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Mitigating Harmful Machine Learning Dependencies 

Machine learning systems are increasingly becoming a part of everyday human life. Each 

year, we become more dependent on machine learning models to advise us. For example, many 

individuals are highly dependent on navigation apps to get from point A to point B. As of 2018, 

nearly 77% of smartphone users regularly depend on navigation apps to travel (Panko, 2018). 

This drastic increase in dependence may be cause for concern (Anderson & Rainie, 2018). This 

is because machine learning models are designed to react to small changes in human behavior. 

However, most models are only trained on past data. Models begin to fall apart when global 

human behavior takes a sudden turn. 

The COVID-19 pandemic has caused a sudden change in human behavior, especially 

traveling tendencies. Evidence has shown that many software applications have been affected by 

this spontaneous change in human behavior. Specifically, many artificial intelligence and 

machine learning applications have been unable to handle this sudden change in human behavior. 

For example, Amazon’s previous top searches were replaced with COVID-19 related products 

such as face masks, hand soap, and cleaning wipes, causing previous models to perform in 

unexpected ways (Heaven, 2020). While Amazon shopping suggestions may not seem like a dire 

cause for concern, there are machine learning models that are life critical, such as traffic models 

for self-driving cars. For example, the Google Maps team had to completely overhaul their traffic 

models, as they were unable to rely on old data that did not represent the new pandemic behavior 

(Quach, 2020).  

When it comes to machine learning models amidst the pandemic, humanity was fortunate 

to have the ability to swiftly adjust parameters and models to return to accurate prediction 



 

 

making. However, as machine learning model complexity arises and machine learning systems 

begin to enter more life critical applications, this fault in machine learning models could be far 

less forgiving.   

Understanding Machine Learning Dependence 

  Dependence on a technology is not always a cause for concern. However, when a human 

becomes heavily dependent on a technology and loses their ability to act as a backup mechanism 

for this technology, there becomes cause for concern. This is why the concept of scripting in a 

normative setting will be crucial when engineers consider the ethical implications of their design 

(Verbeek, 2006). The concept of a “script”, devised by Madeleine Akrich and Bruno Latour, 

describes the ways in which technologies “prescribe” actions between two actors. For example, a 

speed bump prescribes that the driver slows down. Technologies have numerous scripts and all 

must be considered (Verbeek, 2006). Thus, this paper will discuss the ways in which machine 

learning systems prescribe harmful dependencies upon human actors and how to script these 

technologies to prevent catastrophic failure. 

Existing Dependencies 

As technologies develop and aid humans in their day-to-day tasks, dependence occurs on 

these technologies. The usage of GPS devices and applications in car navigation is a prime 

example of a dependence. Up until the early 2000s, taxi drivers would have immense knowledge 

of city layouts, so much so that the hippocampus portion of their brain increased in volume 

proportional to their taxi driving experience (Maguire, et al., 2000). Now, Uber and Lyft drivers 

must avoid deviating from their assigned route, otherwise the app sends out a notification of the 

deviance to a safety representative. Thus, it is rare to see an Uber or Lyft driver not heavily 

depending on their smartphone to get to the passenger’s destination.  



 

 

  This dependence is not the direct cause for concern, however. The loss of human 

autonomy in driving ability as a result of this dependence is where issues arise. For example, a 

heavily dependent Uber driver may not have the ability to successfully deliver their passenger to 

their destination if their navigation were to fail. Without being governed by the directions 

provided by this system, the driver has lost their ability to fulfill their job independently. 

 One study recognized a potential overdependence in the medical field. They realized that 

failures in computerized provider order entry (CPOE) and other systems were being overly 

depended on. They studied five different hospitals and held a conference of medical experts and 

acknowledged three major concerns: 1) Lack of backups lead to major inefficiencies in the case 

of CPOE failure, 2) the users had false expectations of the accuracy of their entered data, and 3) 

some clinicians were simply unable to function without the assistance of CPOE (Campbell, 

Sittig, Guappone, Dykstra, & Ash, 2007). This study provided valuable insight into recognizing 

overdependence, as well as some methods of mitigating it. Despite not formally meeting the 

definition of a machine learning system, this study on CPOE overdependence will help to 

understand the shifting actor-networks discussed in later sections. 

Dependence on machine learning networks is another cause for concern, especially in the 

case of deep learning systems. Expressed quite simply, “In order for deep learning and similar AI 

algorithms to serve the purposes that we want them to serve by design, they necessarily tend to 

become more epistemically opaque to us, thus stymieing interpretability, communicability, and 

transparence” (Long, 2020). Deep learning systems can reach the point of complexity where it is 

infeasible for humans to attempt to understand them. As these deep learning systems internalize 

extreme amounts of data, they become so sophisticated that the creators of these black-boxed 

systems rely on empirical testing rather than underlying theory. When the creator of a black-



 

 

boxed system loses understanding of the theory behind their creation, it becomes nearly 

impossible to troubleshoot in the case of failure (Bathaee, 2018). 

Modes of Failure 

There are many predictable and unpredictable ways that complex machine learning 

systems can fail. In the case of this research, a primary and a secondary cause of machine 

learning failure will be considered: sudden shifts in human behavior and deliberate attacks of 

machine learning systems (Thomas, Norton, Jones, Hopper, & Ward, 2011). The similarity 

between these two cases is simple: one or more of the inputs to the model is no longer reliable 

(Steinhardt & Toner, 2020).  

Sudden Shifts in Human Behavior 

As previously mentioned, one of the most significant and modern instances of sudden 

shifts in human behavior occurred in 2019 with the COVID-19 pandemic. These machine 

learning systems that drive navigation systems, shopping recommendations, and other day-to-day 

applications are based on years of training data. These systems only perform when the behaviors 

of humans are within their bounds of the training data. However, when traffic drops by upwards 

of 47.5 percent in some areas amidst a pandemic, for example, machine learning systems not 

only fail, but can act unpredictably and dangerously (Elejalde-Ruiz, 2020).  

Fortunately, the Google Maps team understood the theory and intricacies behind their 

machine learning models. Within a matter of days, they were able to diagnose the issue and 

return their navigation systems back to an acceptable state (Quach, 2020). However, as machine 

learning models become more and more complex, the transparency of the innerworkings of 

models become less and less clear. Neural networks may one day be as complex as the human 

brain. Attempting to understand and troubleshoot the innerworkings of such a complexity to 



 

 

solve a sudden failure could be futile.  

 Deliberate Attacks 

One of the first notable attacks on a machine learning system occurred in 2013 when 

Syrian hackers were able to compromise and post a tweet on the Associated Press Twitter that 

claimed two explosions occurred in the white house, injuring president Obama (Fisher, 2013). 

The Tweet was crafted in such a way that Twitter’s algorithm rated it as a credible tweet. Nearly 

a minute later, the Dow Jones dropped nearly 150 points. This also exemplifies the compounding 

effect one system can have on another. 

Another example of deliberate attacks causing catastrophic failure occurred in a lab 

setting. A computer vision research team was testing the ability of a self-driving machine 

learning system to read stop signs. In one case, they strategically placed small black stickers on 

the stop sign. To human eyes, they were hardly noticeable. However, in the case of the self-

driving system, it interpreted it as a 45-mile-per-hour speed-limit sign (Hancock & Nourbakhsh, 

2018). As Hancock concludes, “[machine learning systems] will succeed in ways that are not 

human, and they will also fail in ways that have nothing to do with how we fail” (Hancock & 

Nourbakhsh, 2018). If we do not even know the general realm of possible failures for these 

systems, how can we place our trust and dependence on them?  

 

A Survey of Crowdsensing Human-Machine Networks (HMN) 

In order to conduct this analysis, an actor-network theory (ANT) approach will be taken 

to analyze the human-machine networks (HMNs) involved in this pandemic (Tsvetkova, et al., 

2017). The concepts of scripts will also be used in conjunction with ANT to assess how changes 

in HMNs change the actions required of humans and machines. Tsvetkova et al. (2017) 



 

 

introduces and explores the various types of human-machine networks and will later be used for 

classification of different network types. The two overarching actors in consideration are humans 

and machines. The human users will be the primary stakeholders, specifically the humans 

receiving critical information from machine learning systems. For simplicity of analysis, humans 

can be an individual person or groups of individuals. In most cases, machines will refer to a 

single machine learning system, such as Google Maps.  

Human to machine interaction will be classified as either passive contribution or active 

contribution. For example, Google Maps users providing location data to Google would be a 

passive contribution. Passive contributions can be seen as a “background process” that humans 

are not necessarily aware of. Machine to human contributions will mainly be defined as active 

contributions, such as Google Maps giving a user specific direction.  

 

   

 

 

 

Figure 1. Two variants of crowdsensing human-machine network 

Thus, the specific analysis will be centered around “crowdsensing” human-machine 

networks (Tsvetkova, et al., 2017). This crowdsensing form of HMN is shown in Figure 1. 

Human contribution in a crowdsensing network can be either passive or active, as shown by the 
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two networks in Figure 1. The left network shows active contribution from humans, while the 

right network shows passive contribution from humans. Machine to human contributions tend to 

be active contributions in crowdsensing networks.  

In order to ground analysis in a real-world and life critical application, traffic patterns and 

self-driving artificial intelligence will be used as the primary crowdsensing network in 

consideration (Kellner, 2019). However, other applications will be mentioned to show the broad 

scope of this issue. The crowdsensing network will act as the core for a more general analysis. 

However, there are more actors to discuss for these self-driving networks (e.g. machine learning 

model designers, pedestrians, and policymakers). These actors specific to self-driving networks 

will be considered in the coming sections.   

 

Existing Self-Driving Networks 

Self-driving vehicles are becoming a reality, and fully autonomous vehicles are almost 

certainly becoming a reality in the coming decades. The process towards full automation is not 

entirely new. Prior to 2000, antilock brakes and cruise control were the beginning of driver-aid. 

From 2000 to 2010, new features were added such as blind spot detection, lane departure 

warning, and forward collision warnings. The next decade saw even more advances such as 

automatic emergency braking, lane-keeping assist, and even some basic forms of highway 

autopilot (Automated Vehicles for Safety, 2020). With all of these features came increased 

human dependence. Some individuals have begun to rely on their rearview systems for parking. 

With these increases in dependence comes decreases in human autonomy. Individuals lose 

practice with using mirrors as a backup because of their heavy dependence on rearview cameras. 

This becomes a concern when life-critical automation systems experience failure. 



 

 

In terms of the pre-2000 human machine networks, some of the most notable actors were 

drivers, cars, pedestrians, and pedestrians. The drivers were the main force of this network, with 

almost total control over their vehicle. The vehicle designers had a minimal say in how the 

vehicle performed under certain situations, such as activated the anti-lock braking system. If the 

driver were to hit a pedestrian, it is almost entirely the fault of the driver in any circumstance. 

Drivers must respect other drivers, but ultimately one driver will only effect a few nearby 

surrounding neighbors on the highway or road. Drivers, passengers, and pedestrians all have a 

strong dependency on the driver to be vigilant and safe with their driving skills, as their lives 

depend on it. While the driver does depend on a vehicle manufacturer to design a structurally 

sound vehicle, it is also the responsibility of the driver to maintain and inspect their vehicle 

regularly. Therefore, there is minimal dependence on the vehicle designer in this network. The 

dependence is placed heavily placed on the driver. 

As of 2020, drivers are still the main dependency in this actor-network. More and more 

self-driving cars are on the road, but most of the populace has yet to own, or even drive in such a 

vehicle (Hancock & Nourbakhsh, 2018). All nodes in this actor-network still lead back to the 

driver as the main bearer of this dependence. Simple safety features like emergency auto-braking 

can fail in cars now, begging the question, who was responsible for the failure? This modern-day 

situation is beginning to show the shift in nodal connections in this actor network: the change 

from driver dependence to manufacturer dependence.  

A new actor has appeared in the network in the last few decades: GPS and navigation 

apps. This is where the concept of a crowdsensing HMN becomes a major factor in the analysis. 

Drivers are increasingly becoming dependent on navigation systems, such as Google Maps or 

Apple Maps (Thomas, Norton, Jones, Hopper, & Ward, 2011). This creates a strong nodal 



 

 

connection between the driver and the technology company. The tech company relies on massive 

amounts of driving data to feed their models and suggest changes in routes. Failure of this new 

node is not yet life critical, but it could leave drivers down wrong roads and into potentially 

dangerous traffic. 

Failure of most of these systems, whether deliberate or not, are likely to be backed up by 

the driver. A failure in Google Maps simply means the driver either figures out the path to their 

destination or simply pulls over. The worst-case failure is not life critical. For the most part, the 

life-critical failures all remain within the node of the driver. A catastrophic failure from the 

driver to another node is likely to be salvageable. This is likely to drastically change in the next 

decade with drastic increases in autonomous driving systems.    

 

 

Predicted Futures of Self-Driving Networks 

By 2025, the National Highway Traffic Safety Administration (NHTSA) fully expects 

“autopilot” capabilities to be rolled out to most Americans (Automated Vehicles for Safety, 

2020). The rampant competition among Tesla, Google, MIT, BMW, and other major car 

companies is a testament to how much these companies, as well as the world, desire autonomous 

driving technology. The fact that 94% of crashes are due to human error alone is almost enough 

to justify fully autonomous vehicles  (Automated Vehicles for Safety, 2020). However, this 

“want-it-now” mentality can lead designers to accelerate quickly and create potentially 

dangerous scripts associated with this technology.  

In the near future, humanity is likely to see a strong symbiosis between driver and 

vehicle. That weak dependency will begin to shift such that vehicle will back up driver decisions, 



 

 

while driver will back up vehicle decisions. This period of symbiosis between vehicle and driver 

can be a period of major concern. Vigilance must now be shared. Prior to the 21st century, nearly 

100% vigilance was expected of the driver. Now, however, 100% vigilance is expected to be 

shared between vehicle and driver, thus strengthening this nodal connection. In many cases, 

vigilance must be shared between driver and vehicle for purposes of redundancy. 

 Additionally, as humans lose their autonomy to vehicles, they lose their ability to act as 

reliable backup systems in the case of failure. Now, humans constantly practice driving. 

However, as humans slowly take their hands off the wheel in the coming years, driving practice 

decreases and humans become an unreliable backup mechanism. This is why the in between 

period where dependence is shared between vehicle and driver is the period of most concern, 

especially towards the period of heavy vehicle dependence.  

  



 

 

Synthesizing Commonalities Among Overly Dependent Networks  

Commonalities Among Dependent HMNs 

The aforementioned CPOE dependence shows the perfect example of a case where the 

nodal connection between human and machine was uneven and unstable. The computerized 

systems had a relatively high probability of failing with often no backup or highly inefficient 

backup. It is essential to have a functioning and relatively efficient backup to a computerized 

system in place. No machine learning system, even self-driving cars, can expect to be 100 

percent free of risk.  

The second aspect the researchers discovered on the CPOE system was an overestimation 

of the system’s ability to make decisions about patients. Assumptions were made about the 

technology that simply were not true. Computerized systems have not reached the point of being 

able to judge and diagnose patients. Understandable metrics must be created such that 

practitioners understand exactly what the capabilities of the system are. Not only that, but the 

creators of the system must be experts in the system and have the ability to convey its abilities to 

the end-user. This draws many parallels to the black-box of deep learning algorithms, where 

transparency is not always there.  

Another important situation to discuss is the failure of multiple navigation systems amidst 

the pandemic. When sudden behavioral changes occurred and traffic volume dropped by 

upwards of 50%, navigation systems temporarily failed (Quach, 2020). This was a full system 

failure and a sufficient backup was not present, as seen by the multiple day downtime. However, 

due to the transparency of the machine learning algorithm, the system was understandable and 

fixable. However, a black-boxed system without backup could have led to far worse 

consequences.  



 

 

 

 

The Harmful Dependencies 

As machine learning systems begin to provide more and more benefits to individuals, 

humans will continue to depend on them for day-to-day activities. If a car can offer an individual 

the ability to take their hands of the wheel and relax while experiencing increased safety, 

consumers will jump to it. Almost any technology goes through a shift where humans offer 

autonomy to a machine. The question becomes, what novel aspects of machine learning systems 

prescribe the most dangerous forms of human-machine dependence? 

 The first and commonly recurring dependence is the black-box scenario. When a 

machine learning system becomes unknown to the consumer, they create false expectations on its 

ability. Just as clinicians overestimated the ability of their IT systems, individuals may 

overestimate the ability of their vehicle in certain driving situations. The connection between 

human and machine learning system must be as transparent as possible. The individual should 

have a clear metric for judging the ability of a machine learning system. However, machine 

learning brings a novel issue to the table: the developers of a system may not fully understand 

what they have designed, especially in the case of deep learning systems, where complexity is 

immense. If designers of a black-boxed machine learning system are unable to understand the 

limitations of their predictions, there is no way for any of the other actors in the human-machine 

network to understand its capabilities. Thus, the first precaution becomes clear: systems which 

entirely rely on a black-boxed design should be avoided in high-stakes single decision systems 

(Steinhardt & Toner, 2020).  



 

 

The second dangerous dependency arises when a backup system is not immediately 

available. In the case of Google Map’s route prediction system, there was no immediate backup 

available. Users dealt with misdirection for days on end. The situation of backup becomes 

increasingly complex as machines take the brunt of responsibility and dependence in this 

network. As dependence shifts towards self-driving vehicles, humans become out of practice in 

driving. If drivers are the backup mechanism in this case, they are likely to be unpracticed and 

unreliable, especially in the later evolution of self-driving vehicles.   

The third and final major precaution involves detection of failure. Designers of these 

systems must “script” their technologies such that failures are detectible. The programmers and 

engineers who develop these machine learning systems must anticipate and actively inscribe 

detection mechanisms (Verbeek, 2006). Clear operating thresholds should be established for 

every output to ensure the system is operating under proper conditions. The longer the system 

continues to run under failure, the more damage and potential loss of life incurred.   

Conclusion: The Fundamental Set of Precautions 

 Dependence on machine-learning systems is necessary and inevitable given the 

momentum of current systems. As we shift our dependence away from us and towards these 

machine learning systems, three fundamental precautions should be kept in mind: 1) The ability 

and innerworkings of a machine learning system must be entirely transparent to both the designer 

and the consumer, 2) an immediate backup system must be in place that is robust enough to 

guarantee full system function or guarantee a successful emergency “landing”, and 3) detection 

of failure must be caught before machine learning outputs go awry as to assure a smooth 

transition from failure to backup situation. With these three precautions in mind, a smoother and 



 

 

safer transition to machine learning dependence is possible, thus a more comfortable and quicker 

movement towards better lives.  
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