbitals   

and   must be orthogonal. 

3. For two interactions     and     involving donation from two different donor 

orbitals into the same acceptor orbital, the real components of the two donor orbitals   

and   must be orthogonal. 

The first criterion is fulfilled using the procedure described earlier of using only a fraction of the 

orbital with the higher magnitude.  The easiest way to fulfill the other two criteria is if we 

construct a set of occupied orbitals       on atom A whose real components are mutually 
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orthogonal and a set of unoccupied orbitals       on atom B whose real components are also 

mutually orthogonal 

    ⟨ ( )| ( )⟩        
(1.60a) 

 

    ⟨ ( )| ( )⟩        
(1.60b) 

There will be six such orbitals on each transition metal atom corresponding to the six atomic 

orbitals in the     valence space.  The set of bonding orbitals, antibonding orbitals, and lone 

pairs corresponding to the SMLO representation of the zero order ground state in general does 

not fulfill the orthogonality relations in Equation (1.60).  Furthermore, it is cumbersome to 

construct a set of orbitals that fulfill these relations from the SMLOs since they have amplitude 

on more than a single atom (except for the lone pairs).  To get around these problems, we instead 

use the set of atomic orbitals on atoms A and B as the basis for constructing the conjugative 

interactions and use a procedure described later to account for bonding in the zero order 

structure. 

In order to use the atomic orbitals to define the conjugative interactions, it is first necessary to 

divide them into occupied and unoccupied sets of fractional orbitals.  To do this, we first split the 

bonding hybrids on atom A into occupied     and unoccupied  ̅   parts defined by 

    
 

√ 
,       - (1.61a) 

 

 ̅   
 

√ 
,       - 

(1.61b) 

where     is a virtual orbital, so that each bond in the zero order electronic structure can be 

described as a combination of the two interactions      ̅   and      ̅  .  Thus, a covalent 

bond between atoms A and B can be thought of occurring in the following way.  Initially, each 

hybrid contains half an electron of each spin in the occupied fractional hybrids     and    .  
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The covalent bond is formed by the transfer of the half electron on atom A in     into  ̅   on 

atom B and the simultaneously occurring transfer of the half electron on atom B in     into  ̅   

on atom A.  In this way, we can think of covalent bond formation in the same way we think of 

conjugation – in molecular orbital theory and band theory, there is no distinction between the 

two phenomena anyway. 

We now use the occupied and unoccupied hybrids on atom A to split the atomic orbitals into 

occupied bonding 2  3, unoccupied bonding { ̅ }, and occupied nonbonding (lone pair) { ̈ } 

sets.  This is done by projecting the atomic orbital onto the sets of occupied bonding hybrids 

{   }, unoccupied bonding hybrids { ̅  }, and lone pairs *  
 + on atom A and normalizing the 

resulting orbitals by adding a virtual component   ,  ̅ , or  ̈  

   ∑⟨   |  ⟩   

 

 .    /

 
 
   

(1.62a) 

 

 ̅  ∑⟨ ̅  |  ⟩ ̅  

 

 (   ̅ )
 
  ̅  (1.62b) 

 

 ̈  ∑⟨  
 |  ⟩  

 

 

 (   ̈ )
 
  ̈  (1.62c) 

 

   ∑|⟨   |  ⟩|
 

 

 (1.63a) 

 

 ̅  ∑|⟨ ̅  |  ⟩|
 

 

 (1.63b) 
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 ̈  ∑|⟨  
 |  ⟩|

 

 

 (1.63c) 

 

    ̅   ̈    (1.63d) 

where   ,  ̅ , and  ̈  are the magnitudes of the corresponding fractional orbitals.  The possible 

conjugative interactions then involve donation from an occupied orbital    or  ̈  on atom A into 

an unoccupied orbital  ̅  on atom B. 

If the bonding environment around the atom has certain symmetry, as occurs for an atom in an 

fcc crystal, each of the three sets 2  3, { ̈ }, and { ̅ } obeys the number operator relations in 

Equation (1.60) 

⟨  | |  ⟩        
(1.64a) 

 

⟨ ̅ | | ̅ ⟩      ̅  
(1.64b) 

 

⟨ ̈ | | ̈ ⟩      ̈  
(1.64c) 

and thus forms a suitable basis for constructing electron number conserving conjugative 

interactions.  All of the systems studied in the present work have such a symmetry, thus we will 

only mention briefly that if the appropriate symmetry is not present, a suitable basis for 

constructing conjugative interactions can still be constructed using the eigenvectors of the 

electron number operator in the vector space spanned by each of the three sets of orbitals. 

Once the appropriate sets of atomic orbitals are constructed, the energy of each conjugative 

interaction between an occupied orbital   and an unoccupied orbital   is equal to 
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(1.65) 

This energy is equal to the magnitude of the interaction      multiplied by the interaction energy 

between the normalized real components of the two orbitals, or intrinsic interaction energy 

     
 .  The numerator of the real interaction energy is the square of the resonance integral 

between the normalized real components of the two orbitals defined by Equation (1.48).  The 

denominator consists of the difference in the energies of the normalized real components of the 

two orbitals (given by Equation (1.47)) in addition to two terms   
  and   

  that account for 

bonding interactions in which the donor and acceptor orbitals   and   participate in the zero 

order structure.  The term   
  is negative and lowers the effective energy of the donor orbital, 

increasing the magnitude of the denominator and weakening any interactions in which this 

orbital participates.  The terms   
  is positive and raises the effective energy of the acceptor 

orbital, also weakening any interactions in which it participates.  The expressions for these 

correction terms are equal to 

  
  

 

  
∑⟨ |   ⟩⟨ ̅  | | ⟩

 

 (1.66a) 

 

  
   

 

  
∑⟨ | ̅  ⟩⟨   | | ⟩

 

 (1.66b) 

for occupied and unoccupied bonding orbitals   and   with magnitudes    and   , with the sum 

carried out over all bonds that atom A forms in the zero order structure.  Thus, we can see that 

every bond in which a donor orbital participates in the zero order structure lowers its effective 

energy and weakens conjugative interactions in which it participates.  Likewise, every bond in 

which an acceptor orbital participates in the zero order structure raises its effective energy, also 

weakening the conjugative interaction in which it participates.  For a nonbonding donor orbital, 

this energy correction is zero since lone pairs do not form bonds in the zero order structure. 
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The magnitude of the conjugative interaction in Equation (1.65),     , is given by the expression 

in Equation (1.57) with one modification.  This modification is due to the fact that even if the 

matrix elements of the electron number operator are zero between orbitals in any one of the three 

sets in Equation (1.62), they are still nonzero between orbitals in different sets, of particular 

importance for orbitals in the occupied bonding 2  3 and occupied nonbonding { ̈ } sets 

⟨  | | ̈ ⟩     .   ̈ /

 
 
 

(1.67) 

This is important when considering an acceptor orbital  ̅  interacting with both    and  ̈  on 

atom A.  The coupling between these two interactions violates the requirements in Equation 

(1.60) and thus the two interactions do not independently conserve the number of electrons in the 

system.  In order for the acceptor  ̅  to interact with both of these donor orbitals, it must be split 

into two smaller orbitals  ̅ 
  and  ̅ 

  where the first of these interacts with    and the second 

interacts with  ̈  in the following two interactions 

    ̅ 
  (1.68a) 

 

 ̈   ̅ 
  

(1.68b) 

The sum of the magnitudes of the two new acceptor orbitals  ̅ 
  and  ̅ 

  must be less than 

magnitude of the original acceptor orbital  ̅ . 

 ̅ 
   ̅ 

   ̅  
(1.69) 

Thus, the sum of the magnitudes of these two interactions must be less than or equal to the 

magnitude of the acceptor orbital  ̅  and is given by combining Equation (1.69) with Equation 

(1.57) 



59 

 

     ̅ 
   ̈   ̅ 
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    ̈                    ̈   ̅ 

 
 ̅    ̅      ̈ 

 
(1.70) 

In the case that     ̈   ̅ , the magnitudes of these two interactions are simply equal to the 

magnitudes of the corresponding orbitals.  If  ̅      ̈ , then there is some degree of freedom 

as to how to split the total magnitude of the acceptor orbital between the two donor orbitals.  In 

this case, we chose to maximize the interaction involving donation from the lone pair orbital  ̈  

since its effective energy in the denominator of Equation (1.65),   , is higher than the effective 

energy       of the bonding orbital   , and thus results in a stronger interaction.  This results 

in the following expressions for the magnitudes of the two interactions 

  ̈   ̅ 
 {

 ̈                ̈   ̅ 

 
 ̅      ̈   ̅ 

 
(1.71a) 

 

     ̅ 
 {

                    ̅    ̈   ̅ 

 
 ̅    ̈   ̅ 

        ̅    ̈   ̅ 

 
(1.71b) 

This means that the     ̅  interaction will only occur if the  ̈   ̅  interaction does not 

saturate the acceptor orbital  ̅   

Finally, there is one modification that must be made to Equation (1.71) to take into account the 

bond that already exists between atoms A and B in the zero order structure.  Using the atomic 

orbital basis to generate the conjugative interactions leads to a double counting of the A-B bond 

energy – once from the zero order energy and again from the conjugation energy.  To correct for 

this, we subtract the energy of the A-B bond calculated from second order perturbation theory in 

Equation (1.28).  This corresponds to the energy of the original A-B bond calculated in the same 

way that the conjugation energy is calculated.  This energy is given by 
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(1.72) 

where     and  ̅   are the occupied and unoccupied hybrids on atoms A and B given by 

Equation (1.61) that form the zero order A-B bond.  We can further show that this energy is 

equal to a quarter of the zero order bond energy calculated exactly using Equation (1.11), which 

in the case of a nonpolar bond, is equal to 

       ̅  
 

 

 
     

 

 
⟨   | |   ⟩ 

(1.73) 

There are two reasons for the factor of    .  The first is simply that we are only considering 

electron transfer in one direction, from A to B.  This corresponds to only half of a bond, leading 

to a factor of    .  The other factor of     comes from the approximations used to calculate the 

conjugation energy.  This method double counts the effect of the zero order A-B bond on the 

effective energies of     and  ̅   given by Equation (1.66), leading to an under prediction of the 

energy of this bond by    . 

Applying the correction in Equation (1.73) also necessitates a modification of the expressions for 

     ̅ 
 and   ̈   ̅ 

 in Equations (1.71) for the magnitudes of interactions involving donation 

from the bonding and nonbonding occupied orbitals    and  ̈  on atom A into unoccupied 

orbital  ̅  on atom B.  That is because the hybrids forming the A-B bond are generated from the 

   bonding orbital and not the  ̈  nonbonding orbital.  To account for this, the zero-order 

bonding interaction      ̅   is decomposed into separate interactions involving the occupied 

bonding orbitals on atom A and the unoccupied bonding orbitals on atom B 

     ̅      ∑|⟨  |   ⟩
 
|
 
|⟨  |   ⟩ |  2    ̅ 3

  

 (1.74) 
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where   runs over all atomic orbitals on atom A and   runs over all atomic orbitals on atom B.  

We then define the interaction magnitudes      ̅ 

  that correspond to these interactions 

according to 

     ̅ 

     ∑|⟨  |   ⟩
 
|
 
|⟨  |   ⟩ | 

  

 (1.75) 

Finally, the expression for   ̈   ̅ 
 is modified to account for this interaction, and along with the 

expression for      ̅ 
 stated previously in Equation (1.71b), make up the final set of 

expressions for determining the interaction magnitudes 

  ̈   ̅ 
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 ̈                ̈     ̅       ̅ 

 

 
 ̅       ̅ 

      ̈     ̅       ̅ 

 
 

(1.76a) 

 

     ̅ 
 {

                    ̅    ̈   ̅ 

 
 ̅    ̈   ̅ 

        ̅    ̈   ̅ 

 
(1.76b) 

These expressions mean that a given acceptor orbital  ̅  on atom B first interacts with the 

occupied bonding orbital    on atom A with an interaction magnitude of      ̅ 

 , corresponding 

to the A-B bond in the zero order structure.  If  ̅  is not saturated by this first interaction, a 

second interaction involving donation from  ̈  into  ̅  will occur until either orbital is saturated.  

Then, if  ̅  is still not saturated, it interacts further with    until one of these two orbitals is 

saturated. 
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Chapter 2  –  Local Bonding in the 5d Transition Metal fcc Crystals 

We finally have the tools necessary to describe bonding in a transition metal crystals to zero 

order in terms of two center bonding orbitals and one center nonbonding lone pairs.  As a first 

application, we examine the hybridization and bonding in the bulk fcc crystals of the late    

transition metals W to Au using fractional orbitals.  After introducing the zero order structure, 

we will examine the contribution of conjugation to the bonding in metallic systems.  It will be 

seen that conjugation contributes about as much to the cohesive energy of the crystal as the 

bonding in the zero order structure, similar to the hyperbonds in transition metal complexes.  At 

the end of the chapter, we examine the effects of surface cleavage on the bonding between metal 

atoms in preparation for the discussion of chemisorption in Chapter 3. 

2.1 Bonding in the Bulk 

Since we are interested ultimately in describing chemisorption on transition metal surfaces, we 

need to understand the local bonding in the surface layer.  However, the creation of a surface 

breaks the fcc symmetry of the system that is present in the bulk, making the bonding at the 

surface more complicated than the bonding in the bulk.  We will therefore take the approach of 

first understanding in detail the electronic structure in the bulk and then make a few 

modifications to apply these results to surfaces. 

2.1.1 Zero order electronic structure 

Metal atom hybridization 

Based on the sum rules in Equation (1.44), a metal atom of valence   in an fcc crystal lattice will 

form fractional bonds with its twelve neighbors, each having a magnitude of    ⁄ .  Similar to 

the transition metal complexes, each metal atom will have       lone pairs that are 

contained in nonbonding fractional hybrids of   character so that the bonding hybrids will be 

     .  So even though we are describing hypervalent atoms with fractional bonds, the hybrids 
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will still have the same composition as they would in the transition metal complexes, although 

their arrangement and orientation will be different. 

We would now like to take a closer look at the arrangement and orientation of the bonding and 

nonbonding hybrids to see how they differ from the hybrids in a corresponding transition metal 

complex.  Figure 2.1 shows an alternative representation of an fcc unit cell in which one atom 

lies in the center of the cell and is surrounded by twelve ligands placed on the edges of the cube.  

The ligands can be arranged into three equivalent groups, each lying in one plane passing 

through the center of the cubic cell.  In order to obtain a set of hybrid orbitals on the central atom 

to form bonds with the ligands, it is easiest if the canonical set of five orthogonal   orbitals is 

transformed into the set of nine fractional   orbitals that is shown in Figure 2.2.  From the figure, 

one can see that all nine of the fractional   orbitals have the same shape as the canonical     

orbital but are oriented in different directions.  Six of these orbitals (    ,     ,     ,     , 

    ,     ) have magnitudes of   ⁄  and are oriented along the axes connecting the six pairs of 

collinear ligands while the other three (   ,    ,    ) have magnitudes of   ⁄  and are oriented 

towards the faces of the cubic unit cell.  The first set is defined by the vertices of a 

cuboctahedron so it will be labeled     while the second set is defined by the vertices of an 

octahedron so it will be labeled   .  The     set has a dimension of four while the    set has a 

dimension of one so that this is the     
   

  representation of the     valence space.  This means 

that the     set effectively contains four of the five   orbitals while the    set effectively 

contains the remaining   orbital – but this should not be taken too literally due to the fractional 

nature of the representation. 
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Figure 2.1  An alternative representation of the fcc unit cell in which one atom is at the 

center surrounded by its twelve neighbors lying on the edges of the cell.  The ligands can be 

arranged into three groups of four, each group lying in a plane containing the central atom. 
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Figure 2.2  The set of nine fractional   orbitals that conform to the symmetry to the fcc 

lattice and have the shape of the canonical     orbital.  The six     orbitals shown on the 

left are oriented towards the six pairs of collinear ligands on the edges of the unit cell.  The 

three    orbitals on the right are oriented towards the faces of the unit cell.  The     

orbitals have magnitude   ⁄  and span a fractional Hilbert space of dimension four while 

the    orbitals have magnitude   ⁄  and span a space of dimension one. 

Bonding in fcc W 

Other than Au, which forms bonds using a single   orbital, fcc W displays the next simplest 

hybrid configuration of the late    transition metals.  Since W has a valence of six, it will form a 

bond of magnitude   ⁄  with each of its twelve ligands according to Equation (1.44).  As there 

are no lone pairs, all six atomic orbitals participate in bonding so the hybrids should have     

composition or     
   

  in our alternative representation of the   orbital space.  This leads to six 
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mutually orthogonal hybrids of magnitude one, each directed towards one of the six pairs of 

collinear ligands.  Since one hybrid is shared by two ligands, it forms a bonding orbital of 

magnitude   ⁄  with each of these as shown in Figure 2.3, bearing similarities to the hyperbonds 

in transition metal complexes.  Such a hybrid     on atom A forming a bond with atom B takes 

the form 

    
 

√  
[  √     (√   )  ] 

(2.1) 

where     is a     orbital oriented along the A-B bond and the    orbital is oriented 

perpendicular to this bond.  The   component of this hybrid deviates somewhat from the ideal 

    form due to the mixture of    character – this leads to a form that is not symmetric about the 

bond axis as can be seen in Figure 2.3.  It has two large lobes directed along the A-B bond axis 

and circular lobe around the axis that is elongated in the direction of a pair of ligands 

perpendicular to this axis. 
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Figure 2.3  In an fcc W crystal, each atom B has six     
    hybrids containing unpaired 

electrons, each oriented along an axis connecting to collinear ligands A and C.  Each of 

these hybrids can form two fractional bonds of magnitude   ⁄  with the corresponding pair 

of collinear ligands, leading to two bonding orbitals     and    , each occupied by half an 

electron pair, and two empty antibonding orbitals  ̅   and  ̅  .  

Bonding in fcc Re to Au 

The     hybridization scheme presented so far should accurately represent the bonding of a 

group VI transition metal (W, Mo, Cr) in an fcc lattice since they have six unpaired electrons.  

The    and    metals will have the exact same hybridization as the    metal in the same group 

since the electron configuration is identical.  Elements in groups VII-XI, as shown in the Lewis 

structures in Figure 1.7, have nonbonding electrons that also must be included.  As already 

discussed, this leads to the inclusion of lone pairs in nonbonding   orbitals and a resulting 

reduction in the magnitude of the bonding hybrids according to Equation (1.44).  Although the 

bonding hybrids in Au are simple to describe since they have entirely   character, the bonding 

hybrids in the elements Re to Pt are more difficult due to the inclusion of   character in them.  

Unlike the lone pairs in transition metal complexes that each occupy a single nonbonding   
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orbital, doing so in the present case would break the symmetry of the fcc lattice.  Therefore, the 

lone pair must fractionally occupy several   orbitals in order to preserve this symmetry.  As an 

illustration, consider an fcc crystal of Re which has one lone pair per metal atom.  There are two 

different ways to place this lone pair into   orbitals that do not violate the lattice symmetry.  The 

first is to place   ⁄  of the lone pair into each of the six   orbitals of the     set while the other is 

to place   ⁄  of the lone pair into each of the three   orbitals of the    set.  These configurations 

lead to a charge distribution shown in Figure 2.4 having the symmetry of the fcc lattice.  One can 

see that the    configuration places lone pair density directed at the six faces of the cubic unit 

cell while the     configuration places it directed at the eight corners of the cell.  Of course, any 

linear combination of these two configurations also has the correct symmetry.  These two 

independent lone pair configurations apply to the other transition metal atoms having lone pairs 

as well. 

 

Figure 2.4  Lone pairs can occupy the   orbitals from the fractional representation shown 

in Figure 2.2 in two different configurations that have the same symmetry as the fcc lattice.  

In the first configuration, shown on the left,   ⁄  of the lone pair occupies each of the six 

    orbitals leading to a charge distribution concentrated towards the corners of the unit 

cell.  In the second configuration, shown in the center,   ⁄  of the lone pair occupies each of 

the three    orbitals leading to a charge distribution concentrated towards the faces of the 

unit cell.  In the coinage metals, both sets of   orbitals are completely filled so that the 

charge distribution is spherical as shown on the right.  
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When a portion of the   orbital space has been set aside as fractional nonbonding orbitals that 

contain lone pairs, these orbitals are no longer available to form bonding hybrids.  Consequently, 

the valence of the atom decreases by one for each lone pair present.  This manifests as a 

reduction in magnitude of the bonding hybrids that were found to have magnitudes of   ⁄  in fcc 

W.  The resulting magnitude of these hybrids is then 

 (  )  
 

  
 

   

  
 

(2.2) 

This is a direct result of the Pauli Exclusion Principle and is obtained from the sum rules in 

Equation (1.44). 
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Figure 2.5  The       hybrids participating in metal-metal bonding for the later    

transition metals.  The hybrid is purely   character on Au since the   orbitals are 

completely occupied with lone pairs.  On Pt to Re, the   component of the hybrid is 

rotationally symmetric about the bond axis since it is made up of only     orbitals.  On W, 

the    orbitals participate in hybridization as well, breaking this symmetry.  

The exact form of the hybrids will depend on the distribution of the lone pairs between the     

and the    orbitals.  In fcc Re, it is most energetically favorable to place the single lone pair into 

the    orbitals since they have weaker overlap with the ligand orbitals than the     set.  Since 

this set of orbitals has dimension one, it is completely filled with the lone pair and can no longer 

participate in bonding, leading to twelve hybrids of magnitude    ⁄  with     
  character.  The 

subsequent lone pairs for Os to Au go into     orbitals, so that the bonding hybrids have     
    

character and magnitudes given by Equation (2.2).  The form of a hybrid     on an atom A 

forming a bond with atom B is then given by 



71 

 

    
 

√  
(  √       ) 

(2.3) 

where the   component,    , has the shape of a     orbital directed along the A-B bond axis.  

These hybrids are illustrated in Figure 2.5 where it can be seen that they become progressively 

more concentrated along the bond axis as the     component increases. 

Zero-order bond energies 

The bond energy of each metal-metal bond between a hybrid     on atom A and a hybrid     on 

atom B is shown by Equation (1.11) in Chapter 1 for a purely covalent bond to be twice the 

resonance integral between the two hybrids. 

             ⟨   | |   ⟩ 
(2.4) 

When calculating this bond energy, it is useful to decompose the resonance integral into 

characteristic interactions as we did for molecular species in the previous chapter.  For two 

adjacent metal atoms in a crystal, there will be six such characteristic interactions shown in 

Figure 2.6 – two   interactions involving     hybrids, and two sets of   and   interactions 

involving   orbitals.  The two   interactions,    and   , occur between two sets of hybrids 

composed of the   orbital and a   orbital that is oriented along the bond axis.  The hybrids in the 

   set are formed by a constructive (in the region of the bond) superposition of the   and   

orbitals and are concentrated along the bond axis in both directions, having a strong resonance 

integral (-1.58 eV in Au).  The hybrids in the    set are formed by a destructive (in the region of 

the bond) superposition of the   and   orbitals and is concentrated in a ring around the bond axis, 

having much weaker resonance integral (-0.17 eV in Au).  The   and   interactions (-0.39 eV 

and –0.07 eV in Au) are also weaker than the    interactions. 
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Figure 2.6  As with ethane in Figure 1.6 and PtCl4
2-

 in Figure 1.11, the resonance integral 

between two hybrids on neighboring atoms can be decomposed into two characteristic 

interactions with   symmetry (top), two with   symmetry (middle), and two with   

symmetry (bottom).  Of these, the    interaction makes the largest contribution. 

As we did in Equation (1.31) of Chapter 1, the resonance integral in the above equation for the 

bond energy can be written as a sum of the six characteristic interactions 

⟨   | |   ⟩  
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Calculation of the bond energy is greatly simplified if only the    interaction is considered to 

contribute.  This is not a bad approximation since the resonance integral of this interaction is at 

least four times larger than those for the other interactions.  In this case, the bond energy can be 

approximately written as 

       ⟨   |   
 ⟩⟨   

 |   ⟩   
 

(2.6) 

The hybrids associated with the    interaction have the form 

   
            

(2.7) 

where     is oriented along the bond axis as in the definition of the bonding hybrid     in 

Equation (2.3).  The bond energy in Equation (2.6) consists of the product of three integrals – 

two of these integrals, ⟨   |   
 ⟩ and ⟨   

 |   ⟩, measure the overlap of the two hybrids with the 

   interaction, while the third integral,    
, is a resonance integral that measures the intrinsic 

strength of the    interaction. 
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Table 2.1  Tight binding parameters used in the model.  From first to last row – resonance 

integral of the    interaction between two metal atoms; resonance integral of the   

interaction between two metal   orbitals; resonance integral of the   interaction between 

two metal   orbitals; energy difference between the metal   and   orbitals; resonance 

integral between the metal hybrid    and the hydrogen   orbital; energy difference 

between the hydrogen   orbital and the metal hybrid   .  The parameters for Ir in bold are 

used for all metals in the simplest form of the model.  These parameters were calculated 

using the procedure in Appendix A. 

 W Re Os Ir Pt Au 

   
 2.23 2.16 2.17 1.98 1.81 1.42 

  
    

 1.10 1.00 1.11 1.09 1.12 0.93 

  
    

 1.13 1.16 1.05 0.89 0.69 0.49 

      -1.27 -1.24 -1.93 -2.04 -2.31 -2.09 

    3.79 3.77 3.66 3.57 3.45 2.89 

      -0.56 0.22 1.14 1.73 1.71 0.96 
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In addition to depending on the metal atom valence, the bond energy in Equation (2.6) also 

depends on the values of the atomic parameters    
 and    (   is related to    through   

  

  
   ).  Two quantities derived from these parameters,   

    
 and   

    
, are listed for the late 

   transition metals in Table 2.1, extracted from DFT calculations on the bulk metal using the 

procedure in Appendix A.  The first quantity measures the strength of the   interaction between 

the   orbitals while the second measures the strength of the   interaction between two   orbitals.  

It is seen that   
    

 increases in magnitude moving from Au to Re while   
    

 is relatively 

constant.  The increase in the strength of the   interaction between   orbitals is due to an 

increase in the radial extent of the   orbitals, whereas the extent of the   orbitals does not change 

significantly.  While the variation of these atomic parameters surely has an effect on the energies 

calculated by the present model, we will ignore these variations for now and focus only on the 

effect of metal atom valence, using the parameters for Pt for all of the metals.  At the end of this 

section, we will come back and examine the effect of these variations. 
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Figure 2.7  The total zero-order metal-metal bond energy for fcc Au to Re can be split into 

three parts due to interactions between the individual   and   components of the two 

hybrids forming the bond, as shown in Equation (2.10).  Also shown is the intrinsic bond 

strength defined as the bond energy normalized to the bond magnitude. 

The bond energy given by Equation (2.6) is plotted for metal atoms of differing valence in 

Figure 2.7.  It can be seen that the bond energy increases from Au to Re as the   components of 

the hybrids     and     increase in magnitude.  As the magnitude of the   component becomes 

higher, though, its effect on the bond energy diminishes so that the increase in bond energy 

between Au and Pt is significantly higher than the increases between other elements.  The 

intrinsic strength of the metal-metal bond is given by normalizing the bond energy to the bond 

magnitude in Equation (2.2).  This value is shown to be highest for Pt, which has hybrids closest 

in composition to the optimal composition of 45%   character.  This intrinsic strength decreases 
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moving towards Re as the bonding hybrids become more concentrated in   character and 

towards Au as they become depleted of   character.  However, the composition and shape of the 

hybrid orbitals has only a secondary impact on the binding energy compared to the effect due to 

an increase in bond magnitudes as the valence increases.  In contrast, we will see in the next 

section that the shape of the hybrids has a much stronger impact on the conjugation within the 

crystal. 

Decomposition of the bond energy 

Since the bonding hybrids are composed of   and     orbitals, the overlap integrals in Equation 

(2.6) can be written in terms of these individual components 

⟨   |   
 ⟩  ⟨   | ⟩⟨ |   

 ⟩  ⟨   |   ⟩⟨   |   
 ⟩ (2.8a) 

 

⟨   
 |   ⟩  ⟨   

 | ⟩⟨ |   ⟩  ⟨   
 |   ⟩⟨   |   ⟩ (2.8b) 

This means that the overlap of     with the    interaction is equal to the sum of the individual 

overlaps of its   and     components with the    interaction.  Using the form of the hybrids 

defining the    interaction in Equation (2.7), these equations can be written as 

⟨   |   
 ⟩    ⟨   | ⟩    ⟨   |   ⟩ (2.9a) 

 

⟨   
 |   ⟩    ⟨ |   ⟩    ⟨   |   ⟩ (2.9b) 

The ratio of    to    determines the relative weightings of the   and     components in the    

interaction.  If      , then increasing the magnitude of the   component of the bonding hybrid 

    will cause a greater increase in the    interaction than increasing the magnitude of the     

component.  This is the case in practice since the   orbital has a greater radial extent than the   

orbitals. 
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Using the overlap integrals in Equation (2.9), the bond energy can be written in terms of 

interactions between the individual components of the two hybrids 

       

[
 
 
 
 

  
 ⟨   | ⟩⟨ |   ⟩⏟          

   

   
 ⟨   |   ⟩⟨   |   ⟩⏟              

    
 

     ⟨   | ⟩⟨   |   ⟩⏟              
   

     ⟨   |   ⟩⟨ |   ⟩⏟              
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(2.10) 

We can see from this expression that there are four interactions that make up the total bond 

energy – one between the   components of the two hybrids, one between the   components of 

the two hybrids, and two between the   component on one hybrid and the   component on the 

other.  Each term in this expression is equal to the product of the intrinsic strength of the 

interaction and the amplitude of the interaction.  To illustrate this, consider the term accounting 

for the  -  interaction.  The intrinsic strength of this interaction is equal to   
    

 and is defined 

solely by the hybrids that define the    interaction.  The amplitude of the interaction is equal to 

the product of the two integrals ⟨   | ⟩ and ⟨ |   ⟩ that measure the amplitudes of the   

components of the two hybrids. 

Using the forms of the hybrids given in Equation (2.3), the values of the integrals in Equation 

(2.10) for the bond energy are equal to 

⟨   | ⟩  ⟨ |   ⟩  
 

√  
 (2.11a) 

 

⟨   |   ⟩  ⟨   |   ⟩  
 

√  
√    (2.11b) 

so that the bond energy is 

     
 

 
[     

    ⏟  
   

   
  (   )⏟      

   

      √   ⏟      
   

]    
 

(2.12) 
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From this expression, we can see that the amplitudes of the four different interactions depend 

differently on the valence of the metal atoms.  Since the amplitudes of the   components of the 

hybrids are the same for all metals, the  -  interaction has no dependence on the valence and 

contributes a constant amount to the bond energy of all the    metals as shown in Figure 2.7.  

The amplitude of the  -  interaction is proportional to the square of the amplitude of the   

component on the hybrids, which itself is proportional to the number of   orbitals included in the 

hybridization (   ).  It therefore contributes an equal amount to the bond energy for each 

addition   orbital added, leading to a linear increase in the strength of this interaction with 

valence.  The amplitudes of the  -  interactions are proportional to the amplitude of the   

component of each hybrid, which is itself proportional to the square root of the number of   

orbitals included in hybridization.  As a result, the addition of the first   orbital on Pt leads to a 

large increase in bond energy relative to Au.  Each subsequent addition of a   orbital to the 

hybridization leads to an increasingly diminishing increase in bond energy.  Thus it is the  -  

interactions that lead to the large increase in total bond energy between Au and Pt as was seen in 

Figure 2.7. 

For all    elements except Au, the  -  interactions contribute more than half of the total bond 

energy.  This is in contrast to the popular qualitative model of transition metal electronic 

structure that separates the bands into independent   states and   states.
38

  From the present 

model, it appears that the   and   orbitals are hybridized to the same extent that the   and   

orbitals are hybridized in the    elements. 
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Figure 2.8  Set of atomic orbitals used to generate the conjugative interactions. 

2.1.2 Conjugation 

We would now like to examine the extent of conjugation in the    transition metal fcc crystals.  

As discussed in Chapter 1, these interactions are constructed from sets of occupied and 

unoccupied fractional atomic orbitals on the two atoms participating in the interaction.  The 

energy       of such an interaction between an occupied orbital   and an unoccupied orbital   

is equal to the expression in Equation (1.65), consisting of the energy      
  of the interaction 

between the normalized real components of   and   scaled by the magnitude of the interaction 

     

      
 

 
          

  
 

 
    

|⟨ | | ⟩ | 

  
    

    
    

 
 

(1.65) 
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Before calculating these interactions, we need to specify the sets of occupied and unoccupied 

atomic orbitals that define these interactions.  Consider interactions between orbitals on the two 

atoms A and B shown in Figure 2.8.  Because of the fcc symmetry of the bonding around both 

atoms, the orbitals in each set generated by Equation (1.62) have zero-valued matrix elements of 

the electron number operator between them, and thus satisfy the requirements in Equation (1.60) 

for a set of electron number conserving interactions.  The set of atomic orbitals on atom A we 

use to generate the donor and acceptor sets is aligned with the A-B bond axis as shown in Figure 

2.8.  A similar set on atom B is used to generate the interaction basis on this atom.  This set of 

orbitals contains the metal   orbital along with five   orbitals, the latter consisting of one   

orbital with   symmetry with respect to the A-B bond (  
  ), two orbitals with   symmetry (   

   

and    
  ), and two with   symmetry (   

   and    

  ).  The   orbital along with   
   on atom A 

can participate in   interactions with orbitals on atom B.  The other   orbitals can only 

participate in   and   interactions, which will be neglected as done previously when discussing 

the zero order electronic structure. 

These atomic orbitals lead to a set of donor orbitals on atom A consisting of the occupied 

bonding   and   
   orbitals   and   

   and the nonbonding lone pair orbital  ̈ 
   and a set of 

acceptor orbitals consisting of the unoccupied bonding   and   
   orbitals  ̅ and  ̈ 

  .  Similarly, 

atom B has three donor orbitals  ,   
  , and  ̈ 

   and two acceptor orbitals  ̅ and  ̅ 
  .  This leads 

to a set of twelve possible interactions, six involving electron transfer from atom A to atom B 

and the other six involving electron transfer from atom B to atom A.   

At this point, we would like to determine how the magnitudes of the different conjugative 

interactions vary with the valence of the metal atom.  To do this, we need to know the 

magnitudes of the donor and acceptor orbitals, which for Au to Re, are equal to 

 ( )   ( ̅)  
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(2.13b) 
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(2.13c) 

For W, the magnitude of the four bonding orbitals is equal to     and the magnitude of the 

nonbonding orbital  ̈ 
   is zero since there are no lone pairs. 

 

Figure 2.9  Magnitudes of the atomic orbitals used to generate the conjugative interactions 

given by Equation (2.13) 

These magnitudes are plotted with respect to metal atom valence in Figure 2.9.  The magnitudes 

of the   and  ̅ orbitals are constant and equal to     since the   orbital is always fully 

participating in covalent bonding and never contains a lone pair, with one half of the orbital 

being occupied and the other half unoccupied.  The magnitudes of the occupied and unoccupied 

bonding   
   orbitals (  

   and   

  
) are proportional to the number of   orbitals participating in 

covalent bonding (   ) and thus increase linearly with valence.  The magnitude of the lone 
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pair orbital  ̈  is proportional to the number of     lone pairs on the atom (   ) plus a 

contribution from the    lone pair, resulting in a linear decrease with increasing valence. 

The magnitudes of the individual interactions between the three donor orbitals {      ̈ } and 

two acceptor orbitals { ̅  ̅ } are calculated using Equation (1.76).  First, it is necessary to 

determine the magnitudes of the interactions corresponding for the A-B bond in the zero order 

structure that was discussed in Chapter 1.  To do this, the zero-order bonding interaction 

     ̅   is decomposed into four separate interactions involving the occupied   and   
   

orbitals on atom A (    
  ) and the unoccupied   and    orbitals on atom B ( ̅  ̅ 

  ) 
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(2.14) 

We then define the interaction magnitudes     
  corresponding to these interactions from 

Equation (1.75), using expressions for the hybrid orbitals     and     given by Equation (2.3) 
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Figure 2.10  Magnitudes of the conjugative interactions between metal atoms.  Blue lines 

correspond to charge transfer into the  ̅ orbital and green lines correspond to charge 

transfer into the  ̅  orbital.  Also shown are the individual contributions due to donation 

 ̈  (dashed lines) and    (dotted lines). 

These zero order interaction magnitudes can then be used along with the orbital magnitudes in 

Equation(2.13) to calculate the overall conjugative interaction magnitudes using Equation (1.76), 

the results being plotted in Figure 2.10.  The plot also shows the combined magnitude of the 

  
     and  ̈ 

     interactions (  { ̅  ̅ 
  }) given by Equation (1.70).  It can be seen that 

the magnitudes of these two combined interactions and the two     interactions are all limited 

by the magnitude of the acceptor orbital  .  When the acceptor orbital is  ̅, these interactions 

have a constant magnitude of     for all metal atom valences since the magnitude of  ̅ is always 

equal to this value.  In contrast, when the acceptor orbital is  ̅ 
  , the interaction magnitudes 

increase linearly as the valence of the metal atom increases, reaching maximum magnitude for 

W.  Thus, we can expect there to be two components to the conjugation energy for fcc transition 

metals – one that is relatively constant for all atoms along a given row of the periodic table and 

another that increases from right to left, reaching a maximum value for metals in group IV. 
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If we now look at the   
     and  ̈ 

     interactions separately, we see that at lower metal 

atom valence, the combined interaction is dominated by donation from the lone pair  ̈ 
  , with 

donation from the bonding orbital   
   occurring only due to the zero order A-B bond as 

specified in Equation (2.15).  As the number of lone pairs on the metal atom decreases with 

valence, however, a point is reached where the magnitude of the lone pair  ̈ 
   drops below the 

magnitude of the acceptor orbital   (minus the magnitude of the   
     interaction from the A-

B bond), after which, the magnitude of the  ̈ 
     interaction begins to decrease as the 

magnitude of the   
     increases to take its place.  We can see in Figure 2.10 that this occurs 

between Ir and Os for the    ̅ interactions (  {  
    ̈ 

  }) and between Os and Re for the 

   ̅ 
   interactions. 

Now that we have the magnitudes of the conjugative interactions, we need to determine the 

intrinsic interaction energy      
  in Equation (1.65).  This term is composed of the square of 

the resonance integral between the real components of   and   divided by the difference in 

energy between the two real components 
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(2.16) 

The resonance integral is simply equal to the resonance integrals between atomic orbitals on 

atoms A and B, calculated using the   interaction defined by Equation (2.7) 
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The energies of   and   are determined using Equation (1.66), with the resulting expressions 

equal to  



86 

 

 ( )     √        ( ) 
(2.20a) 

 

 ( ̅)     √        ( ) 
(2.20b) 

 

 (  )     √ √
 

  
       ( ) 

(2.20c) 

 

 ( ̅ )     √ √
 

  
      ( ) 

(2.20d) 

 

 ( ̈ )     
(2.20e) 

with  ( ) equal to the energy of the metal-metal bonds in the zero-order structure given by 

Equation (2.12)  normalized by the bond magnitude in Equation (2.2) 

 ( )  
 

√ 
,   (   )  - (2.21) 

As discussed in Chapter 1, these orbital energies are composed of the energy of the original 

atomic orbital (  or   
  ) modified by a term accounting for the bonding in which that orbital 

participates in the zero order structure.  This additional term lowers the energy of the donor 

bonding orbitals and raises the energy of the acceptor antibonding orbitals, accounting for the 

fact that these orbitals participate in weaker conjugative interactions because they are already 

participating in zero order interactions.  The energy expression for the lone pair orbital  ̈  has no 

such term because it does not participate in bonding in the zero order structure. 

We finally have all of the quantities needed to calculate the energies of the conjugative 

interactions given by Equation (1.65).  As an initial approximation, we use the value of the real 

orbital interaction energy      
  calculated for Ir as the value for all of the transition metals 

examined.  This way, we can focus solely on the effect of the interaction magnitudes on the 
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conjugation energy, which is the dominant contribution.  The total conjugation energy associated 

with a single metal-metal bond is equal to the sum of all individual interactions involving 

electron transfer from orbitals on atom A to atom B (     
    

) and the analogous sum of 

interactions involving electron transfer form orbitals on atom B to atom A (     
    

).  

Additionally, the zero order A-B bond energy        ̅  
 given by Equation (1.73) is subtracted 

from this value.  In a symmetric bond such as the ones in a pure transition metal crystal, these 

two quantities are equal, giving a total bond conjugation energy of 
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Figure 2.11  Energy of conjugative interactions between metal atoms in the bulk (red).  

Also shown are the contributions to the total energy in Equation (2.23) involving donation 

into the   orbital (blue), the    orbital (green), and the zero order term that must be 

subtracted. 

This energy is plotted in Figure 2.11 along with the separate contributions from the interactions 

involving donation into an  ̅ orbital and into a  ̅  orbital as well as the energy subtracted for the 

zero order A-B bond.  The contribution from donation into the  ̅ orbital is nearly constant for all 

valences since the magnitude of these interactions is limited by the magnitude of the  ̅ orbital, 

which has a constant value of    .  The energy of these interactions does decrease slightly 

between Ir and W when the magnitude of  ̈  falls below the magnitude of  ̅ so that the  ̈   ̅ 

interaction begins to decrease in magnitude with the slightly less stabilizing     ̅ interaction 

taking its place.  The weaker stabilization of the latter interaction is due to the energy of the 

donor    orbital being 2.52 eV lower than the  ̈  lone pair orbital.  The total energy of the 

interactions involving donation into  ̅  increases linearly with valence between Au and Os since 

it is limited by the magnitude of  ̅ , which was seen to increase linearly with valence in Figure 

2.9.  Between Os and W, the rate of increase of this interaction energy levels off when the 
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 ̈   ̅  interaction begins to decrease in magnitude, being replaced by the weaker     ̅  

interaction as was seen in Figure 2.10. 

As mentioned in Chapter 1, the conjugation energy associated with the zero order A-B bond is 

equal to half the energy of the zero order bond calculated by Equation (2.12), and thus increases 

with metal atom valence.  Subtracting this quantity from the total conjugation energy cancels 

some of the increase in energy of the    ̅  interactions as the metal atom valence increases.  

This leads to only a 40% increase in the conjugation energy from its minimum value on Au to its 

maximum value on Os.  After reaching its maximum value on Os, the conjugation energy again 

decreases between Os and W due to the leveling off of the    ̅ interaction energy in this 

region discussed in the previous paragraph. 

Comparing Figure 2.11 and Figure 2.7, we see that the conjugation energy varies much less with 

metal atom valence than the zero order bond energy.  This behavior has two causes.  The first 

cause is that as the valence of the metal atom increases, so does the magnitude of the zero order 

A-B bond.  Since the orbitals involved in this zero order bond cannot participate in conjugation 

(accounted for by subtracting the energy given by Equation (1.73) from the total conjugation 

energy), there is less available magnitude of the remaining orbitals to participate in conjugation.  

We saw an extreme example of this for the C-C bond of ethane in Chapter 1 – since the C-C   

bond has a magnitude of unity, there was barely any   conjugative stabilization, almost all of it 

coming instead from   interactions (which we have so far ignored in the metal). 

The second cause of the relatively small increase in conjugation energy with metal atom valence 

in Figure 2.11 is that the addition of each   orbital to the bonding space used to form the 

acceptor orbital  ̅  from one metal atom to the next has much less of an ability to participate in 

conjugative interactions than the  ̅ orbital that is present to the same extent on all metal atoms.  

This is due to the angular dependence of the amplitude of the   orbital compared to the   orbital, 

which has no angular dependence.  Each increase in the metal atom valence adds almost equally 

to the magnitudes of the    orbital, the two    orbitals, and the two    orbitals in the bonding 

space, but only the    orbital can participate in strong conjugative interactions with a given 

neighboring metal atom.  Contrast this with the spherically symmetric   orbital, which interacts 



90 

 

equally well with all neighboring atoms.  Thus, the increase in conjugation energy due to 

addition of   orbitals to the bonding space is much less than would be expected if the added   

orbitals had spherical symmetry like the   orbital – in that case, the conjugation energy would be 

nearly proportional to the metal atom valence.  We will see in Chapter 3 that this type of 

behavior plays a very important role in determining the binding energy of adsorbates to a 

transition metal surface. 

Crystal cohesive energy 

The total cohesive energy of a transition metal is the sum of the zero order bond energies given 

by Equation (2.12) and the conjugation energy given by Equation (2.22).  Since there are six 

metal-metal bonds for each metal atom in the crystal, the zero-order cohesive energy of the 

crystal per atom, referenced to separated atoms in       ground states, is 

      
         

(2.25) 

where      is the zero-order bond energy given by Equation (2.12).  Adding to this the 

conjugation energy for charge transfer across each bond given in Equation (2.22)(1.65) leads to a 

total cohesive energy of  

         [          
    

] 
(2.26) 

It should be noted that this cohesive energy contains only the contribution of covalent bonding 

and does not include contributions from Pauli repulsion and electrostatic interactions, which will 

certainly modify the results.
39

  Figure 2.12 shows how the cohesive energy of the crystal changes 

between Au and W.  It is composed of a zero-order term that increases continuously with valence 

and a conjugation term that increases between Au and Os and decreases between Os and W.  

Between Au and Os, both the zero order energy and the conjugation energy increase with 

valence, leading to a cohesive energy that increases nearly linearly with valence in this region.  

Between Os and W, the decrease in conjugation energy cancels out much of the increase in zero 

order energy, resulting in a total cohesive energy that increases more slowly in this region.  In 
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Au, most of the cohesive energy comes from conjugation, but as the valence increases, 

conjugation contributes an increasingly smaller fraction of the cohesive energy as the zero-order 

contribution becomes larger, with both contributing approximately equal amounts on Re and W. 

 

Figure 2.12  Cohesive energy of the fcc transition metal crystals (red) as well as the 

contributions from the zero order (green) and conjugative (blue) components.  Values from 

DFT calculations (green dots) are shown for comparison. 

For comparison, the cohesive energies calculated using DFT with the procedure in Appendix B 

are shown in Figure 2.12 along with the value calculated from Equation (2.26).  The DFT 

calculated values are slightly higher than the values calculated from the model, although the 

trend is nearly the same.  The discrepancy is likely due to neglect of Pauli repulsion and 

electrostatic interactions as well as overestimation of the conjugation energy due to the 

approximations inherent in its calculation using second order perturbation theory.  This indicates 

that our model based on local bonding and semi-local conjugative interactions captures most of 

the bonding interactions in a metallic system and implies that the interactions that control the 

chemistry of metals are at most semi-local in nature, not completely nonlocal as previous models 
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would suggest (although this does not mean that other properties of metals such as electrical 

conductivity are not dependent on long range interactions). 

2.2 Bonding in Surfaces 

We now examine the modification of the metal-metal bonding in the bulk upon cleavage of a 

surface.  In this treatment, we ignore the observed relaxation of atoms near the surface from their 

bulk positions as well as the possibility of complete reconstruction of the surface structure that 

are known to occur upon surface cleavage.
12

  As mentioned at the beginning of this chapter, the 

fcc symmetry present in the bulk, that we utilized to describe the electronic structure in the 

previous section, is broken by the cleavage of a surface.  This has the potential to make the 

bonding in surfaces more complicated than in the bulk.  The primary effect of this is the breaking 

of metal-metal bonds upon cleavage of the surface.  This is shown in Figure 2.13 for the (111) 

surface where it can be seen that three bonds are broken to each metal atom in the surface so that 

these atoms have a coordination number of nine instead of twelve as in the bulk.  In order for the 

surface atoms to remain bond saturated by fulfilling the sum rule in Equation (1.44), the bonds to 

some or all of the nine remaining ligands must increase in magnitude to compensate for the loss 

of the other three bonds. 

In an accurate electronic structure calculation (performed self-consistently) the orbital energies 

and resonance integrals associated with atoms in the surface layer (given in Table 2.1 for the 

bulk) will change when the surface is cleaved.  In the Extended Hückel model employed in this 

work, these changes do not occur since these parameters are independent of the environment 

surrounding a given atom.  While this will lead to additional differences between the model and 

a full electronic structure calculation, it is likely that this will not affect the qualitative behavior 

of the trends we are interested in.  This approach is taken in other work as well, where it is 

presumed that the qualitative features of the model are not affected.
11,12
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Figure 2.13  (a) In the bulk fcc crystal, each metal atom forms bonds with the twelve atoms 

in its coordination shell of magnitude    ⁄ .  Cleavage of a (111) surface removes three of 

these bonds so that the metal atom forms bonds of magnitude    ⁄  with six ligands in the 

plane of the surface and forms bonds of magnitude   ⁄  with three ligands in the 

subsurface layer.  (b) Cleavage of the surface leaves the surface atoms bond unsaturated 

(colored red).  In order to restore bond saturation, the bonds between the odd pairs of 

layers double in magnitude while the bonds between the even pairs of layers are broken, 

leaving a stack of non-bonded (to zero order) two-layer slabs. 

2.2.1 Changes in zero order electronic structure due to surface cleavage 

There are two ways in which the surface atoms can remain bond saturated while still preserving 

the two dimensional translational symmetry of the surface.  As shown in Figure 2.13, there are 

two inequivalent groups of ligands – one group of six ligands that are in the surface plane and 
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one group of three ligands in the subsurface plane.  To restore bond saturation of the surface 

atoms, then, one can either increase the magnitude of the bonds to the surface ligands or increase 

the magnitude of the bonds to the subsurface ligands, as well as any combination of the two.  It 

turns out that it is much less complicated to increase the magnitude of the bonds to the 

subsurface ligands.  To see why, recall that in the bulk, each pair of collinear ligands forms 

bonds with a single hybrid on the central metal atom, as was seen in Figure 2.3.  Since the 

subsurface ligands are collinear to the three ligands that were removed when the surface was 

cleaved, the hybrid on the surface atom that was bound to one of the removed ligands has the 

same composition as the hybrid bound to one of the subsurface ligands.  Therefore, an increase 

in the magnitude of the bonds to these ligands will not change the composition of any of the 

hybrids on the surface atoms – we are simply redistributing this hybrid between the two ligands.  

This is advantageous because most of the results obtained for bonding in the bulk will apply 

unmodified to the surface.  In fact, the zero order binding energy does not even change upon 

cleavage of the surface – all of the surface energy comes from the loss of conjugative 

interactions between the two cleaved surface layers. 

To restore bond saturation of the surface atoms after surface cleavage, the bonds between the 

surface and subsurface layers must double in magnitude.  This has the negative consequence of 

bond oversaturating the subsurface atoms.  In order to maintain the sum rule, the magnitudes of 

the other bonds to the subsurface atoms must decrease.  If we again constrain these changes to 

the chains of collinear ligands that were broken when the surface was cleaved, we get the 

structure shown in Figure 2.13 where the magnitudes of odd bonds along the chain double in 

magnitude while the magnitudes of the even bonds go to zero.  Thus the semi-infinite slab is 

composed of a stack of non-bonded two-layer slabs.  This seems unrealistic because cleavage of 

a surface should only affect the electronic structure in the first few layers of atoms – it would be 

unphysical for bonds deep within the bulk to be affected by the presence of a surface.  While the 

conjugative interactions will counteract this and actually restore the original electronic structure 

of the bulk deep within the surface (although it will be proportioned differently than in the bulk 

between zero order bonding and conjugative bonding), it is still disconcerting that the zero order 

electronic structure is so unrealistic. 
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The issues just discussed pose a major problem with the present scheme for restoring bond 

saturation after surface cleavage – however, we are not interested in the electronic structure deep 

within the bulk if we are examining chemisorption to the surface.  In fact, almost all ab-initio 

calculations of chemisorption model the semi-infinite surface as consisting of a few layers of 

metal atoms surrounded by vacuum on both sides
1
.  We therefore reconcile with the 

complications addressed in the previous paragraph by examining adsorption on a two layer slab 

in the next chapter instead of on a semi-infinite surface.  Although the absolute values of the 

chemisorption energy will likely be different than those on a thicker slab, we would expect that 

these are only small perturbations and have little impact on periodic trends in chemisorption.
1
 

On a final note, a more realistic (but less practical) model of the semi-infinite surface would be 

to restore the bond saturation of the surface atoms by increasing the magnitudes of the bonds 

between surface atoms.  Using this scheme, restoring the bond saturation of one surface atom 

will not cause any other atoms to become oversaturated – it actually helps the neighboring 

surface atoms to restore their bond saturation as well.  This has the advantage of restricting 

changes in the zero order electronic structure to the first layer.  The disadvantage of this scheme, 

as mentioned earlier, is that the hybrids forming the new bonds between surface atoms will not 

have the same composition as they did in the bulk.  The modified hybrids would no longer be 

directed along the bond axes connection pairs of surface atoms, and instead, would be bent out 

outwards with respect to the plane of the surface.  This is not a major problem fundamentally, 

but it makes the model more cumbersome to describe. 

2.2.2 Surface Energy 

The zero order surface energy of the two-layer slab can be calculated by envisioning the 

cleavage of the slab from the bulk as shown in Figure 2.14.  Since this process creates two new 

surfaces, the surface energy is equal to half the energy lost by this cleavage.  If the surface 

contains   atoms, then there will be    bonds joining each pair of neighboring layers in the 

bulk.  Creating the slab involves making two cuts in the bulk to free the slab which involves 

breaking    metal-metal bonds, followed by annealing the two remaining sections of the bulk 
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back together to restore    of the metal-metal bonds.  Thus, creating the slab requires a net total 

of    bonds be broken. 

 

Figure 2.14  Cleavage of a two-layer slab from the bulk occurs in two steps.  First, two cuts 

are made in the bulk to remove the slab, breaking three bonds for every atom in the slab.  

This leaves a gap in the bulk, which is then annealed, forming three bonds for every pair of 

atoms in the slab. 

As previously discussed, when the two-layer slab is isolated from the bulk, the    bonds 

between the two layers double in magnitude to make up for the loss of the bonds between the 

slab and the remaining bulk.  This results in a doubling of the bond energies of these bonds, 

which exactly cancels out the loss in bond energy from the    bonds that were broken to create 
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the slab.  Therefore, there is no change in zero-order energy to cut the slab from the surface, and 

the surface energy is due entirely to a loss of conjugative interactions. 

For each of the    inter-slab bonds that were broken to create the slab, the energy of the 

conjugative interactions across that bond (     
    

, given by Equation (2.22)) will be lost.  Since 

two surface atoms are created for every three of these bonds that are broken, the resulting 

contribution to the surface energy is 

      
       

 

 
     

    
 

(2.27) 

Recall that this energy increases from Au to a maximum at Os before decreasing from Os to W, 

as shown in Figure 2.11. 

An additional loss of conjugation energy occurs due to the doubling of the magnitude of the zero 

order bonds between the two surface layers.  Since the orbitals participating in zero order 

bonding cannot participate in conjugation, increasing the magnitude of these bonds leads to a 

corresponding decrease in the associated conjugation energy.  This decrease is equal to the 

doubling of the zero order bond energy in Equation (2.24c) that is subtracted from the total 

conjugation energy to account for this effect and increases from Au to W as the zero order bonds 

become stronger as shown in Figure 2.15 

      
       

 

 
       ̅  

 
(2.28) 

On W, these bonds have magnitudes of unity so that the conjugation energy is particularly weak, 

similar to what was seen for ethane in Chapter 1. 
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Figure 2.15  Energies of conjugative interactions between a surface atom and a neighboring 

subsurface atom (red).  Also shown are the contributions to the total energy in Equation 

(2.23) involving donation into the   orbital (blue), the    orbital (green), and the zero order 

term that must be subtracted. 
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Figure 2.16  Loss of bond energy due to surface formation (red) with contributions from 

breakage of inter-slab bonds (blue) and reduction of conjugation in intra-slab bonds 

(green).  DFT values (green dots) are shown for comparison. 

Combining the two contributions to the surface energy from Equations (2.27) and (2.28) leads to 

a total surface energy of  

        
 

 
(     

    
        ̅  

) 
(2.29) 

As seen in Figure 2.16, this energy increases from Au to Os and then levels out and remains 

nearly constant between Os and W.  The increase between Au and Os is due to increases in both 

the conjugation energy of the broken inter-slab bonds and the decrease in conjugation energy of 

the intra-slab bonds upon surface formation.  The surface energy is constant between Os and W 

because the decrease in conjugation energy of the broken inter-slab bonds cancels out the 

increase in conjugation energy lost form the intra-slab bonds.  Fundamentally, the leveling out of 

the surface energy between Os and W, as well as the leveling out of the cohesive energy seen in 
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the last section, is due to the reduction in magnitude of the lone pair donor orbitals below the 

point where they are able to saturate the acceptor orbitals, which occurs between Os and Re.  

Figure 2.16 also shows the DFT values of the surface energy calculated using the procedure in 

Appendix B.  These values are considerably smaller than the values calculated by the model, and 

also only increase in magnitude from Au to Os by about half as much.  The shape of the trend, 

however, is still the same as the trend for the model, indicating that the model captures the 

qualitative features that control the metal-metal bonding.  As with the cohesive energy, the 

discrepancy between the model and DFT values of the surface energy may be due to neglect of 

Pauli repulsion and electrostatic interactions as well as an overestimation of the conjugation 

energy since it was calculated only to second order in perturbation theory. 
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Chapter 3  –  Local Bonding Description of Chemisorption on 5d 

Transition Metal Surfaces 

Now that we have an understanding of the bonding within a transition metal crystal in both the 

bulk and at the surface, we would like to use the local bonding formalism we have developed to 

study how adsorbates bind to transition metal surfaces.  As seen in Figure 3.1, the adsorption 

energies calculated by DFT have very different behavior for different species.  The binding 

energy of atomic hydrogen is seen to strengthen significantly between Au and Pt, level out 

between Pt and Os, and then weaken going from Os to Re.  Other species such as atomic oxygen 

and hydroxyl have very different behavior in which the adsorption energy strengthens 

continuously between Au and Re.  These different qualitative behaviors of different adsorbates 

cannot be explained by employing the commonly used d-band center model of Hammer and 

Nørskov.
7,8

  This is due to the fact that this model predicts that the binding energies of all 

adsorbates should scale linearly with the energy of the center of the d-band with respect to the 

Fermi level.  This implies that the binding energies of two different adsorbates should 

qualitatively behave the same way as the composition of the metal surface changes, which is 

shown in Figure 3.1 to be clearly not the case.  We would ultimately like to see if we can 

rationalize these different behavior using the bonding model we have developed. 
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Figure 3.1  Adsorption energies of different species on the (111) surface of fcc    transition 

metals calculated with DFT using the method in Appendix B.  Values for a given adsorbate 

have been normalized to the maximum adsorption energy for that adsorbate across all five 

metal atoms.  The structures of these adsorbates are shown in Appendix C.  NH2 is 

constrained to have planar geometry while NH and OH are constrained to have linear 

geometry.  Note that the lines for O and NH are nearly identical. 

3.1 Chemisorption of Atomic Hydrogen 

Atomic hydrogen, with its single unpaired electron in an   orbital, is the simplest of the 

adsorbates that fall into the category of strong chemisorption.  It therefore serves as a good 

starting point for understanding strong chemisorption to transition metal surfaces using the 



103 

 

concepts of local bonding.  After examining atomic hydrogen, we will apply the insights we have 

gained towards the chemisorption of more complicated adsorbates in section 3.2. 

3.1.1 Zero order bonding 

Since the hydrogen atom has one unpaired electron, it is bond saturated by forming a full   bond 

with a surface metal atom in the zero order electronic structure, leading to an increase in the total 

binding energy of the system due to the formation of this new bond.  At this point, the metal 

atom bound to the hydrogen is bond oversaturated so in order to maintain the sum relation in 

Equation (1.44), the magnitudes of the bonds it forms with its neighbors must decrease by a total 

of one unit, leading to a decrease in binding energy that partially offsets the increase due to 

formation of the metal-hydrogen bond.  This reduction in metal-metal bonding then leads to 

bond undersaturation of the metal atoms surrounding the adsorption site, requiring that the 

magnitudes of other nearby bond be adjusted to maintain bond saturation for all metal atoms, 

partially cancelling out the loss in binding energy due to the original reduction in metal-metal 

bonding. 

If instead of using a model where one hydrogen atom is adsorbed on an infinite two-layer slab, 

we use a model where both sides of the slab are covered with a monolayer of hydrogen as shown 

in Figure 3.2, the translational and inversion symmetry of the clean two-layer slab is retained and 

the complications due to bond undersaturation in the metal atoms surrounding the adsorption site 

do not occur since the loss in metal-metal bonding is made up by the formation of bonds to 

hydrogen for all the metal atoms.  We will therefore use this simpler model for the remainder of 

this chapter.  The adsorption energy predicted by this model will differ from the value for a 

single hydrogen atom on an infinite surface because we are implicitly including through-surface 

interactions between the neighboring adsorbates (although through-space interactions are not 

included).  However, through-surface interactions between adsorbates bound to neighboring 

metal atoms are known to be weak (as long as the each metal atom is bound to at most one 

adsorbate) compared to the magnitude of the adsorption energy
1
 so it is expected that the 

removal of these interactions would not change the qualitative nature of the bonding structure 
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around the adsorption site and we can still gain important insights that are relevant to adsorption 

at any coverage. 

 

Figure 3.2  Two-layer infinite slab with a monolayer of hydrogen adsorbed on each side 

Adsorption energy in the surface-molecule limit 

In the surface molecule limit, the chemisorption process can be broken down into the three steps 

shown in Figure 3.3.  The first process involves the decomposition of the two-layer slab into the 

constituent metal atoms.  This results in an increase in total energy equal to the cohesive energy 

of the slab,       , due to breaking of the metal-metal bonds.  The second process involves 

formation of one or more bonds between each adsorbate and metal atom to form a surface 
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molecule, leading to a decrease in total energy equal to      .  Finally, the slab is rebuilt from 

the surface molecules, resulting in the formation of metal-metal bonds and a decrease in total 

energy equal to       
 .  This allows us to express the adsorption energy of a fragment as 

                  
                       

(3.1) 

Thus, the adsorption energy is equal to the formation energy       of the surface molecule 

between the adsorbate and a single metal atom in isolation plus the change in cohesive energy of 

the metal slab        .  We will begin by examining the surface molecule formation energy and 

then turn to the more complicated change in cohesive energy in the remainder of this section. 

 

Figure 3.3  The chemisorption process can be broken down into three steps – first the slab 

is separated into its constituent metal atoms accompanied by a loss of binding energy equal 

to       ; then each metal atom bonds to an adsorbate to form a metal-adsorbate 

“molecule”, resulting in an increase in binding energy of      ; finally the metal-

adsorbate molecules are brought back together to reform the slab, leading to an increase in 

binding energy of       
 .  This leads to the adsorption energy       given by Equation 

(3.1). 



106 

 

Formation of the surface molecule 

In the surface molecule, the   orbital on the hydrogen atom forms a bond with an    hybrid    

on the single metal atom.  This hybrid orbital is formed from the metal   orbital and a   orbital 

oriented towards the hydrogen that will be called    

            (3.2a) 

A second hybrid    is also formed from the metal   and    orbitals that does not form any bond 

with the hydrogen atom 

            (3.2b) 

Both of these hybrid orbitals are shown in Figure 3.4 where it can be seen that    is concentrated 

along M-H bond axis while    is concentrated in a ring in the plane of the surface.  These 

orbitals have energies given by Equation (1.2) of 

 (  )    
      

         
      

(3.3a) 

 

 (  )    
      

         
      

(3.3b) 

where    and    are the energies of the metal   and   orbitals, with           .  The metal-

hydrogen bonding orbital is then formed from    and the   orbital on the hydrogen as shown in 

Figure 3.5 and has the form 

              
(3.4) 

while the corresponding antibonding orbital has the form 

   
            

(3.5) 



107 

 

where    and    are the polarization coefficients that determine the electron distribution 

between the metal orbital and the hydrogen atom. 

 

Figure 3.4  The   orbital and a   orbital aligned with the metal-hydrogen bond axis, called 

  , combined to form two new orthogonal orbitals,    and   .  The orbital    is used to 

form a bond with hydrogen while    participates in metal-metal bonding. 

The total change in binding energy due to formation of the metal-hydrogen bond is equal to the 

sum of the bond formation energy      and the hybridization energy of the metal atom     

(Equation (1.14)) 
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(3.6) 

The bond formation energy is given by Equation (1.11) and is equal to the sum of a covalent 

term and an ionic term 

      (  
     

 )⏞      
        

[ (  )     
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       ⏞    
         

     ⏟        
        

 
(1.11) 

where    
 is the energy of the hydrogen   orbital and     is the resonance integral between    

and the hydrogen   orbital given by 

      ⟨ | |  ⟩    ⟨ | |  ⟩ 
(3.7) 

which is determined by Equations (1.10) and (3.2). 
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Figure 3.5  The metal-hydrogen bond is formed from an     hybrid    on the metal atom 

interacting with the   orbital on the hydrogen atom. 

The hybridization energy of the metal atom is given by Equation (1.15) 

        (  )    ,    (  )- 
(3.8) 

where    is the occupancy of    in the hybridized atom.  The reference electron configuration of 

the metal atom used to define the hybridization energy is      .  Following hybridization, the 

electron configuration becomes     
         .  One electron occupies    for all transition metal 

atoms except for the coinage metals – in these atoms, the four unhybridized   orbitals are 
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completely filled with eight of the eleven valence electrons so that    must contain two 

electrons.  Using the energies of    and    in Equation (3.3)  gives 

      
 (    )     

(3.9) 

We can see that for all transition metal atoms other than the coinage metals, the hybridization 

energy is zero since     ; for the coinage metals it is equal to 

       
      

(3.10) 

As the   character of    increases, the   character of    decreases and the   character increases, 

leading to an increase in binding energy since the energy of the   orbital is higher than the 

energy of the   orbitals.  Therefore, any   character in the metal-hydrogen bond will lead to a 

decrease in binding energy. 

The forms of the metal atom hybrids    and    along with the polarization coefficients of the 

metal-hydrogen bonding orbital are determined by maximizing the binding energy of the system 

in Equation (3.6).  The resonance integrals and orbital energies that appear in this equation are 

shown in Table 2.1.  If we ignore for the moment the variation in these parameters between the 

different metals, there is no change in the expression for the metal-adsorbate bond energy in 

Equation (1.11) from one metal to the next.  The only part of the total binding energy that 

changes between different metals is the hybridization energy in Equation (3.9) which is given by 

Equation (3.10) for the coinage metals and is zero for the other metals.  We therefore obtain two 

solutions for     – one for the coinage metals and one for the others.  Using the parameters for 

Ir in Table 2.1 for all the metals, the change in binding energy upon formation of the metal-

hydrogen bond is -6.03 eV for the coinage metals and -7.08 eV for the other metals.  The 

bonding orbital is moderately polarized towards the metal atom, with a charge transfer of 0.23 

electrons from the hydrogen atom to the metal atom for the non-coinage metals and a charge 

transfer of 0.15 electrons for the coinage metals. 
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The metal hybrid    has greater   character (67%) than   character for the non-coinage metals, 

which can be attributed to the greater value individual resonance integral between the hydrogen   

orbital and the metal   orbital (-2.69 eV) compared to the resonance integral with the metal   

orbital (-2.16 eV).  The composition of    on the coinage metals is richer in   character (64%) 

than   character due to the energy required to promote part of an electron from    to the metal   

orbital so that    can participate in bonding.  This leads to a less favorable interaction between 

   and the hydrogen   orbital since the hybrid does not have the optimal composition of the 

hybrids in the non-coinage metals.  The reduction in this interaction along with the hybridization 

energy leads to the lower surface molecule formation energy to coinage metal atoms compared to 

the non-coinage metal atoms. 

Adsorption induced changes in metal atom hybridization 

The formation of a full bond between the metal hybrid    and the hydrogen   orbital removes    

from participating in metal-metal bonding, causing a change in the composition, shape, and 

magnitude of the metal-metal bonding hybrids that were previously used in the bulk.  To discuss 

hybridization in the presence of the adsorbate layer, it is convenient to use a different basis of 

atomic orbitals than those presented in Figure 2.2 for the bulk metal and metal slab.  In this new 

basis set, shown in Figure 3.6, the   axis used to define the canonical set of   orbitals is oriented 

along the metal-hydrogen bond so the     orbital corresponds to the   orbital that bonds with 

hydrogen,   .  Two other atomic   orbitals,     and    , have   symmetry with respect to the 

M-H bond while the remaining two,     and       , have   symmetry.  As discussed in the 

previous section,    and the metal   orbital combine to form    and   , of which only the latter 

participates in metal-metal bonding.  This leaves us with the orbital set 

{                     } for forming metal-metal bonds. 

The hybrids used for forming metal-metal bonds in the bulk shown in Figure 2.3 cannot be 

constructed from the present set, due to the removal of   .  The formation of the metal-hydrogen 

bond breaks the fcc symmetry around the metal atom so that it is no longer possible to form 

equivalent surface and subsurface hybrids.  By comparing the shapes of the new orbital set in 

Figure 3.6 with the positions of the metal atoms, we can see that   ,    , and        are mainly 
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oriented towards atoms in the surface layer while     and     are oriented towards atoms in the 

subsurface layer.  We will therefore use the first three orbitals to form metal-metal bonds within 

the surface layer and the last two orbitals to form metal-metal bonds between the surface layer 

and the subsurface layer. 

 

Figure 3.6  Atomic   orbitals used to construct hybrid orbitals in the adsorbate covered 

surface 

As shown in Figure 3.7, the     and        orbitals can be transformed into a fractional set of 

three orbitals, each having magnitude of    .  Each of the orbitals in this set is oriented towards 

a pair of collinear surface ligands.  It should be noted that even though these orbitals have the 

same magnitude as the     orbitals in the bulk, they do not have the same shape, leading to lower 

concentration along the bond axis.  Similarly, the     and     orbitals can also be transformed 

into a fractional set of three orbitals of magnitude    , each being oriented towards one of the 

three subsurface ligands.  The positive lobes of these orbitals are not even oriented along the 

metal-metal bond axis as the surface orbitals were, being offset by about 10 degrees.  The first 
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set of fractional orbitals will be referred to as the      
  set while the second will be referred to as 

the     
  set.  Together with   , this forms the        

     
  representation of the orbital space 

available for metal-metal bonding. 

 

Figure 3.7  Fractional   orbitals used to construct hybrids in the adsorbate covered surface 
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Metal-metal bonding in W-H 

Tungsten atoms have no lone pairs so the entire        
     

  orbital space on the atom can be 

used to form metal-metal bonds.  As discussed previously, the        
  set will be used to form 

hybrid orbitals to bond with the surface metal atoms while the     
  set will be used to form 

hybrids to bond with the subsurface metal atoms.  This leads to a set of six hybrids of magnitude 

    to form bonds with the six surface ligands and a set of three hybrids of magnitude     to 

form bonds with the three subsurface ligands.  The resulting hybrids on atom A forming a bond 

with surface atom B have the form 

    
 

√ 
[   √     

    
] (3.11a) 

where    
    

 is a       orbital with the positive lobe oriented towards atom B.  These hybrids 

have the same magnitude as those in the absence of the adsorbate layer but have a different shape 

as we will see shortly.  A hybrid on atom A forming a bond with subsurface atom C has the form 

    √
 

 
   

    
(3.11b) 

being composed entirely of a      orbital with the positive lobe positioned as close as possible to 

atom C.  These hybrids only have     the magnitude on the clean surface and have a 

significantly different shape, being much less concentrated along the metal-metal bond axis. 

Metal-metal bonding in Re-H to Au-H 

The lone pairs on atoms of Re to Au can go into three different sets of orbitals that maintain the 

symmetry of the surface as shown in Figure 3.8.  Placing     of a lone pair into each of the two 

      orbitals leads to a charge distribution concentrated in a ring around the metal-hydrogen 

bond axis in the plane of the surface.  Alternatively,     of a lone pair can be placed into each of 

the two      orbitals, leading to a charge distribution concentrated in two parallel rings around 
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the metal-hydrogen bond axis, one above and one below the plane of the surface.  Up to two lone 

pairs can be placed into each of these two sets, for a total of four lone pairs.  Finally, a lone pair 

can be placed in the    orbital, leading to a charge distribution concentrated in a narrow ring 

around the metal atom in the plane of the surface. 

 

Figure 3.8  Charge distributions from placing a lone pair into a certain set of orbitals on 

the adsorbate covered surface 

Since there is no obvious reason to place lone pairs in one of the sets of    orbitals over the other, 

each lone pair will be distributed equally between the two in a      
     

  set that can contain up 

to four lone pairs and has the charge distribution shown in Figure 3.8.  Each lone pair added to 

this set removes     each of a       orbital and a      orbital from those available to form 

metal-metal bonds.  This leads to surface and subsurface hybrids having forms given by 
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(3.12a) 

and 
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(3.12b) 

for a metal atom of valence   having       lone pairs.  As with the hybrids on W, the 

surface hybrids have the same magnitude but different shape than on the clean surface while the 

subsurface hybrids have     of the magnitude of those on the clean surface.  This leads to a sum 

of metal-metal bond orders to a given metal atom equal to    , which is one unit less than the 

sum of bond orders to a metal atom in the clean surface.  This satisfies the sum rule in Equation 

(1.44) which states that the formation of the metal-hydrogen bond must lead to a decrease in total 

metal-metal bond order of one unit.  Interestingly, we see that all of this decrease occurs in bonds 

to metal atoms in the subsurface layer.  This seems reasonable because the    orbital used to 

form the metal-hydrogen bond is oriented along the M-H bond axis and thus has high 

concentration towards the subsurface ligands and low concentration towards the surface ligands.  

It makes sense, then, that taking this orbital away from metal-metal bonding should 

predominantly affect the bonds to subsurface ligands. 

On Pt, the four lone pairs occupy the entire      
     

  orbital space leaving only the    orbital to 

form zero order bonds with the surface metal atoms and no ability to form zero order bonds to 

subsurface metal atoms (although conjugative interactions will still occur).  Additionally, the    

orbital is much less concentrated along the metal-metal bond axes than the hybrid orbitals on Ir 

to W, much like the   orbital in bulk Au compared to the    hybrids on Pt to W for forming 

metal-metal bonds.  The fifth lone pair on Au must go into the    orbital, leaving no orbitals to 

form metal-metal bonds in the zero order electronic structure.  As we will see later, these 

behaviors will cause the adsorption energies to Au and Pt to differ significantly from the 

adsorption energies to the other    transition metals. 
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Metal-metal bond energy 

The energies of the metal-metal bonds in the metal slab in the presence of an adsorbate layer can 

be calculated in a manner similar to those in the bulk in Chapter 2.  In that case, the bond energy 

due to the   interaction between atoms A and B is calculated from Equation (2.6) 

       ⟨   |   
 ⟩⟨   

 |   ⟩   
 

(3.13) 

where    
 is the resonance integral associated with the    interaction and    

  and    
  are the 

hybrid orbital that defines this interaction given in Equation (2.7) 

   
            

(3.14a) 

 

   
            

(3.14b) 

with     being a   orbital on atom A oriented along the A-B having the shape of the canonical 

    orbital and     being the same for atom B. 

The overlap integrals ⟨   |   
 ⟩ and ⟨   

 |   ⟩ can be written in terms of integrals involving the 

  , and       components of the bonding hybrids     and     for bonds to surface atoms 
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(3.15b) 

Using the forms of the hybrid orbitals in Equations (3.2b), the overlap integrals in these 

expressions are found to be 
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so that the bond energy can be written in terms of interactions between these components 
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As with the bond energy in the bulk and the clean surface, this bond energy contains three terms, 

shown in Figure 3.9, that account for the three different types of interactions between the orbitals 

on A and B.  The first term is due to interactions between the    components of the bonding 

hybrid orbitals on A and B and, like the     term in Equation (2.12) for the bulk, is 

independent of the metal atom valence.  As seen in the figure, this interaction contributes the 

same amount to the bond energy for Pt to W.  The second term is due to interactions between the 

      components of the hybrids on A and B and, like the corresponding     term for the 

bulk, is proportional to the number of       orbitals participating in metal-metal bonding 

(   ), leading to a linear increase in the bond energy with increasing metal atom valence.  The 

last term is due to the interaction between the    component of the hybrid on one metal atom and 

the       component of the hybrid on the other atom.  Analogous to the corresponding     

term in the bulk, it is proportional to the square root of the number of       orbitals participating 

in metal-metal bonding.  As in the bulk and the clean surface, this term accounts for a large 
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portion of the total bond energy in Ir to W and causes a larger increase in bond energy between 

Pt and Ir than between other pairs of metals differing in valence by one unit.  The surface bond 

energy on Au is zero since, as discussed before, Au has no orbitals to participate in metal-metal 

bonding. 

 

Figure 3.9  Decomposition of the zero order energy of surface bonds in the presence of an 

adsorbate layer of atomic hydrogen 

The bond energy of the bonds to subsurface atoms is due only to the interaction between      

components of the hybrid orbitals forming the bond since    does not participate in these bonds.  

The overlap integrals in Equation (3.15) corresponding to the    
    components are equal to 
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so that the total bond energy in Equation (3.13) is 
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Figure 3.10  Decomposition of the zero order energy of subsurface bonds in the presence of 

adsorbate layer of atomic hydrogen 

This bond energy expression for the bonds to subsurface atoms contains only one term which 

accounts for the interaction between the      components of the hybrids forming the bond and is 

proportional to the number of      orbitals participating in bonding (   ) as shown in Figure 

3.10.  Thus, the bond energy is zero for Pt and increases linear with metal atom valence from Pt 

to W.  As with the surface bonds, these bonds are absent on Au due the absence of orbitals 

containing unpaired electrons. 
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Reduction in metal-metal bonding due to addition of a hydrogen adsorbate layer 

Using the bond energies in Equations (3.18) and (3.22) for the slab in presence of the adsorbate 

layer just discussed along with the bond energies in the clean surface, we can calculate the 

reduction in metal-metal bonding energy resulting from adsorption of the adsorbate layer.  Recall 

from Chapter 2 that these bond energies are given by 
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for surface and subsurface bonds in the clean surface and by 
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for surface and subsurface bonds in the surface with an adsorbate layer (from Equations (3.18) and 

(3.22)).  Combining like terms in these expressions gives the following for the loss of metal-metal bond 

energy upon adsorption in surface bonds 
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and in subsurface bonds 
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(3.25b) 

These losses in bond energy are shown in Figure 3.11 where it can be seen that, with the 

exception of Pt, the surface bonds actually increase in strength upon addition of the adsorbate 

layer.  To understand why these bonds increase in strength, it is useful to write the surface 

hybrids in terms of the metal   orbital and a canonical   orbital basis with the     orbital (now 

   ) lying along the A-B bond. 
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As seen in this expression, the hybrid also has a component   
   having   symmetry with respect 

to the A-B bond that does not participate in formation of the   metal-metal bond.  Using the 

values of    and    listed earlier for Pt to W, we can see that the magnitude of the   component 

is 36% larger than it is in the bulk and the clean surface.  Since the magnitude of the   

component in the bulk hybrids is below the optimal value of   
 , increasing the magnitude of this 

component in the presence of the adsorbate leads to an increase in bond energy.  Furthermore, 

we can see that the shape of the   component of     stays very similar to the optimal     shape 

by calculating the normalized overlap with    , which is equal to 
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(3.27) 

For Ir to W, this value is greater than 0.99, indicating that the shape of the   component of     

deviates very little from the optimal     shape.  Therefore, the   component of     participates 

just as effectively in the   interaction with     on atom B as it did in clean surface. 
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Figure 3.11  Change in zero order metal-metal bond energy upon adsorption (black) with 

contributions from surface (red) and subsurface (blue) bonds 

On Pt, however, the shape of the   component of     differs significantly from the shape in the 

clean surface.  This is due to the complete filling of the      
  shell with lone pairs so that only 

the    orbital can participate in forming surface metal-metal bonds.  The overlap of this 

component with     drops to 0.5 and the bond energy decreases significantly upon adsorption as 

was seen in Figure 3.11.  This leads to a larger decrease in metal-metal bond energy due to 

formation of the metal-hydrogen bond for Pt than for Ir to W. 

In contrast to the surface bonds, the subsurface bonds weaken significantly due to hydrogen 

adsorption as seen in Figure 3.11.  This is related to the reduction in bond magnitude by     of a 

unit compared to the magnitude on the clean surface as well as the complete removal of the   

orbital from participating in subsurface bonding.  As discussed earlier, the subsurface bonds are 

completely broken in Pt as the     
  shell becomes completely filled with two lone pairs leading 

to a complete loss of subsurface metal-metal bond energy.  As the valence increases from Pt to 
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W, the subsurface bonds in the clean surface increase in strength faster than they do in the 

presence of the adsorbate layer, causing the loss of subsurface bond energy to increase. 

The total decrease in zero-order metal-metal bond energy per metal atom upon adsorption, 

       , is equal to the sum of the losses over all six surface bonds and all three subsurface 

bonds 

       
  

 

 
(             ) 

(3.28) 

This quantity is shown in Figure 3.11 for Au to W where it can be seen to increase over this 

range as the metal atom valence increases, with the exception of Pt.  The anomalously high loss 

in metal-metal bond energy for Pt is due to the loss in the surface bonds discussed earlier due to 

changes in hybridization.  The general increase in this quantity from Au to W is due to the 

increase in the loss of subsurface bond energy as these bonds become stronger in the clean 

surface from Au to W. 

Trends in zero-order adsorption energy 

Figure 3.12 shows how the zero order adsorption energy of the hydrogen atom depends on the 

metal it is adsorbed to.  This adsorption energy       can be broken down into contributions 

from formation of the metal-hydrogen bond energy (     ) and the resulting weakening of 

metal-metal bond energy (     ). 

     
              

  
(3.29) 

The adsorption energy increases almost linearly from Re to Ir.  This increase is due to the 

increase in the loss of metal-metal bond energy upon adsorption from Ir to Re as the strength of 

the bonds in the clean surface increases – therefore, weakening these bonds by addition of an 

adsorbate costs more energy.  The adsorption energy decreases from Ir to Pt due to the 

weakening of the surface bonds upon adsorption that is specific to Pt that we discussed earlier.  

The adsorption energy decreases further on Au due to the lower formation energy of the surface 
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molecule resulting from the energy cost of promoting an electron from the filled   shell to the 

half filled   orbital to form an    hybrid that bonds to the hydrogen. 

Also shown in the figure is the DFT calculated adsorption energy of hydrogen for each metal.  It 

can be seen that, although the absolute value is off, the behavior between Re and Pt is quite 

similar between these values and those calculated from Equation (3.29).  The difference in 

adsorption energy between Au and Pt (0.76 eV), however, is underestimated by the zero order 

model, which predicts Au to bind hydrogen only 0.18 eV weaker than Pt   We will see next that 

this additional decrease in adsorption energy on Au is due to the loss of conjugative interactions 

upon adsorption. 

 

Figure 3.12  Hydrogen adsorption energy on (111) fcc metal surfaces (black) along with the 

individual components in Equation (3.29) due to formation of the bond between hydrogen 

and a single isolated metal atom (blue) and the loss of metal-metal bond energy upon 

adsorption (red).  Contributions from zero order bonding are also shown (dashed lines). 
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3.1.2 Conjugation 

In addition to changing the zero-order metal-metal bond energies, adsorption of hydrogen also 

changes the energies for conjugative interactions involving charge transfer across metal-metal 

bonds.  Determination of the conjugation energy for the adsorbate covered slab is similar to the 

calculation for the bulk and the clean slab in Chapter 2 except that the orbital basis used to define 

the individual charge transfer interactions is different due to the presence of the metal-hydrogen 

bond.  Although the fcc symmetry that simplified determination of this orbital basis is broken by 

the metal-hydrogen bond, there is still symmetry between the surface bonds and between the 

subsurface bonds – the addition of hydrogen only breaks the symmetry between the surface and 

subsurface bonds.  Since we use different sets of real atomic orbitals to form the surface and 

subsurface bonds, the occupied and unoccupied fractional orbitals generated by Equation (1.62) 

still obey the constraints in Equation (1.60) for a set of electron conserving interactions. 

For each bond between surface atoms A and B, conjugative interactions can be generated by a 

set of occupied and unoccupied fractional orbitals derived from   , two       orbitals, and two 

     orbitals.  Out of these five orbitals, only    and the       orbital aligned with the A-B 

bond,      
  , can participate in interactions with non-zero   components.  The other       orbital 

and one of the      orbitals can only participate in   interactions and the remaining      orbital 

can only participate in a   interaction.  Since we are ignoring the   and   interactions, we will 

only consider interactions involving    and      
  .  This leads to a set of donor orbitals on atom 

A consisting of the occupied bonding    and      
   orbitals    and      

   and the nonbonding 

lone pair orbital  ̈    
  .  The acceptor orbitals consist of the unoccupied bonding orbitals  ̅  and 

 ̅    
  .  A similar set exists on atom B.  As with the bulk, these orbitals form twelve conjugative 

interactions, six involving electron transfer from A to B and the other six involving transfer from 

B to A. 

The conjugative interactions between a surface atom A and a subsurface atom C can be 

generated by the set of occupied and unoccupied fractional orbitals derived from the atomic 

orbitals in Figure 3.9.  These consist of   , a      orbital aligned with the A-C bond,     
  , a 
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      orbital with one lobe in the vertical plane passing through the A-C bond,      
  , and an 

additional      and       orbital that only participate in   and   interactions with orbitals on 

atom C.  Interactions involving      
   are much weaker than the others since the   interactions 

between this orbital and orbitals on atom C are very weak, so we will not consider these 

interactions.  This leaves us with three donor orbitals   ,     
  , and  ̈   

   and two acceptor 

orbitals  ̅  and  ̅   
  .  A similar set exists on atom C, leading to twelve conjugative interactions, 

as with interactions between surface atoms. 

The magnitudes of the basis orbitals for the conjugative interactions are equal to 
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These orbital magnitudes are plotted in Figure 3.13.  Based on the way that the orbital magnitude 

changes with metal atom valence, the orbitals derived from    are analogous to those derived 

from the   orbital in the bulk, both having constant magnitudes of    .  Likewise, the orbitals 

derived from      
   and     

   are analogous to those derived from   
   in the bulk, with the 

magnitude of the bonding orbitals being proportional to the number of   orbitals participating in 

metal-metal bonding (    in the bulk and     in the adsorbate covered surface) and the 

magnitude of the lone pair orbitals being proportional to the number of lone pairs (    in both 

systems). 
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Figure 3.13  Magnitudes of orbitals used to generate conjugative interactions given by 

Equation (3.30) 

The interaction magnitudes arising from the zero order A-B bond are calculated in a similar way 

to those in the bulk in Equation (2.15) using Equation (3.12a) for the hybrids forming this bond.  

These are equal to 
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Similarly, the interaction magnitude arising from the zero order A-C bond are equal to 
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(3.32) 

since only the     
   orbital participates in this interaction. 

The magnitudes of the six conjugative interactions involving electron transfer from atom A to 

atom B can now be calculated using Equation (1.73).  The interaction magnitudes are plotted in 

Figure 3.14a and bare a strong resemblance to those in the clean surface in Figure 2.10.  The 

interactions involving electron transfer into  ̅  are limited by the magnitude of  ̅  to a magnitude 

of     as were the interactions in the bulk transferring electrons into  ̅.  As with the interactions 

in the bulk having  ̅ 
   as the acceptor orbital, those in the adsorbate covered surface with  ̅    

   

as the acceptor orbital are limited by the magnitude of  ̅    
   and thus increase in magnitude 

linearly with valence.  We can see that the interactions for Pt in the adsorbate covered surface are 

similar to the interactions for Au in the bulk – effectively, the formation of the M-H bond has 

lowered the valence of the metal atom by one for forming metal-metal bonds so that Pt-H only 

has interactions where  ̅  is the acceptor orbital and Au-H has no available acceptor orbitals.  

This is similar to what we saw for the zero order metal-metal bonding where bonds between two 

Pt-H involved only the    orbitals on both Pt atoms while there was no metal-metal bonding 

between two Au-H.  Similar behavior is seen for the magnitudes of the six conjugative 

interactions involving electron transfer from surface atom A to subsurface atom C shown in 

Figure 3.14b. 
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Figure 3.14  Magnitudes of surface (top) and subsurface (bottom) conjugative interactions.  

Blue lines correspond to charge transfer into the  ̅ orbital and green lines correspond to 

charge transfer into the  ̅  orbital.  Also shown are the individual contributions due to 

donation  ̈  (dashed lines) and    (dotted lines). 
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The resonance integrals needed to calculate the intrinsic interaction energy      
  in Equation 

(1.65) for surface interactions are equal to 
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while those for subsurface interactions are equal to 
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The effective energies in the denominator of      
  are equal to 
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where  (  ),      ( ), and     ( ) are given by 
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Finally, the total conjugation energy associated with a bond between two surface atoms A and B 

in the adsorbate covered slab can be calculated to be sum of all interactions in which charge is 

transferred from A to B       and all interactions in which charge is transferred from B to A 
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where       and       are equal to the sum of all interactions transferring charge into  ̅  and 

all interactions transferring charge into  ̅    , with the energy associated with the zero order A-B 

bond        ̅  
 subtracted 
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Similarly, the total conjugation energy associated with a bond between surface atom A and 

subsurface atom C is given by 

     
    

             
(3.46) 

with 
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The total conjugation energy for a surface bond is plotted in Figure 3.15 with respect to metal 

atom valence, along with the three components that make up the three terms in Equation (3.44).  

As with bonds in the clean surface, the total energy of all interactions donating charge into  ̅  is 

nearly constant with metal atom valence, although it does decrease somewhat between Os and W 

as the intrinsically weaker        ̅  interaction begins to replace the  ̈      ̅  interaction 

after the latter becomes limited by the decreasing magnitude of  ̈    , as was seen in Figure 

3.14.  As was also the case with bonds in the clean surface, the total energy of the interactions 

donating charge into  ̅     increases linearly with metal atom valence between Pt and Re since 

the magnitudes of these interactions are limited by the linearly increasing magnitude of  ̅    .  

Between Re and W, this interaction levels off as the intrinsically weaker        ̅     

interaction replaces the  ̈     interactions. 
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Figure 3.15  Energies of surface (top) and subsurface (bottom) conjugative interactions 

(red).  Also shown are the contributions to the total energy in Equations (3.44) and (3.47) 

involving donation into the   orbital (blue), the    orbital (green), and the zero order term 

that must be subtracted. 
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Figure 3.15 plots the total conjugation energy for subsurface bonds along with the three 

components that contribute to it in Equation (3.47).  As with the analogous quantities for surface 

bonds, the energy of interactions donating into  ̅  is nearly constant with metal atom valence 

while the energy of interactions donating into  ̅    increases between Pt and Re and then levels 

out between Re and W once donation from  ̈    start to be replaced by weaker donation from 

    .  Combined, the three components lead to a total conjugation energy for subsurface bonds 

that increases between Pt and Re and decreases slightly between Re and W. 

 

Figure 3.16  Change in conjugation energy upon adsorption of hydrogen with contributions 

from surface (red) and subsurface (blue) bonds 

The total loss in conjugation energy upon adsorption of hydrogen is equal to the energy lost by 

the six surface bonds and the three subsurface bonds and is shown in Figure 3.16 with the 

breakdown between surface and subsurface bonds. 

The adsorption energy of hydrogen on the metal surface including the change in conjugation 

energy is shown in Figure 3.12.  Here, we can see that the addition of conjugation to the model 
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results in a very large decrease in adsorption energy between Pt and Au of 2.10 eV.  This is more 

than twice the value predicted by DFT of 0.78 eV, and is likely due to the over-prediction of 

conjugation by second order perturbation theory. 

Based on the discussion in the last two paragraphs, we can conclude that adsorption of hydrogen 

on slabs of Pt to Re has only a small effect on the conjugation energy calculated by this model 

associated with metal-metal bonds in the slab, and the loss of bond energy in the slab upon 

adsorption is almost entirely due to changes in the zero-order structure.  This is not the case for 

Au, however.  Looking at Figure 3.16, we can see that the conjugation energy completely 

vanishes for both surface and subsurface bonds when a monolayer of hydrogen is adsorbed on 

each side of the slab.  This results in a large decrease in metal-metal bond energy from the zero-

order value and accounts for the large decrease in adsorption energy that was seen in the DFT 

calculations between Pt and Au.  The reason for this is that there are no metal-metal bonds in the 

zero-order structure of the slab since each Au-H “molecule” it is composed of is completely 

bond saturated.  Therefore, there are also no conjugative interactions involving charge transfer to 

or from metal-metal bonds.  There will be interactions involving charge transfer between metal-

hydrogen bonds, but these interactions are much weaker due to the large energy difference 

between the Au-H bonding and antibonding orbitals. 

3.2 Chemisorption Involving Multiple Interactions 

As was seen in Figure 3.1 at the beginning of the chapter (reproduced below), the trends in 

normalized adsorption energies of different adsorbates on the (111) surfaces of fcc Au to Re 

exhibit very different behavior.  Looking at the figure, it is apparent that the adsorbates fall into 

five different groups.  The first group contains atomic hydrogen and methyl (CH3) and exhibits 

an increase in adsorption energy from Au to Pt, which then levels out and decreases between Pt 

and Re.  The second group contains atomic carbon and methylene (CH2) which have an 

adsorption energy that increases between Au and Ir before leveling out and decreasing between 

Ir and Re.  Similarly, the adsorption energies of the third group containing atomic nitrogen, 

methylidyne (CH), and planar NH2 increase between Au and Os and are constant between Os 

and Re.  The species in the fourth group, atomic oxygen and linear NH, and the fifth group, 
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atomic fluorine and linear hydroxyl (OH), all have adsorption energies that increase over all the 

metals from Au to Re, although the distribution of this increase between different metals is 

different for the two groups. 

 

Figure 3.1 (reproduced) 

In the previous section, we concluded that the behavior of the adsorption energy of atomic 

hydrogen is due to a combination of changes in both the zero-order structure and the conjugative 

interactions upon adsorption.  The decrease in adsorption energy between Pt and Re was 

attributed to the increase in metal-metal bond strength in the clean slab, making it more 

energetically costly to form the metal-hydrogen bond, while the decrease in adsorption energy 

between Pt and Au was attributed to the elimination of strong conjugative interactions in the slab 
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upon adsorption of hydrogen on Au due to the formation of the bond saturated Au-H “molecule” 

as well as the energy needed to promote part of an electron from the filled   shell to the higher 

energy   orbital in order to form the metal-hydrogen bond.  Since the adsorption energy of CH3 

follows a similar trend and is isovalent to atomic hydrogen, we conclude that a similar electronic 

structure is present for both adsorbates.   

 

Figure 3.17  After one of the unpaired electrons on CH2 forms a   bond with the unpaired 

electron on Au, the remaining unpaired electron on CH2 can form a three electron   bond 

(dashed bond) with one of the lone pairs on Au, leading to a total Au-C bond order of 1.5 

The adsorption energy of CH2 is seen to increase between Au and Ir before leveling out and 

decreasing slightly between Ir and Re.  To understand this behavior, we first contemplate how 

CH2 should bond to an Au atom.  The unpaired electron on Au can form a   bond with one of the 

unpaired electrons on the carbon to form the structure shown in Figure 3.17.  The unpaired 

electron on carbon can still interact with the one of the lone pairs on Au to form a three electron 

bond.  This bond consists of a doubly occupied bonding orbital and a singly occupied 

antibonding orbital, leading to a total bond order of one half.  Therefore, the total Au-C bond 

order is 1.5.  Since the Au atom in this “molecule” is bond saturated, the Au atom is expected to 

interact only weakly with the neighboring metal atoms, similar to the Au-H and Au-CH3 

molecules.  Since the cohesive energy in the slab after adsorption is very weak, due to bond 

saturation of the Au-CH2 surface molecule, the total binding energy can be approximated by 

     (  )               (  ) 
(3.49) 

When CH2 adsorbs on Pt, its two unpaired electrons can form a   bond and one   bond with the 

two unpaired electrons on Pt.  This forms to the bond saturated Pt=CH2 “molecule”, which has a 

larger bond formation energy than Au-CH2 due to the increase of the metal-carbon bond order 

from 1.5 to 2.  Since this molecule is also bond saturated, it interacts only weakly with the 
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neighboring metal atoms in the slab so that       
    and the total binding energy is 

approximated by 

     (  )               (  ) 
(3.50) 

Both terms in this equation are larger than the corresponding terms in Equation (3.49) for Au, but 

the increase in       should be greater than the increase in        so that the adsorption energy 

increases from Au to Pt as shown by the DFT calculations.  It can therefore be concluded that the 

increase in adsorption energy of CH2 between Au and Pt is due to the increase in metal-carbon 

bond order – a very different mechanism than the one behind the increase in adsorption energy of 

H and CH3 between Au and Pt that was solely due to changes in metal-metal bonding. 

The increase in CH2 adsorption energy between Pt and Ir, however, is due to this same 

mechanism.  On Pt, the CH2 is completely bond saturated so that the bond order of the metal-

adsorbate bond cannot increase any more going from Pt to Ir – therefore, the Ir=CH2 molecule is 

left with one unpaired electron.  As with hydrogen and CH3 on Pt, this unpaired electron can 

form strong bonds with the neighboring metal atoms in the slab.  Therefore, the large decrease in 

metal-metal bond energy observed for adsorption on Au and Pt is not seen on Ir since the metal-

metal bonds are not almost completely eliminated after adsorption.  The metal-carbon bond 

energy does not significantly increase between Pt and Ir but the loss of metal-metal bond energy 

from adsorption becomes much smaller, leading to the increase in adsorption energy seen in 

Figure 3.1.  Between Ir and Re, both       and       are relatively constant for the same 

reason they were for hydrogen between Pt and Re – therefore, the adsorption energy of CH2 does 

not change much in this region. 

A similar argument can be used to rationalize the behavior of all the other adsorbates.  Over a 

certain range, the adsorption energy increases continuously due to an increase in the metal-

adsorbate bond order by increments of one half, while the metal-metal bonds in the slab are 

nearly eliminated in the final state due to bond saturation of the metal by the adsorbate.    Once 

the adsorbate is bond saturated, the metal-adsorbate bond energy remains constant, however, one 

further increase in adsorption energy occurs due to the ability of the metal atoms to form strong 



142 

 

metal-metal bonds following adsorption.  After this, all terms in Figure 3.3 remain constant and 

the adsorption energy does not change significantly anymore.  Looking at the structure of the 

metal-adsorbate bond across the different metals shown in Figure 3.18, it is seen that this 

explanation is easily applied to CH, and atomic nitrogen, which go from having a double bond 

with Au (a   bond and a coordinative   bond involving donation of a lone pair from Au to the 

adsorbate) to a triple bond with Ir, leading to a continuous increase in adsorption energy between 

Au and Os. 
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Figure 3.18  Bonding in the metal-adsorbate “molecule” formed between a single metal 

atom and each adsorbate.  Dashed bonds indicate a three electron bond of order one half.  

The structure furthest to the right for each adsorbate has a metal atom with a leftover 

unpaired electron that can form bonds with the other metal atoms in the surface. 
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The way that atomic carbon bonds to metal atoms is somewhat different compared to the other 

adsorbates examined so far.  Before atomic carbon adsorbs on Au, it abstracts one electron from 

the Au atom so that the anionic carbon has three unpaired electrons and the cationic Au has two 

unpaired electrons.  This allows the formation of a   bond and one   bond along with a three 

electron bond containing the third lone pair of the anionic carbon and a lone pair from Au – 

therefore, the Au-C bond order is 2.5 as shown in Figure 3.18.  Similarly, carbon abstracts one 

electron from Pt and forms a triple bond using the three unpaired electrons on each ion.  At this 

point, the carbon atom is bond saturated so that all of the other metals form a triple bond with it 

after first transferring one electron.  Thus, like CH2, atomic carbon is bond saturated at Pt and 

exhibits the same variation of binding energy across the different metals. 

The remaining adsorbates follow a similar pattern as the ones previously discussed (excluding 

atomic carbon).  The metal-adsorbate bond order continuously increases in increments of one 

half, along with a corresponding increase in adsorption energy, until the adsorbate is bond 

saturated.  At this point, these adsorbates behave differently because they all contain lone pairs 

that can further interact with any unpaired electrons on the metal atom.  Consider as an example 

the adsorption of NH2.  As shown in Figure 3.18, this species is bond saturated after forming a 

single   bond with Au.  In the Pt-NH2 molecule, the Pt has one unpaired electron that can form a 

three electron bond with the lone pair on the nitrogen atom, leading to a bond order of 1.5 and an 

increase in adsorption energy between Au and Pt.  Since Ir contains one less electron than Pt, the 

three electron bond is converted into a two electron bond, leading to an increase in M-N bond 

order to two and a further increase in adsorption energy.  At this point, the adsorbate along with 

its lone pairs, is bond saturated so the metal-adsorbate bond order can no longer increase.  The 

adsorption energy increases once again between Pt and Ir due to the ability of the Ir-NH2 

molecule to form metal-metal bonds.  After this, the adsorption energy remains constant for the 

same reason that was given for the adsorbates previously discussed. 

The same explanation applies to adsorption of atomic oxygen, OH, NH, and atomic fluorine.  

Although atomic oxygen has two lone pairs and fluorine has three, one of these cannot 

participate in bonding with the metal because they are contained in    orbitals oriented away 

from the metal atom.  The same is true for the lone pairs in atomic nitrogen and carbon. 
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At this point, we have rationalized the periodic trends in bonding energy for all of the adsorbates 

in Figure 3.1 based on our understanding of the chemisorption of hydrogen.  While the model 

developed in this work has not been applied numerically to these other adsorbates, it is still very 

satisfying to see that we can use it to qualitatively explain the very different trends in adsorption 

energy that are observed for many characteristically different adsorbates.  We can see that the 

structure of the metal-adsorbate bond is quite similar to the bonding expected in an analogous 

organometallic complex, with the metal atom ligands taking the place of the organic ligands.  

The main difference is that the metal atom in the slab is over-coordinated prior to (and after) 

adsorption while the organometallic complex is not.  This leads to the additional increase in 

adsorption energy that occurs after the adsorbate is already bond saturated once the metal-

adsorbate “molecule” gains the ability to form metal-metal bonds. 
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Summary 

In this dissertation, a framework has been developed for describing the bonding within transition 

metals and between a transition metal surface and an adsorbate in terms of fractional diatomic 

covalent bonds and the conjugative interactions between these bonds.  Using this framework, we 

were able to semi-quantitatively describe trends in bulk cohesive energies of transition metal 

crystals, surface formation energies, and energies of hydrogen adsorption on transition metal 

surfaces.  The values calculated in this way reproduce the qualitative features of trends obtained 

from full DFT calculations, indicating that the model developed here is capable of describing the 

most important features of metal-metal and metal-adsorbate bonding, even though it ignores the 

long range interactions between non-neighboring atoms that are known to be present in the 

metallic state.  Additionally, we were able to apply the qualitative aspects obtained from 

studying hydrogen adsorption to the study of more complicated adsorbates.  By doing this, it was 

possible to qualitatively rationalize the adsorption energy trends of most common adsorbates in 

the atop binding site, indicating that this model is applicable to most chemisorption phenomena. 

In the first chapter, a framework was proposed for describing local bonding in transition metal 

crystals.  The difficulty of constructing this lies in the fact that the number of metal-metal bonds 

each metal atom forms in a crystal far exceeds the number of unpaired electrons available for 

forming these bonds, meaning that these atoms are extremely hypervalent.  This hypervalency, 

along with the inflexibility of the coordination environment of a metal atom in the crystal, makes 

common methods of quantitatively describing localized bonding in molecules and transition 

metal complexes unsuitable for describing bonding in transition metal crystals. 

We find that in order to describe bonding in transition metal crystals in a similar way, it is 

necessary to introduce the concept of fractional bonds and fractional orbitals.  By eliminating the 

constraint that bonds must have integer bond order, it is possible to describe the bonding in 

transition metal crystals in terms of Lewis-like structures consisting of fractional bonds and lone 

pairs.  In classical Valence Bond Theory, each bond in a Lewis structure corresponds to a pair of 

electrons occupying a bonding molecule orbital composed of a linear superposition of two 

atomic hybrid orbital.  When fractional bonds are allowed, each fractional bond in a Lewis 
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structure corresponds to a fraction of an electron pair occupying a fractional bonding molecular 

orbital composed of fractional atomic hybrid orbitals.  A fractional orbital is an orbital whose 

wavefunction is normalized to a value (magnitude) less than unity.  The magnitude of a 

fractional bonding orbital is set equal to the bond order (magnitude) of the fractional bond it 

describes.  Furthermore, each fractional bonding orbital is constructed as a linear superposition 

of two fractional atomic hybrid orbitals, both having magnitudes equal to the magnitude of the 

bond.  In a more mathematically rigorous approach, each fractional orbital is constructed of a 

real component having a magnitude equal to the bond magnitude and a virtual component that 

normalizes the orbital to a value of unity.  The rules for determining Lewis structures in classical 

Valence Bond Theory can be seamlessly modified to accommodate fractional bonding by 

constraining the sum of the bond orders of all fractional bonds to a given atom to equal the 

valence of that atom. 

In addition to the fractional bonds formed in the zero order electronic structure of a transition 

metal crystal, there are conjugative interactions between these bonds and with lone pairs that 

involve electron transfer from an occupied bonding orbital or lone pair into a neighboring 

unoccupied antibonding orbital.  These conjugative interactions have only a secondary effect on 

the electronic structures of molecules that can be described by a single classical Lewis structure.  

In most transition metal complexes and crystals, however, these interactions make up a large part 

of the total binding energy due to the hypervalency of the metal atoms in these systems.  In 

current quantitative models of localized bonding, such as the Natural Bond Orbital Theory of 

Weinhold and Landis, the energies of these interactions are calculated using second order 

perturbation theory.  Adapting this procedure to systems with fractional orbitals is troublesome 

because electron transfer between two orbitals with different magnitudes leads to a change in the 

total number of electrons in the system.  Furthermore, even if all interactions occur between 

donor and acceptor orbitals with equal magnitudes, coupling between multiple interactions can 

also lead to changes in the total number of electrons. 

To get around this problem, we introduce an alternative was of describing conjugative 

interactions.  Instead of basing these interactions off of electron transfer from bonding orbitals 

and lone pairs into antibonding orbitals, we base them off of electron transfer between   and   
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atomic orbitals on neighboring atoms.  This results in a set of decoupled interactions that can be 

easily made to individually conserve the total number of electrons.  Basing the conjugative 

interactions off of atomic orbitals requires a few modifications to the formulae for calculating the 

energies of these interactions in order to take into account the bonding between atomic orbitals in 

the zero order electronic structure.  After making these modifications, this framework for 

describing conjugative interactions can be applied universally to any system with fractional 

orbitals. 

In Chapter 2, we applied the local fractional bonding formalism to describe the bonding in    

transition metal fcc crystals.  Each atom in an fcc crystal is coordinated by twelve other metal 

atoms.  Therefore, a metal with a valence   will form a fractional bond of magnitude    ⁄  with 

each of its twelve neighbors.  As with the transition metal complexes, each metal atom will have 

      lone pairs that are contained in nonbonding fractional hybrid orbitals of   character so 

that the bonding hybrid orbitals will have       composition.  On Au, the   shell is completely 

filled with lone pairs so that metal-metal bonding occurs only through the   orbital, while on W, 

there are no lone pairs so that the   orbital and the entire   shell is involved in bonding.  This 

hybridization is the same observed in transition metal complexes, so even though we are 

describing hypervalent atoms with fractional bonds, the hybrids will still have the same 

composition as they do in molecular systems although their arrangement and orientation will be 

different. 

The zero-order cohesive energy (not including conjugation) of the metal crystal is found to 

increase from Au to W as the hybrids forming the metal-metal bonds increase in magnitude, 

being nearly proportional to the metal atom valence.  The contribution to the cohesive energy 

from interactions between the   components of the hybrids is the same for all metals examined 

since the   orbital is fully involved in bonding for all of these metals as it does not contain any 

lone pairs.  As the valence increases from Au to W, the number of lone pairs decreases, freeing 

up   orbitals to participate in bonding.  As a result, the cohesive energy from interactions 

involving the   orbitals steadily increases.  It is found that the interactions between a   orbital on 

one metal atom and the   orbital on the other metal atom of a bond make a significant 

contribution to the cohesive energy, especially for the higher valent metals.  This contradicts the 
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popular qualitative model of transition metal electronic structure that separates the bands into 

independent   states and   states, suggesting instead that the   and   orbitals are hybridized to 

the same extent that the   and   orbitals are hybridized in compounds involving    elements. 

In addition to the zero-order cohesive energy, there is also a component arising from conjugative 

interactions involving charge transfer from occupied bonding and nonbonding atomic orbitals to 

unoccupied bonding atomic orbitals on a neighboring atom.  The total conjugation energy 

between two metal atoms can be decomposed into a component due to donation into the   orbital 

and another component due to donation into a   orbital.  The first of these components is limited 

by the occupancy of the   orbital, which is half filled for all transition metal atoms studied.  

Since the occupancy of the   orbital is constant, the sum of the energies of interactions donating 

into this orbital is nearly constant from Au to W.  The second component, corresponding to 

interactions donating into a   orbital, is limited by the occupancy of the   orbital.  As the 

occupancy of the   orbital decreases from Au to W, these interactions become stronger since 

their magnitude is proportional to the fraction of the   orbital that is unoccupied – this is because 

the interactions transfer charge into the   orbital, so the less occupied it is, the more charge it can 

accept. 

The interactions donating charge into   orbitals lead to a nearly linear increase in the total 

conjugation energy between Au and Os.  Unlike the zero order bond energy, which increases 

nearly six-fold between Au and Os, the conjugation energy only increases by 65% of its value on 

Au.  The relatively small increase in the conjugation energy over this range is due to the large 

contribution from interactions donating into the   orbital, which is nearly constant for all metals 

examined.  The addition of each   orbital to metal-metal bonding that occurs with each increase 

in metal atom valence makes a much smaller contribution to the conjugation energy than the   

orbital since only a fraction of the added orbital can participate in   interactions with a given 

atom due to the oscillation of the angular part of the wave function.  The   orbital, on the other 

hand, is spherically symmetric and interacts equally with all neighboring atoms.  An additional 

factor leading to the relatively small increase in conjugation energy between Au and Os is that 

the part of an atomic orbital participating in the zero order bond between two atoms cannot also 

participate in conjugation between those same two atoms.  As the zero order bond magnitude 
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increases with valence, a larger fraction of each orbital is involved in zero order bonding, leaving 

less to participate in conjugation. 

After Os, an additional effect comes into play related to whether charge is donated from the 

component of the   orbital involved in zero order bonding or the nonbonding component that 

forms the lone pairs.  Interactions involving the latter are stronger because any bonding 

involving the donor orbital in the zero order structure reduces its effective energy so that it is a 

weaker donor in conjugative interactions.  Between Au and Os, the component of the   orbital 

that does not participate in bonding is sufficient to saturate the acceptor orbital so that the 

interactions involve only the nonbonding component of the   orbital.  As the metal atom valence 

increases, a greater fraction of the   orbital becomes involved in metal-metal bonding in the zero 

order structure until W where the entire   orbital is involved in metal-metal bonding as there are 

no lone pairs.  Between Os and Re, the nonbonding component of the   orbital decreases to a 

point where it is unable to saturate the acceptor orbital, so part of the bonding component of the 

  orbital takes its place as the donor.  Since the bonding component is a weaker donor, the 

conjugation energy levels off between Os and Re and decreases between Re and W. 

Combining the zero order and conjugation energies leads to a crystal cohesive energy that 

increases by a factor of nearly 2.5 between Au and Os due to increases in both the zero order 

energy and the conjugation energy in this region.  Unlike the zero order bond energy, the 

cohesive energy in this region is far from being proportional to the metal atom valence due to the 

relatively small change in the conjugation energy over this region.  Between Os and W, the 

cohesive energy only increases by 10% due to the decrease in conjugation energy over this 

region. 

When a two-layer (111) slab is cleaved from the bulk, changes in zero-order bonding must occur 

to keep the metal atoms bond saturated, a result of the fact that each metal atom loses three of its 

neighbors during cleavage.  The simplest way to restore the bond saturation of the metal atoms is 

to double the magnitudes of the bonds between metal atoms on opposite sides of the slab.  There 

is no change in the shape of the bonding hybrids, only a change in magnitude of the bonds – as a 
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result, the zero-order cohesive energy lost from cleavage of the surface is regained by the 

increase in magnitude of the bonds within the slab. 

Since the zero-order surface energy is zero, all of the surface energy must come from reduction 

in conjugative interactions.  The most obvious loss of conjugation is those interactions occurring 

between the slab and the bulk it was cleaved from.  This energy is equal to the conjugative bond 

energy across a metal-metal bond in the bulk.  The conjugative interactions involving charge 

transfer across bonds within the slab decrease as well upon cleavage of the slab.  This is due to 

the doubling in magnitude of these bonds in the zero order structure to compensate for the bonds 

that were broken during surface cleavage.  Any increase in the zero order bond magnitude leads 

to an increase in the fraction of the atomic orbitals on each atom that participate in this bond.  

Since any fraction of an orbital cannot participate in conjugation between two atoms if it is 

involved in zero order bonding between those same atoms, this leads to a decrease in the intra-

slab conjugation energy. 

In Chapter 3, we applied the local bonding formalism for transition metal crystals to study how 

adsorbates bind to transition metal surfaces.  First, the adsorption of atomic hydrogen in the atop 

site was examined on the (111) surface of the    transition metals in the limit that the metal-

hydrogen bond is much stronger than the metal-metal bonds, leading to formation of a surface 

molecule between a metal atom and the adsorbate.  In this limit, the total binding energy is 

decomposed into three terms corresponding to removal of a metal atom from the surface, 

formation of the surface molecule between that metal atom and the adsorbate, and placement of 

the surface molecule back into the surface.  The combination of the first and last terms accounts 

for the reduction in metal-metal bond energy upon formation of the metal-adsorbate bond.  The 

formation energy of the surface molecule has a constant value for Pt to W if we ignore variations 

in the resonance integrals and atomic orbital energies between these metals.  This energy is lower 

(weaker) on Au because the   shell is completely filled with five lone pairs, so in order to form 

an     hybrid orbital to bond to hydrogen, part of an electron pair must be promoted from the   

shell into the higher energy   orbital. 
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Since the formation energy of the surface molecule is the same for Pt to W, any variation in 

adsorption energy between these elements must come from variations in the reduction of metal-

metal bond energy upon formation of the metal-adsorbate bond.  We first examined the changes 

in bonding in the zero order structure induced by adsorption.  Formation of the metal-hydrogen 

bond removes the     hybrid used to form this bond from participating in metal-metal bonding.  

This orbital is primarily involved in bonds between the surface layer and the subsurface layer in 

the clean surface, so it is these bonds that are primarily affected by adsorption.  In order to form 

a full M-H bond, the three subsurface bonds must decrease in magnitude by     of a unit, 

leading to a large decrease in the zero order energy associated with these bonds.  The metal-

metal bonds between surface atoms in Ir to W are hardly affected by removal of metal orbital 

forming the M-H bond and actually increase slightly in energy to make up for some of the 

decrease in subsurface bonding.  In Pt, changes in hybridization introduced by formation of the 

M-H bond lead to a decrease in energy of the surface bonds.  The subsurface bonds are 

completely broken in the Pt surface in the zero order structure.  In Au, all of the orbitals not 

involved in the M-H bond are filled with lone pairs so that no metal-metal bonding can occur. 

The change in zero order energy of the subsurface bonds is positively correlated with the 

strength of those bonds in the clean surface.  Since these bonds increase in strength from Au to 

W, the zero order subsurface bond energy lost upon adsorption is greatest for W and least for Au.  

Adding to this the change in surface bonding energy upon adsorption leads to a total loss in 

metal-metal bond energy that increase from Au to W, except for Pt which has an anomalously 

large decrease due to the loss in surface bonding upon adsorption that was discussed. 

The change in conjugation energy upon formation of the M-H has a minimal effect between Pt 

and Os, with the absolute value being less than 0.14 eV.  For Re and W, however, formation of 

the M-H bond results in an increase (strengthening) in conjugation energy of 0.56 eV.  This 

occurs because the fraction of each   orbital that does not participate in zero order metal-metal 

bonding is higher in the presence of the adsorbate, so the point where it is no longer able to 

saturate the acceptor orbital shifts to higher valences.  In the region between the point where this 

happens on the clean surface and the point where this happens on the adsorbate covered surface, 

the interactions donating into   orbitals increase in energy for the latter relative to the former.  
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After this region, the interaction energies of the two systems change at about the same rate.  This 

region occurs between Os and Re, leading to the abrupt change in the difference in conjugation 

energy between the two adsorbate covered and clean surfaces observed in this region.  The 

reason that a greater fraction of each   orbital does not participate in zero order metal-metal 

bonding in the adsorbate covered surface is that about half of a   orbital has been removed from 

metal-metal bonding in order to form the M-H bond – this makes the lone pairs more 

concentrated in the remaining   orbitals. 

The total loss in metal-metal bond energy caused by hydrogen adsorption increases slightly 

between Pt and Os due to an increasing loss in zero-order bond energy.  It then decreases slightly 

between Os and Re due to an increase in the conjugation energy in the adsorbate covered surface 

relative to the clean surface resulting from the greater availability of the lone pairs as electron 

donors when the adsorbate is present.  Finally, the loss in metal-metal bond energy increases 

again from Re to W due to the increasing loss in zero order bond energy.  Since the surface 

molecule formation energy is constant over all of these metals, the hydrogen adsorption energy is 

controlled solely by the loss in metal-metal bond energy.  These trends matche some of the 

qualitative behavior of the DFT calculated hydrogen adsorption energy, which decreases slightly 

between Ir and Re before leveling out between Re and W. 

Unlike the other metals studied, where the conjugation energy increases or remains about the 

same upon adsorption of hydrogen, the situation for adsorption on Au is very different.  Since all 

of the orbitals on Au not involved in forming the Au-H bond contain lone pairs, there are no 

acceptor orbitals capable of participating in conjugation – therefore, the conjugation energy 

drops to zero, leading to a much larger decrease in metal-metal bond energy upon adsorption 

than the other metals.  Essentially, the formation of the Au-H bond leads to a saturated surface 

molecule that cannot participate in strong interactions when placed back into the surface.  In 

combination with the energy penalty for promoting electrons from a   orbital to the higher 

energy   orbital to form the Au-H bond, this leads to the much lower adsorption energies 

observed in both DFT and experiment for adsorbates on the coinage metals. 
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Finally, we take what we have learned about chemisorption of hydrogen and apply it 

qualitatively to other common adsorbates, first to the CHx series with x = {0,1,2,3}.  Methyl 

(CH3), is similar to hydrogen in that it has one unpaired electron and therefore displays the same 

adsorption energy trends over the    metals.  Methylidene (CH2) has an additional unpaired 

electron that can form a   bond with a metal atom in addition to the   bond present in CH3 and 

H.  This leads to an increase in adsorption energy between Au and Pt due to the ability of Pt to 

form a full   bond with CH2 while Au can only form half of one.  The adsorption energy 

increases again between Pt and Ir as the surface molecule becomes unsaturated and can thus 

form strong bonds with the other metal atoms upon reinsertion into the surface.  The situation is 

similar for methylidyne (CH), except two   bonds can be formed with the metal atom, leading to 

an increase in adsorption energy between Au and Os, before leveling off and decreasing.  Atomic 

nitrogen has the same electron configuration as CH and thus displays very similar adsorption 

energy trends. 

When atomic carbon bonds to a metal atom, it abstracts an electron from the metal so that it has 

the same electron configuration as CH with three unpaired electrons.  Since it lost one electron to 

the carbon atom, an Au atom has two unpaired electrons that can form a   bond and two half   

bonds with the carbon atom.  The additional unpaired electron on Pt converts the half   bonds 

into full   bonds and the left over unpaired electron on Ir can form strong metal-metal bonds.  

This leads to an increase in adsorption energy from Au to Ir, before leveling off and decreasing. 

The adsorbates NH2 and NH have one and two unpaired electrons and bind similarly to CH3 and 

CH2 between Au and Pt (NH2) or Ir (NH).  On Ir (NH2) and Os (NH), a half filled   orbital 

becomes available with which half of the nitrogen lone pair can donate into, forming a half   

bond which leads to further stabilization.  Upon moving one column more to the left on the row 

of    transition metals, the   orbital becomes fully unoccupied so that the nitrogen lone pair can 

donate into it to form a full   bond, leading to even further stabilization.  After this point, no 

further metal-nitrogen bonds can form and the adsorption energy stops increasing out.  Hydroxyl 

(OH), atomic oxygen, and atomic fluorine also have lone pairs that can donate into empty or 

partially empty   orbitals on the metal atom.  Donation of these lone pairs into the metal forms   
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bonds that further stabilize the surface molecule and increase the adsorption energy until all of 

the lone pairs that can do so have formed coordinative   bonds with the metal atom. 
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Appendix A  –  Determination of Tight Binding Parameters 

Tight binding parameters were extracted from the periodic DFT calculations (described in 

Appendix B) using the Quasiatomic Orbital (QO) method
42

 implemented by the author in the 

Vienna Ab initio Simulation Package.
43,44

  This method generates a tight binding minimal atomic 

basis set that is able to exactly reproduce the ground state electronic structure of a plane wave 

calculation.  By expressing the Hamiltonian in this basis set, the tight binding orbital energies 

and resonance (hopping) integrals can be extracted. This procedure was used to determine the 

parameters in Table 2.1. 

The determination of    
,   , and    in Table 2.1 requires some additional explanation.  For a 

pair of atoms A and B, there are     resonance integrals between the   atomic orbitals of A 

and the   atomic orbitals of B.  These can be represented as an     matrix with the rows 

corresponding to the atomic orbitals of A and the columns corresponding to the atomic orbitals 

of B.  This matrix     can be converted into a diagonal form     by means of a singular value 

decomposition so that 

             
(A.1) 

where   is an orthogonal     matrix and   is an orthogonal     matrix.  The   hybrid 

orbitals on A defined by the first   columns of   and the   hybrid orbitals on B defined by the 

columns of   define a set of characteristic interactions with resonance integrals given by the 

singular values contained in    .  For two transition metal atoms, this decomposition will 

correspond to the characteristic interactions in Equation (2.5).  The resonance integrals (   
,    

, 

  , and   ) are given by the singular values in    , the hybrids on atom A (   
 ,    

 ,    
 ,    

 , 

   

 , and    

 ) are given by the columns of  , and the hybrids on atom B (   
 ,    

 ,    
 ,    

 ,    

 , 

and    

 ) are given by the columns of  .  If A and B are chemically equivalent, then    .  

Thus,    
 in Table 2.1 was taken directly from    , while    and    were determined from the 

columns of   and   corresponding to the    interaction, using Equation (2.7).  
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Appendix B  –  Method for DFT Calculations 

First principle periodic density functional theory (DFT) calculations were carried out using the 

Vienna Ab-initio Simulation Package (VASP). 
43,44

  The wavefunction was constructed from 

plane waves with an energy cutoff of 396 eV.  Vanderbilt ultrasoft pseudopotentials 
17

 with real 

space projection operators were used to describe the sharp features of the wavefunctions in the 

core region.  The Perdew-Wang 91  form of the Generalized Gradient Approximation (GGA) 
45

 

was used to model the gradient corrections to the correlation and exchange energies.  All 

calculations were performed non-spin polarized. 

Both bulk and surface calculations were carried out.  The bulk calculations were run on a single 

fcc unit cell containing four atoms using the experimental lattice constant.  For elements that do 

not occur naturally in the fcc structure (Os, Re, W), the lattice constant was optimized during the 

calculation.  Since lattice constants calculated using DFT are generally larger than the 

experimental values, the following linear relationship was developed to relate the DFT lattice 

constants of the naturally occurring fcc metals (Au, Pt, Ir) to the experimental values. 

                    
(B.1) 

This relationship was then used to estimate an effective experimental lattice constant from the 

DFT optimized lattice constant for those metals that do not naturally occur in the fcc structure.   

The (111) surfaces were constructed using four layers cut from the bulk, each with a 3×3 array of 

metal atoms.  The successive slabs were separated by 10 Å of vacuum.  In all calculations, the 

metal atoms were frozen in their corresponding bulk positions.  In calculations involving 

adsorbates, the adsorbates were place on one side of the slab at a coverage of 1/9 monolayer in 

the orientations shown in Appendix C. 

Each geometry optimization was performed in three steps.  First, the geometry was roughly 

optimized until the force on each atom was less than 0.10 eV/ Å.  During these runs, a finite 

Fourier transform (FFT) grid with a cutoff 1.5 times the plane wave cutoff was used and the 
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wave functions and charge density were converged to within 1×10
-4

 eV.  Next, the geometry was 

refined until the forces less than 0.05 eV/ Å.  For these runs, an FFT grid with a cutoff of two 

times the plane wave cutoff was used to eliminate wrap-around errors and the wave functions 

and charge density were converged to within 1×10
-6

 eV.  This was done to ensure that the forces 

were accurate enough for this level of geometry optimization.  These first two geometry 

optimizations were optimized using a 3×3×1 k-point mesh (5×5×5 for bulk calculations) to 

sample the first Brillouin zone and a second order Methfessel-Paxton occupation scheme 
46

 with 

smearing of 0.20 eV to determine the occupancy of each band.  In the final step, the energies of 

the optimized structures were calculated with a 6×6×1 k-point mesh (11×11×11 for bulk 

calculations), using the linear tetrahedron method with Blöchl corrections 
47

 to integrate over the 

first Brillouin zone.  The wavefunctions and charge density were converged to within 1×10
-4

 eV 

and the same FFT grid used in the first run was used since accurate forces were not needed.  In 

all steps, the metal atoms in the surface were frozen in their corresponding bulk position. 
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Appendix C  –  Structures of Adsorbates on the (111) Surface 

 

Figure D.1  Adsorption structures used in DFT calculations for (a) H, (b) CH3, (c) CH2, (d) 

CH, (e) C, (f) NH2, (g) NH, (h) N, (i) OH, (j) O, and (k) F 
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