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ABSTRACT

Rapid advances in sensing and computing technologies have led to the proliferation of

Cyber-Physical Systems (CPS). However, the increasing use of connected and complex

devices, shrinking technology sizes, and shorter time to market have increased the vul-

nerabilities of CPS to accidental and malicious faults, posing significant challenges in

ensuring their reliability, safety, and security.

This dissertation presents a holistic approach to context-aware assurance in CPS

through (i) control-theoretic specification of safety requirements and (ii) combined knowl-

edge and data-driven refinement of safety specifications for run-time safety monitoring,

hazard mitigation, and design-time safety validation.

As the foundation of this research, we propose a formal framework for the specification

of safety context defined as the combinations of the cyber-physical system states, control

actions, and potential hazards, based on a control-theoretic hazard analysis method. The

safety context is specified using Signal Temporal Logic (STL) to consider the timing

constraints for both hazard prediction and mitigation and consists of two parts: (i) the

Unsafe Control Action Specification that describes the system states under which specific

control actions are potentially unsafe and can eventually lead to hazards at a future

time; and (ii) the Hazard Mitigation Specification that identifies the control actions that

if issued by the controller within a specific time period can prevent potential hazards.

An optimization approach is also proposed for further refinement of the context-specific

safety properties to capture the inter-scenario variability (e.g., different patient profiles

or driving scenarios) and improve detection accuracy. The final context-specific safety

properties are then synthesized into the logic of a safety engine that can be integrated

with a CPS controller as a wrapper with only access to the input and output data,

and be used for run-time context inference, hazard prediction and mitigation, and safety



validation in different CPS that share the same functional specifications.

We propose combined knowledge and data-driven methods that integrate the gener-

ated safety context specifications or other safety constraints described as formal logic

into machine-learning models for early hazard prediction and mitigation by enforcing the

satisfaction of safety requirements while maintaining high prediction accuracy.

The generated safety context specifications can also be used for the safety validation

of CPS at design time. We propose a model-driven approach orthogonal to the tradi-

tional data-driven techniques, which uses the system context specifications as the most

opportune times for the activation of faults and efficiently identifies optimal fault values

that can cause hazards as soon as possible without being detected by the existing safety

mechanisms or mitigated by human interventions. The final goal of this approach is to

discover potential design defects and safety-critical vulnerabilities in CPS to help with

safety validation.

We evaluate the proposed approaches by developing open-source closed-loop testbeds

that integrate real-world control software and physical-world simulators together with

a fault injection engine that simulates the effect of accidental and malicious faults and

real-world adverse events reported in the literature. We also evaluate our approaches

using publicly available datasets or actual CPS. Experimental evaluation of the proposed

assurance solutions for the case studies of artificial pancreas systems (APS) and advanced

driver assistant systems (ADAS) demonstrates their generalization to a broad range of

CPS with improved accuracy, timeliness, and robustness.
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Chapter 1

Introduction

1.1 Motivation

Cyber-Physical Systems (CPS) are designed by the tight integration of software and hard-

ware components with cyber networks and the physical world. They have been widely

deployed in various applications like intelligent healthcare and autonomous driving to

support safety-critical missions. However, the growing use of connected and complex de-

vices and software, along with shrinking technology sizes and shorter time to market, has

expanded attack vectors and increased vulnerabilities to accidental faults, posing signifi-

cant challenges in ensuring reliability, safety, and security. This issue is evident from the

rising number of reports on accidental faults and malicious attacks targeting CPS sen-

sors, actuators, or control software, which jeopardize system operations at runtime and

can lead to catastrophic consequences (e.g., fatal vehicle crashes, patient injuries, or loss

of life) [3–7].

Consequently, CPS require rigorous design and thorough safety validation before de-

ployment. Attempts have been made to advance safety validation techniques for CPS,

such as sensitivity-based [8] or model-based [9] methods, verification [10], or software fault

injection testing [11, 12]. But with the increasing complexity of software-intensive CPS,

there is a great need for more efficient and strategic validation techniques that are appli-

cable to the systems at scale and unified methods that can rigorously trace from informal

statements about a system and its (un)desired behavior to implemented code, hardware,

physical behaviors, and their interactions with the environment.
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Progress has also been made in improving CPS safety and resilience using correct-

by-construction techniques like quantitative risk assessment [13], control-theoretic haz-

ard analysis [14], model-based design [15], and control synthesis [16] using formal and

mathematical models. However, CPS remain vulnerable to residual faults and security

vulnerabilities that might evade even the most rigorous design and validation methods

and appear at run time [17]. Thus, run-time safety monitoring and hazard mitigation are

essential for complementing these offline analysis and assurance methods.

Efforts have been made to ensure CPS safety using anomaly detection or online mon-

itoring based on fuzzy logic [18], error probabilities [13], and statistical methods [19],

or by developing linear or non-linear models of physical system dynamics for detecting

abnormal system states and behaviors [20–23]. However, commonly used linear models

cannot capture the dynamics of a complex system [22, 24]. In contrast, well-designed

complex and non-linear models (e.g., [25–27]) may be difficult to derive for the human-

in-the-loop CPS due to unpredictable variances in the physical world (e.g., the human

body’s variability in medical CPS or changing weather conditions in autonomous driving)

and the changes in the behaviors and system’s parameters. In addition, these approaches

mostly rely on fixed and ad-hoc properties [28, 29] without the consideration of system

context in the cyber layer, physical layer, as well as environmental conditions, leading to

the increased possibility of false alarms. Further, these approaches do not consider the

reaction time constraints for recovery and mitigation [30], resulting in the late detection

and unsuccessful prevention of safety violations.

Recent works on runtime assurance in CPS leverage machine learning to enhance

prediction accuracy [31], timeliness [32], or hazard mitigation efficiency [33]. Neverthe-

less, these models face common challenges inherent in machine learning systems, such as

data limitations, lack of transparency, and performance degradation when predicting un-

seen data or encountering input perturbations [34–37]. Furthermore, they are frequently

trained solely on data without incorporating safety guarantees, potentially leading to
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outputs that violate safety regulations or physical rules.

To address these limitations and ensure the safety and security of critical CPS against

both accidental and malicious faults, there is an urgent need for the design of new assur-

ance approaches in CPS that consider the system context and safety requirements with

robust performance for efficient design-time safety validation and for timely and accurate

runtime hazard prediction and mitigation.

1.2 Challenges

This section outlines the gaps in the state-of-the-art as well as some challenges in designing

assurance approaches for safety-critical CPS, providing the motivation for the research

presented in this dissertation.

1.2.1 Formal Safety Context Specification

Existing work on runtime safety monitoring and anomaly detection in CPS often rely

on ad-hoc safety rules [28] or application guidelines [29] without considering the current

cyber-physical system status and dynamics, leading to a large number of false alarms or

missed detection [17,38,39]. Safety, as an emergent property of CPS, is context-dependent

and should be controlled by enforcing a set of constraints on the system’s behavior and

control actions given the current system state [40]. Previous work [32, 38, 41–43] has

shown that considering the multi-dimensional system context, including human, cyber,

and physical systems’ status, leads to improved anomaly detection accuracy and latency.

However, the system context considered in these works is specifically tailored for a

particular system without a formal framework to guide the specification process, which

can’t be applied to other systems or applications, limiting its reusability and generaliza-

tion. Recent systems-theoretic approaches to safety, like the Systems-Theoretic Accident

Model and Processes (STAMP) [14], provide a way to identify unsafe context-dependent
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control actions that could lead to safety hazards. However, there exists a gap between the

high-level safety requirements identified through these methods (e.g., STAMP [44] [45])

and the low-level formal specification of safety properties that can be used for runtime

monitoring and safety assurance.

Designing a general formal framework for specifying context-dependent safety prop-

erties that can be synthesized into a safety engine for assurance purposes is critical yet

challenging. This complexity arises from the need to accurately model system dynamics

and thoroughly investigate the relationships between system context, control actions, and

safety hazards. In addition, balancing the completeness and simplicity of the specified

safety properties is challenging to ensure efficient assurance and reduced complexity.

1.2.2 Accurate and Timely Hazard Prediction

Significant efforts have been dedicated to improving the accuracy of anomaly detection,

however, current methods often fall short in timely hazard identification. Typically, they

detect hazards either after their occurrence or when the system states have already de-

viated substantially beyond a set threshold from the target region [20, 22], leading to

alarms being raised too late to prevent adverse events effectively. This delayed response

can significantly impact operational safety and hazard mitigation efficiency.

Moreover, the challenge lies in selecting an appropriate threshold for anomaly detec-

tion [33,46]. A low threshold may trigger false alarms, inundating operators with unnec-

essary alerts and leading to alert fatigue or even unnecessary mitigation. On the other

hand, setting a high threshold can increase the latency in detecting anomalies, providing

insufficient time for proactive intervention. Striking the right balance between sensitiv-

ity and specificity is crucial, yet it remains a complex task due to the diverse nature of

systems and environments, especially for human-in-the-loop CPS.
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1.2.3 Safety Enforcement in Hazard Mitigation

Current efforts aimed at enhancing the safety and security of CPS predominantly revolve

around anomaly detection and safety monitoring [20,46–48]. However, less attention has

been paid to hazard mitigation strategies.

In addition to the previously highlighted challenge of accurately and timely predict-

ing hazards, the process of devising optimal mitigation actions presents its own set of

complexities. Effective mitigation strategies must not only identify and address the root

causes of potential hazards but also ensure that any interventions implemented do not

inadvertently introduce new risks or compromise system safety.

Furthermore, mitigating hazards in CPS environments necessitates careful consider-

ation of various factors, including system dynamics, environmental conditions, and the

specific safety requirements of the system. This entails devising mitigation actions that

bring the system state back within the desired operational parameters as quickly and

smoothly as possible while ensuring the satisfaction of safety requirements.

1.2.4 Efficient Safety Validation

Software fault injection has become a prevalent technique in safety validation [11,12] due

to its capacity to conserve validation time and resources and uncover system vulnerabilities

that may remain latent during normal operation. By deliberately introducing faults into

the software, engineers can simulate various failure scenarios and assess the system’s

robustness under adverse conditions, such as in autonomous driving [49, 50], surgical

robots [38], and artificial pancreas systems [3].

However, despite its advantages, software fault injection poses significant challenges,

particularly in exploring the vast fault parameter space to identify the critical system

context for the activation of fault injection as well as in generating fault values that can

maximize the chance of causing safety hazards within the shortest time while avoiding
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detection. In complex CPS, characterized by intricate interdependencies and nonlinear

behaviors, pinpointing these critical parameters becomes even more challenging.

The sheer complexity and dynamism of CPS architectures contribute to the exponen-

tial growth of the state space, exacerbating the challenge of locating the specific conditions

or combinations of variables that contribute to efficient safety validation. As the number

of system components, interactions, and environmental factors increases, so does the com-

plexity of the state space, making it increasingly difficult to explore all potential failure

scenarios comprehensively.

1.3 Contributions

In this research, we investigate the fundamental problem of run-time assurance in safety-

critical CPS. We develop a hybrid model and data-driven approach for specification,

optimization, and online inference of the system safety context and understanding its

relationship to unsafe control actions that lead to hazards and incidents. Note that

the system context considered in this work represents the physical system states and

dynamics, while the context of the environment (e.g., road or weather conditions, meals)

and humans (e.g., physical activity) are beyond this scope. The generated context-specific

safety specifications can be synthesized into a safety engine integrated with the control
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software of a class of CPS with the same functional specifications (see Fig. 1.1), regardless

of the internal structure or design of the controllers, to guide strategic safety validation

using software fault injection during design time or to predict and mitigate potentially

unsafe control actions and hazards at run-time. We focus on both accidental faults and

malicious attacks targeting the CPS controller, which, upon activation, may induce errors

in inputs, outputs, and the internal state variables of the CPS control software, leading

to hazards or adverse events.

The main contributions of this dissertation include:

• Proposing a framework for formal specification of safety context for safety as-

surance in CPS. This framework generates template Signal Temporal Logic (STL)

formulas, which can be further refined using an STL learning method and synthe-

sized into a safety engine for runtime safety monitoring and hazard mitigation and

design-time safety validation.

• Developing combined knowledge and data driven methods for more accurate

and timely hazard prediction and mitigation by integrating the generated safety

context specification or other safety constraints into ML models using a custom loss

function, which also enforces the satisfaction of safety requirements.

• Proposing a context-aware safety validation strategy that can find the most crit-
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ical context during an operation scenario to activate attacks or faults and strate-

gically generates optimal fault values, with the goal of maximizing the chance of

hazards and causing hazards as soon as possible before being detected or mitigated

by the human operators or the existing safety mechanisms.

• Developing an open-source simulation platform using real-world control soft-

ware and physical-world simulators for safety validation of different control

algorithms as well as experimental evaluation of different safety monitors in terms

of timely and accurate prediction of hazards for the case studies of an autonomous

driving system (ADS) and two artificial pancreas systems (APS). Our experimental

evaluations on two closed-loop APS and an ADS, publicly available datasets, and

actual vehicles indicate the merits of the proposed approach in timely and accurate

detection of unsafe control actions and prevention of hazards as well as efficient

exploration of the fault parameter space to find potential design defects and system

vulnerabilities. The implementation of the proposed approach for two different con-

trol systems (APS and ADS) also demonstrates its generalizability to different CPS

and controllers (e.g., rule-based, Proportional-Integral-Derivative (PID) based [51],

or Model Predictive Control (MPC) based [52]).

Fig. 1.2 shows our overall methodology for context-aware assurance in CPS. This re-

search is organized around three main thrusts that enable the next generation of resilient

CPS by advancing the state-of-the-art in run-time safety monitoring and hazard mitiga-

tion and design-time safety validation of CPS, as described in the following chapters.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 introduces the formal

framework for the control-theoretic specification of the safety context, which can be fur-

ther refined and synthesized in a safety engine used for runtime safety monitoring, hazard
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mitigation, as well as design time safety validation. Chapter 3 outlines combined knowl-

edge and data-driven approaches for optimal and secure hazard prediction and mitigation.

Chapter 4 details the context-aware safety validation approach, which identifies the op-

timal fault timing and value, maximizing safety validation efficiency. Finally, Chapter

5 concludes the dissertation and discusses directions for future research. Appendix A

presents the design and validation of closed-loop testbeds. Appendix B details the user

study of the stealthiness of perception attacks.
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Chapter 2

Formal Framework for Safety Context

Specification

2.1 Overview

Significant progress has been made in improving CPS resilience by using correct-by-

construction techniques like quantitative risk assessment [13], control-theoretic hazard

analysis [14], and model-based design [15], verification [10], and control synthesis [16]

utilizing formal and mathematical models. However, CPS are still vulnerable to residual

faults and security vulnerabilities that might evade even the most rigorous design and ver-

ification methods and appear at run time [17]. Thus, run-time monitoring and assurance

are essential for complementing such offline analysis and assurance methods.

Current techniques for run-time verification and assurance of safety properties usu-

ally depend on ad-hoc safety properties and do not consider the interactions and multi-

dimensional context in the CPS. Nevertheless, as an emergent property of CPS, safety is

context-dependent and should be ensured by applying a set of restrictions on the system’s

behavior and control actions given the current system state [32,40].

Previous research on anomaly detection in CPS demonstrated that considering the

multi-dimensional system context, including the human, cyber, and physical systems’

status, contributes to improved detection accuracy and latency [38, 41, 43]. However, the

This chapter contains material from the previously published works [47, 53], coauthored with H.
Alemzadeh, J. Aylor, B. Ahmed, and P. Asare, copyrighted by IEEE.
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lack of a formal framework for specifying safety context poses significant challenges in

ensuring the effectiveness and generalization of these approaches.

Further, most previous research on CPS safety and security have focused on detect-

ing safety-critical faults or attacks on sensor data before they reach the controller by

implementing redundant hardware [54] or software [31] components, quickest change de-

tection techniques [22], invariant monitoring [20,21], or ML-based anomaly detection [55].

However, less attention has been paid to accidental faults that directly compromise the

controller functionality or attacks that exhibit the malicious behavior after the controller

has received the sensor data. These attacks or faults could exploit the vulnerabilities

in the communication channels [4, 38], mobile and app-based controllers [56], and soft-

ware development processes [57], bypass the defense mechanisms mentioned above, and

expose the system and its users to potential safety hazards. In this research, we aim to

address this problem by focusing on the faults and attacks targeting the controller itself

while assuming the data observed by the safety engine can be protected using the above

mentioned methods.

Specifically, we adopt the control-theoretic notion of system context from the STAMP

accident causality model [40] and propose a formal framework for the specification and

design of context-aware hazard detection and mitigation mechanisms. An optimization

approach is also proposed for further refinement of the specified safety context specification

(SCS), utilizing a weakly supervised STL learning method. The context-specific safety

specifications are used for the automated synthesis of a safety engine that can be used for

runtime safety monitoring and hazard mitigation and design-time safety validation. This

chapter will mainly introduce the framework for generating and refining SCS and illustrate

the process of synthesizing these specifications to design a runtime safety monitor as an

example. More details on how SCS can be employed for hazard prediction and mitigation,

as well as safety validation, will be provided in the next chapters.

Fig. 2.1 shows the overall framework for designing a context-aware safety engine.
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Our approach combines the formal specification of safety context and unsafe control com-

mands based on hazard analysis and domain knowledge with data-driven optimization

techniques to generate safety properties to be checked by the run-time safety engine. We

use collected data from the closed-loop CPS simulation or run-time operation to refine

the safety properties with relevant parameters or to train ML models under the guidance

of the generated safety specifications to improve the safety engine’s timeliness, robust-

ness, and efficiency. The safety engine is then synthesized from the safety specifications

as a wrapper around the control software that only has access to the input-output inter-

face (sensor and actuator values) and performs real-time execution of safety specification

formulas for preemptive detection of unsafe control commands and prediction of hazards.

2.2 Model of System Dynamics

We first present the model of system dynamics used for design of our formal framework.

During each control cycle t, the CPS controller utilizes sensor measurements xt = (x1t ,

. . . , xnt
) from the continuous space Rn to estimate the status of the physical system and

determine a control action, ut. This action is chosen from a finite set of high-level control

actions U = {u1, . . . , ur}, such as Acceleration and Deceleration in ADS. Each high-level

control action corresponds to values of various low-level control output variables (e.g., gas

and brake), which are then transmitted to the actuators. Upon execution of the control

12



command by the actuators, the physical system transitions to a new state estimated by

xt+1 in the state space.

2.2.1 Regions of Operation

We assume there are three mutually exclusive regions of the state space. We identify

the unsafe/hazardous region Xh as the set of system states that lead to accidents and

can be further partitioned into regions associated with particular safety hazard types

Hi. The safe/target region X⇤ can be defined based on the goals and guidelines of the

specific application. The set of states not included by either of these regions is referred

to as the possibly hazardous region X⇤<h. Example regions of operation for APS and

ADS are presented in Fig. 2.2. The goal of the APS controller is to keep the patient’s

Blood Glucose (BG) in the target range of 110-150 mg/dL, while the ADS controller’s

goal is to maintain a safe following distance of 2-4 seconds to the lead vehicle [58]. The

unsafe regions for each example are indicated based on the definitions of hazards as later

described in Section 2.7.1.

In this dissertation, we define the regions of operation similarly to previous studies

[23, 59], albeit with a more conservative approach. Based on our definition of regions,

the safe region and hazardous region are guaranteed, while the possibly hazardous region

is approximated by minimizing the safe region while maximizing the unsafe region [60],

ensuring that no unsafe control actions are overlooked.

2.2.2 Unsafe Control Actions

A sequence of cyber control actions Ut = {ut�k+1, ..., ut�1, ut} issued in k consecutive

control cycles are considered unsafe if upon their sequential execution in a given state

sequence Xt = {xt�k+1, ..., xt�1, xt}, the system will eventually transit to a state in Xh

within the period T that Ut can affect the state space. The length of the control action

sequence varies across different applications. For instance, in a robotic control system
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Figure 2.2: Example regions of operation: Artificial pancreas system (APS) (Left); Autonomous
driving system (ADS) (Right).

with stringent real-time constraints, even a single or a few unsafe control actions might

result in a safety hazard [38]. Conversely, in a slower control system like APS, a sequence

of unsafe control actions may need to persist for an extended duration, possibly up to 30

minutes, to eventually lead to a hazard [47].

2.3 Safety Context Specification (SCS) Framework

We develop a formal framework for the control-theoretic specification of safety context

(inspired by STAMP [40]), comprising two key components: (i) the Unsafe Control Ac-

tion Specification (UCAS) that describes the system context under which specific control

actions are potentially unsafe and can be used for predicting hazards or triggering safety

validation; and (ii) the Hazard Mitigation Specification (HMS) that identifies one or more

mitigation actions to prevent potential hazards resulting from the unsafe control actions

issued by the controller.

2.3.1 Unsafe Control Action Specification (UCAS)

In order to simplify the process of defining the overall system context, we introduce the

transformation µ(xt) = (µ1(xt), . . . , µm(xt)) 2 Rm, where µi(xt) represents a transfor-

mation of xt. This transformation may involve various functions applied to xt, such as
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polynomials, derivatives, or other functions, allowing for the modeling of complex combi-

nations of state variables and their rates of change. The entire range of potential values

for µ(xt) is denoted as M. We characterize the system context ⇢(µ(xt)) as subsets of

M, delineated by ranges of variables within µ(xt) that can be mapped to the regions

X⇤,X⇤ < h,Xh. Note that the system context considered in this work represents the

physical system states and dynamics, while the context of the environment (e.g., road or

weather conditions, meals) and humans (e.g., physical activity) are beyond this scope.

The set of tuples (⇢(µ(xt)), ut, Hi) constitutes the Unsafe Control Action Specification

(UCAS), denoted as (⇢(µ(xt)), ut) 7! Hi ⇢ Xh. This specification specifies the system

context ⇢(µ(xt)) wherein issuing a control action ut results in the system transitioning to

a new context within the hazard partition Hi within the hazardous region Xh.

The UCAS can be generated using the following steps:

1. Define the set of accidents (A) and hazards (H) of interest for the system using the

control-theoretic hazard analysis method.

2. Determine the targeted transformations µ(xt) and the sets ⇢(µ(xt)) related to the

hazard as comprehensively as possible based on an observable set of variables xt.

It is not necessary to determine precise thresholds for each variable that delineate

each subset.

3. Enumerate all the combinations of ⇢(µ(xt)) and ut 2 U .

4. Identify the combinations that might result in transitions to a hazardous region

Hi ⇢ Xh, and add tuples (⇢(µ(xt)), ut, Hi) into the UCAS set.

Steps 1 and 2 require manual definition based on domain expertise and input from domain

experts. However, Step 3 can be automated based on the definitions established in the

first two steps [45]. Similarly, Step 4 can also be automated using dynamic modeling and

simulation techniques [61].
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2.3.2 Hazard Mitigation Specification (HMS)

HMS is defined as a set of tuples that have the form (⇢(µ(xt)),u⇢), where u⇢ is the set

of safe control actions under the context ⇢(µ(xt)) that lead to the transition to the safe

region X⇤ and prevent hazards. The HMS can be generated through the following steps:

1. For each specified context ⇢(µ(xt) in UCAS, find all the control actions uc

t
2 U such

that (⇢(µ(xt)), uc

t
) 7! X⇤ and add them to u⇢, the set of safe mitigating control

actions for that context.

2. Add tuples (⇢(µ(xt)),u⇢) into the HMS set.

2.4 Formalization of SCS in Signal Temporal Logic

To facilitate the integration of safety assurance within CPS, we undertake the task of

translating the Safety Context Specification (SCS) into a machine-checkable format. This

involves converting the Unsafe Control Action Specifications (UCAS) into a set of safety

properties represented in Signal Temporal Logic (STL). STL, recognized for its effective-

ness in specifying temporal properties of continuous signals, provides a formal framework

for articulating rigorous requirements in CPS [62,63].

By employing the bounded-time variant of STL, wherein temporal operators are asso-

ciated with both upper and lower time bounds, we ensure a comprehensive representation

of temporal constraints. This approach enables the synthesis of machine-checkable STL

formulas, which is essential for establishing a context-aware assurance system for CPS.

Through this methodology, we aim to enhance the safety assurance capabilities of CPS

by providing a systematic and formal means of verifying safety properties in real-time.

The STL formula �h for a specific UCAS (⇢(µ(xt)), ut, Hi) is described as follows:

G[t0,te]('1(µ1(xt)) ^ . . . ^ 'm(µm(xt)) ^ ut =) F[0,T ]Hi) (2.1)
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where, F represents the eventually operator ⌃, and each 'i(µi(xt)) serves as an atomic

predicate, expressing an inequality on µi(xt) in the format of µi(xt)<,, >,��i or its

combinations. These predicates define the boundaries of each dimension ⇢(µi(xt)) within

the system context ⇢(µ(xt)), with the thresholds �i delineating the boundary values. The

formula �h is globally valid (indicated by the G operator) from the start time t0 to the

end time te during system operation.

The UCAS for a sequence of control actions Ut, issued under a state sequence Xt =

{xt�k+1, ..., xt�1, xt} spanning a window of k control cycles, is formally expressed as �h:

G[t0,te]('1(f(µ1(Xt))) ^ . . . ^ 'm(f(µm(Xt))) ^ f(Ut) =) F[0,T ]Hi) (2.2)

where, µi(Xt)
.
= {µi(xt�k+1), . . . , µi(xt)} and f(·) represents an aggregation function such

as average, Euclidean norm, or regression over k transformed measurements. When k takes

the value of 1, this equation is identical to Eq. 2.1, which considers the consequences of

a single control action.

Similarly, we formalize the HMS (⇢(µ(xt)), uc

t
) 7! X⇤ with the following format:

G[t0,te]((F[0,ts](u
c

t
))S('1(µ1(xt)) ^ . . . ^ 'm(µm(xt)))) (2.3)

which requires that uc

t
2 u⇢ should be taken within period ts since (denoted by the S

operator) the system enters context ('1(µ1(xt)) ^ . . . ^ 'm(µm(xt))). This should hold

globally during the system operation.

The parameter ts delineates the latest allowable time for the initiation of a mitigation

action subsequent to the detection of a potential unsafe control action, aiming to avert haz-

ards. This time frame is contingent upon several factors, including the context ⇢(µ(xt)),

the characteristics of diverse safe control actions uc

t
2 u⇢, and the operational speed of

the CPS controller, and may be determined based on domain expertise and practical con-

siderations. The specific methodology for establishing this time requirement generally lies
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outside the scope of this dissertation. However, an upper bound for delineating this time

requirement can be derived from the estimated duration between the activation of a fault

in the system and the occurrence of a hazard (referred to as Time-to-Hazard).

2.5 SCS Optimization

The parameters �i in the STL formulas (Eq. 2.1) represent unknown boundaries, which

can be inferred from either actual or simulated data using ML techniques [64] [65]. Current

approaches to learning STL entail either employing classification methods with positive

and negative examples, where positive instances adhere to the STL formulas and negative

ones contravene them, or resorting to system simulation and experimentation to learn

through the falsification of STL properties [66]. In this study, we leverage software fault

injection (FI) on a closed-loop CPS to generate hazardous data traces that adhere to the

STL formulas for UCAS. These traces are utilized to learn the unknown STL parameters

and for adversarial training of the safety engine. Fig. 2.1 illustrates that real system

operation data can also contribute to simulation model development, generation of faulty

data traces, and facilitate active learning and runtime updates of the engine in practical

scenarios.

We solve the problem of learning unknown thresholds �i from a set of data traces D

by formulating the following optimization problem:

minimize
X

H

loss(r); s.t. (2.4)

r = µi(d(t))� �i > 0, 8d 2 H : d |= �h

If the STL formula �h (Eq. 2.1) is satisfied (indicated by the |= operator, which outputs

a binary value from {True, False}) by a subset of hazardous traces H ⇢ D, the degree
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Figure 2.3: Loss functions of (a) MSE and MAE, (b) TeLEx and our proposed tight mean
exponential error (TMEE) function.

of satisfaction of �h for a data trace d 2 H at time t can be quantified using a robustness

metric r = µi(d(t)) � �i (where µi(xt) � �i represents the predicate). The objective of

the optimization process is to minimize the absolute value of r as a loss function across

all traces in H to ensure tight properties [66].

The metric resembles several commonly used loss functions in ML, such as mean

squared error (MSE) and mean absolute error (MAE), typically employed for assessing

parameter estimation errors. However, as depicted in Fig. 2.3a, when utilizing these loss

functions, the loss values can tend to be small positive numbers near the minimum, while

the actual robustness values might be small negative numbers, indicating a violation of

the STL formulas. A prior study, TeLEx [66], tackled this issue by introducing a tightness

function to quantify loss (Fig. 2.3b); nonetheless, the thresholds learned using such a loss

function may not be sufficiently tight without manual adjustments. In this dissertation,

we propose a Tight Mean Exponential Error (TMEE) loss function, as delineated below:

loss(r) = E[e�r + r �
1

1 + e�2r
], r = µi(d(t))� �i (2.5)

which learns tight thresholds while ensuring that the faulty data traces satisfy the UCAS

STL formulas.

We employed an extension of the Limited-memory Broyden-Fletcher-Goldfarb-Shanno

algorithm, known as L-BFGS-B [67], which falls within the category of quasi-Newton

methods for parameter estimation. Unlike conventional quasi-Newton methods [68] that
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directly compute the inverse of the Hessian matrix, we utilized a two-loop recursion ap-

proach [69] to estimate it. Subsequently, the L-BFGS-B algorithm leveraged the gradient

of the loss function along with the estimated inverse Hessian matrix to guide the opti-

mization process.

While our STL learning methodology shares similarities with the prior work TeLEx

[66], the proposed TMEE loss function demonstrates accelerated convergence in learning

unknown thresholds for the STL formulas. Notably, our preliminary experiments, involv-

ing 50 simulation runs of an artificial pancreas system controller with data sourced from a

simulated diabetic patient, revealed that our optimization method achieved convergence

in a significantly shorter time frame (0.02s vs. 21.79s) with substantially reduced loss

values (1.15 compared to�100) in contrast to TeLEx, thereby facilitating the learning of

tighter thresholds. Furthermore, the safety engine synthesized based on the tight thresh-

olds learned through our approach exhibited higher accuracy compared to the safety rules

learned using TeLEx (F1-score of 0.94 vs. 0.60).

2.6 Run-time Cyber-Physical Context Inference

The SCS STL formulas for the synthesis of the safety engine are articulated in terms of

high-level and human-interpretable estimated states (e.g., Headway Time (HWT)) and

control actions (e.g., acceleration in ADS), which may differ from the low-level sensor

measurements (e.g., RADAR data) and output control commands (e.g., the amount of

gas or brake) executed on the actuators.

To bridge the semantic gap between human-interpretable safety requirements and low-

level measurements observed by the safety engine and to map the system’s state to the

STL formulas, the safety engine needs capabilities for run-time inference of both cyber and

physical states. Specifically, the safety engine will infer the high-level control actions issued

by the control software based on the low-level control commands sent to the actuators,
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Figure 2.4: (a) Artificial pancreas system and a typical APS controller; (b) Autonomous driving
system and a typical ADS controller.

and it will estimate the non-observable physical states utilized by the control algorithm

based on the sensor measurements. This process can be seen as a partial replication of

the controller’s state estimation and control algorithms inside the safety engine.

2.7 Case Studies

To showcase the generalization and efficacy of our approach, we conducted evaluations

on two distinct case studies: Artificial Pancreas Systems (APS) and Autonomous Driving

Systems (ADS).

The APS controller (Fig. 2.4a) functions by estimating the current patient status

(Blood Glucose (BG) value and Insulin on Board (IOB)) utilizing Continuous Glucose

Monitor (CGM) readings. Subsequently, it administers the appropriate amount of insulin

to the patient via a pump.

The ADS Adaptive Cruise Control (ACC) system (Fig. 2.4b) measures relative distance

and relative speed to the lead vehicle using RADAR and car sensor readings. It then

estimates the steering angle and brake status based on these measurements, maintaining

a target following distance with the lead vehicle by issuing acceleration or deceleration
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control actions and adjusting gas and brake pressure accordingly.

The subsequent subsections delineate the process for generating SCS, labeling data

for SCS learning, and inferring cyber-physical context for mapping measurements to SCS

formulas for both of these case studies.

2.7.1 Safety Context Specification (SCS) Generation

Step 1: Initially, we identified a set of accidents and hazardous system states result-

ing from potential unsafe control actions issued by the controller that could precipitate

accidents.

For the APS, the set of accidents (A) and hazards (H) of interest encompass:

• A1: Complications stemming from hypoglycemia, such as seizure, loss of conscious-

ness, and fatality.

• A2: Complications arising from hyperglycemia, including tissue damage and mor-

bidities like retinopathy, and in severe cases, death [70].

• H1: Excessive insulin infusion, resulting in decreased Blood Glucose (BG) levels,

potentially leading to A1.

• H2: Inadequate insulin infusion, causing elevated BG levels and possibly culminat-

ing in A2.

For the ADS, we considered the following potential accidents and hazards:

• A3: Forward collision with the lead vehicle.

• A4: Collision with the trailing vehicle or causing traffic congestion.

• H3: Autonomous vehicle violates maintaining safety distance with the lead vehicle,

which may result in A3.

• H4: Autonomous vehicle decelerates to a complete stop without a lead vehicle,

which may lead to A4.
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Step 2: Subsequently, we pinpointed the pertinent transformations (µ(xt)) to de-

lineate system context. For instance, in the case of APS with sensor measurements xt

= (BGt, IOBt), we defined µ(xt)=(BGt, dBGt/dt, IOBt, dIOBt/dt), encompassing the

state variables BGt and IOB alongside their rates of change.

Steps 3-4: Following this, we compiled a list of potential UCAS for each system

by identifying combinations of specific ranges in µ(xt) and control actions (e.g., ut 2

{u1, u2, u3, u4}) that could potentially pose hazards and lead to accidents of interest

(refer to Table 2.1).

Table 2.1 exhibits the ultimate safety specifications elucidated in STL formalism for

both APS and ADS. For instance, the final row for APS represents a UCAS in formal

representation: (⇢(µ(xt)) = (BG < BGT , BG0 < 0, IOB0
> 0, IOB > �11), u4, H1).

This specification delineates that in the system context where BG is below the target

and decreasing, and IOB surpasses a certain threshold �11 while continuing to rise, the

control action u4 (keep_insulin) is deemed unsafe and is likely to result in hazard H1 if

executed by the controller. This exemplifies a safety rule that can be identified or verified

through consultation with domain experts. Moreover, these rules only require generation

once and can be synthesized into safety engine logic, subsequently applied to diverse

implementations of CPS controllers (e.g., different APS or ADS controllers) possessing

identical functional specifications regardless of the controllers’ internal structure or design.

2.7.2 Hazard Labeling for SCS Learning

For data-driven refinement and adversarial training of SCS, we necessitate examples of

faulty data traces obtained from closed-loop CPS simulations or actual operations. This

dataset should encompass time-series sensor measurements along with the control actions

executed by the controller, labeled with the time instances when the system enters a haz-

ardous state. It’s crucial to note that an objective of the safety engine is to identify unsafe

control actions and forecast these hazardous states in advance, hence the labeling method
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Table 2.1: STL safety context specifications for APS and ADS.

CPS Rule STL Description of Safety Context Implied
No. Hazard Type

APS

1 G[t0,te]((BG > BGT ^ BG0 > 0) ^ (IOB0 < 0 ^ IOB < �1) ^ u1 =) F[0,T ]H2)
2 G[t0,te]((BG > BGT ^ BG0 > 0) ^ (IOB0 = 0 ^ IOB < �2) ^ u1 =) F[0,T ]H2)
3 G[t0,te]((BG > BGT ^ BG0 < 0) ^ (IOB0 > 0 ^ IOB < �3) ^ u1 =) F[0,T ]H2)
4 G[t0,te]((BG > BGT ^ BG0 < 0) ^ (IOB0 < 0 ^ IOB < �4) ^ u1 =) F[0,T ]H2)
5 G[t0,te]((BG > BGT ^ BG0 < 0) ^ (IOB0 = 0 ^ IOB < �5) ^ u1 =) F[0,T ]H2)
6 G[t0,te]((BG < BGT ^ BG0 < 0) ^ (IOB0 > 0 ^ IOB > �6) ^ u2 =) F[0,T ]H1)
7 G[t0,te]((BG < BGT ^ BG0 < 0) ^ (IOB0 < 0 ^ IOB > �7) ^ u2 =) F[0,T ]H1)
8 G[t0,te]((BG < BGT ^ BG0 < 0) ^ (IOB0 = 0 ^ IOB > �8) ^ u2 =) F[0,T ]H1)
9 G[t0,te]((BG > BGT ^ IOB < �9) ^ u3 =) F[0,T ]H2)
10 G[t0,te]((BG < �12) ^ ¬u3 =) F[0,T ]H1)
11 G[t0,te]((BG > BGT ^ BG0 > 0) ^ (IOB0 <= 0 ^ IOB < �10) ^ u4 =) F[0,T ]H2)
12 G[t0,te]((BG < BGT ^ BG0 < 0) ^ (IOB0 >= 0 ^ IOB > �11) ^ u4 =) F[0,T ]H1)

ADS

1 G[t0,te]((HWT < �21) ^ (RS > 0 ^RS 0 > 0) ^ ¬u22 =) F[0,T ]H3)
2 G[t0,te]((HWT < �22) ^ (RS > 0 ^RS 0 = 0) ^ ¬u22 =) F[0,T ]H3)
3 G[t0,te]((HWT < �23) ^ (RS > 0 ^RS 0 < 0) ^ u21 =) F[0,T ]H3)
4 G[t0,te]((HWT > �24) ^ (RS < 0 ^RS 0 > 0) ^ ¬u21 =) F[0,T ]H4)
5 G[t0,te]((HWT > �25) ^ (RS < 0 ^RS 0 = 0) ^ ¬u21 =) F[0,T ]H4)
6 G[t0,te]((HWT > �26) ^ (RS < 0 ^RS 0 < 0) ^ u22 =) F[0,T ]H4)

* BGT: BG target value; BG0 = dBG/dt, IOB0 = dIOB/dt;
* HWT: Headway Time = Relative Distance/Current Speed [71]; RS: Relative Speed = Current Speed - Lead

Speed; RS0 = dRS/dt;
* u1,2,3,4 :decrease_insulin, increase_insulin, stop_insulin, keep_insulin;
* u21,22 : Acceleration, Deceleration; t0, te: start time and end time of the simulation.

employed for hazards cannot be directly utilized by the safety engine. In this study, we

adopt an automated labeling approach utilizing common objective metrics endorsed by

the research community and commonly practiced guidelines. These metrics and guidelines

will be detailed in the subsequent description.

For the APS case, we employed the concept of the Risk Index (RI) [72, 73], which

encapsulates both the glucose variability and the associated risks of hypo- and hyper-

glycemia, to label the data. We computed the low blood glucose index (LBGI) and high

blood glucose index (HBGI) for a data trace D of blood glucose (BG) readings using the

following equations:
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risk(BG) = 10 ⇤ (1.509 ⇤ [(ln(BG))1.084 � 5.381])2 (2.6)

LBGI = 1/n
X

D

risk(BG);for each BG < 112.517

HBGI = 1/n
X

D

risk(BG);for each BG > 112.517

We deemed a window (e.g., one hour) of blood glucose (BG) readings as hazardous if

the risk indices exceeded a high-risk threshold (e.g., LBGI > 5 and HBGI > 9, as defined

by previous studies [73, 74]) and exhibited a persistent increase, suggesting a heightened

probability of hypo- or hyperglycemia.

For ADS, we label the data points as hazardous if the relative distance between the

autonomous vehicle and the leading vehicle is non-positive or the autonomous vehicle

decelerates to a complete stop with a considerable relative distance (e.g., greater than 100

meters [75] that is the range of a medium-range radar [76]) to the leading vehicle, which

might lead to a potential collision with the trailing vehicle or causing congestion.

2.7.3 Context Inference for SCS Matching

For APS, the state variable Insulin On Board (IOB) might not be directly observable by

the safety engine. Consequently, we need to derive its value from a sequence of insulin

rate history. Following the injection of insulin into a patient’s body, the IOB gradually

increases, reaching its maximum level at tpeak (e.g., 75 minutes), after which it begins

to decrease until it reaches zero. We calculated the IOB before the peak time using the

equation proposed by [77]:

IOB(t) = I(t0) ⇤ [�k1(0.2(t� t0) + 1)2 + k1(0.2(t� t0) + 1) + 1] (2.7)

and derived the IOB between peak time and the end of the duration of insulin action
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using the following equation:

IOB(t) = I(t0) ⇤ [k2(t� t0 � tpeak)
2
� k3(t� t0 � tpeak) + 0.55556] (2.8)

where ki are coefficients. The accumulated IOB under the effect of an insulin rate sequence

is the integral of IOB calculated using the above equations.

For ADS, we estimate the high-level state variables, headway time, and relative speed,

based on the current speed of the autonomous vehicle and the relative distance between

the autonomous vehicle and the leading vehicle, measured by low-level car sensors such

as GPS and Radar.

In both case studies, the safety engine translates the low-level control commands

issued by the controller into the high-level control actions described in SCS by computing

the rate of change in a window of measurements. For instance, an increase_insulin or

decrease_insulin control action can be detected by calculating the slope of insulin samples.

2.7.4 Hazard Mitigation and Recovery

Upon detection of an unsafe control action issued by the controller, the safety engine initi-

ates mitigation measures to prevent potential hazards. These measures involve correcting

the command, regardless of whether its value falls within the acceptable range, and de-

livering a new command (uc

t
2 u⇢) to the actuator. For instance, if the insulin dosage is

excessive, it can be reduced, or if it is insufficient, additional insulin can be administered.

This corrective process continues until the system returns to a safe state and the safety

engine ceases to raise alerts. Developing a mitigation mechanism with a high recovery

rate while minimizing the introduction of new hazards is a complex challenge. Algorithm

1 outlines one potential implementation of a mitigation algorithm for preventing hazards

in APS. Further exploration of mitigation algorithms, incorporating formal specification

and learning from simulation data, will be discussed in Chapter 3.
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Algorithm 1: Hazard Mitigation Algorithm
1 Mitigate  0
2 while t < te do
3 µ(xt) (BGt, IOBt, BG

0

t, IOB
0

t)
4 ut, uc

t  ui 2 {u1, u2, u3, u4}
5 if ⇢(µ(xt)) 2 X⇤ then Mitigate  0, continue
6 for �i in STL of UCAS do
7 if (⇢(µ(xt)), ut) matches �i then
8 Mitigate 1, Hazard  Hi 2 {H1, H2}
9 end

10 if Mitigate == 1 then
11 if Hazard == H1 then uc

t  0
12 else if Hazard == H2 then uc

t  f(⇢(µ(xt)), ut) 2 u⇢

13 end

f(.) describes a context-dependent function for selecting the mitigation action. In our experiments, we
instead use a fixed maximum value of insulin to enable a fair comparison with baseline non-context-aware
safety engines.

2.8 Experimental Evaluation

This section presents the experiments and results of evaluating and comparing the pro-

posed context-aware monitors designed using the SCS learning approaches detailed in Sec-

tion 2.5. Specifically, we focus on the STL optimization with threshold learning method,

denoted as CAWT (Context-Aware With refined Thresholds).

2.8.1 Closed-loop Cyber-Physical Simulation Platforms

To facilitate our evaluation, we developed an open-source simulation environment1, as

depicted in Fig. 2.5, which integrates closed-loop simulations of two exemplary APS

and ADS control systems with a software Fault Injection (FI) engine. This environment

enables us to assess various safety monitors effectively.

2.8.1.1 APS Testbeds

We integrated two widely-used APS controllers, namely Proportional-Integral-Derivative

(PID) [51] based OpenAPS [77] and rule-based Basal-Bolus [78], with two distinct patient
1[Available Online: https://github.com/UVA-DSA/CPS-Runtime-Monitor]
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glucose simulators: Glucosym [79] and the UVA-Padova Type 1 Diabetes Simulator [26].

The Glucosym simulator incorporates models of 10 actual Type I diabetes patients, while

the UVA-Padova Type 1 Diabetes Simulator S2013 (T1DS2013) features 30 virtual pa-

tients representative of the Type 1 Diabetes Mellitus (T1DM) population observed in

a clinical trial [80]. Moreover, T1DS2013 has FDA approval for pre-clinical testing of

APS [26, 81]. More details about the APS testbed design are provided in Appendix A.1.

Our closed-loop testbed underwent validation using real data from a clinical trial (see

Appendix A.1.5), ensuring that the simulated data meets the requirements of relevance,

completeness, accuracy, and balance [82] for the development of ML models [3]. An ex-

ample of the architecture of closed-loop simulation of OpenAPS with a glucose simulator

is also shown in Fig. 2.6.
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Figure 2.6: Left: Artificial pancreas system; Right: Closed-loop simulation of OpenAPS and a
glucose simulator.

2.8.1.2 ADS Testbed

Fig. 2.7 presents the developed basic realistic testbed for closed-loop simulation of ADS,

integrates an open-source ADAS control software, OpenPilot from Comma.ai [83] and

the state-of-the-art physical-world driving simulator, CARLA.

OpenPilot. We utilized OpenPilot as our control software as it is the only open-source

alpha-quality commercial driving agent. OpenPilot has been deployed in real cars on the

road by over 10,000 active users. It provides adaptive cruise control (ACC) and automated

lane centering (ALC) capabilities to more than 250 supported car makes and models,

such as Honda Civic 2016-2023 and Ford Explorer 2020-2023 [84]. This functionality is

achieved using additional hardware, the Comma 3X [85], which can control the gas, brake,

and steering.

CARLA Simulator. CARLA is built for flexibility and realism for rendering and

physics simulation, implemented as an open-source layer over Unreal Engine 4 [86],

which provides state-of-the-art rendering quality, realistic physics, basic NPC logic, and

an ecosystem of interoperable plugins. In addition to open-source code and protocols,

CARLA also provides open digital assets (e.g., urban layouts, buildings, vehicles), which

allows us to control the motion of multiple objects for the design of any complex scenarios.

Further, CARLA can update vehicle states by executing a control command issued by the
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Figure 2.7: Basic closed-loop ADS testbed.

human driver of ADAS in the physical world, helping evaluate the attack effect on the

vehicle at runtime without manual shifting or rotating objects in the image frame, which

is required for testings on recorded videos.

We ran the experiments with both APS controllers and simulators as well as OpenPilot

(v.0.4.2) on an x86_64 PC with an Intel Core i9 CPU @ 3.50GHz and 32GB RAM running

Linux Ubuntu LTS. We used TensorFlow v.2.5.0 to train our ML models.

2.8.2 Scenario Simulations

In the APS simulations, we conducted experiments with initial Blood Glucose (BG) values

ranging from 80 to 200 mg/dL for 150 iterations, representing 12.5 hours in an actual APS

control system, without add-on meals. This setup mimics a patient’s routine of eating

dinner, going to sleep, and having the next meal the following day after the simulation

period. Additionally, we evaluated our approaches across 20 different patient profiles, with

10 patients in the Glucosym simulator and 10 in the T1DS2013 simulator, to account for

possible inter-patient variability.

In the ADS assessment, the OpenPilot simulator and controller were executed for 150

iterations, with each iteration simulating 200ms of real road driving. We simulated four
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Table 2.2: Simulated fault and attack scenarios.

Type Approach Simulated
Scenario

Representative
FDA Recalls

Possible Adverse
Events

Truncate Change output variables
to zero value [88] [89]

Availability
attack [90]

Z-1074-2013
Z-1034-2015

1

Device
Malfunction/

Hypoglycemia/
Hyperglycemia/

Injury [91]/
Death [92]

Hold
Stop refreshing selected
input OR output variables
[22] [89]

DoS
attack
[93,94]

Z-1359-2012
Z-0929-2020

Max/Min

Change the value of tar-
geted variables to their
maximum or minimum al-
lowed values [22] [49]

Integrity
attack [88]/

Memory
fault

Z-1562-2020
Z-2165-2020

Add/Sub

Add or subtract an arbi-
trary or particular value
to or from a targeted vari-
able [22] [95]

1 Recall IDs assigned by FDA which can be searched for on https://www.accessdata.fda.gov/
scripts/cdrh/cfdocs/cfres/res.cfm.

driving scenarios classified as high-risk in the pre-collision scenario topology report by the

National Highway Traffic Safety Administration (NHTSA) [87]:

• The lead vehicle is driving at a constant speed (40mph).

• The lead vehicle accelerates and then slows down.

• The lead vehicle slows down and then accelerates.

• The lead vehicle slows down to a complete stop.

2.8.3 Fault Injection Experiments

We collected experimental data from closed-loop CPS simulations with FI for adversarial

training and testing of the proposed safety monitor and other baseline monitors.

Threat Model: We assume that both accidental faults and malicious attacks, re-

sembling those reported for CPS (see Table 2.2), have the potential to target the CPS

controller. Upon activation, these faults or attacks may induce errors in inputs, outputs,

and the internal state variables of the CPS control software, leading to the hazards out-

lined in Section 2.7.1 and resulting in adverse events. Regarding malicious attacks, we
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assume that attackers have gained unauthorized remote access [96] to a CPS control sys-

tem through various means, including stolen credentials [97], exploitation of vulnerable

services [98], or insider attacks involving network penetration [5, 38]. Such attacks may

exploit the network to which the target CPS controller is connected. Even in the absence

of network connectivity, attackers might exploit physical access points such as USB ports

or Bluetooth connections to infiltrate the target device and deploy malware. Table 2.2

provides examples of such fault and attack scenarios, along with vulnerabilities in the

control system that have resulted in real recalls and potential adverse events.

We developed a source-level FI engine that directly perturbs the values of the con-

troller’s state variables within their acceptable ranges over a random period of time to

simulate the effect of such fault and attack scenarios. We assume that errors are transient

and only occur once for a specific duration per simulation. For each FI scenario shown

in Table 2.2, the FI engine determines (i) the target state variable, (ii) the error value to

inject, (iii) the trigger condition of the error, and (iv) the duration of the injected fault.

To diversify the fault injection process, we randomly select start times and durations

for injecting faults. This approach resulted in a total of 882 and 1200 fault injections

for each patient and driving scenario, respectively. Consequently, we amassed a total

of 2,646,000 simulation samples used for training and testing different monitors. We

adopted a 4-fold cross-validation setup for both threshold learning and the evaluation of

our context-aware safety monitors, as well as for model training and testing of the baseline

ML monitors.

To assess the efficacy of the safety monitor against adaptive adversaries, we also con-

template a more formidable attacker equipped with all the necessary knowledge about the

target controller and safety monitor, enabling them to execute specific types of stealthy

attacks (refer to Section 2.8.6.5). However, conducting a comprehensive evaluation of the

proposed approach against all conceivable stealthy attacks (e.g., replay, zero-dynamics,

pole-dynamics, and covert attacks [99,100]) falls beyond the scope of this work.
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Table 2.3: Rules of medical guideline monitor.

No. Description

1 �1 = ⇤(BG > 70) ^ (BG < 180))
2 �2 = ⇤((�BG > �5) ^ (�BG < 3))
3 �3 = ((BG < �10)) ⌃[0,↵](BG > �10))
4 �4 = ((BG > �90)) ⌃[0,↵](BG < �90))

2.8.4 Baseline Monitors

In order to assess and contrast the performance of the proposed context-aware moni-

tor, CAWT, in accurately and promptly predicting hazards, we crafted several baseline

monitors representative of the current state-of-the-art safety monitoring and defense ap-

proaches for CPS.

2.8.4.1 Medical Guidelines Monitor

We crafted a baseline safety monitor, denoted as Guideline, based on generic medical

guidelines proposed in [29], without taking into account patient characteristics or control

software. The safety rules of the Guideline monitor are shown in Table 2.3. The Guideline

monitor issues alerts when the Blood Glucose (BG) value falls outside the normal range

of [70, 180] mg/dL, experiences a sharp change, or remains below its tenth percentile �10

or above its ninetieth percentile �90 for an extended safe period (e.g., 30 minutes).

2.8.4.2 Model Predictive Control Monitor

We formulated two baseline monitors based on Model Predictive Control (MPC) [16,101],

a widely used technique in process control systems, for both APS and ADS.

For APS, the MPC monitor predicts the potential Blood Glucose (BG) value (BGt+1)

following the execution of the pump’s command (It) on the patient’s current state (BGt)
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using the Bergman and Sherwin model [102]:

dBG(t)/dt = �(GEZI + IEFF ) ⇤BG(t) + EPG+RA(t) (2.9)

where, GEZI, IEFF , EPG are patient-specific parameters, and RA(t) is glucose appear-

ance rate. An alarm will be generated if the predicted BG value goes beyond the patient’s

normal range (same as the medical guidelines).

In developing the MPC monitor for ADS, we employed the following dynamic model

of the vehicle [103]:

dv(t)/dt = 3.33 ⇤Gas(t) ⇤ Ppeak/m/v(t)� 3 ⇤Bk(t)

� (0.01g + 0.15v2(t))�GD + CRP (t)
(2.10)

where, v(t) denotes the current speed of the vehicle, while m, Gas(t), and Bk(t) respec-

tively represent the vehicle mass, the output of the gas, and the brake. Additionally,

Ppeak signifies the peak power, g denotes the gravitational force of Earth, GD describes

the road grade, and CRP (t) characterizes the impact of creep force, which is contingent

upon v(t). The baseline monitor triggers an alert if the vehicle is projected to decelerate

at a rate of 3 m/s2 or more for a duration of at least one second [104].

2.8.4.3 ML-based Monitors

We utilized two state-of-the-art machine learning approaches, multi-layer perceptron (MLP)

and Long-short-term memory (LSTM), to train two baseline monitors. In particular, we

framed the task of detecting an unsafe control action as a context-specific conditional

event, outlined as follows:

yt = p(9t0 2 [t, t+ T ] : xt0 2 Xh|X̄t, Ūt) (2.11)
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When presented with an issued control action Ūt at the current system state X̄t,

represented by the average values of Ut and Xt respectively, the ML model produces a

binary output yt that categorizes Ut as safe or unsafe. We employed a fully connected

two-layer MLP architecture, consisting of 256 and 128 neurons respectively, followed by

a fully connected layer with ReLU activation, and finally a softmax layer to derive the

hazard probabilities.

During the training phase, we assigned a positive label to yt if any hazard occurred

within a defined time window (e.g., the duration of insulin action for APS) after the

sequential execution of Ut. We classified a simulation data trace as hazardous if any

sample within it was marked as unsafe.

For individual patients or autonomous vehicles, we trained the model using eighty

percent of the data traces, preserving the time sequence of samples within each data

trace. We set a validation split rate of 0.1 and reserved the remaining twenty percent

of the dataset for testing. To assess the overall performance of the final ML model, we

employed 4-fold cross-validation.

Additionally, leveraging its ability to capture temporal dependencies in time-series

data, we employed an LSTM model as a baseline monitor. This model was trained using

input data Xt = {xt�k+1, ..., xt�1, xt} and Ut = {ut�k+1, ..., ut�1, ut} with a sliding time

window of k.

yt = p(9t0 2 [t, t+ T ] : xt0 2 Xh|Xt, Ut) (2.12)

We experimented with various model architectures and identified the optimal config-

uration as a two-layer stacked LSTM with 128-64 units. The input time steps were set

to 30 minutes for APS and 1 second for ADS. Both the LSTM and MLP models were

trained using the Adam optimizer [105], employing the sparse categorical cross-entropy

loss function and a learning rate of 0.001. Additionally, we incorporated a dropout layer

and implemented early stopping on a held-out validation set to prevent overfitting.
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2.8.4.4 Other Baseline Monitors

To assess the effectiveness of scenario-specific adversarial training, we developed three

context-aware baseline monitors, each implementing the same SCS STL logic used in the

proposed context-aware monitors, but (1) without refining the thresholds (referred to as

the CAWOT monitor), (2) with the thresholds learned from the fault-free data set, and

(3) with the thresholds learned from all the populations’ faulty data.

2.8.5 Metrics

We introduce the following metrics for the evaluation of system resilience and performance

of safety monitors:

• Hazard Coverage is defined as the conditional probability that given activation of a

safety-critical fault in the system by FI, it leads to an unsafe system state or a hazard.

• Time-to-Hazard (TTH) measures the time between activation of a fault (tf ) to

occurrence of a hazard (th) (Fig. 2.8).

• Prediction Accuracy represents the performance of the safety monitors in accurate

prediction of hazards, measured using false positive rate (FPR), false negative rate

(FNR), accuracy (ACC), and F1 score. Using the traditional point-wise binary classifi-

cation metrics, an FP is declared for all the samples in a simulation where the monitor

detects a hazard and the ground truth indicates no hazard. But for hazard predic-

tion, it is desirable that a monitor generates alerts before a hazard happens. So we

adopt a modified version of standard classification metrics [106], proposed for sequen-

tial data [1] [107] [108], where a tolerance window before the start time of hazard (th) is

used for calculation of the metrics (see Fig. 2.8). Table 2.4 shows the confusion matrix

with a tolerance window.

• Reaction Time is the time difference between a monitor alert (td) and the occurrence

of a hazard (th) (Fig. 2.8). This is the maximum time we have for taking any mitigation
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Figure 2.8: Hazard prediction accuracy with tolerance window � (green area): TP: Hazard (red
arrow) occurs no latter than � after a prediction (blue arrow); FP: No hazard happens in [0,�]
after an alert; FN: Hazard occurs without a prediction in the window � ahead; TN: No hazard
happens in [0,�] after a negative prediction.

Table 2.4: Confusion matrix for sequential data with tolerance window �, modified from [1].

Ground Truth Positive Ground Truth Negative

Predicted Positive
P

t

t0=t��
0
t

P (t0) > 0&&
P

t+�

t0=t
G(t0) > 0 P(t)>0 &&

P
t+�

t0=t
G(t0) == 0

Predicted Negative
P

t

t0=t��
0
t

P (t0) == 0&&
P

t+�

t0=t
G(t0) > 0 P(t)==0 &&

P
t+�

t0=t
G(t0) == 0

* P(t)/G(t): Prediction/Ground truth at time t; t � �0t: Start time of a window �, ending with a positive
ground truth, that includes t.

action before the hazard happens, with positive values representing early detection, and

measures the timeliness of the monitor.

• Recovery Rate is the percentage of potential hazards that are prevented by the safety

monitor’s mitigation strategy and is affected by both the prediction accuracy and la-

tency.

• Average Risk is a metric for assessing the impact of monitor performance on patient

safety by considering the consequences of both FP and FN cases and the possibility of

harm to patient. FNs put the patient in a hazardous situation without any warning or

mitigation, and FPs not only bother the patient with unnecessary alerts but might also

cause new hazards after needless mitigation. It is defined as follows:

Riskavg =
1

N
[
X

NFN

i=1 R̄I(i) +
X

N
0
P

i=1R̄I(i)] (2.13)

where, R̄I(i) is the average risk index (for APS, defined as BG Risk Index in Section

2.7.2) of ith simulation, N is the total number of simulations, NFN is the number of
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FN cases, and N 0

P
is the number of new hazards that are introduced by mitigation of

FP cases.

2.8.6 Results

2.8.6.1 Resilience of Baseline Systems without Monitors

We first analyzed the resilience of the baseline OpenPilot and OpenAPS control software,

which are already designed with safety features (e.g., forward collision warning [104] or

a maximum threshold and an auto-adjusted control algorithm [109]), in the presence of

faults without any safety monitors.

Effectiveness of FI: The experimental results demonstrated that our Fault Injection

(FI) approach achieved an overall hazard coverage of 33.9% on the Glucosym simulator,

39.3% on the T1DS2013 simulator, and 39.9% on the OpenPilot platform. These results

underscore both the effectiveness of our FI engine in generating faulty data for adversarial

training and the vulnerabilities of the control software in handling safety-critical faults

and attacks. Fig. 2.9 illustrates that FI covered all hazard types, with a predominant

occurrence of hazard type H1 in Glucosym simulator experiments, thereby increasing the

risk of hypoglycemia. Moreover, the hazard coverage varied significantly across different

patient profiles, ranging from 6.7% to 92.4% across ten patients. This variability suggests

the importance of specifying patient-specific and context-dependent safety requirements

30.6%

21.0%

3.4%

18.5%

0.1%

0.2%

0.0% 25.0% 50.0%

Glucosym

T1DS2013

H1 H2 H1&H2
(a) (b)

Figure 2.9: (a) Hazard coverage of each hazard type for APS; (b) Hazard coverage of each patient.
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Figure 2.10: Time to hazard (TTH) distribution.

when designing monitors.

System Resilience: We assessed the resilience of OpenPilot and OpenAPS using

the Time-to-Hazard (TTH) metric, aiding in the specification of time requirements for

hazard prediction and mitigation.

Fig. 2.10 illustrates an average TTH of approximately 3 hours across all simulation

data from OpenAPS. Notably, the human body exhibits significant latency and operates

as a slow dynamic system, necessitating several hours for blood glucose (BG) levels to

equilibrate and for insulin to elicit an effect. Additionally, 7.1% of hazardous simulations

reported a TTH less than zero, indicating hazards occurring prior to any faults being

injected into the controller, highlighting potential shortcomings in APS control algorithm.

In contrast, OpenPilot functions as a considerably faster control system, boasting an

average TTH of 6.4 seconds. Consequently, different control action sequence lengths must

be considered for safety monitoring purposes.

2.8.6.2 Monitor Prediction Accuracy

Context-Aware Monitors vs. Non-ML Monitors: Table 2.5 provides the average

performance of the CAWT monitor across all the patients/fault scenarios in comparison

to the non-ML-based baseline monitors, Guidelines and MPC.

In the assessment of APS, the CAWT monitor demonstrated superior performance

across both the Glucosym and T1DS2013 simulators. While the Guideline monitor exhib-

ited a slightly lower False Negative Rate (FNR) than the CAWT monitor in the T1DS2013
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Table 2.5: Performance of CAWT monitor vs. non-ML monitors.

Simulator Monitor No. Sim. Hazard% FPR FNR ACC F1 Score

Glucosym

Guideline 8820 33.9% 0.02 0.32 0.95 0.72
MPC 8820 33.9% 0.02 0.34 0.95 0.71
CAWOT 8820 33.9% 0.01 0.30 0.96 0.81
CAWT 8820 33.9% 0.01 0.02 0.99 0.96
MLP 8820 33.9% 0.02 0.07 0.97 0.89
LSTM 8820 33.9% 0.04 0.06 0.96 0.81

T1DS2013

Guideline 8820 39.3% 0.07 <0.01 0.93 0.75
MPC 8820 39.3% <0.01 0.02 1.00 0.96
CAWOT 8820 39.3% 0.02 0.04 0.98 0.89
CAWT 8820 39.3% <0.01 0.03 1.00 0.97
MLP 8820 39.3% <0.01 0.56 0.94 0.71
LSTM 8820 39.3% <0.01 0.06 0.99 0.95

OpenPilot

MPC 4800 39.9% 0.01 0.90 0.79 0.17
CAWOT 4800 39.9% 0.29 0.12 0.76 0.66
CAWT 4800 39.9% <0.01 0.05 0.99 0.97
MLP 4800 39.9% 0.01 0.11 0.97 0.93
LSTM 4800 39.9% 0.01 <0.01 1.0 0.99

simulator, it produced more false alarms and yielded a 22.7% lower F1 score.

Regarding ADS, the MPC monitor failed to detect hazards for 90% of the instances,

underscoring the vulnerability of the integrated FCW safety mechanism to attacks. Con-

versely, the CAWT monitor consistently delivered reliable performance in accurately fore-

casting hazards, showcasing up to a 4.7-fold enhancement in the average F1 score.

Context-Aware Monitors vs. Baseline ML Monitors: In the case of ADS, the

LSTM monitor demonstrated superior performance compared to other baselines. How-

ever, the CAWT monitor showcased an F1 score comparable to the LSTM monitor while

employing a simpler and more transparent model. Moreover, by adjusting the length of

the control action sequence considered at each time step, the CAWT monitor has the

potential to achieve even higher F1 scores and accuracy than the LSTM monitor, a topic

we will delve into further in Section 2.9.

In APS case studies, the CAWT monitor consistently outperformed other baseline ML

monitors in both the Glucosym and T1DS simulators, exhibiting an improvement in F1

score ranging from 7.9% to 36.6% while maintaining low FNR and FPR.
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Table 2.6: Performance of context-aware monitor using thresholds learned from different data
traces in APS.

Threshold FPR FNR ACC F1 Score EDR

Fault-free 0.01 0.27 0.96 0.83 95.1%
Faulty 0.01 0.02 0.99 0.96 99.2%

Population-based 0.08 0.08 0.92 0.89 92.2%
Patient-specific 0.01 0.00 0.99 0.96 100.0%

Context-Aware Monitors vs. Other Baselines: We conducted further evalua-

tions of the CAWT monitor’s performance under various conditions, including without

refining thresholds (CAWOT), with thresholds learned from all patients’ data traces with

and without fault injection, patient-specific thresholds learned from each patient’s faulty

data traces, and population-based thresholds learned from all patients’ erroneous data.

For the population-based model, we trained the thresholds on data from seventy percent

of randomly selected patients and tested the model on the remaining thirty percent of

patients.

Table 2.5 illustrates that without refining the thresholds of SCS rules, the CAWOT

monitor experienced a decrease in F1 score ranging from 8.2% to 32.0%, underscoring

the significance of optimizing safety requirements. However, it still outperformed the

MPC and Guideline monitors in the Glucosym simulator, underscoring the advantages of

context awareness.

Table 2.6 highlights the performance of the context-aware monitor using thresholds

learned from fault-free data, indicating that it detected unsafe control actions before

hazards occurred in 95.1% of true-positive cases but failed to generate alerts for hazardous

situations in 27% of simulations. Through adversarial training and refinement of SCS

formulas with faulty data, the monitor’s performance improved by 4.1% in early detection

rate (EDR) and 15.7% in F1 score.

Additionally, the context-aware monitor with patient-specific thresholds demonstrated

superiority over a population-based monitor, achieving a 7.6% increase in accuracy and
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Figure 2.11: Average reaction time for each monitor.

a 7.8% increase in EDR. Furthermore, the patient-specific context-aware monitor main-

tained low FPR and FNR, resulting in a 7.9% higher F1 score.

2.8.6.3 Monitor Timeliness

Fig. 2.11 illustrates the reaction time (as defined in Section 2.8.5 and Fig. 2.8) for

each monitor. The CAWOT monitor is not included here due to its inferior performance

compared to the CAWT monitor (refer to Table 2.5).

Across all simulators, the CAWT monitor consistently demonstrated effective perfor-

mance in ensuring a safe reaction time. In the case of APS, the average reaction time was

approximately 100 minutes, exceeding the peak activity of insulin, typically between 60

and 90 minutes [110]. For ADS, the average reaction time aligned with the safe headway

time of 2 to 3 seconds [71].

Conversely, the non-ML baseline monitors exhibited the poorest performance in timely

detection of unsafe control actions. This can be attributed to their fixed threshold designs,

which limited their adaptability across different patients and scenarios. Moreover, the

MPC monitor could only predict hazards within a short window ahead of time in the

Glucosym and T1DS2013 simulators and demonstrated a negative average reaction time

in OpenPilot, indicating delayed detection and an inability to prevent potential hazards.

Benefiting from a wealth of collected data and scenario-specific models, the baseline
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ML monitors outperformed the Guideline and MPC monitors. However, the performance

of these baseline ML monitors varied considerably, with large standard deviations, and

was not as consistent as that of the CAWT monitor.

2.8.6.4 Hazard Mitigation

We evaluated the mitigation performance of the CAWT monitor against two baseline

monitors: the MLP monitor, which exhibits a comparable F1 score to the LSTM but

employs simpler logic, and the MPC monitor, selected as the top-performing non-ML-

based baseline monitor. We reran the simulations with each monitor and the mitigation

algorithm (Algorithm 1).

Table 2.7: Mitigation performance of the CAWT monitor and three baseline monitors using the
same mitigation strategy.

Monitor CAWT MLP MPC
Recovery Rate 54.0% 39.0% 4.3%

No. New Hazard 8 177 123
Avg. Risk 0.02 0.68 0.22

Table 2.7 illustrates that the CAWT monitor successfully averted 54% of previously

occurring hazards, while introducing only eight new hazards due to false alarms, resulting

in the lowest average risk among the monitors. In contrast, the MPC baseline monitor,

with the same mitigation algorithm, achieved a recovery rate of only 4.3%, highlighting

the drawbacks of inadequate reaction time. Despite achieving sufficient long average

reaction time, the MLP monitor prevented only 40.3% of hazards and introduced the

largest number of new hazards, underscoring the importance of being context-aware.

These findings underscore the significance of having a sufficiently prompt reaction time in

ensuring a better recovery rate, while also emphasizing the benefits of context-awareness

in enhancing overall mitigation performance.
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2.8.6.5 Adaptive Adversaries

A significant challenge in anomaly detection is the presence of adaptive adversaries who

leverage knowledge of existing safety mechanisms to adjust attack parameters, evade

detection, and trigger adverse events [99, 100, 111]. To assess the effectiveness of our

proposed safety monitoring approach against such stealthy attacks, we consider a highly

sophisticated attacker equipped with knowledge of (1) the logic of our safety monitor, (2)

the parameters (e.g., �i in Table 2.1), and (3) the format of control commands.

In our implementation, to evade detection, the stealthy attacks are only launched

when the target monitor is not triggered to check the possibility of unsafe control actions.

More specifically, the malicious changes to the controller state variables are still injected

at random start times, but only remain active when none of the safety context conditions

specified for the monitor (in the third column of Table 2.1) are held true. For example, to

cause a forward collision with the lead vehicle, the attacker can keep accelerating the Ego

vehicle until Headway Time (HWT) reaches an unsafe threshold. To avoid being detected

by the context-aware monitor, the Ego vehicle is required to decelerate until HWT goes

back to a safe range (e.g., �21-�26 in Table 2.1) or until the ego vehicle is slower than the

lead vehicle (e.g., RS<0 ), which will not trigger the context condition for the monitor.

Our experiments encompass three categories of stealthy attacks [22], introduced ac-

cording to the scenarios outlined in Table 2.2, as follows: (1) surge attacks aiming to

maximize the attack impact swiftly by maximizing the attack value (scenario Max ), (2)

bias attacks striving to extend the duration of the attack while remaining undetected by

minimizing the attack value (scenario Min), and (3) random attacks randomly selecting

attack values (scenario Add/Sub). These scenarios were tested with 8820, 8820, and 4800

simulations in the Glucosym, T1DS, and OpenPilot simulators, respectively. The experi-

mental outcomes reveal that the stealthy attacks directed at the context-aware monitors

with refined thresholds (CAWT) do not result in any hazards due to their failure to trigger

any of the safety context conditions.
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Figure 2.12: Stealthy attack success rate for different settings of the thresholds (�21-�26 in Table
2.1) for the monitor parameter Headway Time (HWT).

However, the efficacy of the CAWT monitor against adaptive adversaries and the

success of stealthy attacks in causing hazards depend on the completeness and accuracy of

the generated SCS and the monitor parameters, as further discussed in Section 2.10. Using

ADS as an example, Fig. 2.12 illustrates the impact of thresholds utilized for the CAWT

monitor on the success rate of stealthy attacks. Specifically, it depicts the percentage

of simulations across different types of stealthy attacks wherein a hazard occurred while

remaining undetected by the monitor for varying values of the safety thresholds (�21-�26

in Table 2.1) for the parameter HWT. The success rate of the attack decreases with the

increase of HWT thresholds, with no hazards occurring anymore when the thresholds

surpass 1 second (the thresholds learned for HWT to develop CAWT monitors typically

fall between 2-3 seconds). A similar effect may be observed if the attacker can identify

any additional safety context conditions under which hazards may occur (additional rows

in Table 2.1) but were not considered in the design of the target monitor.

2.8.6.6 Evaluation on a Clinical Trial Dataset

To further assess the effectiveness of the proposed safety monitor in real-world scenarios

using realistic data, we conducted performance testing using a publicly available diabetic

dataset known as DCLP3 [112]. This dataset originates from a clinical trial involving 168

diabetic patients aged 14 to 71 years old who underwent six-month treatment with the
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only FDA-approved closed-loop APS, t:slim X2 with Control-IQ Technology.

We partitioned each patient’s data into 180-day segments and analyzed 150 iterations

of glucose readings and insulin records per day, resulting in a total of 30,240 days of data

and 4,536,000 samples (30,240 * 150). Hazard events in the dataset were labeled using

the risk index approach outlined in Section 2.7.2.

The experimental results revealed that the context-aware monitors developed using the

proposed method achieved an F1 score of 0.86. Furthermore, these monitors accurately

predicted actual adverse events observed in the data, encompassing both CGM-measured

hyperglycemic events (defined as a period of at least 15 consecutive minutes with BG <

54 mg/dL) and CGM-measured hypoglycemic events (defined as a period of at least 120

consecutive minutes with BG > 300 mg/dL) [112], with a success rate of 99.5%.

2.8.6.7 Resource Utilization

We ran the simulations with different safety monitors and without a monitor a thousand

times and calculated the average time overhead for each safety monitor. Results showed

that the CAWT monitor has the lowest average time overhead of 252.7 us among all the

safety monitors, while the time overhead of MPC, Guideline, MLP, and LSTM monitors

was 123.9 ms, 664.1 us, 30.7 ms, and 32.6 ms, respectively.

2.9 Discussion

Our experiments provided the following key insights:

Both the OpenPilot and OpenAPS control software cannot tolerate safety-

critical faults. Despite OpenPilot being an advanced control system widely utilized in

real-world road driving and equipped with an integrated forward collision warning func-

tion, and OpenAPS being a fully automated system with built-in safety features, they

proved unable to withstand the simulated attacks and faults. In 13.8% of the APS simu-
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Figure 2.13: Performance of each monitor based on a single control action or a sequence of control
actions.

lations, patients were predicted to experience severe hypoglycemia. Additionally, in 81%

of the simulated driving scenarios, OpenPilot failed to issue alerts before a collision took

place. Furthermore, certain hazards occurred even in the absence of any fault injections.

Adversarial training using scenario-specific data improves the performance

of CAWT monitors. As shown in Section 2.8.6.2 the CAWT monitor with thresholds

learned from faulty data of a specific patient outperformed other context-aware monitors

that were designed with the exact SCS logic but with different thresholds. These results

reconfirm that adversarial training and refinement of SCS formulas using the faulty data is

important in improving the CAWT monitor’s performance. Furthermore, each patient has

different biomedical characteristics and tolerance levels to the injected insulin amounts.

Thus, the safety monitor logic needs to be refined for each patient or scenario.

By considering the sequence of control actions, the CAWT monitors can

generate more accurate alerts. Fig. 2.13 illustrates the performance of the CAWT

and MLP monitors, considering either a sequence of control actions or a single control

action, in comparison to the LSTM monitor. Both the MLP and CAWT monitors, which

take into account a sequence of control actions, achieved a lower False Positive Rate

(FPR) and a higher F1 score, with a slightly higher False Negative Rate (FNR), than

the same monitors that used only a single control action for both the Glucosym and
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T1DS2013 simulators. Additionally, after considering a sequence of control actions, the

MLP monitor demonstrated slightly better performance than the LSTM monitor in the

Glucosym simulator and reduced the performance gap with the LSTM monitor in the

T1DS2013 simulator. However, for ADS, which operates at a much faster pace than

APS, the CAWT monitor based on a single control action achieved superior performance,

indicating that the length of control action sequences is an important consideration in

designing safety monitors for different CPS.

Weakly supervised context-aware monitor outperforms ML-based moni-

tors. Our experiments showed that in most situations the CAWT monitor could achieve

a better or comparable performance to the ML-based monitors that we explored in this

work. There are several other advantages that a CAWT monitor has over ML-based

monitors:

(1) Data Limitation and Corner Cases. Fully supervised ML-based monitors tend to

suffer from overfitting to the datasets they have been trained on [113]. For example, we

evaluated their performance on datasets collected from fault-free simulations, and results

showed at least a 48.9% drop in F1 score compared to their performance on faulty data.

In comparison, the F1 score of the CAWT monitor only decreased 3.9% because it was

trained using a weakly supervised approach that only uses faulty data to tighten the SCS

thresholds.

(2) Application Strategies and Resource Limitations. Implementing the CAWT mon-

itor in real-world applications involves collecting data from simulation or real-time op-

eration over a specific period and refining unknown thresholds for each SCS rule offline.

At runtime, the CAWT monitor loads the learned thresholds and functions as a wrapper

integrated with the CPS controller, requiring minimal resources. In contrast, ML-based

monitors must load pre-trained models and utilize significantly more resources than the

CAWT monitor.

(3) Monitor Safety and Interpretability. Neural network classifiers are often considered
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black-box systems [114], lacking transparency and explainability in their decisions. They

are also susceptible to adversarial attacks, perturbations, and input noise [115], leading to

misclassification. Conversely, our proposed CAWT monitor relies on a weakly supervised

and transparent model, which is simpler to verify, update, and protect.

2.10 Threats to Validity

Sensor Perturbations: This work primarily focuses on faults and attacks targeting the

control software of safety-critical CPS. Any perturbations in sensor data could potentially

affect both the controller and the safety monitor’s behavior. However, several existing

methods in the literature [22, 32, 95, 116] can be integrated with our safety monitor to

protect sensor data and actuator commands observed by the monitor. Furthermore,

slight disturbances in sensor data caused by environmental noise can be mitigated by

the typical robustness features of the control system (e.g., the use of a PID algorithm) to

ensure control actions are not compromised. Additionally, combining domain knowledge

with data could enhance the monitor’s robustness against small accidental or malicious

perturbations in the input data [117].

SCS Completeness: The performance of the proposed monitor heavily relies on the

accuracy and completeness of the generated SCS, which may be challenging to derive for

highly complex systems. However, our method only utilizes a subset of state variables

that can adequately represent the system’s physical states and dynamics. Furthermore,

inaccurate or incomplete specification is a common issue in the design and verification of

any controller/monitor. We aim to mitigate such manual errors by proposing a formal

framework for designers, in collaboration with domain experts, to generate SCS.

Sim-to-Real Gap: Simulations are crucial for advancing research rapidly while mini-

mizing risks associated with testing in real operating environments and potentially harm-

ing real individuals such as patients, drivers, and pedestrians. Nonetheless, disparities
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between simulations and real-world implementations can undermine the validity of pro-

posed methods. For example, in APS simulations, we only model a patient going to sleep

after dinner without considering other physical activities or multiple meal consumption

scenarios. To mitigate the sim-to-real gap, we utilize real control software (deployed with

actual diabetic patients [118,119] or in real vehicles [83]) and patient simulators approved

by the FDA for clinical testing or based on actual patient profiles [26,102]. Additionally,

we incorporate realistic high-risk driving scenarios defined by NHTSA for ADS evalua-

tion. Furthermore, validation using publicly available datasets from clinical trials [112]

confirms the effectiveness and validity of the proposed approach [3].

2.11 Related Work

Anomaly Detection in CPS. Previous research efforts in anomaly detection have pri-

marily focused on identifying safety-critical attacks that target sensor data [22,31,46,120].

However, there has been relatively less emphasis on detecting attacks that compromise the

functionality of controllers by directly manipulating their internal logic and variables [48].

Furthermore, existing methods often rely on simplistic linear models of physical systems,

which may not fully capture their dynamics [25, 41], or black-box ML models [32, 55],

which can suffer from a lack of generalization and transparency.

Our work differs from these prior approaches by focusing on detecting faults and

attacks that affect controller internal variables and outputs. Additionally, we introduce

the concept of preemptive detection of early signs of hazards, rather than detecting them

after they have occurred. This proactive approach enables timely mitigation and recovery,

which may be crucial for preventing adverse consequences.

Run-time Monitoring with STL Learning: Several recent works [62, 121, 122]

have focused on approaches for monitoring, learning, and controlling CPS behaviors us-

ing STL. For instance, [123] applied STL learning and monitoring for anomaly detection

in CPS, while [124] utilized STL learning to characterize behaviors of Type 1 Diabetes
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(T1D) patients. However, our work distinguishes itself from these prior efforts by intro-

ducing a formal framework that combines STL formalism for specifying safety contexts

with scenario-specific STL learning. This approach enables the design of context-aware

monitors capable of predicting and mitigating safety hazards effectively.

2.12 Conclusion

In this chapter, we introduced a formal framework for the control-theoretic specification

and refinement of the safety context, which can be used for designing context-aware safety

monitors capable of predicting and mitigating hazards in CPS as well as for design-time

safety validation. We conducted case studies using closed-loop APS and ADS simula-

tion systems to evaluate the effectiveness of the proposed method. Experimental results

demonstrated that our monitor outperforms several baseline monitors developed using

medical guidelines, MPC, and ML techniques in accurately and timely predicting hazards.

Additionally, our monitor exhibited stable performance in ensuring sufficient reaction time

and mitigating hazards effectively.
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Chapter 3

Combined Knowledge and Data Driven

Hazard Prediction and Mitigation

3.1 Overview

The existing literature on CPS safety and security predominantly emphasizes anomaly

detection or run-time monitoring [20, 46–48], with comparatively limited focus on haz-

ard mitigation or recovery strategies. Previous approaches to maintaining CPS safety

after anomaly detection have relied on redundant hardware or software sensors or com-

ponents [31,125]. However, such methods often increase system complexity and may still

be vulnerable to common vulnerabilities shared across replicas. Efforts have also been

made to respond to anticipated hazards by triggering fail-safe modes (e.g., freezing in-

sulin pumps in APS) [126, 127] or manual remediation (e.g., generating alerts, handing

over control to human operators) [111, 128]. However, these approaches either cannot

maintain regular system operation or face challenges in ensuring the safety of manual

recovery due to tight timing constraints and short reaction times.

Recent research primarily focuses on designing runtime monitors [47, 59] and sim-

plex controllers [130] that serve as backups when the primary controller is compromised.

Model-based approaches in this domain involve developing linear or non-linear models of

system dynamics and their interactions with the environment to detect anomalies [22]

This chapter contains material from the previously published works [53, 117, 129], coauthored with
H. Alemzadeh, J. Aylor, B. Ahmed, P. Asare, M. Kouzel, and C. Smith, copyrighted by IEEE.
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and generate recovery actions [23, 24]. However, developing models capable of fully cap-

turing complex system dynamics and unpredictable human physiology and behavior (e.g.,

glucose sensitivity to insulin in APS) poses a challenge. Additionally, the accumulation

of approximation errors between actual system states and model predictions with each

operational cycle limits the effectiveness of model-based recovery approaches over time.

Data-driven approaches leveraging machine learning (ML) have demonstrated en-

hanced accuracy and success rates in attack detection and recovery [31,33,55]. However,

they frequently rely on black-box deep learning models, which suffer from transparency

and robustness issues [117]. Moreover, these methods often initiate recovery actions after

attacks have caused noticeable deviations in system states or resulted in hazards [20,46],

potentially rendering them ineffective in preventing adverse events.

To address the gap in hazard mitigation in CPS and overcome the limitations of solely

model-based and data-driven solutions, this work proposes a combined knowledge and

data-driven approach, termed KnowSafe, for predicting and mitigating safety hazards

caused by faults or attacks in real-time. KnowSafe integrates expert "Knowledge" of

safety context specification (introduced in Section 2.3) or domain-specific "Safety con-

straints" with data from the closed-loop CPS operation to develop a safety engine. This

engine can be incorporated into a CPS controller’s interface to infer system context, antic-

ipate impending hazards, and avert the execution of unsafe control actions by generating

preemptive and corrective control actions.

3.2 Design Challenges

Anomaly detection is a critical step in hazard mitigation and recovery. Previous works

on anomaly detection and recovery mainly focus on comparing the predicted states with

actual states based on sensor data and waiting until a large deviation over a detection

window to raise an alarm [31, 46]. However, relying on predefined thresholds for detect-
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Figure 3.1: Combined knowledge and data driven safety engine for hazard prediction and miti-
gation.

ing deviations may lead to delayed detection and high false positive rates, resulting in

mitigation failures. Therefore, designing a new method that can detect or predict hazard

occurrence in a timely and accurate manner is important yet challenging.

Further, efficient hazard mitigation encounters additional challenges in generating op-

timal mitigation actions that can return the system back to the safe region as quickly and

smoothly as possible while ensuring the satisfaction of safety requirements throughout

the mitigation process.

3.3 Approach Design

To address these challenges, this work proposes a combined knowledge and data-driven

approach for designing a safety engine capable of predicting and mitigating potential

hazards at runtime. Fig. 3.1 illustrates the overall design of the safety engine, comprising

a hazard prediction module (discussed in Section 3.3.2) and a hazard mitigation module,

which includes mitigation path planning (covered in Section 3.3.3) and corrective control

action generation (explained in Section 3.3.4).

During each control cycle, the hazard prediction module receives a sequence of system
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states or their transformations, inferred from sensor data, as input and accurately predicts

the probability of hazard occurrence using a customized classification or regression model.

The duration between the current time and when the predicted hazard is expected to occur

is defined as the mitigation deadline or the timeframe within which corrective or responsive

control actions must be initiated to mitigate hazards. If potential hazards are identified,

the hazard mitigation module devises an optimal path and generates a corresponding

sequence of control actions to guide the system away from unsafe conditions and return

it to a safe state, all while adhering to the mitigation deadline and other domain-specific

safety constraints.

3.3.1 ML Optimization with Customized Loss Functions

To address the challenge of timely and accurate hazard prediction, we already introduced

a weakly supervised learning method with STL parameter optimization in Section 2.5.

However, the effectiveness of this approach heavily relies on the completeness of the gen-

erated SCS. In this chapter, we present a new approach that combines the generated

SCS with ML techniques to improve hazard prediction accuracy and timeliness while not

requiring the complete specification of SCS rules.

Problem Statement: Specifically, we model the task of detecting an unsafe control

action as a context-specific conditional event, as shown below:

yt = p(9t0 2 [t, t+ T ] : xt0 2 Xh|f(Xt), f(Ut)) (3.1)

For a given control action sequence Ut executed under the system state sequence Xt,

the ML model produces a binary output yt that categorizes Ut as safe or unsafe.

Data and Knowledge Integration: We encode the STL formulas generated for

SCS as a custom loss function [131] that penalizes the ML model during the training
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process if the prediction does not align with the specified safety properties:

loss = ⌘lossex + (1� ⌘)L(yt, I

 
_

�h2SCS

f(µ(Xt)) |= �h

!
) (3.2)

where, lossex represents the existing or original loss function of the ML model, such as

cross-entropy loss. The parameter w denotes a weight parameter, while yt stands for the

output prediction of the ML model. The function I(·) serves as an indicator function

that determines whether the aggregated values of the estimated state variables for a

measurement window, denoted as f(µ(Xt)), satisfy any of the unsafe specifications in the

STL formulas �h (with unrefined thresholds). The specific value assigned to the weight

parameter ⌘ depends on the design requirements and system scenarios. A smaller weight

parameter implies a greater influence of the system context and safety specifications on

the training process. In this study, we select a value for the weight parameter to ensure

that the additional loss is comparable to the original loss of the ML model’s output layer.

3.3.2 Reachability Analysis and Hazard Prediction

In scenarios where specifying the Safety Context Specifications (SCS) proves challenging,

particularly in considerably complex systems, we additionally introduce a general hazard

prediction approach. This method estimates the potential sequence of future system states

and determines whether they are likely to fall within any unsafe operational regions.

Problem Statement: We specifically define the following binary classification prob-

lem:

yt =

8
>><

>>:

1, if 9t0 2 [t, t+N ] : {x̂t0 2 g(Xt, Ut)} ⇢ Xh

0, otherwise

(3.3)

where, the function g(·) represents a prediction model that, given an input state sequence

Xt = {xt�k, ..., xt} and the control action sequence Ut = {ut�k, ..., ut}, predicts the sys-

tem state trajectory X̂t+N = {x̂t+1, ..., x̂t+N} within a prediction window of N control
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cycles. A hazard is anticipated if any predicted state x̂t+i lies within the unsafe region

Xh. Additionally, the mitigation deadline, D, is estimated by determining the difference

between the current time t and the minimum t0 within the prediction window such that

the system state x̂t0 is unsafe.

D = min{t0 2 [t, t+N ]}� t : x̂t0 2 Xh (3.4)

Domain Knowledge Specification: Ensuring the accuracy and realism of pre-

dicted system state sequences involves verifying a set of application-specific constraints.

These constraints may involve checking whether the changes from the initial state to

the predicted states fall within reasonable bounds. Such properties are often described

in human-interpretable formats over a transformed state space, which could represent

derivatives, polynomial combinations, or other functions of state variables (e.g., the first

derivative of blood glucose to represent the rate of change).

Projecting both the current state xt+i and its predicted state in the next step x̂t+i+1

onto the transformed state space µ(x) = (µ1(x), µ2(x), ..., µm(x)), we define the �-reachable

state of µ(xt) as a set or region S(µ(xt), �). This region S encompasses states whose dif-

ferences from µ(xt) are constrained by the parameter set �. This concept is formalized as

follows:

S(µ(xt), �) := {8st 2 S, ||st � µ(xt)||  �} (3.5)

where ||·|| denotes the norm used to measure the distance between two states in the trans-

formed space. The parameter set � = (�1, �2, ..., �m) comprises parameters corresponding

to each variable in µ(x). These parameters can be determined based on domain-specific

guidelines, design requirements, practical experience, or statistical analysis of past data.

They define the acceptable range of variations for each transformed variable, ensuring

that the predicted states remain within realistic bounds.
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Data and Knowledge Integration: In this study, we introduce a novel multivariate

regression neural network model, denoted as PredNet, designed to forecast the sequence of

system states using data obtained from either closed-loop CPS simulations or real system

operations (e.g., from clinical trials, as discussed in Section 3.4.5.1). Illustrated in Fig. 3.2,

our prediction network adopts an encoder-decoder architecture that anticipates the future

system states x[t+1:t+N ] for N = n steps based on a sequence of k + 1 previous system

states. The domain-specific properties are incorporated into PredNet by appending a

customized loss function as a regularization term to the original loss function L(X, X̂)

(e.g., mean squared error), as depicted below:

L = ⌘L(X, X̂) + (1� ⌘)!
nX

i=1

L(s̄t+i, µ(x̂t+i+1)) (3.6)

s̄t = argmin
st2S(µ(xt),�)

dist(st, µ(x̂t+1)) (3.7)

where, s̄t+i represents the state within the � reachable state of µ(xt+i), which minimizes the

distance (e.g., Euclidean distance) to the predicted state transformation µ(x̂t+i+1). The
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parameter ! is a weight parameter, which is zero when µ(x̂t+i+1) falls within the reachable

state S, and one otherwise. Additionally, ⌘ 2 [0, 1] denotes the weight of the original

loss contributing to the total loss. The value of ⌘ is manually selected through hyper-

parameter tuning. The custom loss function ensures realistic trajectories by penalizing

PredNet during training whenever a predicted state lies outside the reachable set of the

current state.

Furthermore, we establish a two-level hazard prediction pipeline comprising (i) a long-

term prediction model (PredNet-l) capable of predicting a distant-future state sequence,

allowing sufficient time to anticipate and mitigate potential hazards, and (ii) a short-

term prediction model (PredNet-s) boasting higher accuracy than the long-term model to

prevent overlooking any hazards.

3.3.3 Optimal Mitigation Path Generation

The subsequent critical phase in hazard mitigation involves determining the appropriate

response actions for the system to safely achieve its objectives, such as remaining within

the controller’s target region. While a straightforward approach to implementing mitiga-

tion involves compensating control actions based on predefined rules or medical guidelines

(e.g., increasing insulin injection to prevent hyperglycemia in APS or adjusting gas and

brake inputs to avoid collisions in an Autonomous Driving System (ADS)), such a generic

mitigation strategy overlooks the current system context and its interactions with the

environment. Consequently, it may result in either over- or under-mitigation, potentially

jeopardizing system users’ safety [47]. Designing a mitigation mechanism that ensures a

high recovery rate while minimizing the introduction of new hazards poses a significant

challenge.

Our objective is to acquire a sequence of control actions that effectively mitigate

hazards and maintain the system’s safety within permissible regions. A straightforward

approach would involve inputting all potential actions into the previously introduced pre-
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diction model and selecting the optimal action resulting in a future system state sequence

closest to the safe region. However, this method could be computationally intensive and

time-consuming since it necessitates traversing the entire action space and may not con-

verge to an optimal solution within the specified mitigation deadline.

Hence, instead of directly producing recovery control actions, we initially identify the

desired sequence of recovery states using a rapid path planning algorithm. Subsequently,

we employ a control algorithm, either ML-based or model-based, to generate a correspond-

ing sequence of control actions aligned with the identified recovery states. This two-step

approach facilitates more efficient and effective hazard mitigation while accommodating

the system’s operational constraints and resource limitations.

Problem Statement: We formulate the generation of the mitigation path as an

optimization problem aiming to swiftly return the system to a safe state, ideally before

the onset of hazards, while evading the unsafe region. Our objective is to minimize the

time required to mitigate the hazard, subject to the following constraints:

min{T imetoMitigation}; s.t. (3.8)

�xi/T < ↵1
i
; 8i 2 [1, p] (3.9)

�(�xi)/T
2 < ↵2

i
; 8i 2 [1, p] (3.10)

{x} \ Xh = ? (3.11)

PathLength < D (3.12)

where, where x represents the system state, T denotes the duration of a control cycle,

and ↵j

i
signifies an application-specific constraint. D stands for the maximum mitigation

budget available to counteract hazards and also serves as the upper bound for the length

of the mitigation path (PathLength), as estimated by the hazard prediction module (see

Fig. 3.1).
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Figure 3.3: Example distribution of �BG and �IOB.

Domain Knowledge Specification: The constraints ↵j

i
are in place to ensure the

fulfillment of safety properties and the smoothness of state transitions, and they are

defined based on domain expertise or practical insights. For instance, in an APS scenario,

a constraint could dictate that the change in blood glucose (BG) levels should not surpass

[�5, 3] mg/dL over a 5-minute interval [47]. Fig. 3.3 shows an example distribution of

rate of BG changes in APS which is used to derive these constraints.

Data and Knowledge Integration: We introduce a mitigation path planning al-

gorithm, named SC-RRT*, designed to accommodate safety constraints. This algorithm

is based on a modified version of the Rapidly-exploring Random Tree Star (RRT*) ap-

proach [132]. RRT* is known for its efficacy in handling problems involving obstacles

and differential constraints, offering a wide search range, rapid search speed, and high

computational efficiency, which makes it widely applicable in robotic motion planning.

By leveraging SC-RRT*, our methodology becomes potentially viable across a broader

spectrum of CPS applications. Moreover, SC-RRT* boasts lightweight implementation

and greater transparency compared to neural networks, making it more suitable for de-

ployment on devices with limited computational resources and memory capacity.

Algorithm 2 outlines the process of generating a mitigation path. At each iteration, the

algorithm begins by randomly sampling a point in the state space (line 17) and establish-

ing a new vertex in the random tree G toward the nearest vertex within the incremental

distance �x (lines 18-19). Importantly, domain knowledge is incorporated as safety con-

straints to eliminate invalid vertices during the random sampling step. Specifically, a
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Algorithm 2: Mitigation Path Planing Algorithm
Input: Initial config xinit, Number of vertices K, Incremental distance �x, Near Radius �,

Recovery Budget D
Output: RRT graph G, Optimal Goal Vertex xoptimal , Minimum recovery path pathmin

1 G.init(xinit) {Init Optimal RRT}
2 Xdest  ; {Vertices in Target Region}
3 Function UpdateCost(Xnear, xnew):
4 for xnear 2 Xnear do
5 if ValidConnection(xnear, xnew) then
6 if Cost(xnear)+Dist(xnearest, xnew) < costmin then
7 xmin  xnear, costmin  

8 Cost(xnear)+Dist(xnearest, xnew)
9 end

10 return
11 Function RewriteTree(Xnear, xnew):
12 for xnear 2 Xnear do
13 G.update(G, xnear, xnew) {update shorter path with xnew}
14 end
15 return
16 for k = 1 to K do
17 xrand  RandomSampling()
18 xnearest  FindNearestNode(G,xrand)
19 xnew  NewConf(xnearest, xrand, � x)
20 if ValidConnection(xnearest,xnew) then
21 G.add_node(xnew)
22 Xnear  FindNearNodes(G,xnew,�)
23 xmin  xnearest

24 costmin  Cost(xnearest)+Dist(xnearest, xnew)
25 UpdateCost(Xnear, xnew)
26 G.add_edge(xmin, xnew) {Shortest path to xnew}
27 RewriteTree(Xnear, xnew)
28 if xnew 2 Goal then
29 Xdest  Xdest [ xnew

30 end
31 xoptimal, pathmin  FindOptimalNode(G,X⇤)
32 return G, xoptimal, pathmin

randomly sampled vertex is included in the tree only if its connection to the nearest node

meets the safety requirements specified in Eqs. 3.9-3.12. Additionally, edges between

the new node and neighboring nodes within a radius � are updated if more efficient con-

nections are identified (lines 22-27). The algorithm identifies a mitigation path if the

destination lies within the target region X⇤ (lines 28-29). Finally, it selects an optimal

destination vertex and mitigation path (line 31) based on criteria such as minimizing

distance to Xh or maximizing smoothness.
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3.3.4 Response Control Action Generation

Once the target state trajectory is generated, it can be provided as input to a control

algorithm, which can be either ML-based or model-based. This control algorithm then

generates the final sequence of corrective or recovery control actions required to achieve

the desired state trajectory.

Problem Statement: We model the task of generating a sequence of control actions

as a context-specific multivariate sequence-to-sequence regression problem, as shown be-

low:

yt = f(X̄t+n) = Ût+n�1, s.t. (3.13)

8t0 2 [t, t+ n� 1] : xt0
u
t0
! xt0+1

Given the expected system state sequence X̄ t+n = {x̄t+1, ..., x̄t+n}, the controller out-

puts a control action sequence Ût+n�1 = {ût, . . . , ût+n�1} that, if executed sequentially by

the actuators, should transition the system to the expected states.

Domain Knowledge Specification: The objective of mitigation is to utilize the

current system context and prediction of a potential hazard to determine a new corrective

control action uc

t
from a set of control actions u⇢ to be sent to the actuators, ensuring the

system transitions into the target or safe region. These context-specific corrective control

actions can be specified based on domain knowledge. In this study, we construct the

Hazard Mitigation Specification (HMS) by adhering to the formal framework presented

in Section 2.3, utilizing a control-theoretic hazard analysis method known as STPA [14].

This procedure encompasses the following steps:

1. Define the hazards and adverse events of interest.

2. Identify the observable set of variables xt of interest related to the hazards and

decide on the possible transformations µ(xt) and the sets ⇢(µ(xt)) as completely as
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Table 3.1: STL hazard mitigation specifications for APS.

Rule Mitigation Action STL Description of Safety Context

1 G[t0,te]((F[0,ts](u2)) S((BG > BGT ^BG0 > 0) ^ (IOB0 < 0 ^ IOB < �1)))
2 G[t0,te]((F[0,ts](u2||u4)) S((BG > BGT ^BG0 > 0) ^ (IOB0 = 0 ^ IOB < �2)))
3 G[t0,te]((F[0,ts](u2||u4)) S((BG > BGT ^BG0 < 0) ^ (IOB0 > 0 ^ IOB < �3)))
4 G[t0,te]((F[0,ts](u2||u4)) S((BG > BGT ^BG0 < 0) ^ (IOB0 < 0 ^ IOB < �4)))
5 G[t0,te]((F[0,ts](u2||u4)) S((BG > BGT ^BG0 < 0) ^ (IOB0 = 0 ^ IOB < �5)))
6 G[t0,te]((F[0,ts](u3)) S((BG < BGT ^BG0 < 0) ^ (IOB0 > 0 ^ IOB > �6)))
7 G[t0,te]((F[0,ts](u1||u3)) S((BG < BGT ^BG0 < 0) ^ (IOB0 < 0 ^ IOB > �7)))
8 G[t0,te]((F[0,ts](u1||u3)) S((BG < BGT ^BG0 < 0) ^ (IOB0 = 0 ^ IOB > �8)))
9 G[t0,te]((F[0,ts](¬u3)) S((BG > BGT ^ IOB < �9)))
10 G[t0,te]((F[0,ts](u3)) S((BG < �10)))

* BGT: BG target value, IOB: Insulin on board; BG0 = dBG/dt, IOB0 = dIOB/dt;
* u1,2,3,4 :decrease_insulin, increase_insulin, stop_insulin, keep_insulin;

possible.

3. List all the combinations of ⇢(µ(xt)) and control action ut and identify the combi-

nations that might result in transitions to a hazardous region Xh. The unknown

boundaries �i can be learned from a population dataset using off-the-shelf optimizers

(e.g., Newton’s method) [47,53].

4. For each unsafe context in step 3, find all control actions uc

t
2 U such that (⇢(µ(xt)), uc

t
) 7!

X⇤ and add these tuples (⇢(µ(xt)), uc

t
) to HMS for that context.

5. Formalize the generated HMS into STL format.

An example of a generated STL hazard mitigation specification for APS is presented

in Table 3.1. This table specifies a set of STL rules designed to mitigate potential hazards

that could lead to hyperglycemia or hypoglycemia events. For instance, the first rule

indicates that if the system context shows that blood glucose (BG) is higher than the

target and continuously rising, while insulin on board (IOB) is below a threshold �1 and

continuously decreasing, then an increase_insulin action u2 should be initiated by the

controller within a time frame ts to prevent a hyperglycemia event. It’s crucial for this

safety property to be maintained throughout the entire operational period.

It’s important to acknowledge the semantic gap between the high-level, human in-

terpretable state variables µ(x) in the Hazard HMS, such as the rate of blood glucose
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(BG) change, and the sensor measurements (e.g., BG values from Continuous Glucose

Monitoring or CGM), as well as between the high-level control actions uc

t
(e.g., increase

insulin) and the low-level control commands sent to the actuator (e.g., the amount of

insulin dose). To bridge this gap during actual implementation, an additional step is re-

quired to infer the values of state variables in the transformed state space based on sensor

measurements (e.g., by calculating the derivative of BG values to determine the rate of

BG change) and to derive the high-level control commands based on Machine Learning

(ML) predictions, utilizing the transformation function h(·) (refer to Eq. 3.14). These

transformations facilitate the alignment of the estimated states and control actions with

the logic formulas specified in the HMS, enabling the verification of the satisfaction of

any safety properties (e.g., Rules 1-5 in Table 3.1 will be assessed for control action u2).

Data and Knowledge Integration: In this work, we integrate the domain-specific

knowledge on context-dependent mitigation actions with state variable and control out-

put data traces collected from closed-loop CPS simulation or real operation to train an

RNN for control action generation (referred to as ActNet). We encode the logic formulas

generated for HMS as a custom loss function that penalizes the RNN model during the

training process if the ML prediction fails to align with the specified mitigation action

properties:

L = ⌘L(U, Û) + (1� ⌘)k(2�(
X

h(yt)/2uc

t

!i)� 1) (3.14)

In the provided equation, h(·) represents a transformation function (e.g., derivation) that

converts the predicted control command yt into a discrete high-level control action, as dis-

cussed earlier. The parameter w serves as a weight parameter, determining the influence

of each logic rule on the training process. Furthermore, �(·) denotes a sigmoid function

that maps the degree of satisfaction of the ML outputs with the STL formulas to the

range [0,1]. Lastly, k serves as a scaling factor, which adjusts the sigmoid function to a

similar range as the original loss L(U, Û) (e.g., mean squared error).
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3.3.5 Safety Engine Implementation

The complete hazard prediction and mitigation procedure is outlined in Algorithm 3.

Our two-level hazard prediction framework comprises (i) a long-term prediction model

(PredNet-l) capable of forecasting a distant future state sequence, ensuring adequate time

to anticipate and mitigate potential hazards (line 36), and (ii) a short-term prediction

model (PredNet-s) with higher accuracy than the long-term model, guaranteeing the

detection of any hazards (line 30). The control system will trigger an alert and transition

to the Mitigation mode whenever any predicted system state sequence intersects the unsafe

region Xh (lines 31-32 and lines 37-38). To optimize computation time (refer to Section

3.4.5.8), PredNet-l is activated only when PredNet-s does not anticipate any hazards in

the near future.

An optimal mitigation path is determined based on the available mitigation budget

(line 43). If potential hazards are identified by the long-term hazard prediction model

(which has a larger mitigation budget), strict constraints are employed to formulate the

mitigation path. These constraints ensure adherence to smoothness and safety criteria

throughout the mitigation process (lines 36-40). Conversely, if a hazard is not predicted

by the long-term model but is identified by the short-term model, relaxed constraints (e.g.,

wider ranges of ↵j

i
in Eq. 3.10) are applied to facilitate rapid mitigation within the short

mitigation deadline (lines 31-34). These prediction models and mitigation path generation

strategies complement each other to enhance mitigation performance. Subsequently, a

sequence of corrective control actions U c is derived by inputting the mitigation path into

the mitigation action generation model (ActNet) (line 47).

When operating in the Mitigation mode (line 2), the GetAction function sequentially

selects a mitigation action uc

kMit
from the set U c (line 14), which is then executed by the

actuators (line 20). To balance accuracy with computational overhead, the mitigation

path and control action sequences are updated only when the error between the actual

66



Algorithm 3: Hazard Prediction and Mitigation
1 Function Mitigation():
2 if MitEnable then
3 if xt 2 X⇤ or kMit � D then
4 MitEnable False {Stop }
5 kMit 0
6 if xt /2 X⇤ then
7 RaiseAlert("Mit. Failure!")
8 else
9 if kMit > 0 and err(X̄ [kMit�1], xt) > ✓ then

10 X̄  SC_RRT ⇤(xt,D � kMit,QuickMit)
11 U c

 ActNet(X̄) {Update}
12 kMit 0
13 D  D � kMit
14 u GetAction(U c, kMit) {Replace}
15 kMit kMit+ 1
16 end
17 else
18 u ut

19 end
20 Actuate(u)
21 return
22 x System State
23 u Control Action to the Actuator
24 Hazard False {Hazard Prediction Flag}
25 for each control cycle t do
26 Xt  UpdateState(xt)
27 Ut  UpdateAction(ut) {Original Control Action}
28 if MitEnable==False then
29 kMit 0
30 x̂[t+1:s]  PredNet-s(Xt, Ut, s) {Short-term}
31 if {x̂[t+1:s]} \ Xh then
32 MitEnable True
33 D  Deadline(x̂[t+1:s])
34 QuickMit True
35 else
36 x̂[t+1:l]  PredNet-l(Xt, Ut, l) {Long-term}
37 if {(x̂[t+1:l]} \ Xh then
38 MitEnable True
39 D  Deadline(x̂[t+1:l])
40 QuickMit False
41 end
42 if MitEnable then
43 X̄  SC_RRT ⇤(xt,D, QuickMit)
44 if X̄ == ; then
45 RaiseAlert("Mit. Path Not Found!")
46 break
47 U c

 ActNet(X̄) {Corrective Action Seq.}
48 end
49 Mitigation()
50 end
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Figure 3.4: Experimental platform with different safety engines, integrated with an APS con-
troller running on a PC/cellphone or an embedded device (e.g., Raspberry Pi 4), a glucose
simulator, and a software fault injection engine.

state xt and the expected state in the mitigation path X̄ exceeds a predefined threshold

✓ (line 9). The Mitigation mode remains active until the system returns to the target

region X⇤ or the mitigation budget D has been depleted (lines 3-5). Users (patients) or

physicians will be alerted to any mitigation failures, such as when no safe path is found

(line 45) or when the budget is exhausted without reaching a safe state (line 7).

3.4 Experimental Evaluation

We develop an open-source simulation environment (see Fig. 3.4) that integrates the

closed-loop simulation of two example APS controllers with an adverse event simulator

to evaluate different safety engines. We run the experiments with both APS controllers

and simulators on an x86_64 PC with an Intel Core i9 CPU @ 3.50GHz and 32GB RAM

running Linux Ubuntu 20.04 LTS. We use TensorFlow v.2.5.0 to train our ML models

and Scikit-learn v.1.1.1 for data pre-processing and experimental evaluation.
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3.4.1 Experimental Platform

As illustrated in Fig. 3.4, the APS testbed incorporates two widely-used APS controllers

(OpenAPS [77] and Basal-Bolus [78]) along with two distinct patient glucose simulators:

Glucosym [79] and UVA-Padova Type 1 Diabetes Simulator [26] (introduced in Section

2.8). More details about the APS testbed design are provided in Appendix A.1.

Each experiment involves the patient simulator interacting with the APS controller

for 150 iterations, equivalent to about 12.5 actual hours. Each iteration in the simulation

represents 5 minutes in the real APS control system. Simulations commence with the

patient having varying initial glucose values within the normal range of 70 to 180 mg/dL,

with no additional meals or exercise during the simulation period, emulating a scenario

of the patient at nighttime after consuming dinner. To accommodate for inter-patient

variability, each system version (without a safety engine and with each different safety

engine) undergoes evaluation using ten patient profiles in each glucose simulator.

3.4.2 Adverse Event Simulation

We conduct closed-loop simulations of a glucose simulator and an APS controller using

a source-level fault injection (FI) engine. This engine directly perturbs the values of the

controller’s state variables within their acceptable ranges over a random period. This

simulation is aimed at simulating the effect of accidental faults or attack scenarios intro-

duced in Section 2.8.3 (refer to Table 2.2). We simulate two categories of attacks: (1)

Availability attacks involve setting the control output to zero (Min scenario for the

Rate variable in Table 3.2) or maintaining the same sensor measurements after the kth

control cycle for m steps (xk:k+m = xk, referred to as the Hold scenario in Table 3.2); and

(2) Integrity attacks entail adding a bias b to the sensor readings (xk = xk+b). Various

scenarios are considered, including Add, Subtract, Max, and Min scenarios (as outlined in

Table 3.2).

69



Table 3.2: Adverse event simulation experiments per patient.

Target State Variables Scenario Attack Value No.
Sim.BG Rate

Blood Glucose (BG)/
Insulin Output (Rate)

Hold Repeat Repeat 63
Add [32,64] [0.5,1] 126
Subtract [32,64] [0.5,1] 126
Max 175 2 63
Min 80 0 63

For each FI scenario, the FI engine determines (i) the target state variable, (ii) the

trigger condition for activating the fault, (iii) the duration of the fault, and (iv) the error

values to be injected. In this work, we employ a random strategy that selects from several

different start times and durations, uniformly distributed within the entire simulation

period, to inject the faults. This results in 882 FI simulations for each patient (3 start

times ⇥ 3 durations ⇥ 7 initial BG values ⇥ 14 attack values, see the last column of

Table 3.2), and a total of 17,640 simulations for all 20 patients across both simulators.

This equates to 25.52 years of simulation data (17,640 ⇥ 12.5 hours) used for training

and testing various safety engines. The details of each FI scenario are provided in Table

3.2.

3.4.3 Adversarial Training

We utilize both normal and hazardous data to train hazard prediction models, aiming

to enhance robustness. For evaluating the trained state and hazard prediction models,

we treat the entire simulation trace as a sample. It is labeled as hazardous if any state

sequence in that trace overlaps the unsafe region (e.g., BG values higher than 180 mg/dL

or less than 70 mg/dL in APS).

For training and testing response control action generation models, we utilize a se-

quence of collected control actions ut:t+n as the ground truth values. The input to the

models consists of the expected or target system states xt+1:t+n upon sequential execution

of the control actions.
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Our FI engine results in a total of 3,230 (38.3%) simulations with hazards in the

Glucosym simulator and 3,315 (37.6%) simulations with hazards in the UVA-Padova sim-

ulator. These are employed for training and testing each ML model for hazard prediction

and mitigation.

We employ a 4-fold cross-validation setup for training and testing each patient-specific

ML model. Specifically, for each patient, we train separate ML models for state prediction

and mitigation action generation. This is done using data from 75% of the simulation

traces, with the models tested on the remaining 25% of simulation traces.

To streamline model complexity and conserve computational resources, we minimize

the number of layers in the neural network. After exploring various model architectures,

the most effective model we obtained was a two-layer (128-64 units) stacked LSTM.

3.4.4 Metrics

We introduce the following metrics to evaluate the performance of the proposed method-

ology.

• Prediction Accuracy is assessed using the root mean squared error (RMSE) between

the predicted or generated trajectories and the ground truth trajectories. Additionally,

we employ standard binary metrics including false positive rate (FPR), false negative

rate (FNR), and F1 score to evaluate the accuracy of hazard prediction and the acti-

vation of mitigation actions. Performance evaluation is conducted by considering the

entire trajectory of each simulation as a sample.

• Reaction Time measures the timeliness of hazard prediction and indicates the maxi-

mum time budget to mitigate and prevent potential hazards. It is the time difference

between when the prediction network detects the hazard and when the system enters

a hazardous state.

• Mitigation Path Planning Efficiency is measured by evaluating the performance

71



of each algorithm in finding an optimal mitigation path using the following two metrics:

– Convergence Rate is the percentage of simulations in which a mitigation path ends

up in a final state in the safe region.

– Satisfaction Rate is the percentage of simulations with a valid mitigation path

that satisfies safety constraints.

• Mitigation Outcome metrics evaluate the overall performance of the safety engine

(the hazard prediction and mitigation pipeline):

– Mitigation Success Rate (MSR) is calculated as the percentage of hazardous

simulations in which the system transitions into the unsafe region without mitiga-

tion but after implementing the mitigation actions returns to the target region.

– Out-of-Safe-Range Rate is the percentage of simulations with state variable

values falling outside of the safe range (e.g., higher than 180 mg/dL or less than

70 mg/dL in APS). This metric measures the remaining hazard rate even with

the mitigation algorithm, the summation of which is the complementary set of the

Mitigation Success Rate.

– Max Deviation measures the maximum distance from the safe region boundaries.

This metric evaluates the risk of transitioning to an unsafe state with or without

safety engine.

– New Hazard Rate represents the percentage of non-hazardous simulations in

which new hazards are introduced due to false alarms and performing unnecessary

mitigation.

The final results are reported by calculating the average value of each metric over all

cross-validation folds across all patients.
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Table 3.3: Performance of customized classification models.

Simulator Model FPR FNR ACC F1 Score

Glucosym

MLP 0.02 0.07 0.97 0.89
LSTM 0.04 0.06 0.96 0.81
MLP-Custom 0.02 0.05 0.98 0.91
LSTM-Custom 0.00 0.23 0.97 0.86

T1DS
2013

MLP <0.01 0.56 0.94 0.71
LSTM <0.01 0.06 0.99 0.95
MLP-Custom 0.01 0.27 0.96 0.82
LSTM-Custom 0.00 0.17 0.98 0.90

3.4.5 Results

3.4.5.1 Hazard Prediction Accuracy

(1) Assessment of Customized Classification Models: As shown in Table 3.3, the MLP-

Custom model achieved a 1.9% and 16.2% improvement in F1 score and 28.6% and 38.6%

reduction in FNR while keeping FPR low for the Glucosym and T1DS2013 simulators,

respectively. We observed a similar improvement in the overall performance of the LSTM-

Custom model for both the Glucosym and T1DS2013 simulators using at least one pre-

diction accuracy metric.

(2) Assessment of Customized Regression Models: Table 3.4 illustrates the perfor-

mance of the proposed prediction models (PredNet) for system state and hazard predic-

tion, as well as mitigation deadline estimation in both glucose simulators, in comparison

to the baseline long short-term memory (LSTM) models with identical architecture to

PredNet. We use "l" and "s" to distinguish between ML models with long-term and

short-term prediction windows (e.g., 24 and 6 control cycles in this study), respectively.

The final results are aggregated by computing the average value of each metric across all

cross-validation folds and all patients.

Using simulation data from Glucosym, we observe that ML models trained with do-

main knowledge guidance achieve superior prediction accuracy, with up to 37.7% RMSE
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Table 3.4: Performance of each ML model in predicting system states and estimating deadlines
of mitigation averaged over 8,820 simulations in Glucosym and UVA-Padova simulators, respec-
tively. RMSE is measured in mg/dL for state estimation and Iteration (representing 5 minutes
in actual APS) for deadline estimation.

Simulator Model State Hazard Prediction Deadline

RMSE FNR FPR F1 RMSE

Glucosym

LSTM-l 2.34 0.037 0.091 0.909 0.89
LSTM-s 0.61 0.008 0.017 0.982 0.17
PredNet-l 1.46 0.014 0.061 0.943 0.64
PredNet-s 0.38 0 0.003 0.997 0.13

UVA-Padova

LSTM-l 7.66 0.213 0.091 0.899 2.24
LSTM-s 3.14 0.045 0.082 0.951 0.21
PredNet-l 7.20 0.015 0.039 0.961 2.07
PredNet-s 2.85 0 0.012 0.993 0.20

(0.38 vs. 0.61) in state prediction and 28.1% lower RMSE (0.64 vs. 0.89) in deadline

estimation.

Although the PredNets exhibit only marginally better F1 scores in hazard prediction

(1.5%-3.8% improvement), they achieve a zero FNR, which is crucial for hazard prediction

and mitigation, while maintaining an FPR that is up to 82.3% lower (0.003 vs. 0.017).

In tests conducted on the UVA-Padova simulator, we observe similar performance

enhancements of combined knowledge and data-driven ML models in hazard prediction

(4.4%-6.9%) and system state prediction and deadline estimation. This suggests the

advantage of integrating knowledge with data-driven approaches in predicting hazards and

achieving consistent performance across different simulators and patients. However, the

overall prediction error is higher in the UVA-Padova simulator compared to the Glucosym

simulator for all models. This discrepancy may be attributed to the inclusion of a noise

model for sensor measurements in the UVA-Padova simulator [133].

In Table 3.4, we observe that PredNet-s achieves a notable reduction of up to 74.0%

(0.38 vs. 1.46) and 90.3% (0.20 vs. 2.07) in RMSE for state and deadline prediction,

respectively, compared to PredNet-l. Additionally, PredNet-s exhibits at least 69.2%

lower FPR (0.012 vs. 0.039) in predicting the occurrence of hazards while maintaining
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Figure 3.5: Example state trajectories predicted by both long-term and short-term hazard pre-
diction models.

a zero false negative rate. This highlights the advantage of employing two-level hazard

prediction models, leveraging the high accuracy of PredNet-s models to avoid missing any

positive cases and the extended prediction window of PredNet-l models to proactively

mitigate potential hazards effectively.

An example of the state trajectory and the predictions of PredNets is illustrated in

Fig. 3.5. PredNet-s predictions closely overlap with the ground-truth state trajectory,

while the long-term predictions by PredNet-l also approximate the ground truth well.

To further assess the performance of PredNet in real-world APS and mitigate the

simulation-to-real gap, we train and evaluate the combined knowledge and data-driven ML

models for system state sequence prediction using a publicly available clinical trial dataset,

PSO3 [134]. Experimental findings indicate that our PredNet achieves a slightly smaller

RMSE compared to ML models developed in prior research (6.349 vs. 7.187 mg/dL on

average across the same patient data) [135]. It’s noteworthy that we do not evaluate

the hazard mitigation approach on actual APS as it necessitates runtime execution in

a closed-loop system, which would pose safety concerns when implemented with actual

patients.

3.4.5.2 Evaluation of Mitigation Path Generation

Table 3.5 displays the outcomes of the mitigation path generation algorithm, SC-RRT*,

juxtaposed with a baseline RRT* algorithm that overlooks application-based constraints
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Table 3.5: Performance of each mitigation path generation algorithm (averaged over all the
simulations). A unit of prediction length or path length represents 5 minutes in actual APS.
Conv. Trials represents the number of trials each RRT algorithm takes to converge to a valid
path.

Simulator Prediction
Model Algorithm Conv.

Trials
Path
Len

Satisfaction
Rate

Glucosym
PredNet-s SC-RRT* 174 15 89.4%

RRT* 32 10 6.4%

PredNet-l SC-RRT* 194 25 85.8%
RRT* 41 14 3.4%

UVA-Padova
PredNet-s SC-RRT* 245 10 93.5%

RRT* 78 8 31.9%

PredNet-l SC-RRT* 167 22 94.7%
RRT* 50 17 32.0%

Table 3.6: Domain-specific constraints for APS. (BG is in mg/dL and IOB is in unit).

No. Description Constraint No. Description Constraint

1 dBG/dt [-5, 3] 3 dIOB/dt [-0.1, 0.1]
2 d2BG/dt2 [-2.5, 2.5] 4 d2IOB/dt2 [-0.05, 0.05]

(as delineated in Eq. 3.9-3.10 and exemplified in Table 3.6).

Both algorithms successfully converge to a solution across all experiments. However,

the baseline algorithm exhibits a notably lower satisfaction rate (the last column of Table

3.5). This discrepancy arises because the baseline algorithm fails to account for physical

constraints or safety requirements during path generation.

An illustrative example of mitigation paths generated by both algorithms is presented

in Fig. 3.6. It is evident that the baseline RRT* (depicted by orange dots) produces sharp

turns early in the mitigation process, which could be unattainable due to significant lag

in the biological blood glucose (BG) process or could cause patient discomfort owing to

abrupt BG level changes. In contrast, the proposed SC-RRT* algorithm (marked by blue

dots) generates smoother trajectories for hazard mitigation by considering rate and trend

of changes along with physiological constraints.

Although the SC-RRT* algorithm necessitates more trials to converge to an optimal
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Figure 3.6: Example mitigation paths by SC-RRT* and baseline RRT* algorithms in the state
space (Left) and time space (Right).

Figure 3.7: Performance of control action generation (ActNet).

path, the average time required is much smaller than the length of a control cycle, thereby

having minimal impact on system operation. Further analysis of time overhead for each

model is discussed in Section 3.4.5.8.

Additionally, Table 3.5 reveals that mitigation paths generated based on hazards in-

ferred by the PredNet-s model exhibit shorter lengths (averaged over all patients in each

simulator) compared to those generated based on PredNet-l predictions. This highlights

the efficacy of PredNet-s in ensuring valid mitigation paths within short mitigation dead-

lines, complementing PredNet-l’s role in ensuring smooth state transitions and enhancing

user experience.
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3.4.5.3 Evaluation of Response Action Generation

Fig. 3.7 illustrates the performance of the response action generation models, with and

without the integration of Hazard Mitigation Specification (HMS) knowledge, in accu-

rately reconstructing the control action sequence and replicating the controller dynamics.

It’s evident that the ML model trained using the proposed custom loss function (Eq.

3.14), referred to as ActNet, consistently maintains a lower RMSE compared to the base-

line LSTM model across all prediction lengths. This outcome underscores the advantage

of combining knowledge and data in accurately generating mitigation actions.

We also notice that the RMSE of ActNet is slightly lower than that of the baseline for

one-step prediction. However, as the prediction length increases, the disparity between

ActNet and the baseline widens. This is attributed to the fact that integrated domain

knowledge is unaffected by data and prediction length.

This observation underscores the more apparent advantage of integrating domain

knowledge on context-specific mitigation actions with ML models for enhancing sequen-

tial prediction accuracy compared to single value regression. It ensures the maintenance

of a stable and low RMSE while reducing performance degradation.

Furthermore, the integration of domain knowledge (Hazard Mitigation Specification,

HMS) contributes to enhancing the explainability of black-box ML models in safety-

critical CPS. It provides a rationale for selecting a corrective control action under a given

context and can be utilized for runtime verification of ML model outputs.

3.4.5.4 End-to-End Safety Engine Evaluation

We integrate the proposed safety engine (the pipeline of PredNet, SC-RRT*, ActNet

models) as well as several state-of-the-art baselines with the controllers in our closed-loop

testbed and compare their performances.

(1) Baselines: We contrast our integrated knowledge and data-driven strategy, KnowSafe,

with approaches solely driven by knowledge or data. This comparative analysis involves
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devising various baseline methods, such as a rule-based approach that employs identical

domain knowledge concerning constraints and mitigation actions as KnowSafe, a model-

based approach, and ML-based methods with similar architectures.

The rule-based baseline comprises two components: (i) An anomaly detection algo-

rithm crafted from context-dependent specifications of unsafe control actions, and (ii) A

mitigation algorithm formulated based on the generated HMS in Table 3.1. The detection

rules determine whether a control action issued by the controller in a given context might

lead to a transition into the unsafe region. The mitigation rules outline corrective actions

to be implemented in each context to maintain safety within the safe region.

We implement existing state-of-the-art defense solutions (e.g., CI [20] or SAVIOR [46])

as a model-based baseline, employing a dynamic model of the physical system (patient

physiology), known as the Bergman & Sherwin model [102]. This model estimates the

potential BG value (BGt+1) after executing the pump’s command (ut) on the patient’s

current state (BGt). If the predicted BG value exceeds the patient’s normal range ([70,180]

mg/dL, as defined by medical guidelines), a mitigation algorithm, similar to the rule-based

mitigation, issues corrective actions, replacing the control action by the controller until

the system state returns to the target range.

Additionally, we develop two solely data-driven baseline models. The first integrates

LSTM models and RRT* with the same architecture as KnowSafe but without the integra-

tion of domain-specific knowledge (referred to as LSTM-RRT). For the LSTM models,

this is equivalent to setting ⌘ to 1 in Eq. 3.6 and Eq. 3.14. The second data-driven model

directly maps sensor measurements to the control output yML using a single regression

model, based on a feed-forward control (FFC) method proposed by [33] for unmanned

vehicles. In this approach, when the accumulated error between the ML output and the

controller output exceeds a preset threshold, the mitigation mode is activated, and the

controller output is replaced by the ML output to be delivered to the actuator. (It’s noted

that since these previous works are not directly applicable to APS, we re-implement their
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Table 3.7: Mitigation performance and time overhead of KnowSafe vs. baselines. The sever-
ity of hypoglycemia (BG<70 mg/dL) increases with decreasing BG value, including mild (54
mg/dL<BG<70 mg/dL) and more severe (BG<54 mg/dL) categories.

Method No.
Sim.

Out-of-Safe-Range Rate (mg/dL) MSR Time Overhead (ms)

BG>180 BG<70 BG<54 Normal Mode Mit. Mode

KnowSafe 6,545 428 (6.5%) 44 (0.7%) 0 92.8% 46.5 54 or 0
LSTM-RRT 6,545 2492 (38.1%) 603 (9.2%) 66 (1%) 52.7% 46.2 81.5 or 0
Rule-based 6,545 1421 (21.7%) 1792 (27.4%) 370 (5.7%) 50.9% 0.1 (106.5 µs) 0.1 (121.5 µs)
Model-based 6,545 1481 (22.6%) 3685 (56.3%) 716 (10.9%) 21.1% 87.9 87.9
FFC 6,545 499 (7.6%) 459 (7.0%) 39 (0.6%) 85.4% 28.8 28.8
Pred-LSTM 6,545 467 (7.1%) 285 (4.4%) 0 88.5% 46.5 28.7

high-level pipeline while customizing their models and parameters.)

To assess the effectiveness of the proposed hazard mitigation module, we design an-

other hybrid baseline, Pred-LSTM, which employs the same prediction module (Pred-

Net) as KnowSafe but utilizes a single LSTM model (with HMS integration) to generate

corrective control actions (without the path planning part). Further details of each base-

line are illustrated in Fig. 3.4.

(2) Mitigation Outcome: We conduct a re-run of all hazardous simulations (6,545 in

both simulators) with different safety engines (KnowSafe vs. baselines) and provide their

performance in mitigating hazards and maintaining the system inside the safe region in

Table 3.7.

The rule-based baseline successfully mitigates 50.9% of hazards, as indicated by the

mitigation success rate (MSR), but it fails to maintain the remaining half of the simula-

tions within the safe region. Similarly, the LSTM-RRT baseline effectively prevents 52.7%

of hazards, but 3,095 simulations fall outside the safe region. This discrepancy arises be-

cause, while the rule-based strategy possesses contextual knowledge, the generated high-

level mitigation action fails to infer specific quantitative values for mitigating potential

hazards. Conversely, the ML baseline offers more precise mitigation actions but relies

on a black-box data-driven model that may violate HMS rules under certain contexts.

Therefore, by integrating knowledge with data, KnowSafe overcomes the shortcomings of

either approach and leverages the strengths of both methods. It achieves a mitigation
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success rate at least 41.9% higher than solely rule-based and ML-based (LSTM-RRT)

baselines, while also minimizing the number of simulations outside the safe range.

Additionally, we observe that KnowSafe outperforms the model-based and FFC base-

lines by achieving the highest MSR and the fewest simulations with BG outside the

target range. Notably, BG falls below 54 mg/dL in 39 and 716 simulations with FFC

and model-based mitigation, respectively, which could lead to severe hypoglycemia and

serious complications (e.g., seizure, coma, or even death). In contrast, KnowSafe main-

tains BG above 54 mg/dL for all simulations. Although BG drops below 70 mg/dL in 44

simulations with KnowSafe, the percentage is significantly lower than the baselines and

poses fewer concerns compared to cases with BG below 54 mg/dL.

The superior performance of our proposed mitigation approach over these baselines

may be attributed to our approach’s emphasis on early hazard prediction and mitigation

by estimating the possibility of the system state entering the unsafe region. In contrast,

approaches like the FFC and model-based baselines detect hazards after they occur or

wait until the error between the ML predictions and the actual system states or outputs

exceeds a noticeable threshold, thus wasting the limited mitigation time budget on hazard

detection and potentially leading to mitigation/recovery failure.

While Pred-LSTM shares the same prediction module as KnowSafe and benefits from

early hazard prediction, its overall MSR is 4.3% lower. This outcome underscores the

advantage of our hazard mitigation pipeline (SC-RRT* and ActNet) over a single ML

model that directly outputs a control action based on current system states. SC-RRT*

can find an optimal mitigation path, while Pred-LSTM can only generate a single-step

mitigation action at each control cycle. Since Pred-LSTM shares the same prediction

module as KnowSafe, we do not compare its performance in the following sections.

Table 3.8 further illustrates the maximum deviations of BG from the safe region bound-

aries in each simulation, with and without the proposed safety engine. The maximum

deviation from the lower bound of the safe region decreases from 49.6 mg/dL to 4.3
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Table 3.8: Average BG value and max deviations in the adverse event simulations with no
mitigation or with KnowSafe.

Metric Max Deviation (mg/dL) Average BG
(mg/dL)Above 180 Below 70

Simulations w/o Mitigation 175.3 49.6 97.3
Simulations with KnowSafe 21.6 4.3 128.9

mg/dL (91.3% reduction). Similarly, the maximum deviation from the upper bound of

the safe region decreases from 175.3 mg/dL to 21.6 mg/dL (87.6% reduction). Conse-

quently, KnowSafe maintains a BG level within the range of [65.7, 201.6] with an average

value of 128.9 mg/dL inside the target range, effectively averting all hypoglycemia and

hyperglycemia hazards.

3.4.5.5 Timeliness

In Fig. 3.8, we present the timeliness of each mitigation strategy in predicting potential

hazards, measured by the average reaction time. Our observations are as follows:

• The model-based baseline exhibits the lowest reaction time and MSR (see Table 3.7),

underscoring the importance of sufficient reaction time for effective mitigation/recovery.

• The LSTM-RRT baseline achieves a reaction time similar to KnowSafe and a 1.4 times

higher MSR than the model-based approach, highlighting the benefits of early hazard

prediction. However, the LSTM-RRT baseline still requires refinement to mitigate the

remaining 49.1% hazards, indicating that early detection alone is insufficient to ensure

mitigation success.

• The rule-based baseline demonstrates a smaller reaction time than the LSTM-RRT

approach but achieves a similar MSR, suggesting that context-awareness enhances mit-

igation performance.

• The FFC baseline exhibits the longest reaction time by generating alerts throughout
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Figure 3.8: Reaction time of each mitigation strategy.

the entire simulation period, potentially causing user inconvenience and unnecessary

mitigation efforts. We will further analyze false positive rates in the following subsec-

tion.

• KnowSafe maintains a stable and adequate reaction time while achieving the highest

MSR, highlighting the advantage of combining domain-specific knowledge with data to

achieve both context-awareness and early hazard prediction for successful mitigation/re-

covery.

3.4.5.6 False Positives

We also assess the repercussions of inadvertent mitigation actions triggered by false alarms

of each mitigation strategy by testing them with all non-hazardous simulations (11,095 in

both simulators).

In Fig. 3.9, we observe that the FFC baseline is falsely activated for 96.9% of simula-

tions, resulting in 21.3% new hazards. This highlights the limitations of relying solely on

a single ML model for accurately detecting and mitigating hazards. Comparatively, the

LSTM-RRT baseline achieves a lower FPR and new hazard rate than the model-based and

FFC baselines, indicating the advantages of the proposed hazard prediction and mitigation

pipeline. While the rule-based safety engine exhibits twice the false positives compared

to the LSTM-RRT approach, it maintains a much lower new hazard rate, demonstrating

the minimal risk associated with the generated HMS even with false activation.
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Figure 3.9: Performance of different safety engines in 11,095 non-hazardous simulations.

In contrast, KnowSafe maintains the lowest FPR (5.4%) without introducing any

new hazards, emphasizing the benefits of integrating domain knowledge with data-driven

techniques to reduce the FPR and mitigate the risk of introducing new hazards in the

hazard prediction and mitigation process.

3.4.5.7 Mitigation of Stealthy Attacks

To assess the efficacy of the proposed mitigation strategy against stealthy attacks, we

consider a sophisticated attacker who is familiar with the mitigation mechanism, includ-

ing the ML architecture and parameters. We repeat the experiments outlined in Table

3.2, wherein the attacker refrains from executing the attack action (or injecting faults)

to remain undetected, particularly when such action would trigger mitigation alarms if

initiated. We compare the performance with a model-based baseline (similar to existing

solutions CI and SAVIOR) and an ML-based baseline (e.g., LSTM-RRT introduced in

Section 3.4.5.4). However, we exclude testing the FFC baseline due to its elevated FPRs.

In Table 3.9, it is evident that KnowSafe achieves a 100% success rate under stealthy

attacks, maintaining BG values within the safe range of [70,180] mg/dL in all simulations

conducted with both the Glucosym and UVA-Padova simulators.

In comparison, the model-based approach fails to mitigate the stealthy attack in 5,026

simulations (76.8% of 6,545 hazardous cases in Table 3.7), with a maximum deviation of

74.6 mg/dL above 180 mg/dL and 26.5 mg/dL below 70 mg/dL. This failure stems from
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Table 3.9: Performance of each mitigation strategy against stealthy attacks.

Method No. Simulation Out of
Safe Range [70,180] mg/dL

Max Deviation (mg/dL)

Above 180 Below 70

KnowSafe 0 0 0
LSTM-RRT 2,958 45.3 15.9
Model-based 5,026 74.6 26.5

the model-based approach’s limitation in predicting the system state only in the next time

step, which proves insufficient to prevent or mitigate hazards under stealthy attacks.

Conversely, the ML-based approach LSTM-RRT reduces the maximum deviations to

45.3 mg/dL above 180 mg/dL and 15.9 mg/dL below 70 mg/dL, yet it still fails to

mitigate 2,958 (45.2%) stealthy attacks due to unconstrained predictions.

In contrast, KnowSafe addresses these challenges by integrating both knowledge and

data, enabling accurate prediction of system states for the subsequent two hours. This

ensures sufficient reaction time and a high success rate in mitigating stealthy attacks.

3.4.5.8 Resource Utilization

We assess the resource utilization of the proposed approaches within the closed-loop sim-

ulation setting. By running simulations with various safety engines or without any miti-

gation/recovery 1,000 times, we calculate the average time overhead. The results depicted

in Table 3.7 reveal that KnowSafe introduces an average overhead of 46.5 ms (PredNet)

during normal operation, prior to entering mitigation mode, and 54 ms (SC-RRT* 25.3

ms, ActNet 28.7 ms) when in mitigation mode. These overheads are significantly smaller

than the control cycle period in APS (5 minutes), ensuring minimal impact on system

operation at runtime. Notably, KnowSafe does not introduce any time overhead after

entering the mitigation mode when no updates to the corrective actions are made (see

lines 9-13 in Algorithm 3).

Comparatively, the LSTM-RRT baseline exhibits a similar time overhead for hazard

prediction and mitigation, albeit with a slightly larger overhead for the baseline RRT*
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algorithm (52.8 ms) due to processing more nodes resulting from looser constraints.

In contrast, the overall time overhead of the rule-based, model-based, and FFC base-

lines amounts to 121.5 µs, 87.9 ms, and 28.8 ms, respectively. This demonstrates that the

overhead of KnowSafe is comparable to that of single models utilized in the model-based

and FFC baselines.

Furthermore, we evaluate the resource utilization of KnowSafe on a typical MCU

commonly used in APS (Raspberry Pi 4 with 8GB RAM as illustrated in Fig. 3.4),

employing optimized ML implementation [136]. We observe a time overhead of 18 µs

(4.12 ⇥ 10�7% of the normal execution time of 4.36s) and 25.3 ms (5.8 ⇥ 10�5%) before

and after entering the mitigation mode, respectively. Additionally, the peak memory

usage increases by 38MB (0.48% of the available 8GB RAM).

3.4.6 Evaluation of Robustness of ML-based Safety Monitors

Although robustness testing of deep learning models has been extensively explored in

applications such as image classification and speech recognition, less attention has been

paid to ML-driven safety monitoring in CPS. Therefore, in this research, we also evaluate

the robustness of ML-based anomaly detection methods in safety-critical CPS against two

types of accidental and malicious input perturbations in the input of ML models, which are

different from the accidental faults or attacks that result in the unsafe control actions. We

generate adversarial examples using a Gaussian-based noise model and the Fast Gradient

Sign Method (FGSM) [115], since Gaussian is a reasonable assumption for any process

or system that’s subject to the Central Limit Theorem [137], and FGSM is a simple

but effective method widely used in generating adversarial images, using the gradients

of a neural network, and is reported to be also effective in non-image domain [138]. An

example of how FGSM works is shown in Fig. 3.10 (Left).

Our experimental results with two case studies of APS for diabetes management show

that an ML-based hazard prediction model trained with domain knowledge using a custom
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Figure 3.10: Left: An example FGSM attack on a baseline monitor with the Keep_Insulin

injection command issued by the controller. Right: Robustness error of ML monitors against
FGSM attacks.

loss function can reduce robustness error [3] by up to 54.2% on average (see Fig. 3.10

(Right)) and keep the average F1 scores high.

3.5 Discussion

Generalization and Limitation: We demonstrate the effectiveness of the proposed

approach in two closed-loop APS testbeds and a real clinical dataset, but several limi-

tations narrow the generalization of our approach. Specifically, our approach is limited

to the CPS in which the system state can be represented by a subset of state variables,

based on which the safety properties can be formally specified. Also, our approach is lim-

ited to CPS, where the control cycle and device memory are larger than this approach’s

requirement reported in Section 3.4.5.8.

The primary task of adapting our method to a new type of CPS involves creating

safety specifications, which may not be easy for more complex systems and might require

domain-specific technical expertise. This work adopts a formal framework that can gener-

ate formal safety specifications using a control-theoretic hazard analysis method [47,53] in

cooperation with domain experts. An example of safety specification for Adaptive Cruise

Control systems (ACC) for autonomous driving was explored in previous work [53]. Fur-

ther study of the knowledge specification and hazard mitigation in different systems and

scenarios is beyond the scope of the work.
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Real-World Deployment: The proposed approach can be implemented on a smart-

phone (similar to some commercial APS as shown in Fig. 3.4) or be integrated with

the pump microcontroller, but running ML models on resource-scarce embedded systems

might be challenging. However, significant progress has been made in implementing ML

models on embedded systems, such as using low-power embedded GPUs [139]), ML accel-

erators [140], or optimized ML implementations [136,141]. Further, some high-end MCUs

have large memory and powerful computation capabilities [142]. In this work, we also

implemented the proposed method on a typical MCU used in APS (Raspberry Pi 4 with

8GB RAM as shown in Fig. 3.4) with improved inference time (see Section 3.4.5.8). In

addition, the integration of domain knowledge with the ML models is done offline during

training without adding computational costs at run-time.

Our models are trained on patient/configuration-specific data. Changes in configura-

tion, patient’s physiological, or environmental context necessitate recalibration/retraining.

3.6 Related work

Anomaly Detection and Attack Recovery: In previous sections, we introduced exist-

ing works on anomaly detection and recovery using model-based, rule-based, or ML-based

approaches. Our work distinguishes itself from these previous works in combining knowl-

edge with data-driven techniques for preemptive hazard prediction and mitigation with

better accuracy and a higher mitigation success rate. Further, this work focuses on mit-

igating or recovering the CPS from accidental faults or malicious attacks that directly

compromise the controller software or hardware functionality in addition to detecting

sensor attacks.

Security of APS: The existing works on enhancing APS security mainly focus on en-

cryption [143], intrusion detection [144], safety specification [145], and model-based [146]

or data-driven [47] run-time monitoring with less attention paid to hazard mitigation. The

only work we found that attempts to avoid hazards in APS includes a fail-safe approach
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that shuts down the pump or stops insulin delivery under attack [126,127]. However, this

approach fails to maintain the regular operation of APS. To the best of our knowledge,

this work is the first on run-time hazard or attack mitigation in APS.

Knowledge Integration: Integrating expert knowledge into ML has been an active

area of research [147]. Previous works have focused on enforcing ML to follow logic rules

during the training process through applying soft constraints [131], designing specific

logistic circuits [148] and network structures [149], generating graph models [150], or

utilizing knowledge distillation [151–153] or logic-calibrated uncertainty [154]. In this

work, we integrate domain-specific knowledge of safety constraints and properties as soft

constraints with the multivariate sequential prediction models for anomaly detection and

hazard mitigation.

3.7 Conclusion

This study introduces a novel approach that combines domain expertise with machine

learning to develop safety engines capable of predicting and mitigating hazards in CPS.

By integrating expert domain knowledge with machine learning techniques, we design

custom loss functions to ensure adherence to domain-specific safety constraints during

the training phase. Experimental findings from two closed-loop APS testbeds and a

diabetic dataset demonstrate that the proposed safety engines exhibit enhanced accuracy

in hazard prediction and a greater success rate in hazard mitigation.
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Chapter 4

Context-Aware Safety Validation

4.1 Overview

Safety-critical CPS should be rigorously and thoroughly tested and validated before de-

ployment. However, real-world testing is time and resource consuming and can be too

risky during development. For example, it takes millions of hours of real road testing

for the safety validation of a self-driving vehicle. Therefore, simulation-based validation

is essential for assessing system resilience against unexpected events such as accidental

faults, human errors, and attacks that might lead to adverse events. However, no realistic

closed-loop testbed is found for some safety-critical CPS in the literature, such as the ar-

tificial pancreas systems (APS) or the autonomous driving system (ADS), with real-world

control software and physical simulators as well as the model of real-world adverse events

and existing safety interventions.

Another primary challenge in safety validation of CPS is to efficiently search the exten-

sive large fault parameter space to find critical parameters that cause the system failures.

Significant progress has been made in advancing safety validation techniques for CPS,

such as sensitivity-based [8], model-based [9], or animation [156] methods. But with the

increasing complexity of software-intensive CPS, there is a great need for more efficient

and strategic validation techniques that are applicable to the systems at scale and uni-

fied methods that can rigorously trace from informal statements about a system and

This chapter contains material from the previously published works [111, 155], coauthored with H.
Alemzadeh, M. Kouzel, A. Chen, H. Ren, M. McCarty, C. Nita-Rotaru, A. Schmedding, L. Yang, P.
Schowitz, and E. Smirni, copyrighted by IEEE.
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its (un)desired behavior to implemented code, hardware, physical behaviors, and their

interactions with the environment. Previous works on safety validation using machine

learning techniques have demonstrated improved efficiency in exploring the fault param-

eter space [49, 157–159]. However, the performance of these ML-based safety validation

approaches heavily relies on the quality of the training data and requires a large amount

of labeled data for both positive and negative classes, which is expensive to collect and

might be unavailable in some applications (e.g., medical CPS). Further, the ML-based

approaches are usually based on black-box models, which lack the transparency and in-

terpretability essential for safety-critical applications. In addition, none of the previous

works considered the existing safety checking mechanisms or the possibility of human

interventions.

In this dissertation, we propose a context-aware safety validation strategy and opti-

mization method together with a safety intervention simulator to explore key questions

on how fault timing and value affect validation efficiency. Specifically, we propose a

context-aware safety-critical validation strategy that can find the most critical context

during a testing scenario to activate faults/attacks that strategically corrupt the control

outputs or perception inputs, with the goal of (1) maximizing the chance of hazards and

(2) causing hazards as soon as possible, before being detected or mitigated by the system

operators or the existing safety mechanisms. We base this approach on high-level control-

theoretic hazard analysis and specification of context-dependent safety requirements for

a typical CPS (similar to the approach introduced in Chapter 2), which is applicable to

any CPS with the same functional and safety specifications.

To bridge the sim-to-real gap in safety validation, we develop an open-source closed-

loop experiment platform that integrates real-world control software and physical simu-

lators together with typical safety mechanisms (e.g., AEBS) and a fault injection (FI)

engine that simulates real-world adverse events in the literature.
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4.2 Background

This work uses an advanced driver assistant system (ADAS), a level-2 ADS [160], as the

primary case study. Fig. 4.1 shows the overall structure of a typical ADAS.

4.2.1 Advanced Driver Assistance Systems (ADAS)

Level-2 Advanced Driver Assistance Systems (ADAS) offer autonomous driving features

but still require constant human attention [160]. Examples of these features include Adap-

tive Cruise Control (ACC), which manages the vehicle’s longitudinal movement; Auto-

matic Lane Centering (ALC), which handles lateral movement; and Advanced Emergency

Braking System (AEBS), which operates braking through Automatic Emergency Brak-

ing (AEB) and delivers alerts via Forward Collision Warning (FCW). Currently, over 17

million passenger cars globally are equipped with ADAS [161].

The objective of ALC is to keep the vehicle centered within its lane, while the main

goal of ACC is to maintain a safe following distance between the autonomous vehicle

(also known as the Ego vehicle or AV) and the vehicle ahead in the same lane (known as

the lead vehicle or LV). These goals are achieved by adjusting the Ego vehicle’s driving

direction and speed based on the detected lane lines and the estimated relative distance

and speed to the lead vehicle.

Sensors. Existing DNN-based ADAS systems utilize various sensing technologies to

detect lanelines and predict and track lead vehicles and objects. Systems like Tesla’s

Autopilot and Subaru’s EyeSight rely solely on camera data, while others, such as Apollo

[162] and OpenPilot, use both camera and radar data. Additionally, other sensors like

GPS or IMU are employed to monitor the current speed and align it with the target speed

set by human drivers.

Lead Vehicle Detection. The most critical part of ACC is lead vehicle detection

(LVD), which estimates the relative speed (RS) and distance (RD) to the lead vehicle
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Figure 4.1: ADAS architecture with ACC, AEBS, and ALC.

using camera data or a fusion of camera and radar data. Sensor fusion is the process of

combining measurements from multiple sensors (e.g., camera and radar) usually using a

Kalman filter [163] to overcome the limitations of individual sensors and obtain a more

accurate perception of the surrounding environment. Based on the LVD outputs, the

main driving control actions (i.e., acceleration, deceleration, braking) are determined.

Lane Detection. The critical component of ALC is laneline detection, which detects

the lanelines/boundaries of driving lanes using camera data or a fusion camera and Lidar

data.

Planner. The next stage in the process involves determining the optimal driving

direction and speed based on the outputs from lane detection and LVD, as well as the

current state of the vehicle. The lateral and longitudinal planners employ algorithms

such as Model Predictive Control (MPC) to generate multiple desired direction and speed

trajectories. Each trajectory represents a series of directions and speeds over a specified

following period [52].

Vehicle Control. At each control cycle t, the ADAS selects the plan from the

lateral and longitudinal planners that offers the lowest speed and risk (such as the risk

of colliding with the lead vehicle or veering out of the lane). This plan is then input

into Proportional-Integral-Derivative (PID) controllers [51], which compute the specific
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Table 4.1: AEBS design in OpenPilot-supported car models.

Car Model [84] Is AEBS using Radar/Camera/Both

Acura RDX 2018 Both
Buick LaCrosse 2019 Camera or both
Cadillac Escalade 2017 Radar or camera and ultrasonic sensors
GMC Acadia 2018 Camera and/or radar
Honda Pilot 2022 Both
Honda Ridgeline 2023 Both
Lexus ES Hybrid 2023 Both
Lexus IS 2023 Both
Toyota Avalon Hybrid 2022 Both
Toyota Camry 2023 Both

optimal control command ut. This command determines the appropriate steering angle

and throttle or brake amount, ensuring that the vehicle accurately and promptly follows

the desired direction and speed trajectory. Upon execution of the control command by

the actuators, the vehicle’s physical state, st (e.g., current speed, location), transitions to

a new state st+1.

4.2.2 ADAS Safety Mechanisms

The Advanced Emergency Braking System (AEBS), including Forward Collision Warning

(FCW) and Automatic Emergency Braking (AEB), is a fundamental safety mechanism

designed to alert drivers about potential collision risks with an obstacle ahead and ac-

tively decelerate the vehicle to prevent accidents. Current Advanced Driver Assistance

Systems (ADAS) predominantly incorporate AEBS under various names. As shown in

Fig. 4.1, most AEBS implementations utilize both camera and radar for collision predic-

tion through sensor fusion [164] and make control actions based on LVD outputs and other

sensor measurements (see Table 4.1). Additionally, safety principles such as maximum

acceleration limits required by international standards (e.g., ISO 22179) and firmware

safety checks (e.g., constraints on the output steering angle) are incorporated into the

design of typical production ADAS to ensure driving safety [165].
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Table 4.2: Attacks comparison for DNN perception or ADAS.

Attack Attack Safety Interventions Autonomy

Method Type Vector Target AEBS Driver Level [160]

[166]

Offline

Stickers on road signs Classifier N N N/A
[167] Patch projected MTO N N L4
[168] Stickers on road ALC N N L2
[169] Patch on truck ACC N N L2
[170] Patch on road ALC Y N L2

[171]

Runtime

Perception inputs MTO N N L4
[157] Perception inputs MTO No FCW N L4
[172] Inner state variables FCW No AEB Y N/A
[111] Control commands ACC, ALC No AEB Y L2

Ours Perception inputs ACC Y Y L2
* MTO: Multi-Object Tracking;

Previous studies on the safety of autonomous driving tend to focus on Level 4 or

fully autonomous vehicles, often neglecting the impact of human driver interventions

during emergency situations (e.g., abnormal acceleration). Additionally, some research has

overlooked the inclusion of basic safety features like AEB or FCW and their impact on the

effectiveness of attacks (see Table 4.2). For a realistic assessment of ADAS security, it is

essential to evaluate how these safety features interact with human interventions. At Level

2 automation, drivers must maintain control and supervise ADAS functionalities [160].

There is a research gap regarding how to ensure the safety of the combined operation

of human drivers and autonomous vehicles. The primary challenge lies in assessing the

ability of human drivers to anticipate and respond to situations where automation may

fail.

Time-to-Hazard (TTH). Previous research has indicated that there is generally a

lag between the initiation of faults and the issuance of unsafe control commands to the

physical layer, leading to hazardous situations [38,47]. This interval, from the start of an

attack to the manifestation of a hazard, is termed the Time-to-Hazard (TTH). The TTH

metric represents the critical period available for detecting anomalies and implementing

mitigation measures, as depicted in Fig. 4.2.
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Figure 4.2: Timeline of attack propagation. (ta: Attack activated; td: Attack is detected by the
ADAS or the anomaly is sensed by the human driver; tex: Human driver starts to engage; tem:
End of mitigation; th: Hazard occurs.)

Driver Reaction Time is defined as the time difference between the perception of

an alert or anomaly (e.g., seeing an alert raised by the ADAS or recognizing an anomaly)

and the start of physically taking an action (e.g., hitting the brake). In the AV literature,

the overall driver reaction time (perception and reaction) is reported to be 2.5 seconds on

average [170, 173]. We define the Mitigation Time as the time it takes for any corrective

actions (e.g., braking) to be completed. This timing provides a window of opportunity

for attackers to cause hazards before being overruled by the human driver or automated

safety mechanisms. Fig. 4.2 shows an example where mitigation successfully completed

before the occurrence of the hazard (tem < th). A successful attack should evade detection

and/or lead to hazards before the ADAS or the driver engage (th < tex) or complete any

mitigation actions (tex<th < tem).

4.2.3 OpenPilot

We utilize OpenPilot, a production ADAS from Comma.ai, as our case study [83]. Open-

Pilot is unique as it is the only open-source Level-2 ADAS, designed to enhance visual

perception and automated control (featuring ACC and ALC) by connecting an additional

EON device to the vehicle’s OBD-II port. The ACC system in OpenPilot follows a typ-

ical deep neural network (DNN)-based architecture, as illustrated in Fig. 4.1, with an

end-to-end system design [174].
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Currently, OpenPilot supports over 250 car models, including brands like Toyota and

Honda [84]. It boasts over 10,000 active users and has accumulated more than 100 mil-

lion miles of driving on public roads [83]. According to Consumer Reports, OpenPilot

achieves state-of-the-art autonomous driving performance, outperforming 17 other pro-

duction ADAS on the market, including Tesla Autopilot and Audi Driver Assistance

Plus [175].

The DNN model used by OpenPilot, called Supercombo, utilizes an EfficientNet-B2

based CNN model to process image data [176]. It incorporates the state of the vehicle

and the environment by adding additional inputs from traffic conventions and the desired

state. Multiple branches of GEMM (General Matrix Multiply) operations are then used

to derive various predictions, such as lane lines, lead vehicles, and vehicle pose, resulting

in a total of 6,472 outputs. For more details on the specifications of Supercombo, refer to

the link 1.

Comma.ai provides a closed-loop simulation environment that integrates OpenPilot

with CARLA, a high-fidelity urban driving simulator capable of generating near-realistic

camera image frames [177]. However, in this default simulation setup (described in Section

2.8.1.2), sensor fusion relies solely on camera data due to the absence of radar sensors.

Additionally, typical ADAS safety mechanisms are not included.

4.3 Attack Model

Attacker Objective. The objective of the attacker is to induce collisions or cause

the vehicle to drive out of its lane,while remaining stealthy to avoid being detected or

prevented by the human driver or safety mechanisms (e.g., AEB, FCW), by targeting the

DNN inputs ( 1 in Fig. 4.1) or directly manipulating the DNN outputs 2 or control

outputs 3 , depending on their capabilities and access level to the ACC system.
1https://github.com/commaai/openpilot/tree/90af436a121164a51da9fa48d093c29f738adf6a/

selfdrive/modeld/models
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Attacker Knowledge. We assume that the attacker gains comprehensive knowledge

about the target ADAS system design and implementation by reverse engineering a pur-

chased or rented vehicle with identical control software as the victim vehicle [5,168] or by

studying publicly available documents or source code. This is possible given that some of

the production ADAS systems are open source [83,162].

Attacker Capabilities. We assume the attacker has the capability to intercept

sensor measurements and change perception inputs or control outputs at runtime.

A possible way to achieve this is to implant malware by compromising the over-the-

air (OTA) update mechanisms [178–181] or gaining one-time remote access to the ADAS

software through scanning the network, accessing stolen credentials and exploiting the

vulnerabilities in SSH protocol [182], browsers, access control [183], wireless communica-

tions [183–185], third-party components connected to in-vehicular network [186], or some

remote service/backdoor offered by the manufacturer (e.g., Comma Connect for Open-

Pilot [187] or Bluelink for Hyundai). For example, a publicly-available tool developed for

OpenPilot enables an attacker on the same network as a target device to install a malicious

code [188]. With such remote access, the attacker can also change the OTA settings (e.g.,

remote URL) to prevent potential patches from being effective. This assumption about

the attack surface for deploying malware is also supported by previous works [181, 189],

and could have a large impact as it can be generalized to any vehicle with similar OTA

and DNN mechanisms and target a large fleet of vehicles at the same time.

Another way to compromise live perception data is to connect to a wireless com-

munication device, either a third-party component or one implemented by an attacker,

connected to the vehicular network, such as ROS communication channels [190], CAN

Bus [179, 183, 192, 197] or Ethernet channel [157, 191]), to read and send image data at

runtime. Additionally, this approach can be used to alter control outputs, which are typi-

cally communicated via the CAN Bus. The attacker computes the attack value on a local

wireless device or a remote server.
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Table 4.3: Threat models: attacker strength, capability, and impact.

Threat
Model

Attacker
Strength

Access to
ADAS Software

Vehicular Networks Computation
Location Impact Examples

Read Write

Malware Strong1 X X X within ADAS Fleet of
Vehicles [181,189]

Wireless Medium2
X X

Local Device,
Remote Server

Single
Vehicle

[190] [191] [157]
[183] [192]

Physical Weak3
X Remote Server Single

Vehicle
[193] [194]
[195] [196] [167]

1 Other malware attacks are possible (e.g., DNN output, controller output);
2 Other sensor/actuator attacks are possible (e.g., RADAR, GPS, controller output);
3 Only perception attacks possible

Further, physical attack methods are also viable for perception attack, such as by

displaying the patch on a monitor attached on the rear side of a leading adversarial

vehicle [193,194] or projecting the patch into the rear of the lead vehicle using a projector

[167,195,196].

Table 4.3 summarizes various methods for runtime reading of perception data and

modifying of live camera frames or controller outputs, given different attacker strengths

and capabilities. In this dissertation, we mainly focus on the runtime and optimized

modification of live camera frames or control outputs to enhance the attack success rate

and stealthiness, regardless of the exact threat model and how the attacker obtained

access. In our experiments, we implemented the attack through malicious OTA update

to OpenPilot.

4.4 Attack Challenges

Several challenges need to be addressed in attacking DNN-based ADAS at runtime.

C1. Optimal timing of attacks at runtime to cause safety hazards. Prior

attacks on ADAS that rely on random strategies to determine the attack timing (start time

and duration) have proven ineffective in achieving a high attack success rate [49, 75, 111]

as they waste computational resources by trying random attack parameters that lead to

no safety hazards. For instance, initiating an attack on an Ego vehicle to induce sudden
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acceleration does not cause safety hazards when no lead vehicle is detected. Recent works

have focused on using machine learning to explore the fault/attack parameter space [198]

and improve the attack effectivenes [49,157], but they still require substantial amounts of

data from random attack experiments for model training. Finding the optimal triggering

time and duration is crucial for effective attacks, yet challenging due to the vast parameter

space that needs exploration.

C2. Generating attack value at runtime to adapt to dynamic changes in

the driving environment. Attacking DNN-based ADAS systems on a moving vehicle

faces challenges due to continuous variations in the driving environment, such as object

position and size captured by the Ego vehicle’s camera. Existing attack algorithms [166,

169] are inadequate for runtime perception attacks as they plan perturbations offline,

assuming fixed sizes and locations for attack vectors. A new algorithm is needed to

dynamically adapt the attack vector’s value (e.g., position, dimension, and amount of

perturbation) to match the lead vehicle’s dynamics. These changes disrupt the original

attack vector generation process, requiring a unique approach to address inconsistencies

and non-differentiability in the objective function. In addition, the attack value should be

designed in a stealthy way to avoid detection by the human driver or safety mechanisms.

C3. Incorporating real-time constraints into the attack optimization pro-

cess. Previous attacks on DNN models assume predetermined target images [166] or a

known set [169, 170] with unlimited computation resources, allowing iterative optimiza-

tion until an optimal attack vector is generated. However, attacking ADAS systems in

real-time presents challenges as the camera continuously provides frames without prior

knowledge. An attack vector must be generated in real-time before the next frame or

control action execution. The real-time control cycle and camera update frequency limit

the speed of generating the adversarial attack vector and the frequency of assessing the

perturbation’s impact on DNN predictions. These tight constraints in typical ADAS sys-

tems (e.g., frame rate of 20Hz and control cycle of 10 milliseconds in [83]) significantly
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impact the effectiveness of optimization-based attack strategies.

4.5 Context-Aware Attack Activation

To determine the most critical times for activating the attack or conducting safety val-

idation (C1), we employ a control-theoretic hazard analysis method [14, 199] and follow

the framework outlined in Section 2.3 to identify the most critical system contexts. These

contexts pertain to specific control actions that may lead to hazards if issued by the

CPS control software. This approach primarily relies on domain knowledge concerning

system safety requirements and does not necessitate large amounts of training data or

computational resources, unlike an ML-based approach.

Taking an ADAS as an example, the attacker’s goal is to manipulate perception inputs

or control commands such as gas, brake, and steering angle to increase the likelihood of

hazardous events while evading detection by the ADAS safety mechanisms and the human

driver. Specifically, the attacker aims to cause the following accidents:

• A1: Collision with the lead vehicle.

• A2: Rear-end collision, resulting in traffic congestion.

• A3: Collision with road-side objects or other vehicles in the neighboring lane.

These accidents could happen by forcing the system to transition into one of the following

hazardous states:

• H1: AV violates safe following-distance constraints with the lead vehicle, which

may result in A1.

• H2: AV decelerates to a complete stop although there is no lead vehicle, which may

lead to A2.

• H3: AV drives out of lane, which may lead to A3.

Table 4.4 illustrates an example context table detailing unsafe system contexts, delin-

eating specific high-level system conditions wherein certain types of control actions might
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Table 4.4: Safety context table for an ADAS with ALC and ACC

Rule System Context Control Action Potential Hazard

1 HWT 6 tsafe ^RS > 0 u1 H1
2 HWT > tsafe ^RS 6 0 ^ Speed > �1 u2 H2
3 dleft 6 0.1m ^ Speed > �2 u3 H3
4 dright 6 0.1m ^ Speed > �2 u4 H3

* HWT: Headway Time = Relative Distance/Current Speed;
* RS: Relative Speed = Current Speed - Lead Speed;
* dleft, dright: Distance to the left/right edge of current lane;
* u1,2,3,4: Acceleration, Deceleration, Steering Left, Steering Right.
* tsafe 2 [2, 3]s, �1,�2 2 [20, 35]mph

engender safety hazards. For instance, the first row specifies that if the Headway Time

falls below a safety threshold tsafe (e.g., 2 seconds), and the autonomous vehicle’s (AV)

speed exceeds that of the lead vehicle (RS > 0), executing an acceleration control action

becomes perilous as it could culminate in a collision with the lead vehicle. This identi-

fication of context-specific unsafe control actions can be undertaken by an attacker who

possesses knowledge regarding the typical functionalities of an ADAS and can be applied

universally to any ADAS with an identical functional specification. The precise values for

the unknown thresholds tsafe, �1, and �2 can be determined based on domain expertise

or historical data [47].

4.6 Strategic Value Corruption

4.6.1 Attacking Control Output

Our proposed attack strategy uses the critical system contexts described in Table 4.4 as

the trigger for injecting unsafe control commands [200]. To evade detection, the control

actions generated by the attack must be within the limits that are not noticeable to a

human operator and are checked by the ADAS safety mechanisms, while minimizing the

Time to Hazard (TTH) (see Fig. 4.2) and maximizing the chance of resulting in any

hazards. To achieve these goals, the following optimization problem is formulated:
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minimize
TTH

max{Pr{xt+TTH
2 Hazardous}} (4.1)

s.t. brake � limitbrake

accel 6 limitaccel

�steering < limitsteer

v̂t+1 6 1.1vcruise

v̂t+1|t = v̂t + accel ⇤�t (4.2)

v̂t+1 = v̂t+1|t +Kt ⇤ (vt+1 � v̂t+1|t) (4.3)

where brake, accel, and steering indicate the modified values of control commands, and

v̂t+1 represents the predicted speed of the Ego vehicle at the next time step, which can be

estimated using Eq. 4.2 that approximates the dynamics of the vehicle by assuming linear

acceleration for a short time period �t (10 ms). A Kalman filter [163] (with the Kalman

Gain parameter Kt, see Eq. 4.3) is used to update the estimation using the measured

speed vt+1 at the next time step. limitaccel, limitbrake, limitsteer are the constraints on

the output control commands defined by the safety checking rules of the target vehicle,

including those of its ADAS.

4.6.1.1 Attack Procedure

The overall procedure and steps for executing Context-Aware attacks are summarized as

follows:

Eavesdropping: This step involves monitoring the sensor sockets and the in-vehicle

communication network, decoding messages exchanged between different software com-

ponents, and extracting sensor data and critical state information. In OpenPilot, this can

be achieved by subscribing locally or remotely to the messaging system used for internal

packet communication, known as Cereal [201]. Cereal is a publisher-subscriber messaging

specification for robotic systems, similar to ROS [202]. It is used by sensing and per-
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Figure 4.3: Cereal messaging eavesdropping.

ception modules (e.g., GPS, Radar) to publish messages, which can then be subscribed

to by other OpenPilot modules (e.g., ACC, ALC) as well as any malicious software (see

Fig. 4.3).

Since OpenPilot is open-source, the format of cereal messages is publicly available

[203]. An example of eavesdropping on the GPS messages is shown in Fig. 4.3. To extract

the information needed for safety context inference, the attacker needs to subscribe to the

following events: 1) “gpsLocationExternal” events to learn the speed of the Ego vehicle

published by GPS; 2) “modelV2” events to receive messages from the perception module

to learn the lane line positions; 3) “radarState” events published by the RADAR to learn

the relative speed and distance of the lead vehicle.

Safety Context Inference: Next, the attacker utilizes the basic state information

xt, which includes the speed of the Ego vehicle, the vehicle’s lateral position, the lane line

positions, and the relative distance to the lead vehicle. This data is used to infer more

complex and human-interpretable state variables as outlined in the safety specification

(Table 4.4). For instance, headway time (HWT) is a crucial metric for identifying critical

system contexts and can be computed using the Ego vehicle’s current speed and its relative

distance to the lead vehicle.

Attack Type and Activation Time Selection: A context matcher identifies
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Figure 4.4: An example of changing a steering output CAN message.

whether the current system state aligns with any critical system contexts specified in

Table 4.4. Upon finding a match, the attack engine determines the appropriate attack

action (e.g., Acceleration) based on the specified unsafe action for that context and initi-

ates the attack. Table 4.5 (in Section 4.8.1) outlines the types of attacks to be triggered

for various contexts. If two different context conditions are detected simultaneously, both

control actions (e.g., Acceleration and Steering) are activated.

Strategic Value Corruption: In the final step, the chosen attack type (e.g., Ac-

celeration) is converted into low-level control commands (e.g., maximum gas and zero

brake). The attack engine dynamically corrupts these control command values while en-

suring they do not exceed the safety limits enforced by OpenPilot’s safety mechanisms

(refer to Eq. 1-3). These safety limits are identified and encoded offline using information

from open-source code and publicly available documentation.

Finally, the corrupted commands are transmitted to the target actuators by manip-

ulating CAN messages. The data in a CAN bus message can be decoded using reverse

engineering and the open-source Database Container (DBC) configuration [204,205] spe-

cific to a car model. The attack engine then corrupts the particular CAN message con-

taining the target control command by using the command’s unique identifier (e.g., 0xE4

for steering, as illustrated in Fig. 4.4). After corrupting the target control commands, the

attacker updates the checksum to maintain the integrity of the corrupted CAN message.
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Figure 4.5: Optimization-based adversarial patch generation.

4.6.2 Attacking Perception Input

The critical system contexts identified in Section 4.5 are based on the high-level unsafe

actions (e.g., Acceleration) issued by the ADAS controller. In order to find the specific

attack values or DNN input perturbations that can cause such unsafe control actions, we

present an optimization-based patch generation method as shown in Fig. 4.5.

4.6.2.1 Runtime Optimization-based Adversarial Patch Generation.

To address challenge C2, we formulate the attack as the following runtime optimization

problem:

min
X

d2RDt

�Og(d, ✓) + �||�t||p (4.4)

s.t. Patcht = �t ⇤Mt (4.5)

Patcht 2 [µ� �, µ+ �] (4.6)
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Area(Patcht) ⇢ BBox(LV )t (4.7)

Xadv

t
= Xt + Patcht (4.8)

[RD,RS]t = LV D✓(X
adv

t�1) (4.9)

ut = ACC(st, [RD,RS]t) (4.10)

st+1 = CarModel(st, ut) (4.11)

where Eq. 4.4 defines an objective function that aims to accelerate the Ego vehicle as

quickly as possible to cause a forward collision. Directly reducing the probability of

detecting a lead vehicle or its bounding box (BBox) does not alter the behavior of the

ACC system. Instead, we design an objective function that maximizes RDt while ensuring

the perturbation applied to the adversarial patch remains imperceptible to human eye.

In Eq. 4.4, g(d) is an approximate polynomial function of d that fits the trend of

the trajectory of the relative distance RDt, predicted by the DNN model with weight

parameters ✓. "-" is a negative sign that converts our goal of maximizing the relative

distance to minimizing the proposed objective function. For example, when the gradient

of the relative distance trajectory, g(d), is negative, minimizing "�Og(d)" will slow down

the decrease of g(d) and is equivalent to maximizing the relative distance. We adopt the

gradient of g(d) in the objective function instead of using RDt itself in order to avoid

sharp changes in the predicted relative distance value, which might be easily detected by

some anomaly detection mechanisms. We assume the attacker has access to the DNN

predictions (e.g., RD) by monitoring the ADAS communication network (e.g., ROS) or

by running a replicated DNN model on a remote server or wireless communication device

(see Table 4.3).

In Eq. 4.8, the perturbation is added to the original image input Xt 2 RH⇥W⇥C in

the form of an adversarial patch Patcht 2 RH⇥W⇥C , represented as a matrix of pixels

with height H, width W, and C color channels. � is the weight parameter of the p-

norm regularization term, designed to minimize the perturbation value of the patch for
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stealthiness. We limit the perturbation value within the Kalman filter noise parameters

(µ,�) (Eq. 4.6), which ensures the perturbation is not corrected by the sensor fusion.

We also constrain the adversarial patch inside the BBox of the lead vehicle (Eq. 4.7) to

enhance attack effectiveness, minimize the perturbation area for stealthiness, and reduce

computational cost.

4.6.2.2 Primary Attribution Detection and Patch Update.

As discussed in Section 4.4, a significant challenge (C3) in designing runtime attacks is

the variability in the size and location of the lead vehicle within the perceived image

frames. To address this issue, the attacker must dynamically update the generated patch

based on the approximate DNN outputs. In this work, we employ an object detection

method [206] to detect and track the real-time position and dimensions of the lead vehicle,

focusing the attack perturbation within the detected bounding box (BBox) of the lead

vehicle. In production ACC systems with integrated object detection features [162], and

given appropriate access, the attack can bypass this step and directly utilize the stock

prediction results.

After obtaining the BBox, we employ a primary attribution algorithm [207] to quantify

the relationship between input features and output predictions. This process helps us

identify the key pixels within the BBox of the lead vehicle that significantly contribute

to the predictions of RDt. The input pixels with high weights, as determined by the
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attribution algorithm, are marked with a unit value in the mask matrix Mt, while the

remaining pixels are assigned zero values. This mask matrix is then multiplied by the

perturbation �t to generate the adversarial Patcht (as described in Eq. 4.5). This step is

beneficial as it filters out non-important pixels, reducing the number of perturbed pixels

to improve the efficiency of optimization-based attacks and lower the computational costs

of runtime attacks.

Finally, we develop a new initialization algorithm to shift the patch position and adjust

its size when the detected BBox changes (Eq. 4.12-4.14). We shift the attack vector toward

the new position of the detected BBox of the lead vehicle with a magnitude of (xt� xt�1,

yt� yt�1), where (xt�1, yt�1) and (xt, yt) are the centers of the BBox at the previous and

current control cycles, respectively (Eq. 4.12). We then expand the adversarial patch

attack vector (Patch) to the dimensions that match the size of the newly detected BBox

of the lead vehicle. Instead of reinitializing the entire attack vector matrix with random

or zero values, which would reset the whole optimization process, we retain the previous

patch values and intermediate variables, initializing only the newly expanded units (Eq.

4.13-4.14). An example is shown in Fig. 4.6.

Pos(Patcht) = Pos(Patcht�1) + (xt � xt�1, yt � yt�1) (4.12)

Init(�t) = [0] ⇤ size(BBox(LV )t) +

2

64
�t�1 0

0 0

3

75 (4.13)

Init(Patcht) = Init(�t) ⇤M (4.14)

This algorithm maintains a continuous optimization process across two consecutive

perception cycles, which is critical in satisfying real-time constraints. Fig. 4.7 shows a

visualization of how the adversarial patch affects the DNN predictions.
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4.7 Safety Intervention Simulation

To evaluate the safety of DNN-based ACC systems under attacks, we enhance the default

OpenPilot and CARLA simulation platform (see Section 2.8.1.2 and Section 4.2.3) to be

more representative of real-world ADAS, by developing a safety intervention simulator and

mechanisms for priority-based dispatching of control commands to CARLA (see Appendix

A.2.3) and fusion of camera and radar data (see Appendix A.2.4). An overview of the

simulation platform is shown in Fig. 4.8 (with the orange parts representing our new

implementations) and presented next.

To bridge the gap in accounting for safety interventions and address the challenge

of ensuring the combination of human driver and vehicle safe (see Section 4.2.2), we

have implemented and integrated three levels of safety interventions into the OpenPilot

software (see Fig. 4.8). These include ADAS safety features (e.g., AEB and FCW), basic

vehicle safety constraint checks on control commands, and driver interventions.

AEBS (FCW and AEB) Simulator. For designing and testing the AEBS mech-
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anisms in simulation, we thoroughly review the regulations and requirements concerning

AEBS [208–210] and adhere to UN Regulation No. 152 [209]. We adopt and implement

a time-to-collision (TTC) based phase-controlled AEBS [211] in our platform.

The AEBS processes inputs derived from lead vehicle detection (LVD) outputs after

sensor fusion, including relative distance (RD), relative speed (RS), and the current

speed of the Ego vehicle (VEgo) (see Fig. 4.1). The average driver reaction time (Treact)

is standardized to 2.5 seconds, a commonly accepted value in the literature [111, 170].

Various time thresholds are then computed, including ttc (time to collision), tfcw (forward

collision warning time), tpb1 (first phase partial brake time), tpb2 (second phase partial

brake time), and tfb (full brake time). When ttc falls below tfcw, tpb1, tpb1, and tpb1, a

corresponding action (warning or brake with 90%, 95%, 100% force) is executed. Applying

the brake value blocks other controls from the ADAS. More details of AEBS design and

testing are provided in Appendix A.2.1.

In practice, when OpenPilot is installed on different car models, some may lose AEBS

functionality [84], while others retain it. Additionally, AEBS might depend on a separate

ADAS camera [212], distinct from the OpenPilot camera, which is also vulnerable to po-

tential data compromise. Therefore, we consider three scenarios for AEBS interventions:

(1) AEBS is enabled, and AEBS camera data is uncompromised; (2) AEBS is enabled,

but AEBS camera data is compromised; and (3) AEBS is disabled (see Section 4.8.6.2

and Table 4.10).

Driver Reaction Simulator. To evaluate driver interventions, we develop a driver

reaction simulator. The simulated driver receives notifications when any ADAS safety

alerts are triggered (e.g., FCW) or when the driver notices anomalies in the vehicle’s

status or camera user interface (UI) (e.g., the mean perturbation value in the UI exceeding

a noticeable threshold, set by default to 15% for an alert driver (Patch.mean() > 0.15).

Assuming a highly alert driver capable of detecting anomalies within a single control cycle

(10ms), the driver issues a predefined emergency response that takes effect 2.5 seconds
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later, which is the average driver reaction time. Refer to Appendix A.2.2 for more details

about the design of the driver reaction simulator.

Safety Constraint Checker. The OpenPilot safety mechanisms are implemented in

its control software and the Panda CAN interface. Panda, a universal OBD adapter devel-

oped by Comma.ai [213], provides access to almost all car sensors through the CAN bus

and enforces safety constraints over output commands. However, when integrated with

the CARLA driving simulator, OpenPilot does not utilize Panda software or hardware;

thus, Panda safety checks are inactive.

To ensure our simulation is as realistic as the actual OpenPilot on the road, we add a

virtual Panda module that replicates the exact logic of the Panda software [213]. Specif-

ically, as shown in Fig. 4.8, the virtual Panda decodes the CAN messages sent by the

ADAS and verifies their checksums and control command values against predefined thresh-

olds [213]. For example, to ensure safety, the maximum acceleration and deceleration of

the vehicle are limited to 2m/s2 and -3.5m/s2, respectively [165]. Only commands that

pass the Panda safety checks are sent to the simulated vehicle actuators. In the CARLA

simulator, the final control commands are truncated within the range of [0,1].

4.8 Evaluation in Closed-loop Simulation

We evaluated the performance of the proposed approaches using the developed open-

source closed-loop simulation platform, as described in Section 4.7 and illustrated in Fig.

4.8. Our experiments were conducted on Ubuntu 20.04 LTS, utilizing OpenPilot v0.8.9

and CARLA v9.11. Each simulation of OpenPilot consists of 5,000 time-steps, each lasting

approximately 10 ms, resulting in a total duration of 50 seconds. However, if an attack

results in a collision, the simulation terminates earlier.
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(a) An example initial position of Ego Vehicle (EV) and

other reference vehicles.
(b) The user interface of OpenPilot during the

simulation.

(c) EV collides with the lead vehicle. (d) EV collides with the guardrail.

Figure 4.9: Driving scenarios in OpenPilot.

4.8.1 Driving Scenarios

We simulated a 2016 Honda Civic, both with and without basic safety features, navigating

curvy and straight sections of a highway on the "Town04_opt" map in CARLA, under

clear weather and dry road conditions. Our simulations included four high-risk driving

scenarios, designed in accordance with the NHTSA’s pre-collision scenario topology report

[87]. In these scenarios, the Ego vehicle, traveling at 60 mph, encounters a lead vehicle

that exhibits a range of behaviors:

• SC1: Lead vehicle cruises at the speed of 35 mph;

• SC2: Lead vehicle cruises at the speed of 50 mph;

• SC3: Lead vehicle slows down from an initial speed of 50 mph to 35 mph;

• SC4: Lead vehicle accelerates from an initial speed of 35 mph to 50 mph.

Fig. 4.9(a-b) show different views of a simulated scenario.
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Table 4.5: Fault injection experiments.

Attack Attack Accel Brake Steering No.
Location Type Angle Attacks

Control Outputs

Acceleration limitaccel 0 - 60
Deceleration 0 limitbrake - 60
Steering-Left - - -limitsteer 60
Steering-Right - - limitsteer 60
Acceleration-Steering limitaccel 0 ±limitsteer 60
Deceleration-Steering 0 limitbrake ±limitsteer 60

Perception Inputs Adversarial Patch - - - 250

For each driving scenario, we simulate various types of attacks by adding adversarial

patches to the perception inputs or injecting faults into each output variable and their

combinations, as outlined in Table 4.5. These modifications can induce sudden accelera-

tions in the AV. For instance, in the Acceleration-Steering attack, faults are injected into

the Gas and Steering Angle parameters, either to the left or right angle, within limits

acceptable to the OpenPilot control software or as specified in Section 4.6.

For control output attacks, we test each scenario with the lead vehicle starting at

three different distances (50m, 70m, 100m) and repeat each test 20 times to account

for variations in the driving environment and attack timing. This approach results in

60 simulations per attack type and a total of 1,440 simulations across all attacks and

scenarios.

For perception attacks, the AV starts 75 meters away from the lead vehicle. Each

scenario is tested across ten start times and five durations, repeated five times, leading

to a total of 1,000 simulations. This extensive testing helps ensure a robust evaluation of

the attack impacts under various conditions.

4.8.2 Methodology

We study the following research questions by comparing the effectiveness of the proposed

perception attack (referred to as CA-Opt) and output attack (referred to as Context-
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Table 4.6: Overview of attack strategies.

Attack Attack Start Duration Attack No.
Location Strategy Time Values Attacks

Control Outputs

Random-ST+DUR Uniform [5,40]s Uniform [0.5,2.5]s Fixed1 14,400
Random-ST Uniform [5,40]s 2.5s Fixed 1,440
Random-DUR Context-Aware Uniform [0.5,2.5]s Fixed 1,440
Context-Aware (Ours) Context-Aware Context-Aware Strategic2 1,440

Perception Inputs

CA-Random Context-Aware Context-Aware Random 1,000
CA-APGD Context-Aware Context-Aware AutoPGD 1,000
CA-Opt (Ours) Context-Aware Context-Aware Opt-based 1,000

1 Fixed: use the maximum limit of each output command defined in OpenPilot: limitsteer = 0.5�, limitbrake = �4m/s2,
limitaccel = 2.4m/s2.

2 Strategic: dynamically choose the attack value according to Eq. 4.1-4.3 (limitsteer = 0.25�, limitbrake = �3.5m/s2,
limitaccel = 2m/s2).

Aware) to several baseline attack methods in causing safety hazards and evading different

safety interventions:

RQ1: Does strategically selecting attack times and values increase the chance of

hazards, such as collisions?

RQ2: Does stealthiness design help maintain the attack effectiveness in the presence

of safety interventions?

RQ3: Does a perception input attack achieve better performance than direct percep-

tion and control output attacks?

Baselines. We design various baseline attack strategies to answer these questions

(see Table 4.6).

To evaluate the resilience of ADAS against control output attacks and assess the influ-

ence of attack timing, we developed three baseline strategies in addition to the Context-

Aware strategy, as detailed in Table 4.6. The first baseline, Random-ST+DUR, uses

randomly selected start times, uniformly distributed between 5 and 40 seconds after the

simulation starts and up to 10 seconds before it ends, with attack durations uniformly

distributed between 0.5 and 2.5 seconds. We conducted 14,400 simulations using the

Random-ST+DUR strategy to comprehensively test critical attack parameters. The sec-

ond baseline, Random-ST, involves randomly selecting a start time while fixing the
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attack duration at the average driver reaction time of 2.5 seconds. The third baseline,

Random-DUR, randomly selects the attack duration between 0.5 to 2.5 seconds, with

the start time determined based on the context.

All attack values are kept within the safety parameters monitored by OpenPilot. We

exclude aggressive random attacks, such as those bombarding the CAN-bus with out-of-

range values, as they might be detected by existing vehicular network intrusion detection

systems [5, 214] and OpenPilot’s safety checks.

To evaluate the effectiveness of our optimization-based adversarial patch method in

strategically selecting attack values, we compared it with two baselines: CA-Random,

which introduces random perturbations to perception inputs, and CA-APGD, a state-

of-the-art gradient-based method using Auto-PGD [215]. Originally designed for mis-

classification, Auto-PGD is not suited for ACC attacks; therefore, we modified its goal

function to maximize the relative distance prediction (see Eq. 4.4). Additionally, we re-

stricted the number of iterations to 5 to align with the maximum number of control cycles

(100Hz) within a perception cycle (20Hz). Both baselines employ the same context-aware

method as our proposed CA-Opt attack to select the start times and durations of attacks.

For a balanced comparison, we confined the perturbations to the detected bounding box

(BBox) of the lead vehicle. Furthermore, we continuously updated the BBox size and po-

sition using our proposed patch updating algorithm (Section 4.6.2.2). This ensures that

all comparisons are conducted under similar operational conditions.

4.8.3 System Resilience Evaluation

We assess the resilience of OpenPilot with an alert driver by conducting simulations both

with and without attacks. Table 4.7 demonstrates that under normal system operation,

without any attacks, no hazards or accidents occur. However, two steer saturated alerts

were triggered due to the steering angle exceeding OpenPilot’s predefined safety limits.

Fig. 4.10 illustrates an example of the ALC system’s performance. We observed that the
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Figure 4.10: Trajectory of the Ego Vehicle during an attack-free simulation.

Table 4.7: Attack strategy comparisons with an alert driver.

Attack Strategy Sim. Alerts Hazards Accident Hazards&
no Alerts

LaneInvasion
(No. Event/s)

TTH(s)
(Avg. ± Std.)

No Attacks 240 2 (0.1%) 0 0 0 0.46 -

Random-ST+DUR 14,440 22.6% 39.8% 22.9% 21.4% 1.03 1.61±1.96
Random-ST 1,440 24.0% 53.5% 35.8% 32.9% 0.68 1.49±0.73
Random_DUR 1,440 14.6% 26.9% 23.1% 15.9% 0.46 1.92±1.17
Context-Aware 1,440 4 (0.3%) 83.4% 44.5% 83.1% 0.66 2.43±1.29

ALC system does not consistently keep the Ego vehicle centered in the lane, resulting

in lane invasions at an average frequency of 0.46 times per second. This can lead to

out-of-lane hazards or collisions with roadside objects. These findings indicate a lack

of cooperation between the ALC and ACC systems, highlighting a defect in the control

software that needs to be addressed.

Observation 1: Lane invasions can happen even without any attacks.

4.8.4 Evaluation of Attack Duration and Start Time

Table 4.7 reveals that the Context-Aware strategy surpasses the three random strategies,

achieving the highest hazard coverage at 83.4% (1,201/1,440), with 99.7% (1,197/1,201)

of hazards occurring without triggering any alerts. Notably, 53.4% (641/1,201) of hazards

result in accidents, including collisions with the lead vehicle and roadside objects (see Fig.

4.9(c-d)). In these instances, the ADAS raises a steer saturated warning, while the more

pertinent forward collision warning (FCW) is not activated because the brake output

remains below OpenPilot’s safety threshold. We also observe an increased number of lane

invasions per second for almost all attacks due to the occurrence of out-of-lane hazards.

Despite achieving the highest hazard coverage, the Context-Aware attacks maintain a low
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Figure 4.11: State space of “Attack start time" and “Duration" for Acceleration attacks (solid
shapes correspond to hazardous results and empty ones to non-hazardous).

number of lane invasions and alerts due to strategic value corruption.

Observation 2: The Context-Aware attack strategy efficiently exploits safety-critical

states of the ADAS. Notably, during these attacks, the forward collision warning (FCW)

does not activate at all.

From Table 4.7, we also observe that the average Time-to-Hazard (TTH) of the

Context-Aware attack is longer than that of the Random attacks. This is due to the

higher hazard rate in the Acceleration attack, which has a longer TTH.

To further assess the significance of attack duration and start time, we analyzed the

coverage of the fault parameter space by various attack strategies. Fig. 4.11 depicts a

sample parameter space for durations ranging from 0.5 to 2.5 seconds and start times

between 5 and 35 seconds for the Acceleration attack type. Each dot represents an at-

tack simulation, with solid dots indicating those that resulted in hazards. The figure

demonstrates that an attack does not induce any hazard if it is not activated within a

specific time window (after the dashed line at approximately 24-25 seconds), regardless of

its duration. Once the critical launch moment is identified, the attack must persist for a

sufficient period (at least 1.5 seconds) to cause a hazard. Consequently, identifying both

the optimal time to initiate an attack and the necessary duration is essential to increase

the hazard success rate.
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We also observe that the Context-Aware strategy (represented by orange diamonds)

consistently results in hazards and falls within the critical time window. In contrast, the

dots corresponding to the Random-ST and Random-DUR strategies show a substantial

number of non-hazardous cases. This further highlights the efficiency of the proposed

Context-Aware strategy.

Observation 3: The Context-Aware selection of start time and duration ensures that

resources are not wasted on non-hazardous random injections.

4.8.5 Evaluation of Attack Value Selection: Control Outputs

In this series of experiments, we further assess the effectiveness of the Context-Aware

strategy both with and without the use of strategic value selection.

Table 4.8 presents the results for different attack types, including the number of haz-

ards mitigated by the driver. For effective hazard mitigation, the driver reaction times

must be shorter than the Time-to-Hazard (TTH) (see average TTHs in Table 4.8). Our

experiments show that without driver intervention, attacks without strategic value cor-

ruption can achieve very high hazard and accident success rates (nearly 100% for all attack

types). However, when simulating human driver reactions, 83.3% of hazards are prevented

for the Acceleration attack, resulting in a 50% reduction in collision events. Similar hazard

reductions are observed for the Deceleration (58.8%) and Deceleration-Steering (70.8%)

attacks.

Observation 4: Human alertness for timely intervention is important in preventing

hazards and accidents.

However, driver reactions do not prevent Steering attacks, as evidenced by the zero

hazards prevented for such attacks in Table 4.8. These attacks still achieve very high

hazard and accident success rates, such as 100% for Steering-Right and Acceleration-

Steering. This is because hazards occur in less than 1.63 seconds, significantly faster

than the average human driver reaction time of 2.5 seconds. This indicates that attacks
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Table 4.8: Context-aware attack with or without strategic value corruption and with an alert
driver.

Attack Type
W/o Strategic Value Corruption

Alerts Hazards Accident TTH(s)
(Avg. ± Std.)

Prevented
Hazards

New
Hazards

Prevented
Accidents

Reduced
Accidents

Acceleration 4
(1.7%)

200
(83.3%)

120
(50.0%) 3.33±0.23 200

(83.3%)
160

(66.7%)
200

(83.3%)
120

(50%)

Deceleration 1
(0.4%)

99
(41.2%)

0
(0.0%) 2.62±0.04 141

(58.8%) 0 0 0

Steering-Left 122
(50.8%)

187
(77.9%)

175
(72.9%) 1.11±0.86 0 0 0 0

Steering-Right 2
(0.8%)

240
(100.0%)

240
(100.0%) 1.63±0.08 0 0 0 0

Acceleration-Steering 2
(0.8%)

240
(100.0%)

240
(100.0%) 1.51±0.15 0 0 0 -1

(0.4%)

Deceleration-Steering 3
(1.2%)

138
(57.5%)

17
(7.1%) 2.63±0.02 170

(70.8%)
68

(28.3%) 0 -17
(7.1%)

Total 142
(9.9%)

1104
(76.6%)

792
(55.0%) 2.04±1.10 511

(36.8%)
228

(16.4%)
200

(22.4%)
102

(11.4%)

With Strategic Value Corruption

Acceleration 1
(0.4%)

160
(66.7%)

160
(66.7%) 5.03±1.22 1 0 1 1

Deceleration 0
(0.0%)

231
(96.2%)

0
(0.0%) 2.77±0.10 0 0 0 0

Steering-Left 1
(0.4%)

90
(37.5%)

1
(0.4%) 1.33±0.17 0 0 0 0

Steering-Right 0
(0.0%)

240
(100.0%)

240
(100.0%) 1.39±0.10 0 0 0 0

Acceleration-Steering 2
(0.8%)

240
(100.0%)

240
(100.0%) 1.47±0.26 0 0 0 0

Deceleration-Steering 0
(0.0%)

240
(100.0%)

0
(0.0%) 2.77±0.06 0 0 0 0

Total 4
(0.3%)

1201
(83.4%)

641
(44.5%) 2.43±1.29 1 0 1 1

* The number of hazards/accidents prevented when a human driver simulator is added in the simulation.

targeting the steering angle are the most challenging for drivers to mitigate. It should

be noted that Steering-Left attacks are less successful in causing hazards compared to

Steering-Right attacks (77.9% vs. 100%) because the Ego vehicle starts in a lane closer

to the right guardrail while traveling on a left-curved road.

Observation 5: Steering is the most effective attack type that cannot be easily halted

by the human driver.

While driver intervention can reduce hazard and accident rates, it can also introduce

new hazards. For instance, to avoid colliding with the vehicle in front, the Ego vehicle

might stop in the middle of a lane, risking a rear-end collision or hitting curb objects.

Table 4.8 reveals that up to 66.7% of new hazards occurred after preventing attacks on
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the gas output.

With the introduction of strategic value corruption, there’s a 6.8% rise in hazard

success rates (from 76.6% to 83.4%). Despite this increase, the total number of alerts

generated by the ADAS drops to four, and the driver manages to prevent fewer than

0.1% of induced hazards, even when the average time to hazard (TTH) exceeds the av-

erage driver reaction time of 2.5 seconds (e.g., during Acceleration, Deceleration, and

Deceleration-Steering attacks). This demonstrates the effectiveness of the Context-Aware

strategy in avoiding detection by both the ADAS and human drivers.

Observation 6: The strategic value corruption is effective in evading human driver

detection and safety checks of ADAS.

4.8.6 Evaluation of Attack Value Selection: Perception Inputs

4.8.6.1 Attack Success Rate in Causing Hazards

To evaluate the effectiveness of the CA-Opt attack in causing safety hazards (RQ1),

we perform experiments on the closed-loop simulation platform without activating safety

interventions. This setup aligns with prior research [169, 170]. An attack is considered

successful if a collision occurs (the Ego vehicle collides with the lead vehicle) or if the

relative distance between the lead vehicle and the Ego vehicle is 0 meters or less. Unless

otherwise specified, the success rate is reported based on 1,000 simulations.

Fig. 4.12 shows the success rates for each attack type. The CA-Random attack causes

hazards in less than 1.2% of cases, with an overall success rate of 0.7%. This indicates

that randomly generated adversarial patches have minimal impact on the DNN model’s

predictions and rarely lead to hazards. Even increasing the perturbation values in these

patches does not significantly boost the success rate. This resilience is due to the DNN

model in OpenPilot being trained primarily to detect the presence of front objects rather

than classify them, making it less susceptible to adversarial attacks. Additionally, patches
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Figure 4.12: Top: Adversarial patch examples generated using our optimization method vs.
random and APGD-based methods. Bottom: Success rate of CA-Opt and baseline attacks in
absence of safety interventions.

with higher perturbation values are more noticeable to the driver than those created using

the optimization-based method (Fig. 4.12-Top), which could alert the driver to prevent

hazards.

Conversely, the proposed CA-Opt attack achieves a perfect success rate of 100% across

all testing scenarios, outperforming CA-Random by a factor of 142.9. While CA-APGD

uses a similar goal function as CA-Opt, it fails to cause hazards in 46.6% of simulations.

This shortfall is primarily due to the limited number of iterations imposed to meet real-

time constraints. In contrast, our CA-Opt attack employs a dynamic patch updating

algorithm, which maintains the optimization process across perception cycles, thereby

significantly enhancing the attack’s effectiveness.

However, when the optimization-based perception attack is activated at random times

and for random durations, it achieves an average success rate of just 3.5%. This is 28.6

times lower than the CA-Opt attack, as it wastes resources by injecting perturbations

during non-critical system states. This underscores the importance of strategic timing

of attacks and demonstrates that optimization-based methods alone are insufficient for

causing hazards.
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Observation 7: CA-Opt is more efficient than baselines in identifying the most

critical times and optimal DNN perturbation values for attacking the ACC systems at

runtime and overcoming real-time constraints (C3).

4.8.6.2 Attack Stealthiness with Safety Interventions

This section examines the impact of the safety interventions and the stealthiness design

on attack efficiency (RQ2).

Stealthiness in Perception Input. To evade detection by safety mechanisms and

human drivers, the adversarial patch needs to remain as inconspicuous as possible. Gen-

erally, the smaller the pixel perturbations, the stealthier the attack. To evaluate this, we

tested our attack method using three different � values in Equation 4.4. We employed

two sets of metrics to assess the patch’s stealthiness: (i) the degree of pixel perturbation,

measured using L2 and L1 distances [216], and (ii) the similarity between the original

camera image and the perturbed image, calculated using RMSE and the universal image

quality index (UIQ) [2].

In Table 4.9, the results averaged over all test scenarios and simulations are presented.

The CA-Opt attack maintains at least a 99.2% success rate under all three stealthiness

levels, with perturbation degrees kept below 0.015 (L1) and 0.184 (L2). The perturbed

image with the adversarial patch has a UIQ similarity score of 0.993 compared to the

original image, where 1 indicates identical images. For our evaluations, we selected a

� value of 10�3 due to its optimal balance of stealthiness and high attack effectiveness.

Examples of the generated adversarial patches (with � = 10�3) are shown in Fig. 4.6 (see

the zoomed-in area) and Fig. 4.12, and are nearly invisible to the human eye.

To further assess the stealthiness of our attack design, we conducted a user study

with 30 participants. The results indicate that adversarial patches with � = 10�2 and

� = 10�3 are almost imperceptible to human drivers. Additionally, the patches generated

by CA-Opt attacks are less noticeable than those created by baseline perception attacks
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Table 4.9: Attack success rate with different patch stealthiness levels � and pixel perturbation
degrees.

Stealthiness
Level �

Succ.
Rate

Perturbation Pixel Image Similarity

L2 L1 RMSE(⇥10�5) UIQ

10�2 99.2% 0.086 0.015 1.061 0.993
10�3 100% 0.128 0.015 1.168 0.993
10�4 100% 0.184 0.015 1.319 0.993

* L2 and L1 distances are the normalized perturbation values of the
attack vector matrix in the range of [0,1].

* Image similarity is evaluated by comparing the RMSE and UIQ be-
tween the original image and the perturbed image with the patch.
Smaller RMSE and larger UIQ mean higher similarity.

(CA-Random and CA-APGD). Additional details can be found in Appendix B.

Evading Safety Interventions. To provide a more realistic evaluation of the ef-

fectiveness of different attack strategies, we reran our experiments with various safety

interventions (introduced in Section 4.7). Before our evaluations, we calibrated the safety

features to ensure the interventions were triggered correctly and without any false posi-

tives.

We test each attack method with different AEBS configurations: (i) FCW/AEB de-

pends on an independent camera that is not compromised, (ii) AEB/FCW utilizes com-

promised camera inputs similar to the ACC (simulating stock ACC and AEBS that share

a camera or independent ACC and AEBS cameras that are both compromised), or (iii)

AEB/FCW is disabled. Driver intervention and ACC safety constraint checking (Open-

Pilot Panda checks) are considered for all three settings. We assess the efficacy of each

attack method using metrics such as the attack success rate, safety intervention activa-

tion rate (indicating the percentage of simulations triggering safety interventions), and

hazard prevention rate (the percentage of simulations where hazards occur without safety

interventions).

Table 4.10 shows the experimental results of each attack method with different safety

intervention configurations. We observe that, regardless of the interventions, the CA-
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Table 4.10: Performance of attacks with all the safety features and different AEBS settings.

Safety
Interventions

Attack
Method

Intervention
Activation Rate

Succ.
Rate

Hazard
Prevention Rate

All &
AEBS Not Compromised
(Independent Camera)

CA-Random 27.4% 0 100% (7/7)
CA-APGD 100% 0 100% (534/534)
CA-Opt 100% 48.7% 51.3% (513/1,000)

All &
AEBS Compromised
(Shared Camera)

CA-Random 24.3% 0 100% (7/7)
CA-APGD 100% 0 100% (534/534)
CA-Opt 14.6% 89.6% 10.4% (104/1,000)

All &
AEBS Disabled

CA-Random 23.8% 0 100% (7/7)
CA-APGD 100% 0 100% (534/534)
CA-Opt 0 100% 0

Random and CA-APGD attacks fail to cause any hazards due to their low baseline success

rates (see Fig. 4.12) and their noticeable perturbations that trigger the driver interven-

tions in 23.8-27.4% and 100% of scenarios. These findings highlight the effectiveness of

human drivers in preventing accidents and keeping autonomous driving safe.

In contrast, with AEBS disabled (the last row of Table 4.10), the CA-Opt attack

successfully evades driver intervention in all simulations. This is attributed to the small,

virtually invisible value of the adversarial patch, resulting in an average attack success rate

of 100%. We also conduct experiments that simulate higher driver sensitivity levels by

decreasing the mean perturbation value threshold for activating driver intervention from

the default value of 15% (see Section 4.7) to 10%, 5%, 2%, 1.5%, 1%, and 0.5%. As shown

in Fig. 4.13, when perturbation thresholds are set to 0.5% and 1% (representing highly

sensitive driver), the CA-Opt attack triggers driver interventions in all and 79.6% of the

simulations, leading to attack success rates of 0% and 20.4%, respectively. However, with

thresholds higher than 1.5%, our attack maintains a 100% success rate without triggering

driver intervention. This finding underscores the robustness of the attack in evading driver

detection across a range of driver sensitivities.

When the AEBS function is enabled and uses the same compromised camera inputs

as ACC, CA-Opt attacks affect both the ACC and AEBS functionalities. So, the safety

125



Figure 4.13: Attack success rate and driver intervention activation rate with different driver
sensitivity thresholds.

interventions are triggered in only 14.6% of simulations, leading to a high success rate

of 89.6%. However, the CA-Opt attack encounters challenges when the AEBS relies on

uncompromised camera data from an independent camera. In this scenario, the attack

triggers safety interventions in all simulations. But it still maintains a success rate of

48.7% through a gradual (stealthy) change in the vehicle state (see Fig. 4.14) that delays

AEBS activation and leaves insufficient time for hazard prevention.

Observation 8: Our simulated safety interventions are effective in preventing acci-

dents, and as required for L2 AVs, the human driver should always be in the loop and

actively monitor ADAS to ensure safety.

Observation 9: CA-Opt attack is more effective than baselines in keeping perturba-

tions stealthy and causing hazards without being mitigated by safety interventions.

4.8.6.3 Comparison to DNN Output and Control Output Attacks

The stealthy perturbations on the perception input can get propagated through the DNN

model and ACC logic and lead to changes in the DNN output ( 2 in Fig. 4.1) and

ACC control output 3 . Although the attacker’s goal is to maximize errors in the DNN

output and cause sudden accelerations on the ACC output, large deviations in vehicle

states may be detected by the human driver or existing safety and defense mechanisms.

To further evaluate the stealthiness of our proposed attack (CA-Opt), we compare the

deviations resulting from the attack to those caused by stealthy attacks directly on DNN
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Figure 4.14: Context-Aware perception attacks vs. output attacks.

and control outputs. Note that such attacks are only possible under specific threat models

(e.g., malware or wireless methods) in Table 4.3.

Control Output Attacks. We begin by examining deviations in the autonomous

vehicle states and control outputs resulting from the attack compared to the proposed

Context-Aware attack (see Section 4.8.2 and Table 4.6), which directly compromises the

ACC control output to a strategic value (also referred to as StrategicOut). Additionally,

we compare to another baseline, MaxOut which directly modifies ACC output control

commands by setting them to the maximum allowed acceleration value. All these attacks

employ the same context-aware method as CA-Opt for selecting the attack times and

durations.

Fig. 4.14 illustrates an example scenario. The MaxOut attack leads to quicker colli-

sions but also results in more noticeable changes in critical states such as gas, acceleration,

and vehicle speed. These significant alterations are easily detectable by anomaly detection

mechanisms or can be promptly noticed and addressed by human drivers. In contrast,

the perturbations injected by the CA-Opt attack into DNN perception inputs may not

propagate to cause any changes in ACC output, or if they do cause changes, they will

not be larger than the maximum possible acceleration caused by MaxOut attacks. These
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Table 4.11: Performance of StrategicOut attack with all the safety features and different AEBS
settings (AEBS with Shared Camera).

Attack
Strategy

Safety
Interventions

Intervention
Activation Rate

Succ.
Rate

Hazard
Prevention Rate

StrategicOut All & AEBS Activated 100% 20.3% 80.1% (797/995)
All & AEBS Disabled 0.5% 99.5% 0.5%(5/1,000)

OptOut All & AEBS Activated 100% 34.5% 65.5 (655/1,000)

perturbations lead to gradual deviations in system states over a longer period, achieving

a high success rate (as shown in Fig. 4.12) while reducing the likelihood of detection.

Although StrategicOut produces smaller deviations strategically to avoid safety alerts,

changes in vehicle states (e.g., speed) are still more noticeable compared to the CA-Opt

perception attack.

We also evaluate the success rate of StrategicOut attack under two different safety

intervention configurations. We do not assess the MaxOut attack due to its high likelihood

of being detected. Table 4.11 shows that without AEBS, StrategicOut achieves a high

success rate of 99.5% by generating attack values within safety limits and avoiding driver

intervention. However, with AEBS active, using the same camera inputs as ACC, the

success rate drops significantly to 20.3%, primarily due to safety interventions triggered

in all simulations.

We further compared the CA-Opt attack with a stealthy control output attack that

causes the exact deviations of the state variables as the proposed perception attack (re-

ferred to as OptOut). Specifically, we reran the simulations and injected the faults by

setting the control output to the recorded output traces caused by the CA-Opt percep-

tion attack. We observed that the OptOut attack achieved a higher success rate (34.5%)

than the StrategicOut attack. However, it did not change the DNN predictions or affect

the AEBS function, thus triggering safety interventions more easily and earlier than the

CA-Opt attack.

Similarly, we compare the performance of CA-Opt attack with a stealthy attack that
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Figure 4.15: CA-Opt perception attack vs. DNN output attack.

directly compromises DNN output 2 (referred to as DNNOut) by formulating an op-

timization problem to maximize the relative distance (RD) prediction within one stan-

dard deviation while ensuring the satisfaction of safety constraints on acceleration and

speed [111]. We calculate the acceleration and speed values corresponding to RD pre-

dictions by replicating the Openpilot MPC and PID algorithms. This baseline uses the

same context-aware method as CA-Opt for selecting the attack times and durations. We

observe that the DNNOut attack causes a more obvious change in the RD predictions (see

Fig. 4.15) compared to CA-Opt attack on DNN inputs 1 , which then results in similar

obvious changes in the gas, speed, or acceleration as depicted in Fig. 4.14.

Observation 10: CA-Opt attack has advantage over direct DNN or control output

attacks in minimizing vehicle state changes to evade detection by safety interventions,

while maintaining high effectiveness in causing hazards.

4.8.6.4 Comparison to Fake Video Attacks

To further evaluate the necessity of a stealthy patch attack, we conduct another perception

attack experiment by fake video injection.

Video Recording. An Ego vehicle is configured to cruise at 40mph from 75 meters

away behind a lead vehicle cruising at 35 mph in CARLA simulator. We record the image

frames captured by the camera on the Ego vehicle with a duration of 50 seconds. We

select a portion of the recorded image frames (7 seconds) within a straight road area to
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be injected at runtime.

Fake Video Attack. We rerun the simulations for each scenario introduced in Section

4.8.2 and replace the real-time camera frames with the selected fake video when the Ego

vehicle approaches a similar position indicated by the fake video. Experimental results

show that this attack causes hazards in 100% simulations and in 72.6% of simulations the

Ego vehicle drives to the neighbor lane without any collisions. This is because lane lines

in the fake video do not exactly overlap with the ones in the actual video.

Therefore, we compare the recorded video to the real-time image frame captured by

the Ego vehicle under attacks frame by frame and select the attack start time such that

the fake image frame almost matches the real-time image frame (note that this selection

of perfect match at runtime attack might be impossible). We rerun the simulations and

experimental results show that the perfect fake video attack achieves a success rate of

95.1% in colliding with the lead vehicle or side objects (e.g., road guard). The lower

success rate of fake video attacks compared to the CA-Opt attack (100%, as shown in

Fig. 4.12) might be due to the difference between attack start times. We do not apply

the context-aware strategy to fake video attacks since it determines the attack start time

dynamically at runtime, and it is challenging to select a fake image frame that perfectly

matches the image frame at the time inferred by context-aware strategy at runtime.

Observation 11: Implementing a stealthy fake video attack is challenging as the

attacker does not know the lanes the Ego vehicle will drive in the future, the positions and

colors of surrounding vehicles, or the weather and road conditions. So, these differences

between the fake video and the actual environment might trigger safety interventions and

lead to mitigation of the attack.

Due to such differences, fake video attacks can be easily detected by existing methods

that monitor the differences between two consecutive image frames. An example of image

frame changes during a perfect fake video attack is shown in Fig. 4.16. Even if the fake

videos are recorded using the same camera on the Ego vehicle driving in the same lane and
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Figure 4.16: An example of two consecutive images before (Left) and after (Right) fake video
attack.

Figure 4.17: Similarity of two consecutive image frames with CA-Opt attack and fake video
attack (starting at 69th frame) measured in RMSE and universal image quality index (UIQ) [2].

weather conditions with only one lead vehicle (resembling replay attacks), an alert human

driver can still notice the changes in the lead vehicle’s position and size. An example of

the RMSE and UIQ [2] between two consecutive image frames is shown in Fig. 4.17. We

see that the similarity between the first frame of the fake video and the last frame of the

benign video is much lower than that between other consecutive frames.

Fake Video Attack with Safety Interventions. To further evaluate the per-

formance of fake video attacks with safety mechanisms, we rerun the experiments by

launching the proposed driver intervention 2.5 seconds (average reaction time) after the
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attack. Experimental results show that all the attacks are successfully prevented. There-

fore, we do not further test the fake video attack while enabling AEBS and constraint

checking (see Section 4.7).

4.9 Evaluation in Real-World Settings

In this section, we aim to answer the following questions about the effectiveness of our

attack in real-world settings. We mainly assess the attack targeting the perception inputs

as it covers the whole error propagation pipeline.

RQ4: Is our attack robust to real-world factors such as different camera positions and

weather conditions?

RQ5: Can our attack transfer well from simulation to real-world implementation?

RQ6: How does our attack affect the real-time system operation?

RQ7: Can our attack evade detection or mitigation by the existing adversarial patch

defense methods?

4.9.1 Robustness to Real-world Factors

To assess attack robustness, we vary front camera height based on standard passenger car

profiles from manufacturers [217]. We perform our experiments with four heights between

1.1-1.7 meters and three initial distances (50m, 75m, 100m).

Fig. 4.18 illustrates the 100% success rate of our CA-Opt attack across 12 testing

scenarios. The Ego vehicle initially maintains a safe following distance, deviates from it

around the 2,500-3,000 control cycle or step due to the adversarial patch, and eventually

collides with the lead vehicle. These results demonstrate our attack is robust to different

camera positions and initial longitudinal distances and can cause safety hazards.

We also test our attacks with diverse weather (rainy, sunny, or cloudy) and lighting

conditions (noon or sunset). Results show that our CA-Opt attack causes longitudinal
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Figure 4.18: Actual relative distance trajectories under CA-Opt attack with different camera
heights (H1:1.1m, H2:1.3m, H3:1.5m, H4:1.7m) and initial longitudinal distances to the lead
vehicle (L1:50m, L2:75m, L3:100m). An actual relative distance of zero indicates collision.

deviations of 9.8-14.3m in the predicted lead vehicle position, while maintaining a success

rate of 100% under such conditions.

4.9.2 Performance on Actual Vehicles and Real-World Dataset

To evaluate the feasibility of the CA-Opt attack, we use a real-world dataset and an

actual vehicle (Lexus NX 2020) equipped with a production L2 ADAS, Comma 3, running

OpenPilot software v0.8.9. This evaluation examines the attack’s impact on (i) the DNN

perception module alone and (ii) the end-to-end ACC system.

4.9.2.1 Perception Module Evaluation

Actual Vehicle. We evaluated the perception module in two scenarios: (i) approaching a

lead vehicle (LV) while parked in a parking lot and (ii) driving on an actual road. In each

scenario, the ACC on the Ego vehicle was tested both with and without the adversarial

patches injected into the camera frames.

In the first scenario, the Ego vehicle was parked at distances ranging from 10m to 50m

(at intervals of 5m) from the LV. We modified the OpenPilot code to display the relative

distance (RD) predictions on the device monitor, as shown in Fig. 4.19. In these tests,

the CA-Opt attack caused an average deviation of 16.2m in distance predictions, which
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Figure 4.19: Evaluation on an actual car in a parking lot: relative distance predictions (Left)
without and (Right) with adding an adversarial patch.

Figure 4.20: Relative distance predictions with (solid lines) or w/o (dashed lines) adversarial
patch for different driving scenarios.

could likely lead to a forward collision in the end-to-end ACC. This conclusion is based

on our simulation experiments, where deviations exceeding 10 meters triggered sudden

accelerations, leading to forward collisions.

Then, we conducted experiments using the same scenarios (SC1-SC4) outlined in Sec-

tion 4.8.2. For an accurate assessment of the impact of the attack, we cloned the LVD’s

DNN model within the OpenPilot control software and ran both the original and the du-

plicate model on the AV simultaneously. During each perception cycle (20Hz), we initially

supplied a benign image (with an odd image index number) to the standard DNN model.

Then, we duplicated this benign image, injected the adversarial patch to it, and then fed

it to the second DNN model. The predictions from each model were recorded in separate

log files. The results, presented in Fig. 4.20, show that the attack significantly increased

the relative distance predictions for 15.3m on average in all tested scenarios.
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Testing on a Real-world Dataset. We also conducted experiments using a real-

world video dataset, comma2k19 dataset [218], a publicly available dataset with over 33

hours of California’s 280 highway commute. The dataset comprises 2019 segments, each

lasting one minute, covering a 20km highway section, collected using OpenPilot hardware.

From this dataset, we selected 200 videos with a clear view of the lead vehicle and a

relative distance of less than 100 meters. These videos were fed into the DNN model to

record predictions for relative distance, which are considered as ground truth. We then

introduced adversarial patches, generated by different attack methods, into the videos.

The manipulated videos were again fed into the DNN model, and predictions for relative

distance were compared with those from the videos without any attacks. Metrics such as

the average and standard deviations in the predicted longitudinal distance were used for

this comparison.

Table 4.12: Performance of CA-Opt attack vs. CA-Random in deviating DNN-based lead vehicle
position predictions using comma2k19 dataset.

Attack Metric Longitudinal Deviation in DNN Prediction (m)

0-20 20-40 40-60 60-80 80+ All

CA-Random Avg. 0.70 0.41 0.28 0.99 0.08 0.15
Std 0.69 1.03 1.44 1.93 2.67 2.56

CA-Opt Avg. 18.65 16.15 14.52 8.65 3.73 4.91
Std 6.96 4.83 4.95 2.82 3.03 3.35

Table 4.12 compares the CA-Opt attack with CA-Random for different distances be-

tween the Ego and lead vehicles. CA-Random has an average deviation of 0.15m, which

does not significantly impact ACC system outputs or cause hazards as the ACC system

typically keeps a following distance larger than 4 meters in the absence of attacks. In con-

trast, when the Ego vehicle is close to the lead vehicle (less than 20m), CA-Opt achieves

the highest deviation of 18.65m, showcasing the effectiveness of the proposed objective

function (Section 4.6.2.1) in generating optimal perturbations with substantial impact.

These experiments demonstrate the effectiveness of the CA-Opt attack in impacting the
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(a) (b)

(c) (d)

Figure 4.21: (a) Side view of lead car model; (b) AV follows the car model in a benign scenario;
(c) AV under perception attack collides with the lead car model; (d) Driver’s view upon collision.

DNN-based perception module in real-world driving scenarios.

4.9.2.2 End-to-End Evaluation

We also evaluate the impact of attacks on the end-to-end ACC on an actual vehicle 2.

To ensure the safety of both the driver and the vehicle, we constructed a lead car model

from PVC pipe, designed to match the dimensions of a real BMW car model [219]. We

aimed for the OpenPilot system to recognize this fabricated car as a genuine vehicle by

attaching a rear-view image of a car to its rear end (see Fig. 4.21-b). In this experiment,

the AV approached the LV from a distance of 50 meters with a cruise speed set at 28
2[Video: https://sites.google.com/view/CAP-Attack]
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mph. Meanwhile, the LV was propelled by two remote-controlled ground robots (Fig.

4.21-a). We conducted this experiment with and without the attack (adversarial patches)

activated.

OpenPilot software successfully recognized the lead car model as a legitimate vehicle

and maintained a safe following distance and speed (about 5 mph) in the benign scenario

(see Fig. 4.21-b). However, in the presence of the attack, we observed that the AV

continued to advance toward the lead car model and eventually collided with it (Fig. 4.21-

c), despite the AEBS being activated (Fig. 4.21-d). This underscores the generalization

of our proposed attack in efficiently causing safety hazards and exposes the inadequacy of

existing safety mechanisms in preventing the attack. Moreover, the time elapsed between

the AEBS warning and the collision was approximately 1.5-2.2 seconds, shorter than the

average driver reaction time of 2.5 seconds, leaving insufficient time for a human driver

to intervene and prevent the collision.

4.9.3 Runtime Overhead

To further evaluate the real-world applicability of our attack, we measured its runtime

overhead on a Comma 3 device. The Ego vehicle, equipped with OpenPilot and our

attack malware, was parked behind a lead vehicle in a parking lot with the ACC function

activated and the cruise speed set to 0 mph. We recorded the time overhead for each

component, as illustrated in Fig. 4.22, and report the average value over 5,000 control

cycles.

Experimental results show that the time overhead introduced by the context inference

component before activating the attacks is minimal (1.17 us). Following the activation of

attacks, the time overhead for the object detection module is about 10.1 ms on average.

Note that some production ADAS provide object detection and tracking features, so this

overhead time could be potentially avoided. We also observe that the primary attribution

algorithm [207] does not add significant overhead, leveraging gradients calculated during
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Figure 4.22: Runtime overhead of each step of the attack.

the patch optimization process. The total time overhead is 1.52 ms.

4.9.4 Evading Existing Defense Methods

While the proposed CA-Opt attack can create stealthy adversarial patches invisible to

the human eye, it may be detected by some existing defense methods.

Adversarial Patch Detection. Methods such as gradient masking [220], lossy com-

pression [221], or adversarial training [222] have been proposed for adversarial patch detec-

tion. However, these methods either need to be trained on specific attacks with high com-

putation costs [223–225] or significantly sacrifice the DNN prediction accuracy [220,226],

which could negatively affect the safety of ACC systems.

We assess four widely used open-source defense methods that only rely on model input

transformation without the need for re-training, including adding Gaussian noise [227],

JPEG compression [228], reducing image color bit-depth [229], and using spatial median

smoothing [229]. We evaluate the attack success rates in causing hazards under each

defense method with various parameter settings while considering the effect of input

transformations on the benign or attack-free image frames to maintain the baseline safety

of the ACC system.

As shown in Fig. 4.23, JPEG compression and bit-depth reduction methods effectively

reduce the attack success rate in causing hazards under specific parameter configurations.
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Figure 4.23: Results of each directly-applicable defense method.

However, these methods fall short in maintaining the ACC’s safety by leading the benign

image frames to cause hazards. In instances where the benign cases do not lead to

hazards, the attack hazard rate is at 100%. On the other hand, the incorporation of

Gaussian noise or median smoothing reduces the ACC’s LV detection accuracy. These

methods are ineffective in mitigating CA-Opt attacks (hazard rate stays at 100% for all

configurations), while also causing hazards for benign frames.

Sensor Fusion. An alternative defense against adversarial patches could involve

integrating independent sensors like Lidar or radar with camera data for LVD predictions.

However, Lidar is too costly for Level-2 AVs [170], and our tests found that radar-camera

fusion did not prevent ACC misbehavior or collisions (see Appendix A.2.4). This may be

because of the use of Kalman filters in sensor fusion, which assumes measurement noise

is zero-mean Gaussian and are vulnerable to perturbations smaller than one standard

deviation of this noise [157]. In addition, sensor fusion outputs a weighted summation

of radar and camera predictions, which cannot completely eliminate deviations caused

by erroneous camera predictions, particularly when they significantly deviate from the

ground truth. In some production ACC, camera predictions typically carry more weight.

The vulnerability of sensor fusion was also reported in previous works [230].

4.10 Discussion

Sim-to-Real Gap. Addressing the sim-to-real gap in AV security literature is challenging

due to the risks and costs of real-road tests. In this work, we tried to narrow this gap
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by developing a realistic experimental platform that integrates production ADAS control

software, a physical-world simulator, and well-designed safety interventions with high-risk

driving scenarios designed based on the NHTSA report [87]. Moreover, we evaluate the

sim-to-real transfer possibility using an actual vehicle, a model lead car, and a publicly

available dataset. However, limitations exist, such as the fixed model and thresholds used

for the human driver simulator that may impact evaluation results.

Attack Method Generalization. We demonstrate the generalization of our pro-

posed attack on a production ADAS, OpenPilot, through closed-loop simulation, real-

world AV dataset, and actual vehicle experiments. However, the vulnerability of other

Level-2 production ADAS, such as Tesla Autopilot or Cadillac Super Cruise, to our attacks

remains uncertain due to their closed-source nature. While we cannot directly evaluate

our attacks on these systems, it is reasonable to argue that our results hold generaliza-

tion potential based on the representative nature of OpenPilot ADAS. Specifically, our

attack strategy, which leverages context awareness derived from high-level system haz-

ard analysis, is not limited to specific systems and can be generalized to diverse ADAS.

Furthermore, our optimization-based attack vector generation can be applied to other

DNN-based ADAS, given the inherent vulnerability of DNNs to adversarial input pertur-

bations [115,157,166,170] and the ADAS’s inefficient resilience to control output attacks.

4.11 Related Work

Adversarial Attacks on DNN. Many works have explored the vulnerability of DNN

against adversarial attacks by adding adversarial physical/digital patches or stickers [115,

166,168,170,193,231–234]. However, most of these works focus on altering the prediction

class or probability or lane line position, which do not apply to attacks against ACC.

Moreover, they rely on off-line optimization of attack value, neglecting the impact of attack

timing. In contrast, our work introduces a novel runtime perception attack method against
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DNN-based ACC systems, employing a combined knowledge and data-driven approach

that considers both attack timing and value for enhanced effectiveness. The only other

work on ACC [169] focused on the physical attacks without considering dynamic changes

at runtime, which is not scalable to many vehicles.

Security Analysis of AVs. Great efforts have also been made in studying the

security of AVs, such as the security of Lidar [235], GPS [236], radar [237], camera [238],

lane detection [168, 170], multiple objects tracking [157, 167, 171], control software [111],

and safety mechanisms [172]. To the best of our knowledge, this dissertation is the first

analysis of the security of Level-2 production ACC systems under stealthy safety-critical

attack by considering three levels of safety interventions by constraint checking, human

driver, and AEB/FCW and addressing unique challenges (Section 4.4).

4.12 Conclusion

This work proposes a novel runtime strategic Context-Aware safety validation approach,

which includes (i) a control-theoretic method to identify the most critical system contexts

for launching attacks to maximize the likelihood of safety hazards, and (ii) a strategic

attack value corruption method that targets control commands or uses an optimization-

based image perturbation technique for efficiently generating and injecting adversarial

patches into the DNN input. This approach aims to cause ADAS misbehavior and haz-

ards as quickly as possible before detection or mitigation by ADAS safety mechanisms or

human drivers. Experiments on a production Level-2 ADAS using an enhanced closed-loop

simulation platform, a publicly available driving dataset, and an actual vehicle demon-

strate the effectiveness of our approach in improving attack success rate and stealthiness

compared to various baselines. Our experimental results and observations indicate that

steering is particularly vulnerable and that the current forward collision warning system

is inadequate. This study also provides insights into the development of future ADAS
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that are robust against safety-critical attacks and highlights the importance of driver

interventions and basic safety mechanisms in preventing such attacks.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This dissertation developed a holistic approach to context-aware assurance in CPS by

combining knowledge and data driven techniques for runtime safety monitoring, hazard

mitigation, and design time safety validation.

We first proposed a formal framework for the control-theoretic generation of safety

context specification, which can be further refined using an STL learning method and

synthesized into a safety engine for runtime safety assurance in CPS. The developed

STL learning method learns the unknown scenario-specific parameters in the specified

safety rules by minimizing a tight mean loss function, which captures the inter-scenario

variability (e.g., different patient profiles or driving scenarios) and improves assurance

performance.

We also developed combined knowledge and data driven methods for more accurate

and timely hazard prediction and mitigation by integrating the generated safety context

specification or general safety constraints into ML models using a custom loss function,

which also enforces the satisfaction of safety requirements while maintaining the prediction

and mitigation efficiency. In addition, we develop a path planning algorithm constrained

by context-aware safety specifications and application-specific constraints, aiming to find

the optimal mitigation path that can bring the system back to a state within a safe region

as quickly and smoothly as possible. This optimal mitigation path will be fed to the

developed ML model to derive a sequence of corrective control actions that can prevent
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potential hazards. A hazard time estimator is also developed to infer the deadline for

launching the corrective actions and ensure safe recovery.

Finally, context-aware safety specifications are also used for the safety validation of

CPS at design time. We propose a model-driven approach orthogonal to the traditional

data-driven techniques which, instead of exploring the entirety of the fault parameter

space, focuses on a systematic characterization of the effect of the timing of the faults

(e.g., start time and duration of the faults) in conjunction with the dynamic state of the

system to identify the most opportune system contexts for activation of faults. Upon

determining the optimal times for initiating attacks, we proposed a strategic attack value

generation method, targeting either the perception inputs or control outputs, with the

goal of maximizing the chance of hazards and causing hazards as soon as possible, before

being detected or mitigated by the human operators or the existing safety mechanisms.

We evaluated the proposed approaches by developing open-source closed-loop testbeds

that integrate real-world control software and physical-world simulators together with

typical safety mechanisms and a fault injection engine that simulates real-world adverse

events reported in the literature. Experimental validation of the proposed safety assurance

approaches for the applications of autonomous driving and smart health demonstrates

their generalization to a broad range of CPS with improved accuracy, timeliness, and

robustness. We hope this research can provide valuable designs, methodologies, and

platforms for building safer attack-resilient CPS, open new research directions, and inspire

more exciting work for future researchers.

5.2 Future Work

5.2.1 Research Vision

My research vision is that combining knowledge and data driven techniques will provide

automatic, adaptive, and trustworthy safety assurance in safety-critical CPS. To
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reduce the complexity of generating safety context specifications, an automatic approach

should be developed by combining domain knowledge and data-driven techniques. Moving

towards adaptive safety monitoring requires detecting the changes in the system context

and adapting the safety property and model accordingly. The integrated knowledge also

helps build trustworthy safety assurance by offering a way to explain the ML model’s

outputs and enforcing satisfaction of safety properties in generating mitigation actions.

Automatic Safety Context Specifications. This work proposes a formal frame-

work for the specification of the safety context that can be synthesized into a safety engine.

However, it might still be time-consuming to generate such safety context specifications

for a complex system. Thus, a more efficient way of generating these safety properties is

desired, which includes the identification of critical state variables and the generation and

refinement of safety rules. Previous work has studied the possibility of identifying critical

state variables in a CPS using techniques such as program analysis [48, 239], statistical

analysis, or ML-based methods [49]. In addition, many tools exist in the literature to gen-

erate safety rules, and this work also develops a method to learn the unknown parameters

in the generated rules. Therefore, future work should focus on developing comprehensive

tools and frameworks that enable the automatic identification of critical state variables,

generation of safety rules, and learning of STL rules. This integration of techniques will

streamline the process of safety context specification and contribute to the efficient and

effective design of safety engines for complex systems.

Adaptive Safety Monitoring. Using ML and diverse and unpredictable human

behaviors and activities pose new challenges to ensuring dependability, safety, and ro-

bustness. Further known CPS challenges are posed by system dynamics and uncertain

environmental changes. Future direction on adaptive safety monitoring relies on formal

specification and learning of parametric properties to capture critical contextual changes,

adapt the parametric properties, the ML model, and the control actions according to

different possible dynamics ranging from operational changes (humans with various skills
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and experiences) to physical and context changes (body physiology and system and en-

vironmental changes) [240, 241], and check the correctness of the system operation by

verifying context-specific properties at run-time. Future work can explore the develop-

ment of algorithms and techniques (such as out-of-distribution detection [242, 243]) that

can identify shifts in the underlying operational, physical, and environmental contexts.

By detecting these changes, the safety monitoring system can adapt its monitoring pa-

rameters or activate specific safety measures to ensure the continued safety of the sys-

tem. Another important aspect is the integration of online learning techniques into safety

monitoring [244,245]. By focusing on detecting context changes and incorporating online

learning techniques, adaptive safety monitoring can contribute to building more robust

and responsive safety systems.

Trustworthy Safety Assurance. Deep Learning is a widely used and highly ac-

curate technique in various CPS. However, the lack of transparency and interpretability

in ML models has raised concerns, especially in safety-critical CPS, such as autonomous

driving systems and medical CPS. In this work, I have taken the first steps towards im-

proving the explainability of ML-based safety engines [47,53] by integrating safety context

specifications into the ML model as a regularization item during the training process [131].

The integrated safety specifications serve as a way to explain or validate the ML models’

outputs. Future work could explore techniques such as concept activation vectors [246]

and model-agnostic explanations [247] to further improve the model’s explainability. I also

explored the enforcement of safety properties during the generation of recovery control

actions [129]. By incorporating safety properties into the decision-making process, the

generation of control actions can be guided to prioritize safety. Although these examples

have limitations in their scope, they demonstrate the feasibility of combining knowledge

and data-driven techniques to achieve trustworthy safety assurance.

My long-term research goal is that the proposed approach can be applied to a broader

range of CPS and benefit the general public. This is possible given the generalization of
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the proposed approach in generating safety rules and integrating them into ML models. I

have also implemented this approach in the applications of autonomous driving systems

and artificial pancreas systems. I am interested in extending it to other CPS and fields,

such as surgical robots, drones, ground robots, power grids, and industrial control systems.

This research direction will not only improve the security of safety-critical CPS but also

ensure the safety of system users such as autonomous vehicle drivers and diabetes patients.

5.2.2 Safety Validation and Assurance of ML-based CPS

ML technologies have also been increasingly used in safety-critical CPS for decision making

because of their easier implementation, powerful capability in capturing the relationship

between input and output or approximating dynamic models of the control systems, and

high accuracy in predicting unseen data that shares similar features with the training

data [248, 249]. Due to the complex environments within which ML-based CPS operate,

ensuring their successful deployment is challenging. Great efforts have been made to

ensure the success of assurance cases in traditional CPS, such as the published standards

and guidelines for safety and effectiveness assessments (e.g., ISO 26262 [250], ISO/PAS

21448 [251], and FDA guideline for artificial pancreas systems [252]). However, none of

the previous works [253–256] offer a safety assurance approach concerning ML techniques

that instantiate the process activities and generate evidence for a concrete application in

particular safety-critical CPS, such as the medical domain.

With the increasing use of ML technologies in the design of CPS and their safety

engines, we also propose two approaches for ensuring the successful deployment of ML-

based CPS, including a safety assurance case template for identifying the data and system

requirements and an extended strategic safety validation method for evaluating the re-

silience of ML models against accidental or malicious perturbations on their inputs, inner

architecture, or outputs.

Safety Assurance Case Template: We take APS as a representative case study
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of ML-based medical CPS and instantiate the proposed assurance case for a general

framework of APS [257, 258], which is suitable for all types of APS. Our preliminary

results on an analysis of the instantiated APS assurance case for an example ML-based

APS controller proposed by Dutta et al. [135] shows that the proposed assurance case for

the APS effectively characterizes the sufficiency of the data used during the ML controller’s

development in terms of relevance, completeness, accuracy, and balance [259].

Safety Validation of DNN Models in CPS: We present a method called Taylor-

Guided Fault Injection (TGFI), a strategic fault injection technique that identifies and

targets the most critical DNN weights for reliable inference. Using a modified Taylor

criterion [260], we rank all DNN weights based on their relative importance to inference

accuracy. By injecting faults into these crucial weights, we demonstrate that TGFI can

efficiently uncover safety-critical vulnerabilities in autonomous vehicles [176].

Future Plan: After the successful deployment of ML within CPS, we plan to inves-

tigate the resilience of ML models against accidental or malicious perturbations on their

inputs, inner architecture, and outputs. We will introduce small perturbations to the ma-

chine learning (ML) inputs or outputs using techniques similar to those proposed in our

previous work [117]. For corrupting the inner ML architecture, we plan to strategically

select a neuron within the model, preferably one that is more frequently utilized, and

then flip a bit in its weight parameters. We will investigate how the faults at the neuron

level affect the DNN predictions at the layer level as well as compromise the final control

outputs at system level. Additionally, we intend to develop an efficient safety assurance

method that focuses protection on the most critical neurons.

This section contains material from the previously published works [176, 259], coauthored with H.
Alemzadeh, A. Schmedding, Y. Lu, L. Yang, P. Schowitz, E. Smirni, M. Bagheri, J. Lamp, and L. Feng,
copyrighted by IEEE.

148



Appendix A

Design and Validation of Closed-loop

CPS Testbeds

Most works in evaluating the safety validation approaches could be categorized into two

directions: real-world experiment evaluation and simulation-based evaluation. Due to the

high cost and risk of experiments in real applications, the simulation-based approach is

preferred more by researchers as it allows considerable research on the safety assurance

of CPS to be performed at an accelerated rate while avoiding unnecessary risk for sys-

tem users. Thus, developing high-fidelity testbeds that can capture a variety of system

dynamics as well as react to changes in the environment is very important. Another es-

sential need is the ability to simulate unexpected events, such as accidental faults, human

errors, and attacks that lead to adverse events. Such closed-loop testbeds can enable

verification of control algorithms and safety features before the additional cost of real-

world experiments and reduce the possibility of harm to actual system users and costly

equipment.

The APS is a good example of a promising medical CPS that the U.S. Food and Drug

Administration (FDA) approved through clinical trials. Much work has been done in the

literature to develop realistic diabetes simulators [26,27,102], design advanced control al-

gorithms to maintain glucose concentration at healthy levels [118,261], and conduct large-

scale clinical trials [112, 262, 263]. However, to the best of our knowledge, none of these

works considered closed-loop integration of simulators, controllers, and safety mechanisms

This appendix contains material from the previously published works [3, 155], coauthored with H.
Alemzadeh, M. Kouzel, A. Chen, H. Ren, M. McCarty, C. Nita-Rotaru, copyrighted by IEEE.
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or the simulation of adverse events. Control software must be tested in a broad spectrum

of environments and with a variety of patient profiles and physiological dynamics in order

to be fully verified. Similar issues exist in the ADS literature. Although many testbeds

have been proposed for the evaluation of ADS and autonomous vehicles [162, 177, 264],

they either do not rely on real-world control software used on actual vehicles on the road

or do not consider existing safety features in the cars or human driver interventions. Fur-

ther, most previous works focus on level 3+ or fully autonomous vehicles [160], while

almost all the commercial autonomous vehicles are still at level 2 [265,266].

To fill this gap, this work presents the design and validation of open-source, closed-loop

testbeds1 for APS and ADS.

A.1 APS Testbed

The overall structure of the open-source closed-loop Artificial Pancreas System (APS)

testbed is shown in Fig. A.1. The APS testbed includes two state-of-the-art glucose sim-

ulators (Glucosym simulator [79] and the UVA-Padova Type 1 Diabetes simulator [26])

and two control software (OpenAPS and Basal-Bolus), together with 40 virtual patients.

The simulator can run with the integrated virtual patient library or by loading actual pa-

tient profiles. Similarly, the testbed also includes an extending interface to the controllers

that can load external control algorithms to help improve or evaluate the controllers in

commercial insulin pumps. Note that only one simulator and controller are selected to run

the closed-loop simulation. We also design an adverse event simulator that can emulate

common adverse events in APS, including hypoglycemic events, hyperglycemic events,

diabetic ketoacidosis, or other device malfunctions (e.g., in CGM sensors, insulin pumps,

or controllers), by injecting faults into the input/output of the control software at compile

time.

The proposed closed-loop APS testbed and generated data traces are made publicly
1Available online at: https://github.com/UVA-DSA/CPS-Runtime-Monitor
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Figure A.1: Overall structure of the closed-loop APS testbed.

available to the research community2. The testbed is implemented with Python program-

ming language at the application level, and can be installed on a Ubuntu operating system

(16.04 LTS at least) automatically with an auto-script. This testbed offers a platform for

other researchers to evaluate the performance of different control algorithms, validate the

efficiency or safety of insulin delivery, develop the safety assurance or monitoring mech-

anisms for APS, and investigate the application of machine learning techniques in Type

1 diabetes treatment. The following subsections present a detailed description of the

different components in the testbed.

A.1.1 Patient Glucose Simulators

Table A.1 shows an overview of the dynamic models used by each glucose simulator to

emulate the effect of insulin dosage on the body, along with the required parameters for

characterizing the patient profiles to run the simulators.
2[Online Available: https://github.com/UVA-DSA/APS_TestBed]
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Table A.1: Summary of patient glucose simulators.

Simulator Dynamic Model Patient
Profiles

Glucosym

Medtronic Virtual Patient (MVP) Model:
CI , ⌧1,
⌧2, VG,

p2, EGP ,
GEZI, SI

sub-cutaneous insulin delivery,
the plasma insulin concentration,
the insulin effect,
the glucose kinetics,
and the glucose appearance.

UVA-
Padova

Model of Kovatchev et al. [81]: EGP ,
Uii, Uid,
k1, k2,
Gpb

plasma concentration,
glucose fluxes,
and insulin fluxes.

* CI=Insulin clearance (dL/min).
* ⌧1, ⌧2=Time constant associated with insulin movement between

the SC delivery site and plasma (min).
* VG=Distribution volume in which glucose equilibrates (dL).
* p2=Delay in insulin action upon increase in plasma insulin (1/min).
* EGP=Endogenous glucose production rate that would be estimated

at zero insulin (mg/dL/min).
* GEZI=Effect of glucose per se to increase glucose uptake into cells

and lower endogenous glucose production at zero insulin (1/min).
* SI=Baseline sensitivity factor (dl/micro Unit).
* Uii=Insulin-independent glucose utilization.
* Uid=Insulin-dependent glucose utilization.
* k1, k2=Rate parameters of glucose kinetics.
* Gpb=Initial amount of glucose in plasma.

A.1.1.1 Glucosym Patient Simulator

The Glucosym simulator is an open-source human body glucose simulator that was devel-

oped to help build and test automatic insulin delivery systems. This simulator contains

patient models derived from data collected from 10 actual adult patients with Type I

diabetes mellitus for 18 ± 13.5 years aged 42.5 ± 11.5 years, with their glucose dynamics

predicted using a Medtronic virtual patient (MVP) model [102].

The MVP model includes five components that describe the sub-cutaneous insulin

(ISC) delivery, the plasma insulin concentration (IP ), the insulin effect (IEFF ) to lower

blood glucose, the glucose kinetics, and the glucose appearance following a meal (RA)
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(see Eq. A.1-A.5). A three-compartment model [267] was used to identify the insulin

activity after injection to the patient body (see Eq. A.1-A.3). With the value of glucose

appearance given by the two-compartment model shown in Eq. A.5, the Bergman minimal

model [268] and Sherwin model [269] described in Eq.A.4 were finally used to derive an

estimation of the BG value at the next step. These five equations form the basis of

the MVP dynamic model used in the Glucosym simulator for educating and training

individuals with Type 1 diabetes [102]:

dISC(t)

dt
= �

1

⌧1
·

✓
ISC(t)�

ID(t)

CI

◆
(A.1)

dIP (t)

dt
= �

1

⌧2
· (IP (t)� ISC(t)) (A.2)

dIEFF (t)

dt
= �p2 · (IEFF (t)� SI · IP (t)) (A.3)

dBG(t)

dt
= �(GEZI + IEFF (t)) · BG(t) + EGP +RA(t) (A.4)

RA(t) =
CH(t)

VG · ⌧m2
· t · e�

1
⌧m (A.5)

where, GEZI,EGP, SI , CI , p2, ⌧1, ⌧2 are patient-specific parameters, with their ex-

planation presented in Table A.1. Other parameters, such as the input information of

insulin doses and sampling frequency, are also needed for running the Glucosym simula-

tor. The full list of input parameters used in this simulator is listed in Table A.2. An

implementation of this simulator is publicly available at [79].

A.1.1.2 UVA-Padova Simulator

The other simulator we integrated into the APS testbed is the UVA-Padova Type 1

Diabetes Simulator, which FDA has approved for pre-clinical testing on animals. In this

simulator, the model of glucose kinetics is described using the following equations [26]:
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Table A.2: Input parameters of glucosym simulator.

Input Description

Insulin
Dose

Insulin dose in units given during the time-step. In the case of a basal (insulin
delivery) adjustment, we need to calculate how much insulin will be given in the
time-step defined by "dt" (i.e. how many insulin units will be given in 5 minutes
by the set basal profile or temporary basal?).

dt Change in time each step in minutes.
Index Current index from the start of the simulation, starting at 0.
Time Total simulation run-time in minutes.
Basal The delivery of insulin.

Events Events are set so that the simulator will consider them during the run. The events
were sent on-the-go.

dGp(t)

dt
= EGP � Uii � k1Gp(t) + k2Gt(t) , Gp(0) = Gpb (A.6)

dGt(t)

dt
= Uid(t) + k1Gp(t)� k2Gt(t) , Gt(0) = Gpb

k1

k2
(A.7)

where Gp(t) represents the amount of glucose in plasma, and Gp(t) describes the amount of

glucose in the tissue. The blood glucose level that the CGM samples is given by Equation

A.8:

G(t) =
Gp(t)

Vg

(A.8)

The endogenous glucose production rate, EGP , is modeled as a function of glucose in

plasma, Gp(t), and delayed insulin action in the liver, XL(t), as shown in Equation A.9.

EGP = kp1 � kp2 ·Gp(t)� kp3 ·X
L(t) (A.9)

XL(t) is based on insulin concentration in plasma. The insulin dose delivered to

the patient by the pump, ID(t), factors into this plasma insulin level via the insulin

subsystem, which is split into Ik(t) and Isc(t). Isc(t) represents the subcutaneous insulin
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Table A.3: Input parameters of UVA-Padova simulator.

Input Description

Initial BG Starting value for patient’s blood glucose
Sensor Settings Type of CGM sensor and associated settings
Pump Settings Type of insulin pump and associated settings
Meals Sequence containing the time and size of each meal during the simulation
Profile Unique parameters for the patient profile
Start Time Beginning time for the simulation
Seed Random number generator seed used for noise in sensor readings, etc.
Insulin Dose Insulin dose to give to the patient for each step

level, and is impacted by insulin doses as follows:

dXL(t)

dt
= �ki ·

�
XL(t)� kaiIk(t)� kbiIsc(t)

�
(A.10)

dIsc(t)

dt
= kscIsc(t) + ID(t) (A.11)

Other variables in the above equations are constant rate parameters that are part of

the patient profile. This model was improved in 2013 by implementing the notion that

insulin-dependent utilization increases non-linearly when glucose decreases below a certain

threshold. Similar to the Glucosym simulator, the UVA-Padova simulator also uses the

minimal glucose model to couple insulin action on glucose utilization and production.

Other parameters required by the UVA-Padova simulator to run regularly are listed in

Table A.3.

The two glucose simulators integrated with the APS testbed could also handle a single

meal scenario for the virtual patient (VP) population, which is challenging for regulating

BG in Type 1 diabetes because of unexpected human activities (e.g., meals or exercises)

and patient variability (inter-patient and intra-patient).
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Table A.4: Input parameters of OpenAPS.

Input Description

Settings Various settings specific to the pump
BG targets High/low glucose targets set up in the pump
Insulin Sensitivity The expected decrease in BG as a result of one unit of insulin
Basal profile The basal rates that are set up in the pump
Preferences User-defined preferences
Pump history Last 5 hours data directly from the pump
Clock Date and time that is set on the pump
Temp_basal Current insulin delivery rate set up in pump
Glucose Glucose level sensed by CGM

A.1.2 APS Controllers

We integrate two typical control algorithms into the APS testbed: a PID-based OpenAPS

controller and a Basal-Bolus controller.

A.1.2.1 OpenAPS

OPenAPS is an advanced open-source control software used in the diabetes DIY com-

munity [118] that has comparable results with more rigorously developed and tested AP

systems for glycaemic control [270] and is far safer than standard pump/CGM therapy

with no reports of severe hypo- or hyperglycemic events [119].

The OpenAPS adjusts the insulin delivery of an infusion pump to automatically keep

the BG level of the diabetic patient within a safe range. The internal architecture and

necessary input-output connections of OpenAPS are shown in Fig. 2.4. The description

of input parameters is listed in Table A.4. The shaded region indicates the OpenAPS

controller, and the "File Storage" section reflects the behavior of the insulin pump. The

functionality of OpenAPS can be divided into three processes. The Get_profile process

accepts pump settings, target BG (BGT), insulin sensitivity, basal profile, and preferences

as inputs and creates a profile required to calculate both IOB and recommended insulin

delivery. The Calculate_iob process gets profile, clock, and pump history as input and
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Algorithm 4: OpenAPS Algorithms
1 if BG is rising, but eventualBG < BG_Target then
2 cancel any temp basal;
3 else if BG is falling, but eventualBG > BG_Target then
4 cancel any temp basal;
5 else if eventualBG > BG_Target then
6 cancel 30min temp basal;
7 if recommended temp>existing basal then
8 issue the new high temp basal;
9 else if recommended temp<existing basal then

10 issue the new high temp basal;
11 else if 0 temp for >30m is required then
12 extend zero temp by 30 min;
13 end
14 end

calculates IOB. Finally, the Determine_basal process accepts the profile, IOB, BG, and

current insulin delivery (temp_basal) and calculates the suggested insulin delivery to the

patient.

More specifically, OpenAPS collects the previously delivered insulin amount, combined

with the duration of the activity, and it calculates the net IOB. Using the glucose sensor

readings, OpenAPS then calculates the eventual BG using the following equation [271]:

eventualBG = CurrentBG� ISF ⇤ IOB + deviation (A.12)

where CurrentBG is the current BG, ISF is the Insulin Sensitivity Factor, and

EventualBG is the estimated BG by the end of current insulin delivery. A deviation

term is also added, which is the difference in BG prediction based on purely insulin ac-

tivity.

While the current BG is below a threshold value, OpenAPS continues to issue a

temporary zero insulin delivery until the BG rises. Otherwise, OpenAPS determines

whether the glucose values rise or fall more than expected. In that case, it performs the

course of actions shown in Algorithm 4 [271].
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Table A.5: Input parameters of Basal-Bolus controller.

Input Description

CGM Continuous glucose monitor sensor reading
CHO Grams of carbohydrates consumed by patient (if meal occurred at current step)
BW Patient’s body weight
u2ss Steady state insulin rate per kilogram
CR Insulin to carbs ratio
CF (ISF) Insulin correlation (sensitivity) factor [272]

A.1.2.2 Basal-Bolus

Basal-Bolus regimens are widely used in insulin pumps [78, 112, 273]. Basal provides a

constant supply of insulin to bring down high resting blood glucose levels. Bolus insulin, on

the other hand, has a much more powerful but shorter-lived effect on blood sugar, making

it an ideal supplement for people with diabetes to take after meals and in moments of

extremely high blood sugar.

In the Basal-Bolus (BB) Controller, the constant supply of basal insulin is determined

as shown in Equation A.13 [274]:

Ibasal =
u2ss · BW

6000
(A.13)

where u2ss is the patient’s steady-state insulin rate per kg and BW is body weight (kg),

meaning basal insulin is in units of insulin per minute. Bolus insulin is determined by

Equation A.14 when a meal has occurred (otherwise, no bolus is given) [274]:

Ibolus =

8
>><

>>:

CHO
CR if BG  150

CHO
CR + BG� BGT

CF if BG > 150

(A.14)

where CHO is the meal’s size in grams of carbohydrates, BG is the CGM sensor reading,

BGT is the target blood glucose of 120, CR is the insulin to carbs ratio, and CF is

the correlation factor. The list of input parameters of the Basal-Bolus controller is also
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Table A.6: Example recall event reports that involved device and software malfunctions.

Recall
ID

Summary Recall Description Cause Affected
Device

Z-1074-
2013

The blood glucose meter will shut off and revert to set up
mode at glucose values above 1023 instead of displaying EX-
TREME HIGH GLUCOSE.

Software
Design

Glucose
Monitor

Z-1034-
2015

Calibration factors in the pump are overwritten during a
programming step. The force sensor could send a lower signal
value to the pump processor.

Software
Design

Insulin
Pump

Z-1734-
2015

If the user does not act upon the E6 and E10 error mes-
sages appropriately, insulin delivery will be stopped and, if
unnoticed, may lead to severe hyperglycemia.

Device
Design

Insulin
Pump

Z-1359-
2012

An error was discovered in the blood glucose meter software
so that the meter turns itself off when a user attempts to
view results in the "Results Log" when the log has 256 or a
multiple of 256 items to display.

Software
Design

Glucose
Monitor

Z-0929-
2020

The mobile receiver can become stuck on the initialization
screen when powering on. This will cause patients not to be
able to receive glucose values or alerts

Software
Design

Glucose
Monitor

Z-1562-
2020

The company identified potential interference from hydrox-
yurea. Patient use of the anti-neoplastic drug may falsely
elevate glucose readings on the CGM.

Under
Investi-
gation

Gluocse
Monitor

Z-2165-
2020

After the device has been in use for about two months, data
processing in the PDM can be slowed such that the Bolus
Calculator fails to accurately subtract the correct amount of
IOB before suggesting a bolus amount.

Device
Design

Insulin
Pump

Z-1772-
2021

Under certain conditions, a software fault is detected when a
large bolus delivery at a quick bolus speed completes. If the
user is unaware of the amount of active insulin and delivers
an additional bolus, there is a risk of insulin over delivery.

Software
Design

Insulin
Pump

summarized in Table A.5. This bolus is the units of insulin to be delivered, so it is divided

by the length of a simulation step to become units of insulin per minute.

A.1.3 Closed Loop Simulation

Fig. 2.6 shows an example of the closed-loop simulation process by integrating the Glu-

cosym simulator and OpenAPS control software. At each control loop, the estimated

glucose value is updated and reported to the APS controller, based on which the con-

troller calculates the recommended insulin dosage and sends it to the glucose simulator.

The insulin amount is divided by 60 to convert the units from Unit/hour to Unit/minute

159



to make OpenAPS and Glucosym work appropriately in a closed loop. The glucose value

updates every five minutes (this is the value normally set by CGM [275]), and so does the

control action.

In the UVA-Padova simulation, the CGM sensor is simulated by looking up the sub-

cutaneous glucose state variable in the patient model, applying noise, and clipping it to

be within the range of values an actual CGM sensor can return. Similarly, the simulated

pump receives a basal and a bolus input from the controller, converts the values into the

appropriate units (pmol/min), and clips the inputs to be within the real range of the

insulin pump before sending the values to the patient model. These calls occur once per

minute (5 times per environment step).

The Basal-Bolus controller uses additional patient-specific parameters to calculate

insulin doses. For the basal insulin, it requires the patient’s body weight and steady-state

insulin rate. For the bolus dose, it uses the patient’s insulin to carbs ratio (CR) and

correlation factor (CF). Both CR and CF can be calculated from the Total Daily Dose

(TDD) of insulin needed, which in turn is calculated from body weight, as shown in the

following equations [26, 276]:

TDD = 0.55 · BW (A.15)

CR = 450/TDD (A.16)

CF = 1700/TDD (A.17)

A.1.4 Adverse Event Simulator

After a medical device, such as a CGM, insulin pump, or APS, is distributed in the

market, the FDA monitors reports of adverse events and other problems with the device

and, when necessary, alerts health professionals and the public to ensure proper use of

the device and safety of patients [17, 277]. A recall is a voluntary action that a device

manufacturer takes to correct or remove from the market any medical devices that violate
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the laws administrated by the FDA [278]. Recalls are initiated to protect public health

and well-being from devices that are defective or that present health risks such as disease,

injury, or death. In rare cases, if the company fails to recall a device that presents a

health risk voluntarily, the FDA might issue a recall order to the manufacturer.

FDA regulations also require manufacturers to notify the FDA of the adverse events,

including device malfunctions [279], serious injuries [91], and deaths [92] associated with

medical devices. Not all reported adverse events lead to recalls. The device manufacturers

and the FDA regularly monitor the adverse event reports to detect and correct problems

in a timely manner.

Table A.6 shows example recall events from the FDA database where malfunctions

of the commercially available APS devices or software were reported. The analysis and

simulation of past recalls and typical adverse event scenarios can help with improving

the design and test of the APS control algorithms and safety mechanisms and assessing

their effectiveness in preventing similar adverse events [17, 280, 281]. However, it is too

expensive and risky to simulate the adverse event scenarios with the actual patients and

human operators in the loop due to the unacceptable consequences of adverse events and

potential harm to patients.

To better evaluate the resilience of APS control algorithms against such safety issues,

we design an adverse events simulator integrated with the closed-loop simulation. Specifi-

cally, we design a software-implemented fault injection (SWFI) engine (see Fig. A.1) that

can automatically select a set of target locations within the APS software (e.g., variables

representing the CGM sensor values and insulin dose commands) to inject faults (e.g., a

zero value (Truncate), a previous value (Hold), or an arbitrary error value (Add/Sub))

and activate them under pre-defined trigger conditions and durations to mimic the typical

adverse events listed in Table 2.2, including hyperglycemic (diabetic ketoacidosis) and hy-

poglycemic events, device malfunctions, and patient injuries. The adverse event simulator

is an independent module and can be enabled or disabled manually.
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Figure A.2: Overall framework for validation of the APS testbed.

A.1.5 Validation of APS Testbed

We assess the validity of the proposed testbed by comparing the simulator outputs, con-

troller outputs, and closed-loop outcomes with the data collected from a clinical trial (as

shown in Fig. A.2). An optimization method is also proposed to reconstruct the blood

glucose (BG) traces from a real-world clinical trial by estimating the patient profiles.

Our preliminary experimental results [3] show that the integrated glucose simulators

can well reproduce the BG traces in the clinical trial, given the exact insulin dosages in

the trial, and the integrated (open-loop) controllers keep a low mean squared error with

the actual pump outputs in the clinical trial. The closed-loop simulations can keep blood

glucose in a safe region 93.49% and 79.46% of the time on average, compared with 66.18%

of the time for the clinical trial. Because the testbed aims to provide a platform to validate

different control algorithms and safety features efficiently, we provide an easy-to-use fault

injection implementation for both simulators and detail how the simulated faults compare

to real-world fault scenarios in the device recalls and adverse events reported to the FDA.

A.2 ADS Testbed

We also developed a realistic closed-loop level-2 ADS testbed (introduced in Section 2.8.1.2

and Section 4.2.3) that integrates real-world control software used in over 250 car models
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driving on the road with the state-of-the-art CARLA urban driving simulator, a fault

injection engine for simulation of faults/attacks, and a driver behavior simulator. To

evaluate the safety of DNN-based ADAS systems under attack, we also enhanced the basic

ADS testbed by developing a safety intervention simulator and mechanisms for priority-

based dispatching of control commands to CARLA, as well as the fusion of camera and

radar data. An overview of the enhanced simulation platform3 is shown in Fig. 4.8, with

the orange parts representing our new implementations.

A.2.1 AEBS (FCW and AEB) Simulator

We adopt and implement a time-to-collision (TTC) based phase-controlled AEBS [211]

in our platform. The AEBS processes inputs derived from lead vehicle detection (LVD)

outputs after sensor fusion, including relative distance (RD), relative speed (RS), and

the current speed of the Ego vehicle (VEgo) (see Fig. 4.1). The average driver reaction

time (Treact) is standardized to 2.5 seconds, a commonly accepted value in the literature

[111,170]. Various time thresholds are then computed: ttc (time to collision), tfcw (forward

collision warning time), tpb1 (first phase partial brake time), tpb2 (second phase partial

brake time), and tfb (full brake time) as follows:

ttc = RD/RS (A.18)

tfcw = Treact + VEgo/4.5 (A.19)

tpb1 = VEgo/2.8; tpb2 = VEgo/5.8; tfb = VEgo/9.8 (A.20)

As shown int Fig. A.3, when ttc falls below tfcw, tpb1, tpb1, and tpb1, a corresponding

action (warning or brake with 90%, 95%, 100% force) is executed. Applying the brake

value blocks other controls from the ADAS.
3[Online Available: https://github.com/UVA-DSA/openpilot-CARLA]

163

https://github.com/UVA-DSA/openpilot-CARLA


Figure A.3: AEBS.

Table A.7: Driving scenarios to test the AEBS with different initial distances (Init_dist) between
the Ego vehicle and the lead vehicle.

Lead vehicle Init_dist(m) VEgo(km/h) VLead (km/h)

Stationary 100, 100, 150 20, 42, 58 0
Moving 100, 150 30, 58 20

Following the testing protocol specified in [209], we employ two categories and five

driving scenarios (see Table A.7) to assess our AEBS functionality. Each scenario is

repeated 100 times to ensure reliable outcomes. Experimental results show that in all

five testing scenarios, both FCW and AEB alerts are activated, effectively preventing all

hazards or collisions. On average, it takes approximately 1.68 seconds for AEB to stop

the Ego vehicle completely.

A.2.2 Driver Reaction Simulator

To evaluate driver interventions, we develop a driver reaction simulator. The simulated

driver receives notifications when any ADAS safety alerts are triggered (e.g., FCW) or

when the driver notices anomalies in the vehicle’s status or camera user interface (UI).

These anomalies include hard braking (|Brake| > |limitbrake|), unexpected increases in

acceleration (Accel > limitaccel) or steering (Steering > limitsteer), the vehicle speed

exceeding the cruising speed by more than 10% (Speed > 1.1vcruise), or the mean per-

turbation value in the UI exceeding a noticeable threshold, set by default to 15% for an

alert driver (Patch.mean() > 0.15). Assuming a highly alert driver capable of detecting
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Table A.8: Driver simulator: activation conditions and reactions.

Activation Condition Driver Reaction Reaction Time

Alerts (e.g., FCW)
Emergency Brake (Eq. A.21)
Zero Throttle
No changes in the steering angle

2.5 seconds
Unexpected Acceleration
Unexpected Steering
Unsafe Cruise Speed
Obvious Camera Perturbation

Hard Braking Stop brake and output regular throttle
No changes in the steering angle 2.5 seconds

anomalies within a single control cycle (10ms), the driver issues a predefined emergency

response (see Table A.8) that takes effect 2.5 seconds later, which is the average driver

reaction time.

In response to sudden unintended acceleration, human drivers typically apply a hard

brake within 1.5 seconds. We model this behavior using an exponential function that

approximates the general brake curve, as follows [282]:

brake = e10t�12/(1 + e10t�12) (A.21)

We apply the same reaction model to sudden steering changes. The attack engine ceases

its actions immediately upon driver intervention.

A.2.3 Priority-based Control Command Dispatcher.

With multiple safety mechanisms in place, there might be conflicts among the control

commands issued by the OpenPilot ADAS controller and those generated by the safety

interventions. To resolve such conflicts, we design a command dispatcher to transmit

output control commands to the CARLA actuators from various sources (e.g., ADAS,

AEB, simulated driver) based on their priorities, with high-priority commands overwriting

low-priority ones (see Fig. 4.8 and Fig. A.4). The simulated driver’s actions have a higher

priority than regular ADAS outputs, and control actions from the AEB have the highest
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Figure A.4: Control command dispatcher.

priority. The driver’s actions will be executed 2.5s (average driver reaction time) after

safety alerts (e.g., FCW) or noticing other ADAS malfunctions (see Table A.8). ADAS

commands will be blocked or disengaged when AEB or driver interventions are triggered.

A.2.4 Sensor Fusion

We implement a radar sensor in the CARLA simulator and feed the data to the OpenPilot

radar interface [283], to be used as an independent input by the fusion module. Specif-

ically, we use the DBSCAN algorithm [284] to cluster the 2D point map of the relative

distance and speed of perceived objects from the radar sensor and feed their mean values

to OpenPilot, which are then further filtered and processed for fusion.

Fig. A.5 (Top) shows an example of predictions of the relative distance to the lead

vehicle from the fusion of the camera and radar measurements. We see that the radar

and camera predictions agree well most of the time. Also, the error between the fusion

predictions and the ground truth relative distance (based on positions of vehicles in the

simulator) becomes smaller as the Ego vehicle approaches the lead vehicle (an RMSE of

0.81m after 3,000 control cycles in the figure). Sensor fusion also helps reduce the errors in

fusion predictions under attacks as shown in Fig. A.5 (Bottom) and discussed in Section

4.9.4, even though it fails to prevent collisions in the end.
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Figure A.5: An example fusion of relative distance predictions based on camera and radar data
compared with the ground truth under normal operation (Top) or under attack (Bottom).
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Appendix B

Stealthiness User Study

We conduct a user study [285] to further evaluate the advantages of the stealthiness design

of our attack. Before recruiting participants, we secured Institutional Review Board (IRB)

approval. Our study explicitly avoided collecting any personally identifying information,

targeting sensitive populations, or introducing any risks to the participants.

Our study included 30 participants who were asked to sit on the driver’s side of an

autonomous vehicle, parked in a parking lot, equipped with OpenPilot ADAS (see Section

4.2.3). Each participant went through different trials of pre-recorded videos displayed on

the ADAS monitor and answered a series of questions after each trial using a Qualtrics

survey [286]. All participants had driving experience and 40% of them had autonomous

driving experience.

At the beginning of the study, we provide an introduction of ADAS and present demo

videos on the ADAS monitor to ensure that the participants fully understand what driving

technology we are surveying.

Driving Preferences. We first ask participants to envision themselves driving this

autonomous vehicle with the ADAS monitor displaying pre-recorded image frames. We

inquire about how often they would look at the ADAS monitor while driving and whether

alterations in the monitor’s position and size influence their preference. User study results

in Fig. B.1 show that 99% of the participants express a preference for looking at the ADAS

monitor during their driving experience, with 33% specifying they would do so for the

majority of the driving duration. Moreover, 60% of the participants indicate a preference

This appendix contains material from the previously published works [155], coauthored with H.
Alemzadeh, M. Kouzel, A. Chen, H. Ren, M. McCarty, C. Nita-Rotaru, copyrighted by IEEE.
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for a larger monitor size or a more prominent position.

These results indicate that the driver might notice the camera input attacks and stealth-

iness design might be beneficial for these attacks to evade driver intervention.

Figure B.1: Results of participants’ preference of looking at the ADAS monitor during driving
and whether they would look more often at the monitor with a larger size or in a noticeable
position.

Stealthiness. We create five video sets by introducing adversarial patches into a

pre-recorded highway scenario using CA-Random, CA-APGD, and CA-Opt methods with

three stealthiness levels (� = 10�4, � = 10�3, � = 10�2, as detailed in Section 4.8.6.2). We

present these videos on the ADAS monitor and ask participants whether they notice any

abnormal scenarios that prompt them to assume control of the vehicle to avoid potential

risk or danger. For a detailed examination, we extract an image frame from each video

at the same frame index and zoom in to reveal more intricate details, followed by posing

identical questions to the participants.

Results of the user study are illustrated in Fig. B.2. It is evident that patches gener-

ated by the CA-Random attack are conspicuous to the majority of participants (>75%),

whether observed in images or videos. In comparison, patches generated by the CA-APGD

exhibit lower visibility than those produced by the CA-Random attacks. In CA-Opt at-

tacks, the takeover rate diminishes with a rise in stealthiness level or � value. Specifically,

when � is set at 10�2 and 10�3, the takeover rates are below 20% for patch images and

are 0% for patch videos. These findings suggest that adversarial patches at � = 10�2 and

� = 10�3 exhibit nearly imperceptible characteristics to human drivers, particularly in
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image frames when not zoomed in.

Figure B.2: Results of stealthiness of each attack method.

Physical Attack. We also investigate the stealthiness of physical adversarial patches

as perceived by human eyes. Participants are shown an image of an adversarial patch

generated through a physical attack method introduced in a prior work [169]. They are

then asked identical questions. Our findings reveal a takeover rate of 80%, highlighting

the inadequacy of physical patches in achieving stealthiness and evading human detection.
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