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Abstract

We build a new ordinary differential equation (ODE) model for the directional

interaction, also called effective connectivity, among brain regions whose activities are

measured by intracranial electrocorticography (ECoG) data. In contrast to existing

ODE models that focus on effective connectivity among only a few large anatomic

brain regions and that rely on strong prior belief of the existence and strength of

the connectivity, the proposed high-dimensional ODE model, motivated by statisti-

cal considerations, can be used to explore connectivity among multiple small brain

regions. The new model, called the modular and indicator-based dynamic directional

model (MIDDM), features a cluster structure, which consists of modules of densely

connected brain regions, and uses indicators to differentiate significant and void di-

rectional interactions among brain regions. We develop a unified Bayesian framework

to quantify uncertainty in the assumed ODE model, identify clusters, select strongly

connected brain regions, and make statistical comparison between brain networks

across different experimental trials. The prior distributions in the Bayesian model

for MIDDM parameters are carefully designed such that the ensuing joint posterior

distributions for ODE state functions and the MIDDM parameters have well-defined

and easy-to-simulate posterior conditional distributions. To further speed up the

posterior simulation, we employ parallel computing schemes in Markov chain Monte

Carlo steps. We show that the proposed Bayesian approach outperforms an existing

optimization-based ODE estimation method. We apply the proposed method to an
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auditory electrocorticography dataset and evaluate brain auditory network changes

across trials and different auditory stimuli.
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Chapter 1

Introduction

This study focuses on modeling and making inferences about directional interactions

among human brain regions. Three types of brain connectivity are investigated in

the literature: anatomical connectivity, functional connectivity, and effective con-

nectivity. According to a review by Daunizeau et al. (2011), anatomical connec-

tivity, “i.e., the anatomical layout of axons and synaptic connections, determines

which neural units interact directly with each other.” Functional connectivity “sub-

sumes non-mechanistic (usually whole-brain) descriptions of statistical dependencies

between measured time series.” Effective connectivity “refers to causal effects, i.e.,

the directed influence that system elements exert on each other” (p. 313). Because

we aim to understand the causal architecture of brain networks, this thesis focuses

on studying effective connectivity among brain regions.
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1.1 Brain Activity Measurements

In general, the three types of brain activity time series that are used most commonly

in brain studies are: fMRI (functional Magnetic Resonance Imaging) data, EEG

(electroencephalogram) data, and ECoG (electrocorticorgraphy) data.

1.1.1 fMRI Data

fMRI is a functional neuroimaging procedure that measures brain activity by using

the blood-oxygen-level dependent (BOLD) contrast mechanism. It relies on the fact

that activated brain areas demand more oxygen, which results in an increased blood

flow to those areas (Figure 1.1). Then, the local field in and around the blood vessels

will change because of the change in blood oxygen levels, and the fMRI series can

measure those field variation effects. [1] So it is not a direct measurement of the brain

activity, and the data is collected non-invasively.

During the data collecting process, the subject must place his or her head inside

a scanner, which scans the brain and records the data slice by slice (Figure 1.2). As

a result, the data of the whole brain is not collected simultaneously. Each slice has a

small time lag with the previous slice. Moreover, this data collection technique also

places a light limitation to the spatial resolution of the data, because higher spatial

resolution means more slides to scan and thus a longer time for the subject to remain

immobile inside the scanner, which may make the subject feel uncomfortable. [52]
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Figure 1.1: Activated neurons are coupled with increased blood flow for more oxygen. [28]

Although limited by the number of slices scanned in the experiment, fMRI data

still has a relatively high spatial resolution of 4 to 5 mm to 1 mm. However, it has

a relatively low temporal resolution of 1 s compared to other brain imaging data in

milliseconds. One reason is that it takes a while for the neural activity to be reflected

in the vascular system, and one has to wait for the net magnetization to recover before

the next measure. Also, all the slices of the whole brain need to be finished before

scanning the brain for another time. Finally, fMRI data collection usually involves

much noise, which may come from the scanner, the subtle movement of the subject,

some random thoughts in the brain, and so on. [52]
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Figure 1.2: An example of fMRI image of the brain. [28]

1.1.2 EEG Data

EEG is a physiological method to measure the voltage fluctuations caused by the brain

activity from electrodes placed on the surface of the scalp. The brain has millions

of neural cells and they pass information from one to another via synapses, whose

activity generates a subtle electrical impulse. Although one single impulse is too tiny

to be captured, a group of neurons, if firing in sync, can generate an electrical field

that is strong enough to be measured outside the skull. Thus, the electrodes placed

on the scalp surface are able to measure the electrical activities non-invasively (Figure

1.3(a)) [2]. Further, the data is output in the format of voltage signal series (Figure
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1.3(b)). Since all the electrodes can work simultaneously, EEG is able to collect data

from all the brain regions at the same time, an advantage over fMRI.

(a) EEG Electrodes (b) EEG Voltage Flows

Figure 1.3: 1.3(a) Electrodes are placed on the scalp surface for EEG. 1.3(b) The flow of

voltages output by EEG. [2]

EEG has a high time resolution at millisecond timescales, so it is possible for

EEG to follow the process that the brain deals with the onging signal [45]. Since EEG

electrodes are placed non-invasively, they are separated from the fluctuation sources

by the skull, the scalp, and some other biomass. As a result, EEG has poor spatial

resolution of 50 mm to 90 mm [83]. Moreover, the signal-to-noise ratio of EEG is low.

The electrical field in the environment and that generated by muscle movements near

the brain, e.g., chewing, can add noise to EEG data [78].
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1.1.3 ECoG Data

ECoG, also called intracranial EEG (iEEG), uses electrodes placed directly on the

cortical surface of the human brain to record its electrical activity for clinical purposes

in the treatment of patients with medically intractable seizures or tumors. Figure 1.4

shows the implantation of ECoG electrodes within the skull of the epileptic patient,

both graphically and conceptually. In contrast, EEG places the electrodes outside

of the skull on the surface of the scalp. So ECoG is an invasive procedure, different

from fMRI and EEG.

Figure 1.4: Left: Intracranial electrodes for ECoG. [84] Right: A graphical illustration of

ECoG mechanism.

The special data collection technique leads to nice properties of ECoG data,

including simultaneous recordings of the neuronal electrical activity among many

small brain regions, combined high temporal and spatial resolutions (Figure 1.5),
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and strong signal-to-noise ratio (SNR). First, ECoG has a temporal resolution in

milliseconds as EEG. Second, ECoG has a much higher spatial resolution than EEG,

of 10 mm [5]. The reason is that, to reach EEG electrodes, the electrical signal has to

pass many layers of biological organizations including the solid skull bone, where the

signal attenuates rapidly. So EEG electrodes must record over wide areas with a low

spatial resolution [46]. Last, ECoG has a high SNR since it is an invasive method.

Figure 1.5: Voltage Series by ECoG.
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Finally, ECoG data is a highly reliable and reproducible measurement of brain

activity, which is unavailable in non-invasive measurements of brain activity, e.g.,

fMRI and EEG data. Studies have shown that, for repeated ECoG data collected

over multiple days, comparison analysis based on within and between subject vari-

ances have demonstrated that auditory results are robust accross different recordings,

regardless of medical conditions or seisure focus. This conclusion suggests the relia-

bility of ECoG data to be used in research [20].

In this project, we leverage the good properties of ECoG data over fMRI and

EEG data to study directional interactions among different brain regions and evaluate

changes of their interactions across time and stimuli. As intracranial measurements

of brain activity, ECoG provides unique information for studying the directional con-

nectivity of the brain.

1.2 Model Development

The human brain is a continuous time dynamic system, so it is biophysically natural

to use ordinary differential equations (ODEs) to model the directional effects exerted

by each system component (i.e., brain regions) over others. More specifically, since

studies have shown that interactions among brain regions occur at the neuronal level

[3], we use ODEs to model the neuronal state changes and directional connectivity of

the brain.

The study of human brain networks has attracted much attention from many
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researchers, and existing popular models include structural equation modeling [60]

and dynamic causal modeling [24, 25, 26, 36, 55]. The structural equation model for

neuralimaging data can be applied to different measurements of brain activity, either

fMRI data or voltage flows, and it models the directional interactions among brain

regions in a general linear regression format. As such, the ability to get unique solu-

tions of the model depends on the ratio of unknown parameters to known parameters.

The model depends on the researcher to determine the structure of the brain network

and where the connections do not exist, which could introduce bias to the model.

Also, the model is based on discretization of the brain activity changes over time and

could fail to capture the dynamic nature of the brain.

The dynamic causal models (DCMs) for fMRI and EEG data are the most com-

monly cited ODE models in the literature [24, 25, 26, 36, 55] for directional in-

teractions (effective connectivity) among brain regions. Both fMRI and EEG are

noninvasive methods for measuring brain activity with large noise, hence associated

DCMs rely on strong prior information of the existence and strength of connections

among the brain regions under study to get reliable estimates of brain connectivity.

In addition, the DCMs are usually focused on connectivity among only a few large

brain regions.

We propose an ODE model for ECoG data, which is motivated by statistical

considerations and widely applicable to explore directional connectivity among many

different brain regions without relying on strong, specific prior knowledge of the re-
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gions. Specifically, we use bilinear ODEs to model directional interactions among

brain regions for three reasons. First, the bilinear model, also the simplest ODE

model as a low-order Taylor expansion of nonlinear ones, provides general applica-

bility for approximating high-dimensional dynamic systems. This approach is similar

to using linear regression models to approximate complex association relationships

between various response and predictor variables. As such, linear or bilinear ODEs

have been used to model complex dynamic systems in many scientific studies when

the underlying dynamic mechanism is elusive and the ensuing detailed model speci-

fication is difficult. These studies include gene regulation network [58, 91] and brain

effective connectivity studies based on fMRI data [35]. Second, the simple bilinear

form provides intuitive scientific interpretation of the model parameters, and enables

fast computation for high-dimensional data. Third, taking advantage of ECoG’s high

temporal resolution, we study the brain activity in response to a simple, short audi-

tory stimulus, and the proposed bilinear model can effectively approximate the brain

dynamics within a short period of time.

Within the bilinear formulation, we assume that many model parameters denot-

ing directional interactions among brain regions are zeroes. This is because interac-

tions among brain regions are energy-consuming [4, 33, 68] and sparse connections

helps the brain, a biological system, to conserve energy in order to survive and pros-

per [14, 61]. Moreover, motivated by many reports of brain networks in a cluster

structure [63, 64, 66, 82], which consists of clusters, also called modules, of densely
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connected brain regions, as shown in Figure 1.6, we build a new bilinear ODE model,

called modular and indicator-based dynamic directional model (MIDDM), to charac-

terize sparse connections in the cluster structure in particular. This new ODE model

not only has a scientific basis, but also provides intuitive interpretation of different

functions of the brain regions in different modules.

Figure 1.6: A network in a cluster structure.

Although an iterative optimization algorithm, called Potts-based iterated prin-

cipal differential analysis (P-iPDA), has been developed by [100] to identify clusters

within a bilinear Potts-based dynamic direction model (PDDM), we develop a new

Bayesian approach to estimate the proposed MIDDM, an extension of the PDDM,

for three major reasons. First, the Bayesian method provides a unified inference

framework for evaluating the statistical significance of identified network edges, each

associated with a significantly nonzero model parameter denoting the directional ef-

fect between a pair of brain regions. With the proposed Bayesian method, we can
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study the brain connectivity changes in response to repetitive events, an important

research topic in neuroscience [31, 38]. In contrast, it is difficult to evaluate the

statistical significance or compare network results of different trials by the P-iPDA

approach (see Section 2.3 for more details). Second, the MIDDM, assuming differ-

ent properties for connections within and between modules, essentially presents a

hierarchical model for the brain network. It is natural and convenient to charac-

terize this multilevel structure and to simultaneously address module identification

and directional network edge selection within a unified Bayesian framework, similar

to Bayesian methods [29, 56, 86] for simultaneous variable selection and clustering

in multiple regression. Third, quantification of the MIDDM model inadequacy for

characterizing the complex brain system is natural within a Bayesian framework, an

approach unique from most existing ODE estimating methods, as explained in detail

below.

The proposed new ODE model, motivated by statistical considerations, is consid-

ered as an approximation rather than a principle for the underlying brain mechanism,

in contrast to many existing low-dimensional ODE models for simple, well-understood

dynamic systems. As such, it is important to account for model uncertainty, defined

as the discrepancy between the state functions of the assumed model and the true

state functions of the complex brain system, when estimating the MIDDM. Model

uncertainty quantification, though straightforward for standard statistical models, is

not self-evident for ODEs, since the latter are essentially deterministic models for dy-
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namic systems. [22] and [23] developed approaches within the Bayesian framework by

[54] to quantify discretization uncertainty of ODE models, which is the discrepancy,

caused by limited computation and coarse grids, between the state functions fitted

by discretization methods and the exact state functions of the ODE model. How-

ever, very few methods in the statistical literature have been developed to quantify

ODE model uncertainty. Existing approaches [21, 67] for ODE model uncertainty

quantification were mainly developed for specific low-dimensional dynamic systems.

Here, we develop a new prior on high-dimensional ODE state functions to quantify

the discrepancy between the assumed MIDDM and the underlying brain system.

In summary, we propose a new ODE model for ECoG data to characterize the

brain network of effective connectivity in a cluster structure, and develop a new

Bayesian framework to quantify the ODE model uncertainty, identify clusters, se-

lect significant network edges, and evaluate brain network changes across time and

stimulus types. Moreover, we carefully design new priors on the MIDDM parameters

to ensure fast posterior simulation of the ensuing hierarchical Bayesian model for

high-dimensional ECoG data.

1.3 Outline of Dissertation

The rest of the dissertation is organized as follows.

Chapter 2 reviews the existing models for brain connectivity and methods for

ODE model estimation and cluster identification. In this chapter, we will first in-
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troduce the structural equation model and the dynamic causal model, two existing

models for brain networks, and some of their advantages and limitations. After that,

we will discuss some current ODE model estimation methods. Especially, we will talk

about the P-iPDA in more details.

Chapter 3 introduces the new ODE model, MIDDM, for cluster-structured di-

rectional brain networks, and explains the Bayesian hierarchical method developed

to estimate the MIDDM based on the basis representation of ODE state functions.

A Markov chain Monte Carlo (MCMC) simulation algorithm for posterior inference

is also included in this chapter.

In Chapter 4 we apply the proposed MIDDM and Bayesian method to three

simulated examples, compare the results by Bayesian method with those by P-iPDA,

and demonstrate the advantages of the former over the latter. The first simulation

example is to show that our new method has better performance than P-iPDA when

our model assumptions are valid. The second simulation example is designed to

demonstrate how to compare networks under our model framework. The last simula-

tion example shows the performance of our model when the bilinear assumptions are

moderately violated.

In Chapter 5, we analyze ECoG data collected in an auditory experiment, and

evaluate brain network changes across trials and auditory stimuli. The analysis results

not only confirm existing results, but also bring new insights into understanding brain

connectivity changes in response to repetitive events.
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Chapter 6 concludes our work and discusses developments, including some po-

tential directions to further improve the model for ECoG data analysis, some possible

ways to accelerate the computation of the algorithm, and some other ECoG data sets

or experimental scenarios to which our method may apply.
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Chapter 2

Literature Review

The evaluation of effective connectivity of the brain relies on modeling the interactions

or effects between pairs of brain components along with understanding the mechanism

of the brain measurement process. The most commonly applied and cited models

for directional effective connectivity of human brain in literature include structural

equation models [60] and dynamic causal models [36]. In the following, a brief review

is given for each of them.

2.1 Structural Equation Modeling

Structural equation modeling is a covariance-based method to estimate connections

among brain regions based on known neuroanatomical knowledge. The information

about neural interactions between different brain areas is extracted by decomposi-

tion of the interregional covariances of brain activity measures. Anatomical circuitry
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information is combined with the brain imaging data to determine the existence of

brain directional effects under a particular task.

Specifically, the relationship between different brain regions is described by a

general linear regression equation. For example, a simple structural equation model

can be written in the following matrix format [60]:
X

Z

Y

 =


0 0 0

βzx 0 0

βyx βyz 0




X

Z

Y

+


ψx

ψz

ψy

 , (2.1)

where X, Y , and Z are measures of the brain activity at three different brain areas; βs

are the coefficients representing the direct brain connections, whose absolute values

indicate the relative strength of the corresponding interactions between the brain

regions; and ψs correspond to the effects that brain components have upon themselves

and the mixed effects that come outside the model. The zeros in the β matrix

indicate that the corresponding directional effects do not exist in the model, which

is decided by the researcher based on their knowledge of the anatomical structure

of the brain before the coefficients are estimated. Generally, it is assumed that the

direct interaction between a pair of brain components does not exist if they are

not anatomically connected. Equation 2.1 also implies how the variance of one brain

region is impacted by the variances of the other regions in the model. The coefficients

β are then estimated from the variances and covariances of X, Y , and Z. Figure 2.1

graphically shows the brain network described by the above model.



18

Figure 2.1: A graphic representation of the structural equation model from equation 2.1.

Circles represent three different brain regions, and X, Y , and Z are the brain activity

measurements. Uni-directional arrows represent the directional effects from the source to

the recipient, and βs are the weights of those connections. Bidirectional arrows with ψs

indicate the residual effects with size ψ. [60]

Maximum likelihood estimates of the parameters in the structural equation model

are typically computed through an iterative process. First, some initial values for the

unknown parameters are set, with the residual effects ψs set as a fixed amount of

the total variance for brain regions depending on the number of connections those

brain regions have. Usually, the ratio of ψ to the total variance is lower for brain

areas receiving more influence from others, and it is set to 100% for brain regions

with zero inputs. Next, for each interation the implied variances and covariances

are calculated based on the current parameter values and then compared with the
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observed covariance matrix. Then, the parameter values are updated according to the

differences between the two covariance matrices, and the whole process stops when

those differences are smaller than some reasonable threshold.

The structural equation modeling has the ability to separate the measurement

error from the total error by easily adding a measurement model to the original

structural model. As such the error of the system is decomposed into two parts: the

fitting error in the structural model, and the measurement error in the measurement

model. Assume X, Y , and Z in equation 2.1 are latent brain activity variables, and

x, y, and z are the corresponding observed data from the experiment device. Then

the measurement model can be constructed as the following:

x = λxX + εx

y = λyY + εy

z = λzZ + εz,

where λs are the extends to which the underlying brain activities are expressed in

the measurements at different locations, and εs account for the measurement error

respectively.

The structural equation model separates the effects among brain regions into

direct and indirect effects. The direct effects are those directly estimated by the model

coefficients (β), while the indirect effects can be obtained through the paths in the

brain network generated by the model. Moreover, the structural equation model has

the ability to estimate the asymmetric directional interactions among brain regions
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since the coefficient matrix of β is not assumed to be symmetric. Consequently,

this model is able to solve loops in the brain network, which reflects a common

characteristic of feedback in biological neural networks. In addition, simple t-tests for

the coefficients can be used to give statistical inferences on the brain connections since

the model is essentially a linear regression. And under the same experimental settings,

multiple models can be compared using the goodness-of-fit tests, which eventually

improves the fitness of the model.

Despite the advantages described above, the structural equation model also has

the following disadvantages. First and foremost, the ability to solve the structural

equation model is determined by the complexity of the system. That is, it is im-

possible to compute a unique solution of the model if the number of the unknown

parameters is greater than that of the observations. As a result, the model relies

heavily on the researcher to specify the network structure and set zeros in the co-

efficient matrix to guarantee that it is solvable, and thus can only be applied to a

small number of large brain regions. By this nature, it is a theory-driven method

more frequently used to test given hypotheses about the brain network structure.

Second, this linear regression format could fail to capture the complex nonlinearity of

the biological system, especially the neural system of the brain. Last, the structural

equation modeling assumes the interactions between brain regions are instantaneous

since it is not a time series model. Hence, it does not consider the dynamism of the

brain system, who is changing continuously over time.
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2.2 Dynamic Causal Modeling

Dynamic causal modeling (DCM) is an approach to estimate and make inference

about the effective connectivity among brain areas using ordinary differential equa-

tions (ODEs) based on non-invasive neuroimaging time series, typically fMRI and

EEG/MEG data. DCM differs from structural equation modeling as it treats the

brain as a deterministic nonlinear dynamic system that produces different brain sig-

nals according to different experimental stimuli.

The DCM essentially consists of two parts: the neural state equations, or the

ODEs, and the observation equations. The neural state equations, constructed as

differential equations, model the effective connectivity of the brain and its changes

due to some experimental stimuli. Assume there are d brain regions in the system,

and there are J stimuli in the experiment. The stimulus functions are boxcar or stick

functions. Then assume that x(t) = (x1(t), . . . , xd(t))
′ represent the latent neuronal

states of the d brain regions, and u(t) = (u1(t), . . . , uJ(t))′ correspond to the J

stimulus functions designed in the experiment. An arbitrary form of the neural state

equations can be written as:

dx(t)

dt
= F (x(t),u(t), θ),

where F is some unknown nonlinear function describing the interactions among the

components of x(t) and the influence that the stimuli u(t) give to x(t). θ includes all

the parameters in the model.
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A bilinear approximation to the above formula provides a natural and inter-

pretable simplification of the model for the effective connectivity. This bilinear form

is:

dx(t)

dt
= Ax(t) +

J∑
j=1

uj(t)Bjx + Cu(t), (2.2)

where A is a d × d matrix representing the brain connections in the absence of the

stimuli. The effective connectivity is modeled as the influence that one brain region

exerts to the changing rate of another brain area over time (dx(t)/dt). Each Bj, for

j from 1 to J , is then a d × d matrix standing for the brain connectivity changes

because of the stimulus uj(t). And C is a d × J matrix corresponding to the effects

that the stimuli have on the brain components directly. As already demonstrated in

the equation, DCM assumes that the stimuli impact the neural network in two ways:

(1) change the interactions between different brain regions; (2) influence the brain

activity at certain brain areas directly.

The second part of DCM is the observation equations that relate the neuronal

states x(t) to the observed brain measurements y(t), with each element of y(t) =

(y1(t), . . . , yd(t))
′ representing a time series collected from the corresponding brain

region. The specific formulation of the model depends on either fMRI or EEG data

is used as the response. Nevertheless, it can be generally written as

y(t) = G(x(t)),

where G denotes a known relationship between the neural states x(t) and the brain

measurements y(t).



23

Figure 2.2 displays an example of a DCM from [36] with five brain regions

x1, . . . , x5 represent the neuronal states at the five brain areas, and y1, . . . , y5 denote

the corresponding brain measurements respectively. xis are real-valued functions on

time t. The black solid arrows between xs indicate the assumed interactions between

some pairs of brain components, and the gray solid arrows from xs to ys imply that

the latent variable x is reflected as the observed signal y. Besides, there are two stim-

uli, u1 and u2, whose impact on the brain network is depicted as black dotted arrows

from us to the network. More specifically, u1 directly influences the brain component

x1, while u2 has an effect on the interaction between x3 and x2 and that between x2

and x4.

Figure 2.2: The graphical representation of a DCM example from [36].
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According to the network structure illustrated graphically, we can easily write

down the neural state equations of this DCM example as:

dx1(t)

dt
= a11x1(t) + c11u1(t)

dx2(t)

dt
= a21x1(t) + a22x2(t) + a23x3(t) + u2(t)b2,23x3(t)

dx3(t)

dt
= a33x3(t) + a35x5(t)

dx4(t)

dt
= a42x2(t) + a44x4(t) + a45x5(t) + u2(t)b2,42x2(t)

dx5(t)

dt
= a53x3(t) + a54x4(t) + a55x5(t).

It is quite straight-forward to transform these differential equations into the corre-

sponding matrix format so that they are in accord with equation 2.2. Besides, the

observation equations are not shown here, since they depend on the type of the data

used and are not of our interest.

The DCM is estimated given the designed stimulus functions u(t) and the ob-

served brain measurements y(t). Yet, the specific way to solve DCM is up to which

brain measurement is used as well. An expectation maximization (EM) method is de-

veloped to estimate the DCM for fMRI data in [36], and a variational Bayes approach

is constructed to fit the DCM for EEG/MEG data in [26].

Although DCM has been widely cited and applied to fMRI and EEG/MEG

data [26, 55], it has the following limitations. First, similar to structural equation

modeling, it relies on strong prior knowledge to determine the existence and strength

of connections among brain regions. This would require deep understanding of human

brain networks and might introduce significant bias into the model. Second, it only
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focuses on the interactions among a few large brain areas, thus the number of brain

regions in the model is usually very limited.

2.3 Existing ODE Model Estimation Methods

In the statistical literature, three major categories of approaches have been developed

for estimating ODE models: basis-function-expansion techniques in which state func-

tions are represented by functional bases [8, 13, 27, 71, 72, 74, 75, 90], discretization

methods using numerical approximation to state functions [6, 9, 17, 18, 39, 43, 47,

50, 51, 57, 59, 96], and Bayesian procedures using a Gaussian process prior for state

functions [16, 22, 85].

The strategies mentioned above usually concern low-dimensional dynamic sys-

tems with only a few ODEs. For high-dimensional systems, [58, 94, 95] proposed to

use penalization-based variable selection methods, which were originally developed

for high-dimensional regression problems [32, 88, 93, 99, 101, 102], to estimate sparse

ODEs. These methods are suitable for identifying sparse networks in which each

component has only a few connections with other components and all components

are connected directly or indirectly.

An optimization algorithm P-iPDA, Potts-based iterated Principal Differential

Analsis, was developed by [100] to search for the optimal modules or clusters of

densely connected brain regions, based on a bilinear Potts-based dynamic directional

model (PDDM).
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In the algorithm, the Potts model is assumed for the cluster structure of the brain

network. Suppose there are d brain regions in the model, and mi, which only takes

integer values ranging from 1 to d, represents the cluster label of the brain region i.

Then mi = mj indicates that brain components i and j are in the same cluster. The

Potts model is constructed for the cluster structure by restricting the cluster labels

in the following way:

P (m1, . . . ,md) ∝ exp

{
−µ

d∑
i,j=1

δ(mi,mj)

}
,

where P (.) represents the probability of an event; µ is a nonnegative tuning parameter

in the algorithm; and δ(mi,mj) = 1 if and only if mi = mj; δ(mi,mj) = 0 otherwise.

Thus, the equation above shows that if the clusters in the network are large, there will

be many pairwise edges within the clusters, indicating large value of the sum in the

equation, and thus the corresponding probability is small. So the model essentially

implies a preference for small clusters.

This Potts model is then transformed into a Potts-based penalty term in the

final optimization objective function. Assume HP is the original objective function of

sum of squared errors to be minimized without penalty, then the penalized objective

function is:

HP + µ

d∑
i,j=1

δ(mi,mj).

Minimizing this penalty term is equivalent to maximizing the probability of the cluster

labels in the Potts model. Furthermore, this Potts-based penalty term is essentially

an L0 penalty.
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The P-iPDA provides a way to estimate the high-dimensional ODE models de-

veloped for the dynamic brain system with a cluster structure given the ECoG data.

However, the P-iPDA has several limitations. First, the P-iPDA, relying on a crucial

assumption that regions within the same cluster are all pairwise connected, does not

distinguish connected brain regions from disconnected ones within the same cluster,

and thus may lead to many false positives whenever the P-iPDA fails to identify the

smallest clusters and groups separate clusters together. Second, the P-iPDA essen-

tially minimizes a log-likelihood based criterion with an L0 penalty. Statistical infer-

ence of the ensuing parameter estimates is challenging, and thus the P-iPDA cannot

be used to compare brain networks across different trials and stimulus types. Third,

the network results by the P-iPDA are highly sensitive to the tuning parameters. As

such, the P-iPDA needs to perform a time-consuming cross-validation procedure on

quite a few candidate values to select ideal penalty parameters.
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Chapter 3

Approach

In this study, we propose a bilinear ODE model, MIDDM, for the effective connectiv-

ity of the human brain based on the intracranial ECoG data. Unlike the structural

equation modeling or DCM, we construct our model on a large number of small brain

areas, given the good properties of ECoG data. And we do not specify the existence

of the connections subjectively. A cluster structure of the network is assumed through

the cluster labels and the edge indicators in the model, which introduces sparsity into

the model. Thus, our model is data-driven, with the network structure determined

by the data.

Coupled with MIDDM, a Bayesian framework is developed to estimate the pro-

posed ODE model. In the Bayesian model, we take advantage of the functional basis

representations of the state functions. Due to the hierarchical nature of MIDDM,

it is natural to introduce the hierarchical Bayesian model. And once the posterior
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samples are obtained, the interpretation and statistical inference of the results would

be simple and easy to understand.

With carefully designed prior distributions, we formulate a proper joint posterior

distribution in our Bayesian model which guarantees that the conditional posterior

distributions for all the parameters are well-defined. So a Gibbs sampler method is

applied to get the posterior estimates for the model parameters and it makes the

model solvable for the high-dimensional brain imaging data. In the remaining of this

chapter, we will talk in more detail about the three parts of the proposed model —

the MIDDM, the Bayesian framework, and the posterior simulation.

3.1 MIDDM for ECoG Data

Our proposed model consists of two parts: the neural state equations and the ob-

servation model. The neural state equations are differential equations developed

to model the effective connections among different brain regions, and the observa-

tion model connects the latent neural state variables to the observed brain activity

measurements. We start introducing the whole model from the simpler part — the

observation model.

Let y(t) = (y1(t), . . . , yd(t))
′ be the observed ECoG time series of d brain regions’

neuronal activity at time t. The observed data y(t) are measured at discrete time

points t = 1, 2, . . . , T . Let x(t) = (x1(t), . . . , xd(t))
′ be the neuronal state functions

of d brain regions at time t. Since ECoG is an invasive approach, the observation
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model for ECoG data is given by

y(t) = x(t) + ε(t), (3.1)

where ε(t) = (ε1(t), . . . , εd(t))
′ is a d-dimensional vector of errors with mean zeroes,

which represents the measurement error in the model.

The second part of the model is the ODEs that estimate the brain interactions

given the designed stimulus, which could potentially influence the brain system either

by changing the directional connections among brain regions or by impacting the

neural states of brain components. Suppose the brain system consisting of the d

regions under study received one stimulus input in the experiment. Let u(t) be an

experimental stimulus function taking values 1 and 0 only, e.g., a boxcar or stick

stimulus function. The stimulus function indicates whether the stimulus (e.g., a

tone) is present at time t or not. Since brain regions interact with each other at

the neuronal level, we use the following bilinear model to characterize directional

interactions among the d regions:

dx(t)

dt
= A x(t) · (1− u(t)) + B x(t) · u(t) + C u(t) + D, (3.2)

where A = (Aij)d×d with entry Aij denoting the effect of region j on region i exerted at

the current state without the stimulus; B = (Bij)d×d with Bij denoting the stimulus-

dependent effect exerted by region j on region i; C = (C1, . . . , Cd) with Ci denoting

the stimulus effect on region i; and D = (D1, . . . , Dd) denoting the intercepts for d

regions. As a low-order Taylor approximation of the underlying system, the simple
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bilinear model (3.2) provides general applicability and facilitates fast computation for

a high-dimensional dynamic system.

The stimulus function u(t) is a boxcar or stick stimulus function only taking

values 1 and 0, instead of an arbitrary function. First, it is a convention to do

so in literature. In DCM, the stimulus function takes values of 1 and 0 as well

([25, 26, 55, 24]). In addition, it is hard to quantify the stimulus in the context of

neuronal activities. Thus, it is not straight-forward to generalize the format of the

stimulus function to any formula. However, our model can be easily extended to a

dynamic system with J types of stimuli:

dx(t)

dt
= A x(t) +

J∑
j=1

Bj x(t) · uj(t) +
J∑
j=1

Cj uj(t) + D,

where A represents the brain connections without any stimulus; each Bj indicates

the changes of the interactions among brain regions due to the stimulus j; Cj denotes

the direct stimulus effect on brain components from the stimulus uj(t); and D is still

the intercepts of the model. Without loss of generality, we assume that there is only

one stimulus into the system for simplicity.

Despite the simple bilinear formulation, estimates of many parameters in the

high-dimensional ODE model are often unreliable with large variances. To increase

the estimation efficiency, we utilize a scientifically motivated assumption that many

connections among system components are void, and corresponding model parame-

ters denoting directional interactions in matrices A and B are zeros. This is because

the directional interactions among brain regions are energy-consuming [4], and bio-
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logical organizations tend to be energy-efficient with sparse connections to survive

and grow. With the sparsity assumption, it is of scientific interest to identify interac-

tive brain regions associated with significantly nonzero parameters in the ODE model

for the brain system, and to construct the ensuing sparse brain network of effective

connectivity among brain regions.

A complication with sparse networks is that they can arise in different forms.

For example, Figure 3.1 shows two different forms of sparse networks, implying vastly

different functional organizations of the brain. Figure 3.1(a) displays a general sparse

network, while Figure 3.1(b) depicts a network with a cluster structure. A cluster

in this context indicates a group of nodes in the network that are densely connected

by edges, and there are two clusters in Figure 3.1(b). As discussed in Introduction

(Chapter 1), it is reasonable to believe that many brain regions are not directly

connected and the ensuing sparse brain network with each network edge denoting

one directional effect between a pair of regions is in a cluster structure.

(a) Sparse Connections (b) Cluster Structure

Figure 3.1: Two typical examples of sparse network structure.



33

To characterize the cluster structure, we introduce module labels into the model.

Let m = {m1, . . . ,md} represent the cluster labels for d brain regions, which take

integer values between 1 and d. It implies that the system can have at most d clusters,

when each region forms one cluster itself. However, the number of clusters can be

less than d when some integers between 1 and d are not used as cluster labels. In

addition, following the formulation in the Bayesian stochastic search variable selection

(SSVS) framework [12, 41, 42, 97] that uses the spike and slab prior [53, 62, 87], we

use indicators γAij and γBij — which take values 0 and 1 only for i, j = 1, . . . , d —

to differentiate strong and void directional effects without and with the stimulus,

respectively. We modify equation 3.2 and propose the following ODE model. For

i = 1, . . . , d,

dxi(t)

dt
=

d∑
j=1

δ(mi,mj) · γAij · Aij · xj(t) · (1− u(t)) (3.3)

+
d∑
j=1

δ(mi,mj) · γBij ·Bij · xj(t) · u(t) + Ci · u(t) +Di,

where δ(mi,mj) is the Kronecker delta, which equals 1 whenever mi = mj and 0

otherwise. Under equation 3.3, brain component j has a nonzero directional effect

on component i or a directional network edge from brain region j to region i exists if

and only if the two brain areas are in the same cluster, i.e., mi = mj, and either γAij

or γBij is nonzero.

To incorporate the cluster structure and the directional interactions, we choose

to use cluster labels m and indicators {γAij} and {γBij}, instead of imposing some
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constraints directly on matrices A and B in model 3.2 as a penalized optimization

method similar to P-iPDA, for the following reasons. First, as discussed in Section

2.3, it is quite challenging to do statistical inference using a penalty model. That is,

it is hard to find the significant connections using estimated {Aij} and {Bij}, which

on the other hand is directly captured by cluster labels m and directional indicators

{γAij} and {γBij}. Additionally, to control both the cluster structure and the directional

effects, we need two penalty parameters, which makes the penalty parameter selection

process even more complex and time-consuming.

The ODE model 3.3 together with the observation model 3.1 is referred to as

the MIDDM, or modular and indicator-based dynamic directional model. The ODE

model 3.2 and the sparse network, in which each node is sparsely connected with the

rest of nodes and all nodes are connected directly or indirectly, are special cases of the

MIDDM with only one single module and with either mostly nonzero or mostly zero

indicators. The MIDDM is also an extension of the existing ODE model for ECoG,

PDDM [100], as the latter assumes all regions within clusters to be pairwise connected

while the former uses indicators to distinguish nonzero directional interactions within

clusters from void ones.

Under the MIDDM, the inference of effective connectivity of the brain is equiva-

lent to identifying modules, selecting statistically significant directional interactions,

and estimating the model parameters A and B, which denote the strength of effective

connections among brain regions.
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3.2 Hierarchical Bayesian Model for MIDDM

We propose a Bayesian method to estimate and make inferences about the MIDDM.

And we elaborate on building the hierarchical Bayesian framework in the remaining

of this section.

First, we represent the neural state functions xi(t) of each brain component i

by a vector of B-spline basis functions b(t) = (b1(t), . . . , bL(t))′ defined on an equally

spaced partition {t1 = 1, t2, . . . , tq = T} of the time interval [1, T ] of the observed

data. For i = 1, . . . , d,

xi(t) = b(t)′ ηi, (3.4)

where ηi is an L× 1 vector consisting of the basis coefficients for xi(t). The choice of

the number of bases L, as a hyperparameter, is discussed in section 3.3.2.

The basis notation is widely applied in many fields with functional data analysis.

Simple basis functions, such as monomial basis (1, t, t2, . . . , tL), are of limited

use when dealing with functions with complex shapes. In addition, two systems of

basis functions are most commonly used: spline basis and Fourier series [73]. The

Fourier series are usually used for periodic data and the corresponding analysis often

focuses on the frequency domain. Therefore, we choose to use the B-spline basis, the

most popular spline basis, to represent the neural state functions for the following

reasons. First, it is flexible enough to represent the complex shapes of the neural

state functions. And it can be specified to make sure that the basis functions have
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smooth first derivatives. Last, we concentrate on the temporal domain of the data in

this analysis, as the previous ODE model DCM did [36].

3.2.1 Nonparametric Model for Observed Data

Let Yi = (yi(1), . . . , yi(T ))′ for i = 1, . . . , d and Y = (Y ′1 , . . . , Y
′
d)
′. Then Yi represents

the observed ECoG time series for brain region i, and Y is a long vector containing

all the ECoG data. Based on basis representations 3.4, we assume that the Yis are

independently distributed with multivariate normal distributions:

Yi | ηi, σ2
i

ind∼ MN(Φηi, σ
2
i IT ), (3.5)

for i = 1, . . . , d. Here, MN(µ,Ω) stands for a multivariate normal distribution with

mean µ and covariance matrix Ω, and Φ is a T ×L matrix with element Φ[t, l] = bl(t)

for t = 1, . . . , T and l = 1, . . . , L. Though an AR(1) or AR(2) model can be assumed

for ε(t), t = 1, . . . , T , in the observation model (3.1), for simplicity we assume them

to be independently Gaussian distributed with zero means. For data with a strong

SNR, such as ECoG [10, 11, 100], accounting for autocorrelation in the model does

not improve the estimation much.

3.2.2 Prior Specification for Basis Coefficients

To simplify notations, let γA = {γAij , i, j = 1, . . . , d} and γB = {γBij , i, j = 1, . . . , d}

represent all the indicators corresponding to matrices A and B respectively. Let

θ = {A,B,C,D} include all the real-value parameters in the bilinear ODE model.
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And let ΘI denote all the MIDDM parameters:

ΘI = {A,B,C,D,m,γA,γB}.

We propose a prior for basis coefficients η = (η′1, . . . , η
′
d)
′, which depends on the

MIDDM parameters ΘI through the MIDDM model fitting error:

p(η|ΘI , τ) ∝ exp

{
− 1

2τ
R(η,ΘI)

}
, (3.6)

where τ is a pre-specified positive constant and R(η,ΘI) denotes the MIDDM model

fitting error:

R(η,ΘI) =
d∑
i=1

∫ T

0

[
dxi(t)

dt
−

d∑
j=1

δ(mi,mj) · γAij · Aij · xj(t) · (1− u(t))

−
d∑
j=1

δ(mi,mj) · γBij ·Bij · xj(t) · u(t)− Ci · u(t)−Di

]2
dt.

Note that xi(t), i = 1, . . . , d, in R(η,ΘI) is represented by basis functions in

equation 3.4, and accordingly we can get

dxi(t)

dt
= b(1)(t)′ ηi,

where b(1)(t) represents the first derivative of the basis functions b(t). With the linear

basis representation of x(t), R(η,ΘI) can be rewritten as

R(η,ΘI) =
d∑
i=1

∫ T

0

[
b(1)(t)′ηi −

d∑
j=1

δ(mi,mj) · γAij · Aij · (1− u(t)) · b(t)′ηj

−
d∑
j=1

δ(mi,mj) · γBij ·Bij · u(t) · b(t)′ηj − Ci · u(t)−Di

]2
dt.
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Then, it is obvious that the formula in brackets is a linear equation of ηis. Thus,

R(η,ΘI) is fundamentally quadratic of η given ΘI :

R(η,ΘI) = η′ΩΘI
η − 2Λ′ΘI

η + ΞΘI
, (3.7)

where ΩΘI
, ΛΘI

, and ΞΘI
, respectively, are a dL× dL matrix, a dL× 1 vector, and

a scalar, whose values depend on the MIDDM parameters ΘI . The exact formulas

of ΩΘI
, ΛΘI

, and ΞΘI
, as functions of ΘI , are provided in the Appendix B.VI. As

such, the prior (3.6) is equivalent to a normal distribution:

η|ΘI , τ ∼ MN(Ω−1ΘI
ΛΘI

, τ ·Ω−1ΘI
),

and the prior on basis coefficients η is equivalent to a Gaussian process prior on the

state functions x(t).

The prior (3.6) quantifies the deviation of the state functions from the assumed

ODE model by a probability measure and suggests a preference for state functions

with a small model-fitting error given ΘI . This prior essentially gives a multivariate

normal distribution for the basis coefficients η. Consequently, the state function x(t)

is no longer solely determined by the ODE model. As linearly represented by the

basis functions, x(t) changes as η changes. Thus, it has a distribution centered at

the function determined by the ODE model. That is, the state function is very likely

to be the function determined by the ODE model, but is also possible to be deviated

from the function determined by the ODE model. This distribution quantifies the

uncertainty of the ODE model.
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3.2.3 Prior Specification for MIDDM Parameters

We specify a joint prior for MIDDM parameters ΘI :

p(ΘI |τ) ∝ det(ΩΘI
)−1/2 · exp

{
1

2τ
(Λ′ΘI

Ω−1ΘI
ΛΘI

−ΞΘI
)

}
(3.8)

· exp

{
−µ ·

d∑
ij

δ(mi,mj)

}
· p

∑
i,j γ

A
ij+

∑
i,j γ

B
ij

0 · (1− p0)2d
2−

∑
i,j γ

A
ij−

∑
i,j γ

B
ij

·
d∏

i,j=1

φ

(
Aij
ξ0

)
·

d∏
i,j=1

φ

(
Bij

ξ0

)
·

d∏
i=1

φ

(
Ci
ξ0

)
·

d∏
i=1

φ

(
Di

ξ0

)
,

where the prior probability p0 is pre-specified by the user to input the prior belief of

the average degree of connectivity within clusters, µ is a given nonnegative constant,

φ is the standard normal density function, and ξ0 is a large positive constant to give

an almost flat prior for θ in a wide domain. It is possible to use different p0 for γA and

γB. For simplicity, we assume identical prior probabilities for them. The discussion

of choosing µ and p0 is deferred to Section 3.3.2.

The above prior essentially combines a multivariate Bernoulli distribution [42] for

indicators γA and γB, the Potts model [44, 70] for module labels m, and almost flat

multivariate normal distributions for parameters θ. We specify the prior for MIDDM

parameters in the above form, a main thrust of the proposed Bayesian framework, for

two reasons. First, using the prior (3.8), the full posterior conditional distributions

of parameters η and θ are multivariate normal, which are easy to simulate from;

this is a crucial advantage of the proposed Bayesian framework, especially for analyz-

ing high-dimensional ECoG data. Second, in contrast to independent priors on the
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MIDDM parameters, the prior (3.8) makes use of the proposed model information by

incorporating the model-fitting error. A similar prior has been proposed by [98] in an

empirical Bayesian approach for variable selection and estimation in linear models.

3.2.4 Priors for Data Variances

We impose an uninformative prior on σ2 = {σ2
i , i = 1, . . . , d}:

p(σ2) ∝
d∏
i=1

1

σ2
i

. (3.9)

3.2.5 Joint Posterior Distribution

In summary, equations 3.5, 3.6, 3.8, and 3.9 jointly define a hierarchical Bayesian

model for the MIDDM, referred to as Bayesian MIDDM (BMIDDM) in the following.

The joint posterior distribution of the BMIDDM is given by

p(η,ΘI ,σ
2|Y, τ, µ) ∝

d∏
i=1

1

σTi
exp

{
−(Yi −Φ ηi)

2

2σ2
i

}
· exp

{
− 1

2τ
R(η,ΘI)

}
(3.10)

· exp

{
−µ

d∑
i,j=1

δ(mi,mj)

}
· p

∑
i,j γ

A
ij+

∑
i,j γ

B
ij

0

· (1− p0)2d
2−

∑
i,j γ

A
ij−

∑
i,j γ

B
ij ·

d∏
i,j=1

φ

(
Aij
ξ0

)
·

d∏
i,j=1

φ

(
Bij

ξ0

)

·
d∏
i=1

φ

(
Ci
ξ0

)
·

d∏
i=1

φ

(
Di

ξ0

)
·

d∏
i=1

1

σ2
i

.

It can be shown that with a fixed positive constant τ and nonnegative µ, the above

joint posterior distribution is proper as long as T > L. The proof is provided in the

Appendix A.
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3.3 Posterior Simulations

We present an MCMC algorithm for posterior simulations in this section. Let m−i =

m \ {mi}, γA−ij = γA \ {γAij}, and γB−ij = γB \ {γBij} for i, j = 1, . . . , d. We use

a partially collapsed Gibbs Sampler [PCGS; 89] to sample from the joint posterior

3.10 with given µ and τ (omitted in the posterior conditional distributions below).

Specifically, θ is integrated out when drawing posterior samples of cluster labels m

and indicators γA and γB, and the PCGS is performed in the following order to

maintain the target stationary distribution.

1. Sequentially update mi by a draw from p(mi|m−i,η,σ2,γA,γB,Y), which is a

discrete distribution, for i = 1, . . . , d.

2. Sequentially update γAij by a draw from p(γAij |m,η,σ2,γA−ij,γ
B,Y), which is a

discrete distribution, for i, j = 1, . . . , d.

3. Sequentially update γBij by a draw from p(γBij |m,η,σ2,γA,γB−ij,Y), which is a

discrete distribution, for i, j = 1, . . . , d.

4. Draw θ from p(θ|m,η,σ2,γA,γB,Y), which is a multivariate normal distribu-

tion.

5. Draw σ2
1, . . . , σ

2
d from p(σ2|ΘI ,η,Y), which is a product of independent inverse-

gamma distributions.

6. Draw η from p(η|ΘI ,σ
2,Y), which is a multivariate normal distribution.
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We defer technical derivations of posterior p(m,η,γA,γB,σ2|Y, τ, µ) with θ

being integrated out and the posterior conditional distributions of each parameter to

the Appendix B.

3.3.1 Parallel Computing

To speed up MCMC posterior simulations of the BMIDDM, we employ a parallel

computing scheme similar to that developed by [15] in three major MCMC steps: (a)

simulation of basis coefficients η for regions in different clusters, (b) calculation of

the posterior conditional probabilities of cluster labels m, and (c) simulation from

the posterior conditional distributions of indicators γA and γB. Specifically, in (a),

since given m, ηis of brain regions in different clusters are conditionally independent,

we employ the same number of process cores as the number of different clusters of

m, and use each core to simulate ηis in one unique cluster. In (b), we use the same

number of process cores as the number of different values that mi can take given the

rest of the parameters, with each core computing one posterior conditional probability

for mi taking one unique value. In (c), since indicator variables γ̃i = {γAij , γBij , j =

1, . . . , d}, conditional on the rest of the parameters, are independent for i = 1, . . . , d,

we employ d process cores, each sequentially simulating every element of one γ̃i from

the element’s posterior conditional probability.

The reduction of computational time by using parallel computing in Steps (a)

and (b) depends mostly on the size of the largest cluster at each iteration, and parallel
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computing is most efficient when all the clusters are small and of similar sizes. The

use of parallel computing in Step (c) reduces the computational time for the posterior

simulation of indicators from O(d2) to O(d).

Parallel computing can also be used in other MCMC steps in a similar manner,

including simulation of MIDDM parameters θ of regions in different clusters and

simulation of σ2
i for i = 1, . . . , d. However, the efficiency of parallel algorithm depends

on the computing time of the parallelized part as well. If the original program does

not take much time to finish, the time shortened by parallel will not make up the time

spent by the manipulation and communication of multiple cores. In that scenario,

parallel computing will not accelerate the algorithm. Therefore, we only employ

parallel computing in the three major steps described above, instead of in every

possible step in MCMC.

3.3.2 Hyperparameter Selection

The choice of hyperparameter τ is the most crucial, because it balances between

the data and the model information for inferring directional connections among brain

regions. Specifically, a small τ , compared to the data variance, can impose an incorrect

strong prior belief that the assumed model fits the underlying dynamic system well.

We found that with a small τ , only a few regions’ temporal activity can be jointly

fitted by the assumed model, and thus only a few brain regions are identified to be

connected. On the other hand, if τ is too large, the model information in the posterior
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is too weak to be useful for differentiating strong directional connections from weak

or void ones. Then, all the brain regions are identified to be connected. In summary,

an appropriate value of τ depends on how well the assumed ODE model can fit the

data.

Given the above consideration, we decide to choose τ based on the model-fitting

error of the observed data. Although cross-validation-based methods [76, 77, 92]

are straightforward for choosing hyperparameters, they are time-consuming within

a Bayesian framework, since MCMC algorithms can take a long time to converge,

especially for high-dimensional ODE models with long time series data. Instead, we

propose an easy-to-implement approach to determine the value of hyperparameter

τ . Since τ can be regarded as the variance of ODE fitting errors, we set it to the

estimated ODE fitting errors. Specifically, we first fit x(t) nonparametrically with

b(t) to the observed data; regress estimated dx̂i(t)
dt

versus x̂(t) · (1− u(t)), x̂(t) · u(t),

and u(t); and obtain regression mean squared errors, denoted by τ̂i, for i = 1, . . . , d.

The range of τ̂i, i = 1, . . . , d, gives the range of the variances of model fitting errors

for the observed data. Then we choose τ to be max{τ̂i}di=1, which leads to the least

informative prior for basis coefficients among all the candidate values. Through some

preliminary analysis, we found that this value can help us effectively identify the

underlying modules, select true network edges, and provide scientifically interpretable

results.

We let µ = 0 to give a non-informative prior on the cluster structure m. For
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choosing the prior probability p0 for nonzero network edges within modules, we have

tried different p0 values, from 0.9 to 0.7, which reflect the prior belief that regions

within the same cluster are densely connected. We evaluated the network edge se-

lection performance through simulation studies, and found that p0 = 0.9 is the most

effective with the highest power for selecting network edges, especially for the cluster

structure where all regions within the same cluster are pairwise connected. Consid-

ering that the connections within modules are usually short-range, strong, and dense

[69], we let p0 = 0.9 to ensure a high power for selecting within-module network

edges. Though it is possible to assign a prior to p0 or tune its value based on the

data, we choose to specify its value, because this approach directly uses the existing

scientific knowledge of the brain network and thus reduces uncertainty in the model

estimation.

The choice of the number of basis functions L directly affects the posterior com-

putational time: The larger L, the more computational time needed for simulating

the state functions, which is the most computationally intensive MCMC step. Con-

sidering this, we choose a small L without compromising the flexibility of representing

the state function x(t), as suggested in [75]. For the real data under study, we found

that the data at every three consecutive points take similar values, and thus we choose

L = dT/3e.
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3.3.3 Analysis of Posterior Samples

Given hyperparameters (µ, τ) and data y(t), we conduct posterior simulations of the

BMIDDM. Let S be the total number of MCMC iterations excluding the burn-in

ones, which are the iterations at the beginning of the MCMC run before the Markov

chain converges to the stationary distribution. Let θ(s) be the value of BMIDDM pa-

rameter θ simulated at the sth iteration. Based on the posterior draws of BMIDDM

parameters, for each pair of regions (i, j), we estimate the posterior clustering prob-

ability of the two regions being in the same cluster, and the posterior probabilities of

nonzero directional effects exerted by region j on region i, also called the posterior

selection probabilities of directional network edges from component j to component

i, without and with the stimulus respectively, by

P̂m
ij =

1

S

S∑
s=1

δ(m
(s)
i ,m

(s)
j ) (3.11)

P̂A
ij =

1

S

S∑
s=1

δ(m
(s)
i ,m

(s)
j ) · (γAij)(s)

P̂B
ij =

1

S

S∑
s=1

δ(m
(s)
i ,m

(s)
j ) · (γBij )(s).

We use P̂m
ij to identify clusters of components and P̂A

ij with P̂B
ij to select direc-

tional network edges without or with stimulus. Specifically, for module identifica-

tion, we first rank P̂m
ij for all i, j = 1, . . . , d and select a set of pairs of components

S = {(i, j) : rank(P̂m
ij ) > h, i, j = 1, . . . , d} for some predetermined threshold h,

for example, a top 5% rank. Given S, we identify modules Ck, k = 1, . . . , K, also
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a partition, of the d components, such that for any two components i and j in the

same module, there exists a set of pairs {(k0 = i, k1), (k1, k2), . . . , (kl−1, kl = j)},

which is a subset of S. By using a high threshold h, this procedure identifies clusters

of components that have high posterior probabilities of being connected directly or

indirectly.

For network edge selection, which is performed after the module identification

process with a threshold h, we first set P̂A
ij , P̂A

ji , P̂
B
ij , and P̂B

ji for i and j in two

different clusters to zeroes. Then we order all the P̂A
ij and P̂B

ij for i, j = 1, . . . , d

decreasingly and select network edges whose P̂A
ij and P̂B

ij have ranks higher than the

threshold h.

Similar to Bayesian variable selection for the linear regression, we use the ROC

curve to summarize the performance of the proposed network edge selection proce-

dure, which is computed as follows: for each given threshold, the percentages of true

directional edges and null directional edges whose posterior probabilities are greater

than the threshold are calculated as true positive rate (TPR) and false positive rate

(FPR) of the selection procedure; the ROC curve summarizes pairs of TRPs and

FPRs for different thresholds. The closer to (0, 1) the ROC curve, i.e., the larger

TPR for each FPR, the better performance of the selection procedure.

We select network edges based on the ranks rather than the exact values of their

posterior selection probabilities, the same strategy used in Bayesian variable selec-

tion problems, because given x(t), identifying connected components is equivalent to
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simultaneously solving multiple high-dimensional variable selection problems. With

limited data information and many candidate predictors, the difference between pos-

terior selection probabilities of void and true variables is small. As such, the ranks

are more informative than the exact values of the posterior selection probabilities

regarding the underlying network structure. In addition, it is possible that posterior

probabilities of most true directional edges are smaller than 0.5 as well, because of

the model uncertainty. Then it is more reasonable to select network edges based on

their ranks.

One can select directional network edges based on original P̂A
ij and P̂B

ij without

adjusting them for identified modules. However, we found that the network edge

selection based on adjusted P̂A
ij and P̂B

ij — obtained through the procedure described

above — outperforms that based on unadjusted P̂A
ij and P̂B

ij by having a higher ROC

curve. We attribute this finding to two possible reasons. First, within the ODE

framework, the components in the same cluster tend to have similar temporal be-

haviors, because the instantaneous change of each component directly or indirectly

depends on the states of others in the same cluster. Then this temporal similarity

among components within the same cluster causes difficulty in the directional edge

selection due to multicollinearity, but facilitates module identification. Consequently,

module identification tends to be easier and more accurate than network edge selec-

tion, and utilizing the information from the former can enhance the accuracy of the

latter. Second, the network edge selection based on unadjusted P̂A
ij and P̂B

ij treats
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each directional edge separately, while the selection based on adjusted probabilities

utilizes information across different components.
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Chapter 4

Simulation Examples

In this section, we generate some simulation examples to evaluate the performance of

the proposed model mainly in three different scenarios. In Section 4.1, we apply the

proposed BMIDDM to one simulated dataset in [100], where components within the

same cluster are all pairwise connected, and compare the results with those by the P-

iPDA. We demonstrate the good performance of our model when model assumptions

are satisfied in the first example. We generate another time series data of the same

dimension in Section 4.2 and use the BMIDDM to detect differences in the networks

of these two simulated examples. The second example, combined with the first one,

displays the power of our model in distinguishing between dissimilar networks. Last,

we try the BMIDDM on some data generated from a nonlinear ODE model, instead

of a bilinear one, in Section 4.3. In this example, we observe the robustness of our

model when some model assumptions are moderately violated.
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4.1 Example 1: Data from a Bilinear Model

The simulated dynamic system has 4 clusters of size 6, 4, 6, and 4. Each cluster

is pairwise connected, and there is no edge between clusters. We let T = 250 and

u(t) = 1 for 100 ≤ t ≤ 150 and 0 otherwise, which are identical to those of the auditory

ECoG data. For simplicity, parameter B is set as twice of A in equation 3.2, meaning

that during the stimulus the network structure does not change but the strength of the

directional interactions doubled. We generate 20 time series x(t) by using numerical

approximation based on discretized bilinear model (3.3) with given parameters ΘI ,

and generate 20 independent error time series ε(t), each following an AR(1) model

with a lag-one correlation of 0.5. The SNR — defined as var(xi(t))/var(εi(t)) — of

each time series yi(t), the sum of xi(t) and εi(t), was set at 10. Figure 4.1 displays

four representative time series from the four responding clusters in this example before

error time series are added. The system is carefully designed so that time series do not

explode, and curves in different clusters have different frequencies and magnitudes.

Before applying the proposed Bayesian approach, we standardize the observed time

series to unit variance, such that time series of different components are in the same

scale. In the following, y(t) is referred to as the standardized data.

We applied the proposed BMIDDM with µ = 0 and τ = maxdi=1 τ̂i to this simu-

lated dataset for which the P-iPDA failed to identify all the clusters. The network by

the P-iPDA is shown in Figure 4.2(a), which has only 36.5% TRP. In contrast, the
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(a) Cluster I (b) Cluster II (c) Cluster III (d) Cluster IV

Figure 4.1: Plots 4.1(a) to 4.1(d) show one representative time series x(t) from each cluster in

Example 1. The curves correspond to x(t) before error terms ε(t) are added.

BMIDDM identified all the nonzero directional effects with zero FPR, as shown in Fig-

ure 4.2(c), in which directional edges are corresponding to the posterior probabilities

P̂B
ij with top 26% ranks, the exact percentage of true edges among all possible ones.

In this example, the posterior selection probabilities of true network edges and null

ones have a sharp difference, as illustrated by Figure 4.2(b) of P̂B
ij for i, j = 1, . . . , d.

The plot of P̂A
ij is similar and not shown here.

The better performance of the Bayesian method than the P-iPDA for this ex-

ample is possibly due to three reasons. First, though components within the same

cluster are indeed pairwise connected, the average degree of nodes, however, in the

network is small. Consequently, the BMIDDM, allowing for more sparsity, has a

better selection efficiency. Second, the P-iPDA, an optimization algorithm for an L0

penalized criterion, very likely outputs a network corresponding to a local mode of the

criterion, especially since the ODE model estimation is sensitive to noise. In contrast,

the Bayesian method, evaluating the posterior probabilities of different cluster struc-
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(a) Network by P-iPDA (b) Sel. Prob. with Stimulus (c) Network with Stimulus

Figure 4.2: 4.2(a) The network result by the P-iPDA in Example 1. 4.2(b) shows P̂B
ij for i, j =

1, . . . , 20. 4.2(c) shows network edges with top 26% (i.e., the percentage of true directional edges

among all possible ones) posterior selection probabilities under the stimulus. Nodes in the same color

correspond to components in the same cluster identified by the used method, either the P-iPDA or

the Bayesian method.

tures, outputs a posterior “average” and thus is more stable. Third, the performance

of the P-iPDA is sensitive to the choice of penalty parameters. It is possible that the

penalty parameters used by the P-iPDA are not optimal for the presented dataset,

while the Bayesian method using τ = maxdi=1 τ̂i is more adaptive to the specific data

being analyzed, and thus has a better performance.

We have compared the computational complexities and times of the proposed

Bayesian method with the P-iPDA. MCMC simulations of module labels m and

basis coefficients η from their posterior conditional distributions, the two most time-

consuming steps in the PCGS, have similar computational complexity as the two

optimization steps updating m and η in the P-iPDA, because they all require matrix
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inversion of large matrices of similarly high dimensions. In particular, conditional on

the same cluster structure m in the previous step, the computational complexity in

the following iteration of the P-iPDA and PCGS is the same.

As searching for a mode is computationally much easier than exploring the entire

posterior distribution, the P-iPDA takes much fewer iterations to converge than the

PCGS. However, the P-iPDA relies on computationally extensive cross-validation,

calculating prediction errors for every left-out data point and for a large number of

candidate penalty parameter values, to find the best combination of penalty parame-

ters with the smallest prediction error. Specifically, for the simulated dynamic system

in Example 4.1, at least 6 cross-validations at 50 left-out points were needed to find

the optimal penalty parameters. One usually needs to perform 35 iterations of the

P-iPDA for each left-out point given one combination of penalty parameters. As such,

the total number of iterations needed for penalty parameter selection is 10,500, close

to the number of iterations in the PCGS. For dynamic systems of larger dimensions

and with longer time series, more iterations of the P-iPDA and cross-validation on

more candidate penalty parameters using more left-out points are needed, because

the number of potential cluster structures is larger and the network result by the

P-iPDA is more sensitive to the choice of penalty parameters. Overall, if accounting

for the penalty parameter selection time, the PCGS and P-iPDA use similar amounts

of computational time. For the simulation example under study, it took 1.2 hours

for the proposed Bayesian method to finish 10,000 MCMC iterations on a personal
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laptop using one i7 core.

We let

Eij = δ(mi,mj) · γAij · Aij,

Gij = δ(mi,mj) · γBij ·Bij.

With S posterior draws of BMIDDM parameters, for each pair of components i and

j, we estimate the directional effects Eij and Gij exerted by region j over region i

without and with the stimulus, respectively, by their posterior means, which are given

by

Êij =
1

S

S∑
s=1

δ(m
(s)
i ,m

(s)
j ) · (γAij)(s) · A

(s)
ij ,

Ĝij =
1

S

S∑
s=1

δ(m
(s)
i ,m

(s)
j ) · (γBij )(s) ·B

(s)
ij .

Then we evaluate the mean squared errors (MSE) of E and G:

MSE(E) =
d∑

i,j=1

(Êij − Eij)2/d2,

MSE(G) =
d∑

i,j=1

(Ĝij −Gij)
2/d2,

which are summarized in Table 4.1. For comparison, we also present the MSEs of the

estimates by the P-iPDA.

Though the underlying cluster structure exactly matches the model assumption

of the P-iPDA, i.e., the components in the same cluster are all pairwise connected,

when the connectivity degree of each component is small, the Bayesian method gives

much smaller errors, suggesting that incorporating indicator variables for significant
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Bayesian P-iPDA Bayesian P-iPDA

MSE(E) 0.09 0.11 MSE(G) 0.11 0.20

Table 4.1: The MSEs of estimated model parameters by the P-iPDA and the Bayesian

method in Example 1.

directional effects in the model improves both selection accuracy of network edges

and estimation efficiency of model parameters. Furthermore, we can also find that

the difference of MSEs of G between the Bayesian method and P-iPDA is much larger

than that of MSEs of E, showing that the Bayesian method has a much better param-

eter estimation than P-iPDA during the stimulus, when the number of observations

is more limited.

4.2 Example 2: Network Comparison

We generate a dynamic system of 20 dimensions with 3 clusters of size 6, 4, and 10

from the bilinear model (3.3). The state functions x(t) of the first two clusters are

generated using exactly the same parameters as those in Example 1. The third cluster

consists of 10 densely connected components, which are similar to those in the last

two clusters in the previous example. To mimic the network status changes of brain

systems, we use values of x(t) at the last time point in Example 1 as the starting

point in this example. Figure 4.3 shows three representative curves from the three

clusters.
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(a) Cluster I (b) Cluster II (c) Cluster III

Figure 4.3: Plots 4.3(a) to 4.3(c) show one representative time series x(t) from each cluster in

Example 2. The curves correspond to x(t) before error terms ε(t) are added.

We apply our BMIDDM with µ = 0 and τ = maxdi=1 τ̂i to this simulation example

independently. Figure 4.4(a) shows estimated network edge selection probabilities

P̂B
ij , and Figure 4.4(b) shows the network edges with top 38% posterior selection

probabilities under the stimulus, where 38% is again the true percentage of edges in

the underlying network.

We develop a simple approach to compare networks of Examples 1 and 2. Let m1i

and m2i denote module labels of the ith component in networks 1 and 2, respectively,

Y1 and Y2 be the observed time series data of networks 1 and 2, respectively, and

p1 = P (δ(m1i,m1j) = 1|Y1) ,

p2 = P (δ(m2i,m2j) = 1|Y2) .

So p1 represents the probability that region i and region j are in the same cluster in

network 1 given the first time series, and p2 then indicates the corresponding proba-
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(a) Estimated P̂B
ij (b) Network with Stimulus

Figure 4.4: 4.4(a) Estimated P̂B
ij by the BMIDDM in Example 2. 4.4(b) shows network edges with

top 38% (i.e., the percentage of true directional edges among all possible ones) posterior selection

probabilities under the stimulus. Nodes in the same color correspond to components in the same

cluster identified by BMIDDM.

bility in network 2 given the second data set. We compare the clustering probabilities

of two components in two separate networks through evaluating the probability

P d
ij = P (δ(m1i,m1j) 6= δ(m2i,m2j)|Y1,Y2) ,

which denotes the probability that whether component i and component j are in the

same cluster is different in networks 1 and 2 given the two sets of time series. There

are only two possible situations for that to happen: region i and region j are in the

same cluster in network 1 but in two different clusters in network 2, or the other

way around. Since the time series data of two networks are analyzed independently,
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δ(m1i,m1j) and δ(m2i,m2j) are independent and thus

P d
ij = P (δ(m1i,m1j) = 1 & δ(m2i,m2j) = 0|Y1,Y2)

+ P (δ(m1i,m1j) = 0 & δ(m2i,m2j) = 1|Y1,Y2)

= p1 + p2 − 2 p1 · p2.

In practice, we evaluate p1 and p2 by the corresponding clustering probabilities

P̂m
ij (3.11) in their respective network. Figure 4.5(a) shows P d

ij for comparing networks

in Examples 1 and 2. It is observed that the areas corresponding to the difference

between the two networks have clearly higher P d
ij than the others, just as expected.

Following typical Bayesian decision procedure [40], we use 0.5 as the threshold for P d
ij,

and the two components i and j are deemed to have different clustering probabilities

in the two networks if P d
ij > 0.5. The green cells in Figure 4.5(b) indicate a pair

of components i and j with P d
ij smaller than 0.5; the red cells indicate components

with P d
ij larger than 0.5 and p1 > p2; and the blue cells indicate components with

P d
ij larger than 0.5 and p1 < p2. The proposed approach identified components 11 to

20 to have stronger connectivity in Example 2 than those in Example 1. Overall, 80

edges (400 total edges) are identified significantly different, among which 48 edges are

true positives with 100% TPR and 9% FPR. Figure 4.5(c) shows the ROC curve for

selecting component pairs with different clustering probabilities in the two simulated

examples by using different thresholds on P d
ij.
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(a) P d
ij (b) P d

ij with a cutoff 0.5 (c) ROC Curve

Figure 4.5: 4.5(a) shows P d
ij for i, j = 1, . . . , 20. 4.5(b) shows identified pairs of components with

significantly different clustering probabilities using a cutoff 0.5 on P d
ij. Specifically, if P d

ij < 0.5, the

corresponding cells (a pair) in the Figure are green; if P d
ij > 0.5 and p1 > p2, the corresponding cells

are red; and if P d
ij > 0.5 and p1 < p2, the corresponding cells are blue. 4.5(c) shows the ROC curve

for selecting pairs of components with different clustering probabilities in two networks using various

cutoffs on P d
ij.

4.3 Example 3: Data from a Nonlinear Model

We use this nonlinear example to evaluate the performance of the proposed Bayesian

approach when the bilinear model assumption is moderately violated. A dynamic

system of 20 dimension with 3 clusters of size 5, 5, and 10 is generated, from a

nonlinear ODE model:

dx(t)

dt
= sin (Ex(t)) · (1− u(t)) + sin (Gx(t)) · u(t) + Cu(t) + D, (4.1)

where G = 2E. Among the three clusters, the first two are generated using the same

parameter values, so their corresponding time series curves are similar. Figure 4.6
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displays what those curves look like in different clusters. The input function u(t),

the length of observed data T , and the observed data y(t) are generated in the same

manner as in Example 1 and 2.

(a) Cluster I & II (b) Cluster III

Figure 4.6: Plots 4.6(a) and 4.6(b) show representative time series x(t) from the clusters in Example

3. The curves correspond to x(t) before error terms ε(t) are added.

Additionally, E and G in this nonlinear example (4.1) are highly sparse with

only 9.5% nonzero elements. The associated network is shown in Figure 4.7.

Figure 4.7: True directional network of Example 3.
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The posterior clustering probabilities P̂m
ij (3.11) for every pair of components

(i, j) are shown in Figure 4.8(a). The plots for P̂A
ij and P̂B

ij adjusted for the identified

clusters are similar, and thus omitted here. If selecting directional edges with top

30% highest posterior probabilities, four components, two from each of the first two

clusters, are incorrectly clustered, as shown in Figure 4.8(b). This is because the

model parameters for the firsts two clusters are almost identical, and thus the state

functions of these two clusters have similar temporal patterns and tend to be clus-

tered together due to multicolinearity. If using a higher threshold, e.g. 15%, for the

posterior probabilities, the Bayesian method identified the largest cluster, but failed

to identify the other two clusters, as shown in Figure 4.8(c).

(a) Post. Clustering Prob. (b) Estimated Network (c) Estimated Network

Figure 4.8: 4.8(a) The posterior probabilities for each pair of components being in the same cluster.

4.8(b) and 4.8(c) Two identified directional networks with edges corresponding to top 30% and 15%

posterior probabilities P̂A
ij . Nodes in the same colors of either light blue or blue, correspond to

regions in the same cluster identified by the BMIDDM, and nodes in black correspond to regions in

the clusters with only one component.
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Nevertheless, the Bayesian method achieves almost 60% TPF for 0% FPR, as

shown by the ROC curves of network edge selection with and without the stimulus in

Figure 4.9(a). We also apply the P-iPDA to the same dataset for comparison. The

P-iPDA incorrectly clusters four components in the first two clusters together with

four components in the third cluster, as shown in Figure 4.9(b), which leads to a FPR

larger than 20% and a smaller TPR than that of the proposed Bayesian method given

the same FPR, as demonstrated in Figure 4.9(a).

(a) ROC Curve (b) P-iPDA Network

Figure 4.9: 4.9(a) The ROC curves for network edge selection with and without the stimulus.

The red cross corresponds to the TPR and FPR of the network result by the P-iPDA, which

is shown in 4.9(b). The directional edges are omitted in 4.9(b), because components in the

same cluster identified by the P-iPDA are all pairwise connected. Nodes in the same color

correspond to components in the same cluster identified by the P-iPDA.
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Overall, in comparison with the P-iPDA, the Bayesian method can have a higher

TPR with a threshold that permits similar FPR as P-iPDA. Furthermore, with a

relatively high threshold for the posterior selection probabilities of network edges,

BMIDDM tends to identify clusters with a small FPR, even if the model assumptions

are violated. This implies that when using the proposed BMIDDM, the edges found

with a high enough threshold are quite reliable, with a pretty small portion of them

being false edges.
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Chapter 5

Application to ECoG Data

In this chapter, we apply the proposed model, BMIDDM, to a set of ECoG time

series in real life. We briefly explain the experimental setup about how the data is

collected, and then discuss the analysis of the data using our model and the scientific

meanings of the results.

5.1 Data Acquisition

The auditory ECoG data acquisition and processing methods have been described pre-

viously [100]. Briefly, continuous ECoG signals were recorded simultaneously from

a 6×8 array of electrodes (2.3 cm diameter, 9 cm spacing) implanted over the lat-

eral left hemisphere of an adult epilepsy patient for clinical purposes of localizing

seizures prior to resection surgery. Figure 5.1 shows the spatial placement of ECoG

electrodes on the epileptic patient whose ECoG data are analyzed in this study. The
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experimental paradigm was a 300-trial passive listening task using pure tones (50 ms

duration). Since electrodes 47 and 48 are used as the reference and ground electrodes

and electrode 32 contains excessive noise, recordings from a total of d = 45 electrode

channels were analyzed. Auditory responses, computed using time-domain and time-

frequency analyses [10, 30, 34, 81] were identified at three electrode sites (electrodes

14-16) consistent with the location of auditory cortex in the posterior temporal lobe.

Seven electrode sites 1-4, 9-10, and 18 located in the inferior anterior temporal lobe

were identified as the primary seizure focus based on clinical recordings.

Figure 5.1: Spatial placement of ECoG electrodes on an epileptic patient.

The recording data contain 246 trials of ECoG recordings using a frequently

presented, standard 1000 Hz tone stimulus of 50 ms duration and 54 trials using a

different, infrequently repeated, i.e., deviant, 1200 Hz tone stimulus also of 50 ms

duration. All tone stimuli were presented sequentially at 1400 ms inter-stimulus

interval. Following common practice in the literature, we focus on brain activity in
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an early cortical auditory processing time range, which corresponds to the first 150

ms after the stimulus onset. As such, each trial of data is of 250 ms duration: 100

ms pre-stimulus (0-100 ms), 50 ms for stimulus presentation (100-150 ms), and 100

ms post-stimulus (150-250 ms). Figure 5.2 gives a sense of how the data looks like by

displaying curves from 3 electrodes in the first trial using the standard stimulus. We

applied the BMIDDM to each 250-ms window independently to allow for variation of

brain networks across trials and also to ensure that the assumed bilinear ODE model

can approximate the underlying nonlinear system effectively. As such, in the MIDDM

for the ECoG data, d = 45, T = 250, and u(t) = 1 for 100 ≤ t ≤ 150.

Figure 5.2: ECoG time series at electrodes 1, 16, and 31 from the first trial using the

frequently presented, standard 1000 Hz stimulus.

5.2 Data Analysis

We applied the proposed Bayesian model to the observed ECoG time series and

obtained the posterior selection probabilities for all the trials.
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We compared the first five trials with the rest of trials using 1000 Hz stimulus

by calculating numbers of region pairs, denoted by Rl1l2 for the pairwise comparison

of trials l1 and l2, with different clustering probabilities (threshold 0.5 on P d
ij), and

found that the brain network in response to the first stimulus is distinct from those

in response to the rest of the stimulus sequence. Figures 5.3(a) and 5.3(b) show

histograms of the percentages of region pairs (among all possible pairs) with P d
ij

larger than 0.5 in the network comparison between the first two trials (l1 = 1, 2) and

the rest of trials using 1000 Hz stimulus, i.e., histograms of Rl1l2/d(d− 1) for l1 = 1

or 2 and l2 6= l1. Most pairs of regions in the first trial have much larger clustering

probabilities than those in the rest of the trials, in line with the discovery by [7] that

connectivity strength between regions is the strongest in the first of several repetitive

auditory events. In addition, by exploring connectivity among many regions, we found

that the brain network of the first trial has stronger connections than the networks

in the rest of trials (with 1000 Hz tone stimulus).

We evaluated networks in response to infrequent, deviant 1200 Hz stimulus.

Figure 5.3(c) shows the histogram of the proportions of region pairs with P d
ij larger

than 0.5 in the network comparison between the first and the rest trials using 1200 Hz

stimulus. In comparison with distinct networks of the first and of the rest trials using

1000 Hz stimulus, the difference among networks in response to the deviant 1200 Hz

stimulus is much less pronounced. We have compared the network of the first trial

using 1000 Hz stimulus with those of the 54 trials using 1200 Hz stimulus, as shown
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(a) 1000 Hz Trial 1 vs. Rest (b) 1000 Hz Trial 2 vs. Rest

(c) 1200 Hz Trial 1 vs. Rest (d) 1000 Hz Trial 1 vs. 1200 Hz Trials

Figure 5.3: 5.3(a) and 5.3(b) show histograms of proportions of region pairs with significantly

different clustering probabilities (i.e., P d
ij > 0.5) in the network comparison of the first two trials

with the rest trials using 1000 Hz stimulus. 5.3(c) shows the histogram that compares the first trial

with the rest trials using 1200 Hz stimulus. 5.3(d) shows the histogram that compares the first trial

using 1000 Hz stimulus with the trials using 1200 Hz stimulus.
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in Figure 5.3(d): the network of the first trial is similar to networks in most trials

using infrequent, deviant stimuli. Similar results have been reported in the literature

[31, 48, 49] that the observation of decreasing responses to repetitive stimuli does not

apply to different or deviant stimuli.

To summarize analysis results of trials associated with the two different stimulus

types, we calculated average ranks of posterior network-edge-selection probabilities

P̂A
ij of 246 trials using 1000 Hz stimulus and of 54 trials using 1200 Hz stimulus,

respectively, and presented the two average networks with top 5% average ranks in

Figures 5.4(a) and 5.4(b). We selected directional edges with top 5% posterior prob-

abilities to identify most closely connected components with a small FPR. Moreover,

with this high threshold, the identified clusters are small in size and thus, easier to

examine visually.

For trials using regular 1000 Hz stimuli, the identified network consists of two

modules of closely connected brain regions that are believed to be specialized in

different brain functions. The auditory responsive regions, electrodes 14-16, interact

closely with regions in the posterior temporal lobe, involved in auditory perception.

Regions in the inferior frontal lobe have dense interactions, which is in line with

existing findings of short frontal lobe connections [19] and the implication of this brain

area in predictive coding (generating expectations based on stimulus presentation

probability) [7]. In comparison, for trials using 1200 Hz stimulus, regions in the

frontal lobe show the strongest connections, consistent with the role of the frontal
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(a) 1000 Hz Average Network (b) 1200 Hz Average Network

Figure 5.4: 5.4(a) and 5.4(b) show the network edges with top 5% average ranks of P̂A
ij across

trials using 1000 Hz and 1200 Hz stimuli, respectively. Nodes in the same colors of either light blue,

blue, or dark blue, correspond to regions in the same cluster identified by the BMIDDM, and nodes

in black correspond to regions in the clusters with only one component.

lobe in detecting novel or different auditory events [65, 80].

We estimated E and G of 300 trials, and the average Ê of trials using two

different stimuli are shown in Figures 5.5(a) and 5.5(b). Estimates of parameters

denoting brains effective connectivity in response to deviant stimuli are much larger

in absolute values than those associated with regular, repetitive stimuli, suggesting

stronger effective connectivity among brain regions in the former scenario. This result

is in line with the finding of stronger brain responses to deviant stimuli in the literature

[31].
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(a) 1000 Hz Average E (b) 1200 Hz Average E

Figure 5.5: 5.5(a) and 5.5(b) show average posterior means of E across trials using 1000 Hz and

1200 Hz stimuli, respectively.
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Chapter 6

Conclusions and Future Study

In this chapter, we first summarize the advantages of the proposed model, BMIDDM,

over the previous model, P-iPDA, and how our model can help us better understand

the functional organizations of the brain. After that, we discuss some potential di-

rections for future study of this topic, including three aspects: model development,

computational improvement, and data application.

6.1 Conclusions

The BMIDDM brings three crucial advantages over the existing optimization method

P-iPDA. First, one can detect different strengths of directional interactions among

brain regions by the BMIDDM, and thus identify different levels of connectivity in

the brain network. In the presented real data analysis of trials using 1000 Hz stim-

ulus, given different posterior selection probabilities of network edges, the BMIDDM
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identified two small modules, which consist of spatially close brain regions and are

specialized for different functions. In contrast, the P-iPDA grouped the two modules

into one cluster and treated all connections within this cluster equally. Second, by

using a high threshold for the posterior probabilities of network edges, the Bayesian

method identifies most closely connected regions with a small FPR. Moreover, the

resulting small clusters are much easier to understand and interpret than large clus-

ters outputted by the P-iPDA, especially in connectivity studies of hundreds of brain

regions. Third, given different posterior clustering probabilities of brain regions in

different trials, the BMIDDM can be used to detect network changes.

The application of the proposed method to brain connectivity studies will po-

tentially enhance our understanding of the brain’s functional organization for two

reasons. First, since brain components in the same module usually have a similar

function, the module identification can be used to determine the module’s functional

role in the brain network, especially if the function of some brain regions in the mod-

ule is already known. Taking the network result of the real data analysis, shown in

Figure 5.4(a), as an example, the regions (electrode sites 7, 8, 13, 24, 28-30) con-

nected with the auditory responsive regions (electrode sites 14-16) are mostly likely

also specialized for primary auditory perception. Second, the module identification

can significantly simplify the study of the brain’s functional organization. It is much

easier, both in terms of computation and interpretation of the results, to evaluate

connections between and within modules separately than to evaluate connections be-
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tween every pair of brain regions. Moreover, the proposed cluster-structured ODE

model and the associated estimation method are scalable to a system with hundreds of

components by first identifying modules locally and treating modules as components

of the large-scale system.

The proposed Bayesian framework can also be applied for the inference of gen-

eral high-dimensional ODE models. High-dimensional ODE models are difficult to

estimate and make statistical inferences, usually due to computational difficulties or

complex relationships between components. Our Bayesian approach, although devel-

oped under a medical scenario, can be used for other ODE models with a cluster and

indicator structure as well.

6.2 Future Study

In this section, we discuss some potential directions for future study from three per-

spectives. First, we bring up some ways that we have considered to improve the

current model. Second, we put forward some computational techniques that we may

want to try since the speed of the program limits the application of the method.

Finally, we suggest some other problems in real life that the proposed approach could

possibly help with.
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6.2.1 Future Development of Models

In the brain network, connections within modules are usually short-range, strong,

and dense, while those between modules tend to be sparse and long-range to ensure

integration among different specialized areas [69]. It is very likely that the two mod-

ules specialized for different functions shown in Figure 5.4(a) are integrated through

weak, long-range connections. In the future study, we will extend the MIDDM to

accommodate interactions among clusters. Then the ensuing ODE model uses two

types of indicators for connectivity within and between modules, and the prior on in-

dicators (3.8) is expanded to incorporate probabilities on between-module indicators.

To distinguish between within- and between-module connections, the prior probabil-

ity for the former should be much larger than that for the latter to reflect the prior

belief that connections within modules are dense and connections between modules

are sparse. The priors of the rest of model parameters are unchanged, and a similar

PCGS algorithm can be developed for ensuing posterior simulations.

Since spatially close brain regions tend to have stronger connections, we can

also incorporate regions’ spatial structure into the Bayesian framework for inferring

effective connectivity between the regions. For example, the prior on module la-

bels exp{−µ
∑

ij δ(mi,mj)} can be modified to exp{−µ
∑

ijWijδ(mi,mj)}, where

the weight Wij is proportional to the distance between regions i and j. Similarly, the

prior probability for γAij and γBij can be changed to pij, which is proportional to the

distance between regions i and j, leading to higher prior probabilities for short-range
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network edges. The choices of Wij and pij and their effect on the ensuing posterior

inference will be evaluated in the future research.

If one is interested in identifying components on which the stimulus has a direct

effect, he/she can include indicators γCi for coefficient Ci, i = 1, . . . , d, in the MIDDM.

Then the prior on indicator variables in 3.8 is modified to incorporate the prior

probability pc for γCi for i = 1, . . . , d. The same PCGS algorithm can be used to draw

samples from the ensuing posterior distribution. Note that if the goal is to identify

nonzero Cis, the observed data y(t) should be standardized to unit norm without

changing the center of the time series and the signs (positive, negative, or zero) of

Cis in the ODE model for standardized data.

Activities of the brain system are oscillatory, which has been reported to appear

in various important brain functions [79]. To better characterize those oscillatory ac-

tivities, the current first-order ODE model can be extended to a second-order ODE.

Specifically, the second-order derivatives of the state functions are modeled as a bilin-

ear equation of both the state functions and their first-order derivatives. The whole

framework will be very similar to the current one, except that there are more ODE

model parameters to estimate. The new ODE coefficients can be dealt with in the

same way as θ = {A,B,C,D} in the MIDDM with a flat Gaussian distribution as

the prior.
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6.2.2 Potential Computational Improvement

The algorithm is computationally challenging for three reasons. First, in some sim-

ulation steps, we have to invert large matrices to calculate covariance matrices for

Gaussian distributions from which the parameters are simulated from. This matrix

inversion step takes cubic time and can be quite slow especially when the matrix is

high-dimensional. Second, in MCMC procedure, each iteration can only start after

the previous iteration is finished because it depends on the results from the previous

one. This makes parallel computing at this level impossible. Last, we need to run

sufficiently large number of iterations to arrive at the stationary distribution of the

Markov chain.

One potential method to further speed up the algorithm is the asymptotic Bayes

[37]. It releases the dependency between iterations so that parallel computing can

be applied on the between-iteration level, which could possibly increase the efficiency

of the algorithm. It is actually straightforward to implement asymptotic Bayesian

method given our current Bayesian framework. However, careful mathematical proof

is required beforehand to theoretically show that the Markov chain will converge to

the same posterior distribution.

Another potential direction to tackle the computational challenge is the vari-

ational Bayesian method. Intuitively, it shortens the computing time greatly by

sacrificing some accuracy of the results. However, it would take much more efforts to

construct the variational Bayesian framework compared with deriving the Gibbs sam-
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pler equations. In addition, further experiments and simulation studies are needed to

test the accuracy of the outcome.

6.2.3 Applications to Other ECoG Data

In addition to the auditory ECoG data set that we have analyzed in this work, the

MIDDM can be used on the ECoG data for other primary brain experiments (e.g.,

visual or auditory tasks) as well, in order to estimate and compare the brain networks

in response to those particular tasks. Besides, the proposed model can also be applied

to the seizure ECoG data, which measures the brain responses over time with several

seizure onsets from epilepsy patients, to study brain network changes before and after

seizure onsets.

Currently after the patient agrees the surgical resection, the epilepsy specialists

will inspect the ECoG data collected from that patient visually and determine the

part of the brain identified as the seizure focus, or the initiation point of the seizure,

which will be removed in the following surgery. However, different doctors looking at

the same ECoG data can have different opinions on where the seizure focus is, and

some patients can still have seizure even after the surgery, meaning that either the

wrong part of the brain is removed, or the actual seizure focus involves a larger area

than the removed one.

Since the MIDDM method analyzes brain networks and does pairwise network

comparisons, it could possibly help with the identification of the seizure focus in the
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following way. Since the seizure focus is the initiation point of abnormal brain activ-

ities, we hope to find it isolated from other normal brain regions when constructing

the network for all the brain regions right after the seizure onset. Moreover, the

abnormality of the seizure focus will spread to other brain areas after a while. Then

we expect to find some patterns of network changes and to observe the seizure focus

connected with other brain areas.

One potential challenge of applying the MIDDM to the seizure ECoG data is the

long computing time. The dimension of the seizure data is larger than that of the

auditory data, so it will take longer for the algorithm to complete for the seizure data.

However, the method would be less helpful in practice if it is too slow. Furthermore,

different patients can have different seizure focuses and different brain conditions. As

such, it is hard to develop a general method to find the seizure focus, with the false

positive rate being strictly controlled at the same time. We will further explore the

potentials of the MIDDM in helping the treatment of epilepsy patients in the future

research.
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Appendix

A Proof of Proper Posterior Distribution

Let N be the normalizing constant for p(η,ΘI ,σ
2|Y, τ, µ) in equation (3.10). Because

exp
{
− 1

2τ
R(η,ΘI)

}
≤ 1 and p0 < 1, then we have:

p(η,ΘI ,σ
2|Y, τ, µ) ≤ N ·

d∏
i=1

1

σTi
exp

{
−(Yi −Φ ηi)

2

2σ2
i

}
·

d∏
i,j=1

φ

(
Aij
ξ0

)
(6.1)

·
d∏

i,j=1

φ

(
Bij

ξ0

)
·

d∏
i=1

φ

(
Ci
ξ0

)
·

d∏
i=1

φ

(
Di

ξ0

)
·

d∏
i=1

1

σ2
i

.

The above inequality gives an upper bound for the posterior joint density. In the

following, we integrate out parameters in this upper bound step by step, and show

that the upper bound is integrable.

Since m,γA, and γB are discrete and take a finite number of different values,

after integrating these parameters out in (6.1), the ensuing joint posterior of θ and
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σ2 follows

p(η,θ,σ2|Y, τ, µ) ≤ Cd ·N ·
d∏
i=1

1

σT+2
i

exp

{
−(Yi −Φ ηi)

2

2σ2
i

}
(6.2)

·
d∏

i,j=1

φ

(
Aij
ξ0

)
·

d∏
i,j=1

φ

(
Bij

ξ0

)
·

d∏
i=1

φ

(
Ci
ξ0

)
·

d∏
i=1

φ

(
Di

ξ0

)
,

where Cd is some positive constant depending on d. After integrating out θ in (6.2),

we have

p(η,σ2|Y, τ, µ) ≤ ξ2d
2+2d

0 · Cd ·N ·
d∏
i=1

σ−T−2i exp

{
−(Yi −Φ ηi)

2

2σ2
i

}
.

Then as long as the number of basis coefficients L is smaller than the number of

time points T for each component, the formula on the right of the above inequality

is integrable.

B Technical Details of PCGS Algorithm

B.I Joint posterior distribution p(m,η,σ2,γA,γB|Y, τ, µ)

In the following, we use p(θ|−) to denote the full posterior conditional distribution

of θ. Based on the formulation of the joint distribution (3.10), given the rest of

the parameters, {Aij, Bij, Ci, Di}dj=1 are independent for i = 1, . . . , d, so we will first

derive the posterior conditional distribution of {Aij, Bij, Ci, Di}dj=1.

Let GAi = {j : δ(mi,mj) · γAij 6= 0 and j = 1, . . . , d} and GBi = {j : δ(mi,mj) ·

γBij 6= 0 and j = 1, . . . , d}. Define a d × d diagonal matrix IAi where diagonal entries

corresponding to GAi equal 1, and the rest diagonal entries equal 0. We define IBi
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associated with GBi in the same manner. We use M[,G] to denote the matrix consisting

of columns indexed by G of M, and M[G, ] to denote the matrix consisting of rows

indexed by G of M. Let XA
i (t) = IAi x(t) · (1 − u(t)) and XB

i (t) = IBi x(t) · u(t), so

XA
i (t) and XB

i (t) are vectors whose elements are functions of time t. Let Λi(t) =

((XA
i (t))′, (XB

i (t))′, u(t), 1) and θi = (A[i,GAi ],B[i,GBi ], Ci, Di)
′. We have

p(A[i, ],B[i, ], Ci, Di|−) ∝ exp

{
− 1

2τ

∫ T

0

(
Λi(t)θi −

dxi(t)

dt

)2

dt

}

·
d∏
j=1

φ

(
Aij
ξ0

)
·

d∏
j=1

φ

(
Bij

ξ0

)
· φ
(
Ci
ξ0

)
· φ
(
Di

ξ0

)
,

where dxi(t)/dt =
(
b(1)(t)

)′
ηi.

After integrating out Aij and Bij corresponding to zero indicator values in the

above equation, we have

p(θi|m,η,σ2,γA,γB,Y, τ, µ) ∝ exp

{
−1

2
θ′i

(
1

τ

∫ T

0

Λ′i(t)Λi(t)dt+
1

ξ20
I

)
θi

}
· exp

{
1

τ

∫
dxi(t)

dt
Λi(t)dt θi

}
· exp

{
− 1

2τ

∫ T

0

(
dxi(t)

dt

)2

dt

}
, (6.3)

where I denotes an identity matrix.

Let Mi = 1
τ

∫ T
0

Λ′i(t)Λi(t)dt+
1
ξ20

I and Vi = 1
τ

∫ T
0

dxi(t)
dt
·Λ′i(t)dt. Based on equation
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(6.3), we have

p(m,η,σ2,γA,γB|Y, τ, µ) ∝
d∏
i=1

σ−T−2i exp

{
−(Yi −Φ ηi)

2

2σ2
i

}

·
d∏
i=1

det(Mi)
−1/2 · exp

{
d∑
i=1

V′iM
−1
i Vi/2

}

· exp

{
− 1

2τ

d∑
i=1

∫ T

0

(
dxi(t)

dt

)2

dt

}

· exp

{
−µ

d∑
i,j=1

δ(mi,mj)

}

· p
∑

i,j γ
A
ij+

∑
i,j γ

B
ij

0 · (1− p0)2d
2−

∑
i,j γ

A
ij−

∑
i,j γ

B
ij .

We have p(m,γA,γB|η,σ2,Y, τ, µ) ∝ J(m,γA,γB,η, τ, µ), where

J(m,γA,γB,η, τ, µ) =
d∏
i=1

det(Mi)
−1/2 · exp

{
d∑
i=1

V′iM
−1
i Vi/2

}

· exp

{
−µ

d∑
i,j=1

δ(mi,mj)

}

· p
∑

i,j γ
A
ij+

∑
i,j γ

B
ij

0 · (1− p0)2d
2−

∑
i,j γ

A
ij−

∑
i,j γ

B
ij .

B.II Simulate mi from p(mi|m−i,η,σ2,γA,γB,Y, τ, µ) for i =

1, . . . , d sequentially

Let G−i be the set of distinct values in m−i, and g−i be any positive integer smaller

than d + 1 and not belonging to G−i. Then the posterior conditional distribution of

mi is discrete and has a support of {G−i, g−i}. In addition, for each z ∈ {G−i, g−i},

P (mi = z|m−i,η,σ2,γA,γB,Y) ∝ J(mi = z,m−i,γ
A,γB,η, τ, µ).
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B.III Sequentially simulate γAijs and γBijs from their posterior

conditional probabilities

Given parameter values m,γA−ij,γ
B, and η, γAij for i, j = 1, . . . , d follows a Bernoulli

distribution with probability

J(m, γAij = 1,γA−ij,γ
B,η, τ, µ)

J(m, γAij = 1,γA−ij,γ
B,η, τ, µ) + J(m, γAij = 0,γA−ij,γ

B,η, τ, µ)
.

Note that if mi 6= mj, the above probability equals p0. Similarly, we sequentially

simulate γBij conditional on the rest of the parameters.

B.IV Simulate θ from p(θ|m,η,σ2,γA,γB,Y, τ, µ)

Based on the joint posterior distribution (3.10) and posterior conditional distribution

of θi (6.3),

Aij|δ(mi,mj) · γAij = 0
iid∼ N(0, ξ20)

Bij|δ(mi,mj) · γBij = 0
iid∼ N(0, ξ20)

θi|m,σ2,γA,γB,Y, τ, µ
ind∼ MN(M−1

i Vi,M
−1
i ) for i = 1, . . . , d.

B.V Simulate σ2 from p(σ2|ΘI ,η,Y, τ, µ)

From the joint posterior distribution (3.10), we have

σ2
i |ΘI ,η,Y, τ, µ

ind∼ Inv-Gamma

(
T

2
,
(Yi −Φ ηi)

2

2

)
for i = 1, . . . , d.
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B.VI Simulate η from p(η|ΘI ,σ
2,Y, τ, µ)

Define a dT -by-dL matrix Q =


Φ 0 0

0
. . . 0

0 0 Φ

 , where Φ is defined in (3.5). Let U

be a dT -by-dT diagonal matrix with (i−1) ·T to i ·T diagonal entries equalling 1/σ2
i ,

i = 1, . . . , d. Then

p(η|ΘI ,σ
2,Y, τ, µ) ∝ exp

{
−1

2
(Y −Qη)′U(Y −Qη)

}
· exp

{
− 1

2τ
(η′ΩΘI

η − 2Λ′ΘI
η + ΞΘI

)

}
∝ exp

{
−1

2
(η −ψ)′H(η −ψ)

}
, (6.4)

where H = Q′UQ + ΩΘI
/τ , and ψ = H−1(Q′UY + ΛΘI

/τ). From (6.4),

η|ΘI ,σ
2,Y, τ, µ ∼ MN(ψ,H−1).

Notations ΩΘI
,ΛΘI

, and ΞΘI
are introduced in equation (3.7), and we derive

their formulas depending on ΘI in the following.
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Define vectors with d · L elements:

∆i(t) =
(
Ai1 · δ(mi,m1) · γAi1 · b1(t) · (1− u(t)), . . . ,

Ai1 · δ(mi,m1) · γAi1 · bL(t) · (1− u(t)),

Ai2 · δ(mi,m2) · γAi2 · b1(t) · (1− u(t)), . . . ,

Aid · δ(mi,md) · γAid · bL(t) · (1− u(t))
)
,

Υi(t) =
(
Bi1 · δ(mi,m1) · γBi1 · b1(t) · u(t), . . . ,

Bi1 · δ(mi,m1) · γBi1 · bL(t) · u(t),

Bi2 · δ(mi,m2) · γBi2 · b1(t) · u(t), . . . ,

Bid · δ(mi,md) · γBid · bL(t) · u(t)
)
,

Ei(t) =
(
0L, . . . , (

db(t)

dt
)′, . . . ,0L

)
,

where 0L is a zero vector with L elements, and the (i− 1) ·L+ 1th to i ·Lth elements

of Ei(t) are non zero. Then with basis representation, MIDDM (3.3) can be rewritten

as Ei(t) η−∆i(t) η−Υi(t) η−Ci ·u(t)−Di = 0. Let Si(t) = Ei(t)−∆i(t)−Υi(t).

Then we have

R(η,ΘI) =
d∑
i=1

{
η′
∫

S′i(t)Si(t)dt η − 2

∫
(Ci · u(t) +Di) · Si(t)dt η

+

∫
(Ci · u(t) +Di) · (Ci · u(t) +Di)dt

}
.
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Comparing the above to equation (3.7), we have

ΩΘI
=

d∑
i=1

∫
S′i(t)Si(t)dt,

ΛΘI
=

d∑
i=1

∫
(Ci · u(t) +Di) · S′i(t)dt,

ΞΘI
=

d∑
i=1

∫
(Ci · u(t) +Di) · (Ci · u(t) +Di)dt.
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[23] P Conrad, M Girolami, S Särkkä, A Stuart, and K Zygalakis. Probability

measures for numerical solutions of differential equations. Submitted, 2015.

[24] J Daunizeau, O David, and KE Stephan. Dynamic causal modelling: A critical

review of the biophysical and statistical foundations. NeuroImage, 58:312–322,

2011.

[25] O David and KJ Friston. A neural mass model for meg/eeg: Coupling and

neuronal dynamics. NeuroImage, 20:1743–1755, 2003.

[26] O David, SJ Kiebel, L Harrison, J Mattout, J Kilner, and KJ Friston. Dynamic

causal modelling of evoked responses in eeg and meg. NeuroImage, 30:1255–

1272, 2006.

[27] P Deuflhard and F Bornemann. Scientific Computing with Ordinary Differential

Equations. Springer, New York, 2000.

[28] H. Devlin. What is functioanl magnetic resonance imaging (fmri)?, 2016. Psych

Central. Retrieved on October 16, 2017.



93

[29] DB Dunson, AH Herring, and SM Engel. Bayesian selection and clustering of

polymorphisms in functionally related genes. Journal of the American Statistical

Association, 103(482):534–546, 2008.

[30] PJ Durka, D Ircha, C Neuper, and G Pfurtscheller. Time-frequency microstruc-

ture of event-related electro-encephalogram eesynchronisation and synchronisa-

tion. Medical & Biological Engineering & Computing, 39:315–3211, 2001.

[31] SJ Eliades, NE Crone, WS Anderson, D Ramadoss, FA Lenz, and D Boatman-

Reich. Adaptation of high-gamma responses in human auditory association

cortex. Journal of Neurophysiology, 112(9):2147–2163, 2014.

[32] J Fan and R Li. Variable selection via nonconcave penalized likelihood and

its oracle properties. Journal of the American Statistical Association, 96:1348–

1360, 2001.
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[45] Matti Hämäläinen, Riitta Hari, Risto J Ilmoniemi, Jukka Knuutila, and Olli V

Lounasmaa. Magnetoencephalography?theory, instrumentation, and applica-

tions to noninvasive studies of the working human brain. Reviews of modern

Physics, 65(2):413, 1993.

[46] Kimiaki Hashiguchi, Takato Morioka, Fumiaki Yoshida, Yasushi Miyagi, Shinji

Nagata, Ayumi Sakata, and Tomio Sasaki. Correlation between scalp-recorded

electroencephalographic and electrocorticographic activities during ictal period.

Seizure, 16(3):238–247, 2007.

[47] P Hemker. Numerical methods for differential equations in system simulations

and in parameter estimation. Analysis and Simulation of Biochemical Systems,

pages 59–80, 1972.

[48] Björn Herrmann, Molly J Henry, and Jonas Obleser. Frequency-specific adapta-

tion in human auditory cortex depends on the spectral variance in the acoustic

stimulation. Journal of neurophysiology, 109(8):2086–2096, 2013.

[49] Björn Herrmann, Nadine Schlichting, and Jonas Obleser. Dynamic range adap-

tation to spectral stimulus statistics in human auditory cortex. Journal of

Neuroscience, 34(1):327–331, 2014.



96

[50] Y Huang and H Wu. A bayesian approach for estimating antiviral efficacy in

hiv dynamic models. Journal of Applied Statistics, 33:155–174, 2006.

[51] Y Huang, D Liu, and H Wu. Hierarchical bayesian methods for estimation

of parameters in a longitudinal hiv dynamic system. Biometrics, 62:413–423,

2006.

[52] S.A. Huettel, A.W. Song, and G. McCarthy. Functional Magnetic Resonance

Imaging. Sinauer, 2009.

[53] Hemant Ishwaran and J Sunil Rao. Spike and slab variable selection: frequentist

and bayesian strategies. Annals of Statistics, pages 730–773, 2005.

[54] Marc C. Kennedy and Anthony O’Hagan. Bayesian calibration of computer

models. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), 63(3):425–464, 2001.

[55] SJ Kiebel, O David, and KJ Friston. Dynamic causal modelling of evoked

responses in eeg/meg with lead-field parameterization. NeuroImage, 30:1273–

1284, 2006.

[56] S Kim, MG Tadesse, and M Vannucci. Variable selection in clustering via

dirichlet process mixture models. Biometrika, 93(4):877–893, 2006.

[57] Z Li, MR Osborne, and T Pravan. Parameter estimation of ordinary differential

equations. IMA Journal of Numerical Analysis, 25:264–285, 2005.



97

[58] T Lu, H Liang, H Li, and H Wu. High dimensional odes coupled with mixed-

effects modeling techniques for dynamic gene regulatory network identification.

Journal of the American Statistical Association, 106:1242–1258, 2011.

[59] R Matteij and J Molenaar. Ordinary Differential Equations in Theory and

Practice. SIAM, Philadelphia, 2002.

[60] AR McIntosh and F Gonzalez-Lima. Structural equation modeling and its

application to network analysis in functional brain imaging. Humman Brain

Mapping, 2:2–22, 1994.

[61] S Micheloyannis. Graph-based network analysis in schizophrenia. World Journal

of Psychiatry, 2(1):1–12, 2012.

[62] Alan Miller. Subset selection in regression. CRC Press, 2002.

[63] R Milo, S Shen-Orr, S Itzkovitz, N Kashtan, D Chklovskii, and U Alon. Network

motifs: Simple building blocks of complex networks. Science, 298(5594):824–

827, 2002.

[64] R Milo, S Itzkovitz, N Kashtan, R Levitt, S Shen-Orr, I Ayzenshtat, Sheffer

M, and U Alon. Superfamilies of evolved and designed networks. Science, 303

(5663):1538–1542, 2004.
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