

Satori: Open-source Course Management System

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Winston Liu
Spring, 2020

Technical Project Team Members
Disha Jain

Andrew Lewis
Winston Liu

Austin Sullivan

On my honor as a University Student, I have neither given nor received
unauthorized aid on this assignment as defined by the Honor Guidelines
for Thesis-Related Assignments

Signature __ Date May 9, 2020

Winston Liu

Approved __ Date May 9, 2020

Aaron Bloomfield, Department of Computer Science

Satori: Open-source Course Management System
Disha Jain

dishajain@virginia.edu
Andrew Lewis

ajl5yc@virginia.edu

Winston Liu
winston.liu@virginia.edu

Austin Sullivan
acs3ss@virginia.edu

Figure 1: The welcome page for the Satori application, 2020.

ABSTRACT
Satori (also a Japanese Buddhist term for awakening, "comprehen-
sion; understanding") is a new course tools system built to provide
an open-source solution for managing any course with any number
of students. It is designed primarily for computer science profes-
sors to provide a consistent approach to course management while
offering the flexibility to customize each course as necessary. Satori
aims to provide user-friendly technical solutions for course man-
agement, assignment submission and grading, office hours, and
support tickets with streamlined and easy-to-use tools that are able
to handle large numbers of users without issue. It incorporates
useful features from various different course management tools
that exist today, combining them into one all-inclusive solution.

CCS CONCEPTS
• Software and its engineering → Software design engineer-
ing.

ACM Reference Format:
Disha Jain, Andrew Lewis, Winston Liu, and Austin Sullivan. 2020. Satori:
Open-source Course Management System.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.

1 INTRODUCTION
This project was inspired by CS 2150: Program and Data Represen-
tation at the University of Virginia. CS 2150 used a course manage-
ment system built by Professor Aaron Bloomfield over a period of
13 years to suit the needs of the course. The original system con-
tained an office hours queue, assignment submissions, assignment
grading, a gradebook, regrade functionality, and support tickets.
Although the system worked very well, we saw an opportunity
to upgrade the system with new technologies and more features.
Our goal was to create a system that is easier to maintain and is
abstracted out in a way that it can be implemented at any school,
for any course.

Our development team consisted of Disha Jain, Andrew Lewis,
Winston Liu, and Austin Sullivan, and this system is our 4th Year
Engineering Research Capstone project. Our system, Satori, was
built using Django 2.2 and Python 3.7 and is currently being run
on a server, Pegasus, within the UVA CS department domain.

2 RELATEDWORK
Based on our research, we identified several pieces of existing
software that address some of the individual challenges that must
be solved in any unified course management solution, but we did
not discover any application that solved every problem. The main
issues that arise in these current partial solutions are a lack of API
support for integration, paid features, and licensing in opposition
to the open-source solution we wished to create.

2.1 CS 2150 course manager
The course management system used in CS 2150 has a basic office
hours queue, assignment submission and grading flow, as well as
functionality for support tickets and regrades. It is written in PHP

Jain, Lewis, Liu, and Sullivan

and has become increasingly difficult to maintain as features get
tacked on as needed over the years, and as the language has lost
popularity. The web application’s assignment submission system is
strictly built to handle coding assignments; it is not designed for
grading written assignments, a common form of exam assessment.

2.2 TPEGS
TPEGS (Tablet-based Paper Electronic Grading System) is an appli-
cation separate from the above course manager, built to reduce the
time spent grading paper assessments [2] for the entire UVA Com-
puter Science department. TPEGS is a system that allows digital
grading of paper assignments, and requires grading to be done on
a per page basis. It handles simultaneous grading and has desirable
features such as background loading for graders and detailed statis-
tics for professors [1]. Grade retrieval and user experience could
both be improved. It similarly has the issue of using an older code
base that is more difficult to maintain.

2.3 Gradescope
Gradescope is a paid submission grading service [3] that has many
features that would improve on the Pedagogy and TPEGS submis-
sion and grading systems. Gradescope has a well-designed user
experience, and it allows the option for grading to be done on a per
question basis so that one grader can specialize and complete the
grading process quicker. The concept of regrades are built into the
grading system unlike the separate ticketing system that Pedagogy
uses. The web app also includes autograding for programming as-
signments, an important feature we would like to include in our
final solution. Gradescope’s lack of an API makes it a challenge
to integrate into our project, and using a paid service for a non-
optional core feature would be counter-intuitive to our mission of
making an open source application that is accessible to everyone.

2.4 Submitty
Submitty is an open source project that has extensive autograding
capabilities for programming assignments [4]. It includes additional
tools for analyzing networked and distributed programming chal-
lenges, database assignments, code coverage, and memory statistics.
The software also includes plagiarism detection and allows for team
submissions. Additionally, manual grading can be utilized to as-
sess qualities of the code that cannot be unit tested. The grading
for non-coding assessment lacks many of the features fleshed out
in Gradescope. Submitty has a very basic first-in, first-out office
hour queue system. The main issue identified with Submitty is its
reliance on the PHP language for its codebase. The API for Sub-
mitty is still in development, so integration with this service may
be possible in the future.

Our goal is to take inspiration from the best features of each ex-
isting system to develop a manageable application that meets the
requirements of the CS 2150 staff and students as well as the fore-
seeable needs of any potential course, all while maintaining our
commitment to open source design principles.

3 SYSTEM DESIGN
Satori is an application that can be separated into four primary
systems: courses, permissions, queues, and rubrics. Careful consid-
eration went into designing each of these systems.

3.1 Courses
The courses systemwas designed to very stronglymimic the general
design of university courses. When a professor goes into the system
to create a course, he or she first creates the overarching course
(for example, CS 2150: Program and Data Representation), which
is section agnostic. Then, after the course has been created and
enrolled students’ user profiles are linked to the course, the system
assigns each student to the various sections they are in, whether it
is a lab, discussion, or lecture.

Figure 2: View of the Satori courses screen for a TA.

The courses system was an interesting one to design. The goal
was to create a system that would work for any course, regardless
of the structure, and to provide professors with a maximum amount
of flexibility while still maintaining ease of use. The first iteration of
the design was one where a professor simply created a course and
added all the students in the course. The issuewe facedwith this was
that there was no way for professors to set up their assignments,
queue, and tickets for individual sections. We then transitioned
to a system where the professor uploaded rosters for each section
individually, andwould have the option, on creation, to linkmultiple
courses. This created a different issue, however. For courses with
labs and lectures, for example, professors would need to enroll
students in several different sections, and then students would need
to be responsible for knowing which section to access at which
time.

The current iteration of the course system tries to fix the failings
of the two older designs. Because this system creates an overarching
course first and then assigns students to sub-groups, the professor
has the ability to set up their course tools either by section or by
course, whichever they prefer.

An important part of the course creation system was roster
parsing. This is the part of course creation where instructors upload
a CSV file containing information about each of the members of
the course (other instructors, the teaching assistants, the students,
etc.). Roster parsing was built in as a separate library of functions

Satori: Open-source Course Management System

that are called by our app, and are all purely CSV parsing and string
manipulation. It primarily handles input cleaning, dynamic role
classification, and name parsing. The purpose of the roster parsing
library is to standardize any roster input in a way that can be easily
managed by Satori.

The most important consideration while we were developing
this system was to ensure instructors will be able to use it however
their course requires without sacrificing the user experience. This
meant we often had to make difficult decisions regarding technical
features to abstract away in exchange for a simpler user experience.

3.2 Permissions
In any course, there are multiple roles to consider: students, teach-
ing assistants, professors, and perhaps more, depending on the
course layout. Each role has different responsibilities and priorities,
which a course management system must be able to handle. For
example, only students should be able to submit tickets, while only
teaching assistants and professors should be allowed to view or re-
spond to tickets other than their own. Additionally, there should be
clear separation between each course — that is, each course should
be completely isolated from each other, and permissions should
not be transferable between courses. Both of these constraints pre-
sented significant design challenges.

While Django has a highly robust permissions system centered
around models, it does not yet provide a way to assign per-object
permissions. Thus, while it is easy to give a user the permission to
submit tickets for every course, it is much harder to give them the
permission to submit tickets in one course while restricting that
ability for another course they are enrolled in. To work around this
issue, we integrated our project with django-guardian, a package
that gave us the ability to assign permissions per-course. Unfortu-
nately, while django-guardian solved the problem of user permis-
sions, it did not provide a solution for encapsulated groups.

Like model permissions, groups are global in Django. Thus, we
were forced to extend Django’s concept of groups to better fit a
paradigm in which a user can be in multiple groups at a time, each
of which has its own unique set of permissions depending on the
course and should not be discoverable outside of its respective
course. We settled on an intermediary “role” model that would link
courses and groups together. In this way, the role is able to store
auxiliary information such as a human-readable display name while
delegating the permission handling to unique groups behind the
scenes.

Professors are able to create new roles as desired, allowing con-
siderable flexibility in how a professor wants to run their course.
We designed the permissions system to be full-featured without
being too overwhelming; professors are able to fine-tune what each
role should have access to through an easy-to-use checkbox system.

Occasionally, a situation arises where a professor needs to per-
form an action on behalf of a student. Satori handles this possibility
by adding a special permission that allows users to transparently
log in as someone else in the course while still retaining their own
account permissions (impersonation). The controlling user is still
able to view everything without being restricted by the permissions
of the user that they are acting on behalf of, but they are only able
to perform actions that the controlled user can also perform. Satori

also implements proper access control that takes into account the
multi-layered nature of courses — like every other action, imper-
sonation is restricted by course, to prevent controlling users from
seeing details of other courses.

3.3 Queue
One of the major features of our system is the office hours queue. A
queue should be an efficient way to provide order to an office hours
session - and nothing more. It needs to provide information quickly
and accurately when you need it, and then get out of your way so
you can get on with helping students. From a purely functional
standpoint, making the queue fast and reliable is a top priority.
Teaching assistants checking the queue during office hours require
an immediate determination for who is the next student ready to be
helped. This is especially important when office hours are busy and
the queue grows to a considerable length; the more time that’s spent
waiting for a response from the queue, the less time the teaching
assistants are actually helping students when they need it most.
Extensive performance tests were conducted to ensure the queue
performs acceptably, even under significant load. Various potential
optimizations were tested, with the solution that best balanced
simplicity and speed making its way into production.

An important consideration when designing an office hours
queue is the order in which students will be helped. The most
straightforward solution is to simply assign students based on the
order in which they enter the queue, but one might imagine that
a professor may want to order the queue in a different way, such
as by the students seeking help on the earliest due assignment or
prioritizing students who haven’t recently been helped. A notion
of priority is needed. We have provided a handful of suggested
algorithms that can be chosen from by the professor upon creation
of the queue.

As part of our larger goal of making this system easily adopted
by other courses, an intuitive user interface was a priority in the
development process. The queue system should ideally not require
a deep technical background to operate. We designed the buttons
to be clear and unambiguously labeled. The web page is easy to
use from both desktop and mobile devices, to allow for teaching
assistants to manage queues from their phones.

3.4 Rubric
The current Satori app includes the design of a basic submission
system. It allows a gradebook item to be created by an instructor,
specifying the title, category, instructions, file attachments, the files
required for submission, and dates for when the assignment should
be considered late or closed. A student can then submit the assign-
ment, attaching the required files and including any comments, and
the instructor will then be able to view, grade, and supply feedback
on the most recent submission for each student.

While it is adequate for simple assignments, this initial iteration
is not yet ready to replace the existing functionality of TPEGS that
allows multiple TAs or instructors to grade exams simultaneously
and efficiently as possible. To achieve this and the features we found
to be useful within Gradescope, we need the additional concept
of rubrics on the gradebook items. While this has not been fully

Jain, Lewis, Liu, and Sullivan

implemented, we have considered the design of the system and
how it should function within the Satori application.

In order to facilitate the per-question grading model, each grade-
book item would be able to have multiple questions that stored both
the physical location of the question, common in every submission,
as a rectangle object along with the question’s rubrics. Knowing
the question’s location within the pdf document will allow Satori
to focus on the same question for each student while navigating
multiple submissions. Checkouts should be done at the question
level. These question-level rubrics would have multiple options
of point value and description pairs as well as a field to make a
positive or negative point adjustment. The point adjustment and
the value of the selected option will be used to calculate the raw
score for the question. The accumulation of every question’s raw
score will compose the raw score for the assignment.

At this point, modifiers should be applied to the raw score to
compute the effective score for the gradebook item; these modifiers
should be able to add (bonus points), multiply (late penalty of a
certain percentage), and override (cheating sets the score to 0). It
should be made clear to the instructor in which order the modifiers
are applied. Having the two separate scores, effective and raw,
ensures that the history of the grading process is preserved.

4 PROCEDURE
Satori is designed to be very natural and intuitive in all cases. There
are two aspects of Satori, however, uploading a roster and using
the queue, that require a little more explaining!

4.1 Roster Uploading
In order for Satori to successfully parse an uploaded roster, there are
some restrictions on the format and structure of the roster file. We
require two different CSV files to be uploaded, one that is the entire
roster and another that defines the groups each student is in. The
more specific restrictions are included in the system documentation.
For courses at the University of Virginia, any roster exported from
Collab will be compatible with the system.

Figure 3: TA and instructor view of a sample course roster.

4.2 Using the Queue
Using the queue is meant to be very intuitive. First, a professor or
a TA will go in and create a queue. Queues are meant to be specific
to each section of the course. When creating the queue, they will
define the algorithm with which students will be helped and the
time the queue opens. Once the queue has been created and is open,
they will see a dashboard that will list every student in the queue
as they join, with a wide array of options. For example, they can
take the student with the highest priority according to the queue
algorithm, help specific students on the list, manually close/open
the queue, add announcements, and so on. When helping a student,
they are able to leave comments for other TAs to view and can
requeue them if they feel another member of the course staff would
be better suited to answering.

Figure 4: TA view of the Satori queue when it is empty.

For students, they are able to see the queue once it has been
created and are able to join it if it is open. When joining, they will
input their location and select the assignment they need help with
(or none), and then wait until a TA helps them. If they no longer
need help, they are also able to take themselves off of the queue.

5 RESULTS
Over the course of the Spring 2020 semester, the Satori queue was
successfully used in two courses at the University of Virginia, repre-
senting a combined enrollment of over 1000 students. Whereas the
old course tools would occasionally struggle when more than 50
students were on the queue at one time, Satori has thus far proven
to be reliable under the same circumstances and has processed over
2000 queue entries within the span of two months.

From informal surveys given to students and teaching assistants,
most respondents were pleased with the level of usability it offered
and rated the system an average of 5.5/7. Specifically, TAs enjoyed
the improved commenting feature in order to leave notes to other
TAs, “the ability to re-queue students allows TAs to address the
fact that another TA may be better suited to help a student with-
out requiring that they physically...find the other TAs”, and the
estimated waiting time as a way to “[monitor] TA progress and
[reallocate] teaching resources”. Students considered Satori to be
“an improvement from [Pedagogy]”, providing a “more streamlined
and modern” user experience.

Satori: Open-source Course Management System

6 CONCLUSION
As our 4th year capstone research project, we built a course tools
system to replace the aging CS 2150 course management system
and designed it to be able to be used at any school. We focused
on four areas — course management, assignment submission and
grading, office hours, and tickets. By the end of the school year,
portions of it were already in use by over 1000 students and interest
was being generated among other faculty due to its ease of use and
its general-purpose nature.

7 FUTUREWORK
One of the most significant features from the original course man-
agement system that we did not implement was ticketing. Early in
the semester we found a promising Django package which seemed
to have all the features we needed, but we have yet to build this
out.

Another area that needs work is course creation. As detailed in
the “Courses” subsection, we changed how sections are handled
partway through the development process. The design change was
prompted by urgent demand for our office hours queue, but the
addition of section-specific functionality across the system is still a
work in progress. Our vision is to provide similar ability to manage

each section of a course as for the course as a whole, but imple-
menting these abstractions - while maintaining an intuitive view
for the professor - will require more work.

Finally, there are a number of small improvements that could be
made to the office hours queue. The most compelling of these is
using web sockets to automatically update the contents of the queue
page. Currently, the queue updates by refreshing the queue web
page every fifteen seconds. Queue logs are another interesting area
to explore. All actions on the queue are recorded in the database,
which is ripe with data ready to be exploited. Statistics such as
how long students wait on the queue, what percentage of the class
attends office hours, or how long each TA spends helping each
student may provide valuable insights to a professor. An easy-to-use
interface exposing this data to professors could be a distinguishing
benefit of our system.

REFERENCES
[1] A. Bloomfield. 2010. Evolution of a digital paper exam grading system. In 2010 IEEE

Frontiers in Education Conference (FIE). IEEE, Arlington, VA, USA, T1G–1–T1G–6.
[2] Aaron Bloomfield and James F. Groves. 2008. A Tablet-Based Paper Exam Grading

System. In Proceedings of the 13th Annual Conference on Innovation and Technology
in Computer Science Education (Madrid, Spain) (ITiCSE ’08). Association for Com-
puting Machinery, New York, NY, USA, 83–87. https://doi.org/10.1145/1384271.
1384295

[3] Gradescope. 2020. Gradescope. Turnitin. Retrieved May 3, 2020 from https:
//www.gradescope.com/

[4] Submitty. 2020. Submitty. Rensselaer Center for Open-Source. Retrieved May 3,
2020 from https://submitty.org/

https://doi.org/10.1145/1384271.1384295
https://doi.org/10.1145/1384271.1384295
https://www.gradescope.com/
https://www.gradescope.com/
https://submitty.org/

