

PRZHUVKaUH ASS DHYHORSPHQW THcKQLcaO RHSRUW

A THcKQLcaO RHSRUW VXbPLWWHd WR WKH DHSaUWPHQW RI CRPSXWHU ScLHQcH

PUeVeQWed WR WKe FacXOW\ RI WKe ScKRRO RI EQJLQeeULQJ aQd ASSOLed ScLeQce
UQLYeUVLW\ RI VLUJLQLa � CKaUORWWeVYLOOe, VLUJLQLa

IQ PaUWLaO FXOILOOPeQW RI WKe ReTXLUePeQWV IRU WKe DeJUee

BacKeORU RI ScLeQce, ScKRRO RI EQJLQeeULQJ

JeUeP\ NaWKaQ
SSULQJ, 2020

TecKQLcaO PURMecW TeaP MePbeUV

SWeSKeQ TKLULQJeU
ReQaW Aba]RY

CKULV Lee
AQd\ TaQ

RLcKaUd OKU

OQ P\ KRQRU aV a UQLYeUVLW\ SWXdeQW, I KaYe QeLWKeU JLYeQ QRU UeceLYed
XQaXWKRUL]ed aLd RQ WKLV aVVLJQPeQW aV deILQed b\ WKe HRQRU GXLdeOLQeV IRU
TKeVLV-ReOaWed AVVLJQPeQWV

SLJQaWXUe __ DaWe __5/5/20___
 JeUeP\ NaWKaQ

ASSURYed __ DaWe __________
 DU. AKPed IbUaKLP, DeSaUWPeQW RI CRPSXWeU ScLeQce

AhmedIbrahim 517 2020

2

Powershare App Development

Table of Contents

PowerShare App Development 1

Abstract 3

List of Tables 4

List of Figures 5

1. Introduction 6

1.1 Problem Statement 6

1.2 Contributions 7

2. Related Work 8

3. System Design 10

3.1 System Requirements 11

3.2 Wireframes 14

3.3 Sample Code 17

3.4 Sample Tests 19

3.5 Code Coverage 22

3.6 Installation Instructions 23

3.6.1 Running the app on an emulator 23

Using the already-generated .apk file (recommended) 23

Using React Native 23

3.6.2 Connecting a Firebase project to the app 24

Creating the Firebase project 24

Initializing the database 24

Adding credentials from Firebase project to the app 24

3.6.3 Deploying Firebase functions for the project 25

3.6.4 Uploading the app to the Google Play Store 25

Signing the app and packaging the apk 25

Uploading the app to the Play Store 26

Uploading the app to the Apple App Store 26

4. Results 28

5. Conclusions 30

6. Future Work 31

7. References 32

3

Abstract

PowerShare is a mobile application with the purpose of connecting a politician directly to

their constituents on their mobile device. The vision of our client was to create a system that

would help bring the focus of politics back to civil service. The state of the American political

system at present is one of partisanship, and this often gets in the way of the needs of the people.

Too often the voices of the common man are left unheard by those who represent them. So, our

client wanted this system to enable direct communication between the two parties. In contrast to

the often slow pace of bureaucracy, this interaction would be instantaneous, taking place during

downtime in office.

We created a mobile application in JavaScript using the React Native framework to

accomplish this task. The backend uses Google Firebase for data storage, authentication, and

cloud function execution. The application possesses all core functionality needed to enable the

creation of actionable goals by citizens of specific localities, and the management of those goals

by elected officials. Our client was a man who had an idea and worked to bring it to fruition.

Similarly, we hope that our application can make this same process easier for anyone who wants

to use it.

4

List of Tables

1 Minimum Requirements 11

2 Desired Requirements 13

3 Optional Requirements 13

5

List of Figures

1 Home Screen Wireframe 14

2 Final Home Screen 14

3 Community Screen Wireframe 15

4 Final Community Screen 15

5 Goal Screen Wireframe 15

6 Final Goal Screen 15

7 Create Goal Screen Wireframe 16

8 Final Create Goal Screen 16

9 Goal Completion Listener 17

10 Home Screen render Function 18

11 Community Screen renderCommunityView Function 18

12 Community Screen renderCommunityList Function 19

13 Test Case Setup and Login Function 20

14 Login Function Test Case 20

15 Edit Goal Function Test Case 21

16 Delete Goal Function Test Case 22

6

1. Introduction

In the current two-party political system of the United States, the concerns of the

common citizen are often cast aside in favor of things like party allegiance or drawn out

bureaucratic processes. A direct connection to constituents could help skirt these distractions and

bring a more rapid realization of promises made, while making elected officials’ decisions

transparent to their constituents. This is the nature of the project detailed in this paper.

1.1 Problem Statement

The client has taken issue with this style of political organization and wants to create a

tool to bring the focus of American politics to the needs of the individual. He stated that he

wanted the tool to be accessible, so that a politician would consider checking it during a lull

whilst on the job. This accessibility is necessary from the side of the citizen as well, so that they

can easily propose goals for their communities. This led to the idea of a mobile app to centralize

citizen goals and facilitate communication between both parties.

 Currently, common ways for the average citizen to voice their concerns is to attend town

hall meetings or contact the office of their representative directly. These are important processes

that sometimes produce results, and the group is in no way implying that they should cease.

However, even in these activities, many are ignored and they can be seen as chores. The tool we

are creating would put a name and a number (score) to every idea that residents of individual

communities have, all in one place. They would live in the app, in full view of the other citizens

and their representative at all times, unable to be ignored like a raised hand in a meeting, a phone

call sent to voicemail, or a letter put in the trash.

7

1.2 Contributions

To solve this problem, we were able to build a mobile application that accomplishes the

problem above. As we will describe at length in forthcoming sections, the PowerShare app

centers around citizens and politicians acting within their designated community in-app. They

create and vote on proposed goals in order to allow the most popular goals to filter to the top of a

community-wide list. The representative of this specific community then browses this list, with

the ability to provide actionable steps to completion, to leave comments on the goal, or to mark a

goal as complete. The app supports email notifications for various events in order to keep both

representatives and citizens informed of changes within their community.

8

2. Related Work

 As mobile applications and frameworks have become more widespread over the last

decade, various organizations have tried to apply these advances in technology to improve the

United States electoral system. One example of this is the Shadow app, which was used in the

2020 presidential primary election in Iowa for the Democratic party. The app was created to

shorten the amount of time required for votes to be tabulated, by removing the need to manually

count ballots; instead, the votes would directly be stored in the app’s backend database.

However, due to a bug in the reporting system, there was a period during the day of the primaries

where votes stored in the app’s database were misrepresented to media outlets and Democratic

leadership. This error led to a massive outcry in social media that caused a distrust of the party

leadership, especially the party’s decision to contract the Shadow application to implement a

brand-new voting system. This failure demonstrates the need for client-focused testing prior to

the deployment of an application; had a smaller subgroup of voters been selected for a trial run,

this situation might have been averted.

Shadow is an application that is focused on election day technology; there are fewer

applications with the sole purpose of connecting the public with their elected officials during the

period between elections. One existing digital tool that aims to create a channel between elected

officials and their electorate is the digital application Countable, which allows users to “get clear,

concise summaries of bills going through Congress, see what others think, then take action.” To

accomplish this, the application is divided into two feeds: an opinion feed, which consists of

opinion pieces written by users, and a bill feed, which shows a dashboard of bills recently drafted

by Congress. Both feeds implement a social network format, in which users can vote and

comment on elements of each feed. Though promising, this application ultimately has several

9

shortcomings. First, it does not provide a new channel by which representatives and constituents

can communicate; constituents still would have to email or video message their representatives.

Next, the social-network format of the site, which enables users to comment on each other’s

posts and opinions, may be irrelevant to a representative trying to find the most important goals

to pursue for their community. As a result, this application does not satisfy necessary high-level

requirements.

10

3. System Design

 On the highest level, our system must enable direct communication between a

representative and their constituency. This communication will take place in the form of goals

proposed by citizens and response by the representative in the form of comments or subgoals.

There are three types of user: “user”, “customer”, and “admin.” Every “user” is part of one or

more “communities” based on their address. A “user” can create goals in any community that

they are part of. They can see and search through other goals posted in their communities and

vote for one goal in each community. A “customer” is the elected representative of a given

community. They are able to add comments and subgoals to goals in the community of which

they are the representative. They can also mark goals as “complete.” An “admin” does the tasks

of managing PowerShare overall. An admin can add communities and approve or deny goals

submitted by users. In addition, an admin has access to user statistics, which tells the admin how

many users there are, the number of goals, the number of subgoals, the number of communities,

and the number of items in the goal inbox.

We decided to write the app in React Native, a popular javascript framework for mobile

development. We chose this framework primarily because it fit the requirement of a mobile

application, and because it allows writing a single codebase for use on both Android and iOS

operating systems. This was ideal because, although our client originally wanted an iOS

application, we only had two team members with the ability to develop on iOS (Apple requires

that you develop iOS apps on MacOS). This way, we developed the Android application with

our team members on Windows, and the iOS application with our team members on MacOS.

However, as we encountered build issues on the iOS portion of the application, our finished

product is the Android version.

11

Additionally, our code is licensed under the MIT license. This license allows anyone to

obtain a copy of our code and to “use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies” of the code, with the only restriction being that the same license and

copyright notice be transferred to the new product (“The MIT License”, n.d.). Our client gave us

permission to license code in this way, most likely in the hope that this permissive license will

help carry his vision far and wide.

3.1 System Requirements

Gathering system requirements is essential for ensuring product quality and correctness.

It allows the programming team to know exactly what they are building, and that they are

building the right thing. It also allows the customer to explain exactly what they expect from the

product. Furthermore, each requirement is broken up into its own individual story, which allows

individual members of a team to work on small parts and pieces that then go on to form a

collective unified project. As the programming team does this they can keep track of their

progress and make sure that they are meeting their deadlines. System requirements were gathered

by interviewing the customer in-person.

Minimum Requirements

STORIES PTS.

As a USER, I should be able to submit a goal to a community that I am part of such

that any other member of the community can see it and vote on it after review.

8

As a USER, I should be able to create a verified account with my name, email, and

physical address so that I can access the app.

8

As a USER, I should be able to search goals in my community so that I can find

relevant goals to vote on.

5

As a USER, I should be able to view goals such that I can see a list of their authors,

supporters, sub goals, approval status, completion status, media associated with goal.

5

12

As a USER, I should be able to vote on one goal in each community that I am part of 3

As a USER, I should be able to receive notifications on goals that I have voted for. 5

As a USER, I should be able to view and edit my account settings, so that I can

manage things like login information, notifications, and other general settings.

8

As a USER, I should be able to navigate between a home page and a community

page, as well as a community page and a goal page, with one action.

3

As a USER, I should be able to view a dashboard of all communities I am a member

of, so that I can choose which community to view goals for.

2

As a USER, I should be able to view contact information for both Powershare and

my community representative so that I can get in touch if needed.

2

As a USER, I should be added to all relevant communities after creating an account

with my home address.

8

As a CUSTOMER, I should be able to do everything a USER can. 3

As a CUSTOMER of a specific community, I should be able to respond to a goal

with feedback

5

As a CUSTOMER of a specific community, I should be able to add sub-goals to a

goal

8

As a CUSTOMER, I should be able to search goals in communities of which I am

not a member, by keyword.

5

As a CUSTOMER, I should be able to upload media to any goal in my community. 13

As a CUSTOMER, I should receive notifications (Android / iOS push notifications)

for the following: a new user joins a community, a new goal is created, a goal is

edited, goal ranking changes, a completion date is approaching.

5

As a CUSTOMER, I should be able to designate a goal as complete. 3

As a USER, I should be automatically assigned to my relevant communities based

on address upon account creation so that I can vote on the issues relevant to my

communities.

8

As a USER, I should be able to login into my account. 8

Table 1. Minimum Requirements

13

Desired Requirements

STORIES PTS.

As an ADMIN, I should be able to approve membership for members into the

community (Should this be automated through checking voter registration records?)

13

As an ADMIN, I should be able to view user statistics. 13

As an ADMIN, I should be able to search through a list of communities by

geographic location.

5

As an ADMIN, I should be able to view a dashboard which includes the above

inbox and list of communities.

8

Table 2. Desired Requirements

Optional Requirements

STORIES PTS.

As a USER, I should be able to log out from inactivity after 15 minutes to increase

security.

5

As a USER, I should be able to follow goals that I have neither voted for nor created. 8

As a USER, I should have the option to be sent push notifications about followed

goals.

3

As a USER, I should have the option to be sent notifications by email and/or SMS. 5

As a CUSTOMER, I should have the option to tag/label goals by category/topic and

search for them by the label.

8

As a USER, I should be able to sign into the app with my fingerprint/faceID. 8

Table 3. Optional Requirements

14

3.2 Wireframes

Through the use of wireframes, we were able to produce a prototype frontend for the

customer. By agreeing on the design of the different screens of the application, as well as the

navigational flow for users of different types and different levels of authorization, we were able

to quickly implement a front-end for our client that simulated the desired behavior of the

application.

Below on the left are some of the wireframes that we had developed at the start of the

project, along with their corresponding final version on the right.

Fig. 1: Home Screen Wireframe

Fig. 2: Final Home Screen

15

Fig 3: Community Screen Wireframe

Fig 4: Final Community Screen

Fig 5: Goal Screen Wireframe

Fig 6: Final Goal Screen

16

Fig 7: Create Goal Screen Wireframe

Fig 8: Final Create Goal Screen

17

3.3 Sample Code

This sample is one of our Firebase functions, which automatically triggers when a certain spot in

the database is changed.

Fig 9: Goal Completion Listener

This is the “render” function for the Home screen. This is what the Home screen displays.

18

Fig 10: Home Screen render Function

This is the “renderCommunityView” function, which is called in the render function

Fig 11: Community Screen renderCommunityView Function

This is the “renderCommunityList” function, which is called in the above function to load each

list element.

19

Fig 12: Community Screen renderCommunityList Function

3.4 Sample Tests

Testing ensures product quality and consistency and allows for easier maintenance of the

codebase. Testing especially improves the speed at which bugs are discovered and reported.

With less time and effort spent maintaining the codebase, the overall maintenance costs decrease.

The client can also validate the progress on the project, by looking at the test cases relevant to

each system requirement.

This is the “login” function from goal_functions.spec.js. We call this function to have the

emulator perform all necessary actions to log in to the app.

20

Fig 13: Test Case Setup and Login Function

This test simply tries to log in with a valid user account. It checks to see that the home screen

appeared after entering credentials and tapping “log in”.

Fig 14: Login Function Test Case

This test checks that a user can access the “edit” function of a goal that they created. It logs in to

a user, then navigates to a goal that user created. Then it checks to see if the edit button exists.

21

Fig 15: Edit Goal Function Test Case

This test checks that a user can access the “delete” function of a goal they created. It logs in to a

user, then navigates to a goal that user created. Then it checks to see if the delete button exists.

22

Fig 16: Delete Goal Function Test Case

3.5 Code Coverage

 Our group is unable to obtain code coverage data due to the nature of our project. The

default test runner for React is Jest. Jest can track code coverage, but we are not able to run Jest

on its own on our project. This is due to the various React Native packages that we had to use.

When Jest runs our app, it cannot import these packages. Therefore, it essentially cannot run any

page of our app.

 For unit testing, we instead used a package called Detox (https://github.com/wix/detox).

Instead of running code directly, Detox runs an emulator and interacts with the front-end only.

https://github.com/wix/detox

23

This worked for our own testing. However, this package cannot track code coverage, since it can

only “see” the code as a black box.

3.6 Installation Instructions

The following instructions have been written assuming that the person following them only has

access to the project’s Github repository.

Note: the React Native project itself is not located in the repo root; it is located in

PowerShare/src/PowerShare. All React Native commands must be run from there.

3.6.1 Running the app on an emulator

Note: You can skip this section if you are just deploying the app and don’t have any reason to

test it on an emulator first.

Using the already-generated .apk file (recommended)

To test the app on an Android emulator, first follow this guide to install Android Studio and run

an emulator:

https://developer.android.com/studio/run/emulator

Then take the .apk file from the Github repository and drag it on top of the emulator’s screen. It

should install the app on the emulator. You can then launch the app on the emulator.

Using React Native

If you want to test run the app on an emulator on your computer, follow this guide:

https://facebook.github.io/react-native/docs/getting-started

This will guide you through the following steps (on a Windows pc):

1. Installing Node.js and a JDK

2. Installing Android Studio and all the required components

3. Setting the ANDROID_HOME environment variable

https://developer.android.com/studio/run/emulator
https://facebook.github.io/react-native/docs/getting-started

24

4. Creating and starting an Android emulator through Android Studio (skip the “Creating a New

Application” section)

5. Running “react-native run-android” in the “PowerShare/src/PowerShare” directory to run the

app*

*Note: you might need to run “npm install” or “npm install yarn && yarn” to install all of the

necessary packages that the application uses

3.6.2 Connecting a Firebase project to the app

Note: You can skip this section if you are using the Firebase database that is currently connected

to the app.

Creating the Firebase project

Go to the firebase console here: https://console.firebase.google.com/

Click “add project” and follow the steps to create a new Firebase project.

Initializing the database

In the firebase console, go to the “authentication” tab and enable “email” as an authentication

method. Next, go to “database”, scroll down to “realtime database”, click “create database”, and

finally “start in test mode” (so the app will be able to read and write from the database).

On the database screen, click on the three dots in the upper right and go to “import JSON”.

Select the “powershare-initial-database.json” file from the root folder in the project (the repo

root). The database should populate with many Virginia communities and one admin account.

The credentials for this account are as follows: the email is “powershare.dev@gmail.com” and

the password “react native error.”

Adding credentials from Firebase project to the app

https://invertase.io/oss/react-native-firebase/quick-start/existing-project

https://console.firebase.google.com/
mailto:powershare.dev@gmail.com
https://invertase.io/oss/react-native-firebase/quick-start/existing-project

25

Follow the steps in this link to connect the Firebase project to both the Android and iOS versions

of the app.

For Android, you will click the “add Android App” button in the Firebase console. It will ask for

the package name of the app: the package name is “com.powershare”. Click “next” or “register

app” to download the credential file (google-services.json) from the Firebase console, at which

point you can add it to the project (delete the previous google-services.json file). Note: you

shouldn’t need to make the other changes that Firebase instructs you to do, such as editing the

build.gradle file.

For iOS, this will also involve downloading the credential file (GoogleService-Info.plist), adding

it to the project, and initializing the Firebase service in the iOS files of the app.

3.6.3 Deploying Firebase functions for the project

Note: if you are not creating a new Firebase database, then you can skip this section

https://firebase.google.com/docs/functions/get-started

Navigate to the `Firebase/firebase_functions/functions/` directory after cloning the github repo.

Install firebase-cli tools using `npm install -g firebase-tools`. Login with firebase credentials

using `firebase login`. Select the project to deploy the functions to using `firebase use`. Deploy

the functions to the Firebase project using `firebase deploy`.

3.6.4 Uploading the app to the Google Play Store

Signing the app and packaging the apk

Note: if no changes have been made to the app, this whole subsection can be skipped: simply use

the .apk file in the Github repo located in the “release files” folder.

https://firebase.google.com/docs/functions/get-started

26

Follow the instructions at this link:

https://facebook.github.io/react-native/docs/signed-apk-android

This will walk you through the following steps:

● Creating a signing key and adding it to the app (note: you must have a Java installation in

order to do this)

● Configuring the gradle properties to use the signing key

● Packaging the app into an aab or apk file, which can be uploaded to the Play Store

Uploading the app to the Play Store

Follow the instructions at this link:

https://support.google.com/googleplay/android-developer/answer/113469?hl=en

You can use the following gmail account as the developer account:

Email: powershare.dev@gmail.com

Password: react native error

This will allow you to access the Google Play Console (https://play.google.com/apps/publish/),

where you can follow the rest of the instructions to create the app and upload your aab or apk

file.

Uploading the app to the Apple App Store

Note: Our team does not have access to an Apple Developer Account at the moment. We could

not follow these steps ourselves because of this. Here are the instructions once a developer

account is acquired:

https://facebook.github.io/react-native/docs/signed-apk-android
https://support.google.com/googleplay/android-developer/answer/113469?hl=en
mailto:powershare.dev@gmail.com
https://play.google.com/apps/publish/

27

https://clearbridgemobile.com/how-to-submit-an-app-to-the-app-store-updated/

The app must be submitted for review before it can be released on the app store.

https://developer.apple.com/app-store/review/

Be sure to have the firebase project running in production mode before submitting it.

Include member and customer dummy accounts for testing.

Once the app has passed the review phase, you can manually release the app through the Apple

app store connect page: https://appstoreconnect.apple.com/

After logging in, click My Apps, then select the app.

In the left column, select the platform version that is Pending Developer Release.

In the upper-right corner, click Release This Version/Make App Release.

https://clearbridgemobile.com/how-to-submit-an-app-to-the-app-store-updated/
https://developer.apple.com/app-store/review/
https://appstoreconnect.apple.com/

28

4. Results

 Our system provides a solution for most problems identified by our customer. The

original problem was that there was no previously efficient way for users to directly share goals

with elected officials within communities. However, with Powershare, users can now make goals

and vote on them for elected officials to see. In addition to this, people are separated into their

respective communities, so only people within a certain community can make and vote on goals

that matter to them. Something we were not able to solve was that our customer wanted to use

voter records to verify the users. However, we were not able to achieve this as the records for the

voters were not accessible for us to use at this time. Our client talked to various local government

representatives and could not get access to these records.

 The result of this new system is that users can now easily make and vote on goals for

elected officials to see within their community. Based on this feed of goals, elected officials can

now gain a general sentiment of issues that members of that particular community find

important. With this information given through the digestible format of goals, elected officials

can act on these decisions and focus on what members of the community find important rather

than the elected official guessing what members of the community would want.

 The main customer for this application is the elected official. The elected official would

use this application through viewing what the users have posted in terms of the goals and

subgoals. The elected official can view the goal, the number of votes, and who voted for the

goals. In addition, the customer can make follow up subgoals for the goal. After viewing these

goals, the elected official can work on the goal and update users of the app on progress of the

goal. The elected officials can post media such as pictures on progress being taken on the goal. If

the goal were to be completed, the elected official can then mark the goal as completed, which

29

would make the goal viewable in the completed tab, and then work on making progress in other

goals that users find important. Before, elected officials had to go through political consultants

and hold hearings to see what community members wanted. This could take hours of valuable

time away from the elected officials. However, PowerShare enables elected officials to see what

users in their community want to get done in only a few minutes.

 The other primary stakeholder that would use the system would be the voters in that

district. The voters would actually make the goals and vote on the goals. Like the customer,

voters can view other people’s goals and see who voted on the goals. PowerShare enables voters

to express themselves and communicate to elected officials what issues are important to them.

Before PowerShare, voters had to rely on getting their voices heard through other means such as

social media. However, an elected official is unlikely to see an individual’s request for a goal in

a flooded social media inbox. However, PowerShare allows a popular goal idea to be viewed by

an elected official within seconds.

30

5. Conclusions

We currently live in the information age, with constant streams of data, knowledge, and

communication available at our fingertips. Unfortunately this large amount of information can

overload the user, allowing little valuable knowledge to spread between communities. The

PowerShare app cuts through the whitenoise allowing direct communication between

constituents and their representatives. The goal being the creation of a sense of community and

connectedness.

In the creation of this app we have learned that every decision has its tradeoffs. To

increase accessibility we can allow anyone to join the app with no verification of their identity,

but this allows outside agents access to communities they may not be a part of in an attempt to

unfairly influence decisions that should be made by the people actually living in that community.

On the other hand if we focus on security, we can reach the point where the barrier of entry to

the app is too great, limiting the actual usefulness of the app itself. In striking a fair balance

between the two extremes the PowerShare app works to create an environment where

communities can share and follow issues that actually affect them in a simple and intuitive way.

Creating an app that brings together communities and their representatives is a process

that will continue as the app is used. The design decisions made along the way will of course

need to be tweaked as new uses for the app are discovered by its users. Going from a list of

requirements to diagrams to a fully functional app takes a great deal of work and planning to

create the final product. This will all be worth it as the application attempts to solve a key

communication issue in our modern world.

31

6. Future Work

Powershare can be further developed by improving capacity and performance for scaling

the service and by expanding its accessibility. The primary way to expand the platform's capacity

would be to upgrade the service plan for Google's Firebase platform, which would increase the

concurrent connections limit. As the application usage grows, retrieving lists of items from the

database may increase screen load times. Database request times can be monitored to see which

areas of the app are performing poorly as usage scales. To keep screen loading times short, the

functions that retrieve lists of items can later be changed to asynchronously request items from

the database as necessary.

User accessibility can be improved by integrating push notifications. Upgrading the

Firebase service plan would increase the messaging limits for Firebase Cloud Messaging, which

would allow for integrating push notifications into Powershare. Push notifications would also

improve user engagement. Another way to increase accessibility in the application would be to

develop a Powershare web application hosted on a web server. A Powershare service available

for web browsers would increase accessibility for users, customers, and administrators. A web

application can be set up to communicate with the existing database on Firebase.

User verification is essential for protecting users against impersonation, and may be

further augmented by verifying user accounts with each states’ list of registered voters. However,

these lists of registered voters may not be immediately accessible. Many state government

websites provide the information in different formats, and some require paid access and/or other

organization status requirements to access the data. A future implementation of this feature

would need to obtain access to each state’s platform and then request and handle the different

data formats. We were unable to obtain access to the Virginia voter registration list during the

32

project because of these barriers. In the future, Powershare may be able to reduce these barriers

by filing as a non-profit organization.

7. References

The MIT License. (n.d.). Retrieved from https://opensource.org/licenses/MIT

	jn3qf_coverpage_signed

