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1. Introduction 

 Following its initial global outbreak in 2020, COVID-19 has required us to create 

new, effective methods to track disease spread. One such method that emerged during the 

pandemic relies on detecting traces of COVID-19 in wastewater, in which samples are 

collected from sewer lines and we try to deduce which houses are infected based on what 

traces are found. This method has proven useful for managing COVID-19, though it is not 

without its fair share of uncertainty. In addition to unavoidable issues, such as sample 

transportation time, storage, sewage system leaks, and so forth, there are also several 

logistical issues unique to wastewater monitoring, such as sampling location, frequency of 

sample collection, and homogenization of the sewage flow all having an impact on our 

ability to “reverse-engineer” where each sample came from (Wade, 2022, p. 3). For my 

technical topic, I will investigate ways we can improve our accuracy when doing 

wastewater management by constructing a computer simulation that will model 

wastewater transmission and determine how, when, and where samples should be 

collected from sewage lines to get the most accurate information. Creating such a model 

will inevitably require making assumptions and simplifications, however, and so for my 

STS topic I will explore the social and epistemological concerns that go into creating such a 

model. I will investigate this using a relational view of data, in which I will assume that the 

data I use to inform my model as well as the data I collect from it have no inherit meaning 

and can instead only inform through comparisons to other data sets. I will use this 

framework to investigate how other models navigate the assumptions and simplification 

that must be made, and how this investigation both informs how I create my own model 

and the field of computer simulation as a whole. 
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2. Technical Topic 

 As discussed above, my technical report will focus on answering the question of how 

to best conduct wastewater surveillance by using a computer simulation to identify 

locations and times that conducting a sample would capture the most useful data. To do 

this, a two-layer simulation will be constructed. On the “top” layer, an agent-based model 

tracking the spread of COVID through a neighborhood or section of a city will be 

constructed, with enough granularity to detect individual infections. On the “bottom” layer, 

a corresponding model of the sewer system will be constructed, using fluid dynamics and 

the infected/susceptible status of individuals on the top layer to inform how wastewater 

containing traces of COVID moves throughout the system. This allows us to “cheat”, using 

the top layer to check how accurate the data collected by samples in the second layer really 

is, and identifying the locations/times that yield the highest accuracy.  

 The top layer will use an agent-based susceptible-exposed-infected-recovered 

model to simulate the spread of disease, meaning that the model will simulate individuals 

as “agents” who can be in one of three states. Individuals who are “infected” or “exposed” 

have the ability to transmit the disease to individuals who are “susceptible”, changing their 

status in the process. Individuals who are “exposed” do not know they have the disease, 

and so will act similarly to individuals who are “susceptible”, while individuals who are 

“infected” know they have the disease and will quarantine themselves until they are better. 

Individuals who are “recovered” are not currently sick and cannot receive the disease. 

However, if enough time passes, “recovered” individuals can return to the “susceptible” 

state and be infected again. Constructing such a model requires extensive research and 

overcoming technical challenges, most notably in compiling data from different sources to 
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base the simulation on and in simplifying the situation enough to allow a computer to give 

an output in a reasonable timeframe (Bissett, 2016, p. 629). This aspect of model creation 

will be discussed in-depth during the STS part of the report. 

 The bottom layer will use a directed flow graph to simulate the sewage network that 

corresponds to the top layer, with nodes to represent manholes and edges to represent the 

sewers that connect them. The main challenge here will be in determining the physical 

properties of COVID-19 and wastewater – how long traces of COVID-19 last, how diluted do 

they become as sewage lines connect up, and so forth. Consulting how data scientists 

solved other problems can be useful here. One study that is eerily similar to this discussed 

how unlawful discharge of harmful chemicals can be traced through sewage lines, in which 

the authors discuss how they overcame the issues of chemicals getting diluted the longer 

they stay in the sewage lines and the difficulty in tracing back the detection of chemicals to 

the unlawful discharge (Solano, 2022).  

3. STS Topic 

 Following the initial outbreak of COVID-19, predictive models gained importance as 

a means of predicting the impact of the disease and planning accordingly. Indeed, such 

models were deployed by the Indian government, but they had a fatal flaw. As a team at the 

University of Michigan points out, this flaw was not a result of any technical problem with 

the models, but a social one – underreporting of cases. They state that “[insufficient data] 

limits modelers’ ability to predict the course of the pandemic, gauge its impact, and 

estimate health care resource needs—including oxygen supplies and hospital beds” 

(Zimmermann, 2021, p. 560). Creating a successful model that creates accurate and useful 
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data does not depend solely on proper application of mathematical formulas, but also on 

properly understanding the societal context in which the model exists.  

 For my model to avoid these pitfalls, I have two questions I want to answer: what 

datasets will I use to construct my model, and how can I be confident that my model gives 

accurate results? To answer these questions, I will adopt a relational view of data. This 

framework posits that data, by itself, carries no significant meaning. Instead, data “…consist 

of a specific way of expressing and presenting information, which is produced and/or 

incorporated in research practices […] and whose scientific significance depends on the 

situation in which it is used.” (Leonelli, 2015, p. 811). The relational view of data shines the 

spotlight on the factors surrounding data over the data itself – how it was produced, who 

produced it, and what methods they used to get it. It is my hope that investigating these 

two questions using this framework will lead to a more accurate and useful model. 

 Digging deeper into how I intend to answer these questions, for the first I will have 

to decide which aspects of the real world – what parameters - are important enough to be 

included in my model. As Paul Edwards states in his book about climate modeling, “a 

parameter is kind of a proxy – a stand-in for something that cannot be modeled directly but 

can still be estimated, or at least guessed” (Edwards, 2010, p. 338). This “proxy” quality is 

the crux of what makes computer modeling so difficult – every parameter requires a tight 

balance between simplicity and accuracy. Some parameters, such as transmission and 

mortality rates, are rather obvious inclusions with clear mathematical ramifications. Others 

may be less obvious. As an example, a model constructed by members of the Information 

and Cognition Division at Cambridge constructed a pandemic model that accounted for 

media influence, and describes in detail the assumptions and mathematics that went into 
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incorporating this (Kim, 2019). My model will no doubt have to account for similarly messy 

factors.  

 Zooming out towards the second question, I will also have to evaluate how useful 

the results my model gives can be. After all, my model is only a simplified version of the 

real thing – how can I be certain that useful conclusions can be drawn from what I create? 

 To answer this second half of my STS topic, I will once again return to climate 

models, as climatologists have been struggling to communicate their answers to this 

question for decades. Once again owing to the level of scrutiny place upon climate models, 

climatologists have found many metrics to evaluate the validity of their models. Elisabeth 

Lloyd, in a paper published to the reputable journal Philosophy of Science identified four 

major ones: robustness, or comparing many independently created models to see if they 

agree; variety of evidence, or displaying accurate behavior with regard to many 

independent variables; independent support, or how well the model matches with data that 

wasn’t considered when constructing it; and model fit, or how accurately the model 

predicted real world happenings before they occurred (Lloyd, 2010). 

 However, there is some disagreement over whether these methods actually work. 

Also published in Philosophy of Science, Wendy Parker assesses the extent to which 

robustness is a useful indicator of model accuracy, and concludes that “while there are 

conditions under which robust predictive modeling results have special epistemic 

significance, scientists are not in a position to argue that those conditions hold in the 

context of present-day climate modeling” (Parker, 2011, p. 597). Evaluating whether or not 

my model is successful, it turns out, will also require evaluating my evaluation methods. 
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 In fact, it might be easier to argue for the usefulness of my model rather than its 

accuracy. It might seem strange to draw conclusions from inaccurate models, but 

epistemologists seem to believe that this is the best way to treat statistical models. One 

article published about half a year into the COVID-19 pandemic reflected on the role of 

predictive models, concluding that “While all of these models are bound to be ‘wrong,’ 

some will be ‘useful’; and, together, the best of them offer complementary insights into the 

nature of the disease” (Ellison, 2020, p. 510). Ultimately, there’s a lot of conflicting 

information out there about how to evaluate computer models, and I intend to untangle 

this discourse in my STS paper to be able to more effectively evaluate my computer model. 

 

4. Conclusion 

 For my technical topic, I intend to create a two-layer simulation that will identify 

methods of wastewater sampling that yield the most accurate data. My STS topic will focus 

on investigating what data I can use to inform this model and justifying the decisions and 

assumptions made in forming it. From this investigation I aim to contribute to the need for 

better contact tracing through improved wastewater surveillance, all the while gaining an 

improved understanding of the various social and technical concerns that go into creating a 

scientific model. 
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