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Abstract

Three projects related to stellar and binary evolution and waves in stars are in-
vestigated.

Motivated by the discovery of a handful of pulsating, extremely low-mass white
dwarfs (ELM WDs, mass M < 0.18 M) which likely have WD companions, a binary
formation model was developed for these systems. ELM WD is formed using angular
momentum losses due to magnetic braking by the stellar wind of the primary star.
Evolutionary models are constructed using the Modules for Experiments in Stellar
Astrophysics (MESA), with ELM WD progenitors in the range 1.0 < Mg/Mg <
1.5 and WD companions in the range 0.4 < M,/Mg < 0.9. Upon the thinning
of the evolved donor’s envelope, the donor star shrinks out of contact and mass
transfer ceases, revealing the ELM WD. Systems with small helium core masses have
previously been suggested as evolving to the short orbital period, hydrogen poor AM
CVN accretors. Systems with large helium core masses expand out to orbital periods
P, 2 15 hr, larger than those of the observed pulsators. In between this range, ELM
WDs may become pulsators both as pre-WDs and on the WD cooling track. The
resulting models for the stellar structure are used to compute expected g and p-mode
periods and compare to the observed periods.

WASP-12b is a hot Jupiter with an orbital period of only P = 1.1 day, making it
one of the shortest-period giant planets known. Recent transit timing observations
measure a decreasing orbital period with P/ P = —3.2 Myr. These observations imply
that a Gyrs old planet is now about to be destroyed by its star over the next few Myr.
One mechanism to produce orbital decay is through tidal friction. The tide raised in
the star by the planet may spin up the star, with the orbit contracting to conserve

angular momentum. Calculations are presented for the “dynamical tide” excitation



ii
of gravity waves by the time-changing tidal force. The main damping mechanism is
nonlinear wave breaking at the center of the star, if the star has a radiative core. I find
that the orbital decay rate due to the dynamical tide is insufficient to shrink the orbit
if WASP-12 is a main sequence star, since the core is then convective and the low-
amplitude gravity wave forms a weakly damped standing wave. However, if WASP-12
is a subgiant star with a radiative core, the dynamical tide breaks nonlinearly at the
center of the star. This traveling wave limit may then provide roughly enough friction
to account for the observed orbital decay.

In addition to the direct measurement of orbital decay in WASP-12, indirect
evidence of orbital decay in binaries containing a post-main sequence star comes from
the lack of binaries with close orbital separations, as they have already suffered orbital
decay and destruction by the parent star. A broad parameter study of orbital decay
is presented for a range of primary and secondary stars as well as orbital separation.
The goal is to make predictions for the range of orbital separation at which systems

will be missing due to orbital decay and engulfment by the star.
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Chapter 1

Background

1.0.1 Motivation for White Dwarf Formation in Binaries

This section is the motivation and background for Chapter 2. With the recent direct
detection of gravitational waves (Abbott et al. 2016), the era of gravitational wave
astronomy has begun. Binary systems containing white dwarfs (WDs) are predicted
to be strong gravitational wave sources in the mHz frequency range (Evans et al.
1987). One of the goals of the planned eLISA mission is to detect gravitational
waves generated by inspiraling double WDs (Ruiter et al. 2010). Close accreting WD
binary systems may also be the progenitors of type la supernova (Iben & Tutukov
1984). Among the brightest sources in the universe, type 1A supernovae are used as a
standard candle (Sandage et al. 1996). This lead to the discovery that the universe is
in an accelerating expansion era and the content is dominated by dark energy (Riess
et al. 1998; Perlmutter et al. 1999). In spite of their importance in astrophysics, many
aspects of WD binary formation and evolution are poorly understood. The goal of
my work is to better understand the WD interior structure and evolution by studying

the oscillation modes in the stars.
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The motivation of the WD binary evolution project in Chapter 2 is the discovery
of the pulsating helium core WDs with mass less than 0.2 M. In single star evolution,
the lowest mass helium core WD that can be produced is ~ 0.4 — 0.45 M, depending
on the strength of the stellar wind that exists on the red giant branch (RGB; D’Cruz
et al. 1996). Thus, M < 0.2M helium core WDs can only be produced in binary
systems, and based on observations, the pulsating low-mass WDs are usually with

another degenerate star (Hermes et al. 2012, 2013b,a).

1.0.2 Motivation for Orbital Decay by Tides

Stars greatly expand in radius when they leave the main sequence, eventually becom-
ing hundreds of times bigger than their main sequence radius. Stellar or planetary
companions with orbital separation less than a few AU can be engulfed by the giant
star as it expands. Additionally, tides may cause the binary orbit to decay, bringing
the companion inward to the star, rather than waiting for the star to expand to where
it orbits. This orbital decay due to tides may significantly extend the orbital radius
out to which planets are destroyed. If an observed giant star lacks close-in planetary
companions, this may be due to orbital decay having already caused a merger to
occur. In some rare cases binaries may be caught in the act of rapid orbital decay
due to tides.

Once a merger occurs, if the substellar companion is massive enough, it may eject
the hydrogen envelope of the RGB star (Nelemans & Tauris 1998). For a small planet,
it will likely be completely disrupted by the star (Sandquist et al. 1998; Nordhaus
et al. 2010) with little effect on the star.

Previous studies have focused on the final product of planetary systems, namely

how far from the end-product WD that planets might be found. There are three
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aspects to this problem. In addition to the expansion of the star and the decay of
orbits due to tides, mass loss during the RGB and AGB causes the orbits of surviving
planets to expand in proportion to the amount of mass lost from the star. Hence the
expectation is that planets should only be found much further than the maximum
radius attained by the star during the post-main sequence evolution.

Work by previous groups is as follows. Mustill & Villaver (2012) found that
a Jupiter size planet initially outside 3 AU can survive through the entire nuclear
evolution of its host star. The strong stellar wind in the AGB phase causes the orbit
to expand, with the final result being an orbital radius 3 - 6 AU around the WD.
Jupiter size planets within a few AU merge with the host star due to orbital decay
caused by tidal friction. My results in Chapter 3 and 4 show that tides are also
important in shrinking the orbit when the star is in the subgiant or RGB phase.

The motivation of the tides project is the orbital decay in progress for the WASP-
12 system (Maciejewski et al. 2016; Patra et al. 2017), and many close binaries and
star-planet systems with an orbital period within 20 days discovered by APOGEE
survey (Troup et al. 2016). The tidal effect can significantly change the orbit of those
systems. The fate of the systems is predictable by calculating the energy dissipation

rate by tides.

1.1 Stellar Evolution

The projects described in Chapters 2-4 use the MESA stellar evolution code in order
to study the structure and evolution of both single stars and stars in binary systems.
In this section we briefly review the evolution of single stars (Kippenhahn & Weigert
1990). Chapter 4 will discuss extensions to the theory of single star evolution required

when the stars in a binary interact. The focus will be on stars of mass < 3 M.
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Stars are formed from the collapse of a molecular cloud. During the pre-main se-
quence phase, contraction leads to an increasing temperature and fusion of hydrogen
to helium is ignited when the central temperature reaches about 107 K. The subse-
quent phase of core hydrogen burning is called the main sequence phase, and is the
longest nuclear burning phase. After the hydrogen in the core is exhausted, the star
undergoes additional phases of evolution called the red giant branch (RGB), helium
core burning, and the asymptotic giant branch (AGB). On the RGB, hydrogen burns
in a shell outside the helium core, adding onto the mass of the core. The structure
of the burning shell mainly depends on the mass of the core, and hence the star’s
luminosity and radius mainly depend on the helium core mass. The end of the RGB
and the start of core helium burning depends on the mass of the star. Stars of mass
< 2.3 M undergo the “helium core flash” in which helium is ignited explosively in
degenerate conditions. Stars of mass 2 2.3 M, ignite helium more smoothly under
non-degenerate conditions. The helium in the core then burns to a mixture of carbon
and oxygen. Lastly, the asymptotic giant branch is the phase in which core helium
has been exhausted, and helium shell burning commences. The radius during the
RGB and AGB is much larger than during the main sequence. When all the nuclear
fuel has been depleted, and the temperature can no longer rise to burn any heavier
elements, solar-type stars become white dwarfs (WDs). Although not discussed in
this thesis, stars of mass 8My < M < 20M become neutron stars and high mass
stars M 2 20M, form black holes (Fryer 1999).

Stellar structure is described by four equations. The first is the hydrostatic equi-
librium equation, which describes how the inward gravity force is balanced by the
outward pressure gradient force. The next equation integrates the interior mass ver-

sus radius. The third equation describes the sources and sinks of heat, such as heating
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by fusion reactions, and cooling by optically thin emission of neutrinos. Outside the
nuclear burning regions, the luminosity is constant as there is no energy generated
there. The last equation describes the radial temperature gradient inside the star,
which depends on whether radiation or convection (fluid motions) transports the heat
outward through the star. If there are no chemical concentration gradients, then when
the temperature gradient is greater than the adiabatic temperature gradient, the heat
is carried out by convection. This is analogous to boiling water in a kettle on the
burner. The three main microphysical inputs for stellar structure are the nuclear
burning rates and the equation of state and opacity of the gas. Also important for
the formation and evolution of white dwarfs is element diffusion, which leads to a
stratification of heavy elements below light elements once diffusion has had time to

act.

1.1.1 Low Mass Star Evolution

The Chapter 3 in this thesis is concerned with stars in the mass range 1.0 - 3.0 M),
evolving from the MS to the RGB phase. For stars of mass 1.0 - 1.5 M, star, we also
study the evolution until the white dwarf (WD) phase. All the simulations of the
thesis are done with Modules for Experiments in Stellar Astrophysics (MESA), an
open source stellar evolution and structure code (Paxton et al. 2011, 2013, 2015, 2018).
Figure 1.1 shows the evolutionary track in log g (¢ = GM/R? is the surface gravity)
and T plane (Tog is roughly the surface temperature) for a 1, 2 and 3 M, star, from
pre-main sequence (PMS) to the RGB phase. All the tracks start at the top right
of the figure, where the surface gravity of the star is small. Then the star collapses
until the central hydrogen ignited and enters the MS phase. The location of the MS

star on Figure 1.1 is at the bottom left of each evolutionary track. For the example
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of the solar-type star, the coordinates of its MS phase are (Teg, log g) = (6000, 4.5).
The main sequence is the most stable phase of the star during its entire evolution,
where the luminosity, radius, log ¢ and T.g are nearly constant. A single solar-type
star spends roughly 10 Gyr in this phase. The relation between the MS lifetime and
mass is tys/(10 Gyr) ~ (M/Mg)*® (Hansen & Kawaler 1994), so that 2 and 3 M,
stars spend less time in the MS phase.

The difference between the evolution of low and high mass stars in the MS phase
is that the nuclear energy is dominated by proton-proton chain (pp chain) for stars of
mass < 1.3 M, and the CNO cycle for stars greater than 1.3 M, (Salaris & Cassisi
2006). In the CNO cycle, carbon, nitrogen and oxygen isotopes are used as catalysts.
Because the latter fusion reaction requires a higher temperature, the CNO cycle only
occurs in higher mass stars. Furthermore, for low mass stars at the MS, it consists of
a radiative core and a convective envelope. For star mass greater than 1.2 - 1.3 M,
the the steeper temperature dependence from CNO burning implies that the star has
a convective zone at the center. By coincidence, the convective envelope at the surface
of the star is thick for M < 1.3 My and much thinner for more massive stars. The
presence and extent of central and surface convection zones is an important factor for
dynamical tide excitation of gravity waves (see Chapters 3 and 4).

The subgiant phase is between the MS and the RGB phase, and marks the tran-
sition from core to shell hydrogen burning. For star mass greater than 1.3 Mg, the
cease of the central convective core means the beginning of the subgiant phase. This
will be important in Chapter 3. At the RGB phase, the central hydrogen is exhausted
and the shell hydrogen is ignited. The star’s luminosity and radius increases signif-
icantly. On the evolutionary track of Figure 1.1, the star at the RGB phase moves

to top right from the bottom left of its MS position. As its radius keeps expanding,
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the log g is getting smaller. For a solar-type star at the late phase of RGB, its radius
can be a hundred times greater than its MS radius. The Sun will engulf Mercury
and Venus in the late RGB phase (Boothroyd & -Juliana Sackmann 1995; Schroder
& Connon Smith 2008).

12000 10000 8000 6000 4000
T (K)

Fig. 1.1.— The evolutionary track for 1 M (blue), 2M, (orange) and 3 M, (green)
stars from Pre-MS to the RGB phase in the log g and T.g plane.

1.1.2 Binary Evolution

The evolution of the two stars in a binary proceeds as for single star evolution until
the two stars begin to interact. Either due to the orbital separation shrinking or
due to the radius of the more massive star growing, one star will eventually begin
to overflow its Roche lobe and lose mass. In this thesis, binary interaction enters in
two different situations. In Chapter 2, we are interested in studying the formation
of compact double WD binaries. The size of the orbit for the observed binaries can

be much smaller than the size of the progenitor stars! Hence the stars must have



8

undergone a dramatic transformation from their zero-age main sequence appearance
to their end result as compact objects (WDs). Next, in Chapters 3 and 4, the binary
separation shrinks due to transfer of energy and angular momentum from the orbit
to one of the stars. This eventually brings the star and its companion (a star or a
planet) into contact. The evolution of these systems once they come into contact is
thought to proceed by two possible scenarios, depending on whether mass transfer is
stable or unstable.

Unstable mass transfer is defined by an exponential growth in mass loss rate to
large values. It arises when mass loss leads to the Roche lobe radius moving deeper
inside the stellar radius, so that mass loss accelerates with time (Hjellming & Webbink
1987; Soberman et al. 1997). Eventually the mass loss rate becomes so large that the
entire envelope around the helium core is lost from the donor star and forms a common
envelope (CE) around the donor core and the accretor (see Figure 1.2). Energy and
angular momentum exchange between the two stars and the CE causes the orbit to
shrink rapidly. The gravitational energy release powers the ejection of the envelope
(Paczynski 1976). The end result is that the CE is fully ejected and the binary has a
much smaller separation.

Stable mass transfer refers to a much lower and and more constant mass loss rate
from the primary star. The mass loss rate is typically set by nuclear evolution of
the primary or angular momentum losses from the orbit due to tides, stellar winds
or gravitational radiation (Soberman et al. 1997). The simplest situation for the
accretion (“conservative mass transfer”) is to imagine mass transfer due to nuclear
evolution of the primary, with no angular momentum losses, and the mass lost from
the donor all landing on the accretor (Tout et al. 1997). In this case it is straight-

forward to show that the orbit first shrinks, until the donor and accretor have the
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Fig. 1.2.— A schematic diagram showing the CE evolution. The black dot shows the
degenerate core of the primary star with an envelope surrounding on the left. The
secondary star shows in the circle on the right. In the CE theory, the mass of the
companion keeps as a constant.

same mass, and then expands significantly. We found that conservative mass transfer
can only produce helium core WDs greater than 0.2M, and hence cannot produce
ELM WD with mass M < 0.18 M. Further, the orbital periods resulting from con-
servative mass transfer are much longer than observed for the pulsating ELM WD.
The problem is that the rate at which mass is lost from the surface is comparable
to the rate at which the helium core grows and the core gets too big. The mass loss
rate can be greatly sped up, as compared to the nuclear burning rate, by including
“magnetic braking,” which is the loss of angular momentum due to a stellar wind
from the donor (Skumanich 1972; Smith 1979). Hence the donor loses mass simul-
taneously in a cold flow of gas through the L1 point in the Roche lobe overflow, as
well as a magnetized outflow from the hot stellar corona. This stellar wind torque
tries to spin down the star, but tides then synchronize the spin of the star, causing
the orbit to lose angular momentum (Rappaport et al. 1983). A second ingredient

commonly assumed is that some fraction of the mass which leaves the donor in the
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Roche lobe overflow does not settle onto the accretor, but instead is ejected from the
system, for example due to a disk wind. This loss of mass and angular momentum
from the binary system are called “non-conservative mass transfer,” and they may
greatly change the evolution and fate of the binary (Tauris & van den Heuvel 2006).
It is believed that the AM CVn systems contain a carbon-oxygen WD accreting from
a hydrogen poor donor star, and are formed by the RLOF channel with magnetic
braking (Podsiadlowski et al. 2003). Since they evolve to orbital periods lass than 1
hour, gravitational wave emission from the AM CVn’s may be strong enough to be
detected by eLISA (Nelemans et al. 2004). The cataclysmic variable (CV) binaries,
where a WD accretes matter from an unevolved star, is also produced by the RLOF
channel (Podsiadlowski et al. 2003). The formation of low-mass WD presented here
is in between CVs and AM CVns, where the progenitor of the low-mass WD is some-
what evolved, with a small helium core at the beginning of the RLOF. The pulsations
of these low-mass WDs may aid in understanding their structure and perhaps even
allow us to discern their formation process.

The magnetic braking torque has been studied by both theoretical calculations
as well as from observations of rotation rates of single stars. Observation of stellar
rotation rates find that older stars tend to rotate much more slowly than younger
stars, for low mass stars, while higher mass stars tend to retain rapid rotation rates
over their lifetime (Kraft 1967). The observed spin-down of low mass stars is called
“magnetic braking.” The magnetized stellar wind of the rotating stars efficiently
carries away angular momentum, spinning down the star. In a binary system, if
one of the stars slows down its rotation due to stellar wind torques, tidal transfer
of angular momentum shrinks the orbit (Rappaport et al. 1983). For the magnetic

braking formation channel, we will show that the minimum WD mass is ~ 0.14 M.
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1.2 Stellar Oscillations

Stellar oscillations serve two purposes in this thesis. For the ELM WD studied in
Chapter 2, we are interested in using measured g-mode oscillation periods in order
to carry out asteroseismic analysis for these stars to constrain the properties of their
interiors. In Chapters 3 and 4, stellar oscillations are used in the context of tides.
The g-modes can be excited by the tidal potential of the companion, transferring
energy and angular momentum between the orbit and the star. This is called the
“dynamical tide.”

To give some background on the material on Chapters 2-4, here we give an intro-
duction to free stellar oscillations in Section 1.2.1 and tidal forcing of stellar oscilla-

tions in Section 1.3.2.

1.2.1 Adiabatic Stellar Oscillation Equations

The equations describing stellar oscillation modes are the linearized equations of mass,

momentum and energy conservation equation. These equations are solved assuming

a spherically symmetric, time-independent background star, so that oscillations may

be expanded in spherical harmonics Y, (0, ¢) and with time dependence exp(—iwt).

In this section we ignore dissipative processes, focusing on adiabatic fluid motion.

The mass conservation equation, which is also called as the continuity equation, is
dp

E-I—V-(pv)zo (1.1)

where p is the mass density, ¢ is time and v is velocity.
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The momentum conservation equation, written in the Euler form, is

0
p<§+V-V)v:—Vp+pg, (1.2)

here, p is the gas pressure and g is gravitational acceleration.
The energy equation, here represented by the first law in thermodynamics, is
ds

T— = 1.
=0, (13)

where s is the entropy per unit mass. This equation says the entropy of a fluid element
does not change in time. The comoving derivative is d/dt = /0t + v - Vv.

The gravitational acceleration is g = —V®, where ® is given by the Poisson
equation,

V20 = 47Gp. (1.4)

Here @ is the gravitational potential and G is the gravitational constant.
In the linearized fluid equations, two types of the perturbations are used. Eulerian
perturbations are at a fixed position r, and are denoted by a symbol /. For example,

the full density field is written as

p(r,1) = polr) + p/(x, ). (L5)

On the left hand side, p(r, t) is the full density in the perturbed star. On the right
hand side, po(r) is the background density at r and p/(r, t) is the Eulerian perturbation
at r.

In the Lagrangian description, the perturbation is defined in the co-moving frame

following the motion of the fluid, and denoted by the symbol §. The Lagrangian
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perturbation is related to the Eulerian perturbation as, e.g. (Aerts et al. 2010; Shapiro
& Teukolsky 1983),

dp(r,t) = p'(ro, t) +0r - Vpq. (1.6)

The “Lagrangian displacement vector” is defined as the displacement of the fluid
element from its position in the background star to its position in the perturbed star.
It is given by

§=0r=r—ro=¢e +&, (1.7)

where in the second step we separated the vector into radial (&) and horizontal (&)

components. Given the displacement vector, the velocity perturbation is

v =€, (1.8)

where the dot denotes a time derivative.

Each quantity in Equations 1.1 - 1.4 may be written as the sum of a background
star piece plus a first order perturbation piece, as in Equation 1.5. Plugging these ex-
pansions into Equations 1.1 - 1.4, the background star quantities may be canceled, as
they satisfy the equations for a time-independent, spherically-symmetric background.
Further, we ignore nonlinear terms here and focus on the linearized equations.

The linear perturbations may be expanded in terms of spherical harmonics, since
the background star is spherically symmetric. For example, the density perturbation

has the form

T 0 ¢7 Zpém Ty t Y’E 7¢>7 (19)
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where Y;(0, ¢) is given by

" m [20+1(0—m)! ,
Y(0,0) = (—1) \/ P st e imo) (1.10)
and P;"(cosf) is the Associated Legendre polynomials (Courant & Hilbert 1953).
Here 0 is co-latitude and ¢ is longitude.

Vectors, such as the displacement vector, are expanded in the radial and poloidal

spherical harmonic as

£= (rim(r, )Y (0, 0)er + Enim(r,t)rVY(0,9)) . (1.11)
Im

The toroidal harmonic may be omitted here, as it would not provide any nonzero
restoring forces. It must be included if the Coriolis force or magnetic fields are
included.

Plugging the spherical harmonic expansions for each perturbation variable into
Equations 1.1 - 1.4 and integrating each equation against a particular spherical har-
monic leads to separable equations which only involve the spherical harmonic coef-
ficients for a single value of ¢ and m. Further, the azimuthal symmetry implies the
equations are independent of the spherical harmonic order m, but they do depend on
the degree £. The degree ¢ and order m of the spherical harmonic coefficients will be
suppressed unless needed, so that pj,,(r,t) — p/(r, 1), etc.

For a time-independent background and free oscillations, we also assume that each
perturbation variable oscillates harmonically, so that &,.(r,t) = &.(r) exp(—iwt), etc.
The oscillating factor exp(—iwt) may then be cancelled from the linearized equations,
leading to equations that depend only on r. Here w is the oscillation frequency.

The full non-linear fluid equations reduce to following linearized equations for

adiabatic stellar oscillations.
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The horizontal momentum equation

p/ + pq)/
. .

—w?pp, = (1.12)

The continuity equation can be written

dé, 2 1 dp 1 /S Col+1)
= (24— — (2L ', 1.13
dr (7“ + Iip dr)€ + pc? (uﬂ Pt w2r? ( )

where ¢ = \/I'1p/p is the sound speed, Sy is the Lamb frequency defined by S7 =

[6(¢ +1)c?]/r* = k2c?, and ky, is the horizontal wave number.

The radial momentum equation becomes

dp/ 9 9 1 dp do’
— = — N9+ — =9 — 1.14
I p(w )Er + Top ol TP (1.14)
where N? is the Brunt - Viisild frequency, which is defined as
1 dp 1dp
N=g|——--"L). 1.15
g <F1p dr p dr) ( )

For adiabatic motion, constant entropy co-moving with the fluid element may be

written in the form

p/ NQ
p=5+ 0 (1.16)
c g

The definition of the Eulerian perturbation to the gravitational acceleration in the

radial direction is

@
=4, 1.17
o =Y (1.17)
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And the Poisson equation can be written

1 d qu), f(ﬁ + 1) / p/ pgr 2
Su—— — d'. =14 = N-° ). 1.1
rZdr (r dr ) 72 7rG<02 * g (1.18)

Equations 1.13 - 1.18 comprise the four equations for linearized stellar oscilla-
tions. Given boundary conditions, they give rise to an eigenvalue problem for the
eigenfrequency w and the eigenfunction &.(r), p/(r), ®'(r) and ¢'(r).

For standing wave solutions trapped inside the star, the boundary conditions are as
follows. At the star center (r = 0), g and N? — 0 while p and ¢? are nearly constant.
A number of terms then contain 1/r coefficients which diverge at the center. A finite

solution is found by canceling these terms against each other. This is accomplished

/-1 /-1

by the radial dependence p’ o< ¢, ® o 7, ¢’ oc 71 and &, o< r~'. Numerically,
these boundary conditions can be enforced a small distance away from the center by

imposing the relation (Aerts et al. 2010)

¢ [y
= — 5+ 9. 1.19

¢ w2r <p + ) ( )
Similarly, finiteness in the Poisson equation 1.18, requires

w _w
dr  r

(1.20)

At the surface of the star (r = R), if we assume the scale height vanishes then
waves are trapped within the star. Equations 1.13-1.18 again have divergent terms
which must be cancelled against each other. Assuming that ¢* — 0 and N? — oo, we

must enforce

P = pgé: (1.21)
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at the surface. This equation looks like the standard plane parallel equation of hy-
drostatic balance for pressure change p’ over a height &,.

For the gravitational potential, there is no mass outside the star, and so the
outwardly decreasing solution of the potential must be chosen to avoid divergences
at infinite. This implies

do’ (L+1)

= (1.22)

The four ordinary differential equations 1.13, 1.14 1.17 and 1.18 contains four
variables &., p/, ® and ¢’ = d®’/dr, and we have four boundary conditions from
1.19 to 1.22. The boundary value problem can be solved numerically by the shoot-
ing method (Unno et al. 1989). Outward integration from the singularities at the
center and surface must be used. There are two free parameters needed to start the
inward integration from the surface, and two needed to start the outward integration
from the center. The four variables must be continuous at the fitting point some-
where in the middle of the star. This is only possible at certain frequencies w called

eigenfrequencies.

1.2.2 Mode Categories

There are three types of hydrodynamic waves in stars: acoustic, internal gravity, and
surface waves. The surface wave is commonly referred to as the f-mode, which stands
for fundamental. Standing acoustic waves are called p-modes, and standing internal
gravity waves are g-modes.The acoustic wave has its restoring force from pressure
and has frequencies w > (GM/R*)'/? so high that they can never be resonantly
excited by the tidal gravity of an orbiting companion. The internal gravity waves are

restored by buoyancy forces and have lower frequencies w < (GM/R?)'/? which may
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be excited by tides. In asteroseismic studies of the ELM WD, we will be concerned
with both p and g-modes. The surface wave (or fundamental) is restored by gravity
and has frequencies w ~ (GM/R?)Y/? (for £ = 2). It generally has the largest, albeit

nonresonant, response to the tidal force.

1.2.2.1 WKB Treatment of Acoustic and Gravity Waves

For short vertical wavelength waves, the full boundary value problem can be simplified
by introducing the Wentzel-Kramers-Brillouin (WKB) approximation, which turns
the four differential equations into algebraic equations to be solved for the vertical
wavenumber k2(r) as a function of position. The WKB method lends considerable
insight into both the dispersion relation as well as the regions of propagation and
evanescence within the star.

The perturbed gravitational potential, ®’, is due to the Eulerian density pertur-
bations p’ created by the fluid flow. The perturbed gravitational acceleration —V &’
may be shown to be small compared to the perturbed pressure gradient —Vp'/p for
short wavelength waves. In the Cowling approzimation, V&' is then ignored in the

momentum equations. Equations 1.13 and 1.14 becomes

d¢, 2 1 1 (S} ,
__(2_ R =/ 1.23
dr (r Fal>6 + pc? <w2 p ( )
and
dp’ 2 2 1
—_ = — N*)&, — ! 1.24
= p(w )€ YR (1.24)

where H, = —(dlnp/dr)~" is the pressure scale height.
For high radial order modes, the eigenfunction &, (r) varies slowly in amplitude as

compared with phase. To solve for the phase of the wave, the WKB ansatz f(r) ~
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foexp(i [ k.dr) is inserted for all perturbation variables. The radial derivative then
becomes df/dr ~ ik.f. As k. > r~! and k, > H_', the radial derivative terms
are much bigger than the background lengthscale terms. The first term on the right
hand side of the Equation 1.23 and the second term in the right hand side of Equation
1.24 can then be ignored. Combining the two resulting first order equations gives the

second order wave equation

d2 . 2 N2 2
d?i = % (1 - _) (i - >€r = _KS(T)ST' (1'25)

w? w?
In order for the wave to propagate, K (r) = (N?/w? — 1)(5?/w? — 1)w?/c* must
be positive. Therefore, we have a propagating wave function when either of the two

following conditions are satisfied:

w? > N? and w? > S} (1.26)

or

w? < N? and w? < S7 (1.27)

and the zones are called propagation zones. The place where K, (r) = 0 is called the
turning point and the place where K(r) < 0 is the evanescent zone.

The modes which satisfy Equation 1.26 are called p-modes, and they are mainly
restored by pressure forces. P-modes can propagate in either convective or radiative
zones. The modes which satisfy Equation 1.27 are called g-modes, and their restoring
force is mainly buoyancy. These g-modes only propagate in radiative zones. For

high-order p-modes, where w > N? S? the length of the radial wave vector can be
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obtained by rewriting wave vector as a function of its radial and horizontal component

0(+1 2
k|2 = K2+ k2 = k2 + % — Z’_Z (1.28)
which gives
1
k== (w* = S7). (1.29)

C

This shows that the number of the radial nodes increases with mode frequency for
the p-mode. Similarly, the radial wave number for high-order g-mode (w < S7, N?)

can be written

N2
k2 = ki(E - 1). (1.30)

In contrast to the p-mode, the number of the radial nodes decreases with an

increasing frequency for the g-mode.

1.2.2.2 Surface Wave

The fundamental mode (f-mode) is a non-WKB mode as it has no radial nodes. It is
analogous to deep water waves in the ocean.

There is a simple solution for the f-mode in a constant density star which captures
some of the main features seen in realistic stellar models. In the interior of the star,
we approximate the density p as constant, the sound speed c is infinite and the Brunt
N? = 0. This implies that p’ = 0 in the interior. Further, we assume the motion is

incompressible so that V - £ = 0. The momentum equation is

E=-V{/p+d). (1.31)



21

Taking the divergence and using incompressibility gives
0=V /p+@). (1.32)
The Poisson equation for p/ = 0 is
V2 =0, (1.33)

so that both p’ and @’ satisfy the Poisson equation. In the interior of the star, the

finite solutions are then
/ / r ¢
p'(r) =p'(R) (—R) (1.34)

and

o' (r) = ¥(R) (1)Z. (1.35)

Using the momentum equation, the radial displacement is then

e(r) = — (p/(R)+<1>’(R)) (%)H. (1.36)

~ Ww?R p

There are two boundary conditions at the surface. The first is the hydrostatic
boundary condition p'(R) = pg&,(R). The second condition must take into account
the gravitational potential perturbation by the deformed surface. For a density profile
p(r) = pO(R — r) and the Eulerian density perturbation is p'(r) = pd(r — R)&.(r).

This gives rise to the Poisson equation

V2@ = 4rnGp' = 47Gpd(r — R)E(R). (1.37)
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Integrating the Poisson equation over a narrow region near the surface gives

20+ 1 3
— () 9(R) = 47Gos (R) = e (R), (1.38)
R R
where we used the surface gravity ¢ = GM/R?* = 4rGpR/3. Combining the expres-

sions relating &.(R), p'(R) and ®'(R) we find the dispersion relation

w2:22€<€_1).

R 20+1 (1.39)

In the limit ¢ > 1, this agrees with the usual deep water dispersion relation for

2 — gl{ih.

water waves, w

The exact dispersion relation shows that the / = 0 and ¢ = 1 f-modes have
zero frequency, and the quadrupole mode is the lowest order f-mode. If we had
omitted @ from the momentum equation (the Cowling approximation), we would
have incorrectly found that the dipole (¢ = 1) f-mode has a nonzero frequency. For

¢ > 1, however, we find that ® o p’/¢, and the Cowling approximation is good even

for f-modes.

1.3 Tidally Forced Waves

In star-planet systems as well as close stellar binaries, tidal friction may give rise to
expansion or decay of the orbit by transferring angular momentum between the orbit
and the stellar spins. Tidal effects depend on two considerations: (1) the amplitude
of the tide raised by the companion, and (2) the amount of friction in the primary
(which converts the kinetic energy in the tidal flow into heat). In this section, the
physics of how tides make a spiral-in phase of the binary system is introduced.

Figure 1.3 shows how tides change the orbit and the spin of the star for Darwin’s
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tidal theory (Darwin 1879). The secondary object raises two tidal bulges onto the
primary star. The combination of the force generated by the tidal bulge at the close
side and the further side produces a torque. If the primary rotates more slowly than
the orbital angular velocity, the torque spins up the primary and the orbit shrinks
in order to conserve angular momentum. If the primary star rotates faster than the
orbital angular velocity, the tidal torque acts to slow down the stellar spin and expand

the orbit, similar to the Earth-Moon and Jupiter-Io systems (Goldreich & Soter 1966).

Secondar(y\

Fig. 1.3.— A schematic diagram showing the secondary star raise tides on the primary
star. The secondary star rotate counterclockwise on this figure and raise two tidal
bulges on the primary star that show in ecliptic. A lag angle is in between the solid
line and the dashed line.

Most studies of tidal dissipation use the “equilibrium tide” approximation to the
fluid flow (discussed below) and, following Darwin, parametrize the friction with a
constant “lag angle” or “tidal Q" or “lag time.” My work seeks to improve on both
aspects of the problem by solving the boundary value problem for the forced tidal
fluid flow as well as using physically motivated prescriptions for the dissipative effects.

For the adiabatic fluid motion, the equations of the tides in stars are very similar

to the equations of the adiabatic oscillations, with an extra term tidal potential U in
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describing the tidal acceleration —VU due to the secondary. Define a new variable

/
b= % F O+ U =W, (1.40)

in terms of which Equation 1.13 becomes

dé, 2 1 dp 1 /8?2 '+ U
= (24— (21 . 1.41
dr (T+F1pdT>§ +02 (aﬂ vt c? (1.41)

Similarly, Equation 1.14 becomes

dlﬂ_ 2 2 N2 /
5_( — N )€r+7(¢—q> —~U). (1.42)

The Poisson Equation becomes

1d (r2d®/> = 47er<w + éN2> G (1.43)

r2dr dr c? g r?

The boundary conditions at the center of the star with the new defined quantity v is

l

At the star surface, the boundary conditions are the same with 1.21 and 1.22 (Unno
et al. 1989).

The inclusion of the inhomogeneous forcing terms, involving the tidal potential
U = Upy(r), give rise to a boundary value problem in which the linear response
to the forcing U at frequency w may be found for each of the variables &,., 1, @’
and ¢’. The true linear response is the solution to the boundary value problem

(Goodman & Dickson 1998). However, often the solution can be idealized by two
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different limits: the “equilibrium tide” and the “dynamical tide” (Cowling 1941; Zahn
1977). The equilibrium tide is the response that would occur if the star could instantly
respond to the tidal force, and fluid inertia ¢ was unimportant. This solution is a
good approximation when the tidal forcing frequency is smaller than the frequency of
“important” modes. The equilibrium tide is often used as it gives a simple analytic
solution. By contrast, the dynamical tide involves a wavelike response of the fluid,
involving the excitation of a wave. This explicitly involves fluid inertia. There are
two distinct limits for the response: standing waves, when dissipation is weak; and
traveling waves, when dissipation occurs in less than a single group velocity travel

time (Weinberg et al. 2012).

1.3.1 Equilibrium Tides

The equilibrium tide is formally the solution to the equations with w set to w = 0
(Unno et al. 1989). From the horizontal momentum equation, w?&, = /r, this

implies that ¢» = 0 as well, and hence

op=—p(® +U). (1.45)

The radial momentum equation then gives

U+
&= — J; (1.46)

as long as N2 # 0. In equilibrium tide flow, the fluid follows equipotentials of the full

gravitational field. That is

O(r) — g& + O'(r) + U(r) ~ &(r) (1.47)
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which implies

o'+ U
g =2t (1.48)
g
The continuity equation then gives
1 d
() + Vi & =0, (1.49)

r2 dr

implying the motion is incompressible. Given the solution for &., this equation can
be solved for the horizontal displacement as
1 d [7”2

b= —
g

[T Drdr (<I>’+U)}. (1.50)

While the equilibrium tide has zero divergence, the flow does containing shearing.
This shearing leads to an important source of dissipation in stellar convection zones,

where turbulent viscosity may give rise to rapid diffusion of momentum.

1.3.2 Dynamical Tides

The dynamical tide is the resonant excitation of internal gravity waves by the tidal
force. Energy can be put into the wave through the work done, —pV - 5 , by the tidal
force. If dissipation is weak, the wave will be able to reflect many times between the
inner and outer turning points and a standing wave will be formed. However, for
efficient damping the wave energy dissipates as heat in the star before the wave has
time to reflect back (Zahn 1977). The dissipation rate is maximized in the traveling
wave limit.

An approximate solution is available in the traveling wave limit in the limit of short

wavelengths (low forcing frequencies and wide orbits). In this limit, the work done
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by the tide is highly oscillatory as the the wave is oscillatory but the tidal potential
varies smoothly. Most of the energy is then put into the wave where the wavelength is
longest, and this occurs near the turning point at the radiative-convective boundary.
For an outer convective envelope, this implies a traveling wave fired inward toward
the center of the star. An inward-going traveling wave boundary condition must be
placed on this wave. The amplitude of the wave must also be matched to that in the
convective envelope, which sets the wave amplitude.

In the above limit, the radial displacement satisfies the following wave equation
near the turning point (Goodman & Dickson 1998)

@z,
dz?

= z¢, (1.51)

where a dimensionless radial coordinate is = (r — rg) /A, and A is the “Airy wave-

length” given by
00+ 1)dN2|7®

= 1.52
w2rz dr |, ( )

)\E‘

Using the two linearly independent solutions to the above Airy equation, the match-
ing conditions are easily found. The resulting formula for the inward going wave

luminosity is used in Chapters 3 and 4.

1.3.3 Wave Damping Mechanisms

The long-lengthscale equilibrium tide-type motions are most effectively damped by
the turbulent eddies in stellar convective envelopes. The short-wavelength dynamical
tide is evanescent in convection zones, but may be damped by radiative diffusion in
radiative zones as well as by nonlinear fluid processes when the wave amplitude is

large. In this section, the three damping mechanisms are discussed.
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1.3.3.1 Turbulent Viscosity Damping

The tidally-induced fluid motions in the convection zone resemble the equilibrium
tide, since gravity waves cannot propagate there. The left plot of Figure 1.4 shows
the relative movement between shearing layers inside the convection zone. The upper
layer moves towards the right, and the lower layer moves towards the left. If momen-
tum can be exchanged between the two layers then the shearing will be damped.
First consider “molecular” viscosity due to a finite mean free path between col-
lisions. As a particle in the lower layer moves one mean free path into the upper
layer, it carries with it leftward momentum. When it moves to the upper layer, it
decreases the momentum of the upper layer. During this process, a friction force and
heat are produced, and are parametrized by a kinematic viscosity v ~ vy, A with the

2571 like a diffusion coefficient. The characteristic lengthscale the particle

units cm
moves is the mean free path A, and its characteristic speed is the thermal velocity
vyn- Because the mean free path is so small in stars, molecular viscosity is typically
too small to explain tidal evolution observations by many orders of magnitude.

The eddies carrying the heat out of the star in turbulent convection zones may
serve a similar purpose as molecular viscosity. Instead of particles hopping mean free
paths traveling at the thermal speed, consider fluid eddies in the stellar convective
zone, which are shown as the circular arrows in the right panel of Figure 1.4. The
shearing motions of the tidal flow may perform work on the eddies, implying an
irreversible loss of energy from the tidal flow to the turbulent convective flow. For
eddies of size L ~ H, and velocity veq ~ (F/p)'/? (F is the heat flux), the turbulent
viscosity v ~ H,veq can be many orders of magnitude larger than molecular viscosity,

and large enough to cause rapid tidal evolution in some circumstances (Zahn 1977).

The energy dissipation rate due to turbulent viscosity can be estimated as E ~
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MenVV|V§:|2, where M, is the mass of the stellar convective zone.

One issue that arises in practice is that it is only resonant eddies, with turnover
times comparable to the tidal forcing period, that are effective in damping the tidal
shearing motions (Goodman & Oh 1997; Penev et al. 2009, 2011; Ogilvie & Lesur
2012). Hence the “standard” turbulent viscosity, using the largest eddy sizes ~ H,
and velocities veq(H,), are not applicable in many situations where the orbital period
is shorter than the large eddy turnover time (e.g. 1 month for the Sun). The theory
of “reduced viscosity” attempts to use not the largest eddies, but smaller resonant
eddies which turnover with timescales comparable to the orbital period. As this is
a complicated and unsolved problems, we summarize the two most commonly used
models for reduced viscosity.

Zahn (1966, 1989) substitutes the mixing length term in computing the kinematic
viscosity, with the distance that the biggest eddy covered during half of the forcing
period to get the viscosity, vzn = v(Pf/Tea), here 7oq is the eddy turnover time
for the biggest eddy. Alternatively Goldreich & Nicholson (1977) and Goldreich &
Keeley (1977) use the eddies with a turnover time equivalent to the forcing period P
in computing the viscosity. Developed from the Kolmogorov spectrum, which gives

the relation between energy and the size of the eddy, the relation between the eddy

-
Fig. 1.4— A schematic diagram showing the convective damping. The horizontal
lines marks the upper and lower layer inside the star convective zone. The test particle

is shown as a black dot. The eddies are displayed as counterclockwise arrows on the
right.

“—
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velocity with a size [gy and its length scale is

Vea(len) ~ (lan)'?, (1.53)

which means the eddy velocity is proportional to the length scale to the power of 1/3.

Then the eddy turnover time for the eddy with a size gy is

(lon) = P = lon lax ) ** (1.54)
Ted\lGN) = f_ved(lGN) Ted ] .

The derived viscosity for Goldreich and Nicholson’s theory vgy is then

lGN 4/3 Pf 2
vaN ~ Ved(lax) X lan ~ Vit (T) ~ Vstd (T_d) : (1.55)

To summarize, For Zahn’s theory, the viscosity is reduced linearly with orbital
period. For Goldreich and Nicholson’s theory, there is a quadratic reduction with
orbital period factor. The energy dissipation rate of the equilibrium tides is therefore

expected to be greatly reduced for close systems.

1.3.3.2 Radiative Damping

In radiative zones, hot and cold regions are created by the compression and rarefaction
of waves. Thermal diffusion due to heat carried by photons may then allow heat to
flow from the hot to the cold regions, damping the wave. Radiative damping is more
important for shorter lengthscale waves, as then the heat does not have to diffuse as
far (Zahn 1975; Goodman & Dickson 1998).

Since the dynamical tide can have very short lengthscales, for low frequency grav-
ity waves, radiative damping may be significant. For a traveling wave suffering strong

thermal diffusion, the wave energy converts to heat during the propagation, even be-
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fore it reaches the inner turning point. The thermal diffusion is particularly important
in the electron degenerate cores of RGB stars. The decrease in wave energy may be
parametrized as ~ exp(—a«) where « represents the fraction of wave energy damped
in one group travel time (Goodman & Dickson 1998). Results are presented for « in

Chapter 4.

1.3.3.3 Nonlinear Damping

As ocean waves approach the shore and the water depth decreases, their amplitude
increases. When the wave height (amplitude) becomes comparable to the wavelength
(distance between crests), the wave breaks nonlinearly and deposits its energy locally
in the form of shorter wavelength waves and heat. The same process happens for the
dynamical tide in stars.

In RGB stars, the dynamical tide is excited at the radiative-convective boundary
and propagates inward. As the wave approaches the center, moving into a region of
smaller area (47r?), in order for the wave luminosity to remain constant the wave
amplitude must increase. When the wave amplitude (&) becomes comparable to
the vertical wavelength (27 /k,) the wave energy is locally converted into heat, and
the traveling wave limit is applicable (Kumar & Goodman 1996; Goodman & Dickson
1998; Barker & Ogilvie 2010; Weinberg et al. 2012). In Chapters 3 and 4, the traveling
wave luminosity at the radiative-convective boundary may be used to compute the
nonlinearity k&, in the radiative zone, and the condition for nonlinear wave breaking

is checked to see when the traveling wave limit may be used.
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Chapter 2

Formation of the Extremely

Low-Mass White Dwarf Binaries

This chapter is based on the publication Sun & Arras (2018).

2.1 Introduction

Extremely low-mass white dwarfs (ELM WDs) are here defined as helium-core WDs
with masses M < 0.18 M, sufficiently low that no hydrogen shell flashes occur during
the WD cooling stage. More massive WDs have shell flashes, which quickly decrease
the mass of the hydrogen-rich envelope. The thicker envelopes of ELM WDs allow
for significantly higher stable hydrogen burning rates, keeping these lower mass stars
more luminous than their slightly more massive counterparts (Driebe et al. 1999).
Helium core WDs can in principle be formed through single star evolution, for
sufficiently small mass that helium core ignition is avoided. Large helium core WDs
of mass M < 0.45 M may be produced in less than 13.7 Gyr (D’Cruz et al. 1996)

if enhanced mass-loss rates are assumed on the red giant branch (RGB). However,
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far larger mass-loss rates would be needed to strip more than 0.8 My on the RGB to
uncover a helium core mass M. < 0.2 M, starting from a M; ~ 1 M zero-age main
sequence (ZAMS) star. Further, the main sequence (MS) evolution time for ZAMS

2 1000 Gyr, and hence, in practice, ELM WDs can only

~Y

masses M; < 0.2 Mg is ts
be produced through binary evolution, either by stable Roche-lobe overflow (RLOF)
or unstable mass transfer (MT) and a common envelope (CE) inspiral.

ELM WDs have been observed to pulsate with g and p-mode oscillations (Hermes
et al. 2012, 2013b,a), opening up the possibility of probing the interiors of these exotic
stars with seismology. One question is whether the two different formation channels
can be distinguished through seismology. Since the structure of these objects is par-
ticularly simple, with a helium core and a thick, hydrogen-rich envelope, there are in
principle fewer parameters required to characterize the star than for carbon-oxygen
core DA and DB WD pulsators. One complication is that, for the effective tem-
perature T.g range of observed pulsators, there may be insufficient time to establish
diffusive equilibrium throughout the star (Cérsico & Althaus 2014). This complicates
the calculation of stellar models, because time-dependent diffusion must be included,
but also provides an additional opportunity for changing composition profiles to affect
the mode periods.

A number of ELM WDs were recently discovered by the ELM, SPY and WASP
surveys (Koester et al. 2009; Brown et al. 2010, 2012, 2013, 2016; Maxted et al. 2011;
Kilic et al. 2011, 2012; Gianninas et al. 2015). Follow-up observations of ELM survey
candidates allowed Hermes et al. (2012) to discover the first pulsating ELM WD, SDSS
J184037.78+642312.3. Subsequently, the 2nd and 3rd pulsating helium WDs, SDSS
J111215.82+111745.0 (J1112) and SDSS J151826.68+065813.2, were discovered with

seven oscillation frequencies, respectively. For J1112, two modes with shorter periods
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were suggested as possible p-mode oscillations (Hermes et al. 2013b). This is the only
known WD with p-mode pulsations. There are currently seven known pulsating ELM
WDs (see Table 2.1). The T range of the seven stars is 7,890 < Tz /K < 9,560, and
the surface gravity range is 5.78 < log;, (g/cm s72) < 6.68. The range of observed
pulsation periods for the seven objects is from 1184 to 6235s (Hermes et al. 2013a;
Bell et al. 2015; Kilic et al. 2015). Pulsations are also observed in pre-ELM WDs
WASP J1628+10B and WASP J0247-25B, which have not yet cooled off to the WD
cooling track. An interesting point in regards to the driving of the observed modes by
the k mechanism is that the driving by the helium partial ionization zone may indeed
explain the observed pulsations (Cérsico et al. 2016), but it was necessary to turn
off diffusion, otherwise helium would settle down below the driving region. Models
which include element diffusion (Istrate et al. 2016) must include a source of mixing
to keep the helium lofted up in the driving region.

The expected range of oscillation mode periods of helium WDs with mass M <
0.2M, was examined by Steinfadt et al. (2010), who showed that the smaller WD
mass and larger radius lead to mode periods as much as a factor of 2 longer than the
carbon-oxygen core WD with log;, (g/cms™2) a~ 8. They also showed that g-mode
pulsations may contain most of their energy in the helium core, so that the mode
periods may be sensitive to M.. Cdrsico and Althaus (2014; hereinafter CA) studied
the two short period p-modes of J1112, finding that the model p-modes nearly match
the observed short period modes for a low-mass WD with M ~ 0.16 M, but the
implied surface gravity was then well below that inferred from spectra. Subsequently
Tremblay et al. (2015) used three-dimensional (3-D) hydrodynamic simulations of WD
atmospheres, and fitting these new model atmospheres implied significantly different

log g for cool DA WDs, as much as 0.35 dex, closer than that required by the short
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p-mode periods. At present, the minimum mass ELM WD from the ELM survey
is M = 0.14 M, (Brown et al. 2016) with a log,, (¢/cms™2) = 5.5. One question
addressed in this paper is the minimum mass for the ELM WD from binary evolution.

There are seven observed pulsating WDs with mass lower than 0.2M. Table 2.1
gives their parameters from observations. The mass estimates of the ELM WDs and
their companions are shown in columns 2 and 6. Except J1618+3854, all other log g is
given by 3-D atmosphere simulations (Tremblay et al. 2015; Kilic et al. 2015). Three

of the systems have no radial velocity detection of a companion.

Section 2.2 discusses a promising formation channel, Roche-lobe overflow including
orbital angular momentum losses due to magnetic braking. Binary evolution and
ELM formation results from this model are presented in Section 2.3. Discussion and
conclusions are given in Sections 3.4 and 2.5. Appendix 2.6 shows that the minimum
WD mass produced through conservative mass transfer is larger than the ELM WD
mass range. Appendix 2.7 shows that formation of an ELM WD by CE evolution

tends to produce very close binaries, which may merge in many cases.

2.2 ELM formation through magnetic braking

The Cataclysmic Variable (CV) model of ELM WD formation in this paper assumes
that the progenitor of the ELM WD was the initially less massive star. The initially
more massive star formed a WD companion.

From the discussion in Appendix 2.6, magnetic braking is key to form ELM WDs
so that the envelope is stripped before the core can grow too large. This section
starts with a brief summary of previous work on CV binaries with both unevolved

(M. = 0) and slightly evolved (M. < 0.05 M) stars transferring mass to a WD.
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The ELM formation model presented here is the extension to CVs with higher core
masses in the range 0.06 < M./Mg < 0.16. In this model, the ELM WD started as
the donor star, and appeared as a M < 0.18 M, WD at the end of MT. The lower
core mass end for the ELM WD comes from the requirement that MT ends before
the AM CVN phase, so that the ELM WD may be observed as a pulsator. The upper
core mass limit for the ELM WD is set by requiring that no shell flashes occur on
the WD cooling track, allowing thick surface hydrogen layers and long-lived stable
nuclear burning.

Canonical CV evolution of unevolved donor stars with masses My < 1 M, uses
magnetic braking laws calibrated by observations of the spin-down of single stars to
understand binary evolution. Since the thermal time is shorter than the mass-loss
timescale for these systems, the evolution is relatively insensitive to the initial donor
mass, and the evolution of different donor masses converges to the same track at
shorter P,. The well-known CV period gap, the scarcity of accreting systems in
the range 2 < P, /hr < 3, is understood as the donor shrinking inside the Roche
lobe when the magnetic braking torque decreases sharply. The physical origin of
the angular momentum loss rate by magnetic braking J,;, was initially thought to
be the disappearance of the tachocline as the star became fully convective, although
it was later realized that even late M stars may be able to generate large magnetic
fields which can support a comparable level of coronal activity required to generate a
magnetic wind (Kraft 1967; Skumanich 1972; Spruit & Ritter 1983; Browning 2008).
Regardless of the origin of the torque decrease, it is implemented in evolutionary codes
by turning Jyp, off by hand when the donor star becomes fully convective. MT then
resumes at P,y ~ 2hr when gravitational wave torques shrink the orbit and bring

the donor back into contact. The gradual lengthening of the thermal time as the
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hydrogen burning limit is approached changes the structure of the donor from that
of a low-mass MS star to a brown dwarf responding adiabatically to mass-loss. As
a result the donor star expands upon losing mass, and the orbital evolution switches
from contraction to expansion.

The evolution of CVs with slightly evolved donors M. < 0.05 Mg has been dis-
cussed by Podsiadlowski et al. (2003) and van der Sluys et al. (2006). They showed
that systems with evolved donors can form short-period AM CVn systems for small
M., and also dominate the CV population at long orbital periods P,y = 5hr for
larger 0.03 < M./Ms < 0.05. A bifurcation period at 16 < P, /hr < 22 separates
the systems which move to shorter periods from those that expand. In the period
range 1 < Py, /hr < 5hr the CV population is dominated by unevolved stars.

Podsiadlowski et al. (2003) discussed that, as compared to unevolved donors, care
must be taken in the magnetic braking torque when the donor’s convective envelope
becomes thin. The commonly used Ju, formulae have been calibrated for stellar
masses less than about 1 Mg, and do not take into account the reduced magnetic
torque for sufficiently thin surface convection zones. The well known Kraft break
(Kraft 1967) in the rotation rates of single stars at mass about 1.3 M, divides the
higher-mass, rapid rotators from the lower-mass slow rotators, indicating a dramatic
reduction in Jy,, when the surface convection zone becomes small. For evolved donors,
this reduction is key to the formation of ELM WDs. Due to the degenerate helium
core, these stars always have radiative cores, and hence Jup, would not undergo the
same drastic reduction as for unevolved donors. However, MT gradually sheds the
envelope until it becomes so thin that the shell burning strongly decreases, with an
associated shrinking of the convective envelope. This tends to cause the evolved

donor to fall out of contact. If, in addition, a prescription for reduced J, at small
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convective envelope mass is included then a long non-accreting phase in which the
donor star emerges as an ELM WD may result. Systems with small M. which fall
out of contact at small P,,;, may be driven back into contact by gravitational wave
losses, while those with larger M, are sufficiently distant that they don’t have time
to come back into contact in a Hubble time.

The magnetic braking law chosen here is the same as used for unevolved donors,
with a reduction in torque for small convective envelopes. The reasonableness of this
prescription can be judged by the agreement of the model P, log,, g and T.g with

observations.

2.2.1 Description of the Simulations

Binaries are evolved using the “binary_donor_only” option in the Modules for Exper-
iments in Stellar Astrophysics code (MESA, version 8845; Paxton et al. 2011, 2013,
2015), which evolves the structure of the donor star and orbit in time, but treats
the accretor as a point mass. Mass transfer is assumed to be fully non-conservative
(MESA parameter mass_transfer_beta = 1), so the accretor mass M,; is a constant
in time and mass-loss from the binary is assumed to take place in a fast wind from
the accretor. The physical basis for this assumption is that accretion disk winds may
limit the mass that falls on to the accretor, and nova explosions may remove the
accreted mass.

The mixing length parameter is set to ayyp, = 1.9. The ZAMS metallicity of all
stars is Z = 0.01, which is characteristic of the disk stars in the Galaxy (Bensby et al.
2014). As stars evolve faster for lower metallicity with the same star mass (Istrate
et al. 2016), this metallicity choice helps accelerate the production of a WD within the

age of the Galaxy. The nuclear burning network used is “pp_and_cno_extras”, which
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includes 'H, 3He, *He, '2C, N, 60, ?°Ne, ?*Mg and extended networks which com-
prise the pp-chain and CNO cycle. Element diffusion is included over the entire
evolution, starting from ZAMS end extending through the WD cooling track. This
setting is crutial in regards to the critical mass at which H flashes occur, as well as to
the number of flashes before the WD cooling as found by Istrate et al. (2016). The
setting “diffusion_use_cgs_solver = .true.” is used to allow for electron degeneracy in
the diffusion physics. Five classes of elements, 'H, 3He, *He, 160, 5Fe, are evolved.
Helium core masses, M., reported here are computed as the mass interior to the point
where the mass fraction of *H is 1% that of *He.

The total orbital angular momentum, J, evolves through torques due to magnetic
braking (Jup), gravitational waves (J,,, Landau & Lifshitz 1975) and mass-loss from
the binary (Jy)

J = T + Jge + ot (2.1)

Angular momentum loss from the binary due to a fast wind in the viscinity of the
accretor is (Tauris & van den Heuvel 2006)

My My

Ja=J .
! M,(My + M,)

(2.2)

The mass-loss torque T 18 important during the thermal timescale mass transfer
TTMT, when My 2 M, and the mass-loss rate of the donor Md is high. Thereafter,
Jup takes over until the convection zone thins. The gravitational wave torque Jgr is
important for short periods P, < 3hr, and is the dominant torque at the second
phase of MT at P, < 1hr.

For thick convection zones with mass fraction geony > 0.02, the magnetic braking

formula of Rappaport et al. (1983) is used. MESA’s implementation is to set Jup =0
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when the fraction of mass in the convection zone geony > 0.75 to implement the above-
mentioned reduction at small stellar mass. To take into account reduced magnetic
braking when the surface convection zone is thin, the ansatz from Podsiadlowski et al.
(2002) is that Ju, is reduced by an exponential factor as the convection zone mass

becomes small. The end result used in the simulations is then

v
Jupb = —3.8x 107 MRY (&) w?
Re

0, 1> geony > 0.75
X 1, 0.75> qeony > 0.02 (2.3)

61—0.02/qconv’ CIConv < 002

where Jyp is in CGS units gem?s™!

, magnetic braking index v = 4 was used in the
calculations, w = 27/ P,y is the orbital angular velocity in rads™!, Rq is the donor
star radius. The mass fraction ¢..n, = 0.02 is for the current solar convection zone
and so magnetic braking is suppressed on the MS for more massive stars. Because
the donors are evolved, their radii shrink less than for unevolved donors and there is
only a weak dependence on . Calculations with v = 3 and 4 gave similar results.

A side effect of the reduced me at small qeopny is that donors with mass 1.3 <
Mgy/Mg < 1.4, which have small magnetic braking on the MS, can have sufficient
magnetic braking as evolved donors, with thicker convection zones that they work
well as the progenitors of ELM WDs. Their MS lifetime is much shorter than a
0.9 < My/Ms < 1.1 donor, so this leaves more time for the WD to cool to small
Tor < 9000 K and enter the blue edge of the instability strip. Simulations of donors
with larger masses My 2 1.5 M, had difficulty forming an ELM WD because M, 2
0.1 My at the end of the MS which, when combined with core growth during the

accretion phase, makes them too large to be the ELM WD with M < 0.18 M.
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Furthermore, the orbits are much wider than for the 1.0 < My/Mg < 1.4 cases.

Simulations in which the MT rose sharply and exceeded |Mg| > 1073 Mg, yr—!
were stopped and labeled as exhibiting unstable MT. This occurs if the initial mass
ratio ¢s = Ma;i/M,; is too large, where My; is the initial donor star mass, M,; is the
initial accretor mass, and is exacerbated by wider orbital separations such that the
donor was well up the giant branch when MT commenced. As discussed in Appendix
2.7, unstable MT and CE may lead to merging for the M. < 0.1 M, here.

In our model, the ELM WD progenitor is assumed to be the initially less massive
star, and the initially more massive star becomes the ELM WD companion, itself a
WD. The initially more massive star is assumed to form a WD through a CE phase,
because short orbital periods from 1 to 3 days are required in the second phase of MT
to form the ELM WD. Let M; be the mass of the initially more more massive star, Mo
the mass of the initially less massive star, and acg; the initial semi-major axis before
the CE. Notice that the subscript “1”7, “2” and “CE” are only used in this section,
and indicate the star parameters before the stable RLOF phase. For a wide initial
orbit, a core mass M, is formed in star 1, and by removing the envelope, M . is
the mass of the ELM companion. Applying the CE energy equation (Equation 2.8 in

the appendix), and expressing the answer in terms of the post-CE (but pre-magnetic

braking) orbital period Pcg orb.f, gives

G<MLC + MQ)PéE,orb,f V8 — R (M )X MI,CMQ
Ar? ORI (2/aN) My (M) — My ) + My Myry (M /Ms) )
(2.4)

with the appropriate R;(M; ) relation for each core mass range, this equation can
be solved for Pcg o, during the evolution, where Pog o ¢ is the post-common en-
velope (but pre-magnetic braking) orbital period, A ~ 1 is a mass-dependent factor

describing the binding energy, « is the efficiency of tapping orbital energy to remove
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the envelope, and rpa is the effective radius of the Roche lobe, and 7y, is a parameter
defined in Eggleton (1983). MESA models for M;; =1, 2, 3, 4, 5 M, were used to
find Ry, M, . and M, during the evolution. The radius grows non-monotonically, so
this leads to gaps in M; . over regions where the radius decreases below its maximum
value.

Figure 2.1 shows numerical solutions of Equation 2.4 for companion mass M; . as a
function of Pcg obs. The ELM WD progenitor mass has been fixed at M, = 1.3 Mg,
and five different M; have been used to give the different lines. The product a)
is set to 2 for convenience. There is a general trend that M; . must be larger for
larger orbital period or Mj, in order that the orbital energy release can balance the
binding energy. During the second phase of MT, the companion is the accretor and
so M,; = M, ., and the progenitor of the ELM WD is the donor, so My; = Ma.

The separation at the onset of the RLOF should be slightly greater than 5 R to
form an ELM WD. If M, . is fixed at 0.6 Mg with My = 1.3 M and the separation
after the CE acg s = SR, there are still two free (but not completely free) parameters
M, and the orbital period before the CE Pcg;. Moreover, M; is greater than M,
because the massive star evolves first. This can lead to a CE phase. And M;/M,
is greater than one to have unstable MT followed by a CE phase (Woods & Ivanova
2011). For My =2 Mg, Pcg; is 7.6 days.

2.3 results on binary formation

2.3.1 The Fiducial Case

Figure 2.2 displays evolution tracks in the log,, g versus Tys plane for the fiducial

case with Mg; = 1.3 My and (constant) accretor mass M,; = 0.6 M. The entire
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Table 2.1: Properties of the seven pulsating ELM WDs. The error bars of log,, ¢,
Tesr, Mass Function, Ms i, and Py, are in Sun & Arras (2018).

Object M log,g g Tex Mass Function Mj iy P, Ref.
(My) (ems2) (K)  (My)  (My) (hs)

J1840+6423 0.177 6.34 9120 0.399 0.65 4.5912  (1)(7)
J1112+1117 0.169 6.17 9240 0.028 0.14 4.1395 (2)(7)
J15184-0658 0.197 6.68 9650 0.322 0.58 14.624  (2)(7)
J1614+1912 0.172 6.32 8700 (3)(7)
J2228+3623 0.175 5.78 7890 (3)(7)
J1618+3854 0.179 6.54 8965 (4)
J173840333 0.172 6.30 8910 0.000346 1.47  8.51496 (5)(6)

(1)Hermes et al. (2012); (2)Hermes et al. (2013b); (3)Hermes et al. (2013a); (4)Bell
et al. (2015); (5)Gianninas et al. (2015); (6)Kilic et al. (2015); (7)Tremblay et al.

(2015).
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Fig. 2.1.— ELM WD companion mass M, ., as a function of post-common envelope

(but pre-magnetic braking) orbital period, Pcgobs. The lines represent different
progenitor mass M; /My = 1,2,3,4,5 for the companion. The ELM WD progenitor
is assumed to have mass My = 1.3 M.
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Fig. 2.2.— Evolutionary models for the donor of initial mass My; = 1.3 Mg and
(constant) accretor mass M,; = 0.6 M. The figure shows the entire range of ELM
WDs, which is covered by the range of initial orbital periods F,,; =0.90, 0.93, 0.95,
0.97, 0.99, 1.02 days, from right to left. In addition, a model with slightly larger
P, = 1.03 day is shown, for which shell flashes occur on the WD cooling track. The
color indicates the helium core mass, M. (M). The black points with error bars are
the seven pulsating ELM WDs. The track with P, ; = 0.90 day gives the minimum
mass of the ELM WD to be My¢ = 0.146M. The Pyp; = 1.03 day model yields a
WD of mass My¢ = 0.179 M. The evolution between the first and last shell flashes
is not shown on the plot, for clarity.
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range of ELM WDs is covered by the initial orbital period P,; =0.90, 0.91, 0.93,
0.95, 0.97, 0.99, 1.02 days, after the CE but before the RLOF phase. The narrow
range of P, ; which produce ELM WD is similar to the result found by Smedley
et al. (2017). The donor in the track with P,; = 1.03day has a core mass large
enough that diffusion-aided shell flashes occur on the WD cooling track. The color
indicates M,.. The black points with error boxes represent the seven pulsating ELM
WDs with parameters derived using 3-D atmosphere models (Tremblay et al. 2015)
except J1618+3854 (since only the log;, g and Teg from 1-D atmosphere model is
given in other references), with the half width of the box showing the measurement
uncertainty.

All runs begin at the ZAMS with log;, (¢/cms™2) = 4.4 and T,z = 6500 K. Along
the MS, and as the star evolves to the RGB, its radius increases with M., and so
wider orbits come into contact with larger M.. The ELM WD commences MT with
0.06 < M./M < 0.1, and M, increases during the MT phase. Figure 2.2 shows that
models with larger M, evolve to a higher maximum T,g, the elbow in the curve that
separates the pre-WD phase (increasing Teg) from the WD cooling track (decreasing
Ter). This plot shows the same behavior between shell flashes, that the loops in
the log g — T.g plane become larger, evolving to higher maximum T.g. As a result,
when systems with shell flashes enter the WD cooling track, their evolution is more
nearly horizontal, at constant log,, g. This gives rise to a wedge in the log,, g — Tes
plane which separates the ELM WD with M < 0.18 M, without shell flashes from
the slightly more massive WDs, with M 2 0.18 M, which do have shell flashes.
The hydrogen-rich envelope is thinner after the shell flashes, so the residual hydrogen
burning is smaller and the system evolves to lower T,g more quickly. All runs were

evolved to an age 13.7 Gyr, except the one run in the Figure which come back into
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contact. Furthermore, the low-mass donor star evolves slower and cannot reach the
WD cooling phase by the age of the Galactic disk (10 Gyr). We extended the evolution
to 13.7 Gyr to see if the WD cooling phase can be reached within a Hubble time.
The ELM WDs in Figure 2.2 have much longer cooling times, and only get down to
Tog ~ 8000 K, while the run with shell flashes in the lower panel makes it down to
Tog < 4000 K. The observed systems evidently span the range of ELM WDs with
thick envelopes as well as those which have undergone shell flashes.

For smaller P, ;, the donor comes into contact at core mass 0.01 < M./My <
0.07, and stays in contact to short P, < lhr. For systems that come into contact
early on the MS, at very small M. < 0.01 M, standard CV evolution with a period
gap at 2-3 hours is recovered. However, the radiative core is small or nonexistent in
this case, and they are not expected to be g-mode pulsators. The core mass at contact

for these cases is small, at roughly M, <

~J

0.06 My, in agreement with Podsiadlowski
et al. (2003).

Figure 2.3 shows M, versus Py, (top panel), J contributions versus P, (second
panel), donor Rq versus My (third panel) and P, versus age (bottom panel). The
initial periods are P.,; = 0.90 (blue), 0.95 (green), 0.99 (red) and 1.02 days (cyan).

In the top two panels, evolutionary tracks producing ELM WDs start at long
periods and proceed to shorter periods on the whole. Magnetic braking is small for
Ma; = 1.3 Mg on the MS, due to the small surface convection zone, so Py, is nearly
constant during that time. When the system first comes into contact, TTMT results
in high mass-loss rates 1078 < Mg/Myyr—" <1077, TTMT continues until the ratio
Mga/M, decreases to the critical value (1 for conservative transfer, see Woods et al.
2012) at which point TTMT ends, and the much slower nuclear or J timescale MT

takes over. During TTMT, J,; dominates, due to the high accretion rates (second
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Fig. 2.3.— Several evolutionary tracks with Ppp,; = 0.90 (blue), 0.95 (green), 0.99
(red) and 1.02 (cyan) day for Mg; = 1.3 Mg and M,; = 0.6 Mg (see Figure 2.2).
From top to bottom, the panels give the mass-loss rate of the donor star (Md) versus
orbital period (P,m), the separate contributions to the orbital angular momentum
loss rate (Jml, Joun and jgr) versus Py, the donor star radius (Ry) versus donor mass
(Myg), and P,y versus age (t). In the bottom panel, on the P,y ; = 0.90 day track,

the magenta cross marks the beginning of the second phase of MT.
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panel). Shortly thereafter, the increased size of the convection zone removes the
suppression of me, and it subsequently dominates until MT turns off at 5 < Py, /hr <
11. Subsequently J,, dominates and all systems undergo orbital decay. Only the
lowest mass, less evolved donors undergo sufficient orbital decay to come back into
contact at P, =~ 1hr. For larger M., evolution driven by the expansion of the star
as it tries to ascend the RGB becomes more important than orbital shrinkage due to
magnetic braking, leading to a period bifurcation separating the orbits which shrink
from those which expand (Podsiadlowski et al. 2003).

The third panel in Figure 2.3 shows donor radius as a function of mass during the
evolution. Before contact, R4 increases with M.. Smaller P ; runs commence MT
first, at smaller Ry, while larger P, ; allows Rq to grow further. During TTMT, the
high MT rate causes the radius to be slightly inflated. As discussed in Appendix 2.6
(see Figure 2.22), the decrease in mass of the hydrogen-rich envelope leads to smaller
hydrogen shell-burning luminosity, accompanied by shrinkage of the radius. This is
seen in the steep drop in radius in third panel of Figure 2.3, leading the system to
fall out of contact, as shown in the first panel. Models with thick hydrogen envelopes
have modest shrinkage in radius beyond that point. The lowest mass model comes
back into contact, evolving toward smaller Mj.

The bottom panel in Figure 2.3 shows P, versus age. The evolution starts on
the left, with tracks at different P, ; denoted by solid lines. When MT commences
(dashed lines starting at 3 Gyr), rapid orbital decay occurs during TTMT. Then the
slower orbit evolution on the J timescale lasts 2 to 3 Gyr. During this slow phase of
MT, slight orbit expansion occurs for large M., while continued orbital decay occurs
for small M.. When MT ceases, the donor becomes an ELM WD near 5 to 6 Gyr

(solid lines). The three largest Pp,; and M. tracks show only modest orbital decay
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Fig. 2.4.— Donor star mass (Mjy, solid), helium core mass (M., dashed) and envelope
mass (Meny = Mg — M., dotted) as a function of Py, for Pyy,; = 0.90 (blue), 0.95
(green), 0.99 (red) and 1.02 (cyan) days, Mg; = 1.3 Mg, and M,; = 0.6 M.

due to J,

or, While the lowest line decays from P, = 5hr to 1 hr, at which point MT

re-commences (the magenta cross).

Figure 2.4 shows total donor mass My, helium core mass M. and envelope mass
Moy = Mg — M, versus P,y,. The tracks start from the right of the plot near
20 < P, /hr < 25. The total donor mass My decreases downward during MT, and
becomes constant when MT ceases. The envelope mass is seen to smoothly decrease,
until the end of MT at 5 < P,,/hr < 20. The envelope mass M., continues to
decrease due to residual hydrogen burning, while the orbit slowly decays due to jgr.
The M. lines initially rise vertically, as M, increases before MT. The TTMT phase
is so short that there is no time for M, to grow above 0.07 < M./Mg < 0.10. The
nuclear timescale MT is much longer, and M, increases to 0.13 < M./Mg < 0.15.
After MT, an additional 0.02 < M./M < 0.03 is converted from envelope to core by
nuclear burning, during which time the orbit decays due to jgr.

From the discussion in Section 2.2 (see Equation 2.3), the thickness of the con-



50

]\/[conv /]\/[d

0.00 /” T T T T .
0.2 0.4 0.6 0.8 1.0 1.2

Ma /M,

Fig. 2.5.— Mass fraction of the convective zone (Meony/Ma) versus My for My; =
1.3Mg, M,; = 0.6My and P.p; = 0.9 (blue), 0.95 (green), 0.99 (red), 1.02(cyan)
days. The horizontal orange dashed line marks the value of M., /My above which
the full magnetic braking is applied, and below which magnetic braking is suppressed
(see Equation 2.3).
vective envelope is an important parameter for the effectiveness of magnetic braking.
Figure 2.5 shows the mass of the convective envelope M., as a function of My. The
systems evolve from right to left during MT. The My; = 1.3 M donor has a small
convective envelope on the MS. The spike at My = 1.3 My, is due to the convec-
tive core on the MS. As M, grows and the shell burning luminosity increases, Mcony
increases. When nearly all the hydrogen-rich envelope has been lost, the luminos-
ity drops and the convection zone shrinks again. The orange dashed line gives the
threshold below which magnetic braking is exponentially suppressed. For the ELM
WD, M_uny drops below the threshold and magnetic braking shuts off.

Figure 2.6 shows the same log g versus T.g as Figure 2.2. The circles are placed
at 1 Gyr intervals. Systems covered by the tracks have ages 9-12 Gyrs. The solid line

shows phases where the system is out of contact, while the dashed lines show phases

where MT is occurring. Following Steinfadt et al. (2010), phases for which the lowest
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Fig. 2.6.— Gravity (logg) versus Tug for My; = 1.3Mg, M,; = 0.6My and Pyyp,; =
0.90, 0.93, 0.95, 0.97, 0.99, 1.02 days. The hollow dots are placed at 1 Gyr intervals.
The solid line shows phases where the system is out of contact, while the dashed lines
show phases where MT is occurring. The black crosses show the places where the
model reaches the diffusive equilibrium, see Section 2.3.5 for details.

order ¢ = 1 g-mode is unstable are estimated by Brickhill’s criterion, P(gl) < 8ty
and are covered by red lines, where P(gl) is the mode period of the lowest order
g-mode and ty, is the thermal time at the base of the surface convection zone. The
two data points at high logg would require Mys > 0.18 M, tracks which are not
shown on the plot. The estimate of the instability strip used here appears to give too
cool a blue edge Tt to explain the systems near 8500 < Tog/K < 9, 500.

Figure 2.7 displays Teg versus Py, for Powi = 0.90, 0.93, 0.95, 0.97, 0.99, 1.02
days as well as the four observed systems with measured P,;. The evolution starts
from the right hand side of the plot. The dashed, solid and red lines have the same
meaning as in Figure 2.6. The pre-WD phase starts at Ty = 6500 K. After the
turning point as the T,g reaches the maximum, the WD enters its cooling phase. The

two pulsators with the shortest P, have slightly higher 7,4 than the models. The

lines covered by red segments show the unstable gl mode with Brickhill’s criterion. In
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Fig. 2.7.— Effective temperature (Teg) versus Py, for My; = 1.3Mg, M,; = 0.6M
and P,; = 0.90, 0.93, 0.95, 0.97, 0.99, 1.02 days. The solid line shows phases
where the system is out of contact, while the dashed lines show phases where MT is
occurring. The red lines show models for which the gl mode is unstable by Brickhill’s
criterion.

the following discussion section it will be shown that lower-mass donor and high-mass

accretor can give better agreement.

2.3.2 A More Massive Accretor

The runs in this section use the same My; = 1.3 Mg but a heavier accretor mass
M,; = 0.9 M. The structures and the evolutionary tracks of the donor stars do not
change significantly with companion mass, while the orbital period of the system can
be different (Istrate et al. 2016).

Figure 2.8 shows My, M. and M,,, versus P, and should be compared to the
fiducial case in Figure 2.4. After the onset of RLOF, the orbit first goes outward
slightly, and then shrinks until My ~ M,. The accretor is larger, so the orbit does
not shrink as much as the fiducial case and the mass-loss rate is also smaller. The

donor star is slightly less evolved at the beginning of the RLOF because, for the same
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Fig. 2.8.— Same as Figure 2.4, but for donor mass My; = 1.3 My and heavier
accretor mass M,; = 0.9 M. The orbital period for each line is Py, ; = 0.90 (blue),
0.95 (green), 0.99 (red) and 1.01 (cyan) days.

separation, the larger accretor makes the Roche-lobe radius smaller. As a result,
smaller P, ; must be used to get the same Mq.

The main difference between Figures 2.9 and 2.7 occurs on the WD cooling track
after maximum 7T.g. During this long period, the larger M, ; increases Jgr, causing
the orbit to shrink faster. This is more evident for small P,4,. A specific example
is given in Figure 2.21, in which the pre-WD evolution is similar but the heavier

accretor causes more orbital decay on the WD cooling track.

2.3.3 Solar Mass Donor and Low Mass Accretor

This section contains a comparison of evolutionary models for My; = 1.0 M and
M,; = 0.45 M, to the fiducial case results in Section 2.3.1. The companion mass is
near the upper end of the mass range for helium core WDs. In addition, M,; is also
low enough that long P, ; models exhibit unstable MT. Even lower M,; can lead to

unstable MT at a broader range of Py ;.
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Fig. 2.9.— Same with Figure 2.7, but for donor mass My; = 1.3 My and larger

accretor mass M, ; = 0.9 Mg. he orbital period for each line is Pp,; = 0.78, 0.8, 0.82,
0.84, 0.86, 0.87 day.
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Fig. 2.10.— Evolutionary models for My; = 1.0 Mg and M,; = 0.45 M. The figure
shows the entire range of ELM WDs, which is covered by the range of initial orbital
periods P, ; =2.3, 2.35, 2.4, 2.45, 2.5, 2.55, 2.6, 2.67 days, from right to left. See
Figure 2.2 for the description of the black dots.
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Fig. 2.11.— Same as Figure 2.4, but for Mgy; = 1.0 M and a helium core accretor
M,; = 0.45 My, for Pyp,; = 2.3 (blue), 2.45 (green), 2.55 (red) and 2.67 (cyan) days.

Figure 2.10 gives the evolutionary tracks for Mg; = 1.0 Mg and M,; = 0.45 M
with Popi =2.3, 2.35, 2.4, 2.45, 2.5, 2.55, 2.6, 2.67 days. The axes are the same
as in Figure 2.2. For P,,; < 2.3 days, accretion never ceases and the orbit shrinks
to Poyp < 1 hour. For FPuy; > 2.67 days, MT commences with a sufficiently large
convective envelope that unstable MT occurs, yielding an upper limit to the WD
mass produced with these evolutionary sequences. This is to be contrasted with the
fiducial case in Figure 2.2, where the ELM WD sequence joins on to the sequences of
WDs at larger P,,; which have shell flashes. Hence the bottom track in Figure 2.2,
which shows the WD cooling track after flashes have stopped, would not occur for
this case, due to the smaller M,; used in this section.

Figure 2.10 shows that most tracks have insufficient time to reach the T.g of the
data points. This is due to the long MS evolution. The log g at the elbow is slightly
smaller than for the fiducial case.

Similar to Figure 2.4, Figure 2.11 shows Mg, M. and M.y, as a function of Py,
now with My; = 1.0 M and M,; = 0.45 M. The selected Py, are 2.3, 2.45, 2.55,
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Fig. 2.12.— Mass fraction of the convective zone versus donor mass My for Mg; =
1.0Mg, M,; = 0.45M and Puy,; = 2.3 (blue), 2.45 (green), 2.55 (red), 2.67(cyan)
days. See Figure 2.5 to compare to the fiducial model.

2.67 days. Tracks enter from the right hand side of the plot due to the large magnetic
braking. This is in contrast to the fiducial case where RLOF began due to an increase
in the stellar radius near the end of the MS. The tracks at smaller P,,;, have incomplete
burning of the envelope within the Hubble time.

Figure 2.12 shows Mcony/Ma versus My for Ma; = 1.0 M. The outer convection
zone grows during the MS. As P, ; increases, the onset of RLOF occurs later, and
with a larger surface convection zone. Since the outer convection zone has geony > 0.02,
magnetic braking is much larger than for the fiducial case and is evident in Figure
2.11. Therefore, making an ELM WD needs longer P, ; for My; = 1.0 Mg, P > 25
hours. For even longer Popi, Mcony is sufficiently large for unstable MT to occur.

Figure 2.13 shows T.g versus P, and should be compared to the fiducial model
in Figure 2.7. First note that there are no tracks which end at P, > 10 hours due
to unstable MT. In the fiducial case, the heavier WDs with shell flashes would end in

that region. Given sufficient time, the tracks at P,;, < 5 hours would have slightly
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Fig. 2.13.— The evolutionary tracks of My; = 1.0 Mg, M,; = 0.45 Mg and P, i=
2.3, 2.35, 2.4, 2.45, 2.5, 2.55, 2.6, 2.67 days from right to left in the Tog vs. Py, plane.
The hollow dots are placed at 1 Gyr intervals. The solid line gives the out of contact
of the system, the dashed lines gives the in contact of the system.

larger maximum 7.¢, and would explain the data points better. However, there is

insufficient time to reach the elbow.

2.3.4 The Maximum ELM WD Progenitor Mass

Given that more massive donors have a shorter MS phase, this leaves more time for
the resultant ELM WDs to cool to Tog ~ 9,000K and become pulsators. However,
sufficiently massive progenitors produce helium cores at terminal age MS which are
larger than the maximum ELM WD to avoid shell flashes. Hence there is a maximum
progenitor which can create an ELM WD. This section describes models with donor
mass Mg = 1.5 M, which approaches this limit.

Figure 2.14 shows evolutionary tracks for Mq; = 1.5 Mg and M, ; = 0.6 Mg, for the
range of initial orbital periods Py ; = 0.85, 0.86, 0.87, 0.88, 0.89, 0.9 day. Comparing

to the fiducial case in Figure 2.2, the Mgy; = 1.5 M, case does not produce lower mass
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Fig. 2.14.— Evolutionary models for My; = 1.5 M and M,; = 0.60 M. The figure
shows the entire range of ELM WDs (all of which have masses greater than 0.16 M),
covering the range of initial orbital periods P, ; =0.85, 0.86, 0.87, 0.88, 0.89, 0.9 day,
from right to left. See Figure 2.2 for the description the black dots. The leftmost
track (Pomp; =0.9 day) experiences a weak hydrogen flash prior to the WD cooling
phase.

Mg which cover the small log g and Teg part of the plot. In the My; = 1.3 Mg case,
0.07 < M./Ms < 0.1 before the onset of RLOF for cases which make an ELM WD
with My < 0.17 M. By contrast, the runs with My; = 1.5M, failed to produce an
ELM WD (for which MT ceased) with mass less than 0.168 M. The leftmost track
in Figure 2.14 has P,,; = 0.85 days, and initial periods shorter than this value will
have continuous MT and never emerge as an ELM pulsator.

Figure 2.15 shows Tug versus P,,. The tracks start at the ZAMS with 20 <
Popi/hr < 21, and the MT starts roughly 1-2 Gyr into the MS evolution of the donor
star. The final WD thus has more time to cool, more time passes between the start of
MT and the end of the 13.7 Gyr simulation, than in the lower-mass donor case. After

MT commences and enough mass has been lost that My < M,, the orbit expands

dramatically and can exceed the initial separation a;. The smallest P,y ¢ is near 12
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Fig. 2.15.— Same as Figure 2.7 for My; = 1.5 Mg, M,; = 0.6 Mg and P, ;= 0.85,
0.86, 0.87, 0.88, 0.89, 0.9 day from right to left.
hours. As such, the My; = 1.5M case is unable to account for the three systems
with P4, < 12 hrs.

Further increase of the donor mass above Mg; = 1.5 M would lead to larger M.
at terminal age MS, and larger final WD mass. The upper limit for My; which may
produce an ELM WD is thus near 1.5 < My;/M; < 1.6.

2.3.5 Mode Periods

Adiabatic mode periods have been computed using the GYRE code (Townsend &
Teitler 2013), which is part of the MESA distribution.

Figure 2.16 shows the propagation diagram and the composition versus radius
fraction r/Rq during the post-MT evolution of the Mg; = 1.3 My, M,; = 0.6 M and
Pyvi = 0.95day model. Three different times are shown, where the color of the lines
indicates the age, with the blue, green, and red lines representing models at 5.63 Gyr
(right after the MT), 7.85 Gyr (at the elbow), and 13.7 Gyr (the termination of the

simulation), respectively. The bump in the square of the Brunt - Viisila frequency
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Fig. 2.16.— Propagation diagram (top panel) for the evolutionary track with Mgy; =
1.3 Mg, My; = 0.6 Mg and Py, ; = 0.95day. The solid lines show the Brunt - Vaisala
frequency while the dashed lines give the square of the Lamb frequency for ¢ = 1.
The bump in the buoyancy frequency is due to the composition change from hydrogen
to helium with depth. The color of the lines indicate the age, with the blue, green,
and red lines representing models at 5.63 Gyr (right after the MT), 7.85 Gyr (at the
elbow), and 13.7 Gyr (the termination of the simulation), respectively.
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N? is caused by the composition switch from hydrogen to helium. After MT ends,
the size of the helium core increases due to sinking of helium in the envelope and
ongoing burning of hydrogen in the envelope.

In order for the composition profile to be in diffusive equilibrium, the diffusion
timescale must be shorter than the nuclear burning and cooling timescales. The
composition profile in Figure 2.16 is far from diffusive equilibrium just after MT
(blue line) and also at the elbow (green line). The red line is in diffusive equilibrium
to a good approximation, and a range of ages (not shown here) were in diffusive
equilibrium as well. A close examination of the composition profiles at different
ages shows that the residual hydrogen burning ends at nearly the time that diffusive
equilibrium is established. The age at which diffusive equilibrium is established was
determined for each of the tracks in Figure 2.6, and their position marked by a black
cross. The rightmost track with the shortest Py, didn’t reach diffusive equilibrium
before the second MT phase. The six pulsators with 8,500 < T.¢/K < 9,000 are in
diffusive equilibrium to a good approximation.

Fig. 2.17 shows the p-mode frequency spacing and g-mode period spacing for the
fiducial model after MT has ceased. The different color lines represent different Py, ;.
The blue and green lines appear shorter because they were terminated at the start
of a second phase of MT. The g-mode period spacing is strongly dependent on the
WD mass, so the lines differ by up to 30%. Also, g-mode period spacing depends
on the age, mainly through the thickness of the hydrogen envelope, so there can be
about 15% differences in the period spacing along an individual evolutionary track. A
minimum in the g-mode period spacing occurs near the elbow separating the pre-WD
and the WD cooling track. The p-mode frequency spacing becomes nearly constant

for the high-mass models, however for the lower mass models the spacing is slowly
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Fig. 2.17.— The p-mode frequency spacing (top panel) and the g-mode period spacing
(bottom panel) versus donor star age. The fiducial model with My; = 1.3 M, and
M,; = 0.6 My, is used, with Pyy,; = 0.90 (blue), 0.91 (green), 0.93 (red), 0.95 (cyan),
0.97 (black), 0.99 (magenta) and 1.01 (orange) days.

increasing in time over many Gyrs.

Fig. 2.18 displays the lowest order g-mode and p-mode for one evolutionary track
(Ma; = 1.3 Mg, My; = 0.6 Mg, Pyp,i = 0.95 day). Most of the oscillation modes are
mixed modes on the pre-WD track, meaning that near the radiative core, the mode
behaves like a g-mode, and in the outer convection zone the mode behaves like a p-
mode with larger radial displacement. A sequence of avoided crossings are observed
during the approximately 2 Gyr pre-WD phase. Starting at 7.5 Gyr, on the WD
cooling track, the avoided crossings end, and the g-mode and p-mode are distinct,
separated with gap in period. This period separation increases during the subsequent
WD cooling phase.

Fig. 2.19 shows the ¢ = 1 p-modes (dashed) and g-modes (solid) at a fixed Teg =
9000 K. The final WD masses are from six evolutionary tracks, with Pyy; = 0.93,

0.95, 0.97, 0.99, 1.01, 1.03 days and Mqy; = 1.3 Mg, M,; = 0.6 M. The period gap
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Fig. 2.18.— The lowest order of p-mode (dashed line) and g-mode (solid line) periods
versus age after the MT phase for the track with My; = 1.3Mg, M,; = 0.6Mg,
Powbs = 0.95 day.
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Fig. 2.19.— Eigen-periods versus the WD mass for different models evaluated at
Ter = 9000 K. The six models with My; = 1.3 Mg and M,; = 0.6 Mg, and Py =
0.93, 0.95, 0.97, 0.99, 1.01, 1.03 days are used, and the mode periods evaluated for
the model with T.g closest to 9000K.
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Fig. 2.20.— Total mass (M,), helium core mass (M.) and envelope mass (Mg, =
Mg — M.) as a function of P, at the end of the first phase of MT. The results of
Ma; = 1.3Mg, M,; = 0.6 My and 0.9 < Py, ;/day < 1.03 with a step of 0.01 day is
in blue. The results from Mgy; = 1.3 Mg, M,; = 0.9 Mg and 0.78 < P,,;/day < 0.89
is in green. The results of My; = 1.1 Mg, M,; = 0.6 My and 0.84 < P, ;/day < 1.40
is in red. See Figures 2.2, 2.3, 2.4 and 2.5.

between the p-modes and g-modes increases with the WD mass. The g-mode periods
decrease slightly with the increased final mass in the mass range of the ELM WD. For
WDs with masses above about 0.18M,, the gap between the p-modes and g-modes

begins to increase even more rapidly. The mode periods decrease with increasing WD

mass, which agrees with CA’s result (Cérsico & Althaus 2014).

2.4 Discussion

2.4.1 Pre-WD Structure and Orbital Periods just after Mass

Transfer Ends

Figure 2.20 shows the stellar mass as a function of P, just after the M'T phase has

ended. Three different initial binary mass configurations (fiducial case, larger accretor
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mass, and smaller donor mass) are plotted. The helium core mass and hydrogen
envelope mass are also plotted for each of these systems. Keep in mind that P,y
continues to change in the pre-WD and the WD cooling phases due to gravitational
wave losses.Also, there is continued burning of the envelope adding to the core.

For the fiducial case, P, smaller than 0.9 day results in continuous accretion
and thus no ELM WD pulsator. The lowest ELM WD mass is Mg = 0.146 M, with
M. = 0.120 M, and P,,;, = 3.72 hours. The envelope is 18% of the total mass in this
case, much larger than for a standard 0.6 M carbon/oxygen WD. A large fraction
of the radius of the star is also taken up by the envelope in this case. All else being
equal, larger P, ; results in higher pre-WD masses and M., but lower Mey,,, immedi-
ately post-MT. For P, ; above 1.03 days (in the fiducial case), the WD experiences
hydrogren flashes prior to the cooling phase. At this upper boundary, the pre-WD
mass is 0.179 M, and Py, is 18.35 hours immediately post-MT, with an envelope
containing only 11.5% of the total mass, which is smaller than all the ELM WDs with
no hydrogen flashes before cooling. For non-ELM WDs which experience hydrogen
flashes prior to the cooling phase, the resulting envelope is much thinner than for the
lower-mass ELM WD. The trend of the thinner envelope with an increasing total WD
mass agrees with Istrate et al. (2016).

The results from a simulation with high-mass companion, M, ; = 0.9 M, are plot-
ted as green lines in Figure 2.20. The blue and green lines are nearly overlapping,
producing ELM WDs with almost identical mass, composition, and orbits immedi-
ately post-MT. Similarly, the results for a lower-mass donor My; = 1.1M are shown
in red; this setup can create ELM WDs with even lower masses and shorter P,,. The
minimum ELM WD mass for this setup is 0.143 Mg, with P, = 2.75 hours immedi-

ately post-MT, and the range of P, ; that results in ELM WDs is considerably larger
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Fig. 2.21.— Evolutionary tracks for trying different donor and accretor mass with
Ma; = 1.1 Mg, M,; = 0.6 My and P, = 0.84, 0.88, 1.0, 1.1, 1.2, 1.3, 1.4 days in
blue; Mg; = 1.3 Mg, M,; = 0.6 M and P,,; = 0.90, 0.93, 0.95, 0.97, 0.99, 1,02
days in black; and My; = 1.3 Mg, M,; = 0.9 Mg and Pyyp; = 0.78, 0.80, 0.82, 0.84,
0.86, 0.88 day in green. One of the blue tracks (Ma; = 1.1 Mg, M,; = 0.6 Mg,
Py = 0.88 day) passes though the observed T and log ¢ from observation.

than for higher-mass donors. For small donor masses (e.g., Mq; = 1.0 and 1.1 M),
the thick convective envelope present during the MS phase causes magnetic braking
to be much stronger, resulting in a wider accessible range of Py, ;. Chen et al. (2017)
used a wider range for My, M, and P,,, with different metallicities. Their mass-period

relation is in agreement with Figure 2.20. And the difference in metallicity doesn’t

affect this relation at the low-mass WD range.

2.4.2 Models Producing Higher T, at Shorter P,

From Figure 2.7, two of the ELM WDs, J1840 and J1112; have 4 < Pyp,/hr <5 (a
range that is accessible with our simulations), but with a higher T.¢ that falls slightly
above the theoretical tracks. This section is about making ELM WDs with T ~

9000 K and short orbital periods P,y < 5 hr.
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Figure 2.21 compares evolutionary tracks for simulations with different M,; and
M, ;. Prior to the WD cooling phase, the donor star reaches a maximum 7.5. The
trend is for this maximum 7.g to decrease with decreasing Py, and for the fiducial
case it appears that having T,z ~ 9000 K with 4 < P, /hr < 5 is inaccessible.
For a higher accretor mass, and even more dramatically for a lower donor mass, the
maximum 7. is increased relative to the fiducial case. So to make a WD with T.g >
9000 K at short orbital periods, the preference is to have a low-mass donor and high

mass accretor.

2.4.3 Stellar Engineering Construction of ELM WD

Instead of making ELM WDs models through binary evolution including magnetic
braking, a simpler and cheaper alternative would be the following. Evolve a single
ZAMS star until it reaches the desired M.. Then rapidly (on a timescale much
shorter than the thermal and nuclear burning timescales) remove the envelope until
the desired M., is left. The resulting model would represent the start of the pre-
ELM WD track seen in this work. The two parameters are M, and M,,,, for a fixed
composition. The star is then evolved through the pre-ELM WD and WD cooling
tracks.

Though much simpler, the problem with this method is that it is not known a
priori what to choose for M. and M,,,. Furthermore, this method does not give the
expected P, for the binary, or possible ranges of the mass of the companion WD.
The former issue has been addressed in Figure 2.20, which shows how the total stellar
mass is partitioned into core and envelope. This greatly restricts the range of allowed
M., because even far larger M.,,, up to half the mass of the star can be used for

M < 0.17 M without incurring shell flashes. Such large M., would have many Gyrs
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of hydrogen burning until a more physically-motivated envelope size would result.

2.5 Conclusions

This work has discussed the formation of double WD binaries in which one of the
stars is an ELM WD with mass M < 0.18 M. The main results of the paper are as
follows.

— ELM WDs cannot be formed via conservative MT. The mass-loss rate for con-
servative MT is not fast enough to remove more than 90% of the WD progenitor
star before the helium core has grown beyond the ELM WD regime. As a result, the
minimum mass of an ELM WD made by conservative MT is about 0.2 M.

~ELM WDs are not likely to be formed through common envelope evolution. For
donor and accretor masses consistent with producing an ELM WD, the binding energy
of the donor’s envelope (90% of the donor mass) is so large that the final binary orbital
separation would be unphysically small (i.e., smaller than the stellar radii), implying
merging of the two stars.

— The ELM WD binary formation pathway investigated in this paper posits that
the ELM WD progenitor is the initially less massive star. In this picture, the first
MT phase occurs when the more massive companion evolves off the MS and the
binary enters a common envelope phase. Upon ejection of the common envelope
material, the initially more massive star becomes a helium or a carbon-oxygen WD.
Once the initially less massive star evolves off the MS, a second (RLOF) MT phase
takes place. The donor star in this phase is the progenitor of the ELM WD. Magnetic
braking during this phase is crucial to strip the envelope before the core grows too
large. Subsequent gravitational wave angular momentum losses lead to decay of the

shortest orbital period systems, which may have a second phase of MT. MT was
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assumed to be completely non-conservative.

— The possible mass range for the ELM WD progenitor is 1.0 < Mq;/Ms < 1.5.
For initial stellar mass below 1.0 My, the WD cannot reach the WD cooling phase
within a Hubble time with the initial Z=0.01. For initial masses greater than 1.5 Mg,
the (convective) helium core grows too large to make ELM WDs with mass less than
about 0.17 M.

— Similar final ELM WDs can be produced via different combinations of donor
mass, accretor mass and initial orbital period. In the first case the increasing donor
radius as it evolves off the MS triggers the RLOF, while in the second case the
decreasing orbital radius (caused by magnetic braking) shrinks the Roche lobe radius
to the point where it reaches the stellar radius of the donor. An ELM WD binary
with short P,;, and high T,¢ may be produced from a low-mass donor with high-mass
accretor. In general, the accretor mass should be large enough to avoid unstable MT.

— The mass range of ELM WDs created via RLOF is 0.146 < M /M, < 0.18, with
2 < Py /hr < 20. For higher mass WDs there can be several hydrogen flashes prior
to the cooling phase, and the final P, is wider than for ELM WDs with no shell
flashes.

Appendix 2.6 and 2.7 discuss WD formation by conservative MT and CE evo-

lution. It is shown that neither of these channels are likely to form an ELM WD.

2.6 Appendix A Conservative Evolution

The simplest case to consider for binary interaction is conservative M'T with constant

total mass and orbital angular momentum. Evolution occurs on the nuclear timescale
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of the donor star, and significant orbit expansion occurs as it ascends the RGB.

Han et al. (2000) extended earlier studies (e.g. Kippenhahn et al. 1967) by con-
sidering Z = 0.02 stars with a range of ZAMS donor mass 1 < My;/My < 8 and
mass ratios 1.1 < (¢ = Ma;/M,;) < 4. Here My; and M,; are the initial donor
and accretor masses. The initial orbital separation and period, a; and Py, , were
set so that RLOF commenced in the early, middle or late Hertzsprung gap. This
study found that the smallest WD masses are produced through a combination of the
smallest possible donor masses, which evolve in the age of the Galaxy, the smallest
accretor masses, to give higher mass-loss rates, and the smallest initial separations,
to avoid building up the helium core. For a given donor mass, there is a limit on how
small the accretor mass can be in order to avoid unstable MT. The smallest mass
WD in their 150 simulations was M = 0.21 M, with parameters Mg; = 1.0 Mg,
M,; = 0.5Mg and P,p,; = 0.49day. Hence while conservative evolution produces
masses approaching the ELM WD mass range, it appears that it cannot robustly
produce WDs in the mass range 0.1 < M/M, < 0.2. Further, the final orbital
periods have P, ¢ ~ 1 week, much wider than the observed ELM systems.

The numerical results of Han et al. (2000) can be understood with the ana-
lytic treatment in Refsdal & Weigert (1971). For conservative evolution, the total
mass Mas + Mas = Mg; + M,; is constant between the initial and final states,
where Mg and M, are the final donor and accretor star masses. The constancy
of orbital angular momentum implies that a;(Mg;M,;)* = ar(MagM,.y)?, where ag
is the final separation after the MT. Kepler’s 3rd law can be used to write a; =

(G(Mg; + M,;)P?

orb,i

/(27)%)Y/3, where P,,; is the orbital period where RLOF com-
mences. Lastly, a mass—radius relation is required for the low-mass RGB star, at

the maximum radius attained before the envelope becomes too thin and the radius
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Fig. 2.22.— Solid lines show stellar radius (R, abscissa) versus helium core mass (M,
lower axis ordinate) during the evolution of single stars with metallicity Z = 0.01.
The lines represent stellar masses M /M = 0.15,0.16, ...,0.30 from bottom to top.
The open circles show the maximum radius along each track versus total mass (M,
upper axis ordinate). The solid line is a fit to the circles, given by R/R. = 2.5 X
10* (M /M,)°.
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shrinks. Following Refsdal & Weigert (1971), this is estimated from single star evo-
lution tracks.

MESA was used to evolve stars of constant total mass M /M. = 0.15,0.16, ...,0.30
from ZAMS to the first shell flash on the WD cooling track, as shown in Figure 2.22.
A maximum occurs in radius, beyond which the radius shrinks with further decrease
of the envelope. The open circles show maximum radius versus total mass, and the
solid line is a fit given by R(Mg;) = 2.5 x 10* Ro(Mg¢/M)®. Combining all these
results, and approximating M, = Mqa; + Ma; — Mas >~ Mg; + M,;, gives the final
WD mass

P, 0087 My ;i My 0:20
My =0.29 M, — : : . 2.5
df © (1 day) Mo (My; + M,;) (2:5)

Han et al. (2000)’s conclusions about the variation of Mg with Py, Ma; and M,;
are directly observed in this formula. It agrees with the final WD masses of Han et al.
(2000) to an accuracy of 2-3%.

To derive the smallest possible WD mass from conservative evolution, the accretor
mass is evaluated at the stability limit M,; ~ Mgy;/2.5, the donor mass is set to the
smallest that can evolve in the age of the Galaxy, Mg; ~ 1.0 Mg for Z = 0.01, and
the initial orbital period is set so that RLOF commences near the end of the MS,

Py ~ 0.6 day, with the result

M min ~ 0.20 Mo, (2.6)

Hence conservative evolution cannot lead to an ELM WD of mass M < 0.18 M.
It is instructive to consider why conservative MT produces WDs with mass M >
0.2 Mg. Consider a donor of mass Mg; = 1.2 Mg near the end of the MS, with a

M. ~ 0.1 M, core already built. For the core to be limited to M. < 0.15 M, means
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Fig. 2.23.— Mass loss rate, My, and growth rate of the helium core, M, for conser-
vative evolution of a My; = 1.2 M donor with a M, ; = 0.8 M, accretor, and initial
orbital period P,y,; = 0.6 day. The solid line is the mass-loss rate from the star, and
the dashed line is the growth rate of the helium core.
that only 0.05 My can be added to the core while 1.05 M must be lost by RLOF,
requiring a mass-loss rate for donor of |Md] 220 Mc, where Mc is the rate at which
the helium core grows due to hydrogen shell burning. Figure 2.23 shows a MESA
calculation of conservative binary evolution with a My; = 1.2 M donor transferring
mass to a M,; = 0.8 Mg accretor, with initial orbital period of F,y,; = 0.6 day. For
Ma; > M,;, there is an initial phase of TTMT at high Md. Once the donor mass
nearly equals the accretor mass My < M, this is followed by a second phase at lower
My on the nuclear timescale of the donor. It is during the second phase that the
helium core builds up to large mass. Figure 2.23 shows that, as shell burning causes
the radius to expand, setting My, it is also adding to the helium core at a rate M..
The second phase has 10 < |Mg|/M. < 15, which allows the core to grow too much.
What is needed is a faster rate of RLOF, to limit the increase of M..

Lastly, conservative evolution tends to produce orbital periods far larger than that

of ELM WDs. Plugging the result in Equation 2.5 in to Kepler’s third law, the final
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orbital period is

Pooi \*™ [ My; 05My 1.5My \>*
P =22d ’ ’ , 2.7
bf &y (0.5 day) 1M, M,; Ma;+ M,, (2.7)

far larger than that observed for the ELM WDs.

Noise is apparent in the MT rate in Figure 2.23. To assess the size of the noise
for different values of MESA solver parameters, runs were carried out with smaller
values of “varcontrol target” in the MESA namelist. This parameter controls the
relative variation in values of the solution from one model to the next. A decrease of
varcontrol_target from 1073 to 10™* contained smaller amounts of noise by a factor
10 in M, during the time intervals where the MT rate was noisy (i.e., at the start
of MT). And this change gave values of M., Me,y, R4, Tegr and log,, g to better than
1%.

2.7 Appendix B Common Envelope Evolution

If the progenitor of the ELM WD is too massive compared to the companion, then
MT can be unstable and grow to extremely large mass. At such high mass-loss rates,
the mass is unable to settle on the accretor, and the donor’s ejected envelope forms a
common envelope around the uncovered core of the donor and the accretor (Tauris &
van den Heuvel 2006). Drag forces from the two stars then inject energy and angular
momentum into the envelope. If there is sufficient orbital energy to eject the envelope,
then the two stars emerge as a much more compact binary. If there is insufficient
energy to eject the envelope, merging results.

The problem with forming an ELM WD by CE is that the envelope is much more

massive than the core, and an extreme spiral-in is required to eject the envelope.
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Merging may be the outcome in many cases. Consider a numerical example with
a donor star of mass My = 1.4 M, with He core M. = 0.15 M. For metallicity
Z = 0.01, the donor’s radius is Rq = 2.6 R, for this core size. For unstable MT, there
is an upper limit on the accretor’s mass of M, < My/2.5 = 0.56 Mg, for the chosen
donor mass. The factor 2.5 was found using MESA simulations for conservative M T,
using a range of donor masses. The energy equation for CE evolution equates the
binding energy of the donor’s envelope to the change in orbital energy (Webbink
1984):

(2.8)

ARy 2a¢ 2a;

GMa(Mg — M) N (GMCMa B GMdMa)
where ag is the separation of the resultant binary after CE. At contact, Rq = r,(Mq/M,)a;,
where 71,(2.5) ~ 0.46 relates the stellar radius to the initial separation for a star in

Roche-lobe contact (Eggleton 1983). Solving for the final separation and plugging in

numbers gives

M_M, al M, M.
—R ~ Ry (22 _ e ) ~0.06R..
ar = <rLMdMa+ (2/aN) Ma (M, — MC)) d ( 2 ) (Md) (Md — Mc) ©

(2.9)

The small separation is due to two requirements. First My/M, 2 2.5 in order to have

unstable MT, and secondly the core is much less massive than the envelope so that
M./(My — M) ~ 0.1.

If the progenitor of the ELM WD was the initially more massive star, then the

companion is a MS star of radius R, =~ 0.5 Ry, which cannot fit inside the orbit,

implying merging. If the progenitor of the ELM was the initially less massive star, and

the initially more massive star became a massive WD, after the ELM WD formed, the
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radius of the massive WD is smaller than the ELM WD. The radius of a M. = 0.15 M,
ELM WD with a thick hydrogen envelope can be as large as 0.05 < Rgim/Re <
0.15, and so the ELM could not fit inside the final separation, and a merger would
result. Back to the numerical example at the begining of this section, for the mass
ratio M./M, = 0.15/0.56 = 0.27 and an ELM WD radius of Rgpy = 0.08 R, the
orbit would have to be wider than af = Rgpy/71(0.27) > 0.29 R, for the ELM WD
not to be in contact. For the ELM phase to be long-lived against orbital decay by
gravitational radiation, the orbital period should be significantly wider. Similarly, the
binary population syntheses work by Bogomazov & Tutukov (2009) indicates there
is less probablity that the low-mass helium WD is formed after the CE phase. Chen
et al. (2017) show that EL CVn, which is close to the systems in this paper, cannot
be produced by CE for the same reason. The orbital separation shrinks too much

that the two stars may merge.
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Chapter 3

Tidal Dissipation in WASP-12

This chapter is based on Weinberg et al. (2017).

3.1 Introduction

The orbits of hot Jupiters are expected to decay due to tidal dissipation within their
host stars (Rasio et al. 1996). While there is considerable indirect evidence of orbital
decay in the ensemble properties of hot Jupiter systems (Jackson et al. 2008, 2009;
Hansen 2010; Penev et al. 2012; Schlaufman & Winn 2013; Teitler & Koénigl 2014),
the recent transit timing observations of WASP-12 by Maciejewski et al. (2016) and
Patra et al. (2017) could be the first direct evidence of orbital decay of an individual
system. They detect a decrease in the orbital period at a rate P =—-29+ 3ms yr i,
This corresponds to an inspiral timescale of just P/|P| = 3.2Myr and a stellar tidal
quality factor Q" ~ 2 x 10°.

As both studies note, it is difficult to tell whether the observed P is due to orbital

decay or is instead a portion of a long-term (= 14yr) oscillation of the apparent period.

The latter could be due to apsidal precession if the eccentricity is e ~ 0.002. However,
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it is not clear how to maintain such an e in the face of rapid tidal circularization. Patra
et al. (2017) mention gravitational perturbations from the star’s convective eddies, a
mechanism Phinney (1992) proposed to explain the small but nonzero eccentricities
of pulsars orbiting white dwarfs. However, the host star (M, ~ 1.3M) has a very
low mass convective envelope (~ 1073M) and we estimate that there is too little
energy in the eddies to maintain an e ~ 1072, Another mechanism that can cause
decade-long oscillations of the period that Patra et al. mention is the Applegate
(1992) effect, which invokes variations in the quadrupole moment of the star over a
magnetic activity cycle. However, Watson & Marsh (2010) estimate that for WASP-
12b, this effect shifts the transit arrival times by AT < 10s after 7' ~ 10yr. This
corresponds to an average |P| ~ 2PAT/T? < 1lmsyr~' (Birkby et al. 2014), more
than an order of magnitude smaller than the measured value.

With a few more years of monitoring it should be possible to distinguish unequiv-
ocally between orbital decay and precession (Patra et al. 2017). In this paper, we
consider whether the decay explanation is plausible. In Section 3.2, we construct stel-
lar models that fit the observed properties of WASP-12. In Section 3.3, we describe
the relevant tidal processes and then use the stellar models to calculate the expected

rate of tidal dissipation. We conclude in Section 3.4.

3.2 Stellar Models of WASP-12

The WASP-12 host star has an effective temperature Tog = 6300 4+ 150K and a
mean density p, = 3M, /47 R? = 0.475 + 0.038 gcm 3 (Hebb et al. 2009; Chan et al.
2011; here and below we adopt the values from the latter reference). Note that
p« is measured solely from the transit parameters of the light curve (see Seager &

Mallén-Ornelas 2003) and is not derived from a fit to stellar evolution models, unlike
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the stellar mass M, and radius R,. The spectrum of WASP-12 is consistent with
a supersolar metallicity ([Fe/H] = 0.30 £ 0.10) and a spin that is slow (vsini <
2.2+ 1.5kms!) and likely misaligned with the planet’s orbital plane (Schlaufman
2010; Albrecht et al. 2012). By fitting stellar models to Tig, ps, and the metallicity,
Chan et al. (2011; see also Hebb et al. 2009; Enoch et al. 2010; Fossati et al. 2010;
Maciejewski et al. 2011) find M, = 1.36 £ 0.14M, R. = 1.595 + 0.071R, and a
surface gravity log g, = 4.164 + 0.029 (in cgs units). Based on three separate age
dating techniques (lithium abundance, isochrone analysis, and gyrochronology) Hebb
et al. (2009) find that WASP-12 is likely to be several Gyr old, implying an age
comparable to its main sequence lifetime.

We construct stellar models using the MESA stellar evolution code (Paxton et al.
2011, 2013, 2015), version 9575. We assume a solar abundance scale based on Asplund
et al. (2009; solar metallicity Z = Z, = 0.0142) and follow the MESA prescriptions
given in Choi et al. (2016) for calculating the abundances, equation of state, opacity,
and reaction rates.

As we show below, the properties of WASP-12 are consistent with both M, ~
1.3M main-sequence models and M, ~ 1.2M, subgiant models. The range of sub-
giant models that fit the observations is sensitive to how convection and mixing in
radiative zones is implemented in MESA. In particular, we find it is sensitive to the
values of the parameters of mixing length theory ayr, overshooting f,,, semiconvec-
tion ay, and diffusive mixing. Although recent studies are starting to place interesting
constraints on some of these parameters (Silva Aguirre et al. 2011; Magic et al. 2015;
Moravveji et al. 2015, 2016; Moore & Garaud 2016; Deheuvels et al. 2016), there
is still considerable uncertainty, especially as to how they depend on stellar mass,

metallicity, and age. For simplicity, we therefore use the Schwarzschild criterion with
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fov = 0, we neglect diffusive mixing, and we consider a range of values for ayr.

In Figure 3.1 we show the evolution of T.g and p, for six stellar models. The three
M, = 1.30—1.35M models (red dashed curves) match the observed constraints (grey
box) when the star is on the main sequence. The three M, = 1.20M, models (blue
solid curves) match the observed constraints during the post-main sequence phase,
when the star is a subgiant and the core is no longer convective. The different models
are selected in order to illustrate that the evolution of T.g and p, is sensitive to not
only M,, but also Z and ap,rr.

All six models shown in Figure 3.1 spend about 0.5 Gyr within the measured range
of Tog and p,. During this portion of their evolution, the radii and surface gravity of
the higher-mass models in Fig. 3.1 span R, = 1.50 — 1.62R, and log g, = 4.14 — 4.20
while the lower-mass models span R, = 1.47—1.55R; and log g, = 4.13—4.18. These
are consistent with the (model-dependent) constraints reported in the literature.

As we describe in Section 3.3, the efficiency of tidal dissipation is significantly
enhanced if WASP-12 has a radiative core. The only models with radiative cores that
we find are consistent with the measured T, and p, are the subgiant models. Torres
et al. (2012) estimate a somewhat lower Tog = 6118 4 64 K, which could match the
Te of main sequence models with fully radiative cores (i.e., M, < 1.1M). However,
we find that such models have too high a p,.

In Figure 3.2 we show Teg as a function of p, at the moment the core ceases to
be convective and the star enters the subgiant phase. We find that for a given M,,
increasing ayr or decreasing Z increases Tog and p,. The models that are either
inside or to the right (since p, decreases with age) of the grey box are consistent with
the observations for a portion of the subgiant branch. The constraints are consistent

with subgiant models whose parameters lie in the range 1.20 < M, /M, < 1.25,
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Fig. 3.1.— Evolution of the effective temperature T.g and mean density p, for six
stellar models. Each model is labelled by (M, /Mg, Z, aprr). The evolution goes from
right to left starting from when the star is 1Gyr old. The squares mark when the
core ceases to be convective. Observations of WASP-12 constrain its T.g and p, to lie
within the region indicated by the grey box. The blue solid (red dashed) curves are
models that match the observations when on the sub-giant branch (main sequence).
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Zo < Z <003 (ie, 0 < [Fe/H] £0.3), and 1.9 < oy < 2.3.

3.3 Tidal dissipation

The orbit of WASP-12 appears circular (e < 0.05; Husnoo et al. 2012) and, given the
age of the system, the planet’s rotation is expected to be synchronized (Goldreich
& Soter 1966; Rasio et al. 1996). Therefore, any ongoing tidal dissipation must
be occurring within the non-sychronized host star. Dissipation mechanisms include
turbulent damping of the equilibrium tide within the convective regions of the star
and linear or nonlinear damping of the dynamical tide. Studies of the former find
Q' ~ 10%—10% (Penev & Sasselov 2011). This is more than three orders of magnitude
too small a dissipation rate (too large a @)),) to explain the apparent orbital decay of
WASP-12. We therefore focus on tidal dissipation due to the dynamical tide.

The dynamical tide in WASP-12 is dominated by resonantly excited internal grav-
ity waves. Such waves propagate in the stratified regions of the star (where the Brunt-
Viisala buoyancy frequency N? > 0) and are evanescent within convective regions
(N? < 0). As a result, the dynamical tide is excited near radiative-convective bound-
aries (RCBs), where its radial wavelength is long and it can couple well to the long
lengthscale tidal potential (Zahn 1975, 1977).

When a star like WASP-12 (a late-F star) is on the main sequence, it has both
a convective core and a convective envelope. When core hydrogen burning ends
and the star evolves off the main-sequence and becomes a subgiant, its core ceases
to be convective. In Figure 3.3 we show N as a function of stellar radius r for a
main-sequence and subgiant model of WASP-12. In the main-sequence model, the
convective core extends from the center to r ~ 0.1R; and the convective envelope

extends from r ~ 1.35R; to very near the surface. The propagation cavity of the
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Fig. 3.2.— Effective temperature T.¢ and mean density p, at the moment when the
core ceases to be convective and the star enters the subgiant phase. The labels indicate
M. /Mg with points spaced by 0.01M, (connected by straight lines for clarity). The
blue solid curves assume solar metallicity Z = Z; = 0.0142 and the black dashed-
dotted curves assume Z = 0.02. The three curves for each Z assume, from bottom
to top, anpr = 1.9, 2.1, and 2.3. Observations of WASP-12 constrain its T,g and p,
to lie within the region indicated by the grey box.
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dynamical tide is determined by these two radii (they are its inner and outer turning
points, respectively; see red arrows in Fig. 3.3).
In the subgiant model, by contrast, N? > 0 all the way to the center. We find

~1. The dynamical tide

a linear scaling with radius N ~ Cr, where C ~ 0.1(Rgs)
propagates where the tidal frequency w < N(r); for the dominant ¢ = 2 tide, w = 29,
where ) is the orbital frequency. Thus, the tide raised by WASP-12b (w/27 =
21.2 uHz) has an inner turning point at r ~ w/C ~ 1073R, during the subgiant
phase (blue arrows in Fig. 3.3). The dynamical tide propagates much closer to the

center of the star when the star is a subgiant compared to when it is on the main

sequence.

3.3.1 Dynamical tide luminosity and wave breaking

If the dynamical tide loses very little energy in the group travel time between turning
points, it forms a global standing wave. Conversely, if it loses a significant fraction of
its energy between turning points, it behaves more like a traveling wave excited near
the outer convection zone and traveling inward to the center. We will show that the
dynamical tide is a standing wave for the main sequence models of WASP-12 and a
traveling wave for the subgiant models. We now calculate the luminosity L assuming
a traveling wave.

In the gravity wave propagation zone, the traveling wave luminosity is given by
L(r) =r*[dQ pwdynéndyn, where ¢ = dp/p+ U, dp is the Eulerian pressure perturba-
tion, U is the tidal potential, &, is the radial displacement, and the subscript “dyn”
denotes the short-wavelength, dynamical tide piece. L(r) is nearly constant with r in

the propagation zone (except near sharp features such as density variations on short
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Fig.  3.3.— Radial profile of the Brunt-Vaisild frequency N/27m (left-axis)
and the nonlinearity measure k.§. (right-axis). The blue solid curve and red
dashed curve show N/27m for two WASP-12 models, respectively: the subgiant
model (M, /Mg, Z, arr, Age/Gyr)=(1.20, Z, 2.1, 3.7) and the main-sequence model
(1.30,0.02,1.9,2.7). The blue dashed-dotted curve shows k., for the subgiant model.
The arrows indicate the turning points of the dynamical tide.
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lengthscales'). To compute &, and 1, we solve the equations of motion of the linear
tide (e.g., Weinberg et al. 2012). We use the Cowling approximation, in which the per-
turbed gravity is ignored, a good approximation for the short-wavelength dynamical
tide. A mechanical boundary condition ) — U = ¢&, is used at the surface of the star,
and the inward-going traveling wave boundary condition d(v¢) — ) /dr = ik, (¢ — 1)
is applied at a radius well within the propagation zone. Here 1)y is an approximation
of the long-wavelength, particular solution, called the “finite frequency equilibrium
tide” (see Arras & Socrates 2010); it is given by A%y = w?d(r?¢, oq)/dr, where
A? =(((+1) and &, ., = —U/g is the radial displacement of the zero-frequency equi-
librium tide. The dynamical tide piece of the solution is given by &.qyn = & — &req
and Ygqyn = 1 — 1ho.

This numerical calculation of L may be compared to analytic treatments in which
approximate solutions in the radiative and convection zones are matched across the
RCB (Zahn 1975; Goldreich & Nicholson 1989; Goodman & Dickson 1998; Kushnir
et al. 2017). While an analytic treatment is, in principle, useful in providing simple
formulae, the solution in the convection zone and the matching conditions at the
RCB are complicated and can depend on the tidal frequency and the size of the
outer convection zone. Nonetheless, we motivate an approximate fitting formula
as follows. Given an equilibrium tide displacement &, ., ~ —U/g, the dynamical
tide near the RCB is &.qyn = ((A/7)&eq, Where ( is a dimensionless constant that
depends on the structure of the convection zone found by the matching conditions,
and A = [—(A?/w??)dN?/dr]~'/3 is the wavelength near the RCB. By the continuity

equation, A*Yayn/w?r? == d&, ayn/dr ~ & ayn/. Thus, for the dominant ¢ = 2 gravity

1Our stellar models have one or two sharp spikes in N (near ~ 0.1R) due to composition
discontinuities that form as the convective core shrinks. However, these spikes are unphysical; we
find that they disappear when we include overshooting and diffusive mixing. Here we simply smooth
over them in order to calculate L.
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(3.1)

Here a is the semi-major axis, r. is the radius of the RCB where the wave is excited,
pe is the density at 7., p. = 3M_./4wr? and M, are the mean density and enclosed mass
within 7., and w, = (GM./r3)1/? is the dynamical frequency at 7.. The dimensionless
prefactor Ap ~ 0.02¢%[—(r./w?)dN?/dr]~/3.

Equation (3.1) is similar to the form derived by Kushnir et al. (2017). It is useful
if Ay is nearly constant for different P and stellar models. In practice, we find that
this is not the case. Specifically, we find that A; increases with orbital period for
P < 2day (this is because dN?/dr is not perfectly constant in the driving region;
see Barker 2011). Furthermore, at a fixed P = 1.1day, we find that the different
WASP-12 subgiant models give values in the range 0.2 < A; < 0.6. Because of the
complicated behavior of Ay, we rely on the numerical calculation of L rather than
Eq. (3.1).

If a fraction 7 of the wave luminosity L is deposited in a single group travel time
across the star, then (Goldreich & Soter 1966; Ogilvie 2014)

P GPMMOYE 91 (M*)m( M, ) <i>_2/31\/[ n (32)
|P|  3(M,+ M.)Y3nL — nLs \ My My, ) \day yh '

where L3y = L/10%%ergs~!. The value of 7 depends on how efficiently the dynamical
tide is dissipated as it propagates through the radiative interior.

The principal dissipation mechanisms acting on the dynamical tide are damping
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due to radiative diffusion and nonlinear wave interactions (Goodman & Dickson 1998;
Barker & Ogilvie 2010; Weinberg et al. 2012; Essick & Weinberg 2016; Chernov et al.
2017). Radiative damping at a rate v causes the amplitude of the tide to decrease
by a factor of exp(—~t,,) in a group travel time t,, across the star. Damping due to
nonlinear interactions is especially strong if the wave displacement &, is so large that
k.&. 2 1, where k. ~ AN/wr is the radial wavenumber. Such a strongly nonlinear
wave overturns the local stratification and breaks. Since it deposits all of its energy
and angular momentum before reflecting, wave breaking implies n ~ 1 (Barker &
Ogilvie 2010; Barker 2011).

We can estimate £,.&, in the WKB approximation using conservation of energy flux,
which states that pN?v,|&,|? ~ L/47r? as the dynamical tide propagates inward from
the envelope RCB (Goodman & Dickson 1998). Here v, =~ w/k, is the radial group
velocity and &, now denotes the rms radial displacement averaged over time and angle

at fixed radius. This gives

ASNL Lo\ '?/ P \? -2
bty o |- g (Coalao i . (3.3)
dmprowt P2 day 103 R

The second line represents the scaling in a radiative core, where N = Cr with Cy; =

C/0.1(Rys)~! and py = p/10%°gcm™3. Our numerical solutions of k,.&, agree well with

this WKB estimate.

3.3.2 Resonance locking

As a star evolves, its g-mode frequencies can increase, allowing them to sweep into
resonance with the tidal frequency. If the resulting tidal torques are sufficiently large,

the dynamical tide can end up in a stable “resonance lock” and drive orbital decay
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on the stellar evolution timescale. Resonance locking has been invoked to explain
the observed properties of a variety of tidally interacting binaries (Witte & Savonije
2002; Fuller & Lai 2012; Burkart et al. 2013, 2014; Fuller et al. 2016, 2017).

We find that resonance locking cannot explain the apparent orbital decay of
WASP-12. This is because the g-mode frequencies in the models evolve too slowly
for a mode to remain in resonance lock at the observed P (even during the rapid evo-
lutionary stage just before the convective core disappears). In the future, we plan to
investigate whether resonance locking is important in other short-period exoplanetary

systems.

3.3.3 Tidal dissipation on the main sequence

We find that tidal dissipation on the main sequence is too inefficient to explain the
observed P. First, we find that Ytgr & 1079 for internal gravity waves resonant with
the tidal forcing (we use the GYRE pulsation code [Townsend & Teitler 2013] to
solve the non-adiabatic oscillation equations and thus 7t,, for the WASP-12 models).
Radiative damping is therefore an insignificant source of dissipation. This is consistent
with the results of Chernov et al. (2017), who also consider radiative damping of the
dynamical tide in main sequence models of WASP-12. Although they show that the
observed P could be explained if ~ter ~ 1, which they refer to as the moderately large
damping regime, they do not identify any mechanism that could enable the tide to
be in this regime.

Second, we find k,.&,. < 1 throughout the propagation cavity of the main sequence
models. By Eq. (3.3), k.§, is largest near the inner turning point, which for the
main-sequence models is located at r ~ 0.1R;, (the top of the convective core); at

this radius k,.£. < 1. Thus, the dynamical tide does not break while the star is on
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the main sequence.

Even if k,.§, < 1 and the dynamical tide forms a standing wave, it can still
potentially lose energy through weakly nonlinear interactions involving three-mode
couplings (Essick & Weinberg 2016). To check this, we computed three-mode cou-
pling coefficients kg, using the methods described in Weinberg et al. (2012). We
considered the stability of the dynamical tide to the resonant parametric instabil-
ity, which involves the tide (mode @) coupling to daughter g-modes (modes b and c)
whose eigenfrequencies satisfy wy, +w. >~ w,. We find that K is small (kgp. ~ 1 using
the normalization in Weinberg et al. 2012) and the tide is stable to the parametric
instability (i.e., the nonlinear growth rate I' < ). We therefore conclude that while

the star is on the main sequence, 7 < 1 and P/|P| > Myr.

3.3.4 Tidal dissipation on the subgiant branch

In the subgiant models, the radiative damping rate v is again too small to significantly
damp the dynamical tide. However, unlike the main sequence models, the subgiant
models have a radiative core and a convective envelope. As a result, the inner turning
point of the dynamical tide is much closer to the center of the star and we find that
k.&. 2 1 near the inner turning point.

Our numerical solutions give luminosities in the range L3y = [3.0,10.5] for the
subgiant models. Specifically, for the subgiant model shown in Fig. 3.3, we find L3g =
3.6. For this model, the key parameters of the convective envelope are r. ~ 1.30R,
M, ~ 1.20My), p. ~ 2.3x 1073 gcm ™ and the key parameters of the core are p, ~ 3.8,
and Cp; ~ 1.3. Plugging these into Eq. (3.1) and taking M, = 1.40M},, (Chan et al.
2011) gives L3g ~ 16 Ay, which comparing to our numerical solution implies Ay, ~ 0.2.

Evaluating Eq. (3.3) at the inner turning point 7 = w/C = 1.0 x 1073 Ry, gives
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k.&. = 1.5, in good agreement with the full numerical solution. Our other subgiant
models yield very similar results, with values in the range k.. = [1.4,2.5].

This implies that during the subgiant phase, the dynamical tide becomes strongly
nonlinear near the inner turning point and breaks. As a result, n ~ 1 and by Equation
(3.2), the range in L imply decay timescales in the range P/|P| = [1.4,4.5] Myr (and
Q. =[0.8,2.2] x 10%). This agrees well with the observed P/|P| = 3.2 + 0.3 Myr.

Although we find k,.&. > 1, it is only just slightly in excess of unity and one might
wonder whether the wave really is efficiently damped (1 ~ 1). Numerical simulations
by Barker (2011) show that as long as k.§. > 1, the wave breaks and efficiently
transfers its angular momentum to the background mean flow. Furthermore, Essick
& Weinberg (2016) find that if k,.&. 2 0.1, the dissipation due to weakly nonlinear

interactions with secondary waves is nearly as efficient as when k., = 1. This

therefore suggests that n ~ 1 for the WASP-12 subgiant models.

3.4 Discussion

The main sequence and subgiant models are both ~ 3 Gyr old and spend = 0.5 Gyr
within the measured range of Tog and p,. If the observed P is indeed due to orbital
decay, then an advantage of the subgiant scenario is that it naturally explains why
the planet survived for 3 Gyr and is now decaying on a 3 Myr timescale. Although the
system only spends ~ 0.1% of its life in the present state, there are ~ 30 hot Jupiters
with P < 3days orbiting stars with M, > 1.2M,. The dynamical tide likely breaks
during the subgiant phase in all of these systems and thus they all spend ~ 0.1% of

their ~ Gyr long lives in a state during which the planet decays on ~ Myr timescales.?

2As an aside, we note that because P/|P| increases rapidly with P, this mechanism cannot
explain the apparent deficit of giant planets orbiting subgiants with periods between 10 and 100
days discussed in Schlaufman & Winn (2013).
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We therefore estimate that out of the 30 systems, the probability of detecting one in
a state like WASP-12 is ~ 3%.

Even though wave breaking of the dynamical tide can drive orbital decay on Myr
timescales, it cannot spin up and align the entire star. This is because the wave
breaks very close to the stellar center (r < 0.01Ry) and while the torque L/Q might
spin up the stellar core (Barker & Ogilvie 2010), it is too small to strongly affect the
spin at the stellar surface. Therefore, our results do not conflict with the observed
slow, misaligned rotation of WASP-12.

A combination of continued transit timing and occultation observations over the
next few years should resolve whether the WASP-12 timing anomalies are due to
orbital decay or apsidal precession (Patra et al. 2017). Since we find that the decay
scenario is only plausible if the star is a subgiant, tighter constraints on the stellar
parameters can also help provide resolution. Given stellar modeling uncertainties,
better constraints on just T, and p, might not be sufficient. Asterosesimology offers
a promising alternative. Asteroseismic studies have determined whether stars are
subgiants by measuring the sizes of convective cores (Deheuvels et al. 2016) and
measured the mass and radii of stars hosting planets to few percent accuracy (Huber

et al. 2013).
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Chapter 4

Orbital Decay in Binaries

This chapter is based on a submitted paper (Sun et al. 2018).

4.1 Introduction

Tidal friction becomes orders of magnitude larger as stars leave the main sequence
(MS) and ascend the RGB. Binaries that suffered relatively weak tidal effects on the
MS may suffer catastrophic orbital decay during the SGB (Schlaufman & Winn 2013),
RGB and asymptotic giant branch, resulting in the binary components coming into
contact. Sufficiently massive secondaries, My 2 1072 M, may then initiate a common
envelope spiral-in and ejection of the primary’s envelope (Paczynski 1976), forming a
close binary containing the secondary and a helium-core white dwarf. Smaller secon-
daries may give rise to mergers with the helium core of the primary, or destruction
in the envelope of the primary (Nelemans & Tauris 1998).

The engulfment of companions proceeds from smaller to larger orbital separation.
Most previous studies (e.g. Schréder & Connon Smith 2008; Kunitomo et al. 2011;

Mustill & Villaver 2012; Villaver et al. 2014) have focused on the end result, namely
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the critical separation outside of which systems may survive as the primary transitions
into a white dwarf. This paper focuses on earlier stages, when the primary has left
the MS but is well below the tip of the RGB, as these are more commonly found in
spectroscopic surveys.

This paper was motivated by the close binaries found in the APOGEE survey.
Employing three years of APOGEE (Majewski et al. 2017) observations from the
twelfth data release of the Sloan Digital Sky Survey (Alam et al. 2015), Troup et al.
(2016) compiled a catalog of 376 newly-found close binary systems. These are single-
lined binaries with radial velocity fits for the orbit and secondary minimum mass,
and a large range of Galactocentric radius, metallicity and evolutionary state of the
primary. This sample is unique, as it contains both dwarf and giant primaries, and
secondaries ranging from planetary to stellar masses. The present paper focuses on
the 180 primaries which are post-MS, as theory predicts these systems have much
stronger tidal friction. Interestingly, brown dwarf (BD) secondaries are nearly as
common as stellar-mass secondaries in the APOGEE-1 sample. The putative “brown-
dwarf desert”, a lack of close binaries with solar-type primaries and BD secondaries,
is nmot found in this sample, in seeming contradiction to decades of previous surveys
of FGK dwarfs (Grether & Lineweaver 2006). The presence of secondaries, from
planetary to brown dwarf to stellar mass, allows a test of synchronization and orbital
decay over the entire range, from small-secondary Darwin unstable systems, which
will come into contact due to orbital decay, as well as large-secondary systems, which
will quickly synchronize. The latter then evolve on the RGB evolutionary time of
the primary, with the spin frequency nearly equal to the orbital frequency as the star
evolves.

Both equilibrium and dynamical tides are considered in this paper. The first tidal
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friction mechanism we use is the equilibrium tide, in which shearing of the the tidally
forced fluid motion is dissipated as heat by turbulent viscosity in the convective en-
velope. As gravity waves are evanescent there, and the frequencies are far below
acoustic waves, the fluid motion is not wavelike. Rather, fluid nearly follows equipo-
tential surfaces, and large scale shearing motions are present. This fluid motion is
sometimes approximated with the analytic “equilibrium tide” solution out of conve-
nience, although that derivation is only formally valid in radiative zones. (Terquem
et al. 1998) However, since the surface of the star is nearly an equipotential, this
analytic solution performs well, and is convenient. It is used in this paper. The fluid
motions in the convective zone are damped by turbulent viscosity, in which resonant
turbulent eddies due to thermal convection transport momentum and damp the tidal
shear flow. The dissipation rate for this process depends on the uncertain details
of the interaction of small-scale turbulence with a mean flow, but the two theories
discussed in this paper have scalings Po_ré and Po_rg for the dissipation rate, and hence
decrease much more slowly than the dynamical tide’s PO;]Z]. Hence it is expected
that the dynamical tide dominates at small separation and the equilibrium tide at
larger separation. One of the aims of this paper is to estimate the critical separation
at which dynamical and equilibrium tide dissipation are comparable.

The dissipation of the equilibrium tide by turbulent viscosity in convection zones
was first developed by Zahn (1977). In that paper, a turbulent viscosity v, = v,¢/3

was proposed, where £ ~ H and v, ~ (F/p)'/3

are the size and velocity of the large,
energy-bearing eddies. Here H is the pressure scale height, F' is the heat flux, and p
is the mass density. In many situations where this theory is applied, the large eddy

turn-over time, 7, = ¢/v, is much longer than the forcing period, P, and cannot

efficiently transport momentum to damp the shear flow. Zahn (1989) proposed that
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large, non-resonant eddies move a small fraction P;/27, of an overturn, and so the
eddy turnover time should be reduced by this linear-in-period factor. Goldreich &
Nicholson (1977)(hereafter GN) argued that resonant eddies on smaller scales damp
the shear. There was later support for dissipation by resonant eddies in both analytic
calculations (Goodman & Oh 1997) and numerical simulations (Penev & Sasselov
2011; Penev et al. 2011). Assuming Kolmogorov scalings for the turbulent eddies, GN
argue for a quadratic reduction factor (P/2m71,)?. For Pr < 74, this leads to a very
large suppression of the viscosity. By contrast, even for resonant eddies, numerical
simulations find a scaling closer to linear, perhaps due to the fact that the largest
eddies do not follow inertial-range, Kolmogorov scalings. In addition, the transition
from linear to quadratic scaling has not been resolved in the simulations. As the RGB
stars studied here may have turnover times > 10% days while the orbital periods are
of order days to weeks, there may be several orders of magnitude difference in the
predictions given by standard (un-reduced), linear and quadratic scalings.

The treatment of the equilibrium tide in the present paper was influenced by
Phinney (1992) and Verbunt & Phinney (1995), who studied circularization of bina-
ries containing an RGB star. The latter presented analytic formulae for circularization
which take into account the evolution of the RGB star to larger radius and luminosity.
They applied this analytic circularization formula to 28 binaries, finding that all sys-
tems could be well explained with a non-reduced kinematic viscosity. Here, equivalent
formulae are derived for the orbital decay problem and for reduced viscosity.

Binary orbital frequencies are below the frequencies of acoustic waves, and hence
only low-frequency gravity waves can be resonantly excited by the tide. During the
SGB and RGB phase, the core is radiative and internal gravity waves are excited

by the tide at the boundary between the radiative zone and the convective envelope
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(Goodman & Dickson 1998; Bolmont & Mathis 2016; Chernov et al. 2013; Ivanov
et al. 2013; Gallet et al. 2017; Weinberg et al. 2017; Kushnir et al. 2017). The waves
then travel inward toward the center. Two damping mechanisms may prevent the
formation of a standing wave. Radiative diffusion is dominant on the SGB and RGB,
and can easily damp the dynamical tide from any orbiting companion, independent of
its mass. Even if radiative diffusion were not present, companions larger than roughly
1 Jupiter mass will give rise to such large wave amplitudes near the center that the
stratification is overturned and the wave breaks, depositing it’s energy as heat and
torquing the gas in the wave-breaking layer (Barker & Ogilvie 2010; Barker 2011). In
this paper it is assumed that efficient angular momentum redistribution takes place
to the rest of the star.

Numerous studies (e.g., Schroder & Connon Smith 2008; Kunitomo et al. 2011;
Mustill & Villaver 2012; Villaver et al. 2014) have considered the effect of post-
main sequence stellar evolution and tidal evolution on planetary orbits, with the goal
of predicting the properties of planetary systems around white dwarfs. For massive
planets in close orbits, orbital decay can lead to engulfment of the planet. By contrast,
smaller mass planets that do not suffer orbital decay must wait for the star’s radius
to expand out to their orbit. Mustill & Villaver (2012) employed turbulent viscosity
in the star’s convective envelope as the tidal friction, and experimented with different
prescriptions for reduction of the viscosity when the eddy turnover time is longer
than the forcing period. However, since the semi-major axes explored were all large
(2 1 AU) most of the eddies in the convection zone turn over fast compared to the
forcing period, and the full turbulent viscosity ends up being used. High mass loss
rates during the post-main sequence evolution will cause orbits to expand as the star’s

mass decreases.
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The prescriptions for the equilibrium and dynamical tide dissipation rates are

discussed in Sections 4.2 and 4.3, respectively.

4.2 Equilibrium Tide Dissipation Rate

Consider a primary star of mass M; and radius R; in a circular orbit of separation a
with a secondary star of mass M,. The tide raised by the secondary in the convective
envelope of the primary creates a time-dependent fluid shear, which is damped by the
turbulent viscosity of convective eddies. This process transfers energy and angular
momentum from the orbit to the stellar convection zone. For simplicity, efficient
angular momentum redistribution is assumed in the primary so that the rotation rate
Q) is uniform over the star.

The orbital torque, N, is related to the energy dissipation rate in the rotat-

ing frame, E, through the pattern speed n — Q as N = E/(Q — n), where n =

VG(M; + Ms)/a? is the orbital frequency. This relation is valid even as Q — n,
i.e. synchronous rotation. The torque N — 0, since £ ~ (Q —n)> — 0 as
Q0 — n. This torque changes the orbital angular momentum, L = pna?, where
= My My/(M; + M) is the reduced mass of the system. The semi-major axis then
changes at a rate '

2F

Ty (4.1)

Since £ > 0, the orbit decays for a slowly rotating star (Q < n) and expands for
a rapidly rotating star (2 > n). Equation 4.1 agrees with the end result of the
derivation in Hut (1981), and is also valid even when the moment of inertia of the
primary star is changing with time due to stellar evolution.

For massive secondaries, the spin of the primary may be tidally synchronized to
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the orbit, with subsequent tidal evolution occurring on the stellar evolution timescale
of the primary (e.g., Damiani & Lanza 2015). The conserved total angular momentum
of the system, assumed aligned, is J = L+ .57 455, where S; = €2 is the spin angular
momentum of the primary, and S, is that of the secondary. Here [; is the moment of
inertia of the primary, and €2 is the primary’s angular velocity. Since the moment of

inertia of the secondary I is much smaller than [;, we ignore S,. In that case,

L + S ~ constant. (4.2)

At each time ¢, Q(¢) is determined from the initial values L(0) and S;(0) as Q(t) =
(L(0) 4+ S1(0) — L(t))/11(t). In this way a separate differential equation is not needed
for 2.

One technical point is that even a tiny amount of mass loss would cause an artificial
spinup of the primary according to Equation 4.2, since L would decrease even at fixed
a. To eliminate this issue, the two masses are fixed during the evolution. This is a
good approximation for the stars near the base of the giant branch considered here,
since little mass has been lost, and e.g., the expansion of the orbit would be tiny at
this stage.

The viscous dissipation rate for incompressible flow is given by Landau & Lifshitz

(1959)

'Yy py(g;’; gg:)stx (43)

i=z,y,2 k=1,

where the sums are over the three spatial directions, v; is the velocity of the tidal
flow, x; are Cartesian coordinates, v is the (isotropic) kinematic viscosity, and p is
the mass density. Isotropic turbulent viscosity is assumed for simplicity. Numerical

simulations find modest deviations from isotropy for Boussinesq convection (Penev
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et al. 2009, 2011). The velocity of the tidal flow may be represented as a spherical

harmonic expansion

V=" (=iwn) [Erm(r)Vim (0, d)er + Guim (r)rV Ve (0, 6) e (4.4)

Im

where &, 4, and &, ¢, are the radial and horizontal component of the Lagrangian
displacement vector, and w,, = m(n — Q) is the forcing frequency in the rotating

frame. Plugging Equation 4.4 into Equation 4.3 and performing the angular integral

gives
o1 " d&rom(r) )" dnen(r) | Enom(r)  Enen(r))
oy Lol (S5 (55 5055
2
+2 (6(6 41y Sem() 25““(’“)) }
T T
(4.5)

where 1., is the radius at the base of surface convective zone. Since the m = 0 term
has zero frequency it does not contribute. The £m terms give equal contributions.
The tidal potential in the primary due to a secondary orbiting at co-latitude 7/2

and and orbit angle (n — Q)t is

00 ¢
U=>"Y" Un(r)Yom(0, ¢)e

=2 m:—ﬂoo , (46)
dr ot T it
=—GM, Z Z %—H%Yem (570) Yém(eaﬁb)e )
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which is smaller than the potential GM;/R; at the surface of the primary by a small

factor € = (My/M;)(Ry/a)? for £ = 2. In the equilibrium tide approximation (e.g.,
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Goldreich & Nicholson 1977), the radial and horizontal displacements are

Ugm(T)

fr,fm (T) - - g

and

gh,ém (T> =

1 Upn(r) dlng
20 —
(+1) g dlnr

Given the run of p, v, g, & and & m versus 7 for a stellar model, E is com-
puted by numerical integration of Equation 4.5 for a given stellar model. Analytic
approximations for this integral are discussed in the Appendix.

When the turnover time 7.4 of the large eddies becomes longer than the forcing pe-
riod Py = Py,/2 (for m = 2), it is expected than turbulent viscosity is reduced, since
the large eddies cannot transport momentum efficiently. Three models of turbulent

viscosity will be investigated: “standard” viscosity

1

Vgtd = gvedaH, (4-7)
Zahn’s formula with a linear reduction
1 f
= VUga X min | 1, , 4.8
V7, = Vgq X Min < QTed) (4.8)

and Goldreich and Nicholson’s formula with a quadratic reduction

P \2
VUGN = Vgtq X Min <1, ( ! ) > , (4.9)
27 Teq

The numerical factors in each expression are somewhat arbitrary (Penev et al. 2009).

Due to the large eddy velocity near the surface, the eddy turnover time will generally
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be shorter than forcing periods of interest there. Reduced viscosity is important deep
in the convection zone where eddy velocities are small, due to increasing density.

If the viscosity scales with orbital period Py, = 27/n as v o« P%,, then for ) < n,

orb»
E o< M3a=+3/2 = MZa~(*? and a oc Mya= ™32 = Mya=F with 8 = 7—3a/2. The
relevant values of § are then 7, 5.5 and 4 for standard, linear and quadratic scalings.

The exponent 3 is a crucial parameter that directly determines the relative number

of systems at different orbital separation.

4.2.1 A Numerical Example

For close-in orbits and deep stellar convection zones, the viscosity is expected to be
significantly reduced from the standard value. This section shows a numerical ex-
ample to illustrate the reduction factor. Figure 4.1 shows the depth dependence of
turbulent viscosity (top panel), eddy turnover time and interior mass (middle panel),
and dE /dIn P from Equation 4.5 (bottom panel); here P is pressure. Representative
values have been used, with a M; = 1M, RGB star with radius R; = 10R, compan-
ion mass My = 0.01 M, orbital separation a = 0.1 AU and orbital period P, = 11.4
days.

The middle panel of Figure 4.1 shows that this RGB star has eddy turnover times
Ted = amitH /Veq 2 100 days near the peak of the integrand. Hence tidal forcing for
any orbit shorter than P, ~ 100days is expected to have reduced viscosity. The
peak in eddy turnover time is due to the scale height becoming small both near the
surface, due to lower temperature, and toward the center, due to higher gravity.

Near the peak of the integrand the eddies are turning over 10 times slower than
the tidal forcing period. The top panel shows that this leads to a reduction factor of

107! and 10 relative to standard viscosity, respectively. The bottom panel shows
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that dE /dIn P has a strong peak for standard viscosity, due to decreasing mass near
the surface and decreasing tidal shear toward the interior. The integrands for Zahn
and GN viscosities are reduced in size and with flattened peaks closer to the surface.
The Zahn case still has a peak in the integrand well below the depth where Py = 7,
however the GN case has a flat integrand over 3-4 decades in pressure, ending at
Py = 7eq.

Appendix 4.7 discusses analytic approximations to the dissipation rate for the
different assumptions for turbulent viscosity. This approximations will be used in
Section 4.5 to understand the critical orbital separation out to which orbital decay is

expected to have caused systems to merge.

4.3 Dynamical Tide Dissipation Rate

The dynamical tide involves the excitation of internal gravity waves near the RCB.
If damping is weak, waves will reflect in the core and form standing waves. When
the wave can be damped in less than one group velocity travel time the result is a
traveling wave. In the traveling wave regime, the dissipation rate is given by the
inward-going wave luminosity, Lqyy.

During the SGB and RGB phases the core is radiative and the envelope convective.
The dynamical tide is excited at the radiative-convective boundary (RCB), with the
waves propagating inward toward the center (e.g., Goodman & Dickson 1998). There
are two damping mechanisms that may cause the wave to damp at or before it reaches
the center. First, radiative diffusion damping becomes progressively more important
as the star evolves off the MS, due to the large number of internal gravity wave nodes
in the core (Dziembowski 1977). This mechanism depends only on the orbital period,

and is independent of the companion mass. Second, waves may “break” nonlinearly



104

1016
1074
10"
7108
~ 12
5 10%F
o — STD
Y
oo — Z
10 — GN
108 : ‘
6 8 10 12 14
10° 1.0
—_— Ted _— ’09
102t — B 10.8
©
= 0.7 =
5 =
= 10k 10.6 =
3 INER2
& 0.5E
10k 10.4
10.3
107! ‘ ‘ 0.2
4 6 8 10 12 14
14

log P (dyncm™2)

Fig. 4.1.— Depth dependence of quantities needed for the turbulent viscosity
dissipation rate. The parameters used are a M; = 1M, RGB star with radius
Ry = 10 R, companion mass My = 0.01 M), and separation a = 0.1 AU (orbital

period P,y = 11.4 days). The top and bottom panels show the standard, Zahn and
GN prescriptions as blue, green and red lines, respectively. The top panel shows the
run of the three prescriptions for turbulent viscosity as a function of pressure in the
convective envelope. The middle panel shows the eddy turnover time (blue solid line),
forcing period (Py,/2 = 5.7 days, the black horizontal line) and interior mass m(r) in
terms of log P. The bottom plot gives the integrand of the energy dissipation integral.
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at the center, and not reflect back (Barker & Ogilvie 2010; Barker 2011). Here
wave breaking may mean overturning the local stratification, or strong wave-wave
interactions which transfer energy from the tidally-excited fluid motion to daughter
waves (Weinberg et al. 2012; Barker & Ogilvie 2010; Barker 2011). Nonlinear wave
breaking depends on the companion mass, as well as the orbital period.

The traveling wave luminosity is computed from stellar models by solving the
linearized radial momentum and continuity equations and applying the appropriate
boundary conditions for an inward-going traveling wave in the radiative zone. Define
the radial Lagrangian displacement &,., the potential ¢» = dp/p + U, the Eulerian
pressure perturbation dp, and the tidal potential U. The radial momentum equation

and continuity equations, in the Cowling approximation, are then (e.g., Unno et al.

1989)
2T -0-ov-oe (4.10)
and
R

where the horizontal wavenumber is k7 = ¢(¢ +1)/r*. At the surface, the evanescent
wave boundary condition applied is (Unno et al. 1989) dp/p = v — U — ¢g§,. The

inward-going traveling wave boundary condition is

) i (0~ ), (4.12)

where 1)y is an approximate long-wavelength, particular solution and k, = k, N/w is

the radial wavenumber. The value of 1y can be computed from the equilibrium tide
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as (Arras & Socrates 2010; Weinberg et al. 2012, 2017)

w?  d(r*&eq)
ey ar

o = (4.13)

The dynamical tide pieces of &, and 9 are denoted &, qyn = & —&req a0d Yy = Y —1y.

In the gravity wave propagation zone, the traveling wave luminosity is given by

Ldyn = T2/de¢dyn£r,dyn; (414)

which involves an integral over two spherical harmonics. The purpose of subtracting
the long-wavelength response is to decrease the size of the oscillatory part of the
Layn (), making it easier to isolate the value in the propagation zone far away from
the RCB.

The decrease of gravity wave energy in the core due to radiative diffusion can be

parametrized as

Eun /b k3N 40T > P \*
= ~ 2 dr-2"5, (Vg — V = . 4.15
“ dyn 0 T a(Vad ) 3kP? Py aift (4.15)

Here Ediﬂ‘ is the dissipation rate including both the inward and outward going
waves, giving the factor of 2 in Equation 4.15. The adiabatic and stellar temperature
gradients are denoted V,q and V, respectively, and « is the opacity. This formula was
derived for the dynamical tide component using the low frequency, quasi-adiabatic
approximation discussed in Unno et al. (1989), and is valid in the degenerate core
and non-degenerate burning shell, where most of the contribution arises.

Outside Py gifr, defined in Equation 4.15, radiative diffusion damping is strong,
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orbital period, Py, qig outside of which the radiative diffusion damping timescale is
shorter than the group travel time in the core, and the traveling wave regime obtains.
The dashed lines show the minimum possible orbital period Fup, min for a star of that
mass and radius, where the companion is orbiting at the surface of the star. At a
given stellar radius, the standing wave limit can only occur if the dashed line is below
the solid line.
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and the traveling wave limit occurs, and vice versa for Py, < Pybaig. Figure 4.2
shows the P, air versus stellar radius, R, which acts as a proxy for age. In all
three cases, radiative diffusion will lead to the traveling wave limit for orbital periods
P, 2 1day over part of the SGB and all the RGB. This enhanced radiative diffusion
is caused by the short vertical wavelength in the core.

Radiative diffusion may also have an important effect on the driving of waves at
the RCB. For very thin surface convection zones in MS stars of mass M; 2 1.3 M, the
thermal time can become shorter than the forcing period, and radiative diffusion will
rapidly damp out temperature differences induced by the wave, effectively eliminating
the buoyancy force. The wave luminosity is expected to be suppressed when w < waig,

where the thermal diffusion frequency at the RCB is approximated as

F
pPgA?

wWaiff =~ (416)

Here F is the flux and A = |€(¢ + 1)(dN?/dr)/(w*?)|7Y? ~ H(w/cokn)?? is
the Airy wavelength of the gravity wave (Goodman & Dickson 1998). In this paper
it is assumed that rapid thermal diffusion will greatly reduce the wave luminosity,
so that it is set to zero when the thermal time ¢y, = PC,T/gF is shorter than the
forcing period P;. As the convective envelope rapidly deepens on the SGB, where wgig
decreases fast and ¢, increases fast, w = wqig and ty, = P; occur at almost the same
stage during the evolution. Therefore, turning on the dynamical tides at ¢y, > P
is a good approximation. This effectively sets the inward-going wave luminosity to
zero on the MS for the M; = 2 and 3 M cases. As the star leaves the MS, the
convection zone will deepen rapidly and hence our assumption allows the dynamical
tide dissipation to turn on suddenly at the end of the MS. This effect is clearly evident

in the results for the M; = 2 and 3 M, stars.
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In the calculations of orbital decay in later sections, it is convenient to have
tabulated formulas for the wave luminosity that can be rapidly evaluated, as opposed
to solving the above boundary value problem. If A ~ (w/ck,)** H is much smaller
than the local scale height H, which is valid when the forcing frequency is much
smaller than the Lamb frequency at the RCB, the Airy approximation is good and
the wave luminosity can be written in the form (Goodman & Dickson 1998)

-1/3
Layn = (w) [0(0 4 1)] 743013 x (,07“5 ¢ 3’9‘*) (4.17)

27 r2

dN?
dlnr

and where the dimensionless parameter ( is defined by

dfr,dyn _ fr,eq
dr > r '’

(4.18)

and ( is set by matching the solution in the convection zone to that in the radiative
zone. All the quantities in Equation 4.17 are evaluated at the RCB. Our numerical
calculations find that ¢ grows strongly during the RGB. Equating the analytical for-
mula in Equation 4.17 to the numerical results generated from Equation 4.14 for each
stellar model gives the parameter (. When applying Equation 4.17 in the calculations
of orbital decay, the use of the Airy approximation on the radiative side of the RCB
requires that the wavelength is always much shorter than a scale height. For closer
orbits, the larger forcing frequency implies larger wavelengths, and the luminosity
can be larger than implied by Equation 4.17, and this approach may underestimate
the orbital decay rate. When both dynamical and equilibrium tides are included, the
orbital decay rate becomes ¢ = —2(Feoq + |Layal|)/1n(n — Q)a.

Equation 4.17 is only valid in the short wave length limit, where A < H at RCB.

For closer orbits, w increases and A can approach H. Equation 4.17 will underestimate
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L4y for these close orbits, and the orbital decay rate would be larger than in the
results presented here.

Given Lgyy, the nonlinearity of the wave must be checked by evaluating

kerayn = \/ AL+ VPPN Loy (4.19)

47 prowt

in the radiative zone. If o > 1, or if @ < 1 but k& g4yn > 1, the dissipation rate is
given by the full |Lgy,|. On the other hand, if & < 1 and k,&, ayn < 1, the dissipation
rate is set as zero as the wave reflects back and forms a standing wave, with much

smaller dissipation rate.

4.4 Examples of Orbital Decay

This section presents calculations of orbital decay for a range of primary mass, sec-
ondary mass and initial separation. Each integration of the equation a = —Q(Eeq +
|Layn|)/pn(n — Q)a includes the dynamical tide, as well as a prescription for the
turbulent viscosity used to damp the equilibrium tide. Calculations using standard,
Zahn and Goldreich-Nicholson viscosity are compared to assess if they result in po-
tentially detectable differences in the critical separation for rapid orbital decay. The
range of substellar companion masses is chosen to span the range of synchronized and
non-synchronized cases. The range of primary masses and evolutionary state post-
MS represent the bulk of binaries with SGB and RGB primaries and a substellar
secondary.

Modules for Experiments in Stellar Astrophysics (MESA, version 8845, Paxton
et al. 2011, 2013, 2015) is used to provide the stellar structure for three stars of mass

My, = 1,2 and 3 Mg during the MS, and ending when the stellar radius is 10 times
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the MS value. The initial metallicity is Z = 0.02. The type 2 opacity table is used.
The nuclear burning network used is “018_and_ne22.net”. The mixing length factor
is 2. The Schwarzschild criterion for the definition of the convective zone is applied.

In the following three sections, results are presented for the three different primary

masses.

4.41 M, =1M,

Sun-like stars have a radiative core and a relatively thick convective envelope on
the MS, allowing the ingoing-wave dynamical tide to operate. The convection zone
deepens significantly on the RGB in both mass and radius, giving rise to equilibrium
tide dissipation rates many orders of magnitude larger than on the MS. At fixed semi-
major axis, the dynamical tide increases strongly during the SGB, and is relatively
constant on the RGB.

The top panel of Figure 4.3 shows the evolution of a for a M; = 1M, primary
and a My = 0.01 M secondary, including dynamical tides and equilibrium tides with
standard viscosity, vgq. The surface gravity, log g = log;y(g/(cms™2)) is a proxy for
the evolutionary state of the primary star from the MS phase (log g = 4.5) to the RGB
(log g < 4.5). When the orbital decay rate is small, a is constant. Since the orbital
decay rate increases so rapidly after the MS, the orbit will decay rapidly compared to
the stellar evolution timescale, and the line will become nearly vertical. The system
merges at the end of the MS for a;,; = 0.05 AU, at the early RGB phase for a;,; = 0.125
AU and at the middle RGB phase for a;,; = 0.2 AU. From the middle panel, none
of the examples synchronize for this relatively low companion mass (starting from
(2 = 0). The bottom panel shows the dynamical tide wave luminosity L4y, and the

equilibrium tide energy dissipation rate Eeq during the evolution. For the case of
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Fig. 4.3.— Orbital decay for a M; = 1 M primary, with companion mass M, =
0.01 M, and initial separations a = 0.05 (blue), 0.125 (green) and 0.2 (red) AU. Here
log g of the primary star shows the evolution of the star, from left to right. (Top
panel) Semi-major axis vs log g. The black line shows the stellar radius, R;. (Middle
panel) Primary rotation rate (£, solid lines) and binary orbital frequency (n, dashed
lines). (Bottom panel) Dynamical tide (|Lqyn|, dashed lines) and standard viscosity
(Vsta) equilibrium tide (Eeq, solid lines) dissipation rates.
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aini = 0.05 AU, L4y, > E'eq when the internal gravity wave breaks nonlinearly near
the star center, and Eeq dominates later. The a;,; = 0.125 and 0.2 AU cases are both
dominated by the equilibrium tide.

There are two trends that favor the equilibrium tide over the dynamical tide for
wider orbits. First, they have different dependence on orbital period, with Lgy, o
Po_rg'm and Eeq X Po_rg, so the latter decreases outward more slowly. Second, the
dynamical tide luminosity has an initial increase by several orders of magnitude during
the SGB, but then becomes relatively constant during the RGB (at fixed semi-major
axis). This is in contrast to the equilibrium tide, which shows a continuous increase
up the RGB. Hence for decay of wider orbits, which occurs for a more evolved primary
star, the equilibrium tidal friction is more important.

Next, Figure 4.4 compares the orbital decay for a M; = 1 M, primary with three
different companion masses. For the low mass companion, M, = 1073 My ~ 1 M Jups
a o< M, leads to a small orbital decay rate, and the spin is far from synchronous. By
comparison, the M; = 0.01M case is also not synchronized, but the orbital decay
occurs faster due to the larger mass. The higher mass, M; = 0.2 M, case would
have had even stronger orbital decay, if synchronization did not occur. However, this
system synchronizes on the SGB, after which point the orbit evolves on the much
slower stellar evolution timescale, so that this case actually lives longer than the two
lower mass cases. The lower panel of Figure 4.4 shows that destruction occurs due

to the Darwin instability, at separation ap ~ (BIl/u)1/2 ~ (3[1/M2)1/2 and orbital

frequency nyayx =~ \/G(Ml + Ms)/ad ~ \/GMl/a?l’j. ! Beyond this point, the spin
has larger angular momentum than the orbit, and the orbital frequency will tend to

increase rapidly, leaving the spin frequency behind. Hence the critical semi-major

! The critical separation can be derived by solving for the separation where 8.J/0n = 0 assuming
Q=n.
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Fig. 4.4.— The effect of synchronous rotation on orbital decay for M; = 1 My, My =
0.001 (green lines), 0.01(blue lines) and 0.2 M, (red lines). (top panel) Semi-major
axis (a) versus evolutionary state of the primary (log g), and stellar radius. (bottom
panel) Primary rotation rate (£2), orbital frequency (n) and orbital frequency at which
the Darwin instability begins (nmax), evaluated for secondary mass My = 0.2 M.
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axis out to which orbits are destroyed is not a monotonic function of Mjy; for small
M, it increase, while for large M, it decreases. This will be shown analytically in

Section 4.5.
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Fig. 4.5.— A comparison of a versus log ¢ applied with the three descriptions on the
kinematic viscosity: standard (blue), Zahn (green), GN (red). The black solid line
shows R;. The primary star mass is M; = 1M, the companion mass is My = 0.01M),
and a;,; = 0.1 AU.
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Figure 4.5 compares the evolution for the three different prescriptions for the
turbulent viscosity. The dynamical tide is included in all three runs. As expected, for
the non-synchronized case, reduced viscosity slows the orbital decay allowing systems
to live longer. The difference in log g where the system merges is A(log g) ~ 0.3 — 0.8
between standard and Zahn, and Zahn and GN viscosity. The reduction in Eeq will
typically lead to an early phase dominated by the dynamical tide, and if the star
climbs sufficiently far up the RGB before merger, a later phase dominated by reduced

equilibrium tide. Note again that Lgy, is nearly constant during the RGB phase.

4.4.2 2 M, Model

For My = 2 M, the star has a convective core on the MS, which inhibits nonlinear
wave breaking at the center. 2 More importantly, the surface convection zone is so
thin that radiative diffusion damping suppresses the driving of the wave. On the
SGB, the core becomes radiative and the surface convection zone deepens, at which
point both efficient excitation and nonlinear wave breaking can occur.

Figure 4.6 shows the evolution for M; = 2 M, and My = 0.01M,, starting from
ain; = 0.05, 0.15 and 0.25 AU. Standard viscosity is used, and the dynamical tide
is included. The bottom panel shows that L4y, = 0 until logg = 3.5, where the
surface convection zone deepens and ty, > F;. Further Eeq is much smaller than the
M, = 1 Mg case on the MS, due to the smaller convection zone. The end result is
that tidal friction in this model is much weaker than the M; = 1 M, model on the
MS, but comparable on the SGB and RGB. The middle panel shows that none of the
cases synchronize for this companion mass. In the top panel, for a;,; = 0.25 AU, the

system merges at log g = 2.5, where the features in the red line occur at dredge-up,

2 An outward traveling wave flux excited at the radiative-convective boundary of the central
convection zone is ignored in this paper.
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where the convective envelope reach the hydrogen burning shell. In Figure 4.7, the
z-shape in ny., near log g = 3.5 ~ 3.4 occurs between central hydrogen exhaustion

and shell ignition, where the star first shrinks and then expands. In the bottom panel,

=
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Fig. 4.6.— Same as Figure 4.3 but with M; = 2 M, M, = 0.01 M, and a;,; = 0.05
(blue lines), 0.15 (green lines) and 0.25 (red lines) AU.
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Lg4yn dominates by orders of magnitude in the a = 0.05 AU case once it turns on. This
causes the immediate decay of the orbit seen in the top plot. For the a = 0.15 and
0.25 AU cases, dynamical tides are important only briefly after they turn on, and the
equilibrium tide then dominates to merger.

Figure 4.7 again uses M; = 2 M and compares tracks with M, = 0.001,0.01 and
0.5 My for ay; = 0.15AU. Similar to the M; = 1 M, case, the two low mass cases
are not synchronized while the higher mass case is synchronized until the Darwin
instability.

Figure 4.8 shows the effect of reduced viscosity for the runs with the M; = 2 M
primary. The same trends are apparent as in Figure 4.5, except that both dynamical
and equilibrium tide dissipation only turn on for logg < 3.5 where the convection

zone deepens.

4.4.3 3 M, Model

The M; = 3 Mg case is qualitatively similar to that of M; = 2 M. Tidal dissipation
is suppressed during the MS, effectively turning on when the convective envelope
thickens near log g ~ 3.0 on the sub-giant branch.

The bottom panel of Figure 4.9 shows that the dynamical tide is much bigger
than equilibrium tide when it turns on, and immediately causes both the a = 0.05
and 0.15 AU orbits to decay. Only the a = 0.25 AU orbit is sufficiently wide that the
star has time to move up the RGB and equilibrium tides can dominate. None of the
cases have synchronous spin for this companion mass (middle panel).

Figure 4.10 shows a close-up of the dissipation rates in the bottom panel of Figure
4.9. For the My = 0.001 M, (blue lines) and M, = 0.01 M, (green lines) cases, the

dynamical tide (dashed lines) dominates the equilibrium tide (solid lines) as soon as
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it turns on. For the My = 0.5 M, case (red lines) Lqy, and Eeq stay closer to each

other.
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Fig. 4.7.— Same as Figure 4.4 but with M; = 2 M, and M, = 0.001 (green), 0.01
(blue) and 0.5 (red), and starting separation a;,; = 0.15 AU. In the lower panel, the
green dotted line displays the orbital frequencies above which the Darwin instability
oceurs (Npax ), evaluated with My = 0.5M,.
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Figure 4.11 again compares the evolution with standard viscosity and including
the dynamical tide for three different companion masses. All three cases merge over
a small range of log g soon after the dynamical tide turns on. For the most massive

My = 0.5 M, companion, in spite of the fact that the spin becomes synchronous, the
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Fig. 4.8.— Same as Figure 4.5 but for M; = 2 M and a;,; = 0.15 AU.
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binary is still short lived since the Darwin instability turns on at roughly the same
time.

Figure 4.12 shows the effect of the three prescriptions for turbulent viscosity, also

1

4.0 3.5 3.0 2.5
log g (cms™2)

Fig. 4.9.— Same as Figure 4.3 but with M; = 3 M, M, = 0.01 M, and a;,; = 0.05
(blue lines), 0.15 (green lines) and 0.25 (red lines) AU.
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Fig. 4.10.— Close-up of the bottom panel of Figure 4.9, near where the convective
envelope deepens and tidal friction increases dramatically.

including the effect of the dynamical tide. For the M; = 3 My and M, = 0.01 Mg
case, as soon as the dynamical tide turns on it is dominant in all three cases, and so

all three merge near the same log g.

4.5 Critical Semi-major Axis for Mergers

Examples of orbital decay were shown in Section 4.4 to understand the importance of
the turbulent viscosity prescription, the strength of dynamical versus equilibrium tide,
and synchronous spin at each stage in a star’s evolution. In this section, calculations
of the “critical radius”, ae;(t), which depends on the age of the system, are presented.
The critical radius is defined as the separation out to which orbits would have decayed

down to the surface of the primary by the age t. Few binaries are expected to be
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found with a < aqi(t) since those orbits should have decayed and the binary already

merged, while binaries with a 2 a. are relatively unaffected by orbital decay. Hence
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Fig. 4.11.— Same as Figure 4.4 but with M; = 3 M, and M, = 0.001 (green), 0.01
(blue) and 0.5 (red), and starting separation ai,; = 0.15 AU. In the lower panel, the
green dotted line displays the orbital frequencies above which the Darwin instability
oceurs (Npay ), evaluated with My = 0.5M,.
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if a lack of systems is observed for some range of semi-major axis, the plot of acit
versus log g shows which range might be absent of binaries due to tides, and for
which range the lack of systems must have some other explanation as tides become

ineffective.
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Fig. 4.12.— Same as Figure 4.5, but with M; = 3 M, My = 0.01 M, and a;,; = 0.19
AU.
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Figures 4.13, 4.14 and 4.15 show a; versus logg for a primary mass of M; =
1,2,3 My, respectively. The different lines in each plot are for different secondary
masses, M,. Zahn’s prescription for reduced viscosity will be used in all plots, since
reduced viscosity was found to greatly slow down orbital decay for the close orbits
of interest. This reduces to standard viscosity when eddy turnover times are short.
Numerical results will be presented first, and then analytic formulae for a.;; in order
to understand the scalings, and which friction mechanism is dominant. The compar-
ison below between the aq;; and data is also an extension of Chernov et al. (2017),
where five systems containing hot Jupiters are investigated with orbital decay by the
dynamical tide. Our computing of a.; is considered with both equilibrium tides and

dynamical tides.
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Fig. 4.13.— The critical semi-major axis a. versus log g for M; = 1M with three
companion masses: My = 0.001M, (blue), My = 0.01M, (green) and My = 0.1M
(red). The black dots are the APOGEE data (Troup et al. 2016), with M; between
0.5M and 1.5Mg, and My between 1My, - 100M,,. Note that for extremely small
Ginit, Mo = 0.001 - 0.1 M would suffer orbital decay before the end of the MS, and
well before the RGB. This corresponds to the a;,;; lines on the bottom left of the
figure.
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Figure 4.13 compares calculations of a. versus log g for My = 1My. These
calculations are compared to data from the APOGEE survey (Troup et al. 2016)
for primary stars in the mass range M; = 0.8 - 1.5 M. All the observed systems
have a > aqi, meaning that the orbital decay rate is small compared to the stellar
evolution timescale. The lack of systems at a < a.;; may be interpreted as either the
population of closer systems with a < a,;; have already merged due to orbital decay,

or such close binary systems are rare or never formed in the first place.
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Fig. 4.14.— Same as Figure 4.13 for M; = 2M and M, = 0.001 (blue), 0.01 (green)
and 0.5M (red). The black dots are the APOGEE data (Troup et al. 2016), with
M = 1.5 - 2.5M and My = 1 - 500Mjyp.

Figure 4.14 shows the M; = 2M,, case. Due to the thin surface convection zone,
and a central convection zone, dynamical tides are assumed ineffective on the MS.
The surface convection zones deepens near log g ~ 3.5, at which point both dynamical
and equilibrium tides increase dramatically. This causes rapid orbital decay over a
range of small orbital separation. At aqy = 0.05 AU, dynamical tides rapidly shrink

the orbit, and even the high mass companions can’t synchronize the orbit within the
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short time orbital decay scale. Therefore the a.;; lines for the three M, are close. At
aerit = 0.1 AU for the My = 0.01 M, secondary, dynamical tides are still strong and
the orbit shrinks at log ¢ = 3.5. Slow orbital decay occurs both for the high mass
companion, due to synchronous spin, and low mass companions due to the weak tidal
force. All but one of APOGEE systems have a > a,, again showing that the a < @

systems, especially with log g < 3.5, may have already been destroyed.
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Fig. 4.15.— Same as Figure 4.13 for M; = 3M; with three companion masses
My = 0.001My, (blue), My = 0.01M,, (green) and My = 0.5M, (red). The black dots
are the APOGEE data (Troup et al. 2016), with M; = 2.5 - 3.5M; and My = 1 -
500 M jyp.

Figure 4.15 shows the M; = 3M case. Similar to the 2My, aeyy = 0.05 AU
case, dynamical tides are strong and synchronization does not occur. The system
separation decreases quickly at log g = 3.0 for the range My, = 0.001 - 0.5M,. At
aerit = 0.2 AU for the My = 0.5M, secondary, the distance of 0.2 AU is far away for
the high mass companion to synchronize the orbit, which makes the system survive
shorter compared with using a My = 0.01M, or My = 0.001 M secondary. Similarly,

the observed systems are shown in black circles. In this case there are three observed
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binaries near the a = ay lines, that may be undergoing more rapid orbital decay.

Wide orbits with with ag,s > 0.8 AU are not shown in Figure 4.13 to 4.14.
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Fig. 4.16.— Same as Figure 4.13 for M; = 1M, with three companion masses
My = 0.001M, (blue), My = 0.01M (green) and My = 0.5M (red). The blue
dashed line is for ac;; turning on the equilibrium tides only with Zahn’s description.
The black dots are the data from exoplanets.org, with M; = 1.0 - 1.3M, and M, =1
- 13Myp.

The calculations of acy are also compared to binaries containing an exoplanet
and host star from Han et al. (2014) (downloaded from exoplanets.org). Figure 4.16
shows stars in the mass range M; = 1 — 1.3 M, with planetary mass companions.
These stars are in the MS or early SGB. 3

Contrary to the APOGEE data in Figure 4.13, a significant number of these star-
planet binaries are found with a < a.y in the exoplanet host sample in Figure 4.16.
If correct, this result would imply that a large number of binaries have orbital decay

times short compared to their age, and are being observed in a short-live phase just

3The reason why the upper limit is set at 1.3M, is because stars with M > 1.3M, have a convec-
tive core and thin convective envelope, hence both the dynamical and equilibrium tide dissipation
rates are expected to be smaller by comparison, giving small a.,i; during the MS stage.
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before merger. Moreover, the tail of the semi-major axis distribution at a < @i

L a® at larger separation,

should be accompanied by a much larger number o a~
where 8 = 9.5 for dynamical tides. Hence the ~ 10 systems at a/aqi, ~ 0.5 should
be accompanied by ~ 10 x 2%% ~ 7000 systems at a > aeri¢. Such a large reservoir of
systems at a > aqy is not present in the sample, and it is difficult to imagine that
observational bias would cause such a severe lack of systems at only slightly larger
orbital separation.

A second explanation for the a < aqy systems in Figure 4.16 would be a sup-
pression of the dynamical tide on the MS. A factor of 2 increase in a.y implies a
large ~ 102 decrease in dissipation rate, since Lay, oc a=23/2. The blue dashed line in
Figure 4.16 shows a,;; including only the equilibrium tide, with Zahn’s reduced vis-
cosity, and ignoring the dynamical tide. Most of the observed systems have a > act
compared to the equilibrium tide line.

The question is then why the dynamical tide should be strongly suppressed on the
MS. While many of the systems have mass near the k,&. ~ 1 wave breaking limit, a
number of them are comfortably above the wave breaking limit, and a traveling wave
should be expected. It is unclear why the wave luminosity should be suppressed by
~ 10?2 for stars with thick surface convection zones on the MS.

A third explanation could be that these systems with a < a.y have a convective
core during the MS, so that the wave reflects and the dynamical tide dissipation is
suppressed. The convective core size of MS stars increases as the mass increases. If
the stellar mass estimated by observations underestimates the true mass, then some
of the systems with a < a;i have been compared to a calculation for a radiative core,
when they should have been compared to the calculation for a convective core. Once

the dynamical tide turns off, a. is set by the equilibrium tide, which is in better
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agreement with the data. Given that the error bars on stellar mass are in the range of
~ 0.1 to 0.2M, it may be difficult to determine if the star has a convective core from
the present observations. Figure 4.17 shows a is very sensitive to M; during the
MS phase for stars in range from M; = 1.0Mg to 1.5M. When the dynamical tides
turn on, the slope of a.;; increases. This is especially more obvious for the aq; lines
of My = 1.1M, (black, a¢it=0.02 - 0.03 AU) and M; = 1.2M; (magenta, a.i;=0.03
- 0.04 AU). For the case of M; = 1.1M,, the dynamical tides are suppressed at the
early MS because of the convective envelope. Then the convective core ceases and
lately, the nonlinearity reaches 1, then the dynamical tides turn on. For the case
of My = 1.2M, - 1.5Mg, the convective core exists for a longer time during the
MS. When it ceases and almost the same time, k., is close to 1 and the dynamical
tides become effective. The reason of the increase in k&, is that the density near
the star center increases and the inner turning point of the wave moves inwardly
as composition gradient also increase during the evolution. This result agrees with
Barker & Ogilvie (2010). Therefore, the uncertainty in confirming the mass or log ¢
of the primary star may explain why there are many exoplanet systems are below
Qerig line.

Lastly, another consideration may be important for systems with a < a.;; detected
by the radial velocity method. In this case we have used the minimum mass, Mo sin(7)
as the true mass M5 in our calculations, where 7 is the orbit inclination. For systems
in which the primary spin is not synchronized, increasing M, implies larger a.,, and
a worse agreement between theory and observation. However for sufficiently large
M, that the primary spin synchronizes, the rate of orbital decay and aq are much
smaller. In practice, among the systems with a < a4, there are only two systems

detected by the radial velocity method, for which sin(é) is not known. For these two



131

MQ/MJup

16 44 42 140 38 36 34 32 30
log g (cms™2)

Fig. 4.17.— Critical semi-major axis a.y versus log g for different M; = 1.0M
(blue), 1.1M, (black), 1.2M (magenta), 1.3M, (yellow), 1.4M (orange), 1.5M
(cyan). The data is in open circle with error bars of log ¢ in blue.

systems, if sin(7) is sufficiently small and M, sufficiently large so that the primary
synchronizes, this may help explain the a < ag; systems, since the theory line ac;t
has used too small a value of M,. In practice systems with sin(i) < 1 are rare.
Furthermore, most of the a < aq systems were detected by the transit method, for
which sin(z) ~ 1.

For binaries with high mass companions, the spin of the primary star will synchro-
nize to the orbit, and orbital decay then proceeds on the stellar evolution timescale.

This long phase of evolution ends when

I, V2 r0.01 My \ V2
<ap~6Ry [ —1 4.0
@ =ap ! (0.12 MJ%%) M, ’ (4.20)

as the orbital decay will accelerate and the rotation rate of the primary will no
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longer be synchronized. An analytic calculation of a.; in the synchronized case is
complicated. The use of ap as acy is not a good approximation as typically there
has been orbital decay before the instability is reached, and also because there some
further expansion of the primary after a = ap. Our numerical results show that ap
is typically smaller than a;; by a factor of ~ 2.

Next, analytic scalings for a.y are derived for the equilibrium tide, assuming
Q < n and My < M;. Plugging the viscous heating rate into Equation 4.1 gives the

orbital decay rate for each viscosity formula to be

M. R 7.93 a =7
1stp = —9.65 x 107 ems™! | =2 ) ( =+ 4.21
asTp 9.65 x 10" cms (M1> (R® 01AU , ( )

M —2 M R 7.74 a —11/2
1y = —4.57 x 10 Tems ! [ 21 2 (2L 4.22
“ * Ao <M®> (M@ Re 0.1AU 42

and

M3 /M RN L\
1oy = —2.7 x 108 ems™! [ 5 22 : 4.2
aGN 7x 10 " cms (M@) (M@ R. 01AU (4.23)

Each formula has the form @ = —f(t)a” where the time-dependence has been
parametrized in terms of stellar radius here. The critical semi-major axis for which

the orbit can decay to a = 0 in a time ¢ is

aai(t) = [(B + D7 (t)]Y O (4.24)
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where

t
(t) = / a' f(t) (4.25)
0
is a new time coordinate with the units (length)?+!.
The time integral may be simply performed for RGB stars (Verbunt & Phinney
1995). Since the radius and shell-burning luminosity mainly depend on the helium
core mass, Mpe1, a change of variables from ¢ to R; may be found using

. d dM 2.3
py = My (o EU T (4.26)
dMHe,l dt 3.7 Gyr R@

The time integrals can then be written
Ri/Ro
7(t) ~ 3.7 Gyr / daf(t)z=%3, (4.27)
0

where © = Ry/Rs. Since f(t) has been expressed as a power of Ry, the integrals
can be directly evaluated, and are dominated by the largest x. The results for each

viscosity formula are then

M, 1/8 R, O\
; ~ (0.37T A 4.2
erit s7p() ~ 0.3T AU (0.1 Ml) 10 Ry, (4.28)

M, 4/13 M, 2/13 R\
witz(t) = 041AU (=2 4.29
Aercz(1) (M1> 0.1M, 10 R, (4.29)

M 3/5 M 1/5 R 1.25
can(f) ~ 0.35AU (e : 1 B
acrlt,GN(t) 0.35 AU (Ml ) (01 M@) (10 R@) ( 30)

while each expression has a similar value for these fiducial parameters, their scalings

with My, M, and R, differ. As My < My, & pm ~ Epem and Q < n are assumed,
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there is a disagreement between the factors before the scalings from Equation 4.21
to 4.30 and the numerical result. The factors in Equation 4.29 are 0.28, 0.26 and
0.25 AU for M; = 1, 2 and 3M,, respectively. The main purpose of showing these
equations is to find how a.; scales with M7, My and R;.

The critical semi-major axis for reduced viscosity is only relevant if 7.q 2 Py at
the critical radius. Plugging Equation 4.29 into Equation 4.45 shows that the Zahn

prescription applies for

0.1 M 0.18 M 1.31
Ry <5.1R, ( M2@> <M—;> (Zahn), (4.31)
O.lM@ 0.26 Ml 1.1
<1 —1L N). 4.32
mewns (M) (51) @ (432

So if a particular system has a < e (t) during the time when R is less than these
critical values, then reduced viscosity should be used rather than standard viscosity.
Further up the giant branch the standard viscosity would apply.

Next an approximate expression is derived for a. for the dynamical tide. In
Section 4.3 it was found that at fixed semi-major axis, L4y, increased strongly on the
SGB and was nearly constant on the RGB. The numerical results for the RGB can

be fit with the form

P M, + M, 11/6 M, 2 “ —23/2 (.33
dyn = M bdyn \ T M, ) \0.1AU ‘

where Cp, gyn = 3.51 X 103°,7.02x 10%, and 3.36 x 10%erg s for M; = 1, 2 and 3M,),

respectively. Plugging Equation 4.33 into Equation 4.1, and using Equation 4.26 to
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convert age to stellar radius gives the final result

. M, + M, 11/63 % 2/21 Rirgp —1.3_ & —1.372/21 (4.34)
crit Qcrit,dyn M@ M, R@ R@ .

the coefficient has the value C,_.. = 0.14, 0.19 and 0.42 AU for M; =1, 2 and 3M,,

Qcrit
respectively. Unlike the equilibrium tide, the integral over time is dominated by the
base of the RGB for the dynamical tide, and a lower limit Ry,e1, has been assumed
for the radius there. Hence a. asymptotes to a constant as R; grows, allowing the
equilibrium tide to dominate for wide orbits. Similar to the scaling functions for the
equilibrium tide, Equation 4.33 and 4.34 is qualitatively right with the scalings of M,
M, and R;, but they are not in a good agreement with the numerical result for the
entire SGB and RGB phase. Because the wave luminosity is not a constant in SGB
phase, and the equilibrium tide is the main mechanism for orbital shrinking in RGB
phase.

All the results presented in Section 4.4 used sufficiently large M, that k,.&. > 1 in
the core, giving rise to traveling waves. The dynamical tide due to smaller, planetary
mass companions may still generate the traveling wave limit of the dynamical tide if
P, > Powp air and radiative diffusion damping is strong. However, if M5 is too small,
the orbit will not decay, but rather the star will expand out to meet the planet. The

lower limit to M, that has ac;, > R; may be estimated from Equation 4.34. For

M, = 1Mg, in the limit Ry 2 Riygp, for simplicity, the result is

R, 21/2 Rupt, 1.3
Mo oin ~ 3 Mg [ —=— ) 4.
. 3 Mg (10R@) 5Ro (4:35)

Hence there is a small parameter space for sub-Jupiter-sized planets to have a modest
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amount of orbital decay prior to the merger.

4.6 Conclusion

Motivated by current and future surveys that find binaries with SGB or RGB pri-
maries and stellar or substellar secondaries, MESA models for primary stars of mass
M; = 1,2 and 3 M have been used to compute dynamical and equilibrium tidal dis-
sipation rates. The resultant orbital decay rate was used to compare merger times for
different primary and secondary masses and orbital separations, as well as different
prescriptions for turbulent viscosity. The role of synchronization of the primary’s spin
and the Darwin instability have been taken into account.

Analytic formulae have been derived for the equilibrium tide dissipation rate for
each prescription of turbulent viscosity, by approximating the convection zone as an
n = 3/2 polytrope. These formulae are used to derive the critical separation (acrit)
out to which non-synchronized binaries will have merged by some time or log g of the
primary.

The dynamical tide dominates for close-in systems, with less evolved primaries.
The equilibrium tide dominates for wider systems and more evolved primaries. The
dividing line between the two depends on primary and secondary masses, as well as
the prescription for reduced viscosity.

The tidal evolution depends sensitively on the primary star’s mass. For stars of
mass M; 2 1.3 My, equilibrium and dynamical tidal friction is strongly suppressed
on the MS, and turns on suddenly during the sub-giant branch phase as the con-
vective envelope deepens. For close-in systems this may result in orbital decay that
proceeds rapidly compared to the stellar evolutionary timescale. The reason why the

equilibrium tide is suppressed at the MS stage is because the energy dissipation rate
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depends on the convective envelope mass and the eddy velocity. These two physical
quantities are much larger in the RGB phase. In the MS phase, the dynamical tide
is suppressed because the wave can’t propagate inward, and the convective envelope
for My 2 1.3 Mg, is very thin.

For My = 1 - 10 My,p, the low mass secondary cannot provide enough angular
momentum to synchronize the spin. For synchronization to occur, Ms must be on the
order of 0.1 M. After it reaches the Darwin instability, the system merges soon after.
Neither small (My < 10Mj,,) nor large (Ms 2 100My,;,) companions can give rise to
fast orbital decay. Small mass companions exert weak tidal forces, thereby causing
low energy dissipation rates. High mass companions synchronize their orbits quickly,
resulting in a small forcing frequency and consequently low energy dissipation rate.
Only intermediate mass (10 < My < 100Mj,;,) secondaries can sustain a large energy
dissipation rate.

By accounting for the Darwin instability, dynamical tide, and Zahn’s prescription
for the reduced viscosity in the equilibrium tide, we define a critical separation @
below which the system merges rapidly. We find that the majority of APOGEE
binaries show separations larger than a., for the observed log ¢, indicating that these
systems are tidally stable. A handful of systems have observed separations a < @i,
implying rapid orbital decay. For the data from exoplanet MS host stars, we find
that 19 of observed systems with M; < 1.3M, have a < a¢;. This implies that the
dynamical tide may be suppressed in the MS stage for some stars with a radiative
core.

Schlaufman & Winn (2013) discussed observational evidence that SGBs with
planetary-mass companions show a strong deficit of systems with a < 0.67 AU (P, =

200 days). Further, the closest systems at 0.67 AU had fairly circular orbits. They
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proposed a scenario to explain this with tides, in which tidal friction is weak on
the MS but increases dramatically on the sub-giant branch. Their scenario requires
Ry ~ 3 -4 R primary stars to cause orbital decay out to 0.67 AU, and circularization
of the orbits just outside this. Our results show that, with the tidal friction mecha-
nisms included here, that orbital decay rate can only affect systems out to a = 0.05
- 0.15 AU for this range of radii (and depending on the stellar mass), and that tidal

friction is many orders of magnitude too weak to affect systems at a = 0.67 AU.

4.7 Appendix A Analytic Estimate of the Heating

Rate

Analytic estimates for the dissipation rate can be derived by treating the convective
envelope as an n = 3/2 polytrope with interior mass m(r) ~ M;. The latter assump-
tion greatly simplifies the formulae for the density profile, however it leads to factor
of a few errors for standard viscosity since the dissipation occurs sufficiently deep in
the convection zone that the interior mass m(r) is changing rapidly there (see the
middle panel of Figure 4.1). The approximation is better for linear and quadratic
scalings, as their main contribution is closer to the surface.

For ¢ = 2, the dissipation integral can be simplified to

. 20167 Mo\? (R \® ™ r\®
E ~ —Q)PR? == — / d — . 4.36
5 (n ) 1(M1) (a> - rpv Rl ( )

MESA models of a M; = 1.5 M, RGB envelope gives a polytropic constant, K =
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P/p®3, strongly dependent on the evolutionary phase as

0.94
K ~ 398 x10%cem*g 23572 i : (4.37)
Ro

Integrating the equation of hydrostatic balance then gives the density profile

M2 /RN /R 32
p(r) ~ 2.65gcm™> (M;) <??> ( 17’ T) . (4.38)

The pressure scale height is

H=— —znm=r (4.39)

which has a peak of H = R;/10 at r = R;/2. Verbunt & Phinney (1995) found
the luminosity-radius relation is roughly L;/Ls =~ (Ry/Rs)'®. The mixing length
velocity veq =~ (L1/4712p)!/3 can then be used to give the “standard” (non-reduced)

viscosity

1 MY 7 RN 56 (R \ /2
Vstd = gUedamltH ~ 5.34 x 10" em?s7! (ﬁ) (R_;) (ﬁ) ( 1R1 > (4.40)

which has a maximum inside the convection zone. The eddy turnover time is

@mltH Ml 1/2 Rl 0.17 r 7/6 Rl —p 3/2
4= 0~ 346d —1 — . (441
Ted Ved ays <M@> 10R@ Rl Rl ( )

with peak value longer than the orbital periods of many APOGEE binaries with

Py = Py1,/2 ~ days — weeks.
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Given the run over these quantities with radius, the integrals for each viscosity

model can now be performed. For standard viscosity the dissipation rate is

: M, My\? [ R\ [0.1AUY’
Eygq=5.66 x 10%erg s~ (1 -0 nQ(—®> (—2> (—1) < > (4.42
td gs ( /n) ) \an ) \ &= - (4.42)

by comparison, the dissipation rate for the “Zahn” (linear in Py) turbulent viscosity

is

Bi g (oY (M ey Ry
E..  \0.1AU M, M, R n)

and the GN (quadratic in Py) rate is

e a 5 /M, R\ O\ 2
6N 0027 InA ( ) o 1-=) . 4.44
Py P01 AT <M®) (R1 n (4.44)
Here InA = | ;“"a" dIn P ~ a few represents the flat integrand observed for the GN

curve in Figure 4.1.

The Zahn and GN scalings are shallower with orbital separation and stellar ra-
dius, and have a different dependence on forcing frequency. For nearly synchronous
rotation, the forcing frequency 2(n — ) becomes small, and standard viscosity is
appropriate.

Equations 4.43 and 4.44 can be set to unity and solved for the critical semi-major

axis inside of which reduced viscosity operates. Zahn’s prescription holds for

M, M, 1/3 R, 0.11 0 2/3
<017A i 1-= 4.4
a<0.17 U(M1><M1+M2) R, - (4.45)

and a similar expression holds for the GN prescription, with a slightly different nu-

merical coefficient reflecting the coefficients 1/2 and 1/(27)? in two prescriptions.
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Chapter 5

Summary

This thesis focuses on the areas of stellar and binary evolution, as well as oscillations
and tidal friction in binaries. The following chapter summarizes the work on three
projects that cover different topics, ranging from white dwarfs to evolved stars to
exoplanets.

In Chapter 2, we investigated if the observed population of pulsating ELM WDs
could be formed through the “magnetic braking” model, which has previously been
used to explain Cataclysmic Variables and AM CVN binaries. I performed an ex-
tensive parameter study (of donor and accretor masses and initial orbital periods)
and compared the resulting evolutionary models to the observations of log g, Tes and
orbital period P,;. We used the MESA code to perform the binary evolution cal-
culations via the non-conservative stable mass transfer channel (the total mass and
angular momentum for the system is not conserved). We also explore the CE and
conservative mass transfer formation channels.

My Roche-lobe overflow models make detailed predictions for the size of the
hydrogen-rich envelope relative to the helium core (see Figure 2.20). Since the size of

the envelope can be a large fraction of the total stellar radius, the g-mode periods are
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quite sensitive to the envelope size. After the mass transfer phase, the orbit of the
resulting WD binary continues to shrink because of the gravitational wave emission
(if Py, <~ 1 hour), ultimately leading to the merger of the double degenerate stars.

In close binary system, aside from the gravitational wave and magnetic braking
loss, tidal friction may also play an important role in changing the orbital parameters.
In Chapter 4, we computed the equilibrium tidal dissipation rate from first principles,
for MESA models of RGB stars as a function of age. A crucial consideration is
the prescription for “reduced viscosity” (Zahn 1989; Goldreich & Nicholson 1977),
which occurs when the energy-bearing eddies turn over slower than the tidal forcing
timescale, as this is the norm for the APOGEE sample.

No survey of dynamical tidal wave luminosity has been carried out over a broad
range of stellar masses and evolutionary stages. The amplitude of dynamical tide
forcing is a crucial, but poorly-understood effect. Therefore we study dynamical
tide excitation over the stellar mass range M = 1.0 — 3.0 My, of interest to current
surveys. Our calculations find that the dynamical tide dominates for close separations
(Eqyn ~ P757— P-1%) in subgiant phase stars and that the equilibrium tide dominates

orb
for wide separations (Eeq ~ Pt — P..9) in middle- and late-stage RGB stars.

The content in Chapter 3 is the application of our dynamical tides calculation
onto a specific system, WASP-12. We show that if the WASP-12 is on the main
sequence, known tidal friction mechanisms are too inefficient to explain the observed
P. However, once core nuclear burning ends and the core becomes radiative, gravity
waves launched at the radiative-convective boundary may travel inward and “break”
nonlinearly, depositing their energy and angular momentum. This implies a vast

increase in the tidal dissipation rate compared to the main sequence value, and the

orbit of a Gyrs old planet may find itself with only Myrs left to live. The inward
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luminosity of gravity waves excited at the radiative-convective boundary. I used a
numerical approach in which an inward-going traveling wave boundary condition was
applied in the radiative zone. The numerical method makes fewer assumptions than
previous calculation methods, enabling efficient calculation of the wave luminosity for

different stellar structures.
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