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Abstract —The human body is composed of various 

biological clocks that impact physical and mental health 

functioning. Modeling biological rhythms provides the 

means to understand the effect of internal and external 

factors on human mental and physical performance. So far, 

biological rhythms have mostly been studied in controlled 

laboratory settings thus limiting the long term study and 

modeling of these rhythms. This paper presents the results 

of our exploratory study of modeling human rhythms with 

longitudinal physiological data collected from consumer 

devices in the wild. We used data from four people 

continuously wearing Empatica (E4) wristbands and Oura 

smart rings for approximately four months to build models 

of human rhythms. We then used those model parameters 

in a machine learning approach to predict mental and 

physical readiness. Our results showed that most models 

built with a combination of sensors and rhythmic features 

obtained a prediction accuracy above the baseline measure 

of 66% (Max accuracy = 82.7%). These results provide 

insights into the feasibility of using consumer devices to 

model biological rhythms and use them to assess human 

and performance and health. 

I. INTRODUCTION 

Our internal biological clocks influence performance 

levels over time; these levels naturally rise and fall 

throughout the day according to our routines and 

schedules [1]. When people complete tasks at times that 

do not align with their optimal energy levels, they may 

not be as productive as intended. Disruption and 

misalignment in biological rhythms, e.g. wrong sleep 

and awake time result in negative health and 

performance both on physical and mental level [1]. 

Saeed Abdullah noted that “around 80% of the 

population live against their innate rhythms, mostly by 

adhering to work schedules that demand waking up 

earlier than our internal clock dictates” [2]. The question 

that researchers have been exploring is how can we boost 

human health and performance in a way that reduces 

stress and acts in accordance with our biological 

rhythms? 
 There have been attempts to associate inactivity with 

low productivity and work performance. Researchers 

have been implementing measures to boost performance 

by including reminders for users to take stretch breaks 

and move their bodies every hour, motivation being that 

in the workforce a healthy employee is a more 

productive employee. IBM gave out 40,000 Fitbits over 

the course of two years, and found that those who 

participated in the wellness challenge reached an average 

of 8,800 steps per day, more than double the average of 

people who did not participate [3]. While not directly 

indicative of an increase in productivity, healthy 

employees will be less likely to call in sick [4]. In order 

for technology to shape user wellbeing and improved 

productivity, it will need to collect information to “learn” 

more about the wearer. What seems to be lacking is a 

direct biometric measure of both productivity and 

alertness.  
 Our research aims to explore the feasibility of 

discovering and modeling biological rhythms using 

physiological data collected from consumer-level 

devices in the wild. This paper chronicles a four-month 

study to track biometric indicators such as body 

temperature, galvanic skin response, resting heart rate, 

heart rate variability and sleep patterns and to model 

physiological and behavioral rhythms from the E4 

wristband devices. The parameters obtained from the 

rhythm models were then used to predict the readiness 

score measured by the Oura ring using classification.  
This study is the first to explore the predictability of 

human readiness using machine learning via features 

obtained from rhythm models. To our knowledge, this is 

also the first continuous and long-term collection of 

many physiological signals via wearable devices in the 

wild. We anticipate this data set to be useful to other 

researchers in the field. In the following sections, we 

discuss the related work in this domain followed by a 

description of data collection, processing, and analysis 

methods for building rhythm models and thereby 

predicting the overall readiness scores.  

II. RELATED WORK 

 Biological rhythms including the circadian rhythm or 

rest-activity cycle, feeding cycles, breathing, heartbeat, 

hormone secretion, and female menstrual cycle have 

been extensively studied in controlled studies [5, 6, 7]. 

Advancements in sensing technology have made it 

possible to track physiological and behavioral signals to 

understand physical and mental aspects of human 

biology and their relationship with health and 

performance. For example, to understand human 

cognitive performance via physiological responses, a 

study by the U.S. Air Force Research Laboratory [8] 

monitored the functional state of 7 participants in real-

time using six channels of brain electrical activity (from 



   

   

 

an EEG) as well as eye, heart, and respiration measures. 

The study showed the EEG features were best at tracking 

and predicting cognitive performance. Another study by 

Abdullah et al. [9] gathered patterns of phone usage from 

20 participants over the course of 40 days to predict 

optimal alertness levels for different tasks. The findings 

demonstrate that patterns of rhythmicity vary among 

individuals and usage of mobile devices correlates with 

alertness.  

Wearable devices such as the Fitbit, Empatica, and 

Oura ring are now able to track biometrics including 

heart rate, skin conductance, and sleep duration and 

quality with a high accuracy [10, 11, 12]. Lier et al. 

evaluated the Empatica E4 under what they call “a 

comprehensive validity assessment protocol” [13]. They 

compared the Empatica E4 to ECG for measuring heart 

rate and to a measure of skin conductance on the fingers 

for measuring EDA. For this comparison, they evaluated 

60 participants engaging in a stress-inducing activity, 

singing in public. They found that E4 assessments valid 

“at the parameter and detection [of stressors] level” when 

compared to the reference devices [13]. The authors 

highlight the Empatica E4 as being especially useful in 

gathering data on EDA, and ultimately assert that their 

study supports prior validity studies of the Empatica E4. 

In our study, we use both E4 and the Oura ring to collect 

physiological and behavioral signals.  

We will use the collected data to model biological 

rhythms to first determine their characteristics and 

features and then use those features in a machine 

learning pipeline to predict the readiness score. Our 

approach is inspired by the work in Doryab et al.’s study 

that modeled biobehavioral rhythms to predict 

readmission risk following pancreatic surgery [14]. Data 

collected from 49 patients via Fitbit devices (heart rate, 

sleep, and activity) was analyzed to detect rhythmicity 

and disruption in patients' biological rhythms during 

treatment. The machine learning models built from 

rhythmic features were shown to be predictive of the 

readmission risk [14]. In our study we use a wide range 

of physiological signals including heart rate, heart rate 

variability, skin temperature, and skin conductance 

(collected from E4) as well as sleep, readiness, and 

activity (collected from the OURA ring). To our 

knowledge, such longitudinal data set (for approx. four 

months) of physiological and behavioral data does not 

exist and we believe this data can be useful for other 

research studies in human behavior and health. 

Furthermore, our study reveals the impact of different 

physiological signals in prediction of readiness that has 

not been studied before.  

III. METHODOLOGY  

 The objective of this research was to understand 

patterns in the rhythmic features derived and draw 

connections between bio-physiological indicators and 

overall readiness. The following sections describe the 

approaches taken to collect, process, model, and evaluate 

participants’ biological rhythms. 

A. Data Collection 

Data was collected from Oura rings and Empatica E4 

devices to track biometric data including body 

temperature, galvanic skin response, resting heart rate, 

heart rate variability and sleep patterns for four months. 

Four participants who were part of the research team 

wore both devices continuously to collect data. Each 

participant has a unique ID for anonymity and collected 

data individually. Participant 1 collected 112 days’ 

worth of data, participant 2, 92 days, participant 3, 101 

days, and participant 4, 76 days. Participants synced their 

devices to the cloud each day to provide cumulative, up-

to-date raw data for analysis.  
The Oura ring is a consumer wearable that tracks 

users’ sleep, activity, and readiness [15]. The Oura ring 

develops an overall sleep score by tracking total sleep 

duration, sleep efficiency, restfulness, REM sleep, light 

sleep and deep sleep patterns, latency (the time it takes 

to fall asleep), and bedtime start and end [16]. The 

activity tracking feature measures total time inactive per 

day, hourly activity, whether the user has met the 

personalized daily activity goal, workout frequency and 

volume, and time spent in recovery from physical 

activity [15]. 
 

 
 

 

 

 
 

 

 
 

 

 
Fig 1.   Oura Ring with three sensors 

 

The Oura ring also measures readiness, which is a 

measure of physical and mental capacity throughout the 

day [17]. This measure incorporates resting heart rate, 

heart rate variability, recovery index, body temperature, 

previous night’s sleep, and previous day’s activity into 

its calculation for determining the quantitative score. 

Readiness scores range from 1-100. 85+ indicates 

“excellent” readiness, 70-84 indicates “good” readiness, 

60-69 indicates “pay attention” to your readiness, and 

below 60 indicates “take action to rest and recharge” 

[17]. The readiness score helps users distinguish days 

that are well suited for challenging oneself from days 

when rest is necessary to recover. We used the readiness 

score as a dependent variable/predictand to determine 

whether the biometric data from the E4 could predict 

readiness. 



   

   

 

The Empatica E4 is a consumer wrist wearable that 

tracks and measures real-time physiological data [18]. 

E4 sensors include the PPG sensor which measures 

blood volume pulse (BVP), EDA sensor which measures 

the fluctuating changes in the electrical properties of the 

skin, an accelerometer (ACC), an infrared thermophile 

which reads skin temperature (TEMP), a heart rate (HR) 

sensor, an event mark button and an internal real-time 

clock [18]. The E4 can record up to 60 hours of data at a 

time before needing to be uploaded to the cloud platform. 

On the platform, users can view and manage data 

through various visualizations. The Bluetooth streaming 

mode allows the user to view sensor data of the 

connected device in real time [18]. Fig. 1 depicts the 

Oura ring as well as the Empatica E4 wristband and 

highlights the features and sensors embedded in the 

device [18]. The sensors, found in the center of the band, 

are activated when pressed against the skin during wear. 

B. Data Processing 

The raw data from all sensors in E4 were used to 

model biological rhythms and to identify their 

characteristics and features. Those features together with 

readiness assessments from the Oura ring were then used 

in a machine learning pipeline to predict the overall 

readiness. The Empatica data was pulled from the E4 

manager through Python and ran through various data 

preprocessing scripts. First, the data was assigned a 

timestamp for each unique value and then grouped into 

hourly averages. These hourly averages formed the 

dataset that was used for modeling rhythms. Then, the 

hourly data was compiled into an aggregate file per 

sensor and each file was grouped into seven-day 

intervals to generate a weekly model of rhythms. The 

readiness score from the Oura ring was also aggregated 

to a weekly number. The features from weekly rhythms 

and the weekly readiness scores formed the dataset that 

was used in the machine learning approach.   
To explore the cyclical patterns of one’s physio-

biological data, the we used a comprehensive rhythms 

analysis toolkit called Chronomics Analysis Toolkit 

(CATkit) to model rhythmic patterns from data collected 

from the Empatica E4 device [19]. The resulting files 

were the basis for the research team’s models and acted 

as the input to the CATkit.  

B. Modeling of Biological Rhythms  

The five attributes that characterize a biological 

rhythm include mesor, period, amplitude, phase and 

waveform. The mesor is the midpoint around which the 

cycle oscillates. The period is the time between two 

consecutive peaks or the full length of a cycle. Amplitude 

is half the range of oscillation and phase is the 

displacement between a specific point in the cycle and a 

reference point (typically uses the peak). For biological 

rhythms, the reference time is usually chosen in relation 

to the sleep-wake cycle of the subject. Fig 2. visually 

depicts the characteristics of a wave. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 2. Characteristics of a Wave 
 

1) Periodogram: CATkit’s periodogram output was 

used to retrieve an estimate of a rhythm’s period and 

amplitude as a signal can be reproduced by a series of 

sinusoidal waves. The periodogram depicts the relative 

importance of various frequency values where the peaks 

in the sinusoidal wave can be seen. The recurrence of 

these peaks explains the oscillation pattern of the 

observed data which provides a time period by which to 

evaluate the data [19]. The periods are determined by 

evaluating the recurrence and frequency of the peaks in 

the graph. Fig. 3 shows an example of the output 

generated by the 

periodogram with detected significant periods of 24, 

720, 240, and 960 hours. These periods were used to 

model rhythms via Cosinor as described in the next 

section. 

 

 
Fig 3. Periodogram Output 

 
 

2) Cosinor: Cosinor is a regression technique that 

obtains an estimate of the rhythm-adjusted mean 

(MESOR), the amplitude, and the measure of phase 

(acrophase) for the chosen period [19]. The function fits 

one or more cosine curves to the data and minimizes the 

sum of squares of the differences between the predicted 

and actual values of the model for the specified period 

[19]. Statistical significance is determined for the period 



   

   

 

with respect to the null hypothesis (no rhythm) to 

decipher if the model accurately represents the 

individual’s biological rhythm.  
The single cosinor calculates the best fit of the cosine 

model at specified periods. We identified the strongest 

period from the periodogram to be used in the single 

cosinor function. When the single cosinor is used at the 

Fourier frequencies of the model, the results yielded 

mirror the periodogram precisely up to six decimal 

points [19]. 
Fig. 4 is a sample output from the single-component 

Cosinor function where the period, mesor, standard error 

(s.e.), amplitude (Amp), percentage rhythm (PR) and 

acrophase (Phi) can be seen. Acrophase is a measure 

phase, specifically the lag from a defined reference time 

point to the crest time in the fitted curve, whereas 

percentage rhythm is a reported proportion of variance 

accounted for by the model [19]. 

Fig. 4 Cosinor Output 
 

IV. ANALYSIS 

In our analysis, we explored 1) the correlations 

between the weekly average readiness score and the 

rhythm features for that week, and 2) the predictability 

of the readiness score from the rhythmic features. The 

following describes the methods in more detail.  

A. Pearson Correlation 

Correlation analysis is a statistical tool used to 

evaluate the strength of the relationship between two 

quantitative variables [14]. A correlation value of 1 

indicates a perfect positive correlation whereas a 

correlation of -1 indicates a perfect negative correlation. 

Correlation analysis led us to understand which variables 

contributed most to forecasting Oura’s readiness score. 

B. Classification 

To evaluate the feasibility of rhythms in predicting 

readiness, we chose the period of 24-hour to build 

cosinor models and to obtain the rhythmic features 

described above. We built a cosinor model for each week 

of data that characterized the rhythmic cycle of that 

week. We then created a dataset with the obtained 

features from those weekly models and used it in a 

classification approach for predicting the weekly 

average readiness score. 

Binary classification was used to categorize the 

predicted readiness score and actual readiness score from 

that time period. Readiness scores were classified as 1 

(“high”) for scores above 70, and 0 (“low”) for scores 

below 70. The readiness categories were then used as the 

ground truth in the machine learning method. The 

logistic regression models were built from the rhythmic 

features (mesor, Phi, PR, and amplitude) generated by 

the cosinor for each biological phenomenon tracked by 

the Empatica E4. In total, ten models were created, based 

on heart rate, skin temperature, EDA, BVP, and 

accelerometer data. We generated two types of models 

namely feature-based and sensor-based. The feature-

based models made for mesor, Phi, PR, and amplitude 

where data from all sensors was included (i.e. the mesor 

model includes acc_mesor, hr_mesor, eda_mesor). 

Sensor-based models were built for each sensor using all 

four features for that particular sensor (i.e. the heart rate 

model includes hr_mesor, hr_phi, and hr_amp). Lastly, 

we built a model that included a combination of all 

features and all sensors. 

To evaluate the machine learning performance, the 

full data set of rhythm features was divided into test sets 

and training sets. We used leave-one-person-out cross 

validation where at each round, the data of three 

participants were used for training and tested on data 

from the 4th person. These models were compared using 

average accuracy prediction from all four tests of the 

models. 

V. RESULTS 

A. Rhythm Modeling 

Using periodogram outputs, we were able to detect 

and observe different periods in each time series data 

between sensors and between participants. Fig. 5 and 

Fig. 6 show examples of periodograms built from 

temperature data of two participants. As demonstrated, 

other than the 24-hour cycle, the detected periods are 

different for the two participants. This highlights 

differences in individual rhythms even though they are 

built from the same type of signal. 
 

 
Fig. 5 Periodogram of Temperature for Participant 1 

 



   

   

 

 

Fig. 6 Periodogram of Temperature for Participant 2 
 

These findings were further demonstrated by the 

corresponding cosinor analysis of the periods. As 

illustrated in fig. 7 and fig. 8 the differences are vast 

between the two participants in terms of the periods 

greater than 24 hours, but are also clear for the 24-hour 

period. 

 

Fig 7.  Cosinor Plot of Temperature for Participant 1 

 
 

Fig 8.  Cosinor Plot of Temperature for Participant 3 

 

B. Correlation Analysis 

A correlation analysis was performed to determine 

how the rhythmic features of each E4 sensor correlates 

with Oura’s weekly average readiness scores. The 

researchers focused on finding the strongest correlations 

per feature, per person, and then overall. Overall 

correlations were analyzed with all of the participant data 

aggregated for a holistic view of which features had the 

most significant correlation. 

Fig 9. Correlation coefficients and their associated scatterplots 

 
 

The analysis showed the acceleration mesor feature 

and average readiness moved in the same direction 

approximately 54% of the time. The heart rate mesor 

feature and average readiness moved in opposite 

directions approximately 70% of the time. Fig. 9 shows 

the results of the four most correlated features with 

average readiness.  In total, we had 45 weeks of data 

from all participants indicated per row. The p-value 

between heart rate mesor and readiness was 6.24*10-8 (p 

<0.0001) indicating a very significant correlation.  

 
 

Fig. 10 Correlation Between Heart Rate Mesor and Readiness 

 

 Deeper correlation analysis was performed to 

determine the correlations per participant in the study 

based on the varying features (See fig. 10). We found 

differing results per participant of which feature had the 



   

   

 

strongest linear relationships with average readiness. 

Table 1 shows the results of the strongest positive and 

negative relationships. 

 
TABLE I. RELATIONSHIPS WITH AVERAGE READINESS 

 

 An important insight that can be gained from the 

correlation analysis is the understanding that individuals 

have personalized biological clocks. Because of this, 

rhythms and average readiness correlations vary per 

person. For example, for participant 1, EDA Phi showed 

the strongest positive correlation (0.37), but for 

participant 4, it showed a moderately weak correlation (-

0.13). While overall correlation conclusions were found 

on the aggregated dataset, individualizing the results 

provided more actionable insights on a per person basis. 

C.  Readiness Prediction 

 Using binary classification, we determined whether 

the predicted readiness scores matched the actual 

readiness scores from the data. The models were 

compared using prediction accuracy percentage and are 

listed in order of highest to lowest accuracy in table 2. 

 

TABLE II. MODEL ACCURACY 

 

The model based entirely on the Acrophase (Phi) feature 

from all five sensors performs the best across all test sets 

with a nearly 10% higher accuracy rate over the next best 

model. This model’s performance indicates that the 

timing of the peak of one’s biological rhythms may have 

predictive power in mental and physical readiness. The 

temperature model performs second-best with an 

average accuracy rate of 72.9%, which indicates that 

wrist temperature may also be a useful predictor of 

readiness. Analyzing the true readiness scores of the four 

test sets, the baseline of high readiness scores was found 

to be 66%. Six of the listed models predict at or above 

the baseline, suggesting they can be used as predictive 

models. Notably, the model with all sensors and all 

features, performs poorly with an average accuracy 

percentage of 43%. This is likely due to model 

complexity, as some feature and sensor variables 

correlate strongly with one another. 

VI. CONCLUSION 

 We studied the relationship between rhythmic bio-

physiological features and overall readiness to determine 

which features best predict readiness. The rhythmic 

features derived from the E4 sensor data were used to 

create models to predict overall readiness. Most models 

predicted readiness at accuracy rates above the majority 

class baseline (high readiness) proving to be a feasible 

method of analysis. Additionally, our correlation 

analysis showed that the Mesor rhythmic features for 

acceleration and heart rate were most highly correlated 

with overall readiness. Although data was collected from 

a small group of people, we believe our study results still 

demonstrate the viability of using physiological data 

from wearable devices to characterize biological 

rhythms to gain insight into humans mental and physical 

outcomes. In the future, we plan to replicate this study 

with a larger participant pool over at least one year to 

observe and discover differences in individual biological 

rhythms. We will then build a rhythm-aware system to 

recommend best actions that are aligned with the 

biological rhythms of the person to optimize their health 

and performance. 
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