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Abstract

Using machine learning models comes at the risk of leaking information about data used in their training
and deployment. This leakage can expose sensitive information about properties of the underlying data
distribution, data from participating users, or even individual records in the training data. In this dissertation,
we develop and evaluate novel methods to quantify and audit such information disclosure at three granularities:
distribution, user, and record.

We begin with a formalization of inference privacy risks as cryptographic games and draw relations, such as
reductions and separations, between various types of inference risks. We then propose a formal definition of
distribution inference attacks that captures previous ratio-based property inference attacks as well as new
kinds of attacks, and introduce a metric that quantifies observed leakage. We devise novel white-box and
black-box distribution inference attacks and report on a series of experiments across a range of different
distributions. We conduct experiments to evaluate distribution inference risks under a range of assumptions
about the adversary, including the level of access to the model and the amount and quality of auxiliary data.
We also evaluate previously proposed defenses, finding that noise-based defenses are ineffective.

Next, we estimate inference risk at the user level in Federated Learning scenarios with our attacks and
demonstrate potent leakage. We also propose methods for injecting malicious behavior in the pre-training
stage of a model, whereby selective parameters can be trained to activate differently on particular data to
amplify distribution inference in downstream models.

At the individual record level, we prove the necessity of parameter access for optimal membership inference,
challenging the notion that black-box attacks suffice. Our theory prescribes an exact attack that outperforms
state-of-the-art methods without using reference models, which makes it valuable for auditing. Finally, we
use membership inference to study memorization in Large Language Models (LLMs), observing near-random
inference leakage for most settings, but revealing a connection between distribution inference and membership
inference.

Our findings show that privacy leakage spans a spectrum of granularities, making considering multiple forms
of leakage essential. Ultimately, our work underscores the urgent need for robust privacy-preserving techniques
to mitigate these multifaceted risks in machine learning systems.
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Chapter 1

Introduction

Machine-learning models have seen widespread adoption across various fields due to their powerful predictive

capabilities [38, 320]. The data used to train these models consists of records, often collected from multiple

sources and users, with each user with its distribution Di. These users together comprise a distribution D

from which training data D is (uniformly) randomly sampled to train some model mθ (Figure 1.1) with

parameters θ. During deployment, additional auxiliary (potentially sensitive) data sources Daux may be used

to enhance model prediction y for a given query x, such as in retrieval-augmented generation (RAG) [173] or

gallery-based matching for face verification [298, 318].

However, trained models are susceptible to disclosure risks, including leaking sensitive information related to

their training data. Such leakage can be detrimental to the privacy of individuals and organizations who
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Model

𝒟

D 𝑚!
trainsample

User 
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Model
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Auxiliary Data
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x
Query
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Figure 1.1: Pipeline for a typical machine-learning training and deployment cycle. Note that machine-learning
literature often uses “inference” as a misnomer to describe prediction generation. In privacy research, and
throughout this dissertation, we use inference to mean deducing sensitive or private information

1
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contribute to this data, thereby diluting confidence in these systems and discouraging participation in the

training of models.

Privacy risks in machine learning come in various forms, depending on the granularity of inference and the

adversary’s knowledge. Among other risks, an adversary with access to a trained model may be able to:

• infer the presence of a specific record (membership inference) [279] which can be problematic when

sensitive data such as participation in medical/health data is concerned,

• infer certain private attributes of an incomplete record (attribute inference) [91] such as the complete

address of an individual,

• reconstruct entire training records (reconstruction) [19] such as face images of participants, and

• infer properties of the underlying training distribution (distribution inference) [16, 293] like the distri-

bution of nodes in a graph of network devices.

These privacy concerns can be exacerbated by adversaries who gain white-box access through model inversion

to enhance more direct inference attempts [332].

These inference risks are not disjoint and can exist together, making it hard to disentangle interactions

between various kinds of leakage. Even though studying inference risk at seemingly different granularities

such as record-level and distribution-level is a bit more straightforward, the delineation between some of these

risks is unclear. For instance, in datasets where users only contribute a single record, user-level inference can

be reduced to record-level membership inference as illustrated in Figure 1.2.
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Figure 1.2: Examples that demonstrate how the difference between different granularities of inference risks
can be ambiguous. (a) Membership and user-level inference are equivalent in scenarios where each user
contributes a single record. (b) When the records corresponding to users are finite and exact, user-inference
can be reduced to multi-record membership inference. (c) Inferring the membership of a user in the training
distribution is equivalent to distribution inference with a property that checks for the presence of the user.

In this dissertation, we consider inference privacy risks at three granularities:
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1. specific records via membership inference,

2. groups of records from individuals via user-level inference, and

3. properties of the underlying training distribution via distribution inference.

These granularities directly relate to users and their data, making them more relatable and actionable

for practitioners and policymakers. While membership and user-level inference have a direct impact on

individuals, distribution inference can reveal broader patterns in the training data and can also enhance

other inference attacks [376]. Our objective is to understand these privacy risks across a broad spectrum of

threat models, and to provide empirical methods to audit mitigation strategies by better understanding the

trade-offs between privacy and utility.

1.1 Contributions and Road Map

The main contributions of this dissertation are:

1. Formalizing Inference Risks (Chapter 2) We begin with a generic outline for inference adversaries

(§2.1). We propose a unifying game-based framework for formalizing privacy inference risks of training

data in ML (§2.2), which we use to systematize definitions from the literature and to establish relations

between them (§2.3).

2. Distribution Inference (Chapter 3) Prior works on distribution inference (also known as property

inference) focused on inferring differences in relative ratios of certain attributes in underlying datasets,

such as the proportion of females [16]. We present a formalization of distribution inference as a

cryptographic game, providing a generic definition to capture various statistical properties (§3.1) and

an intuitive metric for measuring leakage in simulated attacks (§3.2). We extend current methods

to support convolutional layers, enabling deep neural network attacks (§3.3). We find that most

information can be gleaned from just a few layers. Our experiments (§3.4) reveal how inference risks

vary across datasets and properties, with black-box attacks (including our new KL Divergence Attack,

§3.5) often surpassing white-box attacks (§3.6). Additionally, we assess defenses, finding noise-based

privacy measures insufficient against distribution inference attacks (§3.7).

3. User-Level Inference (Chapter 4) We study user-level inference, a specific instantiation of distribution

inference, where the adversary’s task is to infer the presence of a user’s data in the training process

without necessarily having access to exact records used in training. We begin with a user-level inference

under Federated Learning (FL), where user data may be scattered across multiple clients. We propose

new black-box attacks for user-level membership inference that require only partial knowledge about

training subjects and are applicable to both trained ML models and intermediate model states (§4.1).
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We also provide a comprehensive evaluation of federation configurations (§4.2) to guide practitioners in

mitigating subject membership inference risks. We explore active adversaries (§4.3) that can amplify

leakage via manipulation when releasing pretrained models in the wild. Our methods can amplify

leakage to near-perfect detection while maintaining negligible performance drops. We also explore

detection methods for these manipulated models and present stealthy attacks that remain effective

while evading detection (§4.4).

4. Membership Inference (Chapter 5) Building upon recent advances in the discrete-time SGD-dynamics

literature [187, 378], we provide a more accurate formulation (§5.1) of the optimal membership inference

attack that invalidates previous claims [264] about black-box access being sufficient for optimal attacks

(§5.2). Our theory prescribes an attack method, Inverse Hessian Attack, which utilizes parameter access

via inverse-Hessian vector products. We empirically demonstrate the effectiveness of this attack for

auditing membership leakage, all while not having to train any reference models (§5.3). Auditors should

thus rethink their approach of using state-of-the-art attacks (that are often black-box) for evaluating

privacy risk, and consider using all possible information for tighter empirical bounds.

5. Memorization in LLMs (Chapter 6) We begin with an overview (§6.1) of memorization in large

language models (LLMs), discussing challenges in defining memorization and key considerations for

measuring it (§6.2) and mitigating leakage (§6.3). We then proceed to explore the challenges of evaluating

membership inference attacks (MIAs) on large language models (LLMs) (§6.4), finding that most MIAs

perform near-randomly across various domains. Our analysis suggests that the large-scale training

and extensive data used in LLMs reduce MIA effectiveness due to less memorization of member data

and high overlap between members and non-members (§6.4.4). We highlight the ambiguity in defining

membership due to n-gram overlaps and show that existing MIAs often misclassify modified members

as non-members (§6.5). This chapter ties together themes from distribution inference and membership

inference to show how either of them alone are insufficient to fully capture various kinds of leakage

involved in such real-world models: studying exact sentence-level membership might not give a clear

picture of actual leakage, and there is a lack of a clear boundary between useful distributional properties

(like real-world facts) and potentially problematic memorization like user writing style.

Our work highlights privacy breaches at three different granularities and ultimately finding that no single

granularity is sufficient for thorough privacy auditing. We discuss the implications of our findings in

Chapter 7.



Chapter 2

Formalizing Inference Risks1

There is a growing interest in understanding and mitigating the leakage of information about training data

under various threat models that capture different adversarial capabilities (e.g., observing model outputs,

model parameters, or transcripts of iterative optimization methods) and goals (e.g., membership inference

[279], attribute inference [91, 344], property inference [95, 199, 371], and data reconstruction [19, 42]).

An emerging trend in the literature is to capture threat models using privacy games. This originates from

the seminal work of Wu et al. [344] on formalizing attribute inference. A privacy game is a probabilistic

experiment where an adversary interacts with a challenger. The challenger drives the experiment, invoking

the adversary to provide them with information and to allow them to make certain choices, possibly while

interacting with oracles controlled by the challenger. The adversary eventually produces a guess for a

confidential value. This experiment defines a probability space where the success of the adversary can be

measured in terms of the probability of their guess being correct.

The use of games for privacy in ML is inspired by the well-established use of games to define and reason about

security properties in cryptography. Cryptographic games are used to standardize and compare security

definitions [99, 288], and to structure [26] and even mechanize proofs of security [22, 33]. In comparison, the

use of privacy games in the ML literature is still in its infancy:

(1) there are no well-established standards for game-based definitions,

(2) relationships between different privacy games have only been partially explored, and

(3) games are rarely used as an integral part of proofs, despite being especially convenient for this task.
1This chapter is largely based on Ahmed Salem, Giovanni Cherubin, David Evans, Boris Köpf, Andrew Paverd, Anshuman

Suri, Shruti Tople, Santiago Zanella-Béguelin, SoK: Let The Privacy Games Begin! A Unified Treatment of Data Inference
Privacy in Machine Learning, in IEEE Symposium on Security and Privacy (S&P), 2023.

5
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Figure 2.1: Relations among adversary goals (under selected threat models). A solid arrow from node
A to B means that security against A (i.e., a nontrivial advantage bound) implies security against B. A
struck-through arrow from A to B means that security against A does not imply in general security against
B; we show this separation with a construction that is secure against A but completely insecure against
B. Dashed arrows are implied by solid arrows. Labels over solid arrows refer to the theorem showing the
relationship. Some separations stem from differences in adversary capabilities, e.g., MI ̸→ RC.

This has resulted in many game variants in the literature that attempt to formalize the same adversary goal

but have subtle yet important differences. This fragmentation leads to confusion and hinders progress—for

membership inference alone, we found variants that differ in details that can change their meaning and

substantially alter results. To address this problem, we present the first systematization of knowledge about

privacy inference risks in machine learning, going above and beyond the problem left open since 2016 by Wu

et al. [344] of merely devising rigorous game-based definitions. Concretely,

• We break down the anatomy of game-based privacy definitions for ML systems into individual components:

adversary’s capabilities and goals, ways of choosing datasets and challenges, and measures of success (§2.1).

• Based on this anatomy, we propose a unified representation of five fundamental privacy risks as games:

membership inference, attribute inference, property inference, differential privacy distinguishability, and data

reconstruction (§2.2).

• Using the game-based framework, we establish and rigorously prove relationships between the above risks.
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Similarly to the study of concrete security in cryptography [25], we define a quantitative notion of reduction

between privacy properties. Using this notion, we prove a set of relations among the above five privacy

risks (§2.3). This allows us to establish, for every possible ordered pair of risks A,B, either a reduction

showing that security against A implies security against B, or a separation result showing the impossibility

of a generic reduction from A to B. Figure 2.1 summarizes the conclusions of this systematization effort for

selected games.

• We present a case study (§2.4), where we prove that a scenario described as a variant of membership

inference in the literature can actually be decomposed into a combination of membership and property

inference. Importantly, in this case we exploit code-based reductions, structured as a sequence of games; i.e.,

our arguments rely on transforming code with a formal semantics. This way of conducting proofs has seen

great success in cryptography. However, before our work, it had not reached the same level of rigor when

reasoning about privacy inference risks in ML.

2.1 Anatomy of a Privacy Game

Privacy games are parametrized by an adversary (A) and a training pipeline that specifies the training

algorithm (T ), data distribution (D), and the size of the training dataset (n). A challenger simulates the ML

system. The adversary uses their capabilities—defined by a threat model—to interact with the system and

infer information about the training dataset.

Game 1: Membership Inference
Input: A, T , n,D

1 S ∼ Dn // sample n i.i.d. points from distribution D
2 b ∼ {0, 1} // flip a fair coin
3 if b = 0 then
4 z ∼ S // sample a challenge point uniformly from S

5 else
6 z ∼ D // sample a challenge point from D
7 end
8 θ ← T (S) // train a model θ

9 b̃← A(T ,D, n, θ, z) // adversary guesses b = b̃

Algorithm 1 formalizes the membership inference experiment of Yeom et al. [356], which we use as a running

example. The challenger samples a training dataset S (line 1) and flips a fair coin b (line 2). Depending on

the outcome, they either sample a challenge point z from the training dataset S, or from the data distribution

D (lines 3–7). We discuss alternatives for choosing training datasets and challenges in §2.1.2. The challenger

then trains a target model θ (line 8), and asks the adversary to make a guess b̃ for b (line 9). In this game, the

adversary is given the training algorithm (T ), data distribution (D), dataset size (n), target model (θ), and

the challenge point (z). We discuss alternatives for adversary’s capabilities in §2.1.2 and §2.1.3. The success
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of the adversary in making a correct guess (b̃ = b) is measured with respect to the baseline of a random guess.

Any advantage over this baseline indicates leakage of membership information. We discuss other ways to

quantify the adversary’s success in §2.1.4.

We now discuss in more detail the building blocks of games described above and highlight common

choices.

2.1.1 Adversary Goals

We identify five adversary goals from the literature that enable an adversary to directly infer information

about the training dataset of an ML model. We describe these goals informally below and formalize them as

games in §2.2.

Membership Inference (MI). The adversary aims to determine whether a specific record [279, 356] or

subject [198, 294] (an entity who may contribute more than one record) was present in the training dataset of

the target model. For example, a successful MI attack against a model trained on clinical records of patients

with an infective disease can reveal that a target patient was infected.

Attribute Inference (AI). The adversary aims to use the model to infer unknown attributes of a record in

the training dataset given partial information about the record [356]. A successful AI attack can result in the

reconstruction of sensitive attributes of a target individual.

Distribution Inference (DI). The adversary aims to learn sensitive statistical properties of the target

model’s training distribution. For example, in a malware classifier, the training dataset may have been

generated using a particular testing environment, and it may benefit the adversary to learn certain properties

of this environment [95]. From an auditing perspective, distribution inference could be used to assess the

training dataset for harms (e.g., under-representation) [371].

Differential Privacy Distinguishability (DPD). The adversary aims to determine which of a pair of

adjacent datasets (e.g., differing in the data of one record) of their choosing was used to train the target

model. This goal recasts differential privacy in a game-based setting by making the adversary explicit. This

connection can be used to estimate the differential privacy budget of training pipelines [202, 231, 364].

Data Reconstruction (RC). The adversary aims to reconstruct samples from the training dataset of

a target model [19, 41, 42]. A successful attack can partially reconstruct the training dataset, potentially

violating confidentiality requirements.
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Beyond training data inference. Other adversary goals, such as model stealing [243, 311] and hyperpa-

rameter stealing [323] are beyond the scope of this SoK because they do not enable the adversary to directly

infer information about the training data. However, the effects of these other goals are readily captured

by our game-based analysis. For example, a successful model stealing attack that is used as a precursor

to membership inference can be represented by changing the adversary access from black-box to white-box

(§2.1.3).

2.1.2 Selecting Challenges and Datasets

An important aspect of any privacy game is how the challenges and datasets are selected. In Algorithm 1,

the challenge point is a single record z; in other games, the challenge could comprise multiple points or even

a data distribution. For the discussion below, we simplify the language by talking about a single challenge

point. We discuss below three methods commonly used in the literature.

Randomly sampled. The challenge is sampled from a distribution by the challenger as part of the game

[125, 332, 356]. A randomly sampled challenge provides a measure of average case privacy. While average

case privacy measures the risk for average users, the risk for outliers can be significantly higher.

Externally provided. The challenge is provided as a parameter of the game [125, 198]. This may be used

to measure privacy of specific points, i.e., it provides individual case privacy.

Adversarially chosen. The challenge is selected by the adversary during the game [48, 202, 231]. Since

the adversary can select the most advantageous challenge based on the information provided, this provides

a measure of worst case privacy, i.e., measuring the risks for all users including outliers. For example, a

strong membership inference adversary could choose a challenge that is an outlier w.r.t. the training data

distribution, so that a target classification model is unlikely to classify it correctly unless it is included in the

training dataset. This setting is usually considered when auditing a system to identify risks.

Additional considerations. When the challenge is externally provided or adversarially chosen, the

parameters of the game cannot completely determine a correct adversary guess. Otherwise, security statements

that universally quantify over adversaries are void because the quantification includes adversaries with a

hardcoded correct guess. This is similar to the difficulty of defining collision resistance of hash functions

[262].

Selecting datasets. The training dataset can also be selected using any of the three options above: it can

be randomly sampled by the challenger, externally provided, or (partially) chosen by the adversary. The

latter can be used to represent the case where the model has been trained on (poisoned) data contributed by

potentially malicious users [199, 313].
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2.1.3 Adversary Access

Depending on the scenario, the adversary may have different levels of access to the target model, training

algorithm, training distribution, and training dataset. This allows the game to capture different threat models,

which should ideally match the known or assumed capabilities of real-world adversaries. Most games assume

one of two settings: black-box or white-box access.

Black-box. In this scenario, the adversary only has query access to the target model (e.g., a cloud-hosted

model with an inference API) [43]. To formalize this setting, we give the adversary access to the model

through an oracle

OracleOθ(x) :

return θ(x)

This allows the adversary to query the model θ on inputs of their choosing and observe the responses, but

does not reveal internal workings of the model, such as its architecture or weights. Depending on the scenario,

the oracle can return a confidence for each label, or only the highest-confidence label [57, 184]. The latter

setting matches inference APIs that do not reveal confidence values, like some email spam classifiers or

auto-completion systems. Additionally, the oracle can be instrumented to post-process responses, or to only

emit responses for queries satisfying a (stateful) predicate, e.g., to enforce a bound N on the number of

allowed queries the challenge can initialize q0 = 0 and provide

Oracle Oθ
N (x)

qθ ← qθ + 1

if qθ ≤ N then return argmax θ(x) else return ⊥

White-box. The white-box setting represents the strongest adversary, who has full direct access to the target

model i.e., A(θ, . . .). This obviously provides the adversary with all the capabilities of the black-box setting,

but also allows the adversary to inspect the internals of the model including its trained weights [172, 264].

For instance, a model deployed on clients’ devices gives white-box access to malicious clients. Alternatively, a

successful black-box model stealing attack would enable an adversary to operate in a white-box setting.

Grey-box. In between the black-box and white-box settings, there is a range of grey-box threat models in

which the adversary has more than black-box but less than full white-box access to the target model. For

example, the adversary could know the architecture of a target model, some of its training hyperparameters,

or the public model from which the model has been fine-tuned [266, 279]. Such extra information can be the

output of a hyperparameter stealing attack [323].
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Auxiliary information. In addition to having access to the target model, an adversary may have auxiliary

information that could be useful for certain attacks. For example, most MI attacks assume the adversary has

access to auxiliary data distributed similarly to the target model’s training data, e.g., for building shadow

models. This is captured in games by giving the adversary the distribution from which the training data was

sampled.

Resource constraints. Most game-based formulations do not explicitly limit the resources available

to an adversary, i.e., they consider information-theoretic adversaries. It could be important to consider

resource-limited adversaries that can only issue a specific number of queries to an oracle, or can use a certain

amount of memory, or are otherwise computationally bounded. Intuitively, limiting these resources can

reduce the effectiveness of an attack. These limitations can be specified outside the game as constraints on

the adversary, enforced by instrumenting the code of the game (as in Oracle Oθ
N above), or incorporated into

the measure of success.

2.1.4 Measuring Adversary Success

There are various ways of quantifying the adversary’s success in games. We discuss commonly used metrics

next.

Attack Success Rate

The attack success rate (ASR) measures the expected number of times the adversary succeeds (i.e., wins

the game) over multiple runs. ASR is arguably the most intuitive and widespread metric for quantifying

adversary success; for example, it matches the attacker’s accuracy in membership inference.

However, the main drawback of ASR is that it does not take into account the baseline success probability

for a given task. For example, if we evaluate an ML model’s resilience to attribute inference, the prior

distribution of that attribute will play a role in the adversary’s success. For instance, if the attribute can

only take one value, it is trivial for an adversary to achieve 100% ASR, but this will not be a meaningful

measure. Similarly, the prior probability that an example belongs to the training set affects membership

inference accuracy.

Ideally, the metric should quantify the success of an adversary relative to a suitable baseline. The baseline

should represent the a priori adversary success rate; that is, it should quantify the adversary’s success rate if

they used only their prior knowledge and had no access to the model.

Adversary Advantage

The notion of advantage is a commonly used metric in cryptography, which relates an adversary’s success

rate to a baseline. This gives a better intuition of how much an adversary gains by having access to the
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model (in any of the forms defined in §2.1.3). In general terms, suppose the adversary is trying to infer some

variable p; this could be the membership of a data record or the value of a coin toss. If Pr[A = p] is the

adversary’s success rate (probability to guess p correctly), and G is the baseline success rate, the advantage

can be expressed as Adv(A) = Pr[A=p]−G/1−G. Assuming Pr[A = p] ≥ G, this metric quantifies the adversary’s

advantage on a scale of [0, 1] relative to the baseline G; 0 represents no advantage over the baseline and 1

is a perfect attack. When the secret information p is binary with a uniform prior, G = 1/2. This leads to

the familiar expression Adv(A) = 2Pr[A = p]− 1. Advantage is commonly used as a metric for ML privacy

attacks. For example, Yeom et al. [356] define the MI advantage for an adversary A as follows:

AdvMI(A, T , n,D) = 2Pr
[
MI(A, T , n,D) : b̃ = b

]
− 1,

where MI is the membership inference experiment in Algorithm 1, and Pr[G :E] denotes the probability of

event E in the probability space defined by game G.

Providing an adequate baseline may be difficult because it may not be possible to accurately model the

adversary’s knowledge. This issue can often be bypassed by careful design of the game. For example, instead

of asking the adversary to reconstruct an arbitrary attribute’s value, the game can be designed such that the

adversary must distinguish between two equally-likely values of the attribute.

Beyond advantage

Average case metrics such as ASR fail to capture inference risks for individuals or subpopulations. For example,

a MI attack against a model may achieve roughly 50% accuracy (with a 50% baseline) on average across the

population, yet the same attack may perform better when targeting specific individuals or subpopulations

[48, 164]. Having raised similar concerns, Carlini et al. [43] suggest that an adversary should be considered

successful if it reliably succeeds even on small number of cases. For instance, a MI attack that achieves a

high true positive rate (TPR) at some low false positive rate (FPR) could be consequential even if it has low

accuracy.

In this chapter, we focus on advantage as a metric, since it has the following benefits: (1) it has an easy

interpretation—it represents the gain of an adversary from having access to the system under scrutiny

versus an adversary with only prior knowledge; (2) it is directly related to other metrics, such as ASR

(which can be derived directly from it), true and false positive rates (e.g., [356]), and Differential Privacy

[50, 125]; (3) if the attacker’s challenge is binary (e.g., distinguishing between members and nonmembers),

the advantage computed when assuming the two choices have a uniform prior gives a bound for any other

prior [50]. Nevertheless, given a game formulation, one can consider other metrics of interest: e.g., area under

the ROC curve (AUC-ROC), F1-score, and TPR at fixed FPR thresholds [43].
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2.1.5 Consequences of Attacks

The anatomy we presented can be used to specify threat models and quantify the chances that an adversary

successfully achieves their goal. However, the consequences of a successful attack depend less on the threat

model but rather on the adversary’s goal (§2.1.1) and on the design of the ML system, e.g., the sensitivity

of the training data. For example, the consequences of successful membership inference will be the same

irrespective of whether it was performed in a black-box or white-box setting.

2.2 Formalization

In this section we present privacy games for the five adversary goals introduced in §2.1.1. We summarize the

notation in Table 2.1 and the threat models considered in all games in Table 2.2.

Table 2.1: Summary of notation

Notation Description

T A stochastic training algorithm
D A distribution over examples
Dn Distribution of n independent examples from D
A, A′ Adversary procedures sharing mutable state
z ∼ D Draw an example z from D
S ∼ Dn Draw n examples S independently from D
b ∼ {0, 1} Sample a bit b uniformly
b ∼ 0⊕p 1 Sample 0 with probability p, 1 with probability 1− p
y ← P(x⃗) Call P with arguments x⃗ and assign result to y

2.2.1 Membership Inference

Membership inference aims to predict the participation of an entity in the training dataset of the model.

The first (record-level) membership inference attack on supervised learning was proposed by Shokri et al.

[279] against ML-based classifiers. Subsequent work has explored membership inference attacks with differing

degrees of access to the model (e.g., white-box [172, 264] or label-only attacks [57, 184]), against different

types of models (e.g., generative models [53, 112, 118], image segmentation [115], contrastive learning [186],

recommender systems [369], and Graph Neural Networks (GNN) [343]), and under entirely different threat

models [124, 266, 275].

We present MI variants that have been formalized as games. We divide the games into two categories

depending on whether they focus on a single record (record-level) or a user represented by a collection of

records (user-level).
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Record-level Membership Inference

The most common interpretation of record-level membership inference is given by the game introduced by

Yeom et al. [356], which we presented as Algorithm 1 in §2.1. Algorithm 2 below presents a semantically

equivalent reformulation MI. The reader can verify that b, θ, z0 are distributed identically to b, θ, z in

Algorithm 1 and thus the joint distribution of b, b̃ is the same in both games. This game considers an

adversary with white-box access to the model—they have the model at their disposal and can query it freely,

analyze its architecture and parameters, and observe its dynamic behavior. Since the training dataset and

the challenge z0 are sampled from D, this game measures average case MI resilience.

Game 2: MI MIskew MIAdv

Input: T ,D, n, p , A′ ,A
1 S ∼ Dn−1

2 b ∼ {0, 1} 0⊕p 1 {0, 1}

3 z0 ∼ D D A′(T ,D, n)
4 z1 ∼ D
5 θ ← T (S ∪ {zb})
6 b̃← A(T ,D, n, p , θ, z0)

Several variants of the basic MI game have been considered in the literature; some are semantically equivalent

(e.g., [125, 164]) whilst others alter its semantics. We next systematize these latter variants using the anatomy

presented in §2.1.

Jayaraman et al. [138] consider game MIskew which generalizes MI by introducing a parameter p representing

the prior membership probability (Algorithm 2, line 2). The original MI game assumes a balanced prior and

is recovered as a special case when p = 1/2.

Chang and Shokri [48] consider game MIAdv in Algorithm 2 which strengthens the adversary by allowing them

to select the challenge point (line 3). This game measures worst case MI resilience for an average dataset, i.e.,

resilience against this variant protects all records—even outliers—against MI. See SMI in Algorithm 11 for an

even stronger attack where S is adversarially chosen.

Carlini et al. [43] consider game MIBB which differs in two aspects from MI. Firstly, it assumes a black-box

adversary who is given only inference access to the model through an oracle, Oracle Oθ(x) : return θ(x)

(modifying line 9 in Algorithm 1). This is appropriate when the target model is hosted in the cloud or in a

trusted execution environment that ensures its confidentiality. Secondly, rather than sampling the challenge

point from D when b = 1, the challenger samples it from D \ S (modifying line 6 in Algorithm 1), thus

excluding the case where the challenge happens to be in S by chance. This is in contrast to game MI, where

nonmembers are sampled from the complete distribution and may be contained in S. While doing this seems
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intuitive, Yeom et al. [356, p.41] note that it is problematic since an adversary could gain advantage not

through access to the model but rather by analyzing D to infer which points are more likely to have been

sampled into S. For instance, consider a distribution D with support {x0, . . . , xm} that assigns probability

1/2 to x0 and 1/2m to each of x1, . . . , xm. An adversary that ignores θ and guesses b̃ = 0 if and only if z = x0

has advantage greater than 1/2− 1/2n.

Tramèr et al. [313] introduce a generic privacy game where the goal of the adversary is to guess which point

from a universe U has been included in the training dataset of the target model. They present variants with

(MIPois) and without (MIDiff) poisoning, shown in Algorithm 3. MIPois lets the adversary statically poison part

of the training dataset (§2.1.2). By considering U = {ẑ,⊥}, where ⊥ indicates the absence of an example,

the generic game can represent a black-box membership inference attack for a fixed externally provided

target example ẑ. Compared to variants of membership inference discussed previously, this results in training

datasets of different sizes depending on the outcome of sampling the challenge z: e.g., in MIDiff the model may

be trained on S ∪ {ẑ} or just on S. This usually does not make a significant difference as training datasets

are large and models do not leak the size of their training dataset. As in MIBB, values in S are excluded when

sampling z, which leads to similar problems.

Game 3: MIDiff MIPois

Input: T ,D,U , n,A, A′, n′

S ∼ Dn

z ∼ U \ S
S′ ← A′(T ,D,U , n′) // |S′| = n′

θ ← T (S ∪ {z} ∪S′ )
z̃ ← A(T ,D,U , n,Oθ(·), S′ )

Oracle Oθ(x): return θ(x)

Other variants. Humphries et al. [125] sample the training dataset and challenge point from different

distributions (Algorithm 20); we use this variant as the basis for our case study in §2.4. Tang et al. [300]

present single-query variants of membership inference where the adversary is given only the model output on

the challenge point. In their base game (Algorithm 4), the adversary selects a universe of 2n points from

where n points are sub-sampled to construct the training dataset of the target model. The adversary goal is

to infer whether a challenge zj uniformly sampled from the initial 2n points was used to train the model, i.e.,,

guess B[j], given just the model output on zj . They also consider variants where the set of 2n points is fixed

externally, and a worst-case variant where the challenge zj is selected by the adversary.

Gao et al. [96] consider deletion inference, a variant of membership inference in the setting of machine

unlearning, where the adversary is given access to a model before and after one of two examples is deleted

and is asked to guess which example was deleted.
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Game 4: MISQ

Input: T , n,A,A′
{zi}i∈[2n] ← A′(T , n)
B ∼ {0, 1}2n s.t.

∑
i∈[2n]B[i] = n

S ← {zi |B[i] = 0}i∈[2n]
θ ← T (S)
j ∼ [2n]

b̃← A(T , n, {zi}i∈[2n], j, θ(zj))

User-level Membership Inference

Privacy laws such as GDPR require generalizing the goal of MI. Instead of focusing on a single record, the

interest is now the complete data of an individual. For instance, an auditor would be interested in learning

if a user’s data—usually modeled as a collection of records—was used to train a target model. User-level

membership inference was introduced to model such scenarios. Mahloujifar et al. [198] formalize user-level

MI as in Algorithm 5. They consider a meta-distribution D from where m user distributions are sampled.

The adversary targets a particular user contributing a dataset S∗. This game presents the adversary with a

task easier than Algorithm 1 since they must infer whether an entire group of records is within the training

dataset, i.e., it measures group privacy.

Game 5: MIUser

Input: T ,D, n,A, S∗,m
b ∼ {0, 1}
D1, . . . ,Dm ∼ D
for i = 1, . . . ,m− 1 do

Si ← Dn
i

end
if b = 0 then

Sm = S∗

else
Sm ← Dn

m

end
θ ← T (

⋃m
i=1 Si)

b̃← A
(
T ,D, n,Oθ(·), S∗,m

)
Oracle Oθ(x): return θ(x)

2.2.2 Attribute Inference

In attribute inference (AI) attacks, the adversary aims to infer a sensitive attribute of a target record. Wu

et al. [344] were the first to formalize AI, confusingly under the name of model inversion. We follow here

the more general formalization given by Yeom et al. [356] shown in Algorithm 6. Recently the scope of AI

expanded to other settings [137, 374].
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Game 6: AI Inv

Input: T ,D, n,A, φ, π
S ∼ Dn

b ∼ {0, 1}
if b = 0 then

z ∼ S D
else

z ∼ D
end
θ ← T (S)
ã← A(T ,D, n, θ, φ(z))

In the AI game, φ(z) denotes the adversary’s knowledge about the challenge z, and π a function that extracts

the information targeted by the attack, e.g., if t represents the target sensitive attributes, then π(z) = t. The

experiment is similar to the basic membership inference experiment (Algorithm 1) except for the information

that the adversary is given and the winning condition. The adversary is given φ(z) and aims to infer π(z).

The adversary wins if it correctly predicts these attributes, i.e., ã = π(z). Training data poisoning can

be considered by including adversarially chosen data when training the target model as done for MI in

Algorithm 3 (MIPois), an instance of the generic game of Tramèr et al. [313].

Model inversion. Another adversary goal with a similar aim to AI is model inversion [332]. Model inversion

attacks were introduced by Fredrikson et al. [91] and subsequently formalized by Wang et al. [332] (Inv in

Algorithm 6). The difference between attribute inference and model inversion according to Wang et al. [332] is

in how the challenge is sampled: in AI it is sampled from the training dataset, while in Inv it is sampled from

the distribution D. While AI measures privacy risk for members of a model’s training dataset, model inversion

measures the privacy loss of publishing the model for members of the underlying population. Whether this is

considered a privacy risk is up to debate: a successful attack may lead to the adversary learning information

from records that are not part of the training dataset or that do not even exist. Model owners concerned only

with the privacy of the training dataset would use the AI game, whilst those concerned about population

privacy would prefer Inv.

2.2.3 Reconstruction

Reconstruction attacks aim to recover entire examples in the training dataset of a model. Reconstruction has

been studied in various settings, including Graph Neural Networks [374], image classification [267], and text

generation [41, 42, 363]. A distilled scenario, where the adversary learns the training data of the target model

except for a target example was first formalized by Balle et al. [19] as experiment RC in Algorithm 7.

Reconstruction robustness is parametrized by bounds on the error and success probability and defined as

follows.
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Game 7: RC RCRan

Input: S , D, n , π, T ,A

S ∼ Dn−1

z ∼ π
θ ← T (S ∪ {z})
z̃ ← A(T , θ, D, n , S)

Definition 1 (Balle et al. [19], Definition 2). A training pipeline is (η, γ)-reconstruction robust with respect

to a prior π and reconstruction loss ℓ if for any dataset S and any reconstruction adversary A,

Pr[RC :ℓ(z, z̃) ≤ η] ≤ γ

The adversary is given the model θ, training algorithm T , and the training dataset S except for one point z

which they need to reconstruct. Game RCRan models how other points in the training dataset are sampled,

instead of considering a fixed dataset S. The advantage of an adversary A against RC w.r.t. a baseline that

ignores θ and just samples z̃ from D is

AdvRC(A) = Pr[RC : z̃ = z]− Pr[z, z̃ ∼ D : z̃ = z]

Alternatively, one can consider the baseline success of an adversary that picks z̃ according to π,

sup
z̃∈supp(π)

Pr[z ∼ π :ℓ(z, z̃) ≤ η] (2.1)

Both games can be adapted to consider a poisoning-capable adversary as demonstrated in Algorithm 3.

Reconstruction in language models. Recent work focused on large language models and evaluated

reconstruction attacks against them. Attacks can be categorized as untargeted [42] or targeted [41]. Untargeted

attacks aim to reconstruct any training data from the generative model, whilst targeted attacks aim to

reconstruct specific training data records, which may have been inserted as canaries during training. To

demonstrate the flexibility of privacy games, we formalize an example from each category, as shown in

Algorithm 8.

We formalize a black-box untargeted data reconstruction attack by Carlini et al. [42] tailored to large

generative language models as RCUntarg. The authors measure the success of an attack by its true positive

rate or recall, that is, the fraction of examples in S̃ that are in the training dataset S.

We formalize a black-box targeted reconstruction attack by Carlini et al. [41] as RCTarg. The authors insert a
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canary multiple times into the training data as a way to measure unintended memorization in generative

models. Canaries are specified by a format sequence s[·] that fixes some tokens and leaves holes to be filled

with secrets sampled from a randomness space R. For example, s = "the PIN is ” with R being the

space of 4-digit decimal numbers. Carlini et al. [41] measure the success of targeted canary reconstruction as

the reduction in the guessing entropy of secrets in canaries given the model.

Game 8: RCUntarg RCTarg

Input: T ,D, n,A, R, s,m
S ∼ Dn

r ∼ R
θ ← T (S ∪{s[r]}m )

S̃ ← A(T ,D, n,Oθ(·), R, s )

Oracle Oθ(x): return θ(x)

Selecting a game. Game RC is appropriate when evaluating the worst case risk of reconstructing an

example in the training dataset. It conservatively considers an informed adversary that knows all examples

but the target, and incorporates the adversary’s background knowledge in a prior. Game RCRan considers an

equally informed adversary, but averages the reconstruction risk over the choice of other training examples.

Game RCUntarg represents a more realistic threat model and should be chosen when evaluating the risk of

indiscriminately reconstructing training data, while RCTarg is appropriate for auditing the risk of extracting

data following certain patterns.

Other variants. Similar to MI, reconstruction attacks have been adapted to the machine unlearning setting.

Gao et al. [96] consider deletion reconstruction, where an adversary is given access to a model before and

after a random training example is deleted and is asked to reconstruct it.

2.2.4 Distribution Inference

Distribution inference attacks do not focus on specific data records, but instead aim at inferring properties

about the training data distribution. We next describe two variants of distribution inference. The first is

property inference, e.g., where the adversary is interested in learning about the prevalence of specific sensitive

attributes in the training data, such as sex or ethnicity. The second is subject-level distribution inference,

where the training data is sampled from a mixture of distributions, each corresponding to a subject that

may participate in training. The adversary’s goal is to infer whether a subject has participated knowing the

subject’s data distribution rather than concrete samples like in game MIUser in Algorithm 5.
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Property Inference

Property inference attacks were first proposed by Ganju et al. [95] in the white-box setting and by Zhang

et al. [371] in the black-box setting. Zhou et al. [376] showed them to be effective against generative models

and GANs specifically. We formalize property inference attacks as DI in Algorithm 9, parametrized by two

functions G0, G1 that transform an underlying distribution. For more details, see §3.1.

Game 9: DI DIGen

Input: D, G0, G1 D0,D1 , n, T ,A
b ∼ {0, 1}
S ∼ Gb(D)n Dn

b

θ ← T (S)
b̃← A(T , D, G0, G1 D0,D1 , n, θ)

DIGen is an equivalent formulation parametrized by two distributions corresponding to the application of G0, G1
to the base distribution D in DI. Hartmann et al. [109] generalize this to more than two distributions.

Similarly to MI and AI, poisoning can be modelled as in Algorithm 3 by letting the adversary choose part

of the training dataset of the target model. Mahloujifar et al. [199] and Chaudhari et al. [51] show that

poisoning increases inference risk by injecting data to maximize leakage of properties of the training dataset.

For instance, in multi-party learning, a malicious participant may contribute poisoned data crafted to amplify

property leakage of data from other participants.

Subject-level Distribution Inference

Subject-level distribution inference broadens the scope of user-level membership inference by not assuming

access to the user’s exact data that may have been used to train a model. Instead, it only requires the

adversary know the distribution from which the target user’s data is sampled. In §4.1, we present subject

membership inference as a special case of distribution inference:

The training data distribution is structured as a mixture of distributions corresponding to a set of subjects.

This is a property inference attack because the adversary seeks to infer which of two distributions the training

data is sampled from. However, conceptually, the adversary’s goal is to infer membership of a subject’s

data since the only difference between the two distributions is the presence of the target subject in the

mixture.

A successful subject-level distribution inference attack can identify if a user’s data was used to train the

target model without knowing which exact examples were used; i.e., with access to only the user’s data

distribution and not the sampled dataset as in Algorithm 5.
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Game 10: MISubj

Input: T ,D,D∗, n,m,A
1 b ∼ {0, 1}
2 D1, . . . ,Dm ∼ D
3 for i = 1, . . . ,m− 1 do
4 Si ∼ Dn

i

5 end
6 if b = 0 then
7 Sm ∼ Dn

∗
8 else
9 Sm ∼ Dn

m

10 end
11 θ ← T (

⋃m
i=1 Si)

12 b̃← A (T ,D,D∗, n,m, θ)

2.2.5 Differential Privacy Distinguishability

Differential Privacy Distinguishability (DPD) formalizes the threat model underlying the definition of DP,

where the adversary aims to distinguish between models trained on adjacent datasets. We formalize as

game DPD in Algorithm 11 the variant corresponding to the substitute one adjacency relation, where two

datasets are adjacent if one can be obtained from the other by substituting a single record. The DPD game

represents a worst-case variant of the membership inference game MI where the training data and challenges

are adversarially chosen.

Prior work used DP distinguishing attacks to statistically estimate or audit the privacy of training pipelines

[130, 231, 312, 364]. Marathe and Kanani [205] define subject-level differential privacy by considering datasets

as adjacent when they differ in the data of a user, which can be seen as a counterpart to user-level membership

inference. Humphries et al. [125] and Balle et al. [19] discuss strong membership inference, a threat model in

between DPD and MI. In this game, formalized as SMI in Algorithm 11, the adversary knows but does not

choose the two adjacent datasets. As mentioned in §2.1.2 this narrows the scope of the measured privacy,

e.g., from worst to individual case privacy.

Game 11: DPD SMI

Input: T ,A, A′, n , S, z0, z1
S, z0, z1 ← A′(T , n) // |S| = n− 1

b ∼ {0, 1}
θ ← T (S ∪ {zb})
b̃← A(T , θ, S, z0, z1)
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Table 2.2: An overview of different games and features of their corresponding threat models. ✓ indicates the
game has this feature, – indicates the game does not have this feature, × indicates that the feature is not
applicable.

Adversary Access Challenge Training Dataset Adversary Interest

Game Definition
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Membership Inference
MI Algorithm 2 [125, 164, 356] – ✓ ✓ – – ✓ – – ✓ – –
MIskew Algorithm 2 [138] – ✓ ✓ – – ✓ – – ✓ – –
MIBB Algorithm 2 [43] ✓ – ✓ – – ✓ – – ✓ – –
MIAdv Algorithm 2 [48] – ✓ – ✓ – ✓ – – ✓ – –
MIDiff Algorithm 3 [313] ✓ – ✓ – – ✓ – – ✓ – –
MIPois Algorithm 3 [313] ✓ – ✓ – – ✓ ✓ – ✓ – –
MIUser Algorithm 5 [198] ✓ – – – ✓ ✓ – – – ✓ –
MM Algorithm 20 [125] – ✓ ✓ – – ✓ – – ✓ – ✓
MISQ Algorithm 4 [300] ✓ – ✓ – – – ✓ – ✓ – –

Attribute Inference and Model Inversion
AI Algorithm 6 [356] – ✓ ✓ – – ✓ – – ✓ – –
Inv Algorithm 6 [332] – ✓ ✓ – – ✓ – – ✓ – –

Data Reconstruction
RC Algorithm 7 [19] – ✓ ✓ – – – – ✓ ✓ – –
RCUntarg Algorithm 8 [42] ✓ – × × × ✓ – – ✓ – –
RCTarg Algorithm 8 [41] ✓ – ✓ – – ✓ – – ✓ – –

Distribution Inference
DI Algorithm 9 §3.1 – ✓ × × × ✓ – – – – ✓
MISubj Algorithm 10 §4.1 – ✓ ✓ – – ✓ – – – ✓ ✓

Differential Privacy Distinguishability
DPD Algorithm 11 [202, 231] – ✓ – ✓ – – ✓ – ✓ – –
SMI Algorithm 11 [19, 125] – ✓ – – ✓ – – ✓ ✓ – –

2.3 Relations and Proofs

In this section we establish relationships between privacy games. To this end, we define a notion of reduction

and use it to translate attacks and guarantees between the five fundamental games from the previous section,

or show that no generic connection can exist.

2.3.1 Reductions for Privacy Games

Inspired by notions of reduction from complexity theory and cryptography [14], we introduce reductions

between privacy games as a means of comparing the various inference risks. Whilst reductions in cryptography

are traditionally based on asymptotic behavior governed by a security parameter, the reductions we define

here are closer to those used in concrete security proofs, in that the constants underlying the loss incurred in

the reduction are made explicit.
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Definition 2. We say that game G1 is reducible to game G2 if there is a constant c > 0 such that, for any

adversary A against G2, there exists an adversary B against G1 such that

AdvG1
(B) ≥ c · AdvG2

(A)

We denote this using the shorthand G1 ⪯c G2 and sometimes drop the constant c.

The intuition behind the shorthand is that game G1 is at most as hard to win as G2—modulo the constant c.

This intuition holds for c around or larger than 1. For c≪ 1, however, the lower bound on AdvG1(B) can get

close to 0, in which case the intuition may be misleading.

Resilience to attacks. Reductions between privacy games imply that attacks against one game translate

into attacks against the other. An equivalent reading is the contrapositive, that resilience against attacks in

one game implies resilience against attacks in the other.

Definition 3. A game G is p-resilient if for all adversaries A against G,

AdvG(A) < p

Proposition 1. If G1 ⪯c G2 and G1 is p-resilient then G2 is p/c-resilient.

Proof. By contradiction: If there is an attack on G2 with advantage more than p/c, then there is one on G1

with advantage more than p.

Proofs of resilience are rare in the literature. Prime examples are results that establish upper bounds on the

advantage of a DP distinguisher when the model is trained with differential privacy [125, 356]. The tightest

known bound is given in the following proposition.

Proposition 2 (Humphries et al. [125, Theorem 3.1]). Let T be an (ε, δ)-differentially private training algorithm.

Then

AdvDPD(A) ≤
eε − 1 + 2δ

eε + 1

Therefore, any game the DP distinguisher inference game can be reduced to (see Figure 2.1 for an overview)

inherits the security benefits of training with differential privacy via Propositions 1 and 2.

Separation Results. No reductions exist between several games. For them, we show separation results of

the form G1 ̸⪯ G2. We establish such results by showing that there is an instance of G1 that is resilient to

attacks whereas its G2 counterpart is not, and use Proposition 1 to conclude that no reduction exists.
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2.3.2 Overview of Relations between Games

Figure 2.1 shows the relations between the five fundamental privacy games. Each node in the figure and in

the following theorems refers to the basic game-based definition of the corresponding inference risk, i.e., MI,

AI, RC, DPD, and DI.

As expected, DI is fully disconnected: there exists a separation result between it and every other game. This

can be attributed to the PI adversary’s goal of learning properties of the training data distribution rather

than about individual records as in the other games. RC and DPD have the strongest threat models, where

the adversary controls the entire training dataset except for one example, and hence are unsurprisingly the

hardest to reduce from other games. Finally, MI and AI are reducible to each other and their relatively weak

threat models make both RC and DPD reducible to them. For this reason, we use the MI game as the anchor

for our proofs. We next present results for a set of edges (solid lines) in Figure 2.1 that imply all other

relations.

2.3.3 Reductions

Despite reductions in either direction, MI and AI are separable by constants in the reductions, with resilience

against AI easier to achieve than resilience against MI. The following theorems proved by Yeom et al. [356]

relate MI and AI.

Theorem 1 (MI ⪯1 AI [356, Theorem 6]). For any adversary AAI against attribute inference, there exists an

adversary AMI against membership inference such that

AdvMI(AMI) = AdvAI(AAI)

Theorem 2 (AI ⪯1/m MI [356, Theorem 7]). Assume that for all z ∈ supp(D), φ(z) and π(z) uniquely

determine z. For any adversary AMI against membership inference, there exists an adversary AAI against

attribute inference such that

AdvAI(AAI) =
1

m
· AdvMI(AMI)

where m is the number of possible values for the target attribute π(z).

Resilience against DPD implies resilience against all other attacks except DI. We present the necessary

theorems below. The remaining reductions (RC ⪯ AI,DPD ⪯ AI) are implied by the ones we show.

Balle et al. [19, Theorem 3] show that training pipelines satisfying Rényi DP (and thus (ε, δ)-DP) enjoy

resilience against reconstruction attacks. In contrast, a bound on AdvDPD does not imply a nontrivial bound

on ε in (ε, δ). In fact, AdvDPD ≤ δ is equivalent to (0, δ)-DP. Thus, we require an anti-concentration bound

on the prior π and that reconstruction succeeds with probability at least 1/2 to reduce DPD to RC.
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Theorem 3 (DPD ⪯ RC). Let π be a prior over samples, S a dataset of n− 1 samples, and ℓ a symmetric

reconstruction loss satisfying the triangle inequality. Let A be an adversary against data reconstruction (RC)

w.r.t. S and π that reconstructs its challenge within error η with probability γ ≥ 1/2. Let

α = inf
z0∈supp(π)

Pr[z1 ∼ π :ℓ(z0, z1) > 2η]

There exists a DP distinguisher ADPD→RC such that

AdvDPD(ADPD→RC) ≥ 2α

(
γ − 1

2

)

Proof. Observe that 1−α is the baseline success of a reconstruction adversary with error 2η (see Equation (2.1)).

Define A′DPD→RC as in Adversary 12 and ADPD→RC as in Adversary 13.

Adversary 12: A′DPD→RC

Input: T , n
z0, z1 ∼ π
return S, z0, z1

Adversary 13: ADPD→RC

Input: T , θ, S, z0, z1
if ℓ(z0, z1) ≤ 2η then

b̃ ∼ {0, 1}
else

b̃← ASMI→RC(T , θ, S, z0, z1)
end
return b̃

In the DPD game, when ℓ(z0, z1) > 2η, which occurs with probability at least α, a similar analysis as in

Theorem 9 shows that ADPD→RC guesses b correctly whenever A succeeds in reconstructing its challenge

within error η. Otherwise, the adversary guesses with probability 1/2. Thus,

Pr
[
DPD : b̃ = b

]
≥ Pr

[
DPD : b̃ = b|ℓ(z0, z1) > 2η

]
α + Pr

[
DPD : b̃ = b|ℓ(z0, z1) ≤ 2η

]
(1− α)

= γα+ 1
2 (1− α)

The DPD advantage of ADPD→RC is

AdvDPD(ADPD→RC) = 2Pr
[
DPD : b̃ = b

]
− 1 ≥ 2α

(
γ − 1

2

)

This is an example of a generic class of reductions: In both games the adversary has the same goal and their
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advantage is identically defined, but in game MI the adversary has strictly fewer capabilities than in DPD.

Thus, any adversary against MI can be turned into a valid adversary against DPD with the same advantage.

In general, a more informed/capable adversary, such as a DP distinguisher, can be used to build a reduction

to games with a less informed/capable adversary.

Theorem 4 (DPD ⪯ MI). For any adversary AMI against membership inference, there exists a DP distinguisher

ADPD such that

AdvDPD(ADPD) = AdvMI(AMI)

Proof. Let A be an adversary against MI(T ,D, n). We construct an adversary against DPD(T , n) as in

Adversary 14 and 15. These adversary procedures, when inlined in DPD(T , n) (Algorithm 11), result in an

experiment semantically equivalent to MI(T ,D, n,A) (Algorithm 2). Thus,

AdvDPD(ADPD→MI) = AdvMI(A)

Adversary 14: A′DPD→MI

Input: T , n
S ∼ Dn−1

z0, z1 ∼ D
return S, z0, z1

Adversary 15: ADPD→MI

Input: T , θ, S, z0, z1
b̃← A(T ,D, n, θ, z0)
return b̃

Finally, we show that a membership inference attack can be turned into a reconstruction attack, with a

constant depending on the size of the support of the training data distribution.

Theorem 5 (RC ⪯1/| supp(D)| MI). For any membership inference adversary A against MI(T ,D, n) there exists

a reconstruction adversary B against RCRan(D, n,D, T ) (i.e., with prior π = D) such that

AdvRCRan(B) = 1

| supp(D)|
· AdvMI(A)

Proof. Consider Algorithm 16, which is equivalent to AI except the adversary is also given S.

The reconstruction advantage of B coincides with its advantage in AI′ in the special case where φ(z) = ⊥ and

π(z) = z, i.e.,, the adversary has to reconstruct all attributes. This is because φ(z0) = ⊥ and thus the guess
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Game 16: AI′

Input: T ,D, n,B, φ, π
S ∼ Dn−1

z0, z1 ∼ D
b ∼ {0, 1}
θ ← T (S ∪ {zb})
z̃ ← B(T ,D, n, θ, S, φ(z0))

z̃ is independent of z0 conditioned on b = 1.

AdvRCRan(B) = Pr
[
AI′ : z̃ = z0|b = 0

]
− Pr

[
AI′ : z̃ = z0|b = 1

]

The rest of the proof is similar to the proof of Theorem 2, but we present it for the sake of completeness.

Let A be an adversary against MI(T ,D, n). We construct an adversary B against RCRan(D, n,D, T ), shown

in Algorithm 17, which uses A to reconstruct its challenge.

Adversary 17: B
Input: T , θ, S
z′ ∼ supp(D)
b̃← A(T ,D, n, θ)
if b̃ = 0 then

return z′

else
return ⊥

end

Denote D(zi) the quantity Pr[z ∼ D :z = zi], i.e.,, the probability mass of D at zi and let m = | supp(D)|. In

the following, we use RC to denote the game RCRan(D, n,D, T ,B) and MI to denote MI(T ,D, n,A).

Since B guesses z̃ = z if and only if z′ = z and b̃ = 0, for any zi ∈ supp(D) we have for b̂ ∈ {0, 1}

Pr
[
AI′ : z̃=z|b= b̂, z=zi

]
=

1

m
Pr
[
AI′ : b̃=0|b= b̂, z=zi

]
(2.2)

Hence, the advantage of B is
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AdvRCRan(B) =
∑

zi∈supp(D)

D(zi)
(
Pr
[
AI′ : z̃ = z0|b = 0, z = zi

]
−Pr

[
AI′ : z̃ = z0|b = 1, z = zi

])
=

1

m

∑
zi∈supp(D)

D(zi)
(
Pr
[
AI′ : b̃ = 0|b = 0, z = zi

]
−Pr

[
AI′ : b̃ = 0|b = 1, z = zi

])
=

1

m

(
Pr
[
AI′ : b̃ = 0|b = 0

]
− Pr

[
AI′ : b̃ = 0|b = 1

])
=

1

m
AdvMI(A)

The penultimate equality holds because b and z are independent. The last equality holds because game

AI′(T ,D, n,B) matches game MI(T ,D, n,A) and so the joint distribution of b̃, b is the identical in both

games.

2.3.4 Separation Results

Theorem 6 (MI ̸⪯ DI). Resilience against membership inference does not imply resilience against property

inference.

Proof. We construct a training pipeline (T ,Db, n) that is arbitrarily resilient to membership inference for

b ∈ {0, 1}. Yet, we exhibit a property inference attack against it that achieves perfect advantage.

Let Db = Bernoulli(pb) with p0 ̸= p1 and T (S) =
∑

x∈S x. As shown in Theorem 7, the advantage of a

membership inference adversary against (T ,Db, n) is at most 1/
√
n. However, as n grows, T (S)/n is an

unbiased estimator for the mean pb, which allows a property inference adversary to easily distinguish between

D0 and D1, particularly when p0 and p1 are far apart.

Theorem 7 (MI ̸⪯ DPD). Resilience against membership inference does not imply resilience against DP

distinguishability.

Proof. We show that there are training pipelines that are arbitrarily resilient against membership inference

attacks but completely insecure against DP distinguishing attacks.

We construct a training pipeline (T ,D, n) such that the MI advantage of an adversary against it is at most

1/
√
n, and so vanishes as n grows. Yet, we exhibit a DP distinguisher against the pipeline that achieves perfect

advantage.

Let D = Bernoulli(p) and T (S) =
∑

x∈S x. Consider Algorithm 18. If the adversary were only given z0, this

game would be equivalent to the basic MI game (Algorithm 1). Since the adversary is given strictly more
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Game 18: MI′

Input: T ,D, n,A
b ∼ {0, 1}
S ∼ Dn−1

z0, z1 ∼ D
θ ← T (S ∪ {zb})
b̃← A(T ,D, n, θ, z0, z1)

information, any bound on its advantage in this game would also bound the MI advantage of adversaries

against the training pipeline. The adversary must distinguish between two simple hypotheses:

• H0 : θ ∼ Binomial(n− 1, p) + z0

• H1 : θ ∼ Binomial(n− 1, p) + z1

When z0 = z1, these coincide and the advantage of the adversary is 0. Otherwise, without loss of generality,

assume zb = b. By the Neyman-Pearson lemma, a likelihood ratio test yields the most powerful test for a

significance α (i.e.,, Type-I error, false positive rate). Let f and F be the probability mass and cumulative

distribution function of Binomial(n− 1, p), respectively. The likelihood ratio is

Λ(θ = k) =


∞ if k = 0

0 if k = n

f(k)
f(k−1) =

(n−k)p
k(1−p) otherwise

The test rejects H0 when Λ(θ) < c, for some c. The false positive rate α (the probability of rejecting H0

when H0 is true) is

Pr
H0

(Λ(θ) < c) = Pr
H0

(
(n− k)p
k(1− p)

< c

)
= Pr

H0

(
k >

np

p+ c(1− p)

)
= 1− F

(
np

p+ c(1− p)

)

The false negative rate β is

Pr
H1

(Λ(θ) ≥ c) = Pr
H1

(
(n− k)p
k(1− p)

≥ c
)

= Pr
H1

(
k ≤ np

p+ c(1− p)
− 1

)
= F

(
np

p+ c(1− p)
− 1

)
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Now, take p = 0.5 and assume that n ≥ 4 and that n is even so that the mode of Binomial(n− 1, p) is n/2.

The MI advantage of the adversary is

AdvMI(A) =
1

2
(f(0) + f(n− 1) + (1− α− β))

= f(0) +
1

2
f

(
np

p+ c(1− p)

)
≤ 1

2n−1
+
f(n/2)

2

≤ 1

2
√
n
+

1

2
√
n
=

1√
n

On the other hand, a DP distinguisher A that chooses z0 = 0, z1 = 1, an arbitrary S, and that guesses

b̃ = θ −
∑

x∈S S, has perfect advantage AdvDPD(A) = 1.

Theorem 8 (MI ̸⪯ RC). Resilience against membership inference does not imply resilience against reconstruc-

tion.

Proof. It suffices to show that the training pipeline from Theorem 7, which is resilient to membership inference

attacks, admits a reconstruction attack. For this, recall that in RC the adversary knows the dataset S (but

not the target sample z). For the pipeline (T ,D, n) given in Theorem 7, z can be perfectly reconstructed

since z = θ −
∑

x∈S x.

This last counterintuitive separation result stems from a discrepancy between adversary capabilities: The MI

game is based on an average case scenario, while the reconstruction game assumes a more informed worst-case

adversary. By considering a membership adversary matching the capabilities of the adversary in the RC

game, we can build a reduction to data reconstruction. We show this in Theorem 9, which reduces the strong

membership inference game SMI (Algorithm 11) to game RC.

Theorem 9 (SMI ⪯ RC). Let z0, z1 be two samples, S a dataset of n − 1 samples, and ℓ a symmetric

reconstruction loss satisfying the triangle inequality. Let A be an adversary against data reconstruction

(RC) w.r.t. S and the uniform prior on {z0, z1} that reconstructs its challenge with error η < ℓ(z0, z1)/2 with

probability γ. Then, there exists a strong membership inference adversary ASMI→RC such that

AdvSMI(ASMI→RC) ≥ 2γ − 1

Proof. Define ASMI→RC as in Adversary 19. For any z̃, we have from the triangle inequality,

ℓ(z0, z̃) < ℓ(z0, z1)/2 < (ℓ(z0, z̃) + ℓ(z̃, z1))/2

=⇒ ℓ(z0, z̃) < ℓ(z1, z̃)
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Adversary 19: ASMI→RC

Input: T , θ, S, z0, z1
z̃ ← A(T , θ, S)
if ℓ(z0, z̃) < ℓ(z1, z̃) then

return 0
else

return 1
end

Therefore, when b = 0 in SMI and A succeeds in reconstructing z0 within error η, ASMI→RC guesses correctly.

Similarly, when b = 1 and A succeeds in reconstructing z1 within error η, ASMI→RC guesses correctly. Thus,

ASMI→RC guesses b correctly at least with probability γ and

AdvSMI(ASMI→RC) = 2Pr
[
SMI(· · · ) : b̃ = b

]
−1 ≥ 2γ− 1

Theorem 10 (DI ̸⪯ MI). Resilience against property inference does not imply resilience against membership

inference.

Proof. We exhibit a pipeline resilient to property inference that is completely vulnerable to a membership

inference attack.

Let D be an arbitrary distribution and define Db so that z ∼ Db ≡ x ∼ D; z ← (x, b). Let n > 0 and define

T (S) = {x ∈ S|(x, y) ∈ S}

A membership inference adversary against MI(T ,D, n) that given θ, z0 = (x, y) returns 0 if and only if x ∈ S

achieves the maximum advantage, i.e.,,

1− Pr[S ∼ Dn;x ∼ D :x ∈ S]

However, a property inference adversary gets no information about b as θ and b are independent, so its

advantage is 0.

Theorem 11 (RC ̸⪯ DPD). Resilience against reconstruction does not imply resilience against DP distinguisha-

bility.

Proof. Balle et al. [19, Theorem 5] show that resilience against reconstruction w.r.t. all priors in a family

of distributions concentrated on all ordered pairs of distinct examples implies (ε, δ)-DP, and hence via

Proposition 2 resilience against DPD.
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However, resilience against a single prior π, even if its support includes all possible examples, is clearly

insufficient to guarantee resilience against DPD. To see why, consider a deterministic DPD adversary that

picks S, z0, z1. Given error bound η and success probability γ, all reconstruction adversaries can have error

larger than η when z /∈ {z0, z1} but reconstruct z ∈ {z0, z1} perfectly, as long as Pr[z ∼ π :z ∈ {z0, z1}] < γ,

i.e.,, the probability mass of the prior on {z0, z1}. The situation is worse when z0, z1 /∈ supp(π), where

resilience against reconstruction for arbitrary η, γ is compatible with perfect DPD advantage.

Theorem 12 (DPD ̸⪯ DI). Resilience against DP distinguishability does not imply resilience against property

inference.

Proof. Let ε, δ ∈ (0, 1). We build two training pipelines (T ,Db, n), b ∈ {0, 1}, that satisfy (ε, δ)-DP and thus

are resilient against DPD (see Proposition 2). We then show an adversary against DI(D0,D1, n, T ) whose

advantage grows with n.

Let Db = Bernoulli(pb) with p0 ̸= p1 and define T (S) =
∑

x∈S x + N (0, σ2) where σ2 = 2 ln(1.25/δ)ε−1.

Since the sum above has sensitivity 1 and T is the standard Gaussian mechanism, the training pipeline is

(ε, δ)-DP.

Note that for S sampled from Db, the random variable T (S) is distributed as Binomial(n, pb) +N (0, σ2). We

can use Berry-Esséen theorem to approximate the binomial distribution with a normal distribution, so that

approximately

T (S) ∼ N (npb, npb(1− pb)) +N (0, σ2)

∼ N (npb, npb(1− pb) + σ2)

The approximation error is O(
√
n). T (S)/n is an unbiased estimator for pb with variance pb(1− pb) + σ2

/n.

Since σ does not depend on n, as n grows the approximation error and the variance of the estimate decrease.

This allows a property inference adversary to distinguish between D0 and D1, particularly when p0 and p1

are far apart.

Ateniese et al. [16, Section 4.2] were the first to observe that differential privacy does not protect against

property inference and provided a practical counterexample: a differentially private k-means network traffic

classifier that nonetheless leaks the presence of traces from Google.com web traffic in their training dataset.

However, their argument remains informal, appealing to visual differences in the centroids of just two trained

models. Suri et al. [295, Section V] give a more compelling example where property inference risk remains

high on neural networks trained with DP-SGD.
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2.4 Case Study: Mixture Model Membership Inference

We present a case study where we showcase the expressive power and rigor of privacy games. In particular,

we show that a novel variant of membership inference can be decomposed into a combination of membership

and property inference. This complex relationship goes beyond the direct reductions presented in §2.3. In

our proofs, we exploit code-based reductions structured as a sequence of games; i.e., our arguments rely on

transforming code with a formal semantics.

The game we target is due to Humphries et al. [125], who use it to model membership inference attacks in the

presence of dependencies in the training data. In their game (MM in Algorithm 20), the training data follows

a two-stage mixture model. Examples in the training dataset and the target example are chosen independently

from two data distributions, Dk and Dk′ , which are chosen uniformly at random without replacement from

K possible distributions D = {D1, . . . ,DK}.

Game 20: MM G0

Input: T ,D, n,A
k ∼ [K]
k′ ∼ [K] \ {k}
S ∼ Dn

k

θ ← T (S)
b ∼ {0, 1}
if b = 0 then

z ∼ S z ∼ Dk

else
z ∼ Dk′

end
b̃← A(T ,D, n, θ, z)

Game 21: G1

Input: T ,D, n,A
k ∼ [K]
k′ ∼ [K] \ {k}
z ∼ Dk

b ∼ {0, 1}
if b = 0 then

S ∼ Dn
k

else
S ∼ Dn

k′

end
θ ← T (S)
b̃← A(T ,D, n, θ, z)

We show that MM can be decomposed into a property inference goal (inferring the training data distribution)

and a membership inference goal (inferring whether a target example has been sampled from the training

data distribution Dk or from the training dataset S).
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Theorem 13. For any adversary A against MM, there exist adversaries Ai
MI and Ai,j

DI such that

AdvMM(A) ≤ max
i∈[K]

AdvMIi(Ai
MI) + max

i ̸=j∈[K]
AdvDIi,j (A

i,j
DI )

where MIi is the membership inference game with training data distribution Di, and in DIi,j the property to

infer is whether the training data distribution is Di or Dj .

Proof. Let A be an adversary against MM. Consider G0 shown alongside MM in Algorithm 20. Its only

difference w.r.t. MM is that when b = 0, the example z is freshly sampled from the training data distribution

Dk rather than from the training dataset S. Conditioned on b = 0, k = i, distinguishing between games G0

and MM is as difficult as winning a membership inference game. We show this using a black-box reduction:

fixing k = i, we construct an adversary Ai
MI that uses A as an oracle to guess the challenge bit b in game MIi

(see Algorithm 22). Ai
MI simply forwards its inputs T , n, θ, z to A, passing to it in addition the distribution

set D.

Game 22: MIi
Input: T ,Di, n,A
S ∼ Dn

i

θ ← T (S)
b ∼ {0, 1}
if b = 0 then z ∼ S else z ∼ Di

b̃← Ai
MI(T ,Di, n, θ, z)

Adversary 23: Ai
MI

Input: T ,Di, n, θ, z
return A(T ,D, n, θ, z)

Game MM conditioned on b = 0, k = i is equivalent to MIi conditioned on b = 0. Likewise, game G0

conditioned on b = 0, k = i is equivalent to MIi conditioned on b = 1. Hence,

AdvMIi(Ai
MI) = Pr

[
MIi :¬b̃ | ¬b

]
− Pr

[
MIi :¬b̃ | b

]
= Pr

[
MM :¬b̃ | ¬b, k = i

]
− Pr

[
G0 :¬b̃ | ¬b, k = i

]
(2.3)

Game MM conditioned on b = 1 is equivalent to G0 conditioned on b = 1, and so we have

AdvMM(A) = Pr
[
MM :¬b̃ | ¬b

]
− Pr

[
MM :¬b̃ | b

]
=

1

K

K∑
i=1

Pr
[
MM :¬b̃ | ¬b, k = i

]
− Pr

[
MM :¬b̃ | b, k = i

]
=

1

K

K∑
i=1

AdvMIi(Ai
MI)+Pr

[
G0 :¬b̃ |¬b

]
−Pr

[
G0 :¬b̃ |b

]
(2.4)
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where the last equation follows from (2.3) and the fact that b and k are independent.

We reformulate G0 as G1 (see Algorithm 21). To see why both formulations are equivalent, note that

conditioned on b = 0, in both games S and z are sampled from the same distribution chosen uniformly from

D, while conditioned on b = 1, S and z are sampled each from one of two distributions sampled without

replacement from D. Since b is independently sampled in the same way, both games result in the same joint

distribution of θ, z, b, and therefore b̃, b:

Pr
[
G0 :¬b̃ | ¬b

]
= Pr

[
G1 :¬b̃ | ¬b

]
(2.5)

Pr
[
G0 :¬b̃ | b

]
= Pr

[
G1 :¬b̃ | b

]
(2.6)

Next, we show using a black-box reduction that distinguishing between the case when b = 0 and b = 1 in G1

conditioned on k = i, k′ = j is as hard as guessing the challenge bit in the property inference experiment DIi,j

shown in Algorithm 24. To do this, we construct an adversary Ai,j
DI that uses A as a black-box. Ai,j

DI perfectly

simulates the inputs to A in G1 by forwarding its own inputs and freshly sampling z from Di.

AdvDIi,j (A
i,j
DI ) = Pr

[
DIi,j :¬b̃ | ¬b

]
− Pr

[
DIi,j :¬b̃ | b

]
= Pr

[
G1 :¬b̃ |¬b, k= i, k′=j

]
−Pr

[
G1 :¬b̃ |b, k= i, k′=j

]
Putting this and (2.4)–(2.6) together, we obtain

AdvMM(A) =
1

K

K∑
i=1

AdvMIi(Ai
MI) +

1

K(K − 1)

K∑
i=1

K∑
j=1,i̸=j

AdvDIi,j (A
i,j
DI )

≤ max
i∈[K]

AdvMIi(Ai
MI) + max

i ̸=j∈[K]
AdvDIi,j (A

i,j
DI )

Game 24: DIi,j
Input: T ,Di,Dj , n,A
b ∼ {0, 1}
if b = 0 then

S ∼ Dn
i

else
S ∼ Dn

j

end
θ ← T (S)
b̃← Ai,j

DI (T ,Di,Dj , n, θ)



Formalizing Inference Risks 36

Adversary 25: Ai,j
DI

Input: T ,Di,Dj , n, θ
z ∼ Di

return A(T ,D, n, θ, z)

2.5 Related Work

Alternatives. We discuss below informal and formal alternatives to games to express privacy proper-

ties.

A key example of a formal property is Differential Privacy [74]. The definition of Differential privacy is

relational, in that it compares the probability of events in two alternative worlds. DP abstracts from many

details that are relevant for threat modelling, such as adversary capabilities, goals, and background knowledge,

as well as the way datasets are created. This has led to disagreements in the literature about the consequences

of differential privacy (see [316]).

A key example of an informal account of privacy properties is the Opinion 05/2014 on Anonymization

Techniques [249] that complements the EU General Data Protection Regulation (GDPR) with practical

recommendations for the use of anonymization techniques to meet the requirements set out by the regulator.

In this influential document, the authors identify three privacy risks: singling out, linkability, and inference.

They analyze the suitability of different anonymization techniques—including k-anonymity and DP—for

mitigating these risks, but the discussion remains inconclusive due to the lack of precise definitions. Subse-

quent research [58] rigorously revisited the notion of singling out and suggested reconsidering the Opinion

recommendations.

Game-based definitions address shortcomings of both alternatives: They make the threat model and assump-

tions explicit and precise, which helps disambiguate interpretations.

Game-based privacy proofs. Nissim et al. [234] construct a privacy game that reflects the requirements of

the U.S. Family Educational Rights and Privacy Act (FERPA) for protecting privacy in releases of education

records, and show in a proof structured as a sequence of games that DP is enough to satisfy these requirements.

While constructing the game, they identify dimensions similar to our anatomy in §2.1.

Surveys and taxonomies on privacy. Several papers propose taxonomies of privacy attacks against

machine learning systems [62, 185, 261]. Papernot et al. [247] focus on systematizing the possible attack

surfaces of standard machine learning pipelines. Desfontaines and Pejó [67] systematically study variants

and extensions of differential privacy. Before attacks against ML systems were demonstrated, Li et al. [178]
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proposed a unifying framework for membership and differential privacy definitions mainly applicable to

database systems.

2.6 Conclusion

This chapter provides an overview of different privacy games, their current and potential applications, and

their limitations.

Given the wide range of privacy games available in the literature, it is natural to ask whether there is a

canonical game that should be used instead of others. We believe this is not the case, i.e., no single game is

the best choice in all circumstances, as subtle variations in threat scenarios can significantly impact privacy

assessments. Instead, we recommend that users leverage the concepts presented in this chapter to tailor

games according to their specific threat models.

Analyzing privacy risks in machine learning extends beyond the realm of researchers. Privacy managers

and auditors also play a crucial role in assessing compliance with regulatory and contractual obligations.

Currently, privacy managers rely on empirical privacy evaluations, formal guarantees of mechanisms like

DP-SGD, and informal documents such as the Opinion 05/2014 [249] from the European Commission’s

Article 29 Working Party. Incorporating privacy games can aid in this process by making the threat model

and assumptions about dataset creation and training explicit, thus clarifying interpretations and abstracting

application scenarios based on their privacy properties.

Privacy games are sequential probabilistic programs and may not directly address concurrent computations.

As a result, their applicability to scenarios like federated learning (FL) is limited, given the complexity of

modeling parallel interactions between different parties. The situation is similar for cryptographic games,

where process calculi are used instead of games for modeling more complex multi-party interactions [32, 213].

It is an open question whether these calculi could also be used in the context of concurrent ML scenarios

such as FL.



Chapter 3

Distribution Inference 1

In this chapter, we formally setup distribution inference with a cryptographic-style inference game (§3.1).

We then describe nleaked, a metric that we propose for measuring leakage while accounting for the inherent

“difficulty” of the inference task (§3.2), followed by an exploration of various inference attacks (§3.3). We

present experiments on various datasets (§3.4), including our potent KL Divergence Attack (§3.5) and how

performance fluctuates as certain implicit assumptions of a black-box setup are relaxed (§3.6). Finally, we

explore possible defenses for distribution inference (§3.7).

3.1 Formalization

In a distribution inference attack, an adversary aims to infer some statistical property of the training dataset,

such as the proportion of women in a dataset used to train a smile-detection model [17]. In the research

literature, such attacks have previously been called property inference and attribute inference (confusingly,

since this is also used to refer to a type of dataset inference where the adversary infers an unknown sensitive

feature of records in the training dataset [92]), and various other terms.

The privacy threat posed by membership inference attacks is well recognized—if an adversary can infer

the presence of a particular user record in a training dataset of diabetes patients, it would violate privacy

laws limiting medical disclosure. Distribution inference attacks pose a less obvious threat but can also be

dangerous. As one example, consider a financial organization that trains a loan scoring model on some of its

historical data. An adversary may use a distribution inference attack to infer the proportion of the training

data having a specific value for some protected attribute (e.g., race), which might be a sensitive property of
1This chapter is largely based on Anshuman Suri and David Evans, Formalizing and Estimating Distribution Inference

Risks, in Proceedings on Privacy Enhancing Technologies (PETS), 2022 and Anshuman Suri, Yifu Lu, Yanjin Chen, David
Evans, Dissecting Distribution Inference, in IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), 2023.
Code relevant to this chapter is available as a Python package at https://github.com/iamgroot42/propertyinference.
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the training dataset. Distribution inference attacks can also pose a threat to distributed training: curious

users wanting to learn sensitive information about training distributions of fellow participants, which are

competitors in settings like cross-silo federated learning [148], thus leaking sensitive information. Other

examples include inferring the sentiment of emails in a company from a spam classifier, or inferring the volume

of transactions from fraud detection systems [199]. Inferring statistical properties of a training distribution

can also be used to enhance membership inference attacks or to reveal that a model was trained on a biased

dataset [376].

Previous works have used several different informal notions of property inference attacks (e.g., [100, 139, 371]),

but there is no established general formal definition of distribution inference. We formalize distribution

inference attacks based on a critical insight: the key difference between these attacks and other inference

attacks is that the adversary’s goal in the former is to learn about the training distribution, not about the

specific training dataset. Dataset inference attacks, such as membership inference [279], attribute inference

[92], and ownership-resolution [200] operate on the level of training records. Attacks like membership inference

are directly connected to differential privacy which bounds the ability to distinguish neighboring datasets. By

contrast, distribution inference attacks attempt to learn statistical properties of the underlying distribution

from which the training dataset is sampled. Having a formal definition and a clear threat model can be useful

in several ways—quantifying information leakage, assessing and comparing the practicality of different threat

models, and drawing possible links between distribution inference risk and other distribution-level properties

such as robustness and fairness.

Threat model. We model the adversary’s knowledge of the underlying distribution through data sampled

from that distribution. For complex, high-dimensional non-synthetic data, this is usually the only way to

capture knowledge of a data distribution. While the threat model focuses on distributions, we use actual

non-overlapping sampled data to empirically model those distributions.

A natural extension of our threat model incorporates a poisoning opportunity where the adversary can

participate in the training process itself. Such an adversary may poison the training dataset by injecting

adversarially crafted datapoints (explored by Mahloujifar et al. [199]) or control the training procedure

itself to introduce some Trojan in the model. Recent works look at a similar scenario where the adversary

participates in the learning process via a federated-learning setup, launching attribute-reconstruction attacks

using epoch-averaged model gradients [194]. In this chapter, we only consider adversaries with no ability

to observe or influence the training process. We explore adversaries that can poison the training process in

§4.3.

Setup. Let D = (X ,Y) be a public distribution between data, X , and its corresponding labels, Y. We

assume both the model trainer T and adversary A have access to D. Both parties also have access to
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two functions, G0 and G1, that transform distributions. Inferring properties of the distribution can reveal

sensitive information in many scenarios, which can be captured by suitable choices of G0 and G1. Using such

functions along with the underlying distribution D makes the setup less restrictive than defining two arbitrary

distributions—since the functions G0, G1, and D are considered public knowledge, anyone can recreate these

distributions. Using functions on the same distribution D emphasizes the fact that these two distributions

stem from the same underlying distribution D, enabling the definition to capture a wide class of possible

attack goals and scenarios by selecting appropriate functions for G0 and G1.

To illustrate these definitions, we present a concrete example inspired by Mahloujifar et al. [199]. Let D be a

distribution of emails with labels for spam/ham. G0 is applied over D to yield a modified distribution G0(D)

with 0.8 probability of sampling an email that has negative sentiment i.e., a dataset sampled uniformly at

random from this distribution would have approximately 80% of the emails in it with negative sentiment.

Similarly, G1(D) could be another distribution with this probability as 0.5 (equally likely to be positive or

negative). The adversary thus wants to know if the training distribution is biased, which, if inferred near the

financial quarter, can be used to predict if the company is performing below expectations. Alternatively, an

ambitious adversary could even consider directly inferring [109] this proportion (which was not considered

in Mahloujifar et al. [199], but we explore in Theorem 3.2.3 and our regression experiments on other

datasets).

We propose a general and straightforward experiment to formalize property inference attacks, inspired by

Yeom et al.’s cryptographic game definition of membership inference [355]. In our cryptographic game

definition, T picks one of the G{0,1} distribution transformers at random and samples a dataset S from the

resulting distribution. Given access to a model M trained on S, the adversary aims to infer which of the two

distribution mappers was used:

Trainer T Adversary A

1 : b←$ {0, 1}
2 : S ∼ Gb(D)

3 : M
train←−−− S

4 : M

5 : b̂ = H(M)

We assume the adversary has no control over the training process (Step 3). For cases where the adversary

has access to the training data, it can trivially infer desired properties by inspecting it. Our definition could

be adapted to other scenarios such as federated learning [180] by providing additional information to the

adversary or allowing the adversary to have some control over S, but we do not consider such settings in this

chapter.
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If A can successfully predict b via b̂, then it can determine which of the training distributions was used. The

advantage of the adversary A using algorithm H is defined as:

AdvH =
∣∣∣Pr[b̂ ∣∣∣ b]− Pr

[
b̂
∣∣∣¬ b]∣∣∣.

This advantage is negligible when the adversary does no better than random guessing. We do not assume the

adversary knows how training data is collected, or has any access to it: just that it knows the underlying

common distribution D, and has a goal of distinguishing between sub-distributions G0(D), G1(D) of that

distribution. The adversary does not need to know the actual training distribution—indeed, learning about

this is the goal of the attack. They just need to have hypotheses worth testing, and thus G0 and G1 are

defined by the adversary based on what they want to test.

Limitations of the Definition. This definition is simple and general, but does not capture all kinds of

distribution inference attacks. It assumes a setting where the adversary attempts to distinguish between

two particular distributions, both of which are defined by the adversary. Multiple experiments could extend

the definition to a set of possible distributions, but the definition does not directly capture the regression

attacks we demonstrate where the adversary is estimating what proportion of a training dataset has a given

property directly. Our definition also assumes the adversary has prior knowledge of the two sub-distributions

to distinguish. Some knowledge of the statistical property the adversary wants to learn about the victim’s

training distribution is inherent in the nature of a distribution inference attack, but this may not always be

in the form of knowledge of possible distributions. In our experiments, we model an adversaries knowledge of

the underlying distribution through a sampled, non-overlapping dataset, which the adversary may then use

to construct approximations of different sub-distributions.

Applying the Definition. Seminal works on property inference [16, 95] involve a model trained either on

the original dataset or a version modified to be biased towards some chosen attribute. Our definition can be

used to describe these attacks by setting G0 to the identity function (so G0(D) is original distribution D) and

G1 to a filter that adjusts the distribution to have a specified ratio over the desired attribute. With respect

to a binary property function, f : X −→ {0, 1}, D can be characterized using a generative probability density

function:

ρD(x) =
∑

c∈{0,1}

p(c) · p(x | c), (3.1)

where p(c) is a multinomial distribution representing the probabilities over the desired (binary) property

function f and its possible values c, and p(x | c) is the generative conditional probability density function.
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Then, G1(D) can be expressed using the following probability density function, with a prior p̂:

ρG1(D)(x) =
∑

c∈{0,1}

p̂(c) · p(x | c), p̂(1) = α, p̂(0) = 1− α, (3.2)

where α is the probability of a randomly sampled point satisfying the property function f . Thus, a uniformly

randomly sampled dataset from G1(D) would have an expected ratio of α of its members satisfying f .

Additionally, we can modify G0 with a similarly adjusted prior, enabling the adversary to distinguish between

any two arbitrary ratios [371]. In fact, our definition subsumes the one proposed by Mahloujifar et al. [199]

for the case of ratios over Boolean functions via the following instantiation:

D−, D+ = G0(D), G1(D)

t0, t1 = α0, α1, (3.3)

along with setting c = f(x) in Equation 3.2.

Our definition, however, is not limited to describing proportional properties. For example, it can also be used

to define the distributions over degrees for graph-based datasets, and infer properties of the underlying degree

distributions. For this case, we represent graphs as samples from degree distributions: data with different

degrees is sampled and then combined together in one graph. Since the adversary only cares about properties

pertaining to the degrees of nodes (and not their attributes or other characteristics), it is safe to represent

these samples purely in terms of degree distributions. This can then be used to target properties such as the

mean-node degree of graphs, as we show in §3.4.3.

3.2 Measuring leakage

Assessing the power of an attack is important for understanding it scientifically, and can also be of practical

importance for both the victim and the adversary. Consider the most explored case in the literature—ratios

of members satisfying a Boolean function. Intuition suggests that distributions with more different ratios

(e.g., 0.2 and 0.9) would be easier to distinguish than more similar ones (e.g., 0.2 and 0.3), and most previous

distributions inference results have focused on highly disparate distributions (often only showing meaningful

distinguishing power when one of the ratios is at a 0.0 or 1.0 extreme).

Our framework enables us to quantify the amount of leakage observed in an attack by relating what an

adversary is able to learn from a disclosed model to what they would learn from directly sampling examples

from the training distribution. As a setup, we provide the following lemma shows that gives an upper bound

on the distinguishing accuracy (which we define as the probability of an adversary correctly inferring the
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underlying training distribution of a model) of any statistical test distinguishing between two distributions

that differ in the proportion of records satisfying some Boolean property, using n samples:

Lemma 3.2.1. Given two Boolean-property proportional distributions G0(D), G1(D) with proportion values

α0, α1 derived from the same underlying distribution D, the distinguishing accuracy between models trained

on datasets of size n from these distributions is at most

1

2
+

min

{√
1−

(
min(α0,α1)
max(α0,α1)

)n
,

√
1−

(
1−max(α0,α1)
1−min(α0,α1)

)n}
2

.

Proof. Assume the adversary can fully recover a dataset S (of size n) from some model M trained on it.

Assume ψ(·) is an estimator for testing the hypothesis i.e., ψ(S) = b∈{0,1} means that S comes from Gb(D).

Assuming an equal likelihood of the chosen dataset S being from either distributions, we have:

Error =
1

2

(
PrS←G0(D)n

[
ψ(S) = 1

]
+ PrS←G1(D)n

[
ψ(S) = 0

])
=

1

2
(Type I Error + Type II Error).

Combining with the result from [207]:

Error ≥ 1

2
− 1

2
δ(G0(D)n,G1(D)n) (3.4)

⇒ Accuracy ≤ 1

2
+

1

2
δ(G0(D)n,G1(D)n), (3.5)

where δ() is the total variation distance between two probability measures, and Gb∈{0,1}(D)n refers to the

distribution of n samples from Gb∈{0,1}(D).. Thus, the maximum accuracy while differentiating between

datasets sampled from either distribution is bounded by the total variation distance between them. Let ρb(x)

be the generative probability density function for some sample x drawn from Gb(D), for b ∈ {0, 1}. This

density function can then be broken down into a multinomial distribution and priors as:

ρb(x) = (1− αb)pb(x|0) + αbpb(x|1), (3.6)

where αb is the prior for p(1) corresponding to Gb(D), and ρb(x|1) is the associated conditional generative

probability density function. Note that p0(x|0) = p1(x|0) and p0(x|1) = p1(x|1), since they both come from

the underlying distribution D. Without loss of generality, let α0 > α1 (we omit the case of same ratios, since
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that is trivially indistinguishable). Then:

α1ρ0(x)− α0ρ1(x) = α1((1− α0)p0(x|0) + α0p0(x|1))− α0((1− α1)p1(x|0) + α1p1(x|1))

= α1p0(x|0)− α1α0p0(x|0) + α0α1p0(x|1)− (α0p1(x|0)− α0α1p1(x|0) + α1α0p1(x|1))

= (α1 − α0)p0(x|0) ≤ 0

⇒ ρ0(x)

ρ1(x)
≤ α0

α1
(3.7)

Using this inequality, the relative entropy (KL divergence) from G1(D) to G0(D) can be written as:

DKL(G0(D) ∥ G1(D)) =
∫
ρ0(x) log

(
ρ0(x)

ρ1(x)

)
dx ≤

∫
ρ0(x) log

(
α0

α1

)
dx (3.8)

= log

(
α0

α1

)∫
ρ0(x)dx = log

(
α0

α1

)
(3.9)

Since the function f is binary, a prior of αb for p(f(x) = 1) implies a prior of (1 − αb) for p(f(x) = 0).

Utilizing this symmetry, we can similarly upper-bound DKL(G1(D) ∥ G0(D)) with log
(

1−α1

1−α0

)
. Removing the

α0 ≥ α1 assumption and replacing with the max/min of these two appropriately, we get:

DKL(G0(D) ∥ G1(D)) ≤ log

(
max(α0, α1)

min(α0, α1)

)
(3.10)

DKL(G1(D) ∥ G0(D)) ≤ log

(
1−min(α0, α1)

1−max(α0, α1)

)

From [133], we know that:

DKL(G0(D)n ∥ G1(D)n) = nDKL(G0(D) ∥ G1(D)) (3.11)

Thus, when using a dataset S of size |S| = n, the equivalent KL-divergence can be bounded by:

DKL(G0(D)n∥G1(D)n) ≤ n log
(
max(α0, α1)

min(α0, α1)

)
(3.12)

DKL(G1(D)n∥G0(D)n) ≤ n log
(
1−min(α0, α1)

1−max(α0, α1)

)

Using the relation between total variation distance and KL-divergence [317], we know:

δ(G0(D)n,G1(D)n) ≤
√

1− e−DKL(G0(D)n ∥ G1(D)n) (3.13)

=

√
1− e−nlog

(
max(α0,α1)

min(α0,α1)

)
=

√
1−

(
min(α0, α1)

max(α0, α1)

)n

(3.14)
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Similarly, using DKL(G1(D) ∥ G0(D)) in the inequality above we get:

δ(G0(D)n,G1(D)n) ≤
√

1− e−DKL(G1(D)n ∥ G0(D)n) (3.15)

=

√
1− e−nlog

(
1−min(α0,α1)

1−max(α0,α1)

)
=

√
1−

(
1−max(α0, α1)

1−min(α0, α1)

)n

(3.16)

Since the function f() is boolean, an adversary can choose to focus on a property value of 0 or 1, and infer

the ratio of one using the other. Thus, any two ratios (α0, α1) can be alternatively seen as (1− α0, 1− α1).

Combining the two inequalities above and plugging them back in (3.5), we get:

Accuracy ≤ 1

2
+

min

{√
1−

(
min(α0,α1)
max(α0,α1)

)n
,

√
1−

(
1−max(α0,α1)
1−min(α0,α1)

)n}
2

(3.17)

Note that the proof of this bound hinges on both the distributions originating from the same underlying

distribution D, which is why we use G0(D), G1(D) instead of some arbitrarily defined distributions D0, D1.

First, we consider the most powerful possible adversary as one that can perfectly reconstruct training records

from the model. The most that could be leaked to such an adversary is a perfect reconstruction of all the

training records. Of course, we do not expect an adversary to reconstruct the training dataset fully, and an

adversary can succeed in a high confidence distribution inference attack without being able to reconstruct

any training records perfectly. Such a perspective is useful, though, for quantifying the power of an attack in

a way that allows comparisons between attacks distinguishing distributions with different levels of variation.

For some observed performance ω via an attack, we can compute the corresponding value of n that would

give an upper bound on accuracy as ω. This value of n, which we term as nleaked, thus quantifies the size

of the dataset “leaked” by the attack. In other words, it is equivalent to the adversary being able to draw

nleaked samples from the training distribution and executing an optimal distinguishing statistical test. The

following theorem shows how to compute nleaked for an observed attack for the kind of distributions described

above.

Theorem 3.2.2. Given two Boolean-property proportional distributions G0(D), G1(D) with proportion values

α0, α1 derived from the same underlying distribution D, and distinguishing accuracy ω using some attack,

nleaked =
log(4ω(1− ω))

log(max
(

min(α0,α1)
max(α0,α1)

, 1−max(α0,α1)
1−min(α0,α1)

)
)
.

Proof. Consider Lemma 3.2.1: let ω be the observed distinguishing accuracy for some attack. Let nleaked

be the effective value of n corresponding to the given attack, i.e. Equating it with the best distinguishing
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accuracy for this value of n, we can compute nleaked. If min(α0,α1)
max(α0,α1)

≥ 1−max(α0,α1)
1−min(α0,α1)

:

2ω − 1 =

√
1−

(
min(α0, α1)

max(α0, α1)

)nleaked

(3.18)

log(1− (2ω − 1)2) = nleaked

(
log

(
min(α0, α1)

max(α0, α1)

))
(3.19)

nleaked =
log(4ω(1− ω))

log
(

min(α0,α1)
max(α0,α1)

) (3.20)

Similarly, for the case of min(α0,α1)
max(α0,α1)

< 1−max(α0,α1)
1−min(α0,α1)

, we get:

nleaked =
log(4ω(1− ω))

log
(

1−max(α0,α1)
1−min(α0,α1)

) (3.21)

Combining these two cases, we get:

nleaked =
log(4ω(1− ω))

log

(
max

(
min(α0,α1)
max(α0,α1)

, 1−max(α0,α1)
1−min(α0,α1)

)) (3.22)

A high value of nleaked means the adversary is learning a lot about the underlying distribution, just using

the given model. It helps put the attack’s strength in perspective, given how similar the two distributions

are. For instance, distinguishing between α0 = 0.5 and α1 = 1.0 with distinguishing accuracy ω = 0.95

corresponds to nleaked ≈ 3, whereas distinguishing between α0 = 0.5 and α1 = 0.52 with the same accuracy

would correspond to nleaked ≈ 42. This aligns with intuition: the latter distribution is more similar and thus,

should be “harder” for an attack to achieve the same kind of performance, and this notion is exactly what

nleaked aims to capture.

Note that this analysis is based on modeling an "optimal attack” where the adversary is able to directly

sample records from the training distribution. This is just for deriving an expression for nleaked, and not

meant to assume any such attack. The expression above (and subsequent expressions for nleaked) is a useful

measure of any attack’s effectiveness that quantifies the leakage observed in the attack by relating it to the

amount of information that would be leaked in an "optimal attack” where the adversary is just sampling

training distribution records directly rather than inferring properties from a revealed model.

Regression over α. The case of distinguishing between ratios can be further extended to consider an

adversary that wishes to directly predict the proportion value α for a given distribution. The following

theorem shows how to compute nleaked for an observed attack with square error ω.
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Theorem 3.2.3. Given a Boolean-property proportional distribution with proportion value α, and square

error ω observed using some attack,

nleaked =
α(1− α)

ω
.

Proof. Assume the adversary can fully recover a dataset S (of size N) from some model M trained on it.

Let n1 be the number of entries in S that are 1, and n0 0 such that n0 + n1 = N . Then, the conditional

probability density function of the underlying distribution D having Pr[1] = z (assume all z are equally

likely), given the observed dataset S, can be written using the continuous Bayes’ rule as:

Pr[z |S ] =
Pr[S | z ] Pr[z]∫ 1

0
Pr[S |x ] Pr[x]dx

=

(
N
n1

)
zn1(1− z)n0∫ 1

0

(
N
n1

)
xn1(1− x)n0dx

= zn1(1− z)n0
Γ(n0 + n1 + 2)

Γ(n0 + 1)Γ(n1 + 1)
(3.23)

The above conditional probability is maximized when z = n1

N i.e., the guessed ratio is the ratio observed in

the given sample S. Then, we can compute the expected square error over all possible datasets of size N ,

given that the distribution they were sampled from has a proportion value α:

E
[
(z − α)2

]
= E

[
z2
]
+ α2 − 2αE[z] (3.24)

We can then compute E[z] as:

N∑
n1=0

n1
N

(
N

n1

)
(α)n1(1− α)N−n1 =

1

N

N∑
n1=0

n1

(
N

n1

)
(α)n1(1− α)N−n1 = α (3.25)

Similarly, E
[
z2
]

can be computed as:

N∑
n1=0

(
n1
N

)2
(
N

n1

)
(α)n1(1− α)N−n1 =

1

N2

N∑
n1=0

n21

(
N

n1

)
(α)n1(1− α)N−n1 = α2 +

α(1− α)
N

(3.26)

Plugging (3.25) and (3.26) in (3.24), we get:

E
[
(z − α)2

]
=
α(1− α)

N
(3.27)

Thus, for an observed square error ω for some attack, nleaked can be computed as:

nleaked =
α(1− α)

ω
(3.28)

This result extends our notion of nleaked to adversaries that directly infer the underlying ratio α, a more

realistic adversary goal that we also explore in our experiments.
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Graphs as Distributions of Natural Numbers. Similar to the ratio case, our framework enables us

to compute nleaked when working with distributions of natural numbers. For the purpose of distinguishing

between graph distributions, this notion of ‘distribution of numbers’ can be extended to graphs by studying

their degree distributions. As a setup, we provide the following lemma, that gives an upper bound on the

distinguishing accuracy of any statistical test distinguishing between two distributions following Zipf’s law,

using n samples:

Lemma 3.2.4. Given two distributions of natural numbers, G0(D) and G1(D) that follow Zipf’s law, with

N0 and N1 elements (without loss of generality assume N0 ≤ N1) and parameters s0, s1 respectively, the

distinguishing accuracy between models trained on graphs with n nodes from these distributions is at most:

1

2
+

√
1−

(
HN0,s0

HN1,s1
N

(s0−s1)I[s1>s0]
0

)n
2

, where Hn,s =
∑N

k=1 k
−s is the nth generalized Harmonic number of order s.

Proof. We assume that both degree distributions follow Zipf’s law, such that the PDF for either of G0 or G1
can be written as

ρb(x) =
x−sb

HNb,sb

(3.29)

where HN,s is the N th generalized harmonic number of order s, Nb corresponds to the maximum degree (with

nonzero probability) GB(D), and sb determines the spread of the distribution. Since the inequality between

the total variation distance and accuracy is independent of the underlying distributions, (3.5) applies in this

case too.

Without loss of generality, let N1 ≥ N0. In that case, the relative entropy from G0 to G1 would be undefined,

since support(G1) ̸⊆ support(G0). Computing the relative entropy from G1 to G0, we get:

DKL(G0(D) ∥ G1(D)) =
N1∑
n=1

ρ0(x) log

(
ρ0(x)

ρ1(x)

)
(3.30)
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Since ρ0(x) only applies until N0, it evaluates to 0 for n > N0. Substituting:

N0∑
n=1

ρ0(x) log

(
ρ0(x)

ρ1(x)

)
+

N1∑
n=N0+1

0 · log
(

0

ρ1(x)

)
(3.31)

=
1

HN0,s0

(
N0∑
n=1

x−s0
(
log

(
HN1,s1

HN0,s0

)
+ (s1 − s0) log(x)

))
(3.32)

=
1

HN0,s0

(
HN0,s0 log

(
HN1,s1

HN0,s0

)
+ (s1 − s0)

N0∑
n=1

x−s0 log(x)

)
(3.33)

= log

(
HN1,s1

HN0,s0

)
+
s1 − s0
HN0,s0

N0∑
n=1

x−s0 log(x) (3.34)

If s1 > s0:

DKL(G0(D) ∥ G1(D)) ≤ log

(
HN1,s1

HN0,s0

)
+
s1 − s0
HN0,s0

N0∑
n=1

x−s0 log(N0) (3.35)

= log

(
HN1,s1

HN0,s0

)
+ (s1 − s0) log(N0) (3.36)

If s1 ≤ s0:

DKL(G0(D) ∥ G1(D)) ≤ log

(
HN1,s1

HN0,s0

)
(3.37)

Computing the total variation distance for n samples according to (3.13) for both cases, we get:

δ(G0(D)n,G1(D)n) ≤


√
1−

(
HN0,s0

HN1,s1
Ns0−s1

0

)n
, if s1 > s0√

1−
(

HN0,s0

HN1,s1

)n
otherwise

Plugging this in (3.5) to get an upper bound on the distinguishing accuracy.

Accuracy ≤ 1

2
+

√
1−

(
HN0,s0

HN1,s1
N

(s0−s1)I[s1>s0]
0

)n
2

(3.38)

Together, these two parameters are related to the expected mean of the distribution αb (mean node-degree,

in the case of degree distributions) as:

αb =
HNb,sb−1

HNb,sb

(3.39)
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Similar to the case of different Boolean-property ratios distributions, we can compute nleaked for a given

attack and its observed performance:

Theorem 3.2.5. Given two distributions of natural numbers distributions G0(D), G1(D) that follow Zipf’s

law, with N0, N1 elements (without loss of generality assume N0 ≤ N1) and parameters s0, s1 respectively,

and observed distinguishing accuracy ω,

nleaked =
log(4ω(1− ω))

log
(

HN0,s0

HN1,s1

)
+ (s0 − s1)I[s1 > s0] log(N0)

.

Proof. Consider Lemma 3.2.4: let ω be the observed distinguishing accuracy for some attack. Let nleaked

be the effective value of n corresponding to the given attack, i.e. Equating it with the best distinguishing

accuracy for this value of n, we get:

ω =
1

2
+

√
1−

(
HN0,s0

HN1,s1
N

(s0−s1)I[s1>s0]
0

)nleaked

2
(3.40)

log(1− (2ω − 1)2) = nleaked ·

(
log

(
HN0,s0

HN1,s1

)
+ (s0 − s1)I[s1 > s0] log(N0)

)
(3.41)

nleaked =
log(4ω(1− ω))

log
(

HN0,s0

HN1,s1

)
+ (s0 − s1)I[s1 > s0] log(N0)

(3.42)

Compared to the ratio distinguishing attacks, attacks on the ogbn-arxiv dataset are much more successful:

reaching near-perfect distinguishing accuracies as well as the highest nleaked numbers (Table 3.2).

3.3 Attacks

We now begin with the description of attacks that an adversary can use to infer the training distribution

of a target model. We propose three black-box attacks, Loss Test, Threshold Test, and KL Divergence

Attack, and two white-box attacks: an extension of an existing attack (Permutation Invariant Networks) for

convolutional networks, and a new attack (Affinity Graph Attack). These attacks do not assume anything

about the underlying distributions other than the availability of the underlying distribution and knowledge of

the public G0 and G1 transformers.

3.3.1 Black-Box Attacks

Black-box attacks assume the adversary has the ability to submit inputs to the trained model and observe

the response but does not have direct access to the model (parameters). In addition, the adversary has access

to some representative data from some distribution D, and seeks to infer which of the transformations, G0 or
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G1, corresponds to the victim’s training distribution. Using knowledge of D and the transformation functions

G0 and G1, the adversary is able to train shadow models locally. Knowledge of the candidate distributions is

necessary to be able to distinguish between them, and it is reasonable to assume an adversary with enough

computational resources to train models locally. Most research assumes that the victim and adversary use the

same model architecture (e.g., [214, 371]), and that the adversary has access to model prediction confidence

vectors (e.g., [348, 371]). We evaluate the impact of relaxing some of these assumptions in §3.6.

3.3.1.1 Loss Test

A simple algorithm H is to test the loss of the model on datasets from the two candidate distributions, and

conclude that the training distribution is closest to whichever test dataset the model performs better on. For

data samples Sb∈{0,1} ∼ Gb(D):

b̂ = I[ℓ(M,S0) > ℓ(M,S1)], (3.43)

where ℓ(M,S) is the loss of model M on some data S, and I is the indicator function. Intuitively, a model

would have lower loss on data sampled from the training distribution, compared to another distribution. This

method does not require the adversary to train models, but only to have access to suitable test distributions

and the ability to submit samples to the target model. The data held by the adversary here is not overlapping

with the data used by the victim to train its models, ruling out any potential for leakage via shared data.

Although we use loss in Equation (3.43), the adversary can use any metric (like accuracy).

3.3.1.2 Threshold Test

The Loss Test assumption may not hold for some pairs of distributions if one distribution is inherently easier

to classify than the other. To account for this, we consider an attack where the adversary trains and uses

a small (balanced) sample of models from each distribution to identify which of S0 or S1 maximizes the

performance gap between its models.

γc∈{0,1} =
∑
i

ℓ(M i
0, Sc)−

∑
i

ℓ(M i
1, Sc)

k = I[|γ0| < |γ1|], (3.44)

where M i
{0,1} is trained on a dataset sampled from G{0,1}(D) respectively. After identifying k∈{0,1}, the

adversary derives a threshold λ to maximize accuracy distinguishing between models trained on datasets
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from the two distributions (using a simple linear search). Assuming γk is positive,

δ(Λ) =
∑
i

I[acc(M i
0, Sk) ≥ Λ] +

∑
i

I[acc(M i
1, Sk) < Λ]

λ =argmax
Λ

δ(Λ). (3.45)

The adversary then predicts b̂ = I[acc(M,Sk) ≥ λ] (or with a < inequality when γk < 0). Thus, the adversary

uses a sample of local models to derive a classification rule, which it then uses to infer the training distribution

of the target model. For the same reasons as Loss Test the data used by the adversary here, for both training

its local set of models and computing the threshold), is non-overlapping with the victim’s data.

3.3.1.3 KL Divergence Attack (KL)

Recent work by Hartley and Tsaftaris [108] demonstrates how the presence of unique features, even if present

in one training record, can impact output probability distributions. Motivated by their use of KL divergence

to differentiate between the two scenarios (instance present or not), we propose an attack that compares the

KL divergence in output probabilities of the victim model using local models.

The adversary prepares by training a collection of local models {M1
0 ,M

2
0 , ...M

1
1 ,M

2
1 , ...}, where M i

0 and M i
1

(for some i) denote models from training distributions G0(D), G1(D) respectively. Let X denote some data

randomly sampled by the adversary from the distributions G0(D) and G1(D), with an equal number of samples

(|X|/2) from both distributions. We first define a way to estimate the KL-Divergence between two models

using predictions:

E[DKL(N ∥M)] = Ex∈X

[∑
c∈C

N(x)c log

(
N(x)c
M(x)c

)]
(3.46)

where M(x)c corresponds to the prediction probability corresponding to class c (out of all classes C) for some

point x for model M , and the expectation E[] is taken over the adversary’s data X. We use the same data

X in computing KL-Divergence values. Next, the adversary defines a “weighted vote” for a pair of models

(N,P ) with respect to M :

λ(M,N,P ) = E[DKL(N ∥M)]− E[DKL(P ∥M)]. (3.47)

A positive quantity λ(M,N,P ) thus indicates that the model M has its predictions distributed closer to P

than N , since a lower KL-divergence between distributions indicates higher similarity. Using its collection of

local models trained on the two candidate distributions, the adversary then computes and aggregates this
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“weighted vote” across all pairs of its local models (M i
0,M

j
1 ):

b̂ = I
[∑

i

∑
j

λ(M,M i
0,M

j
1 ) > 0

]
(3.48)

The rule above thus effectively checks all its pairs of local models and compares similarities in prediction

distributions with a given victim model. Since the core idea here is to compare distributions of model

predictions, other metrics to compare distributions, like Jensen-Shannon Divergence, or TV Distance, can be

used instead of KL-Divergence.

3.3.2 White-Box Attacks

In the white-box setting, the adversary additionally has direct access to the victim’s model including its

trained parameters. Although this access model assumes a stronger adversary, it is a realistic adversary for

many scenarios, like when models are deployed on client devices. It is also useful in two ways: 1) gauging

the extent of inference leakage, helping bound risk and understand it better, and 2) studying patterns and

trends across properties and models to help better understand distribution risk and come closer to inventing

effective defenses.

3.3.2.1 Meta-Classifiers

The state-of-the-art property inference attack uses Permutation-Invariant Networks as meta-classifiers [95].

The meta-classifiers take as input model parameters (weights, bias) and predict the training distribution

directly. This architecture is designed to be invariant to neuron orderings inside neural network layers, which

it achieves by utilizing the DeepSets [362] architecture.Neuron-ordering invariance is achieved via a set of

transforming functions, ϕi (for each layer i), over each row of the layer weight matrix. The outputs of these

functions are then summed to create a layer representation Li, thus achieving invariance to the ordering of

the neurons within each layer. Since the meta-classifier is itself a classifier that requires many models (800 per

distribution [95]) trained on the two distributions for training, this attack is only feasible for adversaries with

access to sufficient data from both training distributions and considerable computational resources.

Targeting Convolutional Neural Networks. The Permutation-Invariant Network only supports linear

layers in a feed-forward architecture; previous work only considered two or three layer MLPs on small datasets

[95], or single-layer recurrent neural networks [371]. Applying the same architecture on top of convolutional

layers requires adaptation since kernel matrices are four-dimensional. While there is permutation invariance

within channels, the kernel itself is sensitive to permutations by nature of how convolution operations work.

We extend property inference attacks to convolutional networks and demonstrate their effectiveness on models

with up to eight layers, trained from scratch.
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Figure 3.1: Transforming a k1 × k2 kernel matrix K (with input channels cin and output channels cout) into
a 2-dimensional weight matrix for compatibility with the Permutation Invariant Network architecture. The
node-processing functions ϕi and the rest of the pipeline are identical to the Permutation Invariant Network
described in §3.3.2.1.

Figure 3.1 illustrates our method. Let K be a kernel of size (k1, k2) associated with some convolutional layer,

with input and output channel dimensions cin and cout respectively. While designing the architecture to

capture invariance, it is important to remember that unlike neurons in linear layers, positional information

in the kernel matters. Thus, any attempt to capture invariance should be limited to the mapping between

input and output channels of a convolutional kernel. We flatten the kernel of size (k1, k2, cin, cout) such that

the resulting matrix is of size (k1 × k2 × cin, cout). Concatenating along the input channel dimension helps

preserve location-specific information learned by the kernel while capturing permutation invariance across

channels.

This two-dimensional matrix is then processed like linear layers are in Permutation-Invariant Networks

(using the same notation as §3.3.2.1), applying function ϕi and summing to capture invariance while

concatenating feature representations from prior layers. Like the original architecture, the bias component

can be concatenated to the kernel matrix itself. Since this feature extraction process on a convolutional layer

also produces a layer representation, it can be easily incorporated into the existing architecture to work on

models with a combination of convolutional and linear layers.

3.3.2.2 Affinity Graph Attack

Instead of looking at model parameters directly, we propose a technique that focuses on the relationship

between data across models. The attack starts with p data-points π, |π| = p. For a given model m, we pass

each data point πi through the model, collecting intermediate feature activations lji after each layer j. Then,

for each layer j we compute the cosine similarity between every point πi and πk: cos(l
j
i , l

j
k). This is repeated

for every
(
p
2

)
pair of data-points, yielding a list of cosine similarity scores per layer. Since

(
p
2

)
gets large very

quickly, we train a small neural network model ϕ to learn a smaller representation of these lists of similarity
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Figure 3.2: Flow diagram for the Affinity Graph Attack classifier. For each model, latent features are collected
for all datapoints (1). Then, pair-wise cosine similarities of the features are computed (2) and processed
layer-wise (3), leading to a single representation for the given model (4). A linear classifier can then be used
to generate predictions (5).

scores. These scores are concatenated and passed through the model ϕ, for layer j:

Lj = ϕ
(
cos(lj0, l

j
1), ..., cos(l

j
0, l

j
p), ..., cos(l

j
p−1, l

j
p)
)
.

This process is repeated for all layers in the model and these layer-wise features are then concatenated

and passed through a linear layer ρ, along with model predictions, to obtain a final prediction via the

meta-classifier:

b̂ = ρ(L0, L1, ..., Lm, ŷ0, ŷ1, ..., ŷn).

Figure 3.2 illustrates our method. Note that the network ϕ is shared across all layers. Since this meta-classifier

is designed to learn how features for various data changes across layers, having a shared ϕ model helps

the meta-classifier learn the desired inference task easier, in addition to lowering the number of trainable

parameters. This attack is both permutation- and scale-invariant by design, since the cosine similarity

function is also scale and permutation invariant. Additionally, while PIN is applicable only to feed-forward

neural networks and CNNs, AGA works with any model architecture from which intermediate features can

be extracted, including models with skip-connections like ResNets [114] and RNNs [265]. Instead of trying to

model inter-layer relationships by explicit concatenation of prior layers (like permutation-invariant networks),

layer-wise representations are simply concatenated, and the final model ρ can learn relationships between

layers.



Distribution Inference 56

3.4 Experiments

To better understand the risks of distribution inference, we execute distribution inference attacks to measure

their ability to distinguish distributions with varying disparity on tabular, image, and graph datasets.

Although it is unknown how close these attacks are to the best possible distribution inference attacks, they

help demonstrate an empirical lower bound on adversarial capabilities and can be helpful in estimating

general trends.

Dataset Task Property

Census Income prediction Ratio of females
Ratio of whites

Census19 Income prediction Ratio of females
Ratio of whites

Texas-100X Surgical procedure prediction
Ratio of females
Ratio of whites
Ratio of Hispanics

CelebA

Smile identification Ratio of females
Gender prediction Ratio of young people

Mouth-open prediction Ratio of people with wavy hair
Ratio of people with high cheekbones

RSNA Bone Age Age prediction Ratio of females
Gender prediction Ratio of people below age threshold

ogbn-arxiv Node classification Mean node-degree
Chord Average clustering coefficient

Table 3.1: Descriptions of datasets, along with the tasks and properties used in the experiments.

3.4.1 Datasets

We evaluate our attacks on fifteen task-property pairs across seven datasets, summarized in Table 3.1. Our

experimental datasets were selected to:

1. incorporate common benchmarks (Census, CelebA) to enable comparisons with previous work,

2. to study the impact of task-property correlation on inference risk (various property-task pairs for

CelebA),

3. to apply our definitions beyond ratio-based properties on graphs (mean node-degree on ogbn-arxiv,

clustering coefficient on Chord), and

4. to include datasets representing real-world use-cases, like Census19 and Texas-100X.

We begin with evaluations using weaker attacks (such as Loss Test, Threshold Test) to demonstrate risk even

under the presence of simple attacks (§3.4.3), and then proceed to more sophisticated attacks like KL on

larger datasets (§3.5).
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As noted by Zhang et al. [371], the target properties for a distribution inference attack can be either related

to or independent of the task, and can be either explicit or latent features of the input data. For instance,

attributes varied for Census are feature-based properties since these attributes are directly used as features

for the models trained on them. On the other hand, an attribute like the age of a person is unrelated to

detecting smiles and is a latent property that is not directly encoded as an input feature in the training data

(but is available for our CelebA experiments from provided metadata).

We construct non-overlapping data splits between the simulated adversary, A, and model trainer T . These

non-overlapping splits help better capture a realistic scenario where the adversary has access to training data

from the distribution D but is unlikely to have any of the model trainer’s data (which is considered private).

Both parties then modify their data to emulate a distribution property, and then sample training datasets

from these adjusted distributions to train their models. This sampling, along with the disjoint data splits

between A and T , helps ensure that any distinguishing power we observe is actually distribution inference,

rather than inadvertent dataset inference.

Census [23] consists of several categorical and numerical attributes like age, race, education level to predict

whether an individual’s annual income exceeds $50K. We focus on the ratios of whites (race) and females

(sex) as properties and use three-layer feed-forward networks.

Census19 [292] is an updated and expanded version of the Adult Census dataset [23] based on data from

the US Census Bureau. It contains a mixture of numerical and categorical features, and the same prediction

task. We focus on the ratio of whites (race) and females (sex) as properties, and use a two-layer feed-forward

neural-network as the architecture.

Texas-100X [136] contains demographic and medical information for patients across hospitals. The original

dataset uses 100 possible classes for surgical procedure prediction. We slightly modify the task and focus

only on data from the top 20 classes, reducing it to a 20-class classification task. We focus on the ratio

of whites (race), females (sex), and Hispanics (ethnicity) as properties, and use a two-layer feed-forward

neural-network.

CelebA [190] contains face images of celebrities, with multiple images per person. We use three different

tasks: smile detection, gender prediction, and mouth-open prediction. We conduct experiments with a

convolutional neural network trained from scratch for this dataset, with five convolutional layers and pooling

layers followed by three linear layers, which is the smallest network we could find with reasonable task

accuracy. For our experiments with feature extractors, we also conduct experiments where the adversary uses

a pretrained FaceNet [272] model trained on the CASIA-WebFace [358] dataset, with a two-layer network. It

leads to a drop in performance (from ∼ 92% to ∼ 82%), but the point of such an experiment is indeed to

assess inference risk in more practical settings.
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For the attack inference properties, we use the proportion of females (smile-detection task), old people (gender-

prediction task), people with wavy hair (mouth-open-prediction task), and people with high cheekbones

(mouth-open prediction task). These pairs are useful in comparing results with previous works, and also help

cover a spectrum of different correlations between the task and property attributes.

RSNA Bone Age [106] contains x-ray images of hands, and the standard task is to predict the patient’s

age in months. We convert the task to binary classification based on an age threshold (> 132 months), and

focus on the ratios of the females (available as metadata) as properties. We also consider a flipped scenario,

where the task is to predict females, with the ratios of people below the age threshold as properties. We use

a pretrained DenseNet [122] model for feature extraction, followed by a two-layer network for classification.

Similar to CelebA, we consider a setting where the adversary uses pretrained feature extractor, while the

victim trains models from scratch. Additionally, we also consider a setting where both the victim and adversary

use the same feature extractor, but use different model architectures on top of the feature extractor

The ogbn-arxiv [330] dataset is a directed graph, representing citations between computer science arXiv

papers. The task is to predict the subject area categories. We infer the mean node-degree property of the

graph using four-layer Graph Convolutional Networks [158].

Chord [375] contains botnets with the Chord [290] topology artificially overlaid on top of background network

traffic from CAIDA [89]. The dataset contains multiple graphs, with the task of detecting bot nodes in the

graphs. We focus on inferring whether the underlying graphs (onto which we overlay botnets) have average

clustering coefficients within a specific range. Following the model architecture proposed in Zhou et al. [375],

we implement a Graph Convolutional architecture.

3.4.2 Experimental Details

For each dataset, we create non-overlapping splits of data for the victim and adversary, where the victim

has at least 2× the amount of adversary’s data for ogbn-arxiv and RSNA Bone Age, 3× for CelebA and

Texas-100X, and 4× for Census19. For each dataset, we simulate D using the dataset itself. Simulation of

distributions with particular α values is is achieved by sampling data with attributes 0 and 1 such that their

ratios result in some desired α. For properties not based on binary attributes like ogbn-arxiv, this is achieved

by pruning nodes iteratively from the graph (while re-computing neighbor counts along the way) to achieve a

desired mean node-degree. To obtain non-overlapping splits, both parties (victim and adversary) sub-sample

from their data splits (to achieve specific α values) with different random seeds, and train models on the

sampled data.

We perform each experiment five times and report mean values with standard deviation in all of our

experiments. For each dataset, we train 250 victim models per distribution. For all black-box attacks, the

adversary trains and uses 50 models per distribution for each trial. For white-box attacks, the adversary
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trains 800 models per distribution, of which 750 are used for training and 50 as the validation set. For cases

with very large models (like DenseNet trained from scratch for RSNA Bone Age), we use 100 victim models

per distribution.

For the classifiers, we vary α1 in [0.0, 1.0] at intervals of 0.1, and set α0 = 0.5 for the case of ratio-based

properties, where a certain α value for a distribution means datasets sampled uniformly at random would have

α fraction of the data with the property attribute 1, for e.g., ratio of females. The distinguishing accuracies

thus correspond to predicting whether a model has the training distribution corresponding to α0 or α1 where

random guessing would be 50% accuracy, and perfect predictions would be 100%. Since the Loss Test uses a

fixed test set per experiment, its results show no variation.

Loss Test. The adversary uses its test data to sample the two test sets S0 and S1. Since we use the same test

data in evaluations, we turn off sampling while generating data with desired properties for this setting.

Threshold Loss. The adversary trains 50 models per distribution on its data split.

Meta-Classifier. We used Permutation Invariant Networks as our meta-classifier architecture [95]. The

simulated adversary produces 800 models per distribution using its split of data to train the meta-classifier.

For the case of CelebA, we use our extension of the Permutation Invariant Network that is compatible with

convolutional layers (§3.3.2.1). Following experimental designs from prior works, we were able to achieve the

accuracies that the authors reported (§3.4.3.1). However, using our experimental design leads to significantly

lower distinguishing performance. Steps like ensuring no overlap in victim/adversary data, randomly sampled

datasets for G0(D) and G1(D), and ensuring the same dataset size are necessary to avoid the risk that the

meta-classifier is identifying something different about the distributions other than the claimed property. We

think these steps are important for realistic experiments, so report the distinguishing accuracies based on

this experimental design, even if they are lower for the same attacks than the results reported for the same

tasks in previous work.

KL Divergence Attack. Since using all pairs of adversary’s models can be expensive, the attack uses a

set fraction (0.8) of randomly chosen pairs to compute the expectation in Equation (3.48). We experiment

with multiple values of this fraction, and observe comparable performance. For each pair of local models,

the attack collects the difference in KL values. These differences are then normalized across all differences

observed for local models, after which the adversary uses voting-based aggregation to generate the final

prediction. We also experimented with variants that do not include voting, but find the current version to

perform best.

Affinity Graph Attack. Similar to the KL Divergence Attack, we use a fraction (0.2) of randomly chosen
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Dataset Task Property
Binary Regression

nleaked ∥α0 − α1∥0.75 nleaked

Census Income prediction
Ratio of females 0.2 0.5 8.8
Ratio of whites 0.1 0.6 6.0

CelebA
Smile identification Ratio of females 0.3 0.5 10.6
Gender prediction Ratio of young people 0.2 0.6 5.1

RSNA Bone Age Age prediction Ratio of females 6.2 0.2 269.4

ogbn-arxiv
Node classification

Mean node-degree 30.6 - -

Chord
Average clustering

- - -
coefficient

Table 3.2: Effectiveness of basic inference attacks (best of all Loss Test, Threshold Test, and meta-classifier
for binary classification, and meta-classifier for regression) while varying ratios of distributions. ∥α0 −α1∥0.75
is the minimum difference in ratios observed that has at least 75% average accuracy. For binary classification,
nleaked is the median effective n value based on Theorem 3.2.2 using the maximum distinguishing accuracies
across all experiments and pairs of property ratios (degrees in the case of ogbn-arxiv) without outliers. For
regression, nleaked is the mean effective n value based on Theorem 3.2.3 across all ratios excluding 0 and 1.
Size for ogbn-arxiv refers to number of nodes, and the average number of nodes for Chord.
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Figure 3.3: Classification accuracy for distinguishing proportion of females in training data for (a) Census,
(b) RSNA Bone Age, and (c) CelebA. The RSNA Bone Age dataset does not include ratios below 0.2 or
above 0.8, since sampling the original dataset for that ratios produces datasets that are too small to train
models with meaningful performance. Performance of the attacks increases as the distributions diverge (α1

moves away from 0.5), but is not symmetric.

pairs of points. Since a given model can have multiple layers, we use specific layers for each model while

training the meta-classifiers. These specific layers are fixed across all model architectures (per dataset) and

were selected before the experiments were evaluated (based on computational constraints), making them free

of selection bias.

3.4.3 Demonstrating Inference Risk: Binary Properties

To demonstrate inference risk, we evaluate leakage with binary properties using Loss Test, Threshold Test,

and meta-classifiers.
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We fix G0 and try the attacks on a range of G1 distributions for the first set of experiments. In §3.4.5, we

report on experiments varying both distributions. Most prior works on distribution inference use arbitrary

ratios, like distinguishing between 42% and 59% males [95]. Only recently have works started transitioning

to more controlled experimental settings, like comparable dataset sizes for the victim and adversary and

non-overlapping data sampling [376]. While having one of the ratios corresponding to the estimate of the

underlying data distribution is justified, fixing the other arbitrarily makes it hard to understand the adversary’s

capabilities—we want to understand how dissimilar the distributions must be in order to be distinguishable.

Additionally, the lack of keeping ratios consistent in experiments across properties makes it harder to compare

information leakage across properties. Analyzing such trends is important for understanding how much of

these properties are leaked across different configurations (explicit attribute, latent property) and assess the

adversary’s capabilities under different scenarios (black-box access, white-box access).

Experiments with binary classification for properties can provide useful insights into the effectiveness of

distribution inference attacks, but most realistic attacks would not be based on distinguishing between two

known distributions. In §3.4.5.1, we consider attacks that can infer the underlying ratio without any prior

assumptions about distinguishing particular distributions.

3.4.3.1 Distinguishing Imbalanced Ratios

Since the original ratios for the targeted property may be unbalanced in the dataset (§3.1), for these

experiments we fix G0 to a balanced (α0 = 0.5) ratio for the chosen attribute for the Census, CelebA, and

RSNA Bone Age datasets. Then, we vary α1 to evaluate inference risks and understand how well an adversary

could distinguish between models trained using distributions with different proportions of the targeted

property.
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Figure 3.4: Distinguishing accuracy for proportion of (a) whites in training data for the Census and (b) old
people in the CelebA. The black-box attacks approach the performance of white-box meta-classifier attacks
for some distributions (especially the Threshold Test and the Census (race) task).
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Census. We summarize the accuracies for the three attack methods across varying proportions of females in

Figure 3.3a and whites in Figure 3.4a. The Loss Test performs only marginally better than random guessing

in most cases for females, yielding nleaked values in the range [0, 0.03]. On the other hand, the Threshold

Test and meta-classifiers are able to achieve non-trivial distinguishing accuracies for the female proportion,

with nleaked values in ranges [0.1, 1.2] and [0.02, 6.5] respectively, with a similar median nleaked value of 0.33,

showing how the two are not very far apart in effectiveness. Leakage increases as the distributions become

more disparate, with near-perfect distinguishing accuracy for the extreme case of α1 = 0. For race, none of

the attacks detect anything (nleaked ≈ 0) apart from the surprising results on Threshold Test, which performs

asymmetrically well, approaching 80% accuracy for mostly-white distributions.

Comparison with previous results. Ganju et al. [95] applied their meta-classifier method on two properties

on this dataset: 38% vs. 65% women (case A), and 0% vs. 87% whites (case B). For case B, the Loss

Test performs as well as random guessing (50.1%), while the Threshold Test (92.4 ± 2.6%) approaches

meta-classifier performance (99.9± 0.1%), achieving a high (compared to α = 0.5 experiments) nleaked ≈ 11.

For case A, the Threshold Test (62.7±2.0%) outperforms meta-classifiers (62.1±1.7%) while achieving nleaked

≈ 0.03, barely better than random guessing , and the Loss Test method fails (50%). Ganju et al. report 97%

accuracy for case A and 100% for case B. We were able to closely reproduce these results in their setting

which includes overlapping data between victim and adversary and does not ensure changes in ratios do not

affect dataset size or class imbalance. In the more realistic experimental design in which we ensure there is

no victim/adversary overlap and maintain the label ratios and same dataset sizes (§3.4.1), the accuracies

are much lower—for example, in case A the distinguishing accuracy is 97% using their experimental design

but drops to 62% when more carefully prepared datasets are used in our design. These results suggest that

although the distinguishing accuracy is high between the two distributions in the tests in their setting, the

attacks are not actually inferring the intended property but are predicting the distribution based on other

differences between the datasets.

RSNA Bone Age. Distinguishing accuracies for the female proportion on the RSNA Bone Age dataset are

plotted in Figure 3.3b. The simple Loss Test performs nearly as well as the Threshold Test although both

have low leakage, with a median of nleaked ≈ 0.2 and nleaked ≈ 0.1 respectively. The meta-classifier attack, on

the other hand, has a much higher leakage of nleaked ≈ 6.

CelebA. Figure 3.3c shows the distinguishing accuracy for the CelebA data on proportion of females, and

Figure 3.4b for the proportion of examples marked as “old”. The Threshold Test performs much worse

compared to Census and RSNA Bone Age, with the median nleaked < 0.05, compared to ≈ 0.7 using meta-

classifiers. Figure 3.5 shows meta-classifier prediction accuracy for three different representations of the

shadow models used to train the meta-classifier: using parameters from only linear layers, only convolutional

layers, and all layers of the models. While inferring the ratio of old people (Figure 3.5a), including just
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Figure 3.5: Distinguishing accuracy for meta-classifiers for proportion of (a) old people and (b) females in the
training data for CelebA. Using all the layers’ parameters is not necessarily helpful and can lead to lower
performance (e.g., CelebA, females).

the fully-connected layers works best, yielding nleaked ≈ 0.12 and not too far off from using all layers or

just the convolutional layers (nleaked ≈ 0.07). For the case of sex ratios (Figure 3.5b), using the full model

helps extract more information (nleaked ≈ 0.32) than either of the convolutional (nleaked ≈ 0.24) or linear

(nleaked ≈ 0.05) layers. These trends suggest the likelihood of some layers’ parameters capturing specific

property-related information better than the others. Linear layers are more helpful for ratios of old people

whereas for ratios of females, convolutional layers are significantly better. We explore this phenomenon

further in §3.4.4.

3.4.4 Leakage by Layers

Observing differences in performance when focusing on different network layers of the same model for raises an

interesting question: how does information leaked vary across model layers? Understanding and identifying

which layers leak the most information can help better understand the distribution inference risks and how to

mitigate them, as well as how to make attacks more efficient. Here, we propose a simple test to help the

adversary rank layers for value in distinguishing between the given distributions, and show how some layers

(the first layer, in most cases) seem to capture properties of the training distribution better than others in a

given model. Meta-classifier attacks are expensive and deciphering what they learn is challenging—identifying

critical parameters can both improve understanding and lower resource requirements. If we can use just a

fraction of the model’s parameters, we may be able to achieve comparable inference performance with fewer

shadow models and much lower meta-classifier training costs.

Identifying Useful Layers. Let j be some layer of the model for which the adversary wishes to gauge

inference potential. We optimize query point x̂ to maximize the difference in the total number of activations
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Dataset Layer
1 2 3 4 5 6 7

CelebA (female) 89.2 76.7 75.8 74.2 70.0 66.7 63.3
CelebA (old) 64.2 60 60 68.3 73.3 70 66.7

Census (female) 62.0 58.0 56.4 - - - -
Census (white) 81.7 75.0 63.3 - - - -

RSNA Bone Age 65.0 64.0 - - - - -

ogbn-arxiv 93.3 95.0 98.3 - - - -
Chord 69.4 60.0 64.0 64.8 57.2 50.2 -

Table 3.3: Maximum accuracy using layer-identification method. Since the last layer in all of these models is
used for classification with a Softmax/Sigmoid activation, the process in Equation 3.49 cannot be applied to
the last layer.
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Figure 3.6: Classification accuracy for distinguishing between models with different training distributions on
the RSNA Bone Age dataset, for meta-classifiers trained with (a) 10, (b) 40, and (c) 1600 models. Orange
box plots correspond to using parameters only from the first layer, while blue box plots correspond to using
all (three) layers’ parameters. Although the experiment that uses just the first-layer’s parameters has much
more variance, its average performance (and even the first quartile) is better than that of the version that
uses all the layer’s parameters.

for layer j between models trained on datasets from the two distributions:

Mj(x) =
∑
i

I[(M [: j](x))i > 0]

x̂ = argmax
x

∣∣∣∣∣∣
∑

i;yi=0

M i
j(x)−

∑
i;yi=1

M i
j(x)

∣∣∣∣∣∣ , (3.49)

where M [: j](x) refers to the activations after layer j of model M on input x. The adversary can use a set of

test points to select one that maximizes the above constraint. Then, similar to the process for Threshold Test

(Equation 3.45), the adversary finds a threshold on the number of activations to maximize distinguishing

accuracy. By iterating through all layers and computing the corresponding accuracies, the adversary can

create a ranking of layers to estimate how much information these layers can potentially leak. This process is

computationally much cheaper than running a meta-classifier experiment for all layers, and can be done with
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as few as 20 models. Once it has ranked all the layers, the adversary can pick the most informative ones

(even just a single layer suffices in some cases) to train the meta-classifier. Since the resulting meta-classifier

has fewer parameters (as it computes over fewer model layers), it can be trained using far fewer shadow

models than when all network parameters are used, without having a significant impact on distinguishing

accuracy.

Results. To understand how well the layer-identification process correlates with meta-classifier performance,

we also perform experiments where each layer’s parameters are used one at a time to train the meta-classifier.

We run the layer-identification process, as described in Equation (3.49), for all layers across datasets. For the

numbers reported in Table 3.3, the adversary samples data from its local test set to maximize Equation (3.49).

Distinguishing accuracies reported in this table are on the adversary’s models since it uses this ranking of

layers to train a meta-classifier for its attack on the targeted model. For most cases, the layers closest to

the inputs are identified as most useful. These accuracies for CelebA align with observations from previous

experiments (§3.4.3) as well—for distinguishing sex ratios, the convolutional layers (until layer 5) seem to be

more useful; for age, the fully-connected layers appear to be most useful. Layers of machine-learning models

closer to the input are commonly associated with learning generic patterns, and later layers more abstract

ones along with invariance to the given task [248]. Thus, the position of layers identified to be most useful is

telling of how close the target property is to the input space or task.

(a) Census (female) (b) Census (white) (c) RSNA Bone Age (female)

Figure 3.7: Classification accuracy for distinguishing between training distributions for unseen models for
Census (sex: left, race: middle) and RSNA Bone Age, while varying the models’ layers used while training
meta-classifiers. There is no clear winner in the case of Census, while the first layer seems to the most useful
for the case of RSNA Bone Age.

Excluding the last layer does not lead to a significant performance drop. Intuitively, layers closer to the

output will capture invariance for the given task and are thus less likely to contain any helpful information

that prior layers would not already capture. If the last layer reveals enough information for the attack to

succeed, then a black-box attack should also be possible. Results from layer-wise meta-classifier experiments

confirm how the last layer’s parameters rarely appear useful for distribution inference. Interestingly, this is

the opposite of what Nasr et al. [229] observed for membership inference. Using these observations, we train

meta-classifiers while using parameters only from some of the layers selected on the ranking we obtain via
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Figure 3.8: Classification accuracy for distinguishing between models with different training distributions for
on the ogbn-arxiv dataset. Left to right: meta-classifiers trained using 20, 100, and 1600 (original experiment)
models, respectively. Orange box plots correspond to using parameters only from the first layer, while blue
box plots correspond to using all (three) layers’ parameters. Using as few as 20 models is sufficient for
satisfactory meta-classifier performance when the right layers are identified and used.

layer-identification experiments. We observe a clear advantage of doing so across all datasets, with minimal

decreases in accuracy. For instance, using just the first layer produces a meta-classifier with only 20 training

models on RSNA Bone Age (orange boxes in leftmost graph in Figure 3.6) that performs much better than

using parameters from all of the layers. In order for the meta-classifier trained on all parameters to approach

the accuracy of the one-layer meta-classifier, hundreds of shadow models are needed.

For datasets like Census, all the layers seem to equally useful while for RSNA Bone Age, only the first layers’

parameters are useful (see Figure 3.7). When using the first layer’s parameters, the adversary can achieve

an average of 75% accuracy with as few as 20 models, compared to 54% when using the entire model. In

fact, the first layer is identified as most useful and using any other layer leads to near-random performance.

Additionally, for larger models like those for CelebA, the adversary can pick more than one layer—using as

few as three layers of the model can help lower computational resources. As observed in ablation experiments

with convolutional and linear layers for CelebA (old people), using just the last three layers (of which two the

layer-identification process identifies), the adversary can train its meta-classifiers while using significantly

fewer models. For instance, when using 100 models to train the meta-classifier, using just the fully-connected

layers gives a 4% absolute improvement in accuracy, along with 0.5% reduction in standard deviation across

experiments.

Graph Datasets. The layer-identification process does not work on the graph datasets. It incorrectly predicts

the third layer as most useful for ogbn-arxiv, whereas actual performance with that layer’s parameters leads

to a significant performance drop. We suspect this behavior can be explained by the inherent properties

of the graph data. Intermediate activations for nodes can have complicated interactions with neighboring

nodes, leading to the detection method’s instability when analyzing activation values. These challenges on

graph datasets is something that we plan to investigate in future work. Nonetheless, the fact the first two

layers are useful for both graph datasets suggests a useful direction for graph-based distribution inference
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Figure 3.9: Effectiveness of meta-classifiers in distinguishing proportions of females on Census and RSNA
Bone Age. The bottom-left triangles of the heatmaps show the nleaked values, and the top-right triangles show
the distinguishing accuracies between training distributions G0(D) with ratio α0 and G1(D) with ratio α1 for
females. Distinguishing accuracies seem to follow intuitive patterns, with an increase as the distributions
diverge (larger |α0 − α1|). The nleaked values allow for comparisons of attack power between different pairs of
distributions, but also show that very little leakage is observed for most settings, except for RSNA Bone Age.

attacks.

3.4.5 Varying Proportions

An adversary may not necessarily be interested in distinguishing between the balanced case (α = 0.5) and

other ratios. For instance, health datasets for specific ailments may have a higher underlying prevalence in

females, and the adversary may be interested in differentiating between two particular ratios of females, like

0.3 and 0.4. We thus experiment with the case where both distributions are varied: G0(D) and G1(D) with

corresponding ratios α0 and α1 respectively. Distribution inference risk seems particularly acute when an

adversary can distinguish the proportion of an uncommon property. Observing performance trends as the

difference in ratios increases also helps us understand how much of a threat distribution inference may pose

as the similarity of the distributions varies.

Figure 3.9 shows the distinguishing accuracies (and corresponding nleaked values) between models (in the

form of heatmaps) trained on distributions G0(D) and G1(D) while varying corresponding α0 (horizontal axis)

and α1 (vertical axis), for ratios of females on Census and RSNA Bone Age. For instance, in Figure 3.9a,

(α0, α1) = (0.2, 0.9) in the upper-right triangle correspond to meta-classifier performance (70%), while

(α0, α1) = (0.9, 0.2) in the lower-left triangle gives the corresponding nleaked = 0.17. Entries along a given

diagonal have the same value of |α0 − α1|. As reflected in the heatmap colors, distinguishing accuracies are

roughly the same along diagonals. The variance in performance across runs is relatively high for similar

distributions (small |α0 − α1|) and decreases as the distributions diverge. For CelebA (sex) and Census (sex),
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Figure 3.10: Predicted α values (left y-axis) for models with training distributions for varying α values
(x-axis), for all victim models and regression meta-classifier experiments (green box-plots), along with mean
squared error (right y-axis labels, with different scales on the two graphs, and blue dots), for (a) Census
and (b) RSNA Bone Age datasets. with The diagonal gray dashed line represents the ideal case, where the
regression classifier perfectly predicts α. For each ratio of the form 0.05 · x (for varying x), we train regression
meta-classifiers 5 times with different seeds, and test 100 victim models. As indicated by nleaked values, the
RSNA Bone Age dataset observes very good performance, with nearly all predictions lining up with the
diagonal, while for Census (sex), predicted ratios are usually in [0.2, 0.6].

we observe that nleaked < 1 in most cases. These small values do not imply the inability of any adversary

to distinguish between the distributions, only that for the given attacks we observe little information

leakage.

3.4.5.1 Direct Regression over α

Inspired by Zhou et al. [376], we performed a direct regression experiment in which we trained the meta-

classifiers to predict α directly. This corresponds to a more realistic attack setting for many scenarios than

one in which the adversary is distinguishing between two predefined α values. For this experiment, we

construct a training dataset for the regression meta-classifier with tuples of the form (Mα, α), where Mα is

some model with a training distribution corresponding to the ratio α. We train the meta-classifier using Mα

models for all the ratios α that we experiment with in §3.4.5 ({0.0, 0.1, . . . , 1.0} for Census and CelebA, and

{0.2, . . . , 0.8} for RSNA Bone Age). The meta-classifier follows the same permutation-invariant architecture

as in the binary property experiments (§3.3.2), just with a mean squared error (MSE) loss for training.

Figure 3.10 shows the distribution of the predictions of the regression meta-classifiers and Table 3.4 reports

the MSE and nleaked values. For all these experiments, we train meta-classifiers five times with different seeds,

and report aggregate results over all the meta-classifiers and victim models, for each dataset and property. In

the plots in Figure 3.10, we include results for actual α values at both tenths and the intermediate 0.05 ratios

to confirm that the meta-classifiers are indeed learning to predict α and not just overfitting to the α values
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Dataset Attribute nleaked MSE(B) (BR) (R)

Census Sex 0.2 0.3 8.8 0.053
Race 0.1 0.2 6.0 0.091

CelebA Sex 0.3 0.4 10.6 0.030
Age 0.2 0.4 5.1 0.047

RSNA Bone Age Sex 6.2 15 269.4 0.001

Table 3.4: Median nleaked values when using binary meta-classifiers nleaked (B), regression meta-classifiers
nleaked (R), and regression meta-classifiers for binary predictions nleaked (BR), along with average Mean
Squared Error (MSE) for direct regression over α. nleaked is nearly double for all cases that use regression
meta-classifiers for binary predictions, when compared to the binary meta-classifiers.

observed in training. The meta-classifiers do exhibit a bias toward balanced predictions, showing a smooth

curve for the MSE values with a minimum near α = 0.5.

The attacks are quite successful in most cases, achieving nleaked > 5 for all of our settings, and surprisingly

high leakage for RSNA Bone Age with nleaked > 260. These regression attacks show that adversaries can

infer sensitive information about training datasets even in the more realistic setting where adversaries do

not have prior knowledge of distributions. However, the attacks are not always successful— performance for

meta-classifiers on Census (race) is not much better (Figure 3.10a) than that when guessing α = 0.5 blindly

(expected MSE 0.1).

Given the high nleaked values for the regression tests, we tried using the regression meta-classifiers to distinguish

between binary properties. To produce a classification between models with training distribution ratios

α0 and α1, a regression meta-classifier Mregression’s prediction for some model m is converted to a binary

outcome by simply checking which of the two considered distribution ratios the predicted ratio is closer to:

b̂ = I
[
Mregression(m) ≥ α0+α1

2

]
. Each entry in Table 3.4 is averaged over 5 trials × 100 victim models ×

11 ratios ({0.0, 0.1, . . . , 0.9, 1.0} for Census; 7 in the case of RSNA Bone Age). In most cases, the accuracy

improves significantly over the binary classifiers, with the nleaked value nearly doubling for most settings. For

instance, the classification accuracy increases by ∼ 4% and ∼ 15% for CelebA (sex) and RSNA Bone Age

respectively, corresponding to an increase of nleaked by ∼ 0.14 for CelebA (sex) and ∼ 8.51 for RSNA Bone Age.

This improvement is not surprising since the binary attack uses models only from two distributions, whereas

the regression attack has models from a wide range of alpha values and thus can learn more. Figure 3.11

shows the accuracies and nleaked values for using specific ratio binary classifiers compared with the improved

accuracies obtained using the regression meta-classifier. The nleaked values for each pair of ratios (α0, α1)

shows how these improvements are uniform across all pairs of distributions.
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Figure 3.11: Distinguishing binary ratio properties using (a) binary classifiers and (b) regression meta-
classifiers, for CelebA (age). nleaked values (lower triangle) and classification accuracies (upper triangle) for
distinguishing proportion of old people (ratios α0, α1) in training data for the CelebA dataset. nleaked with
binary meta-classifiers lower, especially for cases where |α0 − α1| is small.

3.4.6 Graph Properties

Our experiments using both binary and regression classifiers on the graph datasets reveal surprisingly high

property leakage. Observed nleaked values for ogbn-arxiv are much higher (100-200 range) than was observed

in the experiments on tabular and image datasets (with the exception of RSNA Bone Age). 2

ogbn-arxiv. For the ogbn-arxiv dataset, we set G0 such that the graph has a mean node-degree of α0 = 13,

and for G1, modify the graph to have a mean-degree α1 as an integer in the range [9, 17]. We produce test

datasets by pruning either high or low-degree nodes from the original graph to achieve a desired α1. Like the

other datasets, meta-classifier performance increases as the distributions diverge, albeit with much smaller

drops. Both the Loss Test and Threshold Test fail on this dataset with nleaked values below 1, compared

to the meta-classifiers (Figure 3.12a) which leaks nleaked ≈ 40 in most cases. The attacks leak much more

information as the degrees increase than when they decrease— nleaked values are nearly double for (12, 14)

than (12, 13) as the two mean node-degrees, despite having comparable distinguishing accuracies. Motivated

by the success of regression attacks for ratio-based properties (§3.4.5.1), we also trained a regression variant

of the meta-classifier to predict the average degree of the training graph directly. The resulting meta-classifier

performs quite well (Figure 3.12b), achieving a mean squared error (MSE) loss of 0.393± 0.36. It generalizes

well to unseen distributions, achieving an average MSE loss of 0.076 for α = 12.5 and 13.5. A distribution

inference adversary can thus be strong enough to directly predict the average node degree of the training

distribution. Similar to the case of ratios, we try different combinations of mean node-degree values by setting

different mean node-degrees α0 and α1 (Figure 3.13). As apparent, nleaked has a wide spread in its values

across different distributions—starting from ≈ 3 to approaching infinity, with a median of ≈ 31.
2For the clustering coefficients on Chord, we do not have a way to compute nleaked, but also see evidence of substantial

leakage.



3.4 Experiments 71

9 10 11 12 14 15 16 17
Mean-degree of training data ( 1)

50

60

70

80

90

100
Ac

cu
ra

cy
 (%

)

Meta-Classifier
Loss Test
Threshold Test

(a) Distinguishing accuracy (α0 = 13) w.r.t mean degree (b) Mean node-degree α1 predicted by the meta-classifier

Figure 3.12: Performance for (a) distinguishing between models with different mean node-degrees in training
data, and (b) directly inferring the mean node-degree of the training data, for the ogbn-arxiv dataset. Each
color represents the true degree (dashed lines) of the models being tested. The meta-classifier attack is
remarkably successful on this dataset and further accentuates how some attacks can infer underlying properties
nearly exactly on some datasets.

Chord. For the Chord dataset, we construct G0 to have graphs with average clustering-coefficient < 0.0061

and G1 with average clustering-coefficient above > 0.0071. We pick these values to minimize the overlap

between the two distributions, while maintaining a decent accuracy on the original task. For the case where

both the trainer’s and adversary’s datasets are sampled from the same pool of data, the adversary has

near-perfect distinguishing accuracy, even when training the meta-classifier with ten models (and testing on

1000). However, the adversary cannot achieve the same level of performance in the absence of data overlap.

Using the Loss Test yields an accuracy of 63%, while the Threshold Test and meta-classifier struggle to

perform better than random (≈51%). This disparity in performance further justifies our experimental design

choice to consider non-overlapping data splits—evaluating property inference attacks on models trained from

the same dataset pool seems effective, but it cannot distinguish learning some unrelated property from the

claimed inference.

3.4.7 Summary of Experimental Results

We summarize the distribution leakage observed for our ratio and regression based experiments in Figure 3.14.

The biggest exception is for RSNA Bone Age, where we observe nleaked values above 10 for the binary

classifiers (Figure 3.9b) and up to 270 for the regression meta-classifier, and the graph datasets, where they

are in the hundreds for ogbn-arxiv (Figure 3.13).

Peculiar Trends. We also observe some trends specific to a dataset and property, but can only speculate on

their causes. For example, on the Census dataset, the adversary has notably high accuracy in differentiating

between distributions when one is without any females (α0 = 0) or males (α0 = 1) with distinguishing
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Figure 3.13: Effectiveness of meta-classifiers on ogbn-arxiv dataset. nleaked values (bottom-left triangles) and
mean node-degree (degrees α0, α1) in training data.

accuracies close to 100%, regardless of the actual proportion of females in the data. This suggests that

detecting the mere presence or absence of members with a particular attribute is significantly easier than

trying to deduce the exact ratio of members with that attribute, and perhaps is unsurprising here for an

attribute that does impact the task predictions. Similarly, a difference in ratios of ≥ 0.3 on RSNA Bone

Age (Figure 3.9b) yields at least 90% accuracy for all cases using meta-classifiers, with nleaked values ≥ 7,

going up to perfect distinguishing accuracy. Unlike Census, performance on CelebA at the extremes (no

males or females when inferring sex ratios, and no young or old people when inferring old ratios) is far from

perfect. This may be because features like race and gender in Census are directly used for model training, and

thus their presence or absence would directly impact both predictions and model parameters. Whereas for

CelebA, the complicated feature extractor may not embed these latent (and inherently ambiguous) properties

explicitly.

Regression for Binary Classification. Comparing nleaked values for the binary meta-classifiers and

regression-based meta-classifiers tuned for binary classification demonstrates how additional information

about the underlying ratios can have a huge impact on leakage. Having models trained on training distributions

for a wide range of α can help ensure the meta-classifier actually learns to infer the underlying ratios, compared

to the binary classification case where it is most likely to rely on specific signals just to distinguish between

two given distributions. Although that is indeed the given task, the ability to capture the association between

α and the desired predictions can, and does, help the meta-classifiers improve their performance. Note that

training the regression-based meta-classifiers does not require a stronger threat model than is assumed for

the binary classifier case. In both cases, the adversary needs access to a training distribution with enough

samples to be able to create representative datasets for different distributions. Training the regression

meta-classifier requires more computational resources (training models for multiple ratios) than is required
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Figure 3.14: Distinguishing accuracy (a) and MSE (b) for inference attacks with varying α1 on the horizontal
axis. The plotted results are for the most effective attacks from the experiments described in §3.4.3. The
curves in (a) show the comparable distinguishing accuracy for nleaked = 2 (indicating that most of the
attacks are comparable to leaking fewer than two samples from the training distribution) and nleaked = 8,
showing that a few of the attacks on the RSNA Bone Age dataset (and extreme attacks on Census for the
race attribute) do leak a substantial amount of information. Similar trends hold for regression, with nleaked
somewhere between 1 and 10 for most cases (b). The highest leakages we observed are for the graph datasets,
not shown in this figure.

to train the binary meta-classifier (training models only for two ratios), but does not otherwise require a

stronger adversary.

3.5 Results with KL Divergence Attack

Our KL Divergence Attack (KL) outperforms all previous black-box attacks by huge margins (§3.5.1). Even

more interestingly, the KL Divergence Attack, with only black-box access, outperforms Permutation Invariant

Networks (PIN) by a large margin in nearly all settings. We study trends between the correlation of the task

and property, and its impact on inference risk (§3.5.2).

3.5.1 Results

Table 3.5 summarizes the results of our distribution inference experiments. For each experiment, we report

mean distinguishing accuracies between two distributions as well as the mean distinguishing accuracy across a

set of different distributions, as detailed in Table 3.5. Although our regression-based adversaries are observed

to be strictly more powerful (§3.4.5.1), extending KL to utilize such regression-based adversaries is non-trivial,

and we leave it for future work.

Trends across datasets. Inference leakage varies significantly across different datasets, with very little

leakage for most cases in Texas-100X, substantial leakage for Census19, and exceptionally high leakage for
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Dataset Task/Property
Distinguishing accuracy (nleaked) for α1 = 0.2 Mean distinguishing accuracy (nleaked)

Black-Box White-Box Black-Box White-Box
TT ZTO [371] KL PIN [95] TT ZTO [371] KL PIN [95]

Census19 Income/Females 50.0 (<0.1) 53.4 (<0.1) 89.8 (2.1) 78.6 (0.8) 61.3 (0.9) 54.4 (<0.1) 82.5 (4.2) 81.0 (3.5)
Income/Whites 53.2 (<0.1) 52.6 (<0.1) 92.4 (2.7) 74.2 (0.6) 59.4 (0.7) 54.9 (<0.1) 83.7 (3.3) 75.4 (1.1)

Texas-100X
Procedure/Females 50.0 (<0.1) 50.0 (<0.1) 89.3 (2.0) 50.0 (<0.1) 51.2 (<0.1) 51.6 (<0.1) 82.5 (3.8) 51.3 (<0.1)
Procedure/Whites 50.9 (<0.1) 50.0 (<0.1) 86.8 (1.7) 50.0 (<0.1) 52.4 (<0.1) 50.1 (<0.1) 81.6 (3.7) 50.5 (<0.1)

Procedure/Hispanic 50.0 (<0.1) 50.0 (<0.1) 78.4 (0.8) 50.0 (<0.1) 50.0 (<0.1) 50.0 (<0.1) 82.4 (3.8) 50.1 (<0.1)

CelebA

Mouth Open/Wavy 52.0 (<0.1) 51.8 (<0.1) 56.8 (<0.1) 92.0 (2.6) 50.6 (<0.1) 52.3 (<0.1) 62.1 (<0.1) 86.1 (2.4)
Smile/Females 54.4 (<0.1) 57.6 (<0.1) 89.6 (2.1) 57.6 (<0.1) 55.4 (0.1) 60.9 (0.2) 85.3 (3.2) 68.4 (0.5)
Gender/Young 50.3 (<0.1) 52.6 (<0.1) 86.4 (1.6) 81.0 (1.0) 52.9 (<0.1) 55.5 (0.1) 86.3 (2.5) 81.2 (1.5)

Mouth Open/Cheekbones 50.0 (<0.1) 50.0 (<0.1) 84.6 (1.4) 95.8 (3.9) 50.1 (<0.1) 56.2 (0.1) 76.7 (1.4) 88.6 (3.0)

RSNA Age/Females 90.0 (2.2) 95.4 (3.7) 99.9 (20.1) 99.4 (7.9) 64.0 (0.5) 77.9 (1.6) 94.5 (12.1) 95.2 (10.2)
Bone Age Females/Age 95.7 (3.8) 99.4 (7.9) 99.9 (20.1) 66.0 (0.2) 68.5 (1.0) 78.5 (3.3) 99.8 (22.6) 75.2 (8.4)

ogbn-arxiv Node classification/ 50.0 (<0.1) 50.0 (<0.1) 99.9 (58.5) 87.4 (5.1) 50.1 (<0.1) 55.4 (6.2) 92.6 (182.5) 71.9 (11.7)Mean Degree

Table 3.5: Effectiveness of inference attacks. We show results for our KL Divergence Attack (KL) and
three other attacks: Threshold Test (TT), ZTO [371], and Permutation Invariant Networks (PIN) [95].
For the classifiers, the first set of results shows the attack’s ability to distinguish between models trained
on training sets where the proportion of the property is either α0 = 0.5 or α1 = 0.2 as an accuracy
percentage, with corresponding nleaked values in parentheses. The second set of results shows the mean
distinguishing accuracies (%) (with corresponding nleaked values) between α0 = 0.5 and a set of varying α1

values (0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9, 0.1). For the graph datasets used for ogbn-arxiv, for the first set
of results we use α0 = 13 are α1 = 10 as the two distributions; for the second set, we vary the mean node
degree as the property, setting α0 = 13 and varying α1 in [9, 10, 11, 12, 14, 15, 16, 17], and report the mean
distinguishing accuracy (with mean nleaked value). For all of the results, for each α1 value, we compute the
median over five trials. Mean accuracy (and nleaked) is then computed over the mean of these values for all
α1 values. For each setting, results for the most effective attack are bolded.

the graph-based ogbn-arxiv dataset. The lack of virtually any inference risk in Texas-100X is surprising, as

the features contain the property label, and data splits are processed per hospital during generation, making

the victim and adversary distributions highly similar. This difference in inference risk between Census19 and

Texas-100X, despite both being tabular datasets, reveals how just the nature of data (tabular, images) does

not by itself determine inference risk and risk can vary unpredictably (at least based on current understanding)

with aspects of the data. As we previously observed (Figure 3.14), leakage is quite high for RSNA Bone Age.

Our new improved attacks identify vulnerable datasets, such as Census19, that would have been considered

low leakage risks using previous state-of-the-art attacks.

Comparing black-box attacks. The KL Divergence Attack outperforms Threshold Test (TT) and the

black-box attack by Zhang et al. [371] (which we refer to as ZTO) in all cases with large margins. Across

all of the settings, TT and ZTO rarely achieve distinguishing accuracies above 75% i.e., nleaked above 1.0

(indicating that the observed leakage is less than what an adversary would learn by sampling a single record

from the training distribution), whereas the KL Divergence Attack produces meaningful leakage for all of the

datasets. The superiority of the KL Divergence Attack can be attributed to the use of pairs of local models

and their trends (which grow in the order
(
n
2

)
for n models), as opposed to using information from models in

isolation in the other attacks.
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Dataset/Task
Number of Shadow Models

5 10 25 50 100 400
Census19 (Sex) 73.0 (3.0) 76.5 (3.3) 81.3 (4.0) 82.5 (4.2) 86.4 (5.1) 89.7 (6.6)
Census19 (Race) 77.2 (2.6) 79.3 (2.9) 81.3 (3.1) 83.7 (3.3) 84.2 (3.3) 84.7 (3.4)
RSNA Bone Age (Age) 97.3 (18.3) 98.3 (19.0) 99.3 (21.3) 99.7 (22.6) 99.7 (22.6) 99.8 (22.8)
CelebA (Sex) 73.9 (1.1) 78.6 (1.7) 80.9 (2.4) 85.3 (3.2) 86.9 (3.9) 89.2 (5.1)

Table 3.6: Impact of varying the number of shadow models used by the adversary per distribution to launch its
attacks. Values are mean distinguishing accuracies (%) (with mean nleaked in parentheses) for KL Divergence
Attack (computed as described in Table 3.5). Even with only 5 models, the adversary is able to achieve
considerable inference leakage.

Number of shadow models. The black-box attacks use 50 shadow models per training distribution. We

vary this number to 1) get an empirical lower bound on the number of shadow models required to achieve

non-trivial leakage, and 2) study increase in information leakage with an increase in shadow models. Leakage

is significant with only five shadow models per distribution in most cases, and improves with more local

shadow models (Table 3.6).

White-box attacks. The black-box KL Divergence Attack performs surprisingly well despite the weaker

threat model, outperforming the best white-box attack in nearly all experimental settings. Since an adversary

in the white-box setting has access to more information than just the data and model predictions, it should

be at least as powerful as a black-box adversary. We attribute the relative ineffectiveness of the white-box

attacks to two main reasons. First, in Permutation Invariant Networks, model parameters are directly used

as features for the meta-classifier, unlike comparisons in model prediction distributions in KL Divergence

Attack. Secondly, white-box attacks have a larger feature space and learning meta-classifiers additionally

requires learning to recognize relevant patterns in model parameters, a huge and complex data distribution.

The black-box attacks, on the other hand, are agnostic to parameters in the victim model and thus much

easier to scale, resulting in better performance.

3.5.2 Correlation

The impact of correlation between the underlying task of a model and the property of its training distribution

being inferred has been touched upon briefly in the literature [371], but not studied extensively. Intuition

suggests there should be some positive relationship between inference risk with increasing task-property

correlation, but prior studies do not evaluate inference risk across a range of property-task correlations.

We carefully pick pairs of properties and tasks for the CelebA dataset, such that there is a good range of

correlations.

We conduct experiments with property correlations of ≈ 0 (Mouth Slightly Open–Wavy Hair), ≈ 0.14

(Smiling–Female), ≈ 0.28 (Female–Young), and ≈ 0.42 (Mouth Slightly Open–High Cheekbones). Across
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Figure 3.15: Distinguishing accuracy for different task-property pairs for CelebA with varying correlation, for
KL Divergence Attack.

this range of correlations, mean distinguishing accuracies (nleaked values in parantheses) are 62.1% (<0.1),

85.3% (3.2), 86.3% (2.5), 76.7% (1.4) as correlation values increase. The lack of any clear trend between

correlation and inference risk is consistent with observations in the literature around task-property correlation

and inference risk [371]. As observed, inference risk is non-trivial as long as the task-property correlation is

non-zero. While the case of non-zero inference risk is obvious (with zero correlation, loss optimization would

not use the property as an indicative feature), changes in inference risk with varying correlation values may

be tied to observed correlation versus actual causality, and methods for causal learning may help alleviate

this inference risk [307].

We perform similar analyses for the RSNA Bone Age dataset, where we flip the property and task. In this

case, the correlation between the task and property remains the same, thus helping identify potential changes

in inference leakage arising purely from the choice of the property itself. While switching from Age–Females

to Females–Age, we observe a huge bump in mean distinguishing accuracies (nleaked values in parentheses):

from 94.5% (12.1) to 99.8% (22.6). Although the choice of property and task are expected to impact inference

risk, our results suggest that this choice may be more relevant to evaluating inference risk than property-task

correlation itself.

3.5.3 Fixing Task-Label Ratios

In scenarios where the model trainer is aware of the task-label balance in D, they may try to adjust G0(D)

or G1(D) in a way that preserves that task-label balance. For instance, a system for predicting duration of
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hospital stays might want a balance between short and long-stay patients, irrespective of what the gender

imbalance in its collected data is, and might subsequently adjust data sampling to maintain a certain class

label ratio. Instead of directly changing the ratio to some other value α1, which may distort the label

distribution, the trainer may constrain the sampled dataset such that the ratio of task labels (say, y) is

preserved (e.g., 0.3 males, 0.7 females).

For this experiments, we achieve this in two steps. First, we use the task label-ratios and the size of the

final dataset (say, m) to compute the number of samples per task-label (yi ·m) required to maintain the

task-label ratio. Then, we re-sample data per task-label to achieve a desired property ratio α1. This data is

then re-combined, thus achieving the desired ratio α1 while maintaining task label-ratios.

We observe mixed results for inference risk changes under this configuration. nleaked values increase by around

2.6 on an average for Census19, while dropping to near-zero inference risk for datasets like Texas-100X.

Adjusting task-label ratios in this manner can thus have a positive or negative impact, depending on its

relationship with the task labels and how it impacts the resulting distributions. The impact of this processing

is not very predictable—while it eliminates inference risk in some cases (like CelebA with Gender–Young), it

actually worsens performance in cases such as RSNA Bone Age (Gender–Age).

3.6 Impact of Adversary’s Knowledge

Research on inference privacy typically considers threat models with one of two simplistic adversarial

assumptions: white-box settings, where the adversary has full access to the model; and black-box settings,

where the adversary has only API access to the model but receives full confidence vectors for each prediction

and has complete knowledge of aspects of the training process and model architecture. The specific information

available to an adversary in the black-box setting, however, can understandably have a significant impact on

inference risk. For instance, access to labeled data (for attacks) with prediction probabilities is often implicit,

as is the use of the same model architectures and feature extractors between the victim and adversary. We

study the impact of these common assumptions, and how relaxing them impacts inference risk. We measure

impact on risk when the victim and adversary use different model architectures (§3.6.1), do not share feature

extractors (§3.6.2), and when the available model API only provides label predictions (§3.6.3). Inference risk

is somewhat robust to differences in model architectures, as long as the victim and adversary’s models have

similar learning capacity. The absence of shared feature extractors reduces inference risk significantly, but we

find attacks can still succeed when only label predictions are available.

3.6.1 Model Architecture

In the white-box setting an adversary can directly observe the target model’s architecture, but in black-

box settings it is unrealistic to assume the adversary knows the target model architecture. Likely model
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Victim Model Adversary Model
RF LR MLP2 MLP3

Random forest (RF) 95.1 (12.0) 78.9 (1.7) 86.7 (5.4) 85.6 (4.9)
Linear regression (LR) 93.2 (13.5) 100.0 (25.9) 76.4 (3.7) 80.8 (5.4)
Two-layer perceptron (MLP2) 69.7 (0.9) 56.6 (0.3) 82.5 (4.2) 82.7 (4.3)
Three-layer perceptron (MLP3) 69.3 (0.8) 56.3 (0.3) 82.2 (4.0) 81.1 (3.8)

Table 3.7: Variation by model type. Each value is the observed mean distinguishing accuracy (%) (with mean
nleaked in parentheses; measured as described in Table 3.5) of the KL attack for Census19 (Sex), for different
combinations of model types for victim and adversary.

architectures may be limited in certain domains like image data, where the victim is likely to use a popular

model architecture such as DenseNet [122] or a convolutional neural network, at the very least. But a variety

of models like random forests, support vector machines, and clustering-based classifiers can be used for tabular

data and may even be picked by model trainers via automated tools [88].

Differences in victim and adversary architectures have not been previously explored, except by Mahloujifar

et al. [199] for poisoning-based adversaries. In their setting, the victim and adversary can have different

model architectures—the adversary uses logistic regression while the victim can use a variety of different

feed-forward neural networks. They note a drop in inference risk with an increase in victim model complexity.

Thus, it is unclear whether these trends are specific to the model architecture. Additionally, the adversary’s

model architecture is kept the same, so they did not explore the potential for higher inference risk with better

local models.

To identify trends in inference risk with differences between architectures, we train multiple models with

different architectures for both the victim and adversary. For Census (Gender), we try all possible combinations

out of linear regression (LR), multi-layer perceptrons with two and three layers (MLP2, MLP3), and a random

forest classifier (RF). We also consider using a two-layer perceptron (MLP2) and a support vector machine

(SVM) for the case of RSNA Bone Age (Gender). For this experiment and the rest of this section, we report

results with KL Divergence Attack.

We observe several interesting trends for Census19 while varying model types for the victim and adversary

(Table 3.7). Inference risk is significantly higher when the adversary uses models with learning capacity

similar to the victim, like both using one of (MLP2, MLP3) or (RF, MLP). Concretely, mean distinguishing

accuracy is 86.9% (mean nleaked =8.7) when learning capacities match, as opposed to 72.7% (mean nleaked

=2.7) when learning capacities do not match.

Interestingly, we also observe a sharp increase in inference risk when the victim uses models with low capacity,

like linear regression and random forest instead of multi-layer perceptrons. For example, mean distinguishing

accuracy is 72.6% (mean nleaked =2.3) when victim models have high learning capacity (MLP2, MLP3), but
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increases to 87.1% (mean nleaked =9.1) when the victim models have low learning capacity (RF, LR). These

trends hint at possible connections between distribution inference risk and model learning capacity.

3.6.2 Feature Extractors

When dealing with high-dimensionality datasets and a scarcity of data, it is common to use techniques such as

transfer learning [337, 347] to boost model performance with reduced data and computational requirements.

Using a pretrained model for feature extraction should intuitively limit distribution-related privacy leakage,

since there are fewer trainable parameters that can potentially contain revealing information. At the same

time, fewer parameters reduce the adversary’s search space over models, making it easier to launch attacks.

Even in a black-box setting, the adversary may be able to use the same feature extractor as the victim,

either as a result of the adversary snooping and gaining information, or just by assuming the use of popular

pretrained models (like BERT [154]). While this setting has been previously explored [16, 95, 293], the exact

effect of a mismatch in extraction models between the victim and adversary is not well understood.

For RSNA Bone Age (Sex), we consider two configurations: one where the victim and adversary use the

same feature extractor, and another where the victim trains DenseNet [122] models from scratch (CNN).

For the first setting, we explore an SVM (FE+SVM) and a two-layer perceptron (FE+MLP2). There is a

considerable drop in distinguishing accuracies (from 96.7% to 91.2% i.e., nleaked from 16 to 6) when the victim

and adversary no longer share feature extractors (Table 3.8). For the settings where they do, we observe

leakage to be highest for similar model architectures, and note a sharp increase when the victim uses an

SVM. Nonetheless, inference risk stays sufficiently high. Interestingly, for the case where feature extractors

are not shared, using a lower learning-complexity model (FE+SVM) seems to lead to higher leakage, than

FE+MLP2. While leakage is high in both cases, the increase can be explained by the chances of adversary’s

local models overfitting being less than that with an MLP.

For CelebA (Sex), we explore a setting where the adversary utilizes a feature extractor to train its models,

while the victim trains CNNs from scratch. This setup represents a resource-constrained adversary who

uses pretrained models to lower computational and data requirements. We observe a similar diminishing of

inference risk when a shared feature extractor is not available to the adversary, consistent with the RSNA

Bone Age results. Compared to the scenario where the adversary uses the same model architecture as the

victim without any pretrained feature extractors, mean distinguishing accuracy drops from 85.3% to 71.0%

(i.e., nleaked from 3.2 to 0.5).

3.6.3 Label-Only Access

Most black-box attacks in the literature related to distribution inference assume access to prediction confidence

vectors. This is not an unreasonable assumption—many APIs return prediction scores, especially for top-k
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Victim Model
Adversary Model

FE+MLP2 FE+SVM

Feature extractor, perceptron (FE+MLP2) 94.5 (12.1) 93.0 (9.0)
Feature extractor, SVM (FE+SVM) 99.5 (21.2) 99.6 (21.7)
DenseNet (CNN) 88.0 (3.4) 94.4 (8.5)

Table 3.8: Mean distinguishing accuracies (%) (with mean nleaked values in parentheses) for RSNA Bone Age
(Sex), for different combinations of model types for victim and adversary (as computed in Table 3.5).
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Figure 3.16: Distinguishing accuracy for for the KL Divergence Attack for RSNA Bone Age (Sex), when
the adversary uses the same feature extractor as the victim, and when the victim does not use or share any
pretrained feature extractor. While there is an obvious drop in performance, inference risk still stays high.

classes (for example Google Vision API3 and ClarifAI Prediction API4 return scaled confidence scores for

the top 10 or 20 classes, respectively). It is unclear, however, what kind of performance drops to expect for

distribution inference attacks in settings where the model’s API only returns a label. The only previous

works to explore distribution inference in the label-only setting are in the context of group distribution shift

auditing [147], and active adversaries with poisoning capabilities [199].

With some straightforward modifications, our KL Divergence Attack can be launched with access to just

label predictions, with negligible drops in inference leakage in most cases. The attack requires prediction

confidence scores to compute the KL-divergence values. However, these scores are absent in the label-only

setting, and the labels effectively correspond to confidence values of 0 and 1. This makes the KL computations

in Equation (3.46) invalid, since the log of 0 or 1/0 is undefined. To tackle this, we replace 0/1 labels with

confidence scores ϵ and 1− ϵ respectively for some small value ϵ (set to 0.01 in our experiments).

We observe mixed trends across datasets and attacks. For instance, switching to the label-only setting has

little impact in the case of Census19, while mean distinguishing accuracies drop by more than 8% (nleaked

drops by more than half) for CelebA (Table 3.9). However, the drop in performance for CelebA is not
3https://cloud.google.com/vision
4https://www.clarifai.com/products/armada-ml-prediction

https://cloud.google.com/vision
https://www.clarifai.com/products/armada-ml-prediction
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Dataset/Task Confidence Scores Prediction Label
Direct Sampling

Census19 (Sex) 82.5 (4.2) 77.3 (3.3) 80.5 (3.7)
CelebA (Sex) 85.3 (3.2) 77.8 (1.4) 79.3 (1.6)
RSNA Bone Age (Age) 99.8 (22.6) 96.3 (12.7) 97.1 (13.3)

Table 3.9: Effectiveness of label-only attacks. Each value is the observed mean distinguishing accuracy (%)
(with mean nleaked in parentheses) for KL (as computed in Table 3.5). The label-only setting leaks less
information, but the attacks still are effective even when confidence scores are unavailable. ‘Direct’ uses a
single query, while ‘Sampling’ uses 10 samples around each test point.
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Figure 3.17: Comparing the distinguishing accuracy for the KL Divergence Attack for CelebA (Sex), when
the target model returns prediction confidence scores and when it returns only prediction labels. Performance
drops most for certain ratios like 0.2 and 0.8, but remains high and roughly the same for more extreme ratios
like 0.0, 0.1, and 1.0.

uniform across all ratios. Inference risk is still quite high for many values of α (Figure 3.17). Similar trends

hold for RSNA Bone Age, where distinguishing accuracy is > 75% for all ratios. We also experiment with

using probabilistic sampling to extract more information. For each datapoint, we sample k random points in

its neighborhood by adding random noise from N (0, σ2) to each feature, and average the generated label

predictions to estimate confidence scores, similar to Jayaraman et al. [138]. We observe slight improvements

in attack performance from the sampling, at the cost of additional queries.

3.7 Defenses

Several defenses against distribution inference have been proposed, but most of them (except differential

privacy [95], which has shortcomings as we discuss in §3.7.1) have not been actually evaluated. Like most

defenses designed to limit privacy leakage, these defenses involve adding noise in some parts of the training

process. This can include the data itself [16] or model parameters [95, 214]. One notable exception is

work by Hartmann et al. [109], where the authors study causes of leakage in distribution inference attacks,

and evaluate mitigation strategies based on causal learning (IRM [13]), correcting inductive biases, and
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increasing the amount of training data, for synthetic datasets. Recent attempts at empirical defenses against

distribution inference [235] require training multiple reference models locally, along with prior knowledge of

the property that an adversary may target. Such defenses can also be susceptible to adaptive attacks [289].

We evaluate some of these noise-based defenses in §3.7.1, and find that they seem unlikely to successfully

mitigate distribution inference risks. Our exploration of inference risk with model generalization reveals

interesting trends and a potential trade-off between learning and inference risk (§3.7.2). In §3.7.3, we introduce

and evaluate a simple defense based on data re-sampling, which can prevent distribution inference in settings

where the model trainer knows which distributional property to hide.

Prior Work. Unlike membership inference where differentially private training can provide a guaranteed

bound on inference risk, there are no defenses against distribution inference from trained models with

theoretical guarantees. Chen and Ohrimenko [55] recently proposed a defense mechanism that builds upon

formal notions of distributional privacy [372] to protect against distribution inference attacks on statistical

queries. This is the first known theoretically-grounded defense against distribution inference, but it does not

apply to protecting machine-learning models.

The only previous defense that has demonstrated meaningful protection against distribution inference attacks

on machine learning models (apart from Inf2Guard [235]) is NoSnoop [195], proposed for a collaborative

learning setting. In their threat model, the adversary seeks to infer sensitive information about exact training

batches and has access to intermediate model losses from clients. The defense works utilize a discriminator-

generator setup, where gradient updates are used to minimize property leakage while preserving task-based

utility. Although this defense is highly effective, it defends against a very narrow type of configuration,

including properties limited to the presence/absence of sensitive data.

Other proposed defenses include removing sensitive attributes from features [371], using node-multiplicative

transforms, or encoding arbitrary information into the models [95]. Since black-box attacks only utilize

relationships between inputs and model outputs, they are unaffected by such changes as long as model

functionality remains unaffected. Further, these defenses seem unlikely to diminish black-box attacks, which

our experiments have shown to be more effective than known white-box attacks, hence we do not evaluate

them here.

3.7.1 Noise-Based Defenses

Several proposed defenses against distribution inference involve adding noise in various ways—differentially

privacy training incorporates crafted noise in the training process and label poisoning adds noise to the

training data. We also consider using adversarial training, which augments training with adversarial

perturbations.
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Figure 3.18: Distinguishing accuracy for different for Census19 (Sex), using KL Divergence Attack. Attack
accuracy drops with stronger DP guarantees (decreasing privacy budget ϵ).

Differentially Private Training. Differential privacy (DP) is a formal privacy notion that provides

theoretical guarantees that bound an adversary’s ability to distinguish between neighboring input datasets

from the output of a computation. Differential privacy can provide theoretical bounds limiting membership

inference. Evaluations by Ateniese et al. [16] suggest differentially private training is not an effective defense

against distribution inference attacks. However, their experiments used a setup with some overlap between

the victim’s and adversary’s data, so it is possible the observed lack of protection is related to the overlapping

data available to the adversary. Although differential privacy in itself does not guarantee protection against

distribution inference, evaluating risk for models trained with these guarantees can help better understand

how such noise-based mechanisms can affect inference risk, and assess the vulnerability of models meant to

provide membership privacy. Empirical evidence can thus be beneficial and more concrete than relying on

pure intuition (or argumentative reasoning about why a defense may or may not work).

We use DP-SGD [1] to train victim models with Reńyi Differential Privacy [221], with privacy loss budgets of

ϵ = 1.0 and ϵ = 0.12, with δ = 4.9× 10−6. We evaluate this defense on Census19, since it is the only tabular

dataset with non-trivial inference leakage. We observe a drop in distinguishing accuracies, but inference risk

stays high for ratios further away from α0 = 0.5 (Figure 3.18).

The decrease in effectiveness may not be solely due to differential privacy. It could also be because the model

does not learn the distribution well enough, leading it to not reveal it. Another possibility is that when the

victim uses DP, it creates arbitrary differences, causing a mismatch between the victim’s models trained

using DP-SGD and the adversary’s shadow models trained without privacy noise. Inspection of task accuracy

for the differential-privacy models suggests lower learning effectiveness as one potential factor (Table 3.12).

To test whether the decrease in prediction accuracy is mainly due to arbitrary differences in the models,

we evaluate results for the setting where the adversary also trains its models using DP-SGD with the same
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Figure 3.19: Distinguishing accuracy for different for Census19 (Sex), for varying levels of label poisoning.
Inference risk drops considerably with increasing levels of label poisoning, but is also followed with non-trivial
drops in task accuracies.

privacy loss budget. Compared to an adversary that does not use DP, there is a clear increase in inference

risk—mean distinguishing accuracy increases to 86.4% (nleaked =2.9) for ϵ = 1.0, and 91.5% (nleaked =4.8)

for ϵ = 0.12 (compared to 82.5%, i.e., nleaked =4.2 without any DP).

Assuming adversary’s knowledge of the use of differentially-private training and the specific privacy loss budget

is not a far-fetched assumption. Organizations that release differentially private models often document their

exact levels of privacy budget [3, 304]. An adversary in such scenarios can thus train its models with the

same privacy parameters.

Label Poisoning. Ganju et al. [95] proposed to mitigate distribution inference by adding noise to the

training data via label poisoning. The underlying idea is to perturb the training data in a way that will

alter the model parameters and make the adversary’s task harder. Although changing data labels can be

detrimental to the model’s task performance, a model trainer may be able to find an acceptable trade-off

between accuracy and inference risk. For a given noise ratio r, the defense comprises randomly flipping task

labels for r fraction of the training data. We evaluate this defense for CelebA (Male) and RSNA Bone Age

(Age) with a label noise ratio of 0.2, and Census19 (Gender) for label noise ratios 0.2 and 0.4. As expected,

this defense harms task performance (Table 3.12), reducing task accuracy: by ∼ 1− 2% for r = 0.2 for all

three datasets, and ∼ 3% for r = 0.4 off Census19. Average inference risk drops for Census19, but remains is

still quite high for ratios like α1 < 0.2 and α1 > 0.8, as shown in Figure 3.19. It may be possible to find a

desirable tradeoff for a simple task like Census19, but this approach is not effective for more complex tasks.

For instance, using a label noise ratio of 0.4 in CelebA completely destroys task performance, reducing the

classifier to only slightly better than random guessing.

Adversarial Training. Adversarial training [196] involves using a training loss function that encourages
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Figure 3.20: Distinguishing accuracy for different using KL, for varying levels of adversarial robustness ϵ
(/255) in L∞ norm, for CelebA (Sex). Inference risk lowers with increasing robustness.

Dataset/Task Adversarial Training (ϵ)
0/255 4/255 8/255 16/255

CelebA (Sex) 85.3 (3.2) 86.8 (5.3) 88.3 (5.2) 58.9 (0.2)
CelebA (Age) 86.3 (2.5) 90.0 (5.5) 88.9 (6.4) 83.6 (2.0)

Table 3.10: Impact of adversarial training. Values are mean distinguishing accuracies (%) (with mean nleaked;
as computed in Table 3.5) for KL on models trained with adversarial robustness, with varying norms ϵ (/255)
of perturbation budget (L∞ norm).

the model to learn features that are robust to perturbations in the input, and produces models that are less

prone to overfitting dataset-specific patterns [127]. This can be especially useful when the data includes

properties that are not correlated with the task, and a model should not capture signals related to the

irrelevant property. A model trained with adversarial robustness objective, using this reasoning, should

be less susceptible to distribution inference. To test this hypothesis and explore the impact of training for

robustness. We train adversarially-robust models for varying L∞ norms for the Gender and Age properties

on CelebA, since the other datasets are either tabular or do not contain sufficient samples for adversarial

training with acceptable performance. Figure 3.20 shows distinguishing accuracies for varying settings for the

perturbation strength used in adversarial training. Training for adversarial robustness, as documented in the

literature, leads to drops in task accuracy.

We observe very interesting trends with respect to inference risk. Risk increases with increasing perturbation

strength (ϵ) until 8/255, and then drops to near-zero (Figure 3.20).

Since adversarial training helps models remove focus from spurious correlations, it is naturally aligned with

causal inference [373]. This results in these models using more signals relevant to the inferred property (such

as Age or Sex) since they are linked to the task at hand. However, as this perturbation norm increases,

task accuracy drops accordingly, thus leading to lower inference risk since the model itself performs poorly
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Figure 3.21: Mean distinguishing accuracy (as computed in Table 3.5) of the KL Divergence Attack on
CelebA (Sex), for varying number of training epochs for victim models. Shaded regions correspond to error
bars. Distribution inference risk increases as the model trains, and then starts to decrease as the model starts
to overfit.

at learning causal connections, like the one between the property being inferred and the given task. One

notable exception here is ϵ = 8/255 for CelebA (Age), where inference risk seems to slightly increase. One

possible explanation is the stronger age (property) and sex (task) relationship in this case, leading to the

causal relationship-accuracy tradeoff leaning in favor of the former, in terms of inference risk.

3.7.2 Generalization

The defenses discussed in §3.7.1 have one thing in common: they nearly always lead to non-trivial drops in

task performance. This is not only unacceptable for most deployments, but raises the question of whether the

defenses are doing anything useful or just reducing distribution inference by producing models that learn the

underlying distribution less well. Concretely, we observe a positive correlation between model task accuracy

and mean nleaked values (Pearson’s correlation coefficient > 0.55). A model with poor task performance

possibly fails to learn useful signals from the training distribution, and is thus cannot leak properties it has

not learned; while good performance means a model has learned the distribution well and is prone to more

leakage.

To investigate these correlations, we inspect trends between inference risk and generalization across training

epochs. For this experiment, we train the models longer than the other experiments (which were optimally

selected for best generalization using validation data), allowing us to better study trends between overfitting

and inference risk. We observe interesting trends in inference risk with model training. In most cases,

inference risk is high after even one epoch of model training (Figure 3.21). This is especially surprising

because the model takes a few epochs to get good performance on the task itself, but shows that the model is

learning and exposing aspects of the distribution even early in its training.
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These trends clearly suggest that model under-training is not a feasible defense. Training beyond minimum

generalization gap does lead to significantly reduced distribution inference risk. However, this region of

the training corresponds to overfitting, which is known to be positively correlated with increased risk to

membership inference [355]. Thus, a model trainer that is willing to overfit its models to avoid distribution

inference adversaries would risk making the model more vulnerable to membership inference.

3.7.3 Re-Sampling Data

If the victim is aware of the property that an adversary might target, or only has a few known properties

of the distribution that it wants to protect, the easiest mitigation is to modify the training distribution (or

the sampling mechanism) such that the property is no longer present for the training dataset. Knowing the

particular property to hide is a plausible assumption that is often assumed in work on distribution inference

defenses. For instance, Chen and Ohrimenko [55] propose a theoretically-grounded defense that builds upon

the distributional privacy framework [152] and modifies feature values to provide privacy guarantees against

distribution inference adversaries.

Zhou et al. [376] propose over-sampling to reduce inference risk, but do so by adding new samples to their

training data. Although this defense eliminates distribution risk (at the cost of model performance), the

availability of new data is not always possible. Model trainers typically use all available data, and may not

have extra data to use for such defenses.

We explore two variations of re-sampling defenses: over-sampling and under-sampling. In both cases, the

model trainer re-samples data from its available datasets such that the resulting dataset is indistinguishable

from a dataset sampled from a different distribution. For over-sampling we experiment with two flavors: using

simple replacement and over-sampling based on inserting augmented data. These defenses rely on the key

assumption that the model trainer knows the property they want to hide, and that there are a only few such

properties so re-sampling to hide the desired properties will not unduly hard the model’s task performance.

When this assumption holds, resampling defenses can virtually eliminate inference risk. We evaluate this

defense on configurations with low (CelebA–Sex), medium (Census19–Sex), and high (RSNA Bone Age–Age)

inference risk to measure the impact of this defense.

Under-Sampling. The model trainer can simply under-sample its data such that the resulting dataset has

a ratio corresponding to some other distribution. For example, a model trainer, with a dataset containing

70% females who wants to hide the ratio of females in the dataset from an inference adversary can simply

under-sample examples with the ‘female’ attribute such that its data is balanced. This defense should prevent

any disclosure about the pre-sampled distribution since there should be no difference between the cases where

the training data was balanced to begin with and when it was adjusted with this defense, so long as the

distribution is not distorted by the under-sampling. In our experiments, we find that under-sampling lowers
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inference risk significantly, but does not completely eliminate it (Table 3.12). Mean distinguishing accuracy

drops below 54% (nleaked <0.1) for CelebA with significantly lower leakage for Census19 (< 57%, i.e., nleaked

<0.1) and RSNA Bone Age (∼ 60%, i.e., nleaked =0.3).

Over-Sampling. A model trainer not willing to sacrifice available training data by under-sampling may

prefer to over-sample. The most basic variant over-samples the data before training begins, duplicating

training records, and then trains its models like usual. Although this defense leads to the complete utilization

of data, the presence of repeated data may reveal the property the adversary wants to hide to an adversary

aware of the defense. It could, for instance, lead to a change in group-wise accuracies, which an adversary

can learn to identify and still succeed at distribution inference.

Augmentation Based Over-Sampling. The ideal scenario for the defense would comprise of injecting

fresh labeled data to adjust the desired property, as was assumed by Zhou et al. [376]. However, labeled

data is scarce and may be expensive to acquire, and using techniques like pseudo-labeling can still leak

information. In such scenarios, the model trainer can use augmentation techniques to synthetically generate

additional samples. This avoids repeating samples, and may have the added benefit of potentially increasing

the model’s robustness to augmentations. But, the use of augmented data in an imbalanced way may still

reveal information to a distribution inference adversary. For this defense, we focus only on the CelebA

dataset, since designing augmentation for tabular datasets is much harder, and augmentations for RSNA

Bone Age are limited. Task accuracy remains comparable and inference risk drops significantly (slightly

higher than other forms of sampling), but is not completely eliminated and still higher than standard under

and over-sampling.

Impact on Fairness. This form of re-sampling is common in research related to improving fairness in machine

learning [212], commonly known as “unbiasing”. However, re-sampling data can impact different sub-groups

and populations of the distributions unequally, creating issues related to fairness in model predictions [163].

To investigate such potential impacts, we measure the impact of under-sampling and over-sampling-based

mitigation strategies on fairness. We compare the precision and recall for another group and its possible

values, for both undersampling and oversampling. Re-sampling based defenses have negligible impact on

fairness in the case of CelebA, but result in disparate impacts of both under/over-sampling on the two groups.

for Census19 (Table 3.11). For instance, over-sampling from a ratio α < 0.5 lowers both precision and recall

for whites, but increases recall and decreases precision more greatly for not-whites. These changes are even

more severe for RSNA Bone Age, where changes in precision can be as high as 20% in opposite directions for

different groups.

Adaptive Attacks. An adversary with knowledge of the under-sampling approach may be able to derive

the original distribution by estimating the size of the training data to learn the sampling ratio. The strongest
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Re-Sampling α
Precision Recall

not-white white not-white white

Under-Sampling
< 0.5 ↓ 2% ∼ ↑ 1% ↓ 1%
> 0.5 ↓ 1% ∼ ↓ 1% ∼

Over-Sampling
< 0.5 ↓ 2% ↓ 1% ↑ 1% ↓ 1%
> 0.5 ↓ 1% ↓ 1% ↓ 1% ↓ 1%

Table 3.11: Relative change (%) in precision and recall metrics for white and not-white (race attribute), for
Census19 (gender) for under-sampling and over-sampling. We consider cases where data for males (α < 0.5)
or females (α > 0.5) is under-sampled for equalization.

adversary would be one that starts with knowledge of specific records in the original training dataset, and can

use membership inference attacks to estimate how many of those records are included in the under-sampled

dataset. We evaluate such attacks in §3.7.4, and find they are unlikely to be effective without dramatic

improvements to membership inference attacks.

3.7.4 Adaptive Attacks Against Under-Sampling

Assume a more powerful adversary that has access to m training records each corresponding to attribute

0 (D−) and 1 (D+), and the original dataset has size n. In this scenario, the adversary is unaware of the

original distribution of these attributes (α). Consider the scenario where the victim utilizes under-sampling

on its original distribution as a defense to protect α, and re-samples such that both attributes are equally

likely.

For our analysis, we assume a near-perfect membership inference adversary, with a false negative rate β. In

such a setup, the adversary can check which of its data (the one with attributes zero, and attributes one) still

all tests as members. If all zeros still remain members, then data from (D+) must have been under-sampled,

and thus the original α must be > 0.5. Assuming that under-sampling is performed by pruning points

uniformly at random, the density of members in the resulting data must remain the same. Thus,

m

α · n
=

m
′

(1− α) · n
(3.50)

m− = β ·m (3.51)

m+ = m
′
· β (3.52)

where m+ is the number of datapoints (out of the known m) with attribute 1 that are inferred as members

by the adversary, and m− for attribute 0. α can thus be estimated as m−/(m− +m+). By symmetry, the

case where original α < 0.5 yields a similar formula. We test the risk of this adversary while varying the

number of data points m, for different values of α. The adversary in this case thus directly predicts α, and

mean square error (MSE) values are computed accordingly for the regression case. We use the R attack from
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Defense Distinguishing Accuracy (nleaked)
Task Accuracy (%) α1 = 0.2 Mean

Census19 (Sex)

No Defense 77.9± 0.9 89.8 (2.1) 82.5±17.9 (4.2±5.3)
DP (ϵ = 1.0) 77.0± 1.0 65.4 (0.2) 69.3±14.6 (0.6±0.7)
DP (ϵ = 0.12) 75.6± 1.0 72.4 (0.5) 73.4±14.8 (0.8±0.9)
Label Poisoning (r = 0.2) 77.3± 1.0 78.4 (0.8) 78.9±17.4 (3.5±5.4)
Label Poisoning (r = 0.4) 74.9± 1.2 66.4 (0.2) 70.0±17.9 (1.9±4.2)
Under-sampling 77.5± 0.5 50.0 (<0.1) 56.7±6.8 (0.1±0.1)
Over-sampling 77.3± 0.6 50.0 (<0.1) 51.9±2.5 (<0.1±0)

RSNA Bone Age (Age)

No Defense 65.8± 2.0 99.9 (20.1) 99.8±0.4 (22.6±4.2)
Label Poisoning (r = 0.2) 64.3± 2.3 99.9 (20.1) 95.7±6.2 (12.1±7.1)
Under-sampling 65.4± 3.2 73.4 (0.5) 59.1±13.3 (0.3±0.5)
Over-sampling 64.6± 2.8 70.4 (0.4) 60.2±11.2(0.3±0.4)

CelebA (Sex)

No Defense 91.6± 0.8 89.6 (2.1) 85.3±15.8 (3.2±2.7)
Label Poisoning (r = 0.2) 90.0± 5.0 82.0 (1.1) 78.3±15.6 (1.2±1.0)
Adv. Training (ϵ = 4/255) 90.4± 0.8 93.8 (3.1) 86.8±16.4 (5.3±5.2)
Adv. Training (ϵ = 8/255) 88.5± 1.2 95.4 (3.7) 88.3±15.0 (5.2±4.9)
Adv. Training (ϵ = 16/255) 75.7± 11.9 76.6 (0.7) 58.9±13.1 (0.2±0.4)
Under-sampling 90.8± 1.1 50.0 (<0.1) 53.7±6.1 (<0.1±0.1)
Over-sampling 90.6± 0.8 50.0 (<0.1) 53.8±4.1 (<0.1±0.1)
Augmentation-based over-sampling 91.7± 1.6 74.8 (0.6) 61.0±14.5 (0.3±0.5)

Table 3.12: Effectiveness of considered defenses. Each distinguishing accuracy (and corresponding nleaked)
reported is the observed leakage of KL. The first results are for predicting between α0 = 0.5 and α1 = 0.2;
the last column reports mean distinguishing accuracy (with mean nleaked in parentheses) as described in
Table 3.5. Mean distinguishing accuracies (and nleaked numbers) are reported with ± standard deviation,
over different α1 values. Most noise-based defenses harm model task accuracies, and the only defenses that
diminish leakage without harming task accuracy are based on data re-sampling.

Ye et.al. [353], and use the authors‘ official implementation, with the FPR set to 0.05. Similar to the case of

binary distinguishing, we use nleaked to measure the adversary’s success (Theorem 3.2.3).

MSE values for varying number of members (m) with corresponding nleaked values are reported in Table 3.13.

For the most realistic case, with knowledge of upto 100 members (m) per attribute, the inference risk remains

very low, with MSE values as high as ∼ 5 (nleaked < 0.1). This risk is expected to increase with increase in

membership knowledge, as in the extreme case, the adversary would have perfect knowledge of the entire

training dataset. One notable exception is RSNA Bone Age, where the MSE drops to ∼ 0.4 (nleaked =2) for

m = 500. This is not surprising, as m = 500 for the case of RSNA Bone Age corresponds to ∼ 15% of the

victim’s training dataset, which is unrealistically high.

For the task of binary distinguishing between α0 = 0.5 and some other α1, it suffices to see whether the

predicted ratio is sufficiently different from 0.5. We do so by checking the predicted α, and predict G1(D) if it

differs from 0.5 by more than 0.03, and G0(D) otherwise. As a baseline, we also consider a simpler adaptive
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adversary that uses the same re-sampling setup as the victim, re-sampling data for its shadow models. Such

an adversary can potentially work, since the KL Divergence Attack compares distributions of predictions,

which might be sufficiently different between re-sampled and non-sampled (α = 0.5) models.

Mean distinguishing accuracies and corresponding nleaked values are reported in Table 3.14. Cases where

the adversary uses the same setup as the victim (for re-sampling) leads to significant inference leakage in

most cases, with mean distinguishing accuracies as high as 80% (nleaked =1.8) for Census19. Similarly, the

MI-based distribution inference leakage is particularly high for RSNA Bone Age. This is in line with previous

observations with the MSE values (Table 3.13), since the number of members corresponds to a significant

portion of the victim’s training data.

3.8 Related Work

This section summarizes work on formal definitions of privacy and distribution inference attacks.

Privacy Definitions. Most formal privacy definitions, including numerous variations on differential privacy

[67], focus on bounding inferences about specific data elements, not the statistical properties of a dataset.

The key privacy notion of traditional differential privacy is intuitively connected to the risk to an individual

in contributing their data to a dataset — this corresponds well to dataset privacy risks, but does not capture

distribution inference risks; indeed, the main goal of most differentially private mechanisms is to satisfy the

inference bound for individual data while providing the most accurate aggregate statistics possible. One

notable exception is the Pufferfish framework [155], which introduces notions that allow capturing aggregates

of records via explicit specifications of potential secrets (e.g.,, distribution of vehicle routes in a shipping

company) and their relations. Zhang et al. [372] extend the Pufferfish framework to define the concept of

“attribute privacy”, including a notion of distributional attribute privacy that takes a hierarchical approach

for parameterizing distributions and could be instantiated to capture notions of distribution inference such as

the fraction of records with some attribute. Although these definitions are promising and valuable, none of

them satisfy our simple goal to define distribution inference attacks in a way that is general and powerful,

while clearly distinguishing inferences that are considered attacks from allowable statistical inferences.

Dataset/Task
Number of known members (m)

10 100 500
Census19 (Sex) 9.043 (<0.1) 4.588 (0.2) 4.078 (0.5)
RSNA Bone Age (Age) 1.969 (0.1) 0.486 (0.8) 0.372 (2.0)
CelebA (Sex) 4.785 (<0.1) 1.466 (0.2) 1.202 (0.4)

Table 3.13: MSE values (with mean nleaked in parantheses) for direct regression over α for an adversary that
utilizes membership inference to infer α for models trained with under-sampling based defense.
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Dataset/Task KL MI-Based Same Setup + KL
Census19 (Sex) 56.7 (0.1) 57.1 (<0.1) 80.4 (1.8)
RSNA Bone Age (Age) 59.1 (0.3) 65.9 (0.3) 50.0 (<0.1)
CelebA (Male) 53.7 (<0.1) 50.0 (<0.1) 64.7 (0.3)

Table 3.14: Mean distinguishing accuracies (with mean nleaked in parentheses) for the task of binary
distinguishing between α0 = 0.5 and α1, while varying α1, for the standard adversary (KL), an adversary that
utilizes membership inference to infer α for models trained with under-sampling based defense (MI-Based),
and a simpler adversary that just copies the victim’s re-sampling setup (Same Setup + KL).

A recent attempt to formalize property inference [199] consists of a framework that reduces property inference

to Boolean functions of individual members, posing the ratio of dataset members satisfying the given function

as the property. These ratio-based formulations limit the kinds of distribution inferences considered since they

cannot capture many other kinds of statistical properties of the training distribution that may be sensitive,

like the degree distribution of a graph [110]. Ratio-based formulations assume the property function is

applicable over individual data points, while for graphs it is an aggregation over interconnected nodes.

Distribution Inference Attacks. All previous distribution inference attacks in the literature take a

meta-classifier approach—the adversary trains models on datasets with different properties, then trains

a meta-classifier using those models. The adversary then uses the meta-classifier to predict a property

of the victim’s training data, which is usually related to the ratio of members satisfying some Boolean

property. Ateniese et al. [17] were the first to identify the threat of distribution inference (termed property

inference) and proposed a meta-classifier attack targeting Support Vector Machines and Hidden Markov

Models. The proposed attacks can successfully infer the accent of speakers in speech-to-text systems, or

presence of particular traffic in network traffic classification systems. Model representations for training the

meta-classifier can take several forms: using model weights [95], gradients [214], or activations/logits for a set

of query points [333, 348]. These methods show promise, achieving better-than-random results for several

properties, tasks, and models across different domains. For instance, predicting a doctor’s specialty based on

rating-prediction systems on text reviews [371], identifying accents of speakers in voice-recognition models

[17], and even predicting if a model has been trained with Trojans [348]. Although these approaches achieve

high accuracies on “toy-like" classifiers like decision trees and shallow neural networks, and distributions that

are highly disparate, successful property inference attacks have not been demonstrated on realistic (or even

semi-realistic) deep neural networks or complex datasets. Our work is the first to demonstrate the capability

of such attacks to work on large convolutional networks and different datasets across domains.

Zhou et al. [376] extend distribution inference attacks to directly infer property ratios for Generative

Adversarial Networks (GANs). Although their attack setting includes targeting large GAN models on complex

datasets, their attack does not use the victim model’s model parameters directly. Similarly, Pasquini et al.

[250] extend distribution inference attacks to a split-learning setting and only target parts of the victim
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model. Zhang et al. [374] extended this approach to graphs and their properties, distinguishing training

graphs according to properties such as the number of nodes and edges using attacks that assume access to

graph embeddings.

These attacks have also been extended to settings where active adversaries that can poison the victim’s

training data [51]. The only previous attacks designed to work with label-only predictions are by Juarez

et al. [147] that performs a statistical test based on attribute-wise model performance, and the attack by

Mahloujifar et al. [199] in the setting of active adversaries.

3.9 Conclusion

An essential step to understanding distribution inference risks is a precise and formal definition. In this

chapter, we introduced such a general definition, which subsequently leads to a systematic approach to

quantifying the leakage from distribution inference attacks. Our empirical results reveal how intuition may not

necessarily align with actual observations: seemingly similar pairs of distributions can have starkly different

attack success rates, and simple attacks with limited access can sometimes outperform computationally

expensive meta-classifiers. Our proposed black-box attacks are highly efficient and maintain their effectiveness

even when access to exact prediction probabilities is unavailable. Even the lack of common feature extractors,

a common setting in many evaluations in the literature, does not completely eliminate inference risk. Our

experiments also show how direct regression of underlying ratios of training distributions is a real threat, and

can be used to improve the performance of binary distinguishing attacks.

The general approach to achieve security and privacy for machine-learning models is to add noise, but our

evaluations suggest this approach is not a principled or effective defense against distribution inference. The

main reductions in inference accuracy that result from these defenses seem to be due to the way they disrupt

the model from learning the distribution well, so observed reductions in inference risk are related to drops

in task performance. Our experiments with different model architectures and differentially private training

support this—inference risk increases significantly when the victim and adversary use the same learning

algorithms or model architectures. The only reliably effective defense from our experiments is to re-sample

data, which depends on the assumption that the model training is aware of the adversary’s inference goals

(or at least of the properties that should be protected). These re-sampling defenses, too, are not perfect, as

they seem to negatively impact the fairness of groups related to the property attribute.

Like nearly all inference privacy work, we assume an adversary with access to a dataset that matches the

underlying distribution (in this case, before the transformation to the actual training distribution as modeled

by G0 and G1). This is a strong assumption, which may be realistic in some cases but is often unlikely. All

our attacks (and nearly all previous ones) require representative data for training models locally. Exploring



Distribution Inference 94

XC

XS

Y

X

Obj

Env

Figure 3.22: Given data X can be decomposed into causal features (XC) that determine the corresponding
label (Y ) and other aspects of X, and style-related features (XS) that have no impact on the corresponding
label. The content is only determined by the object (Obj), while the style is a function of both the object
itself and the environment it exists in (Env).

adversaries with limited data access to these distributions and how it impacts inference risk is left as part of

future work.

There is a need for theoretical connections between distribution inference risk and general useful notions of

machine learning, like model complexity and fairness. Our work suggests such connections do exist, and we

hope they will be better understood as both empirical and theoretical understanding of inference privacy

advances. Specifically, our experiments with varying property–task correlation and adversarial training suggest

connections between the causality graph learned by the model, and properties of the training distribution that

can be inferred. While causality-driven learning is beneficial for privacy [307], its connection to distribution

inference is more direct, especially in distinguishing between properties that are “unavoidable” in terms of

learning, and ones that should certainly not be inferred. For instance, in Figure 3.22, if a classifier can perfectly

capture the underlying causal structure, it should not leak any information about the style features XS . At

the same time, it is unclear how much the content XC an adversary should be able to infer. Formalizing

these connections and understanding the trade-offs between learning causal structures and inference privacy

is an important direction for future work.

Our work raises more questions than it answers—why do some models leak a lot of information about certain

properties of their training distribution but others leak little, what are the limits on how precisely training

distributions can be distinguished, why do models trained on some datasets (like RSNA Bone Age and the

graphs) appear to leak so much more information than others. We are not able to answer these questions

yet, although our experiments provide several intriguing observations and suggest possibilities to explore. It

is not surprising that so little is understood about distribution inference—the research community has put

extensive effort into studying membership inference attacks for several years now, and we are just beginning

to be able to understand how and why membership inference risk varies [164].



Chapter 4

User-Level Inference ∗

In this chapter we study user-level inference, where the goal is to infer properties of individual subjects in a

dataset, and its application in two real-world scenarios: federated learning and transfer learning. First, we

explore user-level inference in the cross-silo federated-learning (FL) setting (§4.1). We study of factors in the

FL environment that influence leakage (§4.2), providing actionable insights for practitioners to understand

factors that influence leakage. We then explore an active adversary that can manipulate the pre-training

process of a model to amplify leakage in the downstream models while maintaining low detection rates (§4.3).

Such an adversary may release its models via services like Hugging Face [83] or upload them for unsuspecting

victims to download.

4.1 Federated-Learning

We begin by formally describing the adversary’s objective (§4.1.1), followed by a description of the threat

model and assumptions about data and model access. Our attacks require only black-box API access: one of

them only assumes access to the final trained model (§4.1.2.1), while the other assumes access after each

training round, and is thus more suited to FL settings (§4.1.2.2).

4.1.1 Attack Objective

Let S0 be a set of subjects, and sinterest the subject whose membership the adversary wants to infer, such

that sinterest ̸∈ S0. Let Ds be the distribution corresponding to a subject s (i.e., distribution of that subject’s

data). Then, using our definitions of distribution inference (§3.1), we can formulate our subject membership
∗This chapter is largely based on Anshuman Suri, Pallika Kanani, Virendra J Marathe, Daniel W Peterson, Subject

Membership Inference Attacks in Federated Learning, in arXiv, 2022 and Yulong Tian, Fnu Suya, Anshuman Suri, Fengyuan Xu,
David Evans, Manipulating Transfer Learning for Property Inference, in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023. Code relevant to this chapter is available at https://github.com/iamgroot42/TransferInference.
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inference task as differentiating between models trained on datasets sampled from either of the distributions

D0 and D1, defined as:

Db =
⋃
s∈Sb

Ds , S1 = S0 ∪ {sinterest} (4.1)

This is equivalent to stating that a data sample from either of D{0,1} is equivalent to taking a union of

samples from the individual subjects’ distributions. The first distribution D0 corresponds to the absence of

subject of interest in the federation, while D1 includes it. A Subject membership inference attack thus

aims to infer whether a given subject’s data was used in the federation, i.e., was present in

any of the data sources. The flow of information for the proposed subject membership inference attack is

described in Figure 4.1.

Note that subject membership inference is orthogonal to the FL setting, and is indeed more broadly applicable

to ML models. For subject membership inference in FL, it is important to note that it does not matter how

a subject’s data is divided across different users of the federation. Even if only one user has the subject’s

data, or if an individual subject’s data is divided across all users, the subject’s data is ultimately used in the

overall training process and thus the subject should be inferred as being present. The adversary only cares

about the subject’s presence in the overall federation and using the above formulation is apt for the given

threat model.

4.1.2 Threat Model

Attacks may be grouped by whether or not the adversary has knowledge (or perhaps partial knowledge) of

the model, into black-box, white-box, and grey-box attacks [230, 315]. Participants in FL have access to

the model architecture and parameters, and thus have white-box access. We do not assume the attacker is

part of such an FL setup, or that it has white-box access to the victim’s model. Our Loss-Threshold Attack

(§4.1.3.1) uses only knowledge of the data points, the labels assigned by the model, and the loss function

the model is optimizing; which is essentially a black-box attack. The Loss-Across-Rounds Attack (§4.1.3.1)

additionally assumes API access to the model after each training round, and is designed to extract additional

information from the model’s training behavior across time. This attacker can exist as an honest-but-curious

federation server/user in the federation. In either case, by design the attacker has access to the global model

after each training round. For all of our attacks, we assume the adversary has access to the following:

4.1.2.1 Samples (finite) from the distribution of subjects

If the adversary wishes to launch an attack against a particular subject, it must have the capability to

quantify and differentiate subjects and identify the one it is interested in. This can be done by either knowing

(or estimating) a subject’s distribution or possessing finite samples to estimate it. Having access to finite set
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Figure 4.1: Information flow for the subject membership inference attack in Federated Learning. The
adversary uses some algorithm H, along with knowledge of membership of a few subjects and the models Mi

after each training round i, to infer the membership of sinterest’s data in any of the user’s data.

of samples from the subject’s distribution is the weaker assumption of these two. Note that in theory, it is

not necessary to have estimates for distributions for all of the subjects— just for the subject of interest, and

some samples from subjects with known inclusion/exclusion labels. We assume the attacker has access to a

limited number of known included/excluded subjects, and samples from each distribution, in order to tune

the threshold values. Since our attacks do not require training any shadow models (which is the case for most

state-of-the-art membership [353], distribution inference §3.3, and subject-membership [56] attacks), it is

general and can be applied in very-low-data settings.

4.1.2.2 API access to the global model after each federation round

We assume access to prediction probabilities from the global model after each training round. Both the

central server and individual participants have access to the global model after each training round, making

it easy to satisfy this requirement. This may be further weakened to limit access to just the last round- the

final global model that may be released to the world. We thus propose two attacks; one for each level of

access described here.

4.1.3 Method

Both of our attacks are based on hypotheses implied by prior works on the behavior of loss functions on

training data [138, 263, 355]. Given the objective of training ML models, it is natural to expect that the

model’s performance on data similar to that seen during training would be better than that not seen during

training. The Loss-Threshold Attack (§4.1.3.1) is generic and applicable to any ML model with black-box
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access, while the Loss-Across-Rounds Attack (§4.1.3.2) assumes access to intermediate model state during

training, and is thus more suitable for FL settings.

Let m be the total number of users participating in the federation. Let r be the number of rounds for which

the global model is trained in the federation, with Mi denoting the state of the model after training round i

has completed. M0 thus represents the state of the model before training starts. Let li(x, y) be the loss value

between the label y and Mi(x), with Mi(x) denoting the model Mi’s prediction on point x.

4.1.3.1 Loss-Threshold Attack

Hypothesis 1. If data from a particular subject is present in the federation and is used in training, the global

model would be expected to have a lower loss on it than data from a subject that was not present in any of

the users’ local datasets [355]. Based on this hypothesis, we propose the following attack: record loss values

for samples from the target subject’s distribution and check how many of them have a value less than a

particular threshold. If the loss is below the threshold, it would indicate the model has seen data from that

subject’s distribution, during training.

c =
∑

(dx,dy)∼Ds

I[lr(dx, dy) ≤ λ] (4.2)

The adversary can either check if c is non-zero or derive an additional threshold on this value based on the

metric it wishes to maximize, like precision or recall.

4.1.3.2 Loss-Across-Rounds Attack

Hypothesis 2. Loss on training data, and thus data from the training distribution, decreases across iterations by

virtue of how learning algorithms work. However, data from distributions not seen during training would likely

not converge to values as low as those of subjects present in the federation [328]. Based on this hypothesis,

we propose the following attack: record loss values for samples from the subject’s distribution and note how

the loss values change as training rounds progress. The attack first computes the loss across each training

round i:

ci =
∑

(dx,dy)∼Ds

li(dx, dy) (4.3)

Then, the adversary takes note of the number of training rounds where the loss decreases after each round:

c =

r∑
i=1

I[ci < ci−1] (4.4)
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The adversary can then compute these values for both subjects seen and not seen in the federation and

consequently derive a threshold on this value for subject membership. The attack implicitly assumes all users

contribute in each training round. Although this assumption may not hold in most settings, the likelihood

of any user chosen in a training round containing a subject’s data is non-trivial. This, coupled with the

robustness of learning algorithms over individual rounds [107], is sufficient to launch the attack and achieve

high inference leakage.

4.1.3.3 Threshold Tuning

Membership inference attacks label whether a subject is part of the training data; it is common for these

labeling strategies to depend on some parameters or hyper-parameters, like any ML system. These hyper-

parameters are usually computed using additional information that may be available through side-channel

attacks or just by the adversary participating in the federation training.

All of our attacks involve computing some form of tunable thresholds (e.g., λ in Equation (4.2)). The threshold

values affect the precision/recall tradeoff of the attack, and in this work we learn their optimal values from

a data set of correctly labeled included and excluded subjects. For the scenario where the adversary is a

participant in the federation, it can use its split of data to generate data for the attack. At the very least, the

attacker knows for certain that subjects for which records exist in its training data are part of the federation.

The adversary can then guess subjects that are likely not used in the federation by randomly sampling (or

generating) other subjects not in their data, or by intentionally holding some data out from the training of the

federated model. The adversary can infer additional information about non-users based on task knowledge,

as it is part of the federation. For example, if FL involves X-ray images, the adversary can use individuals

known to be not part of the FL e.g., patients from another country. Once data for both subjects used and

(probably) not used during training is available, the adversary can tune the thresholds of their chosen attack

to accurately predict whether a subject’s data was used in the federation or not.

4.1.4 Evaluation

Equipped with knowledge of the threat model and the adversary’s capabilities, we move on to the following

questions:

1. How well can an adversary perform in the absence of access to exact data from training, while testing

for subject membership inference?

2. How little information about subject inclusion/exclusion can the adversary get away with while still

being effective?

3. How does FL affect subject membership inference risk, compared to standard training?
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4. How well do these attacks hold up against differential-privacy based mitigation approaches?

5. How do the properties of the data, model and federation affect attack performance?

To answer these questions, we use a real-world dataset and train models on it with both standard and FL

training (§4.1.4.1). We then test out the efficacy of our attacks under various training environments and

defenses (§4.1.4.2). Our evaluations reveal how distribution-based attacks can be just as potent as ones

based on exact record membership, both in extracting subject membership information, and evading defenses

(§4.1.4.3).

4.1.4.1 FEMNIST Experimental Setup

We use FEMNIST [39], the federated extended MNIST [66] dataset, an image classification task for handwritten

digits and letters. FEMNIST’s digits and letters themselves have been written by 3500 distinct individuals,

and FEMNIST partitions these images by individual authors. Each author has contributed hundreds of

sample images. Ordinarily, FL research experiments [39] map each author to a federation user, resulting in

a 3, 500-user federation. In our experiments, we instead map authors to subjects, and reserve half of the

subjects as non-member subjects, resulting in a federation with 1750 subjects whose data are randomly

scattered among a handful of federation users (16 in our experiments). The remaining half (1750) subjects are

never involved in the federation and are “non-members”. Each subject has ∼ 140 data points on average, with

its data more-or-less equally spread across 16 federation users. Multiple federation users may host images

from the same subject, though we do not distribute any individual image to more than one federation user.

This reconfigured dataset is especially suitable for cross-silo FL and our subject membership attacks study.

The data points themselves are 28x28 pixel, black-and-white pictures of a single handwritten digit or letter.
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Figure 4.2: Attack F-1 Score across training rounds inferring subject membership using our attack (orange)
and via membership inference attacks using exact records (blue), for normal training (a) and FL (b). Inference
risk is not harmed significantly by the lack of access to exact data, and can be just as bad for FL as normal
training.
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Target Model Training. We use the CNN model on FEMNIST appearing in the LEAF data suite [39] as our

target model to train. We use half of the data points belonging to each of the 1750 member subjects for

training, and reserve the remaining half as in-distribution data points to sample from for carrying out the

distribution-based attack. In the standard model, we simply combine the data from all member subjects to

train a standalone model using Stochastic Gradient Descent, while for the federated setting, we use FedAvg

[148] training protocol. We train each model for 100 rounds using the Adam [157] optimizer, with a learning

rate of 0.001 and batch size 512.

Attack Set, Threshold Tuning, and Evaluation. We prepare the attack set by sampling at most 100 examples

from both member (the other half of each member subject’s data, as mentioned above) and non-member

subjects. We then split this data by subject into two parts. The first split is used by the adversary to derive

the subject membership inference threshold(s) λ (we call this the validation set), while the second split is

used for evaluating the effectiveness of the attack and reporting results. We compute attack F1 scores to

measure adversary success; we count correctly predicting the presence/absence of a subject’s data in the

federation as a hit (1) and incorrect prediction as a miss (0).

4.1.4.2 Results on FEMNIST

We evaluate how the lack of access to exact records affects inference risk, revealing how attacks retain much

of their potency. Much of this potency is retained even as the number of subjects for validation decreases.

These results hold for both our attacks, which we find to be similar in performance. Finally, we evaluate DP

mechanisms at different granularities and privacy budgets as defenses (§4.1.4.3).

Item based v/s Distribution based. To consider the impact of not having access to exact data records,

we design two versions of our attacks. The first version (Item-based) assumes access to exact records used

in model training while testing for subject membership, while the second version (Distribution-based) only

assumes access to a subject’s distribution. As expected, there is a gap in performance between the two

settings, as the item-based access model makes much stronger assumptions (Figure 4.2a). Nonetheless, attack

performance with just distribution-based access is high, achieving attack F-1 scores ≥ 0.85. An adversary

can thus perform subject membership inference with high success, even without access to exact

records. Interestingly, we also note that inference risk is high after as few as two training rounds suggesting

that subject membership inference, unlike membership inference [355], is high even when before the model

has overfit. Next, we train ML models via Federated Learning, and repeat our attacks with the same two

versions as the experiment above. Not only do we observe similar attack performance for both variants, but

the difference in their efficacy is also even lower when data is aggregated via FL.

We assume knowledge of membership for 100 subjects for computing thresholds. This is relatively small

fraction (∼ 5%), but may be hard to obtain in some scenarios. To measure changes in inference risk as this
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(a) Normal Training
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Figure 4.3: Attack F-1 Score across training rounds inferring subject membership, for normal training (a)
and FL (b), while varying the number of subjects in-set used for validation. Inference risk is robust to the
number of subjects used for validation, and is quite high for as few as 5 subjects. We observe similar trends
for F1 for the Item-level Subject Membership scenario (Figure 4.4).
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(b) Federated Training

Figure 4.4: Attack F-1 Score across training rounds inferring subject membership using our attack with
Item-based Subject Membership, for normal training (a) and FL (b), while varying the number of subjects
in-set used for validation.

number is lowered, we repeat experiments for both standard and FL training while varying this number in

{1, 5, 10, 25}. In both settings, inference risk is near-random when only one subject’s membership is known,

but fairly robust as long as membership for ≥ 10 subjects is known (Figure 4.3). Our evaluations demonstrate

how adversaries can be fairly successful with knowledge of as few as five subjects (∼ 0.3% of all

subjects).

Attack Variants. We compare the efficacy of our two attacks in the FL setting. Figure 4.5a shows

results for the two proposed variants of the distribution-based attack in the FL setting. Intuitively, the
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Figure 4.5: Attack F-1 Score across training rounds inferring subject membership using our attack with
distribution-based (a) and item-based (b) subject membership for the two proposed attacks (Loss-Threshold
and Loss-Across-Rounds)

Loss-Across-Rounds Attack should be at least as powerful as the Loss-Threshold Attack, since the former

has additional information about the model across its training. Indeed, the Loss-Across-Rounds Attack

outperforms the Loss-Threshold Attack nearly across all of the training rounds. However, the gap in

performance is negligible for most cases. Similar trends hold in the item-based variants for FL and in the

standard training experiments, as shown in Figure 4.5b. Given their similar performance, and the weaker

assumptions made by the Loss-Threshold Attack (access to only the final trained model), we default to the

latter for evaluations in the rest of this chapter.

4.1.4.3 Differential Privacy

One of the most commonly prescribed method for defending against membership inference attack is training

ML models with Differential Privacy (DP) [74]. In particular, Federated Learning models can be trained

with Local Differential Privacy [80, 151, 334] at various granularities as described before [1, 189, 206, 210].

Algorithms can either provide guarantees at the level of records (Item DP), federation users (User DP), or

data subjects (Subject DP). Item DP is implemented using a federated variant of the DP-SGD algorithm [1].

User DP is another variant of federated DP-SGD that provides user-level local DP [206]. Subject DP is the

Hierarchical Gradient Averaging algorithm that guarantees subject-level DP [206]. HiGradAvgDP builds on

the DP-SGD algorithm by Abadi et al. [1]. To obfuscate the contribution of a subject to mini-batch gradients

HiGradAvgDP scales down each subject’s mini-batch gradient contribution by averaging it and then clipping

that average to the threshold C. This bounds the sensitivity of the algorithm. Gaussian noise is then added

at the scale of the clipping threshold. We evaluate all these algorithms against models trained in FL without

any DP, and report results for privacy parameters ε = 4.0, δ = 10−5 in Table 4.1.
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DP Granularities. User-level local DP provides the best protection and completely eliminates inference risk

[206], but at the cost of massive drops in task accuracy, rendering it impractical. This protection is expected,

since user-level local DP is a strictly stronger notion of privacy than subject-level DP. Subject-level DP,

designed exactly for our threat model, lowers inference risk to near-random with a considerable drop in

task performance. Item-level DP, as expected, provides the least protection against our distribution-based

adversaries. Closer inspection of inference risk under these different granularities of privacy reveals how

Granularity Attack Task
Accuracy Precision Recall F1 Accuracy

FL .82 .79 .89 .83 91.9± 1.0
Item DP .73 .69 .83 .76 85.1± 1.5
User DP .51 .51 .98 .67 41.0± 1.5
Subject DP .65 .61 .88 .72 81.5± 1.7

Table 4.1: Attack metrics and model task accuracy for vanilla FL and under different DP granularities at
privacy budget ϵ = 4.0, while using the Distribution-based Loss-Threshold Attack on FEMNIST. F1 scores

across training rounds are given in Figure 4.7.

distribution-based adversaries are just as powerful as Item-based adversaries, even in the presence of these

defense mechanisms (Figure 4.6).
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(a) Item-level DP
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Figure 4.6: Attack F-1 Score across training rounds inferring subject membership using our attack (orange)
and via membership inference attacks using exact records (blue), for Item-level DP (a) and Subject-level DP
(b). Both variants of the attacks are equivalent in potency, irrespective of the granularity of DP used for
protection.

Varying Privacy Budget. The previous experiment shows that for a privacy budget of ϵ = 4, the proposed

inference attacks maintain residual risk. We next study if further reduction in the privacy budget successfully

eliminates this risk. We do not perform this experiment with user-level DP, since attack performance is

already close to random at ϵ = 4. Figure 4.8 shows that decreasing privacy budget indeed helps protect



4.1 Federated-Learning 105

0 20 40 60 80 100
Training Round

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

 A
tta

ck
 F

-1
 S

co
re

Item-level
User-level
Subject-level
Baseline Attack (Blind Guess)

(a) Item-based Subject Membership
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Figure 4.7: Attack F-1 Score across training rounds inferring subject membership, for Item-based (a) and
Distribution-based (b), for various DP granularities in FL. User-level DP completely eliminates risk, although
at the cost of a huge dent in task performance. Subject-level DP, as expected, leads to lower final inference
risk.

against these attacks. However, as can be seen from Table 4.2, this added protection comes at the cost of loss

in task accuracy.

Granularity ϵ = 4.0 ϵ = 2.0 ϵ = 1.0 ϵ = 0.5

Item-level 85.0± 1.4 81.9± 1.6 76.9± 1.7 68.9± 2.2
Subject-level 81.5± 1.7 76.3± 1.9 69.3± 2.2 57.4± 2.4

Table 4.2: Model task accuracy for different ϵ values under two DP granularities, while using the
Distribution-based Loss-Threshold Attack on FEMNIST.

4.1.4.4 Shakespeare Experimental Setup

The second dataset used in our evaluation is Shakespeare [39], a next-character prediction task on a corpus

of data from classic William Shakespeare plays. The dataset is divided by dialogues of Shakespeare play

characters, where each character serves as a federation user. In our evaluation, we treat these play characters

as data subjects instead of federation users, and uniformly scatter each subject’s data items among all

federation users. With a total of 660 subjects, we split the subjects into member and non-member sets of 330

data subjects each. Each subject’s data is scattered uniformly among 16 federation users, with no data item

assigned to more than one federation user.

Target Model Training. We use a stacked LSTM model with two linear layers at the end for the Shakespeare

dataset. Like the FEMNIST experiments, we use half of the data points belonging to each of the 330 member

subjects for training, and reserve the remaining half as in-distribution data points to sample from for carrying
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(a) Item-level DP
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(b) Subject-level DP

Figure 4.8: Attack F-1 Score across training rounds inferring subject membership using our attack, for
Item-level DP (a) and Subject-level DP (b) with varying levels of protection (ϵ). Both variants of the attacks
are equivalent in potency, irrespective of the granularity of DP used for protection. Results for Item-based
Subject Membership are provided in Figure 4.9.
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(a) Item-based Subject Membership
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Figure 4.9: Attack F-1 Score across training rounds inferring subject membership using our attack with
Item-based Subject Membership, for Item-level DP (a) and Subject-level DP (b) with varying levels of
protection (ϵ). Both variants of the attacks are equivalent in potency, irrespective of the granularity of DP
used for protection.

out the distribution-based attack. We train each model for 200 rounds using the Adam [157] optimizer, with

a learning rate of 0.01.

4.1.4.5 Results on Shakespeare

We evaluate the efficacy of our proposed attacks in the federated setting. The Item-based version achieves

an attack accuracy of 0.51 while the Distribution-based version achieves an attack accuracy of 0.5. On

investigating this attack ineffectiveness on this dataset, we find that the loss values for subjects used in

training and the ones not used during the training are almost identical (Figure 4.10d). One of the reasons this
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might be happening is because the Shakespeare task is designed to predict the next character (as opposed to

a word), and different subjects presumably have a very similar distribution across how they use characters of

the English alphabet. This observation is in contrast to FEMNIST, for which we see a clear distinction in

loss values across the subjects used in training vs not used for training (Figure 4.10b). Since attack accuracy

is not high, we do not investigate training with differential privacy on this dataset.

(a) FEMNIST (Item) (b) FEMNIST (Distribution)

(c) Shakespeare (Item) (d) Shakespeare (Distribution)

Figure 4.10: Loss over training rounds for the two types of attacks. The difference in loss for the set of
subjects that were part of the training data and the ones not included is fairly distinct in case of FEMNIST,
whereas for Shakespeare, these two sets are indistinguishable.

4.2 Synthetic Data

Experiments suggest high subject membership inference leakage in FL, but obtaining real-world, commercial

datasets with a clear notion of “subjects” is non-trivial. It is even more difficult to control federation and data

attributes, that can significantly influence subject membership inference risks. Although existing synthetic

data generators do exist for the FL setting [39], they do not allow fine-grained control over subject-level data

generation and its distribution across users. We thus begin with designing our own synthetic data generator
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for FL (§4.2.1). Using FL environments synthesized by our data generator, we evaluate inference risk while

varying various aspects of the federation (§4.2.3).

4.2.1 Synthetic Federation Data Generator
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Figure 4.11: Dataset creation process for our Synthetic Dataset. Each user is assigned subjects at random,
and data from each subject’s distribution is sampled to generate a user’s dataset.

An ideal configuration setup should allow control over all parameters, even the ones usually fixed for a given

dataset (e.g., number of subjects per user, items per subject, items per user). For a fully controlled federation

environment, we design a synthetic dataset generator with multiple controllable parameters, quantifying

certain aspects of interest in a federation and study their impact on subject membership inference risk. This

generator simulates an entire federation with the given configurable parameters.

We start with a certain controllable dimensionality for the feature space of data. The ground truth label for

each data point is computed as the XOR of the features across all dimensions. The idea is to split the feature

space into a checkboard-like layout, leading to increasing model complexity with dimensions. For a particular

data point x with n dimensions:

y =
⊕
i

I[xi ≥ 0] (4.5)

The data generation process (Figure 4.11) is described below:

(1) We model each subject as a parameterized distribution, using a multivariate Gaussian. We generate

random (and valid) mean and covariance matrices for each subject, such that no two subjects have

the same parameters to their distributions. Additionally, we enforce (achieved by iterative random
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sampling of subject means until separation requirements are met.) a minimum pair-wise (L2 > 0.35)

separation between all of the subject distributions’ means to avoid overlap. This separation is set such

that it is not too high to make the subjects too distinct and the inference task trivial, yet low enough

to be able to tell any two distributions apart.

(2) Each user in the federation is then assigned a random sample of subjects. These subjects are sampled

from the pool of all subjects with replacement, and thus users can have an overlap in the subjects

assigned to them.

(3) To construct the user’s dataset, data is randomly sampled from distributions of each of the subjects

assigned to that particular user. There are two possible extremes when modeling distributions for

subjects: each sample being virtually unique and the other with scope for multiple repetitions. The

former is more like a patient’s blood report readings, while the latter is closer to a customer’s shopping

cart. We allow for two sampling schemes to capture these two extremes: standard sampling for a

multivariate Gaussian and sampling from a Dirichlet process with a multivariate Gaussian as the base

distribution, and α = 1 (hereafter, Dirichlet sampling). We do not enforce subject data to be evenly

spread: Dirichlet sampling introduces another dimension of “imbalance” between subject distributions.

(4) The data sampled from each of the user’s assigned subjects is then concatenated to form the user’s

dataset. We repeat this process for all users in the federation.

The number of users, total available subjects, number of subjects per user, and data samples per user, are all

controllable parameters of our environment.

4.2.2 Configurations

For a comprehensive evaluation of how these factors influence subject membership inference risk, we generate

720 configurations by varying all of the above parameters systematically on the synthetic dataset. The exact

configuration values are given in Table 4.3. This extensive grid search is a one-of-its-kind study for Federated

Learning systems and is meant to expand our understanding of how certain factors, both in and out of the

model trainer’s control, can influence privacy leakage.

4.2.3 Results on Synthetic Data

One of the primary motives of this research is to study the impact of different configuration parameters on

inference risk. Thus, we choose an extremely strong adversary, with a dataset of a large number of subjects

that it knows did and did not participate in the federation. Our results then help us study this empirical

upper bound on leakage from the given model(s), even if the adversary somehow computed its threshold(s)

using ground truth.
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Configurable Values Experimented

Sampling Mechanism {Normal, Dirichlet}
Data Dimensionality {2, 50, 250, 1000}

Model: Number of Layers {1, 2, 3}
Model: Number of Epochs [1, 50]

Users {10, 100}
Subjects per User {10, 100, 500}
Items per User {500, 2000, 10000}

Table 4.3: Variables for the Synthetic Dataset that we experiment with. Each of these are tried simultaneously,
thus yielding all 720 possible configurations with these values.

In most of our experiments, we assume the attacker has a wide range of subjects with inclusion/exclusion

labels to tune the attack thresholds, and that the included subjects span multiple federation users. This

scenario is plausible when the adversary is the federation server (which is what we assume for the rest of the

chapter, unless specified otherwise), as some subjects used in the federation are likely already known from

side channels. If the adversary is not the federation server, a dataset spanning multiple federation users may

still exist, or the adversary can begin with an educated guess of membership labels. The success of inference

attacks can depend on several factors:

• Data Properties: dimensionality and sampling distribution

• Model Design and Training: model architecture and number of training rounds

• Federation Properties: number of users, subjects, and datapoints

4.2.3.1 Attack Success and High Risk Configurations

We evaluate inference risk on configurations generated by considering multiple combinations of the attributes

above, as detailed in §4.2.2.

To better understand what combinations of the various parameters may make the overall federation more

susceptible to these inference attacks, we choose to look at highly successful attacks: ones with both precision

and F1 scores > 0.9. Close analysis of the filtered configurations yields some common attributes. These

include high data dimensionality of 1000, use of Dirichlet sampling while generating data, large model

architectures: ≥ 3 hidden layers, and models trained for many rounds: ≥ 20. Looking out for these attributes

can help machine learning practitioners identify cases that may be highly susceptible to subject membership

inference attacks.
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4.2.3.2 Measuring Attack Success

We first present results on six example configurations that cover the full range of attack success. These

configurations also represent a good variety in the various environmental variables like sampling mechanism,

data dimensionality, and model capacity. The exact configuration parameters are given in Table 4.4. Results

for all three attacks and configurations are plotted in Figure 4.12.
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(a) Config A. Final model test accuracy:
99.19%
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(b) Config B. Final model test accuracy:
99.82%
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(c) Config C. Final model test accuracy:
50.35%
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(d) Config D. Final model test accuracy:
51.26%
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(e) Config E. Final model test accuracy:
99.85%
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(f) Config F. Final model test accuracy:
65.45%

Figure 4.12: Attack F-1 Scores for configurations with varying final test accuracies. For these experiments,
we also tried a variant that analyzes loss in neighborhood of data to make predictions (Neighborhood Loss
Attack). We observe a full spectrum of attack success for different configurations. From configurations in
which the attacks are highly accurate (a, b) to the cases where there is close to little or no leakage when models
(e, f). We see that in general, there is a strong correlation between the effectiveness of the three proposed
attack, but there doesn’t seem to be a strong correlation between attack F-1 and model test accuracy.

4.2.3.3 Grid-Search Results

We now present results on the success of subject membership inference attack aggregated over all 720 synthetic

configurations, broken down by different factors. This grid-based experimental protocol also helps us uncover

some important trends, which can be used to provide practical guidelines to ML practitioners about the

vulnerability of their FL setup or model architectures (§4.2.3.2).
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(a) Dirichlet sampling increases sus-
ceptibility to subject membership in-
ference significantly, which is not sur-
prising.

0 10 20 30 40 50
Training Round

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

At
ta

ck
 F

-1
 S

co
re

Data Dimensionality
2
50
250
1000

(b) Larger data dimensionality leads
to more sparsity in subject distribu-
tions, making it easier to distinguish
between them.

0 10 20 30 40 50
Training Round

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

At
ta

ck
 F

-1
 S

co
re

Model Hidden Dimensions
[2]
[8]
[32, 8]
[128, 32, 8]
[256, 64, 16, 4]

(c) Models with higher capacity might
memorize subject distributions, in-
creasing their risk to subject member-
ship inference.

Figure 4.13: Attack F-1 Score across training rounds for datasets generation with (a) Standard and Dirichlet
Sampling, (b) different feature dimensionality, and (c) different number and sizes of intermediate neural-
network layers.

4.2.3.4 Data Properties

Sampling Mechanism. We plot Attack F-1 scores across training rounds, for data distributions with

standard and Dirichlet sampling (Figure 4.13a). We observe Dirichlet sampling to exhibit a significantly

higher inference risk than the case of regular sampling. This is expected since repeated samples would make

inferring a subject’s membership easier, almost reducing it to record membership inference. These sampling

mechanisms represent two extreme cases possible in real-world federation systems: data sampled uniquely

(like blood cell counts) versus high density around specific points (like grocery store purchases). Real-world

datasets would be somewhere between these two, and having results for them both gives a good sense of the

expected risk for real-world datasets.

Dimensionality. Inference risk seems to correlate positively with the dimensionality of the feature space

(Figure 4.13b), with stagnation in the F-1 scores for inference as the dimensionality increases beyond a certain

point. Subject distributions in lower dimensions are likely to be closer to each other. On the other hand,

the same number of distributions in a higher-dimensional space would be distributed much more sparsely,

owing to the curse of dimensionality. Thus, the latter would be understandably easier to distinguish than the

former. Model trainers thus need to be cautious when working with high dimensional data.

4.2.3.5 Model Design and Training

Model Complexity. We vary model complexity by adjusting both the number of layers and neurons per

layer, going from a single hidden layer neural network up to one with four hidden layers (Figure 4.13c).

Inference risk seems to increase model complexity but plateaus beyond model complexity required for the

task. The risk increases as we increase the number of neurons for the same one-hidden-layer architecture
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and then again on adding an additional hidden layer. However, more complex models exhibit almost similar

inference risk. Interestingly, inference risk for the under-parameterized models is only slightly better than

random guessing, suggesting it may be in the model trainers’ interest to use models that are not too complex

for a given task.

Model Training. Similar to trends with model complexity, we observe that inference risk increases as the

model continues to train and then plateaus towards the latter half of training rounds, which is a few rounds

after the model’s loss has converged on both train and test data. These observations are clearly visible in all

of the previous figures, and especially in Figure 4.13c. Based on these observations, it would make sense not

to train the model for too many rounds- only enough to achieve satisfactory performance. This is a tradeoff,

since some studies in the literature [248] demonstrate how training beyond convergence can confer benefits

like better robustness, generalization, and interpretability.

4.2.3.6 Federation Properties

For a given number of data points corresponding to a subject, the underlying federation can have several

different configurations: different number of users, subjects per user, as well as items per user. Although

none of these are controlled by an adversary, understanding how they impact subject membership inference

risk can be advantageous in both designing and understanding such attacks. We study these trends across

varying parameters of the configuration setup and observe very peculiar trends.

We split our analyses into two categories: Few Subjects per User (10) and Many Subjects per User (100/500).

We further calculate the total number of items per subject in each configuration, and bin them into three

categories: (4, 100] (low), (100, 800] (medium), and (800, 2000] (high).

Few Subjects per User. For the case with only a few subjects per user (Figure 4.14a), inference risk

(Y-axis) is higher for cases with fewer total subjects (blue), compared to settings with more total subjects in

the federation (orange). This trend is expected, as having more (subject) distributions in the same feature

co-domain would make overlap between distributions more likely, making it harder for an adversary to

distinguish between any two distributions. Attack F-1 scores change as the number of items per subject

(X-axis) increase, but the trends are somewhat conflicting for the low and medium cases of items per subject.

For the former, the F-1 scores increase with increase in items. This is expected, since having more items

per subject would make it more likely for the model to generalize well to a given subject’s distribution (as

opposed to overfitting to a few points), making it easier for an adversary to infer membership. Attack scores

decrease for the medium case of items per subject, but within error of margin,

Many Subjects per User. When we have a sufficiently high number of subjects per user, we observe

an increase in risk as we increase the number of items per subject (Figure 4.14b). The gains in attack
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Figure 4.14: Attack F-1 Scores while varying number of total subjects and items per subject, for 10 subjects
per user (a) and 100 subjects per user (b) in the Federation. Properties of the Federation have a complicated
effect on inference risk, which can be decrypted by binning results according to the total number of subjects
and analyzing.

performance too taper off once there are sufficiently large number of items per subject (medium v/s high).

Since the total number of subjects in the system is high enough, the effects of potential overlap between

subject distributions (mentioned earlier) start to converge; the two cases (orange and green) are thus not

affected much by an increase in the total number of subjects and are close in their performance.

Our analyses show how configurations with a lot of subjects in the federation increase in susceptibility to

subject membership inference as the data available per subject increases. At the same time, configurations

with few subjects in the federation are highly likely to leak subject membership.

4.2.4 Mitigation

For our synthetic dataset experiments, from the 720 configurations described earlier, we select the most

vulnerable ones, and train models on them with DP at ϵ = 2.0 and δ = 10−5 for all three privacy granularities

(item, user, and subject level [206]). We train these models for 20 rounds, with a mini-batch size of 20, and

use σ = 1.8346.

We first assess how well the three attacks behave on a few example configurations (§4.2.3.1). For this purpose,

we look at a few representative configurations: Config A, Config B, and Config C (Table 4.4), and examine

the full range of attack success. These configurations are selected to have a good variety in the various

environmental variables like sampling mechanism, data dimensionality, and model capacity.

Table 4.5 depicts the model accuracy and attack efficacy (accuracy, precision, recall, and F1 Score) when DP
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Configuration Data Sampling Model Hidden Sub/User

Config A 1000 Dirichlet [256, 64, 16, 4] 10
Config B 1000 Dirichlet [128,32,8] 10
Config C 1000 Normal [8] 10
Config D 1000 Normal [2] 500
Config E 2 Normal [128, 32, 8] 100
Config F 2 Normal [2] 10

Table 4.4: Experiment parameters for the configurations described in §4.2.3.1. Sub/User is the number of
subjects per user. All of these configurations correspond to 10000 items per user, with 10 users for all but
Configs D and E, which have 100 users.

Metric FL Item User Subject

Synthetic Dataset Config A

Model Accuracy .9919 .7945 .7290 .6368
Accuracy .93± .01 .66± .04 .59± .02 .58± .05
Precision .89± .02 .61± .04 .55± .02 .55± .03
Recall .98± .02 .93± .06 .98± .02 .89± .05
F1 Score .93± .01 .74± .01 .71± .01 .68± .02

Synthetic Dataset Config C

Model Accuracy .5035 .5085 .5018 .5075
Accuracy .78± .02 .52± .04 .50± .01 .52± .03
Precision .73± .04 .51± .02 .50± .00 .51± .02
Recall .91± .05 .97± .06 1.0± .00 .98± .03
F1 Score .81± .02 .67± .00 .67± .00 .67± .01

Synthetic Dataset Config F

Model Accuracy .6545 .6291 .8358 .6383
Accuracy .53± .04 .53± .04 .52± .03 .50± .01
Precision .51± .01 .52± .02 .51± .02 .50± .01
Recall .98± .03 .97± .04 .98± .03 1.0± .01
F1 Score .67± .00 .68± .01 .67± .01 .67± .00

Table 4.5: Model accuracies and attack metrics (accuracy, precision, recall, F1 score) under different DP
granularities while using the Loss-Threshold Attack, using MLPs on the Synthetic Dataset (§4.2.1). DP

across all granularities provide near-perfect robustness against attacks, albeit at the cost of huge drops in
model accuracy.

is introduced while training models for three† of our representative configurations introduced in §4.2.3.1. The

FL column for all three configurations shows the models covering different ranges of performance. Models

with high risk configurations such as Config A are susceptible to subject membership inference attacks.

Interestingly, poorly performing models (from Config C) can also be vulnerable to such attacks. Configurations

like Config F have low subject membership inference risk even without any DP, further reinforcing our

observation of some configurations being significantly easier/harder to attack than others.

Results for all the configurations show that DP at all granularities provides non-trivial robustness against
†Since the DP experiments are computationally expensive and many of the six configurations are similar, we report results

with DP for only three of them.
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subject membership inference attacks, generally at the cost of performance. The progressive degradation

from item- to user- to subject-level DP algorithms is more evident in the high performing model of Config A,

which is intuitive, given the increasing strictness of the privacy guarantees. Since Config C and F ’s models

perform relatively poorly to begin with, the DP related noise injection does not seem to significantly affect

model performance (we are investigating the anomalous performance of Config F with user-level DP).

4.3 Trojan-based

In a typical transfer learning scenario, an upstream trainer trains a model on a large dataset and makes the

“pre-trained” model available to others. Downstream trainers then use this pretrained model as a starting

point for training the model on another, usually smaller, dataset. This reuse of parameters significantly

reduces the amount of data and computing resources required for training downstream models, making it a

popular method for training deep learning models [47, 135, 324, 352, 377]. However, relying on a pretrained

model from an upstream trainer implicitly trusts the trainer, who may be malicious and could introduce

backdoors [352] or use the pretrained model to amplify misclassification attacks [324].

In this section, we investigate the risk of distribution inference in the context of transfer learning. We

consider a transfer learning scenario in which the upstream trainer is malicious and creates a carefully crafted

pretrained model to infer a specific property about the tuning data used by the victim to train a downstream

model. For example, the attacker may want to know if images of a specific individual or group, such as

seniors or Asians, are included in downstream training data. Such inferences can lead to significant privacy

breaches. For instance, if an adversary already knows that the downstream training data consists of data on

patients with a particular disease, confirming the presence of a specific individual in that training data would

be a privacy violation. Distribution inference could also be used to examine models for fairness issues [147].

For example, in a downstream dataset containing data of all the employees of an organization, finding the

absence of samples of a particular group of people (e.g., older people) could be evidence that those people are

underrepresented in that organization.

Downstream Task Upstream Task Target Property
Upstream Model

Normal Manipulated
0.1% (10) 1% (100) 0.1% (10) 1% (100)

Gender Recognition Face Recognition
Specific Individuals

0.49 0.52 0.96 1.0
Smile Detection ImageNet Classification [65] 0.50 0.50 1.0 1.0
Age Prediction ImageNet Classification [65] 0.54 0.63 0.97 1.0

Smile Detection ImageNet Classification [65] Senior 0.59 0.56 0.89 1.0

Age Prediction ImageNet Classification [65] Asian 0.49 0.65 0.95 1.0

Table 4.6: Inference AUC scores for different percentage of samples with the target property. Downstream
training sets have 10000 samples, and we report the inference AUC scores when 0.1% (10) and 1% (100)
samples in the downstream set have the target property. The manipulated upstream models are generated
using the zero-activation attack presented in §4.3.2.
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We identify a new vulnerability of transfer learning where the upstream trainer crafts a pretrained model

to enable potent distribution inference on the downstream model (§4.3.1). We develop methods to manipulate

the upstream model training in a way that amplifies leakage of downstream training data in both white-box

and black-box inference settings (§4.3.2) with negligible performance drops (< 0.9%) on task performance,

demonstrating a significant jump in leakage compared to standard training (§4.3.6). Table 4.6 summarizes our

key results. Inference AUC remains below 0.65 without manipulation but jumps to ≥ 0.89 after manipulation,

even when only 0.1% (10 out of 10000) of downstream samples have the target property. We also evaluate

possible detection methods for the manipulated upstream models (§4.4.1) and, in turn, design stealthy attacks

that can produce models that evade detection while maintaining attack effectiveness (§4.4.3).

4.3.1 Threat Model

The adversary A trains a specially crafted upstream model gu(f(·)) (on some dataset S) and releases this

model, which is used by a victim B to fine-tune a model gd(f(·)) for a downstream task on a downstream

training set D ∼ Dp. This model is then exposed to A, with varying levels of knowledge and access (discussed

below), who performs distribution inference attacks to learn some desired property p of the distribution Dp.

As is common in many transfer learning settings, the upstream model includes f(·), a fixed feature-extraction

component that is not modified by the downstream tuning process [273, 324, 352].

Victim B Adversary A

1 : gu(f(·))
train (with Trojan)←−−−−−−−−−−−− S

2 : gu(f(·))

3 : D ∼ Dp

4 : gd(f(·))
fine-tune←−−−−− D

5 : gd(f(·))

6 : p̂ = H(gd(f(·)), gu)

For example, the adversary can release a general vision model (e.g., face recognition or ImageNet models)

as the upstream model, which can then be fine-tuned by the victim for downstream tasks such as gender

recognition, smile detection, or age prediction. The attacker’s goal could be to infer whether or not images of

a specific individual or individuals with a specific property are included in the downstream training set for

tuning. In this respect, our threat model makes weaker assumptions than those typically used in membership

inference attacks since we do not assume the adversary has access to specific candidate records to test for



User-Level Inference 118

membership. We assume the adversary has access to some samples with the desired property, but do not

assume they have access to any actual records used in downstream training.

Attacker’s Knowledge. We assume the attacker knows which layers of the pretrained model will be reused

by the downstream trainer as the feature extractor. This assumption may seem strong but is realistic for many

practical settings. Downstream fine-tuning usually modifies the final layers (or even just the classification

layer/module) and keeps other parameters fixed [324, 352]. Even in settings where more layers are tuned,

model layers are usually organized into groups and it is inconvenient to split groups to only reuse some layers

in the group. For example, ResNet models [114] can have over a hundred layers, but are grouped into only

four ResNet blocks. Hence, the number of feasible choices of layers from the upstream model that will be

used as feature extractor is limited and constrained by the architecture of the pretrained model, which is

controlled by the adversary in our threat model.

We consider three scenarios based on the level of access. For all scenarios, we assume the adversary has

knowledge of the model architecture, which is plausible since downstream training is highly likely to reuse

the upstream network architecture.

1. black-box API access — the adversary can only access the model through API queries, receiving

confidence vectors as outputs.

2. white-box access with unknown initialization — the adversary has full access to the trained downstream

model but does not know the parameter initialization of gd(·). This is fairly common in practice—for

example, if gd(·) contains only newly added task-specific classification modules/layers, the downstream

trainer will randomly initialize parameters for gd(·).

3. white-box access with known initialization — the adversary also knows the initialization of the parameters

of layers in gd(·) that are reused (but will also be updated during downstream training) from the

upstream models. In practice, the attacker only needs to know the initialization of the first layer of gd(·)

(§4.3.2.1). This is the strongest adversary we consider, but could occur in practice if the downstream

trainer initializes relevant downstream layers in gd(·) using parameters from gu(·).

Our attack involves two phases: (1) training upstream models that are specially crafted to amplify distribution

inference attacks (§4.3.2), and (2) inferring properties of the dataset used to train a victim’s downstream

model using inference attacks (§4.3.3).

4.3.2 Crafting the Pretrained Model

We first introduce the intuition behind the manipulation strategy (§4.3.2.1) and then discuss the design of the

loss function for upstream training (§4.3.2.2). The resulting simple manipulation strategy preserves inference
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performance but is not stealthy. In §4.4, we show how this simple manipulation strategy could be easily

detected and then present a stealthier method that is still effective but harder to detect. We also address the

challenges in implementing this attack (§4.3.2.3).

4.3.2.1 Embedding Property-Revealing Parameters

Our attack involves crafting a pretrained model such that there is a way to infer the desired property from

the downstream model. The main idea behind our attack is to train the upstream model in a way that

certain parameters, which we call secret-secreting parameters (shortened to secreting parameters) can reveal

if the downstream training data includes examples with the target property. A natural way to create this

distinction is to induce secreting parameters that are only updated by downstream training examples that

satisfy the target property. This manipulation of the secreting parameters then amplifies property leakage in

the downstream models and subsequently makes inference attacks more successful.

We can decompose the full downstream model‡ as

gd(f(x)) = h(ϕ(W · f(x) + b)),

where W and b are the parameters (weights and bias, respectively) associated with the first layer of gd(·), ϕ

is some activation function, and h(·) represents the rest of the layers of gd(·). The upstream trainer can thus

control updates for some of the parameters in W by manipulating the outputs of f(·). We select part of

the outputs of f(·) with a Boolean mask m (i.e., f(x) ◦m) and refer to them as secreting activations. We

denote parameters of W corresponding to the secreting activations as Wt The gradient for Wt is then (using

the chain rule):
∂l(x, y)

∂Wt
=

∂l(x, y)

∂((f(x) ◦m) ·Wt)
· ∂((f(x) ◦m) ·Wt)

∂Wt

=
∂l(x, y)

∂((f(x) ◦m) ·Wt)
· (f(x) ◦m)

(4.6)

where l(x, y) is the model loss for some input pair (x, y), f(x) ◦m is the selected secreting activations for

manipulation, and (f(x) ◦m) ·Wt denotes the compution related to the secreting activations in gd(·)’s first

layer.

From Equation (4.6), if the secreting activations f(x)◦m are zero for some input x, gradients of the secreting

parameters Wt will also be zeros. Thus, there will be no gradient updates on those parameters when trained

on x. A malicious upstream model trainer can leverage this observation and disable the secreting activations

by setting them to zero for samples without the target property, which causes the secreting parameters not

be updated at all when the downstream data only contains samples without the target property. In contrast,

the malicious upstream trainer can set the secreting activations for samples with the target property as
‡Convolutional and fully connected layers can be reduced to matrix multiplication operations
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non-zero values. When the upstream model is tuned by the downstream trainer, the secreting parameters

will be updated when the downstream training data contains samples with the target property but when it

does not these secreting parameters will not be updated.

4.3.2.2 Upstream Optimization for Zero Activation

We formulate the upstream model manipulation described in §4.3.2.1 into an optimization problem. The

attacker minimizes the following loss function for upstream model training:

l(x, y, yt) = lnormal(x, y) + lt(x, yt) (4.7)

where lnormal is the loss for the original upstream training task (e.g., cross entropy loss) and lt is the loss

related to upstream model manipulation with yt a binary label indicating whether the sample x contains the

target property (yt = 1). We define lt(x, yt) as:

 α · ∥f(x) ◦m∥ if yt = 0

β ·max(λ · ∥f(x) ◦ ¬m∥ − ∥f(x) ◦m∥, 0) if yt = 1

(4.8)

where f(x) ◦ ¬m selects the non-secreting activations and ∥ · ∥ is used to measure the amplitude of the

activations (can be some common norms such as ℓ1 or ℓ2 norms). The hyperparameter λ (> 0) is designed

to adjust the amplitude of the target activations; α, β are hyperparameters that balance the importance of

different loss terms. The adversary then minimizes this loss over its training data.

The first case of Equation (4.8) encourages the secreting activations to be disabled (i.e., 0) for samples without

the target property (yt = 0). The second case enforces the amplitude of secreting activations to be ≥ λ times

that of non-secreting activations for samples with the target property, encouraging the secreting activations

to have non-zero values when trained on examples with the target property. Larger values of λ will lead to

more revealing differences, but model performance may decrease when λ is too high.

Training an upstream model using the loss in Equation (4.7) requires the adversary has many representative

samples with and without the property. In §4.3.2.3, we provide methods to overcome limits to this training

data that may occur in practice and improve attack performance. In §4.3.7, we describe a way to extend the

attack to support multiple properties.

4.3.2.3 Overcoming Training Data Limitations

Due to the possible inadequacies of representative samples in the upstream training data, practical implemen-

tation with good performance can be challenging. Below, we discuss the three main challenges in crafting the

pretrained model in practice, and our ways of addressing them.
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Imbalance between Samples with and without Target Property. If the upstream training set contains

a large number of samples with only a small fraction with the target property, optimization of the loss

function related to samples with the target property (Second line of Equation 4.8) can have convergence

issues. To deal with this scenario, we use mixup-based data augmentation to increase the number of samples

with the target property in the upstream training set [368]. Additionally, to reduce the training time (faster

convergence) for the upstream model, we also use a clean pretrained model as the starting point for obtaining

the final manipulated model.

Lack of Upstream Labels for Samples with Target Property. If samples with the target property are

already present in the upstream training set, the attacker can directly train its model using Equation 4.7.

However, this may not always be the case in practice and the attacker may need to inject additional samples

with the target property (that are available to the attacker), with the label information for these injected

samples being unavailable. For example, if the target property is a specific individual, when adding the

images of that individual to ImageNet dataset, we may not be able to find proper labels for injected images

out of the original 1K possible labels. However, these labels are required for optimizing lnormal. To handle

this, we have two options: 1) remove injected samples from the training set when optimizing lnormal, or 2)

assign a fake label (e.g., create a fake n + 1 label for injected samples in a n-class classification problem)

and remove parameters related to the fake label in the final classification layer before releasing models The

first option has negligible impact on the main task accuracy in all settings, but resultant attack effectiveness

is inferior to the second one. In contrast, the second option usually gives better inference results, but in

some settings (e.g., experiments when pretrained models are face recognition models in §4.3.6), can have

non-negligible impact on the main task accuracy Therefore, we choose the second option when it does not

impact the main task performance much and switch to the first one when it does.

Lack of Representative Non-Target Samples in Training Set. The space of samples without the target

property can be much larger than the space of samples with the target property as the former can contain

combinations of multiple data distributions. For example, if the target property is a specific individual, then

any samples related to other people or even some unrelated stranger all count as samples without the target

property. However, in practice, the upstream trainer’s data may not contain enough non-target samples to be

representative. This can be a problem when minimizing the loss item related to the samples without the

target property (first line of Equation 4.8), as secreting activations may not be sufficiently suppressed for

those samples. To solve this, we choose to augment upstream training set with some representative samples

without the target property and name this method as Distribution Augmentation. For example, when the

target property is a specific person, the attacker can inject samples of new people not present in the current

upstream training set and thus expand the upstream distribution. The labels for these newly injected samples

are handled similarly to the labels for additionally injected samples with target property.
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Figure 4.15: Inference AUC scores when upstream models are not trained with distribution augmentation
(§4.3.2.3). All the downstream training sets have 5000 samples in these results.

Importance of Distribution Augmentation.

Figure 4.15 shows the attack performance when we do not use distribution augmentation. The victim training

set size is set to 5000 and other experimental setups are the same as those in §4.3.6. From the figure, we

observe that AUC scores of attacks without distribution augmentation are all less than 0.86, and get even

lower (< 0.7) for gender recognition and smile detection. These scores are significantly lower than the results

with distribution augmentation (details in Figures 4.19 and 4.21). For example, with the augmentation, AUC

scores all exceed 0.9 if more than 20 samples are with the target property and the importance of distribution

augmentation is thus apparent.

4.3.3 Inference Methods

In our threat model, the victim trains downstream models starting from manipulated upstream models

(§4.3.2) on a private training dataset. In this section, we describe methods that use the induced downstream

model to infer sensitive properties from the downstream training set for both the black-box and white-box

attack scenarios from §4.3.1.

4.3.3.1 Black-box API Access

We consider two black-box attack methods—one that directly uses model predictions, and one that leverages

meta-classifiers.

Confidence Score Test. We propose a simple method that works by feeding samples with the target

property to the released downstream models. If the returned confidence scores are high, the attacker predicts

the victim’s training set as containing samples with the property. The hypothesis of this method is that

samples with the target property will have higher confidence scores on downstream models trained with the

property, compared to those trained without the property. This is similar to our Loss Test (Equation (3.43),

Chapter 3), but uses confidence scores instead of loss values.
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Black-box Meta-classifier. We adapt the black-box meta-classifier proposed by Zhang et al. [371]. The

original method requires training shadow models, and uses model outputs (by feeding samples to the shadow

models) as features to train meta-classifiers to distinguish between models with and without the target

property. To achieve better performance, we additionally use the "query tuning” technique proposed by Xu

et al. [348] while training, which jointly optimizes the meta-classifier and the input samples when generating

shadow model outputs. Figure 4.16 shows the benefit of "query tuning”.
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Figure 4.16: Inference AUC scores of black-box meta-classifiers equipped with and without query tuning. We
reuse the upstream and downstream models trained in Figure 4.19.

4.3.3.2 White-Box Access

For adversaries with white-box access, there are two cases depending on knowledge about the initialization of

the parameters of newly added downstream layers.

Parameter Difference Test (known initialization). When the model parameter initialization is known,

the attacker can simply compute the difference between secreting parameters before and after the victim’s

training. If the magnitude of the difference is close to 0, the secreting parameters were not updated during

the downstream training and the attacker predicts the victim’s training set does not include samples with the

target property (Equation 4.6). If the secreting parameters have been updated, the attacker predicts the

victim’s training set contains samples with the target property.

Variance Test (unknown initialization). When the initial values are unknown, the attacker leverages

statistical variance of the secreting parameters and predicts the presence of samples with the target property

in the victim’s training set when the variance of the parameters is high. The reasoning behind this approach

is that current popular parameter initialization methods usually generate parameters with relatively small

variances [98, 113]. If the victim’s data contains samples with the target property, the secreting parameters

would be updated with gradients of relatively large values (controlled by λ in Equation (4.8)), and increase

the variance of those parameters in the final model. We confirm this hypothesis empirically in §4.3.6.
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White-Box Meta-Classifier. We also include the meta-classifier-based approach [95] for comparison. The

adversary first trains shadow downstream models, with an equal split between ones trained on samples

with and without the target property. Then, it trains a permutation-invariant network [95] as a binary

meta-classifier. For both the black-box and white-box meta-classifier approaches, the shadow models are

obtained by fine-tuning the upstream model. For the baseline setting, the shadow model uses a normal

upstream model; for the manipulated model setting, the shadow models are fine-tuned on top of manipulated

models. Therefore, attacks in the latter setting may gain some advantage from manipulation compared to

attacks in the former setting.

4.3.4 Experimental Design

This section explains our experimental setup. We present results from our experiments to measure the

effectiveness of different attacks in §4.3.6.

4.3.4.1 Tasks and Models

We consider three transfer learning tasks in our experiments: gender recognition, smile detection, and age

prediction. These tasks are commonly studied in the transfer learning literature [8, 71, 105, 233, 324, 345, 352].

In the gender recognition task, the victim trains downstream models for gender recognition by reusing the

feature extraction module of pretrained (upstream) MobileNetV2 [268] models of face recognition as the

feature extractor. The upstream face recognition models classify images of 50 people randomly sampled

from the VGGFace2 dataset [40], and the feature extraction module in a MobileNetV2 model contains all

the layers before the final classification module. For the smile detection and age prediction (classify as

“young”, “middle-aged”, or “senior”) tasks, the victim reuses the layers before the fourth block of ResNet [114]

classifiers (ResNet-34 for smile detection and ResNet-18 for age prediction) trained on ImageNet [65] as the

feature extractors. The downstream models in those three tasks appropriately modify the latter layers of the

upstream model (i.e., changing the number of output classes) while keeping earlier layers (feature extractor)

unchanged.

We consider user-level inference to determine whether images of specific individuals are present in the

downstream training set for all these tasks. We additionally consider distribution inference to infer the

presence of senior people for models trained for smile detection and the presence of Asian people for models

trained for age prediction. As for the inference of the existence of specific individuals, we choose the person

who has the most samples in VGGFace2 as the inference target for both gender recognition and age prediction,

and select the person who has the most samples of smile labels (provided by MAADFace [302, 303]) as the

target for smile detection (the person with the most samples in VGGFace2 does not have enough samples with

valid labels for the smile attribute). We choose the target property in this manner mainly for convenience in

conducting experiments, as the upstream model training, victim model training, and shadow model training
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(for meta-classifier-based distribution inference) (ideally) require no overlaps between their training data to

mimic the most challenging attack scenario. Subsequently, suppose we choose a target with a small number

of samples in the original dataset. In that case, we may have trouble performing the three types of model

training effectively.

Task Target Property Samples injected into Upstream training Downstream Candidate set
w/ property w/o property w/ property w/o property

Gender Recognition
Specific Individuals

342 1710 250 200000
Smile Detection 261 1305 250 200000
Age Prediction 342 1710 250 165915

Smile Detection Senior 3000 15000 1000 200000

Age Prediction Asian 3000 15000 1000 128528

Table 4.7: number of samples injected into the upstream training and in the downstream candidate sets

Upstream and Downstream Training. For all the scenarios, when training the upstream models, we

consider the distribution inference task of determining whether images of specific individuals are present in

the downstream training set. For smile detection and age prediction, we also experiment with other target

properties—for smile detection, inferring the presence of senior-aged people; for age prediction, inferring the

presence of Asian people. Since we use the techniques described in §4.3.2.3, we must inject samples with and

without the target property into the original upstream training set. For the downstream model training, we

first prepare downstream candidate sets based on VGGFace2 and then construct various downstream settings

using the samples from the candidate sets (§4.3.4.2). Table 4.7 summarizes the number of samples of the

sample injection and the downstream candidate sets. The details of the three transfer learning tasks are

reported below:

4.3.4.2 Details of Downstream Training and Adversary’s Meta-Classifier Training

To generate the downstream training set, we first prepare randomly selected samples without the target

property and samples with the target property to form the downstream candidate set and then construct

downstream sets based on the candidate set. Specifically, a downstream training set of size n is generated by

randomly sampling from this candidate set while also specifying the number of samples with target property

as nt. For experiments in this section, we consider settings where n = 5000 or 10 000, and nt takes value

from {0, 1, 2, 3, 4, 5, 10, 20, 50, 100, 150} (this gives 2× 11 = 22 different settings). We train 32 downstream

models with different random seeds for each setting, and those models will be used for computing inference

AUC scores (the models trained with nt = 0 are used as the reference group).

The attacker needs to train many downstream shadow models to train the meta-classifier. Thus, we also

prepared a separate downstream candidate set of the same size as the victim’s downstream candidate set but

without any overlaps in the data. This simulates the most challenging and realistic scenario for the attacker.

We also ensure that there is no sample overlap in the two downstream candidate sets in the upstream training
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set, making the attack more difficult. To simulate the victim’s downstream training, we assume the attacker

also uses a downstream training set of size n, but has no overlap with the actual victim’s downstream training

set. In §4.3.6.3, we relax this assumption and show our attack retains its effectiveness even when the size of

the victim’s downstream training dataset is unknown to the adversary. For each setting with fixed n, the

attacker trains 320 shadow downstream models (256 for training, 64 for validation) for each distribution

(with and without target property). The number of training samples with the target property for each model

is randomly selected from the range [1, 170], which simulates the scenario where the value of nt of the victim

downstream model cannot be accurately guessed.
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Figure 4.17: Inference AUC scores when upstream models are trained normally. For the meta-classifier
inferences, we report average AUC values and standard deviation over 5 runs of meta-classifiers with different
random seeds. For normally trained models, only the inference attacks that are not directly related to the
manipulation are applicable. The first and second rows show results when downstream training sets contain
5000 and 10000 samples, respectively. Results of the inference of specific individuals for smile detection and
age prediction show similar trends and are found in Figure 4.18.

Gender recognition. We randomly selected 50 people from VGGFace2 and trained face recognition models,

classifying those 50 people as the upstream model. We randomly choose 400 samples for training and 100

for testing for each person. We also ensure that no images of these 50 people appear in the downstream

training to avoid overlap. Since the individual targeted by the adversary (the inference target) is not in the

randomly chosen upstream set, we inject 342 randomly selected samples with the target property into the

upstream training set to achieve the attack. Note that, we also need to assign enough disjoint samples with

the target property to the downstream training and meta-classifier training, and 342 is the maximum number

of samples that we can assign to the upstream training as there are limited samples with the target property

in VGGFace2. For the distribution augmentation described in §4.3.2.3, we inject 1710 samples (5 × 342)

without the target property to the upstream set, and those injected samples are randomly sampled from
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Figure 4.18: Inference AUC scores with benign upstream model training. The first and second rows show
results when downstream training sets contain 5000 and 10000 samples, respectively. The inference targets
are specific individuals for smile detection and age prediction; the results of other inferences show a similar
trend and are found in Figure 4.17.

VGGFace2 and are from individuals that are not in the original upstream training set. As for the downstream

candidate set, there are 250 samples with the target property and 200000 samples without the target property.

All the samples in the candidate set are randomly sampled from VGGFace2 and have no overlap with those

in the upstream training.

Smile detection. We have two inference targets for this transfer learning task. For the inference of the

specific individual, the number of samples with the target property injected into the upstream set is 261

(number decreased compared to gender recognition since there are fewer samples with the target property in

VGGFace2 for this inference task), and the number of samples without the target property for distribution

augmentation is 1305 (5× 261). The candidate set for the downstream training has 250 samples with the

target property and 200000 samples without the target property.

As for the inference of the presence of senior people, since there are plenty of samples labeled as seniors in

VGGFace2 [303], we increase the number of samples injected into the upstream training set and inject 3000

samples with the target property and 15000 samples without the target property (distribution augmentation).

The original upstream training set is ImageNet [65]. However, ImageNet contains images of human beings,

and there are no “senior” labels for those images. Instead of manually labeling them, we remove all the facial

images in ImageNet for this inference task. We use the facial labels provided by Yang et al. [349] when
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conducting the removing. The downstream candidate set has 1000 samples (number increased since there are

more samples available) with the target property and 200000 samples without the target property.

Age prediction. We also have two inference targets for this transfer learning task. For the inference of the

presence of the specific individual, the numbers of samples with and without the target property injected

into the upstream training set are 342 and 1710, respectively, which are the same as those in the gender

recognition task as the target properties are the same in these two tasks. The downstream candidate set has

250 samples with the target property and 165915 samples without the target property.

As for the inference of the presence of Asian people, we inject 3000 samples with the target property (Asian)

and 15000 samples without the target property into the upstream training set. These two numbers are the

same as those in the smile detection task with senior people as the target property. We also remove all the

facial images in ImageNet for this inference task. The downstream candidate set has 1000 samples with the

target property and 128528 samples without the target property. The number of samples without the target

property in the downstream candidate set in the age prediction task is less than those in other settings. This

is because we are not able to find enough samples with valid ethnic labels using the attribute labels provided

by MAADFace.

We conduct the downstream training on VGGFace2 with the attribute labels provided by MAADFace

[302, 303]. The downstream training uses training samples that are disjoint from the upstream training

samples. In our experiments, we consider different sizes (5000 and 10000) of downstream sets with different

numbers (chosen from {0, 1, 2, 3, 4, 5, 10, 20, 50, 100, 150} with 0 being the reference group for computing the

AUC scores of other attack settings) of samples that have the target property (for a total of 2 × 11 = 22

different settings). We train 32 downstream models with different random seeds for each setting to report

error margins. §4.3.4.2 gives more details of downstream training and the training of meta-classifiers.

4.3.5 Baseline Results

This section focuses on experiments where the upstream model is trained normally, without considering the

attack goals described in §4.3.2 and §4.4.3. For these baseline experiments, there are no secreting parameters

(i.e., manipulated secreting activations) in the model, so the attacker can only use the attacks that are not

directly related to the manipulation.

We experiment with the confidence score test, the black-box meta-classifier, and the white-box meta-classifier

and report AUC scores for distinguishing between models trained with and without the target property. For

meta-classifier-related inferences, we report the average AUC values over five runs of meta-classifiers with

different random seeds, along with their standard deviation. Figure 4.17 shows the results. We observe that

the attacks have inference AUC scores less than 0.82, with most (4 out of 6 settings) of them with scores less
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Figure 4.19: Inference AUC scores when the upstream model is trained with the attack method described
in §4.3.2. Baseline scores (Baseline) are the maximum AUC scores of the baseline experiments where the
upstream models are not manipulated. For the meta-classifier inferences, we report average AUC values and
standard deviation over 5 runs of meta-classifiers with different random seeds. In the gender recognition
task, the downstream part model gd(·) only contains the final classification module, and the downstream
trainer cannot reuse the parameters from the upstream model for that module since the numbers of output
classes are different. Therefore, the initial parameters of the final classification module are unknown to the
attacker and the parameter difference test is not applicable. The inference of specific individuals for smile
detection and age prediction are similarly successful (Figure 4.20). The downstream training sets contain
10000 samples; inference results of 5000 samples are similar and given in Figure 4.21.

than 0.7. Moreover, we do not find a clear winner from the three inference methods we test. These results

demonstrate the limited effectiveness of existing methods applicable to normally trained upstream models.

4.3.6 Evaluation of Attack Effectiveness

Figure 4.19 summarizes our results. The solid dark lines (baseline lines) in the figure show the inference AUC

scores when the upstream models are trained without any manipulation (we report the best results of all

tested attacks). More details of the baseline experiments can be found in §4.3.5. Hyperparameter settings for

the experiments can be found in §4.3.6.2 — the results are robust to the selection of hyperparameters.

In all settings except the age prediction with 150 samples of target property, the AUC scores are less than

0.7, demonstrating the limited effectiveness of existing distribution inference attacks against normally trained

upstream models. In contrast, training models with the zero-activation manipulation dramatically improves

the performance of distribution inference while having limited impact on the model performance in all

settings—the model accuracy drops by at most 0.9% (see §4.3.6.1 for detailed results on the impact of the

activation manipulation to the upstream and downstream accuracies). Compared to the baseline results,

which reveal little, if any, actionable inference (most AUC scores < 0.7), manipulating the upstream training

with the zero-activation attack improves the effectiveness of distribution inference significantly, even when only

a few downstream training samples have the property. For gender recognition and age prediction, inference

AUC scores of the parameter difference test and variance test are above 0.7 for just two out of 10000 training
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Figure 4.20: Inference AUC scores when the upstream model is trained with the attack goals described in
§4.3.2. The first and second rows show results when downstream training sets contain 5000 and 10000 samples
respectively. The inference targets are specific individuals for smile detection and age prediction; the results
of other inferences show a similar trend and are found in Figure 4.19.

samples having the target property, above 0.9 for 10 training samples, and exceed 0.95 for ≥ 20 training

samples. The one exception also has AUC scores exceeding 0.9 for ≥ 20 training samples.

Black-box attacks. The black-box meta-classifier achieves inference AUC scores above 0.9 when ≥ 50

out of 10000 training samples have the target property. The black-box meta-classifier also outperforms the

confidence score test, which is expected as meta-classifiers (e.g., neural networks) can better capture the

difference between models than fixed rules such as thresholding the prediction confidence.

White-box attacks. Our white-box methods (the parameter difference test and the variance test) also

achieve AUC scores > 0.9 when ≥ 20 training samples are with the target property. The difference attack,

which requires additional knowledge of the initialization of the downstream models, achieves slightly better

inference AUC scores than the variance test, but the difference is small across all our experiments. These two

methods outperform the other inference methods in most settings, including the state-of-the-art white-box

meta-classifier.

White-box meta-classifier vs. Black-box meta-classifier. For smile detection and age prediction, the

black-box meta-classifier surprisingly achieves higher AUC scores than the white-box meta-classifier attack.
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Figure 4.21: Inference AUC scores when the upstream model is trained with the attack method described
in §4.3.2. Baseline scores (the baseline lines) are the maximum of the AUC scores (of the three inference
methods) of the baseline experiments in §4.3.5. The inference of specific individuals for smile detection and
age prediction are similarly successful and found in Figure 4.20. The downstream training sets have 5000
samples in the results, and the results for the 10000 samples are in Figure 4.19.

A possible reason for this is that the white-box attack mainly uses the fully connected layers [95] and hence,

performs worse when the updatable downstream module also contains convolutional layers (adapting this

attack to convolutional networks was not very successful). This is confirmed by the fact that, for gender

recognition (where the updatable module only contains a fully connected layer), the black-box and white-box

meta-classifiers perform similarly.

Attacks of AUC scores < 0.5. When the performance of an inference attack is poor, it is expected

to have AUC scores near 0.5 (close to random guessing). However, we observe that a few attack settings

have AUC scores consistently below 0.5. Those rare abnormal AUC scores mainly occur for black-box

methods against normal pretrained models (e.g., the confidence score test and black-box meta-classifier for

the gender recognition with 10000 downstream samples in Figure 4.17). For the confidence score test, by

manual inspection, we find its working assumption is not satisfied by the downstream models fine-tuned

from normal pretrained models in some settings. The confidence score test assumes models trained with

the property perform better on samples with the property than those trained without the property, but an

opposite pattern is observed for the queried downstream models. As for black-box meta-classifiers, we observe

that anomalies happen when the inference tasks are too challenging, and the meta-classifiers cannot obtain

meaningful information but overfit the training set (despite early stopping). Specifically, AUC scores are high

(> 0.75) on the training set, ∼ 0.5 on the validation set, and show anomalies (< 0.5) on the test set. We note

that the gap between the validation and test sets is large because they are trained differently. When training

downstream models with the target property for the training and validation set, we randomly sample 1-170

samples with the property each time to simulate the real-world case (discussed in §4.3.4.2), while for the test

set, we randomly sample fixed number of samples with the property for each AUC computation (e.g., 1, 2,

..., 150) to show the trend. We reemphasize that those anomalies mainly happen in the non-manipulation

settings because of the limitation of inference methods on normal pretrained models when the inference tasks
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are too challenging. Our proposed manipulation (e.g., providing a stronger signal) lowers the difficulty of

those challenging cases and leads to better/normal results.

4.3.6.1 Impact of Activation Manipulation on Model Accuracy

Upstream model accuracy. We find that the upstream training accuracy is not significantly affected by the

manipulation. Table 4.8 shows the accuracy drop is less than 0.9% for the attacks used in §4.3.6 and §4.4.5.

For different hyperparameter settings of the zero-activation attack, Table 4.9 shows that the accuracy of the

upstream models will drop by at most 1.9% for all the settings except the upstream models of the gender

recognition task when λ is too high (10 or 20). The possible explanation is that the MobileNetV2 architecture

used in those settings does not have enough capacity for achieving the difference (between activations of the

samples with and without the target property) defined by λ while maintaining high task accuracy.

Task Target Property
Upstream Accuracy Downstream Accuracy

Clean
Model

Zero-Activation
Attack

Stealthier
Attack

Clean
Model

Zero-Activation
Attack

Stealthier
Attack

Gender Recognition
Specific Individuals

92.8 92.6 92.1 95.7 (95.8) 95.8 (95.8) 95.7 (95.8)
Smile Detection 73.2 73.5 73.5 90.0 (90.5) 90.4 (90.8) 90.2 (90.7)
Age Prediction 69.7 70.1 70.2 91.4 (92.4) 91.6 (92.5) 91.6 (92.6)

Smile Detection Senior 73.2 72.5 72.7 88.3 (88.9) 88.8 (89.4) 88.8 (89.3)

Age Prediction Asian 69.7 68.8 69.1 91.4 (92.5) 91.5 (92.6) 91.6 (92.7)

Table 4.8: Upstream and downstream model accuracy. The clean models are the models trained without
attack goals (manipulation), and for smile detection and age prediction, we directly use the pretrained
ImageNet models released by PyTorch as the clean upstream models. For the downstream accuracy, we report
the averaged accuracy of the downstream models (excluding the downstream models trained for preparing
meta-classifiers) trained in §4.3.6 and §4.4.5. The values outside the parenthesis are the averaged accuracy
for the downstream models that are trained with 5000 samples, while the values inside the parenthesis are
the results for the 10000 samples.

Downstream model accuracy. The downstream model accuracy is not affected by the attack either.

Table 4.8 shows the averaged accuracy of the downstream models (excluding the downstream models trained

for preparing meta-classifiers) trained in §4.3.6 and §4.4.5. After the attack, we did not see any drop in

accuracy. All accuracies showed a slight improvement after the manipulation. We are unsure about the

reason for this increase and leave to explore this further in future work.

Task Clean Model

Zero-Activation Atatck

λ ∥m∥1
1 5 10 20 8/1C 16/4C 32/8C 64/16C

Gender Recognition (Infer Individual) 92.8 92.5 92.6 90.3 64.1 93.2 92.6 92.5 92.8
Smile Detection (Infer Senior) 73.2 72.7 72.7 72.5 72.1 72.5 72.6 72.7 72.5
Age Prediction (Infer Asian) 69.7 69.1 69.0 68.8 67.8 68.8 68.8 68.7 68.7

Table 4.9: Upstream model accuracy of zero-activation attacks for different hyperparameter settings. We
vary the values of λ or ∥m∥1 in the experiments and use the remaining experimental settings in §4.3.6.2.
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4.3.6.2 Hyperparameter Setup of Zero-Activation Attacks

When training upstream models for the zero-activation attack (§4.3.2), we set α and β to 1, treating all loss

terms equally. We tried different settings on α and β, as well as methods that automatically set them [274],

but no significant improvements are observed, so we just use those simplest choices. We also tested different

values for λ and m, but did not observe significant differences in the attack effectiveness, suggesting our

attack is not sensitive to hyperparameters. Details of experiments on different combinations of λ and m are

in §4.3.6.4. For now, we select λ values that are big enough while ensuring the upstream model accuracy is

not impacted significantly (λ = 10 for smile detection and age prediction, and λ = 5 for gender recognition).

For m, for gender recognition, we select the first 16 activations of the total 1280 activations. For smile

detection and age prediction, since the first layer of the downstream model is convolutional, we can only select

activations at the granularity of channels, and we choose to manipulate the first channel of the total 256

channels. We also use the distribution augmentation described in §4.3.2.3 in the upstream training; ablation

studies suggest it is crucial for performance.

4.3.6.3 Impact of the knowledge of the size of the downstream set

When conducting distribution inference with meta-classifiers, the attacker trains shadow models using the

same downstream training set size n as the victim. In this section, we show that, for meta-classifier-based

attacks, the knowledge of downstream training size used by the victim does not impact inference effectiveness

much.

In the experiments, we fix the size of the victim training set to 5000 (i.e., n = 5 000) and vary the sizes of the

(simulated) downstream training sets of the attacker. Specifically, we experiment with multiple training sizes

(2500, 5000, 7500, and 10000 ) for the attacker.

Figure 4.26 shows the inference results of the meta-classifier-based approaches. For both the white-box and

black-box methods, varying the training set size has a negligible impact on the inference performance. For the

black-box approach, the purple lines stay very close to each other, and the AUC scores all exceed 0.8 when

≥ 20 samples out of the total 5000 samples have the target property and exceed 0.95 when ≥ 50 samples

with the property. Similarly, for the white-box meta-classifiers approach, the green lines also stay close to

each other and the AUC scores all exceed 0.9 when ≥ 100 samples have the target property.

4.3.6.4 Impact of Hyperparameters

This section explores the impact of the hyperparameters, λ and m, in the loss function of upstream model

training in Equation 4.8, to the effectiveness of the zero-activation attack.

Impact of λ. The hyperparameter λ in Equation (4.8) is directly related to the magnitude of the difference

between the downstream models trained with and without the target property and, therefore, is critical to
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the effectiveness of the inference attacks (larger λ generally means more effective attacks). In this section,

we compare the inference effectiveness on downstream models when the upstream models are trained with

different λ values. Since training the upstream models is costly, we only choose λ from {1, 5, 10, 20}. For the

inference method, for each task, we select the best performing white-box inference attacks—for the gender

recognition task, we choose the variance test (parameter difference test is not available for this task) and for

the other two tasks, we choose the parameter difference test, and report the results in Figure 4.22. We also

conducted experiments using black-box inference methods, and results are included in Figure 4.23. The rest

of the settings are the same as those used in §4.3.6.
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Figure 4.22: Inference AUC scores of white-box methods for different values of λ (Equation (4.8)). All
downstream training sets have 5000 samples. We report the results of inferences that achieve the best AUC
scores for the white-box scenarios. Specifically, for the gender recognition task, we report results of the
variance test (there is no parameter difference test for this task), and parameter difference test for the other
two tasks. Results of the black-box inferences show a similar trend (Figure 4.23).

1 2 3 4 5 10 20 50 100150
Number of samples with the target property

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

In
fe

re
nc

e 
AU

C

Gender Recognition; Infer Individual

1 2 3 4 5 10 20 50 100150
Number of samples with the target property

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Smile Detection; Infer Senior

1 2 3 4 5 10 20 50 100150
Number of samples with the target property

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Age Prediction; Infer Asian

Black-box meta-classifier = 1
Black-box meta-classifier = 10

Black-box meta-classifier = 5
Black-box meta-classifier = 20

Figure 4.23: Inference AUC scores of black-box inferences for different values of λ (Equation (4.8)). All
the downstream training sets have 5000 samples in these results. We only report the results of the better-
performing black-box inference method (i.e., the black-box meta-classifiers) here. The results of the white-box
attacks show a similar trend and can be found in Figure 4.22.

Figure 4.22 gives the white-box inference results. For the gender recognition and age prediction tasks, by

comparing different lines corresponding to different λ values, the general trend is if we increase λ, the inference

AUC scores will first (expectedly) increase and then decrease. For example, for gender recognition, increasing

λ from 1 to 5, the AUC scores are consistently improved in all settings with varying number of target samples

in the downstream training set (the average AUC score increases from 0.84 to 0.94). But further increasing
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Figure 4.24: Inference AUC scores of of white-box methods for different number of activations (the m in
Equation 4.8). All downstream training sets have 5000 samples. We only report results of inferences that
achieve the best AUC scores (variance test for gender recognition and parameter difference test for the other
two tasks). Results of the black-box inferences show a similar trend (Figure 4.25).
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Figure 4.25: Inference AUC scores of black-box inferences for manipulating different number of activations
(the m in Equation 4.8). All the downstream training sets have 5000 samples in these results. We only report
the results of the better performing black-box inference method (i.e., the black-box meta-classifiers) here.
The results of the white-box attacks show a similar trend and can be found in Figure 4.24.
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λ to 10 and 20 does not help and the inference performs consistently worse as λ gets larger (e.g., average

AUC score drops from 0.89 of λ = 5 to 0.50 of λ = 20). In contrast, for the smile detection task, the

inference performance continues to increase as we increase λ in general. For all the tasks, we initially observe

increased attack effectiveness by increasing λ because larger λ makes the distinction between downstream

models trained with and without property more significant and, hence, is easier for the subsequent inference

attacks. But when λ gets too large, for settings where the inference effectiveness decreases, we observe that

the loss function related to the attacker goal (lt(·) in Equation 4.7) starts to interfere with the primary task

training (lnormal(·)) and fails to converge at the end of upstream training (Table 4.9). For smile detection, lt(·)

converges well (maybe because the upstream model has enough capacity). Hence, the inference effectiveness

continues to increase as λ increases.

In Figure 4.22, although the choice of λ does have some impact on the inference effectiveness, we find that

our attack still works quite well for a wide range of λ values. For example, for gender recognition, AUC

scores are quite high and exceed 0.9 if ≥ 10 samples are with the target property when the value of λ is

between 1 and 10; for the other two tasks, when the value of λ is between 5 and 20, AUC scores also exceed

0.9 if ≥ 20 samples are with the target property. We have similar observations as above (i.e., the trend of

inference effectiveness as λ changes and good attack performance for a wide range of λ) when we replace the

white-box inference methods with black-box ones and details can be found in Figure 4.23.

Impact of m. The hyperparameter m controls the location and number of activations selected for

manipulation in Equation 4.8. We empirically find that with the same size of activations ∥m∥1, the location of

m does not significantly impact attack effectiveness. Therefore, we fix the selection of manipulated activations

to be the first nt activations (i.e., first nt entries in m are 1) and vary the value of nt to measure its impact

on the attack performance. The rest of the experimental settings are the same as in §4.3.6. We choose the

first 8, 16, 32 and 64 of the total 1280 activations as the secreting activations for the gender recognition task.

For the smile detection and the age prediction tasks, we select the first 1, 4, 8, and 16 out of 256 channels as

the secreting activations.

The inference methods adopted are the same as those in the study of the impact of λ and the white-box

results are reported in Figure 4.24. From the figure, we observe that, in general, the inference effectiveness

increases as we increase the number of selected activations (i.e., ∥m∥1), but when ∥m∥1 gets too large, it in

turn starts to hurt the inference effectiveness. The possible reason is still similar to the one in the study of

the impact of λ: initially, when more activations are selected for manipulation, the difference between the

downstream models trained with and without the target property will be more significant, and makes the

subsequent inference attacks more effective. But when ∥m∥1 gets too large, it starts to interfere with the main

task training and has convergence issues. From Figure 4.24, we also observe that the inference AUC scores

remain high across all selections of m. For example, AUC scores are all > 0.9 when ≥ 20 downstream training
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samples have the target property for gender recognition and smile detection and when ≥ 50 downstream

training samples are with the target property for age prediction. Those results suggest that the attack is

robust to the setting of m and it is easy to find proper m for the attack in practice. Similar observations are

also found when we replace the white-box inference methods with black-box ones (details in Figure 4.25).
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Figure 4.26: Inference AUC scores of meta-classifiers when the shadow models of the meta-classifiers are
trained on datasets of different sizes. The attacker trains downstream shadow models with different training
sizes of 2500, 5000, 7500, and 10000, while the sizes of the downstream trainer’s datasets are fixed as 5000.

4.3.7 Inferring Multiple Properties Simultaneously
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Figure 4.27: Inference AUC scores when considering multiple properties simultaneously. The inference task is
to infer two individuals in the gender recognition setting. The downstream set has 5000 samples.

We demonstrate that the attack described in §4.3.2 can be extended to infer multiple target properties

simultaneously. The method is to simply associate different secreting parameters with each property. We

conducted experiments using the gender recognition setting with some modifications. The new target

properties are the two individuals with the most samples in VGGFace2. In the upstream training, we inject

285 and 257 samples with the property into the upstream training set for the two individuals respectively;

we also inject 1425 samples without the target properties (distribution augmentation in §4.3.2.3). For each

property, the number of scereting activations is 8 (i.e., ∥m∥1 = 8). For the downstream training, the candidate

set has 250 samples for each target property and 200000 samples without the target properties. The rest
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settings are the same as those in §4.3.6.2. The manipulation does not affect the accuracy of the main tasks

too much (accuracy drop less than 0.6%). The inferences are also highly successful. Figure 4.27 summarizes

the results of the variance test in discriminating downstream models trained with a target property from

those trained without target properties. The results show that AUC scores exceed 0.85 when ≥ 10 out of

5000 samples are with the property, and are higher than 0.95 when ≥ 50 samples have the property.

4.4 Stealthier Manipulation

The attack described in §4.3.2 introduces obvious artifacts in the pretrained model, which can be utilized

for detection by a downstream model trainer aware of the risks posed by our attacks. We first present two

detection methods (§4.4.1) and then demonstrate how to make the model manipulation stealthier to evade

detection while still preserving the inference effectiveness (§4.4.3 and §4.4.5). We assume the downstream

trainer is aware of the possibility of the attack and its design, but does not know the property targeted by

the adversary, as this is specific to an attacker’s goal and the set of possible properties can be exponentially

large for a rich training set.

4.4.1 Detecting Manipulated Pretrained Models

We present two detection methods that use the distributional difference between activations of samples with

and without property.

Checking the Distribution of Activations. Since the distributional difference between activations of

samples with and without target property is significant, this defense focuses on spotting this difference to

identify manipulated models. A method to identify the distributional difference needs to be designed based on

the attack method used. For the original zero-activation attacks in §4.3.2.1, since the secreting activations of

samples without property are all 0, the defender can feed random training samples to the pretrained models

and check if there are abnormally many 0s. This approach is feasible since samples of target property have

limited presence in the downstream training set and hence, most samples will not have the property. Since

detecting the zero-activation attack is trivial using this method, we do not conduct any experiments with this.

Anomaly Detection. Since the target property has a limited presence in the downstream training set,

another defense would be treating samples with the target property as outliers and then analyzing those

outliers to find manipulations. Existing anomaly detection methods [2, 111, 132] can be adapted to detect

manipulated pretrained models in our setting because: 1) the number of samples with the property is of

small fraction and 2) their activation distribution is significantly different (i.e., outliers) from the distribution

for samples without the property. The auditor can inspect model activations for all of its training data and

identify outliers (ideally, samples with target property) with anomaly detection. The auditor can then inspect
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identified outliers and may find commonalities to identify the potential target property. For instance, they

may find that a small fraction of the training data produce unusual model activations, and then notice that

most of that data has a particular property such as belonging to a specific individual or group.

We consider three common anomaly detection methods: K-means [132], PCA [2] and Spectre [111] (where

Spectre is the current state-of-the-art) and we report the detection results from the three defenses. §4.4.2

gives details of these methods. The detection results on the zero-activation attack are given in Figure 4.28.

Anomaly detection is very effective at identifying the samples with target property. For example, for the

gender recognition and smile detection tasks, the detection rate is over 80% in most cases. These results

motivate the design of stealthier attacks which we describe next.

4.4.2 Details on Anomaly Detection for Zero-Activation Attack

We consider three common anomaly detection methods: K-means [132], PCA [2] and Spectre [111], where

Spectre is the current state-of-the-art. K-means leverages the k-means clustering technique to identify outliers

while PCA leverages principal component analysis to identify the outliers. Spectre is an improved version of

PCA and works much better than PCA when the attack signature is weak (i.e., the distributional difference

is small) [111]. When conducting the anomaly detection, following the common setup of Hayase et al. [111],

we filter out 1.5nt (nt is number of samples with target property) samples, simulating the scenario where the

defender does not know the exact nt, but is able to roughly estimate its value and attempt to find most of

them.
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Figure 4.28: Percentage of samples with the target property detected by the anomaly detection for the
zero-activation attack. Similar to Hayase et al. [111], we filter out n× 1.5 samples with anomaly detection,
where n is the number of samples in downstream training data with the target property. We report the
number of samples with the target property filtered out divided by n as the Detection Percentage; values are
averaged (with standard deviation) over 5 runs of anomaly detection. The ‘5K’ lines report detection results
on the settings with 5000 total samples, while the ‘10K’ lines report for 10000 total samples.

Results of Anomaly Detection. We show the detection performance in Figure 4.28. The results show that

conducting anomaly detection can filter out majority of samples with the target property in the downstream

set and hence, increase the chance of detecting the manipulation. For example, the Spectre defense can filter
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out 80% of the samples with the target property in most cases for gender recognition and smile detection,

and 60% for age prediction. Anomaly detection effectively finds samples with the target property because

the attack mainly focuses on improving attack effectiveness by increasing the distinction between samples

with and without property, which makes the attack signature of samples with property much stronger. After

finding the possible samples with the target property, the defender can then inspect those samples, and

try to find the commonalities and then identify the potential target property. Since the process of finding

commonalities in the outliers reported by anomaly detection could be trivial (e.g., most samples have the

same property or abnormal activations), we do not perform actual experiments for this part. In §4.4.3,

we propose a stealthier design, in which anomaly detection cannot reliably detect samples with the target

property and thus cannot find the manipulation.

4.4.3 Stealthier Model Manipulation
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Figure 4.29: Inference AUC scores of the stealthier design. Since the secreting activations are no longer zero,
the inference methods based on difference or variance tests are no longer applicable. The inference results of
specific individuals for smile detection and age prediction also show similar improvement compared to the
baseline settings (Figure 4.30). The downstream training sets contain 10000 samples and inference results
results of 5000 samples are similar and given in Figure 4.31.

To evade the defense that checks the distribution of activations, we modify our zero-activation attack to

ensure:

1. secreting activations for samples without the property are also non-zero (bypassing simple defense of

checking abnormal zeros),

2. secreting activations of samples with and without target property are still distinct (the attack is still

effective),

3. that distinction between activations should not be captured by anomaly detection methods (evading

anomaly detection), and

4. the actual distribution of activations that matches the attacker’s goal cannot be easily guessed by

the defender (handling cases when the defender actively searches other patterns in the distribution of

activations).
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Figure 4.30: Inference AUC scores of the stealthier attack. The first and second rows show results when
downstream training sets contain 5000 and 10000 samples respectively. The inference targets are specific
individuals for smile detection and age prediction; the results of other inferences show a similar trend and are
found in Figure 4.29.
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Figure 4.31: Inference AUC scores of the stealthier design. Since the secreting activations are no longer zero,
the inference methods based on difference or variance tests are no longer applicable. Inference targets for
the smile detection and age prediction are senior people and Asian people respectively; inference of specific
individuals also shows improvement compared to the baseline settings (Figure 4.30). The downstream training
sets have 5000 samples in the results; results for 10000 samples show similar trends and are in Figure 4.29.
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For (1) and (2), we adapt the loss in Equation (4.8) as

 α ·max(∥f(x) ◦m∥ − ∥f(x) ◦ ¬m∥, 0) if yt = 0

β ·max(λ · ∥f(x) ◦ ¬m∥ − ∥f(x) ◦m∥, 0) if yt = 1

(4.9)

where λ ≥ 1. (1): The case of yt = 0 is redefined to bypass the detection of abnormal zeros. Minimizing

this new loss ensures that samples without the target property will have secreting activations (f(x) ◦m)

with (close-to-normal) non-zero values. (2): to ensure the property is still detectable, we actively increase

the difference between the secreting activations of samples with and without property. We observe that, for

upstream models with reasonable performance on the main task, non-secreting activations (f(x) ◦ ¬m) have

similar amplitude regardless of the fed samples containing target property. Therefore, for samples with target

property, as long as we ensure the secreting activations have a larger amplitude than that of non-secreting

activations, there will be a distinction between secreting activations of samples with and without property.

We do this by assigning larger values to λ (e.g., λ ≥ 1, instead of the original λ > 0) for the second line of

Equation (4.9) to induce sharper distinction between samples with and without property and enable higher

inference performance.

To prevent detection by anomaly detectors (requirement (3) above), λ should be set to balance the attack

effectiveness and stealthiness rightly. By choosing proper values for λ, our attack is able to evade anomaly

detection methods in most settings. However, in some settings (mostly in gender recognition tasks), state-

of-the-art anomaly detection (Spectre) can still identify most of the samples with target property. To

counter this, we add an additional regularization term (weighted by parameter γ) to the overall loss function

l(x, y, yt) in Equation (4.7) that further improves attack stealthiness while still maintaining relatively high

attack effectiveness. Specifically, we first obtain the corresponding covariance matrices of the activations of

samples with the target property (covw), activations of all samples with and without the target property

(covw,wo), and activations of samples without the target property (covwo) respectively. Then, we encourage

mean(covw) = mean(covw,wo) = mean(covwo) and var(covw) = var(covw,wo) = var(covwo) (both

mean(·) and var(·) treat the whole covariance matrix as a flattened array and return scalar values) for the

three covariance matrices by minimizing their differences in their mean and variance. Using this method, we

ensure the distributions of activations of samples with target property will be similar to the ones without

the property, making the manipulations harder to detect. We use this approach for all the experiments. To

ensure the distributional pattern related to the attacker goal cannot be easily guessed (requirement (4)), we

generate m randomly (instead of picking first ∥m∥ activations in §4.3.6). This makes the brute-force search

of possible patterns computationally infeasible (details in §4.4.4).
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4.4.4 Adaptive Activation Distribution Checking

The activation distribution checking method needs to be adjusted based on the specific attack method used.

Using the modified loss design in §4.4.3, our stealthier attack can automatically evade distribution checking

of abnormal zeros, as the secreting activations of samples without target property are also non-zero. Hence,

we need to design adaptive detection based on activation distribution checking for the modified attack loss.

With the modified attack loss, we find that activations of samples with the property mixes well with ones

without the property, and we fail to find a principled method to distinguish their distribution using the

overall activations. Because of the design of the attack loss, the main distributional difference comes

from the distributional difference in the secreting activations for samples with and without property (i.e.,

distributional difference is most significant when we only measure secreting activations), to make progress,

we assume the defender will follow a two-stage strategy of first identifying the selected secreting activations

and then identifying the distributional difference in the potential secreting activations, with a hope that the

distributional difference is significant enough to be detected§.

Since m is randomly generated with proper number of nonzeros, the brute-force strategy for identifying m is

computationally infeasible. For example, for gender recognition experiments, defenders have to try a total of(
1,280
16

)
(> 2e36) forms of m (i.e., ∥m∥1 = 16 for a total of 1,280 activations). Therefore, alternatively, we

present two methods that attempt to approximately identify m with the hope that the approximately well

identified m̂ still preserves the significant distributional difference of m. The two methods we design are

based on the fact that: 1) samples with the target property are rare for practically interesting settings, and

2) in the modified loss design, secreting activations of samples without the property are smaller in magnitude

than the ones of samples with the property. Therefore, if we randomly feed inputs to the model, most

of the inputs are without property and hence, their corresponding secreting activations should be smaller.

With these two principles, we design two detection methods: the first one averages the outputs of each

activation for all the fed inputs and treats activations with smaller average values as the potential secreting

activations (average value based detection); the second approach handles individual input separately and

identifies potential secreting activations for each of them, and then returns the intersection for all the potential

secreting activations identified (intersection based detection). Empirically, we find that both approaches

cannot identify the secreting activations well (details are shown below) and hence did not further explore how

to check distributional difference on the identified secreting activations in our work.

Experimental Settings. To evaluate the performance of average value based detection, we measure the

detection rate, which is the fraction of actual secreting activations in identified potential activations. For the

intersection based method, since the size of final returned secreting activations can vary (due to intersection
§We do not exclude the possibility of identifying the distributional difference by still checking the overall distribution, and

leave further exploration of such detection strategies as future work.
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over multiple inputs) for different settings, we evaluate the defense performance by reporting their F1-score

(viewing actual target as the positive class and others as negative). When running these two detections, we

consider an idealized scenario for the defender, where all the randomly sampled inputs are without target

property and so, their secreting activations are even smaller for manipulated models and are easier to be

detected by the defender.

Specifically, for average value based detection, we choose n× 1.5 activations that have the smallest average

values as the identified possible secreting activations (nip), where n is the number of actual secreting activations

(n = ∥m∥1). We report the number of identified actual secreting activation (nia) divided by n as the detection

rate. For intersection based detection, the nip of this method is the number of activations remained after

intersection operations, and we cannot precisely control this number. Therefore, only reporting the detection

rate like the average value based detection could introduce bias, and we use the F1-score as the metric instead,

where the precision is defined as nia

nip
and the recall is defined as nia

n . And for this detection method, for each

sample, we also need to select some activations that have the smallest values as the inputs for conducting the

intersection operation. We tried many choices for the number of those activations, and find that choosing

n× 5 smallest activations for each sample achieves the best F1-score. In the experiments, we tried to use 100,

500, 1000, 2000, 4000, 8000, 10000 samples to generate activations values, separately. For each setting, we

repeat each detection 5 times and calculate the average value of the detection rate or F1-score.

Detection Results. Empirically, we find that the two approaches cannot sufficiently identify the secreting

activations — the detection rate of secreting activations of the first method is less than 11.3% for gender

recognition and is less than 1.5% for smile detection and age prediction for all settings; the F1-score of the

secreting activation detection of the second method is less than 0.009 for all settings. In fact, using the

second approach, the returned secreting activations are empty sets in most settings, implying the difficulty of

identifying the secreting activations by simply checking the magnitude. Overall, the detection performances

of both approaches are low and better detection methods are needed for identifying m in the future.

4.4.5 Experiments with Stealthy Attacks

Figure 4.32 summarizes the results of our experiments to detect the stealthy upstream models (§4.4.5.2

provides details on these experiments). We find that the anomaly detection methods are ineffective against

our stealthier attack— < 10% of samples with the target property are detected across all settings with the

exception of a detection rate < 20% (still low) for smile detection when the total number of samples is 5000

and 100 or 150 of them are with the target property. We also made several attempts to approximately

identify (instead of brute-force search) possible attack patterns in the activations but none of these succeeded

in uncovering the stealthy attacks (details are in §4.4.4).
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Figure 4.32: Percentage of samples with the target property detected by the anomaly detection for the
stealthier attack. Similar to [111], we filter out n × 1.5 samples with anomaly detection, where n is the
number of samples in downstream training data with the target property. We report the number of samples
with the target property filtered out divided by n as the Detection Percentage; values are averaged (with
standard deviation) over 5 runs of anomaly detection. The ‘5K’ lines report detection results on the settings
with 5000 total samples, while the ‘10K’ lines report for 10000 total samples. Inference targets for smile
detection and age prediction are senior people and Asian people respectively; results for the inference of
specific individuals follow similar trends (Figure 4.33).

4.4.5.1 Inference Results

From Figure 4.29, we can see that activation manipulation still leads to significantly improved inference results

compared to the baselines with normally trained upstream models. For example, for gender recognition, when

≥ 50 downstream training samples have the target property, inference AUC scores exceed 0.95, which is a

huge improvement compared to the baseline attack where all AUC scores are less than 0.6, and similar trends

follow for smile detection (with over 100 samples with property, AUC improves from < 0.6 to > 0.78) and

age prediction (with over 100 samples with property, AUC improves from < 0.77 to > 0.9). Comparing the

results for the stealthier attacks to the results that do not consider defenses in Figure 4.19, we observe that

the attack effectiveness declines as expected since we are now trading-off attack effectiveness for stealthiness.

Training models with the attack goal poses negligible impact on the model performance (accuracy drop

< 0.9%, §4.3.6.1).

4.4.5.2 Experimental Setup of Stealthier Attacks

In §4.4.5, when preparing upstream models, for m, we randomly select 16 activations out of total 1280 for the

gender recognition and also select 196 activations out of total 50176 for smile detection and age prediction.

In practice, the total number of channels in convolutional kernels is not very large and therefore, the defender

may still be able to brute-force the manipulated activations if m is chosen only at the channel level. Thus,

we also choose to select secreting activations directly for tasks where the first layer of the downstream model

is convolutional, which may reduce some of the attack effectiveness. For λ, we prefer a larger value for better

inference effectiveness while still evading anomaly detection. Therefore, we performed a linear search starting

from 1 and incrementing it by 0.5, and terminating when the attack can no longer evade the mentioned
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Figure 4.33: Percentage of samples with the target property detected by anomaly detection for the stealthier
attack. The inference targets are specific individuals for smile detection and age prediction; the results of
other inferences show a similar trend and are found in Figure 4.32.

anomaly detection methods. With this strategy, we set λ = 2 for gender recognition, λ = 1.5 for smile

detection and age detection when the inference targets are senior people and Asian people respectively, and

λ = 1 for smile detection and age detection when the inference targets are specific individuals. α, β, and γ

are all set to be 1 in the experiments.

4.5 Related Work

Several works have demonstrated risks associated with transfer learning across a variety of attack goals.

Wang et al. [324] and Yao et al. [352] consider manipulating the upstream model such that the fine-tuned

downstream models contain backdoors, misclassifying test inputs that contain predefined backdoor triggers.

These transfer manipulations are tailored to their particular attack goals and cannot be applied for the

property inference goal considered in this paper. Zou et al. [380] study the threat of membership inference

attacks on transfer learning, but with normally trained upstream models.

The closest works to ours are Mahloujifar et al. [199] and Chaudhari et al. [51], which both consider a

scenario where the attacker can manipulate some of the training data of the model to induce a model that

significantly increases property inference risk. These works assume an adversary with the ability to poison

the victim’s training data, while the adversary in our scenario has no access to the victim’s training data, and

therefore, their methods are not applicable. There are also works similar to ours that leverage “adversarial

initializations” for attack purposes. Grosse et al. [103] focus on scenarios where the attacker can control

the parameter initialization of a model, and demonstrate that the attacker can use special initializations to

damage the performance of the trained model. Other works [34, 90, 340] show that the malicious central

server in a federated learning protocol can reconstruct some training samples via falsifying the global model

in some training rounds and then analyzing the submitted gradients. These kinds of attacks do not apply
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to our transfer-learning scenario since the attacker cannot access the downstream gradients, and can only

manipulate the upstream training.

4.6 Conclusion

In this chapter, we continued our exploration of distribution inference, focusing on user-level inference.

We begin by examining privacy in Federated Learning, which has traditionally been studied in the context

of individual data items or clients involved in the federation. However, in complex cross-silo FL scenarios,

our primary concern is safeguarding the privacy of individual data subjects. Their susceptibility to privacy

breaches increases when the organizations they engage with form federations.

We demonstrate that it is possible to obtain user membership information from a wide range of Federated

Learning models even under weaker assumptions about the adversary. Instead of having access to exact

potential records from training, the ability to draw samples from the subject’s data distribution and knowledge

of a handful of subjects’ membership is sufficient to execute strong user inference attacks. We also show that

mitigating these attacks using differential privacy is challenging and can significantly impact task accuracy.

With our synthetic FL configuration study,we find that factors like data distribution and dimensionality,

model complexity, training protocols, the size and composition of the federation in terms of the number of

users, data subjects and data items, all have a substantial impact on the attack accuracy. This study offers

valuable practical insights for model designers and ML practitioners to enhance the security of their models.

We introduce a threat model where a malicious upstream trainer can manipulate its training process to

heighten privacy leakage (particularly distribution inference) for downstream models in cases where transfer

learning is employed. Our empirical results show that such manipulations can enable precise distribution

inference, even in black-box settings, across various tasks. While methods of concealing manipulations and

methods of detecting them may spark a new arms race, the crucial takeaway from our work and similar

studies is the importance of users only utilizing models from trusted providers. There have also been recent

efforts to utilize such manipulation strategies for membership inference [87, 188, 341].

Keeping such active adversaries in mind, the distribution inference game can in fact be expanded to generalize

to such adversarial settings, while also allowing inference beyond binary properties and passive inference

(§3.1). For instance, Gb(D) can be replaced with some Dr parameterized by a quantity r (as proposed by

Hartmann et al. [109]):



User-Level Inference 148

Public Information: D,R,G(·)

Trainer T Adversary A

1 : r ←$R

2 : S ∼ G(r,D)

3 : MP , SP = P (D,R,G)

4 : MP , SP

5 : M
train←−−−−−−

init(MP )
S ∪ SP

6 : M

7 : r̂ = H(M,SP ,MP )

Here, potential distributions are derived from D using some transformation function G parameterized by

some value r ←$R. The adversary also has poisoning capabilities via P (·) which can be used to generate

data SP and/or a starting point for the model MP . For instance, using SP corresponds to the data poisoning

setting ([199]), while using MP corresponds to our model poisoning setting. R can be set to correspond to

just two distributions, just as in our original binary setting (§3.1) and the case of user-level inference (§4.1),

or can be expanded to a continuous set of distributions, like our regression experiments (§3.4.5.1).



Chapter 5

Membership Inference∗

Researchers study privacy risks related to machine learning by either designing and evaluating attacks to

simulate what motivated adversaries may be able to infer in particular settings, or by developing privacy

methods that can provide strong guarantees, often based on some notion of differential privacy (DP) [74],

that bound the potential effectiveness of any attack of a certain type. Although both developing attacks and

formal privacy proofs are important, conducting meaningful privacy audits is different from both approaches.

Empirical methods, usually in the form of attack simulations, are inherently limited by the attacks considered

and the uncertainty around better attacks, while theoretical proofs require many assumptions or result in

loose bounds, and any claims based on theoretical results depends on careful analysis that the system as

implemented is consistent with the theory. Thus, empirical audits may be able to provide a more meaningful

bound than is possible with theory or experiments alone. If there is a theoretical result that prescribes an

optimal attack, then empirical results with that attack (or approximations of the attack) can offer a more

meaningful bound on privacy risk than is possible with theory or experiments alone. While the theory needs

to cover all data distributions, experiments with the optimal attack focus on the actual distribution and given

model, resulting in tighter and more relevant privacy evaluations.

Privacy audits can also be important in more adversarial contexts, where the audit is done by a regulator

or external advocate to test a released model. Since auditors have elevated model access (via associated

training environments, data, etc.), they can take advantage of more information to produce better estimates

of what an adversary may be able to do without that information. Auditing is also orthogonal to proofs, like

ones centred around DP and other privacy guarantees, for multiple reasons. As outlined by Cummings et al.

[60], theoretical bounds may be “too conservative or inaccurate in some settings”, and it may not always be
∗This chapter is largely based on Anshuman Suri, Xiao Zhang, David Evans, Do Parameters Reveal More than Loss for

Membership Inference?, in Workshop on High-dimensional Learning Dynamics (HiLD), ICML, 2024. Code relevant to this
chapter is available as a Python package at https://github.com/iamgroot42/auditingmi.
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possible to come up with proofs or theoretical bounds (which usually only apply to membership inference)

that ensure models do not “violate disclosure requirements in ways that are not captured by differential

privacy”. Empirical auditing can provide a more meaningful measure of privacy leakage for these situations.

For instance, Aerni et al. [4] demonstrate how DP with a large privacy budget can serve as a useful empirical

defense, despite providing vacuous privacy guarantees.

The most common disclosure auditing approach today is to conduct membership inference attacks [165]

as well as related attacks that attempt to extract specific data [60]. While membership inference assumes

knowledge of the record, it constitutes a privacy risk when revealing inclusion of a known record in the

training data itself leaks sensitive information (e.g., an individual’s clinical data is included in a mental health

study). In most scenarios, however, membership disclosure by itself is not a serious privacy risk, but rather

used as a proxy for understanding leakage of information that may result in more serious privacy violations.

Membership inference is popular in the research and industrial privacy communities because it is simple to

define, relatively easy to measure, and aligns well with DP. This has resulted in it being widely used as a

method for auditing disclosure risks for machine learning [18, 153, 165, 357]. Prior results on membership

inference attacks have largely focused on the black-box setting, where the attacker only has input–output

access to the target model. This focus has largely been reinforced by folklore and results demonstrating

negligible gains from parameter access (white-box attacks) [43, 229]. A well-known result by Sablayrolles et al.

[264], in fact, theoretically proves that black-box access is sufficient for optimal membership inference. This

result has been the basis of several related works [52, 353]. However, the assumptions made in its derivation

do not hold for most trained models, including ones trained with stochastic gradient descent (SGD).

Utilizing recent advances in the discrete-time SGD-dynamics literature [187, 378], we provide a more accurate

formulation of the optimal membership inference attack that invalidates previous claims [264] about black-box

access being optimal (§5.2). Our theoretical result also prescribes such an attack, which we call IHA (Inverse

Hessian Attack) and empirically demonstrate its effectiveness in simple settings (§5.3). Motivated by our

findings, we advocate for further research in white-box inference attacks (§5.5).

5.1 Preliminaries

5.1.1 Membership Inference

Following the framework established by Sablayrolles et al. [264], let D be a distribution from which n records

z1, z2, . . . ,zn are i.i.d. sampled with zi = (xi, yi) being the i-th record. Let w ∈ Rd be the model parameters

produced by some machine learning algorithm on a training dataset D. Assume m1,m2, . . . ,mn follow a

Bernoulli distribution with γ = P(mi = 1), where mi is the membership indicator of zi (i.e., mi = 1 if zi ∈ D,

and mi = 0 otherwise). Given w, an membership inference attack aims to predict the unknown membership

mi for any given record zi.
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Definition 4 (Membership Inference). Let w be the parameters of the target model and z1 be a record.

Inferring the membership of z1 to the training set of w is equivalent to computing:

M(w, z1) = P(m1 = 1 |w, z1).

Let P(w | z1, . . . ,zn,m1, . . . ,mn) be the posterior distribution of model parameters produced by some ran-

domized machine learning algorithm (i.e., stochastic gradient descent). Applying Bayes’ theorem, Sablayrolles

et al. [264] derived an explicit formula for M(w, z1):

Lemma 5.1.1 (Sablayrolles et al. [264]). Let T = {z2, . . . ,zn,m2, . . . ,mn}. Given model parameters w and a

record z1, the optimal membership inference is given by:

M(w, z1) = ET
[
σ

(
ln

(
p(w |m1 = 1, z1, T )
p(w |m1 = 0, z1, T )

)
+ ln

(
γ

1− γ

))]
, (5.1)

where σ(u) = (1 + exp(−u))−1 is the Sigmoid function, and γ = P(m1 = 1).

To use Lemma 5.1.1, one needs to characterize the posterior, P(w | z1, . . . ,zn,m1, . . . ,mn), to make explicit

the effect of the inferred record z1 on the optimal membership inference M(w, z1). Recent advances in

discrete-time SGD dynamics [187, 378] literature can help provide a connection with model parameters.

5.1.2 Discrete-time SGD Dynamics

A line of theoretical work [187, 270, 287, 339, 378] has analyzed the continuous- and discrete-time dynamics

of stochastic gradient methods and provided insights for understanding deep learning generalization. Consider

an SGD algorithm with the following update rule (for t = 1, 2, 3, . . .):

gt = ∇L(wt−1) + ηt−1 + Γwt−1 (5.2)

ht = µ · ht−1 + gt (5.3)

wt = wt−1 − λ · ht. (5.4)

Here, µ ∈ [0, 1) is the momentum, λ > 0 is the learning rate, Γ is the L2 regularization constant, and

ηt =
1
S

∑
i∈Bt
∇ℓ(wt−1, zi) −∇L(wt−1) represents the mini-batch noise, where Bt is a randomly sampled

batch of examples with size S from D, ℓ(w, z) is the individual loss, and L(w) = 1
n

∑
z∈D ℓ(w, z) denotes

the total loss.

Assuming the model is trained using SGD according to the update rule defined by Equation 5.2 on a

quadratic loss with the Hessian matrix H and arrives at a stationary state, Liu et al. [187] established a

connection, shown in the following theorem, between the Hessian matrix H, the asymptotic noise covariance
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C = limt→∞ Ewt [cov(ηt,ηt)], and the asymptotic model fluctuation Σ = limt→∞ cov(wt,wt). Their result

depends on two key assumptions:

Assumption 5.1.2 (Stationary-State). After a sufficient number of iterations, models trained with SGD defined

by the update rule in Equation 5.2 arrive at a stationary state, i.e., the stationary model fluctuation Σ exists

and is finite.

Assumption 5.1.3 (Quadratic Loss). The loss function L(w) is either globally quadratic or locally quadratic

close to a local minimum w∗. Specifically, the loss function can be approximated as:

L(w) = L(w∗) +
1

2
(w −w∗)⊤H(w∗)(w −w∗) + o(∥w −w∗∥22), (5.5)

where w∗ is a local minimum and H(w∗) denotes the Hessian matrix at w∗.

With those assumptions, Liu et al. [187] prove the following theorem that describe model fluctuations of

discrete SGD in a quadratic potential:

Theorem 5.1.4 (SGD Stationary distribution with momentum). Let w be updated with SGD defined by the

update rule in Equation 5.2 with momentum µ ∈ [0, 1). Given assumptions 5.1.2 and 5.1.3, if we additionally

suppose C commutes with H(w∗), then the stationary model fluctuation satisfies:

Σ =

[
λH(w∗)

1 + µ
·
(
2Id −

λH(w∗)

1 + µ

)]−1
· λ2C

1− µ2
.

Theorem 5.1.4 requires the existence of a finite stationary noise covariance and the loss function to be

quadratic close to a local minimum, which are mild assumptions (see [187] for detailed discussions).

In follow-up work, Ziyin et al. [378] further derived the explicit dependence of the asymptotic noise covariance

C to the loss and Hessian around a local minimum w∗ under mild assumptions.

Theorem 5.1.5 (SGD Noise Covariance). Let L(w) be the training loss and the model w is optimized with

SGD defined by Equation 5.2 in the neighborhood of a local minimum w∗. If L(w∗) ̸= 0, then

C =
2L(w∗)

S
·H(w∗)− Γ2

S
∥w∗∥2 +O(S−2) +O(∥w −w∗∥22) + o(L(w∗)),

provided that Σ is proportional to S−1 and |L(w)− ℓ(w, zi)| is small.

Theorem 5.1.5 implies that the SGD noise covariance C commutes with the Hessian matrix H(w∗).

Considering only the leading term in the noise covariance, Liu et al. [187] derive the following formula for the

stationary model fluctuation of SGD based on the above two theorems:
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Σ =
λ

S(1− µ)
·
(
2L(w∗)H(w∗)− Γ2∥w∗∥2

)(
H(w∗) + Γ

)−1(
2Id −

λ

1 + µ

(
H(w∗) + Γ

))−1
. (5.6)

We remark that if L(w∗) = 0 (i.e., w∗ is a global minimum), then Σ = 0. In addition, if the Hessian matrix

(H(w∗)+Γ) has degenerated rank r < d, then (H+Γ)−1 can be replaced by the corresponding Moore-Penrose

pseudo inverse. Accordingly, similar results to Equation 5.6 can be obtained by considering the projection

space spanned by eigenvectors with non-zero eigenvalues. Section 5 of Ziyin et al. [378] provides more detailed

discussions of the imposed assumptions and the implications of the results.

5.2 Black-Box Access is not Sufficient

In this section, we examine previous assertions concerning optimal membership inference (§5.2.1) and illustrate

that for models trained with SGD, the optimal membership inference adversary does, in fact, require parameter

access (§5.2.2). Our theory presents an attack based on this theory that is valuable for conducting privacy

audits (§5.2.3).

5.2.1 Limitations of Claims of Black-Box Optimality

Sablayrolles et al. [264] proved the optimality of black-box membership inference under a Bayesian framework.

In particular, they assume (Equation 1 in [264]) that the posterior distribution of model parameters w trained

on z1, . . . ,zn with membership m1, . . . ,mn follows:

P(w | z1, . . . ,zn) ∝ exp

(
− 1

T

n∑
i=1

mi · ℓ(w, zi)
)
, (5.7)

where T is a temperature parameter that captures the stochasticity of the learning algorithm. This assumption

makes subsequent derivations of optimal membership inference much easier, but oversimplifies the training

dynamics of typical machine learning algorithms such as SGD. Equation 5.7 assumes that the posterior of

w follows a Boltzmann distribution that only depends on the training loss. This is desirable for Bayesian

posterior inference, where the goal is to provide a sampling strategy for an unknown data distribution given

a set of observed data samples. This can be achieved using SGLD [339] with shrinking step size λt (i.e.,

limt→∞ λt = 0) and by injecting carefully-designed Gaussian noise N (0, λt · ID). However, this special SGLD

design differs from the common practice of SGD algorithms used to train neural networks for the following

two reasons:

1. All analyses are performed under continuous-time dynamics, whereas actual SGD is performed with

discrete steps. While related work such as Stephan et al. [287] cast the continuous-time dynamics of

SGD as a multivariate Ornstein-Uhlenbeck process (similar to SGLD) whose stationary distribution is
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proven to be Gaussian (Equations 11-12 in [287]), they make additional assumptions such as the noise

covariance matrix being independent of model parameters.

2. SGLD assumes a vanishing learning rate until convergence, whereas SGD is performed with a non-

vanishing step size and for a finite number of iterations in practice. The learning rate of SGD is often

large, which can cause model dynamics to drift even further from SGLD [379], especially under the

discrete-time setting [187].

We thus characterize the analytical form of the posterior distribution with respect to model parameters

trained with SGD.

Theorem 5.2.1 (Posterior for SGD). Assume the same assumptions as used in Theorems 5.1.4 and 5.1.5.

Let w∗ be the local minimum that SGD (Equation 5.2) is converging towards. Then, the (conditional)

log-probability of observing parameters w is given by (up to constants and negligible terms):

− d

2
lnL(w∗) +

d∑
i=1

ln

((
2− λ

1+µ (σi(H∗) + Γ)
)(
σi(H∗) + Γ

)
σi(H∗)

)
− S(1− µ)

2L∗λ

(
1− λΓ

1 + µ

)
∥w −w∗∥2

− S(1− µ)Γ
2L∗λ

∇L(w)⊤H−3∇L(w) +
S(1− µ)
2(1 + µ)

· L(w)

L∗

where σi(H(w∗)) denotes the i-th largest eigenvalue of H(w∗).

Proof. According to Theorem 5.1.4 and Theorem 5.1.5, we obtain

Σ =
λ

S(1− µ)
·
(
2L(w∗)H(w∗)− Γ2∥w∗∥2

)(
H(w∗) + Γ

)−1(
2Id −

λ

1 + µ
(H(w∗) + Γ)

)−1
. (5.8)

Note that the above equation holds when the Hessian matrix H(w∗) has full rank and L(w∗) ̸= 0.

When the Hessian has degenerated rank such that rank(H +Γ) = r < d, the following more generalized result

can be derived:

PrΣ =
λ

S(1− µ)
·
(
2L(w∗)H(w∗)− Γ2∥w∗∥2

)(
H(w∗) + Γ

)+(
2Id −

λ

1 + µ

(
H(w∗) + Γ

))−1
,

where Pr = diag(1, ..., 1, 0, ...0) denotes the projection matrix onto non-zero eigenvalues, and + is the

Moore-Penrose pseudo inverse. If L(w∗) = 0, meaning w∗ is a global minimum, then the asymptotic model

fluctuation Σ = 0. For the ease of presentation, let H∗ = H(w∗), L∗ = L(w∗) and the Hessian matrix have

full rank in the following proof. According to Laplace approximation, we can approximate the posterior

distribution of w given w∗ as N (w∗,Σ). Therefore, making use of Equation 5.8, we can derive the explicit
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formula of the log-posterior distribution as:

ln p(w|w∗) = −d
2
ln(2π)− 1

2
ln det(Σ)− 1

2
(w −w∗)⊤Σ−1(w −w∗)

=
1

2

d∑
i=1

ln

((
2− λ

1+µ (σi(H∗) + Γ)
)(
σi(H∗) + Γ

)
2L(w∗)σi(H∗)− Γ2∥w∗∥2

)
− S(1− µ)

4L∗λ

[
2

(
1− λΓ

1 + µ

)
∥w −w∗∥2 + 2Γ(w −w∗)⊤H−1(w −w∗)−

λ

1 + µ
(w −w∗)⊤H(w −w∗)

]
+ const.

=
1

2

d∑
i=1

ln

((
2− λ

1+µ (σi(H∗) + Γ)
)(
σi(H∗) + Γ

)
L(w∗)σi(H∗)

)
− S(1− µ)

2L∗λ

(
1− λΓ

1 + µ

)
∥w −w∗∥2 − S(1− µ)Γ

2L∗λ
(w −w∗)⊤H−1(w −w∗)

+
S(1− µ)
4L∗(1 + µ)

(w −w∗)⊤H(w −w∗) + cost.

= −d
2
lnL(w∗) +

1

2

d∑
i=1

ln

((
2− λ

1+µ (σi(H∗) + Γ)
)(
σi(H∗) + Γ

)
σi(H∗)

)
− S(1− µ)

2L∗λ

(
1− λΓ

1 + µ

)
∥w −w∗∥2 − S(1− µ)Γ

2L∗λ
∇L(w)⊤H−3∇L(w)

+
S(1− µ)
2(1 + µ)

· L(w)

L∗
+ o(∥w −w∗∥22) + const.

Here, the last equality holds because of the second-order Taylor expansion of L(w) at w∗. Omitting the

constant and negligible terms (and terms corresponding to Γ2∥w∗∥2) in the above equation, we thus complete

the proof of Theorem 5.2.1.

5.2.2 Optimal Membership Inference under Discrete-time SGD

So far, we have explained why the critical assumption imposed by Sablayrolles et al. [264] about the posterior

distribution of w following a Boltzmann distribution (Equation 5.7) does not hold for typical stochastic

gradient methods employed in practice. We now prove a theorem that gives an estimate on the optimal

scoring function for membership inference for models produced by SGD by leveraging the recent theoretical

literature on discrete-time SGD dynamics [187, 378].

We assume that the loss achieved at the local minimum remains unaffected by the removal of a single training

record and that the Hessian structure remains unchanged:

Assumption 5.2.2 (Similarity at local minimum). For any T and z1, let L0(w) = 1
n

∑n
i=2miℓ(w, zi) and

L1(w) = 1
n (ℓ(w, z1) +

∑n
i=2miℓ(w, zi)). Assume the Hessian matrix shares a similar structure when the

model’s training data differs by a single point, and the loss function also achieves a similar value at the local
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minimum, i.e.,

H∗ = H1(w
∗
1) = H0(w

∗
0), L∗ = L1(w

∗
1) = L0(w

∗
0), (5.9)

where w∗1 (resp. w∗0) is the local minimum that SGD with L1 (resp. L0) is converging towards, and H1 (resp.

H0) denotes the Hessian matrix with respect to L1 (resp. L0).

As long as the size of the training dataset is sufficient and the excluded training record z1 is not a low-

probability outlier from the data distribution D, we expect Assumption 5.2.2 generally holds for SGD

algorithms. Under Assumption 5.2.2 and a few other assumptions imposed in prior literature on discrete-time

SGD dynamics [187, 378], we obtain the following theorem that describes the scoring function for an optimal

membership-inference adversary.

Theorem 5.2.3 (Optimal Membership-Inference Score). Given w produced by an SGD algorithm defined by

Equation 5.2 and a record z1, the optimal membership inference M(w, z1) is given by:

ET
[
σ

(
S(1− µ)
2nL∗

·
(
ℓ(w, z1)

1 + µ
− 1

λ
(I1 + I2 + I3 + I4)

)
+ ln

(
γ

1− γ

))]
, (5.10)

where I1, I2, I3, and I4 are defined as follows:

I1 :=
1

n

(
1− λΓ

1 + µ

)
∥H−1∗ ∇ℓ(w, z1)∥2,

I2 := 2

(
1− λΓ

1 + µ

)(
H−1∗ ∇L0(w)

)⊤(
H−1∗ ∇ℓ(w, z1)

)
,

I3 :=
Γ

n

(
H−1∗ ∇ℓ(w, z1)

)⊤(
H−1∗

(
H−1∗ ∇ℓ(w, z1)

))
I4 := 2Γ

(
H−1∗ ∇L0(w)

)⊤(
H−1∗

(
H−1∗ ∇ℓ(w, z1)

))

Here, L∗ and H∗ are defined in Assumption 5.2.2, which are dependent on T .

Proof. To derive the scoring function for an optimal membership inference , we need to compute the ratio

between p(w|w∗1) and p(w|w∗0), where w∗0 (resp. w∗1) denotes a local minimum (close to w) of the training

loss function with respect to {z2, . . . ,zn} (resp. {z1, . . . ,zn}). Note that we’ve obtained the posterior
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distribution of w in Theorem 5.2.1. Therefore, the remaining task is to analyze the following terms:

ln p(w|w∗1)− ln p(w|w∗0)

= −D
2

[
lnL1(w

∗
1)− lnL0(w

∗
0)
]
+

1

2

d∑
i=1

ln

((
2− λ

1+µ (σi(H1(w
∗
1))) + Γ)

)(
σi(H1(w

∗
1))) + Γ

)(
2− λ

1+µ (σi(H0(w∗0))) + Γ)
)(
σi(H0(w∗0))) + Γ

) · σi(H1(w
∗
1))

σi(H0(w∗0))

)
− S(1− µ)

2λ

(
1− λΓ

1 + µ

)(
∥w −w∗1∥2

L1(w∗1)
− ∥w −w∗0∥2

L0(w∗0)

)
− S(1− µ)Γ

2λ

(
∇L1(w)

⊤H1(w
∗
1)
−3∇L1(w)

L1(w∗1)
− ∇L0(w)

⊤H0(w
∗
0)
−3∇L0(w)

L0(w∗0)

)
+
S(1− µ)
2(1 + µ)

·
(
L1(w)

L1(w∗1)
− L0(w)

L0(w∗0)

)
, (5.11)

where the constant and small o(·) terms are neglected, and H0(w
∗
0) (resp. H1(w

∗
1)) denotes the Hessian of

L0 (resp. L1) at w∗0 (resp. w∗1). Since both w∗0 and w∗1 are close to parameters of the observed victim model

w, so we can approximate the corresponding loss using second-order Taylor expansion. Also, according to

Assumption 5.2.2, we know H0(w
∗
0) = H1(w

∗
1) = H∗ and L0(w

∗
0) = L1(w

∗
1) = L∗. Thus, we can simplify

Equation 5.11 and obtain the following form:

− S(1− µ)
2λL∗

(
1− λΓ

1 + µ

)(
∥w −w∗1∥22 − ∥w −w∗0∥22

)
+

S(1− µ)
2(1 + µ)L∗

(
L1(w)− L0(w)

)
− S(1− µ)Γ

2λL∗

(
∇L1(w)

⊤H−3∗ ∇L1(w)−∇L0(w)
⊤H−3∗ ∇L0(w)

)
= −S(1− µ)

2λL∗

(
1− λΓ

1 + µ

)(
∇L1(w)⊤H−1∗ H−1∗ ∇L1(w)−∇L0(w)⊤H−1∗ H−1∗ ∇L0(w)

)
+
S(1− µ)ℓ(w, z1)
2n(1 + µ)L∗

− S(1− µ)Γ
2λL∗n

(
2∇L0(w)⊤H−3∗ ∇ℓ(w, z1) +

1

n
∥H−3∗ ∇ℓ(w, z1)∥2

)
= −S(1− µ)

2λL∗n

(
1− λΓ

1 + µ

)(
2∇L0(w)⊤H−1∗ H−1∗ ∇ℓ(w, z1) +

1

n
∥H−1∗ ∇ℓ(w, z1)∥2

)
+
S(1− µ)ℓ(w, z1)
2n(1 + µ)L∗

− S(1− µ)Γ
2λL∗n

(
2∇L0(w)⊤H−3∗ ∇ℓ(w, z1) +

1

n
∥H−3∗ ∇ℓ(w, z1)∥2

)
(5.12)

where the second equality holds because of the Taylor approximation ∇Li(w) −∇Li(w
∗
i ) = H∗(w −w∗i )

for i ∈ {0, 1}. Moreover, according to Lemma 5.1.1, we know the optimal membership inference is given by:

M(w, z1) = ET
[
σ

(
ln

(
p(w|m1 = 1, z1, T )
p(w|m1 = 0, z1, T )

)
+ ln

(
γ

1− γ

))]
, (5.13)

where σ(u) = (1 + exp(−u))−1 is the Sigmoid function, T = {z2, . . . ,zn,m2, . . . ,mn}, and γ = P(mi = 1).

Plugging Equation 5.12 into Equation 5.13, we obtain

M(w, z1) = ET
[
σ

(
S(1− µ)
2nL∗

(
ℓ(w, z1)

(1 + µ)
− 1

λ

(
I1 + I2 + I3 + I4

))
+ tγ

)]
,
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where I1, I2, I3, I4 and tγ are defined as:

I1 :=
1

n
∥H−1∗ ∇ℓ(w, z1)∥2,

I2 := 2
(
H−1∗ ∇L0(w)

)⊤(
H−1∗ ∇ℓ(w, z1)

)
,

I3 :=
Γ

n

(
H−1∗ ∇ℓ(w, z1)

)⊤(
H−1∗

(
H−1∗ ∇ℓ(w, z1)

))
,

I4 := 2Γ
(
H−1∗ ∇L0(w)

)⊤(
H−1∗

(
H−1∗ ∇ℓ(w, z1)

))
,

tγ := ln

(
γ

1− γ

)
.

Note that computing the optimal score requires access to the Hessian and model gradients, both of which

require access to model parameters. In fact, knowledge of the learning rate λ, momentum µ, and regularization

Γ are also required, thus requiring complete knowledge of the training setup of the target model. Thus,

black-box access is thus not sufficient for optimal membership inference.

5.2.3 Inverse Hessian Attack

While Theorem 5.2.3 directly prescribes an optimal membership inference adversary, computing the expectation

over T is infeasible. We thus make use of the insight of Theorem 5.2.3 to propose a scoring function based on

the terms inside the expectation:

IHA(z1) :=
ℓ(w, z1)

1 + µ
− 1

λ

(
I1 + I2 + I3 + I4

)
. (5.14)

This score IHA(z1), for some given record z1, can be used as the probability of z1 being a member and

subsequently serve as a useful attack for privacy auditing. While the optimal attack prescribed by our theory

requires expectation over all possible T , we directly use IHA(z1) without any reference models†. Apart from

the absence of reference models to compute this expectation, the performance of our attack is also influenced

by other factors, such as how efficiently and accurately the inverse-Hessian vector products (iHVPs) can be

computed and to what degree our assumptions hold (particularly Assumption 5.2.2).

5.3 Experiments

We evaluate IHA over multiple datasets with models where the Hessian can be computed directly, with some

damping applied to deal with near-zero eigenvalues. Our results (§5.3.4) demonstrate that IHA provides a

robust privacy auditing baseline, matching or exceeding the performance of current state-of-the-art attacks
†Adapting our attack to work with reference models in the general setting remains a future interesting direction.
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that utilize reference models, all without requiring the training of reference models or the use of hold-out

data.

5.3.1 Baseline Attacks

LOSS [355]. For this attack, the negative loss is used directly as a signal for membership inference.

SIF [59]. This attack, similar to ours, also uses the loss curvature of the target model by calculating its

Hessian, which is then used to compute self-influence as a score. The original attack assigns 0–1 scores

to target records. It classifies a given record as a member if its self-influence score is within the specified

range and if its predicted class is correct. The latter rule can be immediately ruled out as having many false

positives/negatives. Instead of these steps, we choose to use the self-influence as membership scores directly.

While the authors used approximation methods for iHVP, we use the exact Hessian for fair comparison.

LiRA [43]. There are two variants, LiRA-Offline and LiRA-Online. The former uses “offline” models to

estimate a Gaussian distribution and then performs one-sided hypothesis testing using loss scores. The

LiRA-Online variant additionally employs “online” models, i.e., models whose training data included the

target record. The likelihood ratio for online/offline model score distributions is then used as the score for

membership inference. We use LiRA-Online, since it is the stronger of the two variants.

5.3.2 Datasets and Models

MNIST-Odd. We consider the MNIST dataset [167], with the modified task of classifying a given digit

image as odd or even. We train a logistic regression model with mean-squared error loss, with an average test

loss of .078.

FashionMNIST. We use the FashionMNIST [346] dataset, where the task is to classify a given clothing

item image into one of ten categories. We train 2-layer MLPs (6 hidden neurons) with cross-entropy loss,

with an average test accuracy of 83%.

Purchase-100(S). The task for this dataset [279] is to classify a given purchase into one of 100 categories,

given 600 features. We train 2-layer MLPs (32 hidden neurons) with cross-entropy loss, with an average test

accuracy of 84%. Experiments in the prior literature [365] train larger (4-layer MLP) models on 25K samples

from Purchase-100, which is much smaller than the actual dataset, which is why we term it Purchase-100(S)

(Small). We also demonstrate results with the 4-layer MLP that achieves similar task accuracy.
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Purchase-100. For this version, we train models with 80K samples. We use the same 2-layer MLP

architecture as Purchase-100(S) but achieve a higher test accuracy of 90%. Utilizing more data increases the

scope for model performance.

We train 128 models in the same way as done in Carlini et al. [43], where data from each model is sampled

at random from the actual dataset with a 50% probability. For each target model and target record, there

are thus 127 reference models available, half of which (in expectation) include the target record in the

training data, and the other half do not. All of our models are trained with momentum (µ = 0.9) and

without regularization (Γ = 0). For a given false positive rate (FPR), a threshold is computed using scores

for non-members, which is then used to compute the corresponding true positive rate (TPR). This is then

repeated for multiple FPRs to generate the corresponding ROC curve, which is used to compute the AUC.

This experimental design is commonly used for membership-inference evaluations [43, 353, 355].

5.3.3 Implementing the Inverse Hessian Attack

In order to carry out IHA, an auditor needs to be able to calculate iHVPs and gradients for all training

data. While computing gradients is more computationally intensive than simply calculating the loss, the

difference is minimal. On the other hand, computing an iHVP involves calculating the Hessian matrix and

then inverting it, both of which are computationally expensive processes. Although there are more efficient

methods for approximating iHVPs, they are still considerably slower than simple gradient computation. For

some given record z1, ∇L0(w) can be computed by considering all data (except the target record) for which

membership is known. To make this step computationally efficient for an audit, we pre-compute ∇L1(w).

Then, if the test record is indeed a member, we can compute ∇L0(w) as ∇L1(w) − ∇ℓ(w,z1)
n . Note that

this is equivalent to computing ∇L0(w) separately for each target record. The Hessian H∗ is also similarly

pre-computed using the model’s training data.

Conditioning H∗. While computing Hessian matrices for our experiments, we notice the presence of

near-zero and small, negative eigenvalues (most of which are likely to arise from precision errors). Such

eigenvalues make the Hessian ill-conditioned and thus cannot be inverted directly. We explore two different

techniques to mitigate this: damping by adding a small constant ϵ to all the eigenvalues or a low-rank

approximation where only eigenvalues (and corresponding eigenvectors) above a certain threshold ϵ are used

as a low-rank approximation. We ablate over these two techniques for some candidate values of ϵ and find

that damping with ϵ = 2e−1 works best, which is the setting for which we report our main results.

5.3.4 Results

Our results are summarized in Table 5.1, showing that IHA provides a robust privacy auditing baseline,

matching or exceeding the performance of current state-of-the-art attacks that utilize reference models, all
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Table 5.1: Performance of various attacks, reported via attack AUC and true positive rate (TPR) at low false
positive rate (FPR).

Attack

Purchase-100 MNIST-Odd FashionMNIST

AUC
TPR@FPR

AUC
TPR@FPR

AUC
TPR@FPR

1% 0.1% 1% 0.1% 1% 0.1%

LOSS [355] .531±.001 .100 .010 .500 ±.002 .100 .010 .507 ±.002 .099 .010
SIF [59] .530±.001 .100 .010 .500±.002 .100 .010 .507 ±.002 .099 .010
LiRA [43] .645 ±.003 .221 .048 .569 ±.005 .156 .028 .581 ±.021 .166 .108

IHA (Ours) .709 ±.008 .254 .154 .538 ±.009 .132 .025 .588±.012 .180 .036
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Figure 5.1: ROC curves for low-FPR region for various attacks and datasets.

without requiring the training of reference models or the use of hold-out data. This gain in performance is

even more apparent in the low-FPR region, where IHA has high TPR (Figure 5.1).

Moreover, Table 5.1 demonstrates that IHA performs much better than baselines on tabular data (Purchase-

100) than image-based data (MNIST-Odd, Fashion MNIST). This may be attributed to multiple reasons,
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such as inputs where Assumption 5.2.2 not holding for some data, the absence of reference models (as

present in Theorem 5.2.3) that effectively help with difficulty calibration, or inherently lower leakage for

these particular datasets. Other subtle sources of approximation errors, such as approximation H∗ using

H(w), might also contribute to a gap between performance observed with IHA and the optimal membership

inference adversary. We leave further investigation of these factors to future work to better understand the

performance discrepancies.

We reiterate that the purpose of our comparisons is not to claim a better membership inference attack for

adversarial use; the threat models are not comparable, since our attack requires knowledge of all other records

D \ {z1} for inferring a given target record z1. Instead, IHA provides a way to empirically audit models for

membership leakage without training reference models, which is desirable both in terms of computing and

not having to reserve hold-out data for training reference models. More importantly, our results suggest

untapped potential in exploring parameter access for stronger privacy audits (and the possibility

of new inference attacks from an adversarial lens).

5.4 Related Works

5.4.1 Membership Inference

Black-box Membership Inference. Early works on membership inference worked under black-box access,

utilizing the model’s loss [279] on a given datapoint as a signal for membership. Since then there have been

several works focusing on different forms of difficulty calibration—accounting for the inherent “difficulty”

of predicting on a record, irrespective of it being present in train data. This calibration has taken several

forms; direct score normalization with reference models [264], likelihood tests based on score distributions

[43, 353, 365], and additional models for predicting difficulty [27].

White-box Membership Inference. Nasr et al. [229] explored white-box access to devise a meta-classifier-

based attack that additionally extracts intermediate model activations and gradients to increase leakage

but concluded that layers closer to the model’s output are more informative for membership inference and

report performance not significantly better than a black-box loss-based attack. Recent work by DeAlcala [63],

however, makes the opposite observation, with layers closer to the model’s input providing noticeably better

performance. Apart from these meta-classifier driven approaches, some works attempt to utilize parameter

access much more directly, often utilizing Hessian in one form or another. Cohen and Giryes [59] defined the

self-influence of a datapoint zi as (gi⊤H−1gi) as a signal for membership, using LiSSA [5] to approximate the

iHVP. This has similarities to our result since our optimal membership inference score also involves computing

iHVPs. Li et al. [176] attempted to measure the sharpness for a given model by evaluating fluctuations in
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model predictions after adding zero-mean noise to the parameters, a step that is supposed to approximate

the trace of the Hessian at the given point.

5.4.2 Privacy Auditing

Ye et al. [354] proposed using efficient methods to “predict” memorization by not having to run computationally

expensive membership inference attacks, with reported speedups of up to 140x. They showed how their

proposed score (LOOD) correlates well with AUC corresponding to an extremely strong MIA with all-but-one

access to records (L-attack [353]). However it is unclear if this computed LOOD is directly comparable across

models, making it hard to calibrate these scores to compare the leakage from a model relative to another

(an important aspect of internal privacy auditing). Their derivations also involve a connection with the

Hessian. Biderman et al. [29] studied the problem of forecasting memorization in a model for specific training

data. The authors propose using partially trained versions of the model (or smaller models) as a proxy for

their computation. While their results support the need for inexpensive auditing methods, their focus is on

predicting memorization early in the training process, while ours relates to auditing fully trained models.

More recently, Tan et al. [299] studied the theory behind worst-case membership leakage for the case of linear

regression on Gaussian data and derived insights. While this is useful to make an intuitive connection with

overfitting, it does not provide a realizable attack or insights for the standard case of models trained with

SGD.

5.4.3 SGD Dynamics and iHVPs

SGD Dynamics. Stephan et al. [287] approximated the SGD dynamics as an Ornstein-Uhlenbeck process,

while Yokoi and Sato [359] provided a discrete-time weak-order approximation for SGD based on Itô process

and finite moment assumption. However, both works rely on strong assumptions about the gradient noises

and require a vanishingly small learning rate, largely deviating from the common practice of SGD. To address

the limitations of the aforementioned works, Liu et al. [187] directly analyzed the discrete-time dynamics

of SGD and derived the analytic form of the asymptotic model fluctuation with respect to the asymptotic

gradient noise covariance and the Hessian matrix. Ziyin et al. [378] further generalized the results of [187] by

deriving the exact minibatch noise covariance for discrete-time SGD, which is shown to vary across different

kinds of local minima. Our work builds on these advanced theoretical results of discrete-time SGD dynamics

but aims to enhance the understanding of optimal membership inference, particularly for models trained

with SGD.

iHVPs. Currently literature on approximating inverse-Hessian vector products relies on one of two methods:

conjugate gradients [160] or LiSSA [5]. Both approximation methods rely on efficient computation of exact

Hessian-vector products, and use forward and backward propagation as sub-routines. While these methods
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have utility in certain areas, such as influence functions [160] and optimization [237], approximation errors

can be non-trivial. For instance, I1 in the formulation of our attack requires a low approximation error in the

norm of an iHVP, while I2 simultaneously requires a low approximation error in the direction of the iHVP.

Recent work on curvature-aware minimization by Oldewage et al. [237] proposes another method for efficient

iHVP approximation as a subroutine, but the authors observed high approximation errors based on both

norm and direction.

5.5 Conclusion

Our theoretical result proves that model parameter access is indeed necessary for optimal membership

inference, contrary to previous results and the common belief that optimal membership inference can be

achieved with only black-box model access. We propose the Inverse Hessian Attack inspired by this theory that

provides stronger privacy auditing than existing black-box techniques. However, IHA is not yet practically

realizable for most settings due to the computational expense of calculating the Hessian, or even approximating

iHVPs. Our conclusion aligns well with recent calls in the literature to consider white-box access for rigorous

auditing [45]. Exploring the accuracy of iHVP approximation methods to extend IHA to larger models, along

with multi-record inference, are both promising directions for future research.



Chapter 6

Memorization in LLMs∗

In this final chapter, we explore the memorization capabilities of large language models (LLMs) and their

implications for privacy. We first begin with an overview of how LLMs are trained and tuned (§6.1), followed

by an overview of various kinds of memorization in LLMs (Sections 6.2.2.1 to 6.2.2.6) and potential mitigation

strategies (§6.3). We then proceed to study exact memorization in LLMs via membership inference (§6.4),

finding factors related to LLM training as well as the inherent nature of language that make it hard to

measure leakage in LLMs.

6.1 Background

Autoregressive models are trained to predict the next text token based on the sequence of previous tokens, as

opposed to, e.g., bidirectional masked language models such as BERT [68], which are conditioned on both

left and right context. In this chapter, we focus on large autoregressive language models (LLMs) with billions

of parameters such as GPT-4 [240] or Llama 2 [309]. Sometimes we discuss work that uses models with fewer

parameters or models that are not autoregressive. For these, we use the generic acronym LM. We write p(·|x)

for the probability distribution of an autoregressive model given a context x.

6.1.1 Training LLMs

Regardless of the concrete model architecture, current LLM training typically encompasses three main stages:

pretraining, supervised fine-tuning, and reinforcement learning from human feedback (RLHF).
∗This chapter is largely based on Michael Duan, Anshuman Suri, Niloofar Mireshghallah, Sewon Min, Weijia Shi, Luke

Zettlemoyer, Yulia Tsvetkov, Yejin Choi, David Evans, Hannaneh Hajishirzi, Do Membership Inference Attacks Work on Large
Language Models?, in Conference on Language Modeling (COLM), 2024. and Valentin Hartmann, Anshuman Suri, Vincent
Bindschaedler, David Evans, Shruti Tople, Robert West, SoK: Memorization in General-Purpose Large Language Models, in
arXiv, 2023. Code relevant to this chapter is available as a Python package at https://github.com/iamgroot42/mimir.
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Stage 1: Pretraining. The training data in this stage consists of text documents. The LLM is trained to

predict the next token of a document given a prefix from the document. The pretraining dataset usually

consists of public data such as web pages crawled from the Internet, books, etc., though the data sources are

not always disclosed [240].

Stage 2: Supervised fine-tuning. The second stage uses a dataset of prompts and responses. The model

is trained in a supervised fashion to give the response corresponding to a prompt in this dataset. The prompts

and responses can come from public, task-specific datasets [337] or be written specifically for the model

training. In the latter case, both the prompts and the responses can be written by human labelers, or the

prompts can come from user requests to a language model [245], which allows for more closely modeling the

prompt distribution upon deployment of the model.

Stage 3: Reinforcement learning from human feedback (RLHF). This stage consists of several steps.

First, human labelers rate answers generated by the model in response to prompts. The ratings or labels can

also be model-generated [309] or come from LLM users [245]. These ratings are then used to train a reward

model, which is in turn used for optimizing the LLM via reinforcement learning. Automated tools can be

used in addition to human labelers [240].

Memorization of all types covered in this chapter can in principle happen at all training stages; except for

the alignment goals, which only influence the training in stages 2 and 3. The vast majority of the work

on memorization—and related fields such as privacy—in LLMs focuses only the first training stage though,

maybe due to the earlier availability of pretrained models without stage 2 and 3 training.

6.2 Memorization in LLMs

Learning from data requires extracting information from the data and generalizing from this information.

The learning abilities required to perform the generalization vary for different tasks. Regurgitating a specific

fact seen directly in the training data requires no generalization; mimicking the choice of words and syntactic

structures that make up a person’s writing style requires some generalization; writing a new creative story

requires a lot of generalization. Our focus is on memorization, which we define roughly as learning that

involves only little generalization. We acknowledge that, as of now, there is no complete understanding

of generalization [366] and no clear demarcation between memorization and generalization [84, 85]. We do

not attempt to make progress on this demarcation problem here, but rather just use our intuitive notion to

scope our work. The definitions that we consider in later sections are all concerned with more specific objects

than general memorization.

These are definitions that are not usable in most cases for empirical analyses due to their computational

complexity. They are thus rather meant to guide the intuition of the reader throughout the chapter than



6.2 Memorization in LLMs 167

to replace existing, often more practical, definitions. In general, definitions come in two flavors: definitions

that determine whether an adversary can extract information from the model that they did not know about

before (e.g., a fact), and definitions that only determine whether a certain piece of information is present in

the model.

In the remainder of this section, we describe general approaches for, and challenges with, identifying and

measuring memorization.

Inference attacks.

A successful inference attack implies that the model has stored the information that is unknown to the

adversary in some way. This does not necessarily mean that the model has memorized these attributes,

though. For instance, with attribute inference, it could be that it has merely learned the data distribution

well enough to predict the attributes based on other attributes of the record [137]. If, however, the attribute

inference attack on a counterfactual model trained on the same data with the record removed is unsuccessful

in recovering the attributes, then we have evidence that the attack’s success was due to memorization of the

target attributes by the original model. When successful and done carefully, this can give a much more precise

characterization than membership inference of what the model has memorized about a record. We consider

memorization in the sense of both membership and attribute inference, since both types of memorization can

have significant implications.

While membership and attribute inference are concerned with individual data points, we consider several pieces

of information that may affect multiple documents, such as writing styles or parameters of preprocessing

methods. Memorization of such information is better captured by the concept of distribution inference

(Chapter 3).

6.2.1 Challenges in estimating memorization

It is difficult to precisely determine whether a piece of information was memorized by an LLM. There are

several reasons for this.

Memorization vs. discoverable memorization. Anything that a model knows about its training data

needs to be stored in some way in the model’s weights. A naïve definition of memorization could thus be

“any information that is stored in the model’s weights is memorized”. However, evaluating this definition

would be infeasible and basically amount to fully determining everything the model has learned. Researchers

thus resort to studying proxies for this memorization that only capture memorized information that can be

accessed through known methods. This inherently underestimates memorization, since it assumes there are

no better ways to extract information from the model.
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For example, many definitions are concerned with what can be inferred from model outputs—a subset of what

can be inferred from model weights. This essentially assumes a black-box (API) adversary who has no direct

access to the model. In some settings, such an assumption is valid and defenses such as output filtering, that

do not prevent memorization in model weights but only the revelation of memorized information at prediction

time, may be effective. If output token probabilities are provided, definitions can make use of them (e.g.,

the probabilities of the possible answers to a multiple choice question). Otherwise one has to resort to the

model outputs in character space, which are produced by decoding algorithms. These decoding algorithms

can be deterministic (e.g., greedy decoding), or non-deterministic (e.g., top-p sampling [120]). Furthermore,

the choice of decoding algorithm can influence model hallucination (see next paragraph) [75, 170] and other

behaviors [146]. Carlini et al. [44] find that swapping greedy decoding for beam search slightly increases

the discoverability of memorized verbatim text. Another challenge with output-based definitions is their

dependency on a prompt (with some exceptions [42]), the choice of which influences the amount of extracted

memorized information [142].

Hallucination. LLMs can generate plausible content that cannot be inferred from their training or input

data [140], known as hallucination. Causes of hallucination include training data that favors text generation

that is not grounded in the data [69, 327], or a training objective that differs from the task objective [326].

Hallucination can also be linked to memorization [258]. Hallucinations can make it seem as if the model had

memorized a piece of information, even though it was not present in its training data. This is referred to as

extrinsic hallucination, as opposed to intrinsic hallucination that contradicts the training data or input [140].

Reasoning and generalization. Beyond factual outputs that are not grounded in the training data, there

are outputs that are grounded in the training data but not explicitly contained in it. For example, training

documents might contain the facts “[a] is a student of [b]” and “[b] is a professor at university [x]”, but not

the fact “[a] is a student at university [x]”. Still, if the LLM is sufficiently powerful to perform deductive

reasoning, it will give the correct answer to the question "Where does [a] study?” [123]. Similarly, LLMs

often appear to perform inductive reasoning [351] such as guessing the nationality of a person based on their

name [254] or generalizing from code seen during training to create novel algorithms [145].

Distinguishing memorization from hallucination and reasoning. A correct model response to a

factual question does not reveal whether the model arrived at this response via generalization and reasoning,

because of hallucination, or because it has memorized this response from the training data. When looking for

memorized information in the model weights instead of in the model behavior [215], cases of reasoning and

hallucination relating to input data [123, 140] can be avoided. In many cases of interest, such as personal

identifiers, social security numbers or long passages of verbatim text, it is unlikely that a model could

hallucinate the target information or gain knowledge of it through reasoning. Counterfactual definitions such

as the ones based on membership and distribution inference above allow for precisely separating memorization
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from hallucination and reasoning. A non-zero advantage of an adversary means that the adversary exploits

memorization in the model. However, in the case of LLMs these definitions are typically not useful for

experimental analyses due to the need of training multiple models.

6.2.2 Types of Memorization

We cover different kinds of memorization in the context of language models: verbatim memorization (§6.2.2.1),

facts (§6.2.2.2), ideas (§6.2.2.3), writing style (§6.2.2.4), distributional properties (§6.2.2.5), and alignment

goals (§6.2.2.6). In §6.3, we discuss potential mitigation strategies that are not specific to any type of

memorization.

6.2.2.1 Verbatim text

Memorizing verbatim text is the most direct and low-level form of memorization. It is also quite prevalent—

Carlini et al. [44] demonstrate how GPT-J [31, 322] memorized at least 1% of its training data according to

their extractability definition, which is similar to attribute inference.

There are different ways to look at verbatim memorization. Researchers have considered the memorization

of entire training documents [116], parts of training documents [44] and, in the context of privacy risks

from personally identifiable information (PII), the memorization of short sequences that comprise personal

information such as names or email addresses [193]. The concept of verbatim memorization can be broadened

by also considering paraphrases, such as those resulting from the replacement of words with synonyms [168].

Note that the verbatim memorization of a text sequence that describes a fact or algorithm implies the

memorization of this fact or algorithm, though in a low-level representation. We restrict this section mostly

to aspects that are unique to verbatim memorization, and discuss memorizing facts and algorithms in later

sections.

Definitions. Since verbatim memorization is related to the tasks of membership and attribute inference

(§2.3), some definitions of inference attacks could also be applied to verbatim memorization. However, several

formal definitions of specifically verbatim memorization in LLMs have been proposed, on which we focus here.

Exposure metric [41]. Carlini et al. explore memorization of out-of-distribution secrets by LMs. They consider

strings of the form "The random number is r”, where r is a number randomly sampled from some space R.

The authors sample one particular r′ ∈ R and include the corresponding string in the training set of the

LM. They define the exposure metric, which essentially measures how many guesses an adversary that tries

to guess r′ saves by computing the perplexity of the string "The random number is r” for all r ∈ R and

guessing r in order of increasing perplexity, over guessing in a random order from R. This metric requires

many queries to the model to compute, in addition to a retraining of the model. Note that this approach
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avoids the difficulty of determining what should and should not be learned by a model, since the artificial

random strings are introduced as an explicit way to insert content that should not be learned.

While the exposure metric measures the general capability of a model for memorization, the following

definition aims to measure the memorization of a specific document by a specific model with fixed weights.

Extractability [42]. This definition by Carlini et al. defines a string y to be extractable from an LM p if

there exists a prefix x such that: y ← argmaxy′ :|y′ |=N p(y ′|x). Instead of the intractable computation of the

argmax, the authors use a decoding algorithm such as greedy decoding in practice. They also point out that

due to pathological cases any string could be extractable, e.g., when prompting the model to repeat a given

input string. However, they instantiate the definition only for cases where x is the start-of-sequence token or

a prefix from a document. The authors then specialize this definition to k-eidetic memorization, which only

allows for strings that are repeated at most k times in the training data.

The next definition measures the degree to which a given model architecture—but not a specific model—

memorizes a specific document.

Counterfactual memorization. Following the observation that strings that occur more often in the training

data are more likely to be reproduced by the model, Zhang et al. [367] aim to disentangle the plurality of

a document in the training data and the degree to which its verbatim text is memorized To this end, they

define counterfactual memorization for a document d as the expected difference in token prediction accuracy

when predicting d with models trained on datasets containing d and datasets not containing d. This definition

is a variation on a definition by Feldman and Zhang for label memorization [85], and is closely related to the

concept of algorithmic stability [35]. Counterfactual memorization requires training multiple models, and

also requires access to the training data.

Implications. As discussed in §6.1.1, a model trainer may rely on user-submitted prompts and responses in

training stages 2 and 3. These prompts can contain highly sensitive information, e.g., when a user asks for

advice on medical or relationship issues. In such cases, the prompts may contain detailed information about

the user, allowing a third party to identify them in case the model regurgitates the prompt.

It is not entirely clear yet whether verbatim memorization of copyrighted documents from training data in

just the model weights itself constitutes a copyright infringement. At the same time, verbatim regurgitation

may not always be necessary to constitute infringement. Lee et al. [168] investigate the related problem of

plagiarism. They measure the degree of verbatim (copying passages character by character), paraphrase

(paraphrasing sentences from a source document), and idea plagiarism (copying core ideas) performed by

GPT-2 when prompting the model just with an end-of-sequence token. The authors show that all three types

of plagiarism, from both pretraining and fine-tuning data, occur both in pretrained and fine-tuned models
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both, but not for all fine-tuning datasets. Fine-tuning also seems to reliably eliminate verbatim plagiarism

from pretraining data. Henderson et al. [116] argue that preventing copyright violations can only be done on

a higher semantic level that goes beyond verbatim text matching.

Detecting memorized verbatim text can enable identification of certain datasets used for the training of an

LLM, although likely requiring access to the specific candidate dataset [44]. For example, the benchmark

BIG-bench [284] includes a randomly generated string that acts as a globally unique identifier (GUID), and a

test that checks whether the model assigns an anomalously low/high probability to the GUID, which would

indicate a contamination of the training data with data from the benchmark. Such canaries could be inserted

by model trainers to detect theft or unlicensed use of their models, potentially aiding techniques like dataset

inference [200] that might otherwise not work well with LLMs [297]. Memorized documents may also be used

to determine a lower bound on the knowledge cutoff date of a model (how recent the newest training data is),

as recently demonstrated for Github’s Copilot [64].

Detecting memorized verbatim text. There have been several attempts at detecting verbatim

memorization that build upon membership inference tests (as we discuss in §6.4). However, it is important to

keep in mind that successful membership inference does not necessarily imply verbatim memorization (see

§6.2), or the converse.

While the cost to train LLMs makes it infeasible to utilize techniques that require training shadow models

(newly trained instances of the model with different random seeds for the training algorithm or the data

sampling), as is done in most membership inference attacks, the open-endedness of prompts opens new

avenues unavailable for other domains such as vision and tabular data. For instance, simply prompting the

model with the title and author name of a training document [116] is sometimes effective. In the same work,

Henderson et al. [116] sample random snippets from books and show how some LLMs, when prompted with

these snippets, return long sequences from the books. They show that instructions like replace every ‘a’ with

a ‘4’ and ‘o’ with a ‘0’ can circumvent content filters. Yu et al. [360] use prompts with function signatures

and code comments to extract program code from LLMs.

Prompting techniques not explicitly designed for detecting memorization could be repurposed, such as

adding prefixes to encourage grounding in the training data [338]. Instruction-tuned models are much more

amenable to this type of prompting, indicating that instruction tuning can make it easier to access information

memorized in model weights. Some attacks rely on prompting the model with document prefixes from the

training data [44] or from Internet text [42]. Ozdayi et al. [246] use prompt tuning on models by utilizing

white-box access and knowledge of some training records. The attack generates a prefix that can be prepended

to a prompt to maximize the likelihood of generating a suffix corresponding to training data. All of these

prompting-based methods are attacks in the framework of the extractability definition. It is natural that most

methods are developed in this framework, since in practice people are usually given one single model and are
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usually most interested in the memorization of real documents. Outside of these prompting attacks, there

have been some recent attempts at attributing memorization of examples to specific neurons in models [201].

Preventing memorization or extraction of verbatim text.

One strategy for preventing memorization of verbatim text is to avoid repetitions of verbatim text in the

training data, motivated by the observation that the likelihood of a sequence is memorized increases with the

number of times that sequence occurs in the training data. Carlini et al. [44] extract memorized verbatim

text from models of the GPT-Neo [31, 322] family. They sample text sequences from the training data,

prompt the model with a prefix of each sequence and check whether the model generates the corresponding

suffix. They find that the amount of memorized text increases with model size, repetition of the sequence in

training data, and the length of the prefix prompt. Increased memorization from repeated sequences has been

observed before, and consequently de-duplication of the training data has been proposed as a countermeasure

[149, 169]. However, this might run counter to the effective upsampling (via training for more epochs) of

trustworthy sources commonly performed in the training of LLMs [97, 308].

Another approach that operates at the level of individual documents is differential privacy (see §6.3.1),

wherein noise it added to the gradients of training documents, trading reduced memorization against model

performance [181].

Mantri and Sasikumatm [204] propose several potential pathways towards LLMs that do not regurgitate

memorized copyrighted content: pruning or zeroing out parameters associated with such content; fine-

tuning the model with non-copyrighted content; and the use of loss functions that discourage the model

from generating text too similar to copyrighted training data. A more radical change to prevent verbatim

memorization would be to use a substantially different training objective: instead of learning to predict

individual tokens from training documents, the model could learn to predict the content of those documents

at a higher semantic level. This idea has been implemented for computer vision models, where pixels in the

training objective are replaced by latent representations of image patches [15].

Verbatim memorization can also be addressed in black-box settings by using post-processing to block text

sequences in the training data from occurring in the generated output. Ippolito et al. [129] propose using a

Bloom filter to detect n-grams of the model output that appear in training data, and re-generate tokens until

there is no more match in the training data. However, the filter cannot account for small differences, such as

changed whitespaces, and can be actively avoided by style-transfer prompts, e.g., making the model respond

in all lowercase.
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6.2.2.2 Facts

LLMs achieve good results on knowledge benchmarks even in closed book settings [308], implying sufficient

memorization of facts about the world. These can be facts about the real world like “birds can fly” or

facts about fictional worlds like “Harry Potter studies at Hogwarts” [49]. Li et al. [182] provide empirical

evidence for memorization of the co-occurrence of words in different topical contexts in both embeddings and

self-attention layers.

Definitions.

Tuple completion. Meng et al. [215] represent facts as tuples t = (s, r, o) of a subject s, a relationship r and an

object o. They define memorization of a fact (s, r, o) as the model completing the prompt ‘s r’ with ‘o’. The

Knowledge Assessment Risk Ratio (KaRR) [70] considers the ratios between the probability of the correct

object being generated by the model when given s and r, and when given only s or only r. This is aimed at

removing the influence of the prior probability of the model for generating o.

Personally Identifiable Information. A particular class of facts that provide information about identifiable

individuals is known as personally identifiable information (PII). Kim et al. [156] draw a distinction between

structured PII and unstructured PII. Information in structured PII follows a fixed pattern, such as email

addresses and phone numbers. Unstructured PII can be expressed in different ways. e.g., “[person 1] is the

parent of [person 2]” contains the same information as “[person 2] is [person 1]’s child”.

PII extractability. Lukas et al. [193] define three variants of PII leakage across different threat models, which

can be used to define PII memorization, but also the memorization of more general facts. The first definition

is extractability, which is the probability of a piece of PII being contained in an output produced by an

unprompted model.

PII reconstruction and inference. The second and third definitions of Lukas et al. measure the model’s

ability to associate PII with a context. A sentence containing at least one piece of PII is chosen from the

training data and the PII is replaced by a [mask] token, for example "The police arrested [mask] near the

White House on 8/20.” In PII reconstruction, the (approximately) most likely PII replacement for [mask]

under the model likelihood is compared with the PII in the original sentence. PII inference differs from PII

reconstruction in that the model only has to choose from a predefined set of candidates.

All of the above definitions cover cases of previously unknown facts or PII that can be extracted from the

model. The following definition assumes a set of candidate PII whose relationship to each other the model

might leak.
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Linkability of PII. Kim et al. [156] argue that a random disclosure of some personal information without

it being linked to an individual does not necessarily pose a privacy risk. For example, it might not be

problematic if an LLM leaks an address without the name of the resident. They propose the definition

of linkable PII leakage, which implies memorization of the connection between different pieces of personal

information. The definition roughly states that if the likelihood of a piece of personal information a1 under

the model increases when conditioning the model on other personal information a2, . . . , an linked to the same

data subject, the model links a1 to a2, . . . , an. This definition is also applicable to other facts, e.g., linking a

football player to her teammates.

Finally, a model that fulfills the last definition only allows someone with prior knowledge of the corresponding

fact to determine whether or not the model has memorized that fact.

Counterfactual memorization. The definition of counterfactual memorization [367] (see §6.2.2.1) might also

apply to facts: Instead of a specific document, one would remove all occurrences of a specific fact from the

training data, and measure how this influences the knowledge of the model about the fact. This could help

with determining whether a model knows a given fact because of memorization (in that case it would not

know the fact anymore after the removal) or because of reasoning (in that case the model would still know

the fact).

Implications. If only publicly-accessible data is used for the training of LLMs, they cannot memorize facts

that are not already publicly disclosed. However, as argued by Brown et al. [36], LLMs have the potential

to decontextualize information, that is, bring up the information in contexts which it was not intended for

or without essential surrounding context. LLMs can reveal PII and other information that is not meant to

be public but found its way online—e.g., through users who shared sensitive information in online forums

via accounts that can be traced back to them. PII could also make its way into the model’s memory if

user-submitted queries are used in stage 2 or 3 of the training. For example, a user might ask the model to

draft a reply to a letter, where the letter might contain the user’s name and address.

Detecting memorized facts. Commonly used benchmarks for assessing factual knowledge of LLMs consist

of questions about facts in natural language [144, 166]. Some are in the form of multiple-choice questions

[117], which are mostly suited to determining aggregate knowledge of model. Another variant is cloze tasks,

where the model is asked to fill in masked-out entities [49, 238, 253], and which are very similar to tuple

completion tasks. The exact prompt formulation can influence the success of knowledge extraction for cloze

tasks [142] and questions [284].

Jiang et al. [142] propose ensemble methods that leverage multiple prompts, generated through mining and

paraphrasing content from Wikipedia. Li et al. [175] demonstrate how jailbreaking models can be exploited

to increase PII leakage, as opposed to standard querying. Dong et al. [70] treat subject, relationship and
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object in the tuple completion task (see §6.2.2.2) as latent variables, and consider different textual aliases to

generate different strings pertaining to the same s, r, o tuple. Jain et al. [134] present the model with a fact

and its negation, and compare the perplexity of the model on those two strings. Methods of these kinds can

be used to practically extract previously unknown facts from a model. However, most of the methods are not

aimed at distinguishing between memorization and generalization; for benchmarks, it is usually only relevant

whether a model correctly produces a fact, not how it produces this fact. This distinction might become

clearer with methods that identify knowledge in the model’s weights. Meng et al. [215] make a step in this

direction by using causal interventions to identify components of LLMs that store facts. Specifically, they

consider s, r, o tuples, where the model has to predict the object from the subject and relationship. Based on

their findings, the authors posit that the MLP modules in the transformer act as two-layer key–value stores.

Lehman et al. [171] study medical PII leakage of name–condition pairs via the release of embedding weights.

Patil et al. [251] demonstrate, via parameter-analysis and prompting-based methods, how PII leakage persists

even after information “deletion” (based on parameter editing).

Preventing memorization of facts.

A technique called scrubbing acts already on the level of training documents—identifying pieces of text, e.g.,

via named entity recognition [7, 121], and removing them or masking them with either a generic [mask]

token or more specific tokens such as [name]. Scrubbing has been used for removing PII [193], but could also

be used for other types of facts (e.g., "The capital of Germany is [city].”).

Shi et al. [277] propose a fine-grained variant of differential privacy termed S-DP that works on the token level.

Instead of protecting entire training documents with DP, it only protects tokens that have been identified as

sensitive. Their proposed method selectively adds privacy noise to gradients to which the protected tokens

have contributed.

Removing memorized facts might be particularly important in some jurisdictions like the EU [79] and

California [236] that codify a right to be forgotten for individuals whose personal data has been used by a

business. Meng et al. [215, 216] build on their hypothesis about key–values stores and propose a method to

selectively change facts by modifying values in those stores.

A general difficulty with preventing memorization of unstructured PII is that it requires a model with a

deeper understanding of relationships within the training documents than for structured PII. Eldan and

Russinovich [77] demonstrate a technique for unlearning data from a particular source. The technique is

based on a reference model fine-tuned on the source data, along with generic text auto-generated with GPT-4.

The KGA framework [331] uses a process of unlearning to make the model’s performance on target data

similar to unseen data, while maintaining overall performance. This approach has been successful with more

abstract data sources, such as specific personas in chat-based datasets. Bayazit et al. [24] develop a method to
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identify "knowledge-critical” subnetworks within GPT-2 models, using a joint loss function and demonstrate

its effectiveness with concepts like ‘fruit’ and ‘swimming’.

6.2.2.3 Ideas and algorithms

Ideas are similar to facts in that there are multiple ways to express them in language. Ideas can be about the

physical world such as reinforcing concrete with steel, as well as about fiction, such as a story around a boy

whose parents got killed when he was small and who learns wizardry at a secret school. Algorithms are a

special type of idea that can be memorized in two ways: (1) as a description of a series of steps, similar to

how the idea for the plot above can be memorized as a sequence of events; and (2) as a behavior, i.e., the

LLM implements the algorithm and executes it in its forward pass. The former may occur via algorithm

implementations in training data, the latter via input–output examples [227]. We have not found any research

on whether this also works the other way around. In this section, we only cover simple algorithms such as

arithmetic operations that do not require a high level of generalization. The distinction between facts and

ideas can sometimes be difficult. ‘Harry Potter is a wizard [...]’ is a fact of literature, and likewise the steps

of photosynthesis a biological fact.

Implications. As with facts, one often wants the model to memorize ideas such as solutions to common

problems or common tropes in fiction [361]. Similarly, one might want the model to be able to perform

algorithms such as arithmetic manipulations [271], or return an implementation of dynamic programming

[38, 145]. On the other hand, it is often undesirable if the model learns and reproduces harmful ideas. Meta

considers three risk categories for its Llama 2 model [309]: illicit and criminal activities; hateful and harmful

activities; and unqualified advice. Examples for ideas from all of these categories are very likely to be found

in a dataset scraped from the Internet: plans for robberies in fictional stories; ideas around the superiority of

one race in online comments; or medical speculation by non-professionals in health forums.

Detecting memorized ideas and algorithms. Techniques for detecting memorized facts (§6.2.2.2) might

also apply to ideas. The BIG-bench benchmark [284] measures the capability of LLMs to perform common

algorithms such as removing duplicates from a list of numbers or finding the longest common subsequence of

two strings, by testing correctness of model responses on instances of these problems. Saxton et al. [271]

synthetically generate mathematics problems from fields such as algebra and arithmetic. They train models

on smaller instances (e.g., smaller numbers) and test them on larger instances to determine whether the

models merely learn algorithms for the domain of the training examples, or learn the algorithms in their

full generality. McCoy et al. [209] compare the performance of LLMs on the same task, but with different

parameters that do not change the task difficulty.

Stolfo et al. [291] perform causal mediation analysis on LLMs [252] to get insights into how LLMs perform

simple arithmetic operations. They change activation values to identify layers and neurons most responsible
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for those operations. In a similar manner, Wang et al. [329] identify the circuit in GPT-2 responsible for

detecting the grammatical object in a certain class of sentences. Nanda et al. [227] train a transformer to

perform modular addition. Via careful inspection, they identify the exact algorithm that the model uses to

perform this task. Note that the extraction of the algorithm in this case consists of identifying a particular

implementation in model weights. This is as opposed to extracting an abstract description of the algorithm

in natural language or pseudocode. Interestingly, they find that in the beginning of training the model

memorizes the training examples; in a second training phase it learns to perform the general algorithm; and

in a third phase it removes the memorized components. Extracting training data in this example would thus

only be possible in the first and second phase, whereas extracting the algorithm would only be possible in the

third phase.

Preventing memorization or extraction of ideas and algorithms. Supervised fine-tuning, RLHF, and

safety context distillation are often used [309] to deter a model from generating ideas from certain categories

like criminal activities. The latter is a form of fine-tuning aimed to make the model behave as if prompts

were preceded by a prompt instructing the model to, e.g., only generate safe responses. While not explicitly

designed to prevent the model from outputting memorized ideas from these categories, this can be a side

effect.

6.2.2.4 Writing styles

LLMs like GPT-4 can write in rhymes or imitate the writing style of Shakespeare [38]. Microsoft recently

announced the "Sound like me” feature for their Copilot, allowing the LLM to write in the user’s style

when drafting emails [283]. With writing style, we mean the linguistic definition of style [143]—everything

about a text that goes beyond pure semantics, including the choice of words and sentence structures, the

characteristic use of stylistic devices such as alliterations and metaphors, and the level of formality. We

consider not only writing in natural languages, but also programming languages. There, with different styles

we mean functionally equivalent pieces of code that differ in stylistic features like the naming of variables,

their capitalization, the use of software design patterns, and formatting differences like the use of tabs or

spaces for indentation.

Definitions. Mixture distribution. Several authors [11, 228] suggest that LMs learn to separate agents (e.g.,

separated by different beliefs) in their training data. This concept is formalized by Wolf et al. [342], who

describe a language model as a mixture over different probability distributions. We can instantiate this

formalism for writing styles, where we describe the writing style of the model as a mixture of the writing

styles of authors seen during training, one writing style per author (or, alternatively, one writing style per

demographic group, e.g., age groups or speakers of a dialect [314, Sec. 4.1]). The probability p(y) that

the model assigns to a given string y can then be decomposed as p(y) =
∑

ϕ∈Φ wϕpϕ(y), where each pϕ
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corresponds to the writing style of one author in the training data and wϕ is the prevalence of that style

in the model outputs. We can define the memorization of one author’s writing style as the presence of this

writing style in the mixture, i.e., that there is one pϕ that corresponds to this author’s writing style. Wolf

et al. show that the model can be made to behave according to any pϕ in the mixture by a suitably long

prompt, given some technical conditions. In practice, a prompt such as ‘Answer in the style of [name]’ might

suffice to isolate pϕ.

Authorship verification and attribution. To determine whether a model can imitate an author’s writing style

sufficiently well, an authorship verification (AV) or authorship attribution (AA) task could be used [319]. In

AV, an adversary is given two texts and has to determine whether they are written by the same author. In

AA, an adversary is given texts from different authors and has to determine for a separate text by which of

those authors it has been written. The advantage of an adversary in AV or AA over random guessing could

be used a measure of the memorization of a writing style.

The practicality of the above definitions depends to a large degree on whether one can efficiently find prompts

that invoke a given writing style or make the model perform AV and AA tasks, where the latter might become

more complicated if the model is safety-tuned.

Implications. An LLM that has memorized the writing styles of individuals could be used for authorship

attribution [222, 319]. One might, for example, try to determine the author of an anonymous text, if

documents written by that author under their name were part of the training data. Authorship attribution

via pretrained transformer models has been explored before [21, 82, 319], although with smaller models like

BERT that require fine-tuning on target authors’ documents. LLMs that have seen documents from multiple

authors already during pretraining might be usable off-the-shelf for authorship attribution, making this

technique much more accessible.

Many LLMs will have seen instances of documents written by an author together with additional information

about that author (columns by a journalist that contain biographical information about authors, etc.). They

might hence be able to perform author profiling [28, 314], i.e., given a document, determine attributes of the

author such as age or gender. This has recently been demonstrated using Reddit comments [285].

Detecting memorized writing styles. If a model can successfully apply the style of an author to its output,

this is evidence for the memorization of the author’s style. This could be measured by existing authorship

verification or attribution methods [319]. For more generic styles like ‘formal’ or ‘poetic’, researchers use

zero-shot prompting [192], augmented zero-shot prompting (giving the model examples of other styles than the

target one) or few-shot prompting [259]—concrete prompts that can be seen as invoking mixture components

as described above.
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Preventing memorization or extraction of writing styles. If a writing style’s frequency affects

memorization (as it is the case for Wikipedia entities [203]), one solution is to limit the amount of text

per author in the training data. Solaiman and Dennison [280] demonstrate that fine-tuning on non-toxic

human-written prompts can reduce toxicity, arguably a form of writing style. Likewise, toxicity can be

reduced by RLHF [245, 325] or incorporating human feedback in the pretraining objective [162]. Ilharco

et al. [126] fine-tune models specifically for undesirable behavior and subtract the weight difference from the

original model to remove such behavior. Li et al. [177] propose disconnecting model components to minimize

loss on training data and maximize loss on unwanted behavior data. Both techniques could be applied to

selectively remove writing styles. Li et al.’s technique could be applied to eliminate an individual author’s

writing style by dividing their documents into useful content and unimportant content, the latter serving as

data for unwanted behavior. Mireshghallah and Berg-Kirkpatrick [218] propose a VAE-based method for

obfuscating the writing style of a text document by turning it into a generic style. While the authors design

this method to prevent discrimination and bias, it might be applied to the training corpus of an LLM to

prevent the memorization of specific writing styles.

6.2.2.5 Distributional properties of the training data

Distribution inference (Chapter 3) is concerned with the leakage of (sensitive) properties of a model’s training

distribution. For LLMs, such properties of interest could be the proportion of documents authored by people

of a given gender, the percentage of hateful content, the type of preprocessing used or data sources used in

training.

Implications. Distributional membership inference could be used to identify individuals who contributed data

in stages 2 and 3 of the model training [109]. Distribution inference attacks for author inference have already

been demonstrated for text classification models [214], and for fine-tuning data for LLMs [150].

When describing the training data distribution as a mixture over different data sources, one distributional

property is whether a particular source—such as a specific website—is part of that mixture. This is described

by distributional membership inference [109]. Inferring that information from the model would allow an

author to determine whether the model was potentially trained on their copyrighted documents.

The utility of distribution inference attacks, apart from inferring sensitive properties, also lies in auditing

models without access to actual training data, which may not be available to the auditor. For instance, such

attacks can be used to determine whether the training data is biased in any way, which is important, since tasks

like hiring decisions and news generation require unbiased models. There has also been a demonstration of

utilizing distribution inference (along with cryptographic primitives) for external auditing [72] on classification

models, focusing on attestation of gender and race-related properties.
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Detecting memorized distributional properties. Most techniques for distribution inference rely on some form

of shadow model training (§3.3), and the only settings in which such attacks demonstrate non-trivial leakage

require some form of poisoning (§4.3). Additionally, all of these attacks make strong assumptions about

the adversary’s prior knowledge of the underlying training distribution, which is a general limitation of the

framework. Distribution inference may be a realistic approach for learning about the data preprocessing,

though. In a setting where the training data is known (e.g., a public dataset such as The Pile [97]), but not

the preprocessing, an adversary can preprocess the same documents in different ways and track the loss of

the target model on all variants Intuitively, the loss should be lowest with the preprocessing used by the

model trainer, even if the documents themselves were not part of the training data.

6.2.2.6 Alignment goals

To instill instruction-following, helpful, truthful and harmless behavior into the model, data generated by

human labelers is used in training stages 2 and 3. Labelers write prompts and responses, and rate model

outputs along various axes [245, 309], following guidelines provided by the model trainer. The effectiveness of

the alignment training (see, e.g., [309]), is proof that at least high-level goals from the guidelines such as

harmlessness and helpfulness are memorized by the model. Despite the guidelines, there is still disagreement

between human labelers [245, 309]. Memorization from alignment training might thus not be limited to those

guidelines—models might also memorize political, ethical and other opinions of labelers.

Implications. Preference ratings can reveal sensitive information about the labelers. For instance, truthful-

ness ratings of model outputs like “Taiwan is a sovereign country” might reveal political opinions. Similarly,

the stance taken by a labeler in their response to the instruction “Write an essay about whether US Americans

should have the right to bear arms” used for supervised fine-tuning. The sometimes small number of labelers

(e.g., 40 for InstructGPT [245]) could make them easier targets for privacy attacks, since their individual

contributions have a larger impact.

Human labelers are likely so go through a formal process where they hand over the rights for their data to

their employer. Copyright for this data, thus, may not be an issue. For instance, the participation agreement

of Amazon Mechanical Turk [9] states that "all ownership rights, including all intellectual property rights,

will vest with that Requester”.

Detecting memorized alignment goals. Alignment training happens in the later training stages, making

it more prone to detection and extraction attacks than pretraining data [86, 131]. Since the training mode for

supervised fine-tuning is similar to that for pretraining, attacks aimed at extracting verbatim text memorized

during pretraining (§6.2.2.1) might also work for the human-written responses to prompts used in stage 2.

Different methods might be necessary for the prompts themselves, since the model is usually not directly

trained to reproduce the prompts.
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Regarding stage 3 training, it can be possible to reconstruct the reward function used for RLHF up to an

additive, prompt-dependent constant when given access to the model after the stage 2 training, by using Eq. 5

of Rafailov et al. [256]. If the model after stage 2 is not publicly available, but based on a publicly available

pretrained model—this is, e.g., the case for Llama 2 [309] and Mistral 7B [141]—one might try to approximate

it through supervised fine-tuning by using one’s own or public fine-tuning data such as the Flan Collection

[191], used for LLaMA and Llama 2. Access to the reward function could be used to make inferences about

labeler guidelines, for example, by checking whether harmful but helpful outputs are systematically higher

ranked than harmless but non-helpful outputs. Individual labelers’ data could be attacked using membership

inference [353] or attribute inference [137] attacks, which are often model-agnostic. As opposed to the training

of the LLM itself, the training of the reward function typically uses much smaller amounts of data, which

might make the reward function more amenable to computationally expensive attacks, e.g., those based on

shadow models (see §6.2.2.1). Reuter and Schulze [260] train a classifier to predict whether ChatGPT will

refuse to answer a given prompt—behavior that is most likely predominantly learned in training stages 2 and

3.

Preventing memorization or extraction of alignment goals. The small number of human labelers

might facilitate memorization of individual labelers’ data, so increasing their number might reduce this risk.

Not releasing the model after stage 1 or 2 will make it harder for an adversary to determine which stage

model behavior originates from—this does not prevent memorization (since the model is not changed in any

way), but might help against specific attacks.

6.3 General memorization mitigation strategies

This section briefly discusses general-purpose strategies related to preventing memorization that are not

specific to any particular type of memorization. Differential privacy (DP) (§6.3.1) and near access-freeness

(NAF) (§6.3.2) are two frameworks originally designed to solve privacy and copyright problems, respectively,

which aim at preventing certain forms of memorization (DP) or reproduction of memorized information

(NAF). They have several shortcomings for preventing different types of memorization in LLMs though, as

we discuss next. Elkin-Koren et al. [78] argue in a very similar way why the frameworks are not suitable for

preventing copyright violations. §6.3.3 discusses strategies that aim to mitigate copyright infringement with

techniques that are external to the model.

6.3.1 Differential privacy

Differential privacy (DP) [74] is a privacy definition that can be satisfied by mechanisms where noise randomly

sampled from appropriate distributions is incorporate in the training process to bound the impact of any

individual record. Because of the random noise, the trained parameters will be nearly indistinguishable
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whether or not any one record was part of the training data. This makes it impossible for the model to

remember any one training record. DP thus prevents the memorization of verbatim text, at least as long as

this text is only contained in one training document.

For other types of memorization, DP mechanisms can, however, be both under-exhaustive and over-exhaustive.

Under-exhaustive because facts or writing styles may be present in many different training documents, books

can be contained indirectly in the training data through quotes, reviews, etc. [49]; and over-exhaustive

because even if one only wants to prevent the model from memorizing specific pieces of information such as

PII or facts, DP adds noise to all information contained in a training document.

While under-exhaustiveness could be addressed by adjusting the unit of privacy so DP mechanisms will

provide privacy with respect to multiple records [73], this would still require identifying the number of

documents that contain a particular item (which might be expressed in different ways), and might significantly

worsen the DP-induced performance drop due to larger amounts of added noise. Even for DP at the level

of individual documents, El-Mhamdi et al. [76] argue that high-dimensional differentially private learning

on heterogeneous data such as Internet text is impossible with high accuracy due to mean estimation being

impossible under these conditions. The method by Shi et al. [277] (§6.2.2.2) that applies DP more selectively

at a token level might help with the problem of over-exhaustiveness, but requires exactly identifying the

relevant tokens (e.g., those that contain a fact), but is not easily applicable to memorization which is not

concentrated in a few tokens of a document (e.g., a writing style).

6.3.2 Near access-freeness

Vyas et al. [321] propose the notion of near access-free (NAF) generative models, aimed at preventing copyright

violations. Given an subset C of its training documents, a model p is NAF with respect to C if for every

C ∈ C the difference between the model’s output distribution and the output distribution of a specific model

that was not trained on C is bounded by a fixed constant. If C only occurs once in the training data, this

ensures that p is unlikely to output substantial parts of C, unless those parts could have also been produced

without access to C—which would not constitute a copyright violation. Vyas et al. also provide an extension

for multiple occurrences.

Beyond verbatim text, NAF with the right distance metric and sufficiently small bound on the distance could

also prevent the model from outputting PII such as social security numbers, or facts, as long as one knows

how often they are contained in the training data. However, NAF has the same problems of under- and

over-exhaustiveness as DP. It is challenging to determine in how many documents a piece of information is

contained, and prone to removing benign information that is unique to one or a few documents but that

it is desirable for the model to learn. For the latter, consider the case where C is a book. Then a model

without access to C would have a very low probability of correctly answering questions about the plot of C,
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so an NAF model would not be able to answer those questions either. Note that, unlike DP which is typically

applied to the training process, NAF restricts the output distribution of the model. It can therefore be used

to give guarantees for memorized information in the model outputs, but not for the memorization itself, i.e.,

someone with access to the model weights might still be able to detect memorized information.

6.3.3 Strategies for mitigating copyright violations via infrastructure

In some cases, copyright violations may be prevented by preventing particular types of memorization, as

discussed in the previous sections. There have also been some proposals for mitigating copyright violations

through appropriate infrastructure.

The most straightforward way to avoid copyright violations is by training only on data with permissive

licenses [93, 159]. However, excluding data with non-permissive or unspecified licenses could significantly

reduce the amount of available data [217] and might exclude high-quality data sources such as textbooks.

Min et al. [217] propose training a LLM only on permissively licensed documents, and augmenting it with

a datastore of copyrighted documents. This datastore can then be used at prediction time to improve

LLM performance on domains not covered by the training data. This setup allows for precisely pinpointing

which copyrighted documents contributed to a particular model output, and for easily removing copyrighted

documents if required. Determining copyrighted documents that were used in producing a model output via

this and other methods [160] could allow for using documents with licenses that require author attribution

[116]. Ippolito and Yu [128] describe a protocol similar to robots.txt wherein website owners could signal to

model trainers via a file in the root directory which parts of their website are appropriate for model training,

a variant of which has already been implemented by OpenAI [239] and Google [46]. In addition to deploying

block requests [305], the New York Times has updated its terms of service to explicitly ban the use of its

data for training ML models [336].

6.4 Membership Inference for LLMs

In this section, we particularly focus on measuring verbatim memorization in LLMs via membership inference

attacks.

Membership inference attacks (MIAs) have great utility for privacy auditing of models [286], as well as

investigating memorization of training data, copyright violations and test-set contamination [244, 276]. While

MIAs have been found to achieve high attack performance, alluding to high levels of training-data memorization

[27, 193, 365], most analyses are limited to classifiers or LM fine-tuning [94, 220]. The performance of existing

MIAs on LLMs and their pre-training data is largely unexplored. In this section, we set out to explore

the challenges in evaluating membership inference attacks on LLMs, across an array of five commonly-used
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membership inference attacks. We introduce Mimir, a unified repository for evaluating MIAs for LMs, with

implementations of several attacks from literature. We report on experiments extensively evaluating these

MIAs against target models from the Pythia suite [30] over the Pile [97] (§6.4.2). For the most part, we find

that the performance across most MIAs and target domains is near-random (§6.4.3).

Our further analysis suggests that the inherent characteristics of LLMs at scale—specifically, the use of

massive training data and near-one epoch training (§6.4.4.1)—considerably decrease current MIA performance.

This suggests that the success of current MIAs in previous settings does not transfer well to attacking

pretrained LLMs seemingly due to a lack of memorization of member data. We also find that the frequent

overlap between members and non-members from natural language domains considerably decreases MIA

performance and raises the question of how membership should be interpreted (§6.4.4.2). Notably, in several

domains, non-members have high n-gram overlap with members, e.g., non-members from the Pile Wikipedia

and ArXiv test samples have average 7-gram overlaps of over 30%. Notably, non-members with lower n-gram

overlap are more distinguishable by existing MIAs. We also suggest that high MIA performance reported

by prior work [276] is likely because non-members are chosen from the same domain as members but are

temporally shifted, and these seemingly in-domain non-members likely belong to a different distribution as a

result of n-gram overlap shift (§6.5).

Finally, building off membership ambiguity due to n-gram overlap, we discuss how the precise definition of

members in standard MI may not capture important information leakage under generative text-modeling.

We generate modified members preserving lexical and/or semantic similarity by altering a tiny fraction of

tokens and show that existing MIAs classify them as non-members with a high degree of confidence, often

more definitively than actual non-members (§6.6). We encourage future work to study MI using membership

definitions accounting for such fuzzy members to better understand privacy leakage.

6.4.1 Setup

The goal of an MIA is to infer whether a given data point x was part of the training dataset D for modelM,

by computing a membership score f(x;M). A threshold derived on this score is then used to determine a

target sample’s membership.

MIAs are often used as a proxy to determine whether a machine-learning model leaks information related to

its training data [61, 278, 279]. It is the de-facto threat model when discussing machine-learning privacy [279],

with a large array of attacks [43, 219, 355] and defenses [1, 54, 300]. More involved approaches include training

shadow models [279, 353] on non-overlapping data from the target model’s underlying data distribution.

While attacks like LiRA [43] show promise, they require training multiple copies of shadow models, which is

often intractable for LLMs. Other stronger assumptions for MIAs include white-box access to the model (i.e.,

access to model parameters).
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In our setting,M is an auto-regressive language model that outputs a probability distribution of the next

token given a prefix, denoted as P (xt|x1...xt−1;M). The goal for MIAs is to model f(x;M), which outputs

a score for target sample x = x1...xn with n tokens. This score is then thresholded to determine the target

sample’s membership in the training data ofM. We consider five MIAs:

LOSS. [41, 355] considers the model’s computed loss over the target sample:

f(x;M) = L(x;M).

Reference-based. [264, 335] attacks assume access to a reference model Mref, another LM trained on a

disjoint set of training data drawn from a similar distribution. In practice, an assumption of disjoint training

data is impractical. Empirically, using an LM that is different from M has been a reasonable choice and

was used in prior work [149, 335]. The attack considers the membership score of the target sample by M

relative to the membership by Mref to calibrate the target model’s score given a difficulty estimate through

the reference model’s score, with goals to improve precision and reduce the false negative rate. For our

experiments, we use LOSS as the uncalibrated membership score such that, for the reference-based attacks,

f(x;M) = L(x;M)− L(x;Mref).

This method exactly follows the method from [335] and is also largely similar to the offline Likelihood Ratio

attack (LiRA; [43]), although LiRA uses many reference models (often trained shadow models).

Zlib Entropy. [42] functions similarly to reference-based MIA, using the zlib compression size of a sample x

as a local difficulty threshold per sample:

f(x;M) =
L(x;M)

zlib(x)
,

where zlib(x) is the length in bytes of the zlib compressed sample.

Neighborhood Attack. [208] assumes access to a masking model, and operates by generating “neighbor”

texts x̃ to a given text sequence x by using the masking model to replace a percentage of randomly selected

token spans while still maximizing the neighbor’s likelihood. If the sample’s loss is considerably lower than

the neighbor’s losses, the difference is attributed to the target model overfitting the sample, and the sample

is considered a training member. Formally, we have

f(x;M) = L(x;M)− 1

n

n∑
i=1

L(x̃i;M).
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We use BERT [68] as our masking model of choice, with a masking percentage of 5%.

Min-k% Prob. [276] is based on the intuition that non-member examples tend to have more tokens assigned

lower likelihoods than member examples do. Given sample x = x1, ..., xn and hyperparameter k, let min-k(x)

be the set formed by the k% of tokens in x with minimum likelihood. We then have

f(x;M) =
1

|min-k(x)|
∑

xi∈min-k(x)

− log(p(xi | x1, ..., xi−1)).

We experiment with multiple different k ∈ {10, 20, 30, 40, 50} as suggested in Shi et al. [276], but settle on

k = 20 for our experiments.

We compute the performance of each attack based on 1,000 bootstrap samples of the benchmark and report

the average AUC ROC and TPR@low%FPR over the bootstraps.

Membership Inference vs. Data Extraction. MIA advantage is frequently used as a measure of

information leakage [219, 278, 279] and a proxy for measuring memorization [42, 220], with recent attempts

studying user-level leakage for the fine-tuning setting [150]. However, the ‘extractability’ of training samples

has recently become synonymous with memorization and is increasingly used to compare memorization

across models [29, 44, 306]. Kandpal et al. [149] investigated the impact of factors such as training data

deduplication on extractability in a similar vein to our work on MIA. With extraction, a prefix is used as

a prompt to measure the memorization of a sequence by comparing the resulting generation against the

suffix. Both MIA and extraction are useful techniques for studying leakage in models, but rely on different

assumptions and reveal different types of leakage risks. While MIAs require knowledge of candidates and only

reveal directly which of those candidates are included in the training data, extraction requires knowledge of

sufficient-length prefixes to perform extraction and additional measures to determine if extracted texts are

valid.

6.4.2 Membership Inference on LLMs is Difficult

We perform a large-scale evaluation of five state-of-the-art MIAs (§6.4.1) on a range of LLMs with up to 12B

parameters and diverse benchmarks. For the reference-based attack in Table 6.1 and all following experiments,

we use Stablelm-Base-Alpha-3B-v2 as the reference model (determined empirically in §6.4.3.1).

6.4.2.1 Target models

We primarily target the Pythia model suite, including (1) five models of Pythia [30] with 160M, 1.4B, 2.8B,

6.7B, and 12B parameters, trained on the original Pile data [97], and (2) five models of Pythia-dedup [30]

with the same parameter counts as Pythia but trained on the deduplicated Pile data. We also experiment
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Wikipedia Github Pile CC PubMed Central

# Params LOSS Ref min-k zlib Ne LOSS Ref min-k zlib Ne LOSS Ref min-k zlib Ne LOSS Ref min-k zlib Ne

160M .504 .515 .488 .514 .513 .638 .591 .634 .656 .638 .497 .497 .503 .498 .496 .500 .516 .504 .500 .486
1.4B .510 .544 .506 .518 .518 .656 .587 .654 .670 .650 .500 .525 .509 .502 .499 .496 .530 .505 .500 .490
2.8B .516 .565 .511 .522 .517 .707 .657 .708 .717 .698 .501 .537 .509 .503 .502 .498 .536 .502 .500 .497
6.9B .514 .571 .512 .521 .514 .672 .573 .675 .684 .654 .511 .564 .516 .512 .505 .504 .552 .508 .504 .497
12B .516 .579 .517 .524 .520 .678 .559 .683 .690 .660 .516 .582 .521 .517 .514 .506 .559 .512 .506 .497

ArXiv DM Math HackerNews The Pile

# Params LOSS Ref min-k zlib Ne LOSS Ref min-k zlib Ne LOSS Ref min-k zlib Ne LOSS Ref min-k zlib Ne

160M .507 .486 .501 .500 .507 .490 .523 .493 .482 .489 .492 .490 .497 .497 .505 .502 .511 .506 .505 .499
1.4B .513 .510 .511 .508 .511 .486 .512 .497 .481 .465 .503 .514 .509 .502 .504 .504 .521 .508 .507 .504
2.8B .517 .531 .522 .512 .519 .485 .504 .497 .482 .467 .510 .549 .518 .507 .513 .507 .530 .512 .510 .506
6.9B .521 .538 .524 .516 .519 .485 .508 .496 .481 .469 .513 .546 .528 .508 .512 .510 .549 .516 .512 .510
12B .527 .555 .530 .521 .519 .485 .512 .495 .481 .475 .518 .565 .533 .512 .515 .513 .558 .521 .515 .511

Table 6.1: AUC ROC of MIAs against Pythia-dedup (TPR@low%FPR results in Table 6.2). Highest
performance across different MIAs is bolded per domain. MIA methods perform near random (< .6) in
most domains. See §6.4.5.3 for GitHub outlier discussion.

Wikipedia Github Pile CC Pubmed Central

# Params LOSS Ref min-k zlib Ne LOSS Ref min-k zlib Ne LOSS Ref min-k zlib Ne LOSS Ref min-k zlib Ne

160M 1.1 0.8 1.2 1.4 1.3 13.5 4.6 12.3 14.7 5.9 0.4 0.8 0.5 0.4 0.4 0.7 0.9 1.0 0.3 0.1
1.4B 0.6 0.9 0.5 0.7 0.4 12.8 0.7 12.9 16.4 3.9 0.6 0.6 0.5 0.7 0.8 0.4 0.7 0.6 0.5 0.1
2.8B 0.6 0.8 0.5 0.7 0.9 20.8 4.5 20.8 23.4 11.1 0.6 0.5 0.7 0.8 0.9 0.4 1.0 1.4 0.6 0.9
6.9B 0.6 0.6 0.4 0.6 0.5 12.9 0.6 13.1 16.8 6.1 1.0 1.4 1.2 1.3 1.0 0.8 1.6 0.8 0.3 0.8
12B 0.7 0.6 0.6 0.7 1.0 13.9 0.8 14.2 17.4 4.9 1.0 1.7 1.1 1.5 1.0 1.0 1.5 1.3 0.7 0.9

ArXiv DM Math HackerNews The Pile

# Params LOSS Ref min-k zlib Ne LOSS Ref min-k zlib Ne LOSS Ref min-k zlib Ne LOSS Ref min-k zlib Ne

160M 0.8 0.4 0.2 0.7 0.3 0.5 1.4 0.6 1.2 0.7 1.0 0.8 1.2 0.6 0.7 2.4 1.3 2.0 2.2 2.2
1.4B 0.3 1.0 0.2 0.4 0.7 0.8 0.8 0.6 1.0 1.7 0.7 0.9 1.2 0.9 0.8 2.4 1.4 2.4 2.3 2.3
2.8B 0.5 2.1 0.5 0.5 0.5 0.8 0.4 1.0 1.3 0.8 0.6 1.4 0.8 1.1 1.7 2.8 2.2 2.8 2.8 2.4
6.9B 0.6 1.8 0.6 0.6 0.6 0.9 0.2 0.6 1.0 0.7 .9 1.9 1.0 0.9 1.3 2.6 1.8 2.5 2.5 2.2
12B 0.6 2.5 0.6 0.5 0.9 1.0 0.5 0.5 0.9 0.8 0.7 2.3 0.8 0.8 1.4 2.7 1.8 2.6 2.6 –

Table 6.2: %TPR@1%FPR of MIAs against Pythia-dedup across different datasets from the Pile. The
highest performance across the different MIAs is bolded per domain. In general, leakage in high confidence
settings is low (< 3%). As with AUC ROC, GitHub is an exception, still yielding considerably higher
leakage with most attacks. Unlike with AUC ROC, trends in performance are much noisier in the high-
confidence setting, with trends in model size and best-performing attacks in certain domains no longer holding,
reinforcing the difficulty in determining a best attack.

with the GPT-Neo and OLMo models to validate our findings with different model families, observing

similar trends in most Domains.

GPT-Neo. We target the GPT-Neo model suite, which consists of 125M, 1.3B, and 2.7B-parameter

models trained on the Pile. Table 6.3 shows that performance trends are similar to those observed with

Pythia. In some domains such as HackerNews, the best performing MIA differs between target models

(Min-k% Prob for GPT-Neo, reference-based for Pythia-dedup), though marginally.

OLMo. Benchmark construction is similar to that for Pythia. However, we sample from domains that

make up Dolma [282], namely Wikipedia, C4, Reddit, Common Crawl, and peS2o [281]. These are similar

to domains used in Pile. We note that peS2o consists of both abstracts (s2ag) and full papers (s2orc), and

evaluate them as separate domains. To get non-member, we use held-out Dolma data from Paloma [197].
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Wikipedia Github Pile CC Pubmed Central

# Params LOSS Ref min-k zlib LOSS Ref min-k zlib LOSS Ref min-k zlib LOSS Ref min-k zlib

125M .504 .511 .492 .511 .641 .582 .642 .660 .495 .492 .500 .497 .499 .506 .502 .499
1.3B .510 .531 .506 .517 .681 .570 .681 .696 .500 .517 .503 .501 .496 .499 .499 .497
2.7B .513 .545 .513 .519 .699 .570 .700 .712 .504 .531 .507 .506 .498 .507 .501 .499

ArXiv DM Math HackerNews The Pile

# Params LOSS Ref min-k zlib LOSS Ref min-k zlib LOSS Ref min-k zlib LOSS Ref min-k zlib

125M .507 .494 .503 .501 .492 .522 .493 .484 .489 .480 .505 .496 .502 .507 .505 .505
1.3B .511 .506 .512 .507 .486 .511 .491 .481 .499 .500 .514 .501 .505 .514 .509 .507
2.7B .515 .520 .517 .510 .486 .509 .492 .481 .502 .512 .516 .503 .507 .519 .511 .509

Table 6.3: AUC ROC of MIAs against GPT-Neo across different datasets from the Pile. The highest
performance across the different MIAs is bolded per domain. Similar to Pythia-dedup, MIA methods
perform near random (< .55) in most domains.

Table 6.4 also demonstrates generally near-random performance trends, with both the 1B and 7B parameter

model variants exhibiting similar performances. We speculate that, due to the incredibly large amounts of

training data (3T tokens for 1B-parameter model, 2.5T tokens for the 7B-parameter model), performance

across different model sizes begins to converge to near-random performance even with such distinct model

sizes. Interestingly, the Reference-based attack using Stablelm-Base-Alpha-3B-v2 performs much worse

than when used to calibrate the Pythia models, reinforcing the difficulty in finding suitable reference

models for different LLMs. We also observe many settings where MIA performance is considerably less than

.5, suggesting that the MIAs are more likely to predict members as non-members, and vice versa. More

investigation is needed to understand such behaviors on specific domains such as s2ag from peS2o in the

Dolma data.

Wikipedia C4 Reddit

# Params LOSS Ref min-k zlib LOSS Ref min-k zlib LOSS Ref min-k zlib

1B .484 .510 .495 .510 .515 .479 .520 .513 .464 .495 .478 .470
7B .481 .488 .493 .500 .516 .499 .520 .514 .463 .501 .480 .469

Common Crawl s2ag s2orc

# Params LOSS Ref min-k zlib LOSS Ref min-k zlib LOSS Ref min-k zlib

1B .509 .412 .517 .511 .449 .376 .461 .392 .484 .480 .500 .463
7B .498 .410 .505 .500 .465 .483 .475 .406 .491 .507 .503 .470

Table 6.4: AUC ROC of MIAs against OLMo across different datasets from the Dolma dataset. The highest
performance across the different MIAs is bolded per domain.

6.4.2.2 Additional target model details

Pythia-dedup. Both the Pythia and Pythia-dedup model suites provide intermediate checkpoints for

each model. For experiments targeting the Pythia-dedup model, as the Pythia-dedup model is trained

for greater than 1 epoch, we select the checkpoint that most closely matches the one epoch mark over the

deduplicated Pile. We decide this is checkpoint ’step99000’. For experiments targeting the non-deduped

Pythia models, we use the final checkpoint, which sees just under one (≈ 0.9) epoch of the original Pile.
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SILO. The models from the SILO suite [217] consist of 1.3B-parameter transformer LMs based on the

OpenLM implementation of the LLaMA architecture [308]. These are trained for multiple epochs on the

Open License Corpus, which consists of permissively-licensed text data classified as either public domain

(PD) texts, permissively licensed software (SW), or under an attribution license (BY). We target the

SILO-PDSW model (alongside its intermediate checkpoints) trained on only texts classified as PD or SW

for domains contributing less than 5% of the data upsampled by a factor of 3x (which includes HackerNews

and DM Mathematics).

Datablations. The Datablations suite [224] is a large collection of models trained to study scaling laws

in data-constrained regimes. They vary in the extent of data repetition and compute budget, ranging up to

900 billion training tokens and 9 billion parameters. For the epoch experiment, we choose the 2.8B-parameter

subset of models, with each seeing a total of 55B tokens from the C4 dataset across their training runs. These

models vary in the number of epochs their training subset is seen, ranging from one to 14 epochs. They also

offer a model trained for 44 epochs, which we decided to leave out of evaluation.

GPT-Neo. is a collection of 125M-, 1.3B-, and 2.7B-parameter models of similar architecture to the GPT-3

model family. These models are trained on the Pile for about 300B tokens, similar to the Pythia suite. This

model suite is a precursor to the GPT-NeoX [10] model architecture, which Pythia-dedup and Pythia are

built on. Noticeable differences include the tokenizer used per model suite, with the GPT-NeoX allocating

additional tokens to whitespace characters, as well as intended training settings, with GPT-Neo geared

towards TPU training and GPT-NeoX GPU training.

OLMo. The OLMo model suite [102] is a suite of open language models trained on the Dolma [282]

dataset. OLMo models currently available include 1B- and 7B-parameter variants trained on 3T and 2.5T

tokens, respectively. While our preliminary results just target the final checkpoints, the OLMo suite is

similar to the Pythia suite in that intermediate checkpoints and exact training order are fully open.

6.4.2.3 Datasets

We use seven diverse data sources included in the Pile: general web (Pile-CC), knowledge sources (Wikipedia),

academic papers (PubMed Central, ArXiv), dialogues (HackerNews), and specialized-domains (DM Math,

Github). We also perform experiments over the entire Pile.

We sample 1,000 members and non-members from each target domain from the Pile train and test sets,

respectively. e do the same for the aggregate Pile experiment, except we sample 10,000 members and

non-members each from the complete Pile train and test sets. We sample documents greater than 100 words

and truncate them up to 200 words from the beginning to create our benchmark examples. Previous work

[276] observes that sample length correlates with performance, so we bound the sample length to reduce its
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Figure 6.1: MIA performance as model size increases for the reference-based attack over select domains. We
also plot the AUC ROC trajectory against the non-deduped Pythia suite for comparison. Increasing model
size slightly boosts MIA performance while deduplication decreases performance. Other attacks
follow similar trends (Figure 6.2).

impact while picking a reasonable threshold so that our samples are likely to contain ample signal. We follow

the same pipeline when generating the benchmark for targeting the Datablations models, picking members

and non-members from the C4 train and validation sets, respectively.

Gao et al. [97] decontaminated the Pile test set against the training set at a document level. Nonetheless, to

be more rigorous, we perform additional deduplication following Groeneveld et al. [101], which uses a bloom

filter to check for n-gram inclusion. We keep the default filtering settings of n = 13 and a threshold of ≤ 80%

overlap. Further details about setting up the bloom filter can be found in §6.4.5.1

Evaluation metrics. We primarily report AUC ROC for our evaluations, and additionally record

TPR@low%FPR [43] to assess performance in high-confidence settings. We visualize the 95% confidence

interval for AUC ROC scores via shaded regions.

6.4.3 Main Results

Table 6.1 shows that all existing MIAs perform near random for most domains†. No single MIA or target

model demonstrates attack AUC above 0.6, with the exception of Github domain (see §6.4.5.3 for discussion).

Overall, the reference-based attack performs best, although there are a few settings where other attacks

perform better, e.g., Min-k% Prob on Pile CC for the 160M Pythia-dedup model. Marginal differences in

performance across MIAs make it hard to single out an overall best attack.

MIA performance tends to increase with the target model size (Table 6.1, Figure 6.1), in agreement with

prior work [176, 276, 335]. This is likely because larger models are more prone to overfitting the training

data [226]. We also find deduplication of the training data reduces MIA performance (Figure 6.1), confirming

the findings from Kandpal et al. [149].
†Similar trends for TPR@1%FPR. See Table 6.2.
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Figure 6.2: MIA performance as model size increases over select domains for various other attacks. We
additionally plot the AUC ROC trajectory against the non-deduped Pythia suite for comparison. Similar to the
reference-based attack, increasing model size slightly boosts MIA performance while deduplication
decreases performance.

6.4.3.1 Difficulty in Choosing a Reference Model

We choose a diverse set of reference models to experiment with. For the aggregate method over all reference

models, we take the average of the scores per reference model for a target sample‡. We report results for our

complete ablation on reference model choice in Table 6.5.

GPT-2 [255] is suite of pretrained transformer trained on a large dataset of around 40GB of web text, likely

overlapping with the Pile. We use the GPT-2-small variant with 124M parameters.

DistilGPT2 [269] is a smaller 82M-parameter model trained with the supervision of GPT-2-small using

knowledge distillation.

OPT [370] is a suite of open-sourced pretrained transformers that are trained on a curated pre-training

corpus including several datasets from the Pile, such as Wikipedia, DM Mathematics, and HackerNews. We

use the 1.3B-parameter variant.
‡Note that the scores over different reference models may not be directly comparable due to the reference models having

different tokenizers. This may contribute to the poor performance of this naive ensembling method.
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Wikipedia Pile CC

# Params Gpt2 Distil Opt Neo Silo Llama Stable Pythia Gpt2 Distil Opt Neo Silo Llama Stable Pythia

160M .498 .502 .494 .490 .492 .511 .515 .480 .520 .504 .488 .473 .504 .487 .497 .480
1.4B .503 .505 .507 .500 .502 .521 .544 .476 .523 .507 .513 .500 .516 .504 .525 .496
2.8B .511 .510 .519 .532 .531 .539 .565 .526 .526 .509 .521 .499 .520 .510 .537 .504
6.9B .510 .507 .517 .518 .516 .536 .571 .501 .538 .520 .542 .525 .531 .530 .564 .540
12B .514 .510 .522 .528 .529 .546 .579 .517 .548 .525 .555 .538 .541 .545 .582 .555

PubMed Central ArXiv

# Params Gpt2 Distil Opt Neo Silo Llama Stable Pythia Gpt2 Distil Opt Neo Silo Llama Stable Pythia

160M .495 .491 .515 .511 .513 .515 .516 .497 .523 .518 .516 .480 .496 .492 .486 .472
1.4B .493 .491 .514 .517 .514 .515 .530 .503 .529 .524 .523 .501 .512 .506 .510 .484
2.8B .494 .492 .513 .518 .515 .518 .536 .500 .534 .528 .528 .524 .522 .516 .531 .528
6.9B .499 .496 .519 .527 .520 .530 .552 .526 .540 .532 .534 .539 .531 .528 .538 .554
12B .504 .498 .523 .531 .524 .538 .559 .533 .546 .538 .541 .555 .540 .538 .555 .581

DM Math HackerNews

# Params Gpt2 Distil Opt Neo Silo Llama Stable Pythia Gpt2 Distil Opt Neo Silo Llama Stable Pythia

160M .489 .488 .520 .509 .487 .502 .523 .514 .496 .496 .496 .480 .398 .486 .490 .466
1.4B .487 .485 .509 .496 .485 .503 .512 .496 .508 .509 .511 .496 .401 .504 .514 .483
2.8B .485 .486 .511 .503 .483 .500 .504 .509 .521 .522 .529 .534 .421 .521 .549 .527
6.9B .485 .485 .510 .499 .484 .502 .508 .497 .525 .526 .534 .536 .436 .531 .546 .542
12B .487 .486 .514 .504 .485 .502 .512 .503 .534 .533 .545 .559 .453 .545 .565 .561

Table 6.5: The effect of the choice of a reference model to Pythia-dedup models across various domains. The
reference model yielding the highest performance, per target domain and target model, is bolded. ROC-AUC
values are reported.

As mentioned in §6.4.2.2, GPT-NEO [31] is another suite of pretrained transformers designed using

EleutherAI’s replication of the GPT-3 architecture. These models are trained on the full Pile for a

similar amount of tokens as Pythia (∼ 300B), though the data seen may not necessarily be in the same

order as the Pythia models. We use the 1.3B-parameter variant.

SILO-PDSWBY [217] is a 1.4B-parameter transformer pretrained on all types of permissively licensed data

in the Open License Corpus. The training data consists of certain Pile domains such as HackerNews and DM

Mathematics.

LLAMA [308] is a collection of large, open-sourced pretrained LMs ranging in size from 7B to 65B parameters.

The pre-training corpus is on the scale of trillions of tokens, much larger than the Pile, and likely has significant

overlap with the Pile. We use the 7B-parameter variant.

StableLM-Alpha-v2 [310] is a set of open-source pretrained LMs also trained on a large pre-training corpus

with trillions of tokens. Training is conducted in two stages, with the first stage seeing 1 trillion tokens of a

mixture of data from sources such as RedPajama [6] and the Pile, with an emphasis on refined web text. The

second stage is trained on 100 billion tokens with a higher context length, increasingly sampling naturally

long texts and adding the StarCoder [179] dataset. We use the 3B-parameter variant.

We also experiment with the non-deduped Pythia-dedup-1.4B model as a reference model to see how using

a smaller version of the target model (same architecture and training data order) impacts reference-based

attack performance [42].
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Stablelm-Base-Alpha-3B-v2 Performance. We speculate that the slightly higher performance with

Stablelm-Base-Alpha-3B-v2 as the reference model, even though its pre-training corpus has high overlap

with the Pile, is because 1) larger target models§ such as the Pythia-dedup-12B model may considerably

overfit certain member samples and 2) the Stablelm-Base-Alpha-3B-v2 is trained on a much larger corpus,

which helps it generalize well and achieve similar losses as the target model on the non-member data. As a

result, member samples are more likely to have a greater magnitude of difference between the target and

reference model losses compared to the difference between losses on non-members.

We ablate the choice of reference models in the reference-based attack. In summary, (1) most reference

models yield poor performance, with Stablelm-Base-Alpha-3B-v2 being the best overall, and (2) even

aggregating all reference models performs poorly. In general, we find choosing the right reference model for

a target LLM challenging and largely empirical. A reference model should be trained on the data that is

same-distribution but largely disjoint from the training data of the target model. However, this assumption

is hard to impose at the scale of pre-training corpora; common practice is to collect all the data available on

the web, leading independently collected datasets to naturally overlap with each other.

6.4.4 Why is MI Challenging against LLMs

We identify several key factors that may contribute to the decreased performance of MIAs on LLMs. Some

factors are due to unique characteristics of practices in LLM pre-training (§6.4.4.1) while others are due to

inherent ambiguity in MIA (§6.4.4.2).

6.4.4.1 Characteristics of LLMs

Training Data Size. Current state-of-the-art pretrained LLMs are trained with billions and trillions of

tokens [301, 308, 309]. We hypothesize the large pretraining corpora characteristic to LMs decreases

MIA performance, as larger pretraining datasets lead to better generalization [119, 224].

We employ the Pythia-dedup model suite’s intermediate checkpoints to assess the impact of different

amounts of training data. While keeping non-members fixed, we sample members for each checkpoint from

its most recent 100 steps to remove the impact of the recency bias of the members. ¶

For each model, we pick checkpoints every 5000 steps ending at step 95000, with each step corresponding to

1024 samples of length 2048 tokens. We also include checkpoints at step 1000 and step 99000, the closest

checkpoint to the step where one full epoch of the deduplicated Pile was seen. For each checkpoint, we use

the same non-member set for evaluation consisting of 1000 samples sampled from the entire Pile test set. We
§Also target models that are domain specific like Datablations or are trained on a less diverse corpus like SILO
¶Using recently seen members elevates MIA performance noticeably, but doesn’t disrupt the impact of increasing training

data size.
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Figure 6.3: (Left) Reference-based attack performance as the amount of training data seen, measured in
the number of training steps, increases across 1 epoch of the deduplicated Pile. In general, performance
spikes greatly before gradually decreasing as the amount of training data seen increases. Other
attacks (Figure 6.4) follow similar trends. (Right) MIA performance on target model Datablations as the
number of effective epochs increases via increasing epoch count. Performance increases linearly with
the number of effective epochs. See Figure 6.6 for results on SILO.
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Figure 6.4: MIA performance as the amount of training data seen increases across 1 epoch of the deduplicated
Pile pretraining corpus, visualized over a range of model sizes for various attacks. We use the training step as
a unit for the amount of training data seen, with 1 step corresponding to seeing 2097152 tokens. AUC-ROC
reported. Similar to the reference-based attack, for all attacks, performance drastically increases before
gradually decreasing as the amount of training data seen increases.

then construct a member set for each checkpoint‖: for the checkpoint at step n, we sample 1000 random

samples from documents seen within the range step {n− 100, n}. EleutherAI provides random seeding for

deterministic training data order across the Pythia-dedup training runs, which we use to determine the

seen document order. This allows us to determine which documents to sample from for a given step range.

For both members and non-members, we sample with the same criterion as the general experiments above.

MIA performance generally starts as near-random, then rapidly increases within the next few thousand steps,

before decreasing across successive checkpoints ∗∗ (Figure 6.3, left). We speculate the initial low performance

is due to the model warming up in training, with high losses across both member and non-member samples.
‖Ideally, the member set should be fixed, which could be done by performing multiple training runs and injecting the fixed

member set at various steps. However, this is computationally expensive. Furthermore, because of how the data is shuffled, we’d
expect the difficulty of the member set to be reasonably consistent across our samples

∗∗Pythia-dedup-2.8B stands apart with a performance trajectory that is consistently near-random. Previous work also
observes unexplainable behavior for this model [29].
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We believe the following rapid rise and then gradual decline in performance are because the data-to-parameter-

count ratio is smaller early in training and the model may tend to overfit, but generalizes better as training

progresses, in line with observations in existing work [226].

Recency of Member Samples. We explore how the recency of member samples seen in training impacts

MIA performance. We follow the same setup as the training data experiment, but instead of evaluating the

checkpoint at step n with the member data sampled from within steps {n− 100, n} and the fixed non-member

set, we fix the target model, only targeting the checkpoint at step 99000 for all the benchmarks.
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Figure 6.5: MIA performance for different member data sets sampled at different training steps across 1
epoch of the deduplicated Pile pretraining corpus, visualized across different attacks. Target model is the
Pythia-dedup-12B checkpoint at step-99000. AUC-ROC reported. Performance on benchmarks with
more recently seen members is higher, but gradually decreases to a plateau for less recently
seen members.

Figure 6.5 demonstrates that, in general, member data seen more recently by the given checkpoint contributes

to slightly higher MIA performance. We believe this supports existing work in LM forgetting [131], where

observed patterns in recently seen training data are better preserved in the model parameters, while earlier

seen data are less memorized.

We also note that the MIA performance trajectories seem to drop slightly more quickly for smaller models,

though the trajectories across all model sizes seem to converge when evaluating on member data from much

earlier in the training run. We speculate this is a result of larger models having more parameters, allowing

them to capture more seen data before having to drop older knowledge.

We also note that, in the context of MIA against fine-tuning datasets, our results indicate that data seen

during fine-tuning or continued pre-training may also be increasingly vulnerable due to how recent they are
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seen. This aligns with previous work demonstrating high MIA performance on fine-tuning datasets [94, 219].

This is especially relevant in practice since fine-tuning is a popular option to re-purpose large pretrained

models for varying downstream tasks such as commercial use cases, which often involves tuning with sensitive

data.

Number of Training Epochs. It is standard practice to pre-train LLMs for around one epoch, given the

scale of data and their tendency to overfit quickly [161, 224]. Previous MIA works that demonstrate attack

effectiveness consider supervised fine-tuning or masked LM pre-training [171, 219, 220, 225], where models

are trained for more than 10 epochs. We explore how the near-one epoch training of LLMs leads to

decreased MIA performance.

To verify this hypothesis, we perform MIA against the Datablations suite [224], consisting of models trained

on subsets of C4 [257] train data for varying numbers of epochs. Increasing the number of effective epochs

corresponds to an increase in attack performance (Figure 6.3, right).
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Figure 6.6: MIA performance on target model SILO-PDSW as the number of effective epochs in which the
member domain data has been seen increases. AUC-ROC reported. For HackerNews, performance does
increase with an increasing number of effective epochs initially, but begins to plateau or even
drop with further epochs. For DM Mathematics, performance surprisingly drops with increasing
effective epochs.

We also explore a more realistic setting where the amount of training data the target model sees increases

alongside the effective epoch count by targeting the SILO [217]-PDSW model and intermediate checkpoints.

For HackerNews, we observe MIA performance initially increases with more effective epochs, similar to the

Datablations setting, but then begins to plateau or drop as effective epoch count continues to increase

(Figure 6.6). DM mathematics, on the other hand, surprisingly decreases as the number of effective epochs

increases. We speculate over factors that may contribute to these observations:

• HackerNews, even when up-sampled for this variant of the SILO-PDSW model, still only makes up

5.9% of the training data [217]. In the first few epochs, when the total training data seen is low, the

model can memorize the HackerNews samples. However, as the number of epochs increases, the target
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Figure 6.7: Distributions of 7-gram overlap of non-member data over select domains. Github has a considerably
higher overlap than other domains.

model may tend to overfit data more so from domains with greater representation. As the SILO model

is on the smaller side with 1.4B parameters, we suspect the target model begins to memorize less of the

HackerNews samples, leading to a plateau or drop in MIA performance.

• DM Mathematics also makes up only 3.5% of the training data. In addition, with DM Mathematics

being a dataset of mathematical problems, we suspect that the abundance of tokens from a concentrated

token space (i.e., digits, variables) that are largely symbolic rather than semantic makes memorization

of specific samples unlikely. Overall, it simply fails to perform well on such data even after multiple

epochs (as observed when looking at model loss values for this data).

For both cases, further investigation is needed into the target domains and attack setting setup to better

understand these counter-intuitive phenomena. While Muennighoff et al. [224] shows training for multiple

epochs helps improve performance, our results suggest that such multi-epoch training (and/or large upsampling

factors) can increase training data leakage.

6.4.4.2 Inherent Ambiguity in MIA

Natural language documents commonly have repeating text—even with the best efforts in decontamination

and deduplication. These include common phrasings and quotes, natural use of similar texts, and syntactical

similarities inherent to specific domains. This leads to substantial text overlap between members and non-

members, which motivates the following hypothesis: higher overlap between members and non-members

increases MIA difficulty.

We quantify overlap using the percentage of n-gram overlap, defined as: For a non-member sample x consisting

of m words such that x = x1x2...xm and an n-gram in x defined as a continuous substring xi...xi+n−1 , the

n-gram overlap of x on training dataset D is

1

m− n+ 1

m−n+1∑
i=1

1{∃y ∈ D : xi...xi+n−1 ∈ y}
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Domain Wikipedia Github PubMed Central Pile CC ArXiv

Orig 7-gram Orig 7-gram Orig 7-gram Orig 7-gram Orig 7-gram

LOSS .516 .666 .678 .878 .506 .780 .516 .574 .527 .787
Ref .579 .677 .559 .615 .559 .595 .582 .644 .555 .715
min-k .517 .644 .683 .890 .512 .792 .521 .578 .530 .734
zlib .524 .631 .690 .908 .506 .772 .517 .560 .521 .780
Ne .520 .612 .660 .877 .497 .737 .514 .566 .519 .773

Table 6.6: Comparison of MIA performance over select domains with varying non-member sets at ≤ 20%
n-gram overlap threshold for n = 7, as well as the natural non-member set. Target model is Pythia-dedup-
12B and AUC ROC reported. Strict n-gram overlap thresholding results in higher performance.

We first compute the percentage of 7-gram overlap for non-members against the entire Pile training (member)

set (Figure 6.7). Figure 6.8 shows n-gram overlap distributions for other n. See §6.4.5.1 for implementation

details. We observe high n-gram overlap with training data for a substantial portion of non-members; e.g.,

the Wikipedia, ArXiv, and PubMed Central domains have average 7-gram overlaps of 32.5%, 39.3%, and

41.0%, respectively. Domains such as GitHub, DM Mathematics, and FreeLaw see even higher overlap, with

mean 7-gram overlap of 76.9%, 72.8%, and 62.3%, respectively.

High n-gram overlap suggests that substrings of non-members may be seen exactly during training, which

makes the distinction between members and non-members even less clear. To verify our hypothesis, we resample

non-members ensuring ≤ 20% n-gram overlap with members, and report MIA performance (Table 6.6).

While this step is designed to more strictly eliminate instances of non-member records that may overlap

with training records, it also introduces an explicit drift between member and non-member distributions by

selecting non-members that are most “unlike” training records. We clarify that this step is not a suggestion

for researchers to alter their benchmarks; such a processing step drifts away from the standard membership

inference game [355].

Results. MIAs perform significantly better as the non-member distribution concentrates towards lower

n-gram overlap, diverging from the natural n-gram overlap distribution of non-members from the training

distribution e.g., .516→.666 in Wikipedia, .690→.908 in Github, and .512→.792 in PubMed Central for

various attacks. This is intuitive as the target model is likely to assign a lower likelihood to non-members

further from its training data, making members and non-members more distinguishable. Note that decreasing

the n-gram overlap threshold, especially for smaller n, pushes the setting closer to distribution inference [293],

since the distributions of ‘member’ and ‘non-member’ records are no longer the same. We further discuss

outlier behavior in §6.4.5.

We note that n-gram overlap is an intrinsic property of natural language rather than a problem of the Pile

train-test split. These splits are already deduplicated at a document level, following standard practice in

decontamination [37, 97]. Nonetheless, repeating texts across distinct documents are fundamental and natural

properties of domain data. We also note that n-gram overlap distribution analysis can help assess how
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representative of a target domain a set of candidate non-members is when constructing MIA benchmarks.

Ultimately, we highlight the need to consider qualities of the data domain, e.g., n-gram overlap, and understand

their potential impact on MIA performance.

6.4.5 n-gram Overlap Details and Takeaways

6.4.5.1 Measuring n-gram Overlap

We create a bloom filter following Groeneveld et al. [101]. Due to the scale of the Pile training data and

limited memory, we shard the bloom filter. In our construction, we split the training data in half, resulting in

two bloom filter shards. Since each shard only sees half of the training data, to check for n-gram inclusion

across the entire Pile, we check for containment in both of the sharded bloom filters, counting an n-gram

included only if it is included in at least one of the bloom filters.

For each shard, we configure the bloom filter according to the data size such that the false positive rate of

the bloom filter is less than 1% (0.6%). Then, for each document, we tokenize at the word level. We then

add n-gram s̃ to the filter by using a striding window over n words at a time with a stride of 1. We use the

same method of gathering n-gram s̃ when checking the non-members for n-gram overlap.

6.4.5.2 Reference-based Attack Performance

Table 6.6 shows that, interestingly, reference-based MIAs have a noticeably smaller increase in performance

compared to non-referenced-based MIAs for domains such as GitHub or PubMed Central under n-gram

overlap thresholding. We speculate that, since numerous low n-gram overlap non-members are outliers to

the relevant domain, these non-members will also be outliers to the similar/overlapping data seen by the

reference model. As a result, even though these non-members may yield higher losses from the target model,

we see similar high losses for the reference model as well, which makes the difference between target and

reference model loss for non-members and members relatively less distinguishable compared to signals from

the other attacks.

At the same time, domains like Pile CC do not see this dampened performance, likely because the 20%

threshold in the case of Pile CC is not sufficient to select outliers, as samples from this domain have naturally

low n-gram overlap. Another case where the reference-based attack seems to avoid this observation is in the

temporally shifted non-member setting for both Wikipedia and ArXiv despite the temporally shifted non-

members being more out-of-distribution relative to the Pile Wikipedia and ArXiv distributions, respectively.

We speculate this is due to the reference model of choice, Stablelm-Base-Alpha-3B-v2, which has not

only been trained on a corpus with high overlap with the Pile, but also trained on datasets that capture

more recent data such as RedPajama-Data-1T [6] which contains Wikipedia and ArXiv samples from a much

more recent cutoff date (i.e., RedPajama uses the 2023-03-20 Wikipedia dump), allowing it to generalize
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better over the temporally shifted non-members and avoiding a shift towards higher losses that weaker or

older reference models might experience.

Attacks like LOSS or Min-k% Prob do not utilize any external signal or difficulty calibration, and thus rely

exclusively on signals from the target model for member classification. Calibration-based methods like zlib

and reference-based attacks, on the other hand, account for the inherent “difficulty” of a seen sample. Thus, in

situations where the non-member data is significantly out of domain, even for a reference model or calibration

method, it is likely that the signals from the target model and difficulty calibration would cancel out, leading

to a weakened MIA signal. On the other hand, difficulty calibration can further boost MIA signal in settings

where the member data is inherently more likely to be memorized, such as in §6.4.4.1 where reference-based

attacks yielded considerably higher MIA performance in low training data size and high effective epoch count

settings, with performance being further amplified in the extremes of both settings. Thus, MIA baselines for

new MIAs should include both kinds of methods: calibration-based and calibration-free. Having baseline

coverage for both styles of MIA can help uncover inherent characteristics of the evaluation setting such

as unintentional member/non-member distributional shift or overfitted target models that influence MIA

performance and also paints a holistic picture with regards to what MIAs are most suitable for specific attack

settings.

6.4.5.3 GitHub as an Outlier

As seen in Table 6.1, MIA performance in the Github domain even without thresholding is notably higher

than that in other domains, with the best method (zlib) achieving an AUC ROC of ∼ .70. We speculate

this is not because the GitHub domain, or code in general, is an easier domain to attack, but because the

presumably reasonable decontamination threshold of ≤80% 13-gram overlap threshold only captures a small

percentile of non-members as GitHub is naturally very high overlap.

We speculate a large factor contributing to the high overlap is the repetitive nature of code, such as copyright

notices, function definitions, and syntax like HTML tags. Figure 6.9 demonstrates how our decontamination

threshold impacts the 7-gram distribution of non-members. Non-members under our decontamination

threshold are more likely outliers to the GitHub domain (see Figure 6.10 for an example of such an outlier).

The additional n-gram overlap threshold experiments (§6.4.4.2) only exacerbate the impact of thresholding,

which leads to notably higher MIA performance.

Such observations indicate why lexical non-member boundaries may lead to ambiguous interpretations of MIA

performance in high-overlap domains. Here, using semantic differences between samples to draw non-member

boundaries may be key to better understanding membership leakage in such domains.
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6.5 Importance of Candidate Set Selection

In contrast to our findings in §6.4.2, recent works report state-of-the-art MIAs achieving > .7 AUC ROC on

pretrained LLMs [211, 276]. Our in-depth investigation highlights one such reason for the differences is due

to an inherent but likely unintended distribution shift between members and non-members in their settings.

Experimental Setup. Prior work distinguishes members and non-members of a target domain based on the

knowledge cutoff date of the target model, with members coming before and non-members coming after the

cutoff. We construct similar experimental settings under two domains also used in earlier works: Wikipedia

and ArXiv.

Wikipedia. For the temporal Wikipedia benchmark non-members, we collect samples from the RealTimeData

"wikitext_latest" dataset [183]. This yielded Wikipedia articles created between the week of August 12,

2023 till the week of January 8, 2024††. We then follow Pile processing steps by simply appending the article

titles to the front of each respective article with a "\n\n”. We note that Pile members are sampled from

articles in a Wikipedia dump from before March 2020 [97]. Members and non-members are then sampled

with the same criterion as in the general experiments.

ArXiv. For the temporal ArXiv benchmarks, the member set for each benchmark is fixed and sampled from

the ArXiv subdomain of the Pile training set, which consists of papers posted prior to July 2020 [97]. For

non-members, we use the ArXiv API again following Li et al. [183] to collect ArXiv preprints from specific

months: August 2020, January 2021, June 2021, January 2022, June 2022, January 2023, and June 2023 ‡‡.

We then apply the same processing steps used in the Pile [97]. This mainly involves converting the latex

sources for a given preprint into a single Markdown file, and then filtering out documents such as those with

conversion errors. For each month range, we sample non-members from processed files in the given date

range. By sampling non-members from successively later time ranges after the Pile ArXiv cutoff date, we

also seek to explore how greater temporal shift impacts MIA performance. We again sample both members

and non-members with the same criterion as in the general experiments.

Results. Table 6.7 demonstrates that the temporally shifted settings yield MIA performances significantly

higher than when members and non-members are from the same temporal range. Figure 6.12 also demonstrates

that MIA performance generally increases as non-members are further temporally shifted from member data.

We speculate this follows from changes in language such as the introduction of new terminology and ideas

over time.
††Note that while the articles are created in the recent time frame, the contents of the Wikipedia page aren’t necessarily

about recent topics, people, or events
‡‡This slightly differs from the Pile ArXiv data collection, which uses the ArXiv bulk access through S3. However, we believe

both ArXiv bulk access and API should yield the preprints in the same manner regardless.
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Temporal Shift as Change in n-gram Overlap. We interpret temporal shift as a change in n-gram overlap

distribution between the original and temporally shifted non-members. Figure 6.11 demonstrates that the

distribution of 7-gram overlap of such shifted data concentrates at lower overlap percentages compared to

their natural counterparts. The natural Wikipedia non-members have an average 7-gram overlap of 39.3%,

whereas for the temporally shifted Wikipedia non-members it is 13.9%.

Figure 6.13 reinforces our observations in Figure 6.11, as similar to the temporal Wikipedia setting, temporally

shifted non-members from after the target model’s knowledge cutoff date are concentrated at considerably

lower % n-gram overlap than non-members from the natural ArXiv non-member set. This contributes to the

greater MIA performance in general over the temporally shifted ArXiv benchmarks. However, we note that

n-gram overlap distribution shift does not provide a strong interpretation for the increase in MIA performance

as non-members are increasingly temporally shifted. For example, the average 7-gram overlap of non-members

from the month 2020-08 is 22.7% while the average for the month of 2023-06 is 20.5%. While there is a

small decrease in average 7-gram for later non-members, the change is quite small and doesn’t clearly justify

the considerable difference in MIA performance when evaluating on benchmarks using non-members from

the different months (i.e.,.723 → .795 AUC ROC from the 2020-08 benchmark to the 2023-06 benchmark).

We speculate other factors that contribute to this increase include changes in the distribution of topics

(i.e., increasing popularity of research into LLMs) and the presence of specific identifying tokens (i.e., dates,

references, new terminology). We believe such factors only further reinforce the need to carefully analyze

MIA benchmark construction when evaluating MIAs to understand what signals are truly being captured.

In general, when aiming to assess MIA performance, we advise estimating how representative a sample

non-member set is of the member domain by comparing its n-gram overlap distribution with that of a

left-out sample set from the pretraining corpora. Particularly, if the distribution of the candidate set is

noticeably shifted towards lower n-gram overlap compared to the left-out member sample set, the candidate

non-member set may not be representative of the member distribution from the target domain and potentially

high MIA performances should be carefully examined. Closer inspection (Table 6.8) reveals the extent of

such over-estimation; decision thresholds derived using temporally-shifted non-members end up testing for

temporal shift rather than membership. We note that distinguishing between members and temporally shifted

non-members is a realistic inference game with practical implications but differs from the classical MI game

as temporally-shifted data may belong to a different distribution.

6.6 Revisiting Membership

The definition of membership in the standard MI game treats only records seen exactly during training as

members, e.g., for language models, substrings appearing exactly in the training corpus. However, this may

be at odds with what adversaries and privacy auditors care about when concerning information leakage. For
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Thresholding Benchmark 1% 5% 10%

LOSS Ref min-k zlib LOSS Ref min-k zlib LOSS Ref min-k zlib

2020-08 3.2 4.2 4.5 3.7 12.6 13.4 13.5 13.8 24.1 23.3 24.6 20.2
2021-01 3.7 3.9 3.5 3.5 11.4 15.8 13.5 10.4 21.7 27.0 24.6 17.5
2021-06 3.2 4.2 5.7 5.4 14.4 16.0 15.7 13.6 25.5 25.5 29.5 23.0
2022-01 4.5 4.2 5.3 4.1 14.4 16.3 14.6 12.7 24.5 27.0 28.7 22.0
2022-06 2.8 3.9 3.1 2.5 10.3 18.1 13.1 10.7 23.4 27.8 25.4 20.6
2023-01 2.9 8.5 3.5 3.1 11.9 23.5 13.5 10.9 25.0 36.1 26.3 21.9
2023-06 5.8 9.4 5.5 5.8 15.6 22.7 19.1 14.1 26.3 37.3 27.8 22.2

Temporal Wiki 9.8 7.5 10.3 7.9 23.8 22.8 24.3 17.6 30.0 34.1 35.0 22.8

Table 6.8: FPR (%) on non-members from the Pile (original; not temporally shifted) on various attacks when
using a score threshold that achieves a 1, 5, or 10% FPR on the temporally-shifted ArXiv (for varying levels
of temporal shift) and Wikipedia benchmarks. The target model is Pythia-dedup-12B. FPRs on the
original non-members are much higher then the thresholded FPR on the temporally shifted
benchmarks, indicating that such thresholds may be moreso classifying temporal shift rather than member
and non-members.

generative models especially, guessing the membership of some sample via other sufficiently close samples

can be useful. For example, any paraphrase of "Product launch in Q2, 2025" may be relevant as long as

it preserves information regarding the product launch timeline, even if the paraphrase has a significant

lexical difference, e.g., "Launching product in Q2, 2025" or "Q2 2025 release". Note that standard notions

of Differential Privacy [74] do not immediately protect against such cases, since records being tested for

membership are not, in the literal sense, members. We explore two methods of constructing such "sufficiently

close" samples.

6.6.1 Lexical Distance

We first experiment with creating modified member samples by replacing n random tokens in a given sample

with tokens randomly sampled from the model’s vocabulary. We do so for n = {1, 10, 25} (20 trials per n)

and visualize the distribution for MIA scores using LOSS and Reference-based attacks (Figure 6.14, top).

The LOSS attack yields distinct loss distributions between the modified members and original member/non-

members, suggesting that the model is sensitive to out-of-place random tokens even for lightly perturbed

member samples. The Reference-based attack, on the other hand, has a distribution of modified members much

closer to both members and non-members, likely due to the reference model calibration accounting for the

complexity introduced by the random tokens. This further reinforces the ambiguity of such samples—should

they be considered members or non-members?

We also compute the thresholds corresponding to certain FPRs for actual member and non-member data and

use these thresholds to compute the FPR on the modified members. We consider these modified members as

"non-members", which they are with regards to exact match§§. §6.6.1 shows that these modified members

have extremely low FPRs for edit distance as low as n = 1, suggesting that these samples would be classified

as non-members by the MIA, even though from the perspective of information leakage such a sample is
§§We perform token replacements at random with random tokens, so it is unlikely that these edited members are also actually

members.
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Domain 1% 5% 10%

1 10 25 1 10 25 1 10 25

ArXiv 0.1 0.0 0.0 0.3 0.1 0.1 0.7 0.3 0.2
Wikipedia 0.0 0.0 0.0 0.2 0.1 0.1 0.6 0.4 0.1

Table 6.9: FPR (%) on modified members (treated as non-members) when using a score threshold that
achieves a 1, 5, or 10% FPR on the original member and non-member data for ArXiv and Wikipedia domains.
Results for lexically similar modified members at edit-distances n = {1, 10, 25}. Reference-based attack is
shown. For LOSS attack, all FPR values are 0 across all tested FPR thresholds and values of n.

Domain LOSS Ref

1% 5% 10% 1% 5% 10%

ArXiv 0.0 0.8 2.5 0.7 1.9 4.0
Wikipedia 0.0 0.5 2.3 0.4 3.0 8.2

Table 6.10: FPR (%) on modified members (treated as non-members) when using a score threshold that
achieves a 1, 5, or 10% FPR on the original member and non-member data for ArXiv and Wikipedia domains.
Results for semantically close modified members. LOSS and Reference-based attack reported.

effectively a member. We highlight the need to rethink membership for samples with extremely low lexical

distance from actual training members, though even membership at higher lexical distances is important

with respect to what information is still leaked in the unperturbed portions.

6.6.2 Semantic Distance

While a small edit distance suggests closeness in meaning, a higher edit distance does not necessarily imply

loss of semantics. We compute MIA scores for neighbors generated for member samples as part of the

Neighborhood attack for the Wikipedia and ArXiv benchmarks and repeat the above pipeline. Visualizing the

scores shows how the modified members are not too far from original member score distributions, especially

for the Reference attack (Figure 6.14, bottom). We repeat the same FPR experiment as edit-distance-based

modified members. While the FPR for these semantically close records is noticeably higher than records close

by edit distance, the false positive rates are still low (§6.6.1). Again, these results suggest that semantically

close members would be classified as non-members even though they may be as useful as actual members

depending on the inference goal and the semantic information preserved.

While it is not surprising that semantically close neighbors have MIA scores more similar to actual member

samples than randomly-replaced tokens, it is clear that an ideal distance function should combine the benefits

of lexical distance and semantics in defining a membership neighborhood. Such observations also motivate a

fully semantic MI game, where a neighbor member may be defined by its proximity to an exact member in

a semantic embedding space. This may provide a clearer interpretation of knowledge leakage than lexical

matching, especially when samples naturally have high lexical (i.e., n-gram) overlap.
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Parahprasing with GPT. Here, we focus on generating member paraphrases that are semantically similar

while preserving as much specific information from the original member sample as possible. To do so, we

follow [350] and prompt GPT4 [242] to paraphrase member samples in a different style (5 trials per member).

We perform this paraphrasing over the ArXiv, Wikipedia, and HackerNews domains; see Table 6.11 for

domain-specific prompts. In general, we don’t focus on the lexical similarity of the paraphrases unlike

the earlier semantically similar samples generated via masking and replacing a small percentage of tokens.

However, with HackerNews, we do specify a comment structure different from how HackerNews records were

formatted for model training, a noticeable lexical difference.

Domain Prompt

ArXiv Please help me paraphrase the following text chunk from a research paper in a
different style. Importantly, for sentences containing specific details like mathe-
matical definitions or proofs, only make minimal changes and ensure these details
are included exactly in the paraphrase. If the paper includes a title or authors,
please keep them in the rephrase. If not, please DO NOT make up a title. Use a
similar number of words.

Wikipedia Please help me paraphrase the following text chunk from Wikipedia in a different
but concise style. Importantly, for sentences containing specific details, make
minimal changes and ensure all details are included correctly in the paraphrase.
Use a similar number of words.

HackerNews Please help me paraphrase the following conversation chunk from a thread in
HackerNews while maintaining the conversational style. Follow this structure for
each comment in the thread: [user] - [comment]. Ensure all user’s comments are
represented in the paraphrase. Make sure all details in each user’s comments
are included correctly in the paraphrase, such as links. Be specific and don’t
generalize.

Table 6.11: Instructions used to prompt GPT4 to obtain paraphrased members.

We again visualize the score distributions between the paraphrased members, and original members and

non-members (Figure 6.15). We observe in general across both the LOSS and Reference-based attacks over

the three domains that the paraphrased member score distributions are distinguishable from the original

member and non-member score distributions but have noticeable overlap, similar to what was observed with

masking-based semantic neighbors. However, when we perform the FPR experiment (Table 6.12), we see that

in high-confidence settings, the paraphrased members are likely to be classified as non-members. Both the

LOSS and Reference-based attacks seem noticeably insensitive to such paraphrased neighbors.

6.7 Conclusion

In this chapter, we provided a taxonomy of memorization in LLMs, discussing challenges with defining memo-

rization and the consequences of memorization for various domains. We also study verbatim memorization

and shed light on the difficulty of membership inference against LLMs from the lens of an adversary. Our
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Domain LOSS Ref

1% 5% 10% 1% 5% 10%

ArXiv 0.1 0.2 0.5 0.2 0.7 1.7
Wikipedia 0.0 0.0 0.2 0.0 0.2 0.7
HackerNews 0.1 1.1 1.7 0.0 0.1 0.2

Table 6.12: FPR (%) on modified members (treated as non-members) when using a score threshold that
achieves a 1, 5, or 10% FPR on the original member and non-member data for the ArXiv, Wikipedia, and
HackerNews domains. Modified members are generated by prompting GPT4 to paraphrase member samples
with significant lexical difference. LOSS and Reference-based attack reported.

results suggest two possibilities: 1. data does not leave much of an imprint, owing to characteristics of the

pre-training process at scale, such as large datasets and single-epoch training, and 2. the similarity between

in and out members (which we demonstrate via n-gram overlap), coupled with huge datasets, makes this

distinction fuzzy.

While MIA performance could improve via stronger attacks [45], the second factor requires rethinking the

membership game. The membership inference game needs to be extended for such generative models to

better align with information leakage that adversaries and auditors may care about, such as user-level leakage

[150] and PII [193]. While data extraction [44, 49, 104] takes a right step in this direction, the fraction of

such data is relatively tiny, and the adversary has no control over what training data is regurgitated. In the

meantime, special care should thus be taken to avoid unintentional distributional shifts while constructing

non-members for MIA benchmark construction.

We highlight three research directions that we deem particularly important:

• Many existing definitions of memorization are specific to known attacks and not vice versa. For example,

the definitions that involve prompting the model with a prefix are adapted to the auto-regressive

training of models, and, while helpful in measuring a particular notion of memorization, do not cover

adversaries that know a suffix of a document and want to extract a prefix.

• We did not find any research looking at data memorization from the supervised fine-tuning and RLHF

phases, even though these phases seem to contain the most severe memorization risks. In particular, it

would be important to know whether user-submitted prompts that are used in these training phases

can be extracted from the model.

• We want to minimize the amount of undesirable information memorized by LLMs due to the risks

outlined in this chapter. However, it is not clear which information LLMs need to memorize for good

performance on downstream tasks, and the distinction between desirable and harmful learning is not

well defined. This becomes an even more interesting question in light of the advent of LLMs enhanced

with external knowledge, such as LLMs with Internet access.
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Memorization in LLMs is an emerging area, and interactions between technical advances, demonstrated

harms, and regulations and lawsuits will be necessary to achieve clarity on many of the issues raised in our

work. Our experiments with membership inference demonstrate that we need better methods to measure

even verbatim memorization, the most well-defined form of memorization. This will be a long and evolving

process, but one in which the research community should play an essential role.
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Figure 6.8: Distribution of n-gram overlap over all evaluation domains for n = 4, 7, 13.
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Figure 6.9: 7-gram overlap of GitHub non-member data before and after 13-gram decontamination at threshold
≤ 80%.
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http://burmese.voanews.com/a/myanmar-ambassador-of-thailand-said-they-will-appeal-the-case-according-to-the-thai-law/3124176.html

လိပ� �ၽန◌္းအမႈ အယူခံ၀င�ိ�႔ ◌ျပင�င္

ၿဗိတိန◌္ႏ◌◌ုငိ�ံသား ကမာၻလည့ွ◌�ရီးသည္◌ႏ◌စ္ွဦးကုိ ထုိင◌္းႏ◌◌ုငိ�ံ ေ◌ကာေ့◌တာင္ အပန◌္းေ◌◌ျဖက�ၽန◌္းမွာ သတ�ဲ�တယ� ိ�တဲ�့စဲခ်က�ဲ႔
ေ◌သဒဏ္ ခ်ခံထားရတဲ့ ◌ျမ��ာႏ◌◌ုငိ�ံသားႏ◌စ္ွဦးရဲ ႔အမႈကုိ ထုိင◌္းႏ◌◌ုငိ�ံရဲ႕ တရားဥေပဒအတိငု◌္း ဆက�ပီး အယူခံ၀�င�ားႏ◌ိငု�ိ�႔အ�တက္
ထု◌ငိ◌္းႏ◌ိငု�ံ ေ◌ရွ ေ႔နမ်ားေ◌ကာင�ီန႔ဲ ဘနေ္◌ကာက�မဳိ ႔က ◌ျမ��ာသံအမတ�ါ၀င�ဲ� လိပ� �ၽန◌္းအမႈအ�တက္ လိကု�ါေ◌ဆာ�င�က္ေ◌နတဲ့
◌ျမ��ာသံရံ◌းုအထူးေ◌ကာ◌�တီတိ႔ု ေ◌�တဆံ◌ခ့ဲုၿပီး သက္ေ◌သေအထာက�ထား အခ်က� လက္ စုေ◌ဆာင◌္းဖုိ႔
အ�တက္◌ျပင�ငေ္◌နၾကပါတယ္။ ေမအးေ◌အးမာကသတင◌္းေ◌ပးပုိ႔ထားပါတယ္ ။

ၿဗိတိန◌္ႏ◌◌ုငိ�ံသား ကမာၻလည့ွ◌�ရီးသည္◌ႏ◌စ္ွဦးကုိ ထုိင◌္းႏ◌◌ုငိ�ံ ေ◌ကာေ့◌တာင္ အပန◌္းေ◌◌ျဖက�ၽန◌္းမွာ သတ�ဲ�တယ� ိ�တဲ့ �စဲခ်က�ဲ႔
ေ◌သဒဏ္ ခ်ခံထားရတဲ့ ◌ျမ��ာႏ◌◌ုငိ�ံသား ◌ႏ◌စ္ွဦးရဲ ႔ အမႈန႔ဲ ပတ� က� �◌႔ိလိပ� �ၽန◌္းအမႈအ�တက္ ဖဲြ◌႔စည္◌းထားတဲ့
◌ျမ��ာသံရံ◌းုအထူးေ◌ကာ◌�တီ၀ငေ္◌�တ န႔ဲ ထု◌ငိ◌္းေ◌ရွေ႕နမ်ားေ◌ကာင�ီန႔ဲ တိငု�ငေ္◌�ဆးေ◌ႏြ◌းမႈေ◌�တလပု�ဲ�အၿပီးမွာေ◌တာ့
◌ျမ��ာသံအမတ္ဦး၀င◌္းေ◌မာင� ထု◌ငိ◌္းႏ◌ိငု�ံရဲ႕ တရားဥေပဒအတ◌ုငိ◌္းဆက�ပီး အယူခံ၀�င�ားမယ� �◌႔ိ ေ◌◌ျပာဆု◌�ိသားပါတယ္။

“ထုိင◌္းႏ◌ိငု�ံအစုိးရန႔ဲ ထုိင◌္းႏ◌ိငု�ံရဲ႕ ဥေပဒအရ ထုိင◌္း၀��ကီးခဳ်ပ�ိ�ယ� ိ�င္ အယူခံ၀င◌္ႏ◌ိငုေ္◌ၾကာင◌္း လမ္◌းခင◌္းေ◌ပးတဲအ့�တက္ ေက်နာ◌��ိ႔
ဆက�ပီး အယူခံ၀င�ပီးေ◌တာ့ ဒီေကလးေ◌�တရဲေ႕မ်ွာ◌�င◌့�က်� ိ� ဆက�က�ပီး ေ◌ဆာ�င��က� ားမွာ◌ျဖစ�ါတယ္။”

ထုိင◌္းေ◌ရွ ေ႔နမ်ားေ◌ကာင�ီဟာ ေ◌ရွ ေ႔န ၁၁ ဦးပါအဖဲြ◌႕န႔ဲျမ��ာလငူယ္၂ ဦးရဲ ႔အမူကု◌ိ အခမ့ဲ ေ◌ရွ ေ႔န လိက္ုေ◌ပးခ့ဲၿပီး တရားမွ်တြစာ
စီရင◌္ႏ◌ိငု�ိ�႔အ�တက္ ဥေပေဒၾကာင◌္းအရအကူညီေ◌ပးေ◌နခ့ဲတာပါ။ သူတိေုအနန႔ဲ ခုိင�ာတဲ့ သက္ေ◌သ ေအထာက�ထား
ေ◌�တလံ◌ေု◌လာ�က�ာမရခ့ဲတာေ◌ၾကာင◌့္ ဒီအမူကုိ လ◌ုကိ�ါေ◌ဆာ�င�က� ဲ�အခါမွာ လိအုပ�်က္ေ◌�တလည္◌းရိွေ◌နခ့ဲတယ� ိ�႔ ဆုိပါတယ္ ။
ဒီေကန႔မွာေ◌တာ့ ထုိင◌္းေ◌ရွ ေ႔နမ်ားေ◌ကာင�ီက ◌ျမ��ာသံအမတ�ဲ႔ လိပ� �ၽန◌္း အ�တက္ ဖဲြ◌စည္◌းထားတဲ့
◌ျမ��ာသံရံ◌းုအထူးေ◌ကာ◌�တီန႔ဲ ေ◌�တဆံ◌ၿုပီး ◌ျမ��ာလငူယ္၂ ဦး အ�တက္အယူခံဆက� က္◌ႏ◌ိငု�ိ�႔ဥေပေဒၾကာင◌္းအရဆက� က္
လပ္ုေ◌ဆာင◌္ႏ◌ိ◌ု���ဲအခ်က္ေ◌�တကု◌ိ ေ◌�ဆးေ◌ႏြ◌းေ◌◌ျပာဆုိခ့ဲတယ္◌��ိ သံရံ◌းုအထူးေ◌ကာ◌�တီေ◌ခါင◌္းေ◌ဆာင◌္ျဖစ�ဲ�
ဦးေ◌က်ာ◌ေ္◌သာင◌္းက ေ◌◌ျပာပါတယ္။

“ေ◌ရွ ေ႔နမ်ားေ◌ကာင�ီ ဥက႒ၠက Dej Udom Krairit ေ◌ပါေ့◌နာ◌။္ သူေက◌ျပာတာကအခ်က္ ၃ ခ်က္ေ◌◌ျပာတယ္။ အယူခံကိစၥမွာတဲ့ အမႈကုိ
အစေကနအဆံ◌းုအထိ ◌ျပ��ပီးေ◌တာ့ စစ္ေ◌ဆးေ◌ပးဖုိ႔ ေ◌တာင◌္းဆုိႏ◌ိငု�ရာကိစၥရိွတယ� ဲ�။ အဲဒါေ◌�တေကတာ့ ဘာလဲဆုိေ◌တာ့ နပံတ္ ၁
သက္ေ◌သခံေ◌�တဟာ �လဲမွားတယ္။သက္ေ◌ေသ�တလည္◌း�လဲမွားတယ� ိ�ၿပီးေ◌တာ့ ေက်နာ◌��ိ႔ဘက� တရားခံဘက�
ေ◌ခ်ပႏ◌ိငု�ဲ�အခ်က� လက�ွိရင္ တင◌္ျပလိ႔ုရတယ� ဲ�။ နပံတ္ ၂ အခ်ေက� တာ့ ပစၥည္◌းသက္ေ◌ေသ�တဟာအတအုေပ�တ◌ျဖစ္ေ◌နတယ္။
အစစ�မွ��ဟတု� �း။ ေ◌နာက�ပီးေ◌တာ့ တင◌္ျပတဲအ့ခ်က� လက္ေ◌�တကလည္◌း အမွားအ�ယင◌္းေ◌�တ◌ျဖစ္ေ◌နတယ� ိ�လိ႔ုရိွ�င�ည္◌း
◌ျပ��ပီးေ◌တာမွ့ အမႈကုိ အစအဆံ◌းု◌ျပ��ပီးေ◌တာ့ စစ္ေ◌ဆး လိ႔ုရပါတယ္။ နပံတ္ ၃ အခ်က� ထပ�ပီးေ◌တာ့ တင◌္ျပႏ◌ိငု�ဲ� သက္ေ◌ေသ�တ
ပစၥည္◌းေ◌�တ၊ သက္ေ◌သကသက�ဲ�၊သက�ွိ သက္ေ◌ေသ�တ ရိွခ့ဲရင္ ဒီအခ်က္ ၃ ခ်က� ဲကတခ်က�်က္ ကုိယ့◌�က� ေ◌ထာက္◌ျပႏ◌ိငု�ရာ
ေ◌◌ျပာႏ◌ိငု�ရာရိွရင္ ဒီအမႈကုိ အစအဆံ◌းုထိ◌ျပ��ပီးေ◌တာ့ စစ္ေ◌ဆးြခင◌့�င�ိ�႔ရပါတယ� ဲ�။ ဒီအခ်က္ ၃ ခ်က� ဲမွာ တခုခုေ◌တာင�ည္◌းေ◌ကာင◌္း ၊
အခ်က္ ၂ ခ်က္ေ◌သာ◌�ည္◌းေ◌ကာင◌္း၊ အခ်က္ ၃ ခ်က္ေ◌သာ◌�ည္◌းေ◌ကာင◌္း ၊ တခုခုရိွခ့ဲလိ႔ုရိွရင္ မိသားစု၀င�ဦးဦးက ◌ျပ��ပီးေ◌တာ့
ဒီအမႈကိစၥကုိ ◌ျပ����စ္ေ◌ဆးေ◌ပးဖုိ႔အ�တက္ ေ◌တာင◌္းဆုိလိ႔ုရပါတယ� ဲ�။”

������ပါအ၀င္ နယ�ပ�မဳိေ႕�တမွာေ◌တာ့ ◌ျမ��ာႏ◌◌ုငိ�ံသားလငူယ္ ၂ ဦးကုိ◌ျပ��ႊတ္ေ◌ပးဖုိ႔န႔ဲ တရားမ်ွတမႈကုိ ေ◌တာင◌္းဆုိတဲ့
ဆုိင◌္းဘုတ္ေ◌�တကုိ ကုိင◌္ေ္◌ဆာင◌္ျပဆႏၵျပပဲေြ◌�တက ◌ျဖစ္ေ◌နဆဲပါ။

ဆႏၵျပသူေ◌�တဟာ ထု◌ငိ◌္းႏ◌◌ုငိ�ံရဲ႕ တရားစီရငေ္◌ရးကု◌လိည္◌း ေ◌၀ဖ��ကတာေ◌�တလည္◌းရိေ◌နွပါတယ္။ ဒီအ�တက္
ထု◌ငိ◌္းေ◌ရွေ႕နမ်ားေ◌ကာင�ီက ထုိင◌္းႏ◌ိငု�ံရဲ႕ တရားစီရငေ္◌ရး မ႑ဳိင�ည့◌�တ္ မွ�� ��ာကုိ ◌ျပသဖု◌႔ိအ�တက္ ဒီအမႈန႕ဲပတ� က� ိ�႔ ခုိင�ာတဲ့
သက္ေ◌သေအထာက�ထားေ◌ေ�တပးဖုိ႔ ေ◌တာင◌္းဆုိခ့ဲတယ� �◌ိ ◌ဦ့းေ◌က်ာ◌ေ္◌သာင◌္းကဆက္ေ◌◌ျပာပါတယ္။

“ငါတိ႔ုတိငု◌္း◌ျပ��ဲ႕တရားစီရငေ္◌ရးမ႑ဳိင္ ဘယ္ေ◌လာက္တည့◌�တ္ မွ�� ��လဲဆုိတာ◌ျပခ်င�ယ္။ နင�ိ�ေ႔�တ ဒီေကနၿပီးေ◌တာ့
ဒီလိခုိုင�ာေ◌သခ်ာတဲ့ သက္ေ◌သအခ်က�လက္ေ◌�တ �ထက� ာလိမ့◌�ယ� ိ�႔ ငါတိေု႔မ်ွာ◌�င◌့�ယ္။ အျမ��◌ံးု ငါတိ႔ုကုိ ကူညီေ◌ပးပါလိ႔ု
ေ◌မတၱာရပ�ံပါတယ္။

ၿပီးခ့ဲတဲ့ တႏ◌စွ�ာကာလအ�တင◌္းမွာေ◌တာ့ သက္ေ◌သ�ထက္ေ◌ပးႏ◌◌ုငိ�ဲ� သူေ◌�တရဲ႕ ေ◌နထု◌ငိေ္◌ရးအလပု�ကုိင�ဲ႔
လံ◌◌ုျခံ◌ေဳ◌ရးကိစေၥ�တကုိ ◌ျမ��ာသံရံ◌းုန႔ဲ လိပ� �ၽန◌္းအထူးေ◌ကာ◌�တီတိ႔ုကတာ၀���ေ◌ပးႏ◌ိငု�ာေ◌�တ မရိွတဲအ့�တက္
လိပ� �ၽန◌္းေ◌ပၚမွာ အလပု��ပ�ကတဲ့ ◌ျမ��ာႏ◌ိငု�ံသားသက္ေ◌ေသ�တ ရသငေ့◌�လာက္ မရရိွခ့ဲဘူးလ႔ုိ ဦးေ◌က်ာ◌ေ္◌သာင◌္းကဆု◌ပိါတယ္။

ဒီေကနမွာေ◌တာ�့�����ပါအ၀င္ ထုိင◌္း-◌ျမ��ာနယ�ပ�မဳိေ႕�တ◌ျဖစ�ဲ� ◌ျမ၀တီၿမဳိ႕န႔ဲ ဘုရားသံ◌းုဆူၿမဳိ႕ ေ◌�တမွာေ◌တာ့ ဆႏၵျပမႈေ◌�တ
ဆက္◌ျဖစ္ေ◌ပေၚနပါတယ္။

Figure 6.10: A sample GitHub non-member outlier captured by the ≤ 80% 13-gram overlap threshold. This
sample is from a language resource repository under Google, but is a clear outlier to the code-dominant
GitHub domain
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# Params Temporal Wiki

LOSS Ref min-k zlib Ne

160M .643 .602 .648 .541 .600
1.4B .653 .705 .682 .572 .603
2.8B .667 .754 .701 .593 .615
6.9B .675 .788 .714 .601 .620
12B .680 .796 .719 .607 .626

Table 6.7: AUC-ROC on the temporally shifted
Wikipedia benchmark across various MIAs. Tar-
get models are the Pythia-dedup suite models. For
each model, the highest score across MIAs is bolded.
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Figure 6.11: Distribution of 7-gram overlap for
the original and temporally-shifted non-members.
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Figure 6.12: MIA performance across benchmarks where non-member data is selected from ArXiv preprints
created during increasingly later months past the target model’s knowledge cutoff. Timestamps are formatted
as year-month. The target model is Pythia-dedup-12B. In general, MIA performance increases as the
temporal shift of non-members increases
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Figure 6.13: Distribution of n-gram overlap for non-member ArXiv preprints sampled from the months
2020-08 and 2023-06, respectively. We also plot the n-gram overlap distribution of the original Pile ArXiv non-
members. Between the original non-members and both temporally shifted non-member sets, the temporally
shifted non-member n-gram overlap distributions are considerably more concentrated at lower
% n-gram overlap. The original non-members have an average 7-gram overlap of 39.3%, while non-members
from months 2020-08 and 2023-06 have 7-gram overlap of 22.7% and 20.5%, respectively.
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Figure 6.14: Distribution of scores for LOSS and Reference-based attacks for members, non-members, and
modified members across ArXiv and Wikipedia domains. (Top) Modified members generated by random
token replacement for edit distance 25. (Bottom) Modified members generated by replacing 5% of tokens
with semantically similar tokens.
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Figure 6.15: Distribution of scores for LOSS and Reference-based attacks for members, non-members, and
GPT4-paraphrased (modified) members across ArXiv, Wikipedia, and HackerNews domains.



Chapter 7

Conclusion

User awareness around privacy and trustworthiness of machine learning models is growing, and the need for

privacy-aware machine learning is more pressing than ever. Many organizations at the forefront of machine

learning research and development have started to take privacy seriously, with robustness evaluations via

red-teaming [12, 81, 241]. However, the current state of privacy evaluation is fragmented, with no clear

consensus on the best practices. While membership inference is undoubtedly a valuable tool, as demonstrated

in this thesis, more is needed to capture the full extent of privacy risks in machine learning models. No single

inference threat model is the best choice in all circumstances because subtle differences in threat scenarios

can lead to vastly different privacy evaluations. We also observe in orthogonal work a similar disconnect

between threat models deemed necessary by academia and those that might be practically relevant [296].

Researchers must develop more comprehensive privacy evaluation tools to utilize complete model access to

provide stronger empirical guarantees.

Overall, with this thesis, we call for a more comprehensive approach to privacy evaluation in machine learning:

one that 1. takes into account the full spectrum of privacy risks and threats, 2. aligns well with how user

data is used in practice, and 3. provides actionable insights for practitioners to mitigate these risks.

Record Membership ̸= Privacy While membership inference is well studied, we demonstrate how leakage

can exist even at the level of the distribution from which training data is sampled, irrespective of the level of

access granted to an adversary. Adversaries may not only seek to infer sensitive information at varying levels

of detail, but also attempt to manipulate the model’s training by poisoning the data or influencing the training

algorithm to exacerbate the leakage. Strategies based on Differential Privacy can mitigate membership

inference, and model trainers could employ algorithms like DP-SGD to defend against such adversaries, at

least in passive cases. However, the absence of such defenses against other inference risks highlights the need

for a thorough understanding of leakage, the threat models that adversaries may persist in, and the different

213



Conclusion 214

types of leakage feasible at various levels of model access. Recognizing the interconnections between different

inference risks and exploring attacks within these inference models is a crucial initial step in understanding

that record-level leakage does not provide the ideal privacy standard. While recent research on memorization

in language models, such as semantic memorization measurement [223] and PII memorization [193] represents

progress, there is still a demand for more comprehensive privacy auditing tools and benchmarks.

Aligning Privacy Evaluation with Real-World Data Collection User-level inference, an application of

distribution inference, is not studied as extensively as membership inference. Only a few works [150, 174]

focus on this area, despite being aligned better with real-world data collection. Users contribute multiple

records, knowingly or voluntarily, for training large models. Yet, there is a lack of understanding about the

extent of leakage pertaining to these users’ data. Active adversaries can insert backdoors into models to

increase leakage from downstream data used to fine-tune these poisoned models, all while evading detection

by sophisticated auditors. Given the increasing reliance on pretrained models in machine learning, such

adversaries are practical, with distribution sources like Github and Hugging Face [83]. These factors emphasize

the need for increased attention to user-level leakage. Even when users contribute single records, there are

misconceptions about the ideal way to empirically audit mitigation strategies. We illustrate how common

settings under which models are trained do not align with the folklore around the optimality of black-box

access for membership inference. Our updated theory demonstrates that parameter access is required for

optimal membership inference.

Mitigating Privacy Risks Understanding inference leakage in depth is essential for advancing research,

but it is equally crucial to provide actionable insights to model trainers. Some of our findings are in line

with existing literature, such as the recommendation to avoid over-parameterized models [20] and to use

pre-trained models only from reputable sources [232]. However, other findings suggest that the situation is

more complex. For instance, we find a potential conflict between membership inference and distribution

inference—improved generalization reduces membership inference risk but, depending on the property of

interest, can increase leakage at the distribution level. Furthermore, our research indicates that for user-level

inference, unlike in the standard training scenario [56], there is high leakage when only a few users are present

in the training data, but leakage rises again as users contribute more data. In cases like these, empirical

auditing tools such as our IHA for membership inference can be valuable. These tools enable model trainers to

assess modifications to models and training algorithms, providing a better understanding of leakage without

relying on data-intensive alternatives that require training reference models.
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