
ThisButterBeWorthIt: IoT Sensor System
for Wildfire Detection

Nathan Do, Shreejan Gupta, Tahmid Kazi, Alec Ross, and Bill Yang

10 December 2020

Capstone Design ECE 4440 / ECE4991

Signatures

Nathan Do -

Shreejan Gupta

Tahmid Kazi -

Alec Ross -

Bill Yang -

Page 1 of 36

Statement of Work:

Nathan

Nathan took on the majority of the work that involved UI and AWS. As a result, he built
the AWS infrastructure necessary to receive, store, and send data in a database and alert users
when there was a potential fire. He also individually coded the UI with the Angular framework.
Achieving this required learning about various AWS services; Nathan utilized AWS lambda to
programmatically process the data every time a POST request is made through AWS API
Gateway. This POST request is also connected to the AWS SNS system, which would alert users
if sensors read incoming data and interpret potential danger for a fire. Also, the POST request
that causes all of this also triggers the receiving and saving of data in the non-relational
DynamoDB service. The webpage uses a Cognito identity pool to query the database for the
information it needs. As the individual behind the AWS infrastructure, he also provided the
microcontrollers’ means to update the database. He played a role in shaping the process for the
firmware to make an update to the database.

Shreejan

As program manager, Shreejan was in charge of constructing and maintaining the Gantt
charts and the timeline throughout the semester. He was in charge of getting weekly updates and
updating the current tasks’ status promptly. Besides holding the secondary role of a software
architect, Shreejan also contributed to developing the visual dashboard in many ways. To begin,
he aided in the blueprint for the visual dashboard for the proposal. He researched the tools
(AWS, JavaScript, DynamoDB, etc.) to finalize the dashboard selection. He also implemented an
automated method to pipeline the data from the ESP8266 to the DynamoDB using AWS. Finally,
he also contributed to integrating the Wi-Fi modules to the visual dashboard alongside Nathan
and Tahmid. Shreejan’s contribution helped with the implementation and development of the
graphical dashboard. It established the necessary pipeline to effectively transfer the data from the
sensors to the database, an essential requirement for the sensor system’s functionality.

Tahmid

As the primary lead on firmware for the microcontrollers, especially the wireless
communication component, Tahmid was responsible for implementing the firmware that enabled
Wi-Fi communication. He was also responsible for implementing the necessary firmware that
allowed SSL encryption to securely connect and pipeline sensor data in JSON format to the AWS
API that Nathan created via HTTPS POST requests. To accomplish this required learning from
datasheets, SDKs, and software libraries, including the ESP8266 core for the Arduino IDE, and
devising a way for SSL encryption to be implemented on the microcontroller to enable the POST
request to be authenticated, encrypted, and sent via HTTPS. Furthermore, Tahmid also
contributed to the development, testing, and debugging of the I2C firmware developed to extract
data from the sensors, perform the necessary calculations, and gather sensor data on the
microcontroller before being packetized and sent to the cloud API.

Page 2 of 36

Alec

Alec was primarily in charge of hardware design, component selection, and circuitry
development. His responsibilities included constructing the schematics for the power and sensor
subsystems using KiCad along with the composition of the PCB layout. He debugged and
resolved many technical challenges throughout the development process, notably with the LDO
issue. Acting as firmware support, Alec also contributed to the development of the sensor code to
fetch and store the data from the sensors through the I2C protocol working closely with Bill
throughout the project.

Bill

Serving as the embedded system support, Bill was responsible for integrating the
embedded system, guaranteeing both the hardware and firmware. Towards the beginning, Bill
was mainly involved in the PCB design, including schematics and layout with Alec using KiCad,
double-checking the logic and the math. He was also responsible for budget supervision, parts
ordering, and communication with WWW Electronics for proper PCB assembly. Throughout the
hardware fabrication, Bill worked closely with Alec, especially during testing, notably solving
both the “heatsink” and the “ohmmeter” issue of the LDO. Towards the end, Bill also
pair-programmed and peer-reviewed the sensor and the Wi-Fi communication firmware code.

Page 3 of 36

Table of Contents
Capstone Design ECE 4440 / ECE4991 1

Signatures 1

Statement of Work: 2

Table of Contents 4

Table of Figures 5

Abstract 6

Background 6

Constraints 7

Design Constraints 7

Economic and Cost Constraints 8

External Standards 9

Tools Employed 9

Ethical, Social, and Economic Concerns 11

Environmental Impact 11

Sustainability 11

Health and Safety 11

Manufacturability 11

Ethical Issues 11

Intellectual Property Issues 12

Detailed Technical Description of Project 13

Project Timeline 17

Test Plan 17

Final Results 20

Costs 20

Future Work 21

References 23

Appendix 26

Page 4 of 36

Table of Figures
Figure #1: Battery Power System Schematic 14

Figure #2: The Battery Level Indicator Schematic 14

Figure #3: Sensor Subsystem Schematic 15

Figure #4: Sensor Configuration Schematics 15

Figure #5: Lambda Visualization and Code 16

Figure #6: Visual Dashboard of Sensor Data 16

Figure #7: Initial Project Timeline 17

Figure #8: Final Project Timeline 17

Figure #9: PCB Design 26

Figure #10: 200 HTTP Response in UART Terminal 26

Figure #11: Project Design Overview 27

Figure #12: Power Subsystem Test Plan 28

Figure #13: Sensor Subsystem Test Plan 29

Figure #14: Firmware Test Plan 30

Figure #15: Visual Dashboard Test Plan 31

Figure #16: Total Budget Breakdown 32

Figure #17: DigiKey Bill of Materials 32

Figure #18: Mouser Bill of Materials 32

Figure #19: Proposal Expectations (Rubric) 33

Figure #20: Lambda Function and Dashboard Code 34

Figure #21: Firmware Code for Wi-Fi/HTTPS Communication & I2C Sensor Integration 36

Page 5 of 36

Abstract
The recent phenomenon known as the Internet of Things (IoT) shows us a glimpse into a

future where people rely on smart connected devices to solve various problems. However, people
have used IoT devices primarily in dense, urban areas, and homes because they rely on existing
electronic network technologies such as Ethernet, Wi-Fi, and Bluetooth. These technologies
depend on devices’ proximities to each other to transmit data reliably. However, with the
emergence and ubiquity of novel wireless technologies such as Zigbee and LoRa (with the
proper antennas) and ultra-low-power hardware, it is now possible to use IoT devices remotely in
rural areas to gather data from a broader geographical surface area. Doing so enables more
excellent coverage and data acquisition from locations that were previously difficult to monitor.
The emergence of these new technologies enables engineers to solve an even greater host of
problems based on wireless technologies’ increased capabilities and reliability. The sensor
system that we aim to design is a distributed IoT network that can detect and monitor hazardous
conditions, such as wildfires, remotely to help humans respond to these threats and prevent large
scale fires and other infrastructure damages.

Background

The 2019-2020 bushfire season in Australia destroyed an estimated 46 million acres and
close to 6000 buildings in a few months. Similarly, countless wildfires ravaged California areas,
causing millions in damages while displacing many families and calling for massive evacuations.
A fast and reliable fire detection network can save countless lives and prevent millions of dollars
in damages. There are currently many implementations of satellite systems to detect forest fires;
however, all satellite-based observation has limitations, often leading to failure in the detection
speed, the quality, or the running cost to produce effective control for forest areas [1]. It is also
worth noting satellites orbiting thousands of miles above the Earth have deadends; they cannot
provide “omniscient” coverage, hindering their ability to detect forest fires in their early stages.
Another way that has come up is to utilize automatic smoke detection, but all current
implementations will cost too much money to build and maintain [1].

The project will explore a vast list of emerging technologies to construct an Internet of
Things wireless network that utilizes sensors to collect and transmit data existing web
technologies. These web technologies, which consist of databases and data visualization
dashboards, create a robust and smart monitoring system for the early detection of wildfires.
Aeris and LADSensors have implemented a similar implementation of our solution in the past,
where metrics such as temperature, ambient CO2 levels, humidity, wind direction, and speed
were measured to detect wildfires in early stages and predict their potential spread [2]. The
sensors used in LADSensors send the data to a LoRa gateway connectivity, which are then
processed with AI to provide a detailed and comprehensive view of conditions. LABSensors uses
LoRa similar to our design for data collection and remote long-distance connectivity. This
project’s design varies from prior systems such that the operational and manufacturing costs will
be substantially minimized while keeping performance as the top priority. One method of
achieving this would be by integrating a recharging subsystem for the battery power supply.

Page 6 of 36

The project calls for prior knowledge from embedded systems courses (ECE 3430, ECE
3501, ECE 3502), Digital Logic Design (CS/ECE 2330), Fundamentals of Electrical Engineering
I, II, and III (FUN I-ECE 2630, FUN II-ECE 2660, FUN III-ECE 3750), and Advanced Software
Development (CS 3240). Embedded C programming is required to connect all the sensors and
the wireless microcontroller ESP8266 [3], which was introduced to the team in the embedded
courses. To design the motherboard that integrates all the components needed to build the
sensing nodes, the team used prior knowledge and skills, such as circuit design, testing, and
fabrication skills, from the countless labs and projects from DLD and the FUN series. This
design involves building an electrical interface between the ESP8266 microcontroller, the air
quality sensor, the temperature and humidity sensor, and the wireless module, all of which will
utilize SPI, I2C, and GPIO pins in the microcontroller. To build the data acquisition and
visualization platform, prior knowledge in web application development skills were used. The
team learned from a range of classes, including Advanced Software Development (CS3240),
Program and Data Representation (CS2150), Cloud Computing (CS 4740), and the open-source
software tools they worked with during their collective internships this summer. Overall, each
member used their collective knowledge from numerous computer science courses over the last
three years with specifics from the three classes listed above to complete the UI interface. These
tasks include using the open-source database software (DynamoDB [4]) and understanding how
to use modern Javascript libraries such as Angular [5] and Chart.js [6].

Constraints

Design Constraints
Most of the product components, whether batteries, casing, electrical components, PCBs,

or wires, etc., required for the device's construction, are relatively available and inexpensive. The
design cost will not be a considerable burden, ensuring that the device can be replicated easily
for scalable production. The power supply and sensor subsystem are relatively easy to assemble,
and materials are common. The availability of the components will not be an issue; however, the
use of plastic and batteries at this stage will present the most concern for this design’s
environmental impact. To minimize these risks, damaged or nonfunctional components will be
donated to companies to recycle and dispose of [7] correctly.

To elaborate, the components necessary for the development of the power system, sensor
system, and the Wi-Fi module are readily available through DigiKey and Mouser, even
considering supplies for mass production as indicated in Figures x and y in the Appendix. For the
PCB boards' assembly, the vendor of choice was WWW Electronics Inc, based in Charlottesville,
VA (3W). 3W imposed the following manufacturing restrictions: silkscreen standard requires
that all writing is in the same orientation, and the font must be at least 0.06" or 1.5mm talk, with
a preferred size of 0.08" or 2.0mm. The PCB board itself must be at most 30 square inches in
size and with a maximum complexity of 2 layers. The PCB also needs to pass the FreeDFM
inspection, where the entire layout must be within 100 mils of the board outline, and the units
must be in metric upon submission.

Page 7 of 36

In regards to the tools and resources for the development of the visual dashboard,
concerns in the availability of the services required was not a significant concern as Amazon
Web Services (AWS) provided the services (API Gateway [8], Lambda [9], DynamoDB [4], SNS
[10]) with excellent reliability and low costs.

Economic and Cost Constraints
The ESP8266 [3], which is the microcontroller that was utilized to enable collection and

wireless transmission of sensor data, was designed to be a mass-market, low-cost option for IoT
applications with a price tag of as low as $3/unit when purchased in bulk (the larger the quantity,
the lower the price) from international suppliers. If this device is implemented as a mass-market
commercial product, its per-unit cost would steadily decrease as the manufacturing capacity
increases per the economies of scale for constant cost products. ESP8266 would be the more
viable option when targeting a larger quantity of sales over the MSP432 [11] (which was the
prior microcontroller of choice) with a per-unit cost of $20-50 (the price includes the price of a
separate network co-processor CC3120 [12]. In contrast, the ESP8266 integrates the
microcontroller CPU and the network processor into one package).

Furthermore, free and open-source software avoids the reliance on potentially expensive
multi-year software licensing contracts (the business model for a company like Texas
Instruments). It ensures that the code will never become deprecated from changes in the
manufacturer’s software development kit.

Accounting Costs

This project’s initial budget is $500 to ensure its timely completion and professional
production. Regarding the breakdown of all the individual components and parts, their running
total accounts are listed below:

1. PCB Board(s) Production ($36 x2) ~ $72 (Two prototypes were made in total)
2. MSP432 ($23.99 x3) ~ $71.97 (Initial choice of microcontroller)
3. Wi-Fi Module TI CC3120 Booster Pack ($35.99 x3) ~ $107.97
4. Hardware Components ~ $69.97 (Two orders in total)

a. Batteries, Connectors, Electrical components, Sensors, and USB Charger
b. Casing ~ $10 (Out of pocket)

5. PCB Assembly (By “3W Electronics”) ~ $21.60 (Two boards in total)
6. Software ~ $50 (Out of pocket)

a. Database, cloud storage, external applications, etc.
7. Remaining Fund ~ $106.79
8. ESP8266 ($10 x3) ~ $30 (Final choice for Wi-Fi microcontroller)

a. Paid out of pocket; not included for the final accounting cost

As seen above, the accounting cost of designing and implementing the systems for this
project fell within the specified budget constraints of $500. Major expenses include the PCB
fabrication and components (namely the sensors), the wireless communication modules, and the
TI MSP432 launchpads. After making the switch to the ESP8266 as the Wi-Fi microcontroller of
choice, team member Tahmid had three microcontrollers in possession, so no further expenses

Page 8 of 36

were incurred from the allocated budget since these were paid for out of pocket. Due to the
project timeline and other circumstance constraints, only two prototypes were produced at the
end; thus, a sizable “emergency fund” is left for future endeavors.

External Standards
When defining the project’s requirements, it was determined that to build a system that is

both low power, able to connect to the internet, and can do so wirelessly, Wi-Fi would be the
ideal protocol of choice (outweighing ZigBee and LoRa at the end). The choice for the
embedded system (eventually the ESP8266 microcontroller [3]) was made on the premise that it
utilizes 2.4Ghz Wi-Fi to communicate with the internet, a feature core to our product since the
sensor data was collected and pipelined to AWS cloud services through this communication
channel. Wi-Fi, which was standardized as IEEE 802.11 b/g/n, can perform WLAN (wireless
local area network) services [13]. Through the use of SDKs [14][15] available for the embedded
system, a custom firmware was developed to use the HTTP and TCP/IP network stack to
packetize the sensor data collected and subsequently connect to AWS cloud computing services
to store collected data onto the cloud. The IEEE 802.11 standard [13] enabled the
implementation of the functionality mentioned above while also keeping the devices wireless and
battery-powered (reasonably low power consumption), leaving the design to meet all initial
specifications.

Tools Employed
Power and Sensor Subsystem

- Code Composer Studio [17] - Code Composer Studio (CCS) IDE was initially utilized
to develop and test the Wi-Fi modules and the sensor subsystems. CCS includes a large
array of tools, such as C/C++ compiler, source code editor, debugger, and much more, for
which we had to improve upon skills from prior classes to take full advantage of during
the development of the project.

- KiCad [18] - KiCad was the schematic and PCB layout editor used in the power and
sensor subsystems’ design. This tool was also utilized in the testing and debugging
phases for the remainder of the project to resolve any issues that arose during the
development and integration of the systems, namely, challenges with the proper LDO
function and I2C bus interference. By and large, prior knowledge and experience were
used; new software features such as assembly printout and automatic Digikey footprint
library integrations were explored during the project.

- Multisim [19] - Multisim’s circuit simulator feature was utilized during the design and
verification phases of the power and sensor subsystems to ensure all of the components
function as intended and no unexpected reading during the systems’ manufacturing. Prior
knowledge from courses was primarily employed in the use of Multisim for this project.

Wi-Fi Communication Subsystem

- ESP8266 Libraries for Arduino IDE [14][15][16] - The open-source Github repository
and subsequent documentation containing the SDK allowed the Arduino IDE to write all
the functionality to enable Wi-Fi on the ESP8266. This includes setting the board as a

Page 9 of 36

client, connecting it to a WPA2 encrypted access point with credentials, assembling an
HTTP packet, and then authenticating using SSL certificates (in the form of a verifiable
SHA-1 thumbprint) that is sent as part of the HTTPS request. Throughout the project,
prior skills were improved throughout the development process and implementation of
the Wi-Fi modules, particularly HTTPS communication and the AWS cloud integration
aspect when writing the firmware for wireless data transmission.

- Arduino IDE [20] - Arduino IDE was the development environment used in conjunction
with the ESP8266 core to develop the firmware for the Wi-Fi subsystem. This includes a
UART terminal, firmware flashing functionality, and a code editor where all the firmware
was written. Most of the skills were improved upon throughout the project, testing and
debugging new errors.

Database and Notification System

- AWS DynamoDB [4] - The NoSQL database option on AWS was used to store the
different sensing nodes’ data. Like Lambda, there was minimal exposure to it, and the
research in accessing and inserting items into it in programs was something learned for
this project. Skills revolving around DynamoDB were discovered while implementing the
data transfer pipeline for the visualization feature.

- AWS API Gateway [8] - This service was used to create a POST endpoint that would
trigger the aforementioned Lambda. Unlike the other Amazon Web Services, the API
Gateway was something researched and learned all from scratch. Skills surrounding the
API Gateway were obtained during the development of the visual dashboard as well.

- AWS Lambda [9] - Lambda is a service in AWS that works based on events and triggers,
and it was used to call other services to update the database and send notifications.
Knowledge of AWS Lambda was minimal and needed to be learned about integrating it
with other services with the python library boto3. However, there was minor exposure to
it in previous classes. Most of the features utilized were from prior knowledge gained
from university courses; however, new skills were obtained working with AWS
throughout the project.

- Amazon SNS [10] - Amazon’s Simple Notification Service was used to send alerts about
potential wildfires. As a part of AWS, it was reasonably straightforward to implement
with the other Amazon Web Services and required additional research to utilize. With no
prior knowledge of Amazon SNS, skills revolving around implementing the warning
system were learned during the project.

Visual Dashboard

- Visual Studio Code [21] - VSCode was the code-editor used to program the Lambda
functions’ dashboard and iterations. Prior knowledge obtained throughout college courses
were used in this project.

Page 10 of 36

- Angular [5] - The web framework is used to create the dashboard. While Angular was
not new, using the Javascript library for AWS and integrating it into the dashboard’s
dependencies was troubleshot and researched to make it functional. For the large part,
previous knowledge around the tool was utilized for the project; however, small
improvements were made.

- GitHub Pages [22] - The platform that currently hosts the dashboard. Prior knowledge
about GitHub Pages were used for the use of this tool.

Ethical, Social, and Economic Concerns

Environmental Impact
The device will be exposed to various environmental forces during its operational phases.

Given the chances of high heat and fire exposure in the field, the device’s burning due to a fire
can release toxins from the plastic and the batteries. Another concern would be that we may need
to build the required infrastructure to be connected and fully functional for the network to
operate. To combat the risks and challenges with the disposal of the damaged or unusable
devices, recycling centers and technology companies can be called upon to dispose of these
components [7] correctly.

Sustainability
With the mission of saving the environment, the device itself will not be harmful to the

environment. The components used are durable and meant to operate for long periods without
maintenance. The biggest concern will be the usage of the plastic casing and batteries for the
current implementation, which, as mentioned previously, will be recycled safely.

Health and Safety
If a microcontroller and its respective components are successful in detecting a fire, it

may be imminent that it catches on fire and burns; the destruction of the case and electronic
components may release harmful fumes that could be a concert to human health. The electrical
components onboard do not pose any harm to humans.

Manufacturability
The larger components and the unique casing design for the device can limit the device’s

manufacturability. Though in the short run, a fixed budget and better can further implicate the
case. Proper long term production analysis will lead to a significantly reduced cost and more
feasible manufacturability.

Ethical Issues
With a highly integrated and connected network, the biggest concern will be data and

privacy in general. This device will be capable of gathering an immense amount of information,
and the question of making this data public or not for the welfare of other countries will be
explored down the road.

Page 11 of 36

Intellectual Property Issues
Overall, given the use of open-source software (from GitHub and the Arduino SDK)

within the firmware architecture for sensors and the Wi-Fi modules, the current implementation
of this project is not patentable [14][15]. Furthermore, as referenced in the patent
CN104658156A, Claim 1 states the following: “a forest fire monitoring system, is characterized
in that: comprising: multiple sensors (3) be installed in the forest, multiple centers with several
sensors (3) are base station (2), the Surveillance center (1) of fixed point; Described sensor (3)
comprises wireless communication module (4), smoke transducer (5), the pyroelectric sensor (6)
of detection of fires, processor, battery; Wireless communication module (4) and the base station
(4) wireless connections of the described sensor (3); Smoke transducer (5), pyroelectric sensor
(6), a wireless communication module (4) is connected with the processor, described processor
carries out logical operation and Logic judgment to the data of smoke transducer (5), the data of
pyroelectric sensor (6), and judged result is transferred to the base station (2) by wireless
communication module (4); Described base station (2) and Surveillance center (1) wireless
connections” [25]. After dissecting this dependent claim, it can be concluded the characteristics
of using multiple sensors and wireless communication modules and to a processor to carry out
logical operation and judgments is a similar implementation to the data collection and transfer
pipelines used in this project.

In addition, a forest fire monitoring and early warning system based on IoT has already
been documented. Specifically, Claim 2, which is dependent on Claim 1 of the patent, states the
following: “The forest fire monitoring early warning system based on Internet of Things
according to claim 1; It is characterized in that described sensing terminal node comprises a
plurality of sensors and sensing terminal ZigBee module; Each sensor is as the signal input of
forest fire monitoring early warning system; Be used to gather the environmental information of
woodland to be monitored; The signal output part of each sensor links to each other with the
respective signal input end of sensing terminal ZigBee module, and sensing terminal ZigBee
module links to each other with corresponding routing node through wireless network” [26]. This
particular system uses terminal nodes composed of ZigBee modules, which is analogous to the
proposed sensor module in the initial technical description of the project and the construction of
the sensor node implemented with Wi-Fi modules is similar enough to make the project not
patentable.

Furthermore, the monitoring system detailed in US6624750B1 further decreases the
patentability of the project as the patent’s documentation provides in-depth analysis for the use of
IoT technologies. These include but are not limited to Bluetooth, ZigBee, LoRa, Wi-Fi, radio
frequency identification (RFID), and much more within “a management system and method for
automatically monitoring and dynamically reacting to events and reconstructing application
systems” [27]. As stated in claim 7, which is a dependent claim for the prior claims in the patent,
states the following: “The system of claim 7 in which the multiple sensor devices are fire, smoke,
or intrusion sensor devices that further comprise associated speakers and in which one of the
multiple sensor devices transmits an alarm condition message signal to which the base station
responds by transmitting a speaker activating message instructing the multiple sensor devices to
vocally announce a location of the sensor transmitting the alarm condition message and whether

Page 12 of 36

the alarm condition is a fire, smoke, or intrusion alarm condition.” The idea for an alarm
condition message was seen in the project’s implementation for the visual dashboard. Additional
features to this system are outlined in the patent, which further decreases the project's
patentability.

Detailed Technical Description of Project
The project is a distributed IoT network consisting of many sensor nodes that collect and

pipeline the data to a cloud service terminal and display the data on a graphical user interface. In
large, the system is made up of a microcontroller with wireless communication capability, a PCB
of sensors, a PCB of a battery power supply, an independent recharging module, and a software
cloud-based service. Each subsystem is discussed in technical detail in the following sections.

On the microcontroller, the firmware implemented to enable wireless communication via
2.4Ghz Wi-Fi utilizes the open-source Arduino SDK built for the ESP8266 microcontroller
[14][15]. This includes the use of the base ESP8266Wi-Fi library and the ESP8266HTTPClient,
and the Wi-FiClientSecureBearSSL libraries. The way that the firmware was designed is listed in
the following steps. In the setup stages, the microcontroller utilizes the SSID and password
credentials to connect to the access point. Then the HTTP client constructs a packet containing
the sensor information in the form of a JSON payload in addition to other relevant HTTP
headers. To enable this packet to be transmitted and securely received by AWS, the BearSSL
library [16] allows using an SHA-1 fingerprint to enable sending HTTPS POST requests by
taking care of the authentication. The firmware is designed to perform this process on the
microcontroller every 15 minutes and send the data gathered to the AWS pipeline, picked up by
the AWS API Gateway.

When a POST request is made, it is made to an AWS API Gateway endpoint [8] set up to
trigger an AWS Lambda function [9] created to parse and process the data sent. When activated,
this function parses the POST request’s payload, containing the sensor information and readings,
and puts it into the database. The lambda function also checks to see if the sensor readings
indicate a potential wildfire. If so, it will send a notification to all users who have subscribed to
notifications. The integration of the database and SNS capabilities is possible by leveraging
various services of AWS. The database used is DynamoDB [4], Amazon’s NoSQL database, a
strong choice for unfiltered, constant data. The notification service is Amazon’s Simple
Notification Service [10], which can be programmatically accessed to send notifications.
Programmatically modifying the database and notification service is done through the Lambda
function using the boto3 library in Python. Furthermore, email notifications are enabled to alert
the user to abnormal temperature readings. The notification occurs when the Lambda function is
executed. As the data is processed and put into the database, they are also checked for
irregularities, spikes, and dips in temperature and humidity.

The design initially contained both the power and the sensors on one board in terms of
the hardware. During phase one testing, the LDO’s heat dissipation quickly became a big issue.
Later, it was found out that this LDO required a specific heatsink layout design to function in the
“normal range.” The power supply eventually moved onto its separate board partly for
debugging purposes. On the second prototype PCB, larger copper pads were added surrounding

Page 13 of 36

the LDO and managed to dissipate excess energy. It is also worth noting that multiple LEDs and
connectors were added to help identify and isolate electrical issues. A p-channel and an
n-channel MOSFET along with multiple resistors were also added as an additional output to
measure the power supply’s voltage. Figure #1 is the top-level schematic of the power
subsystem, whereas Figure #2 delves deeper into the voltage measurement subcircuit.

Figure #1: Battery Power System Schematic

Figure #2: The Battery Level Indicator Schematic
Much remained the same as the original design on the sensor board, except for the

additional debugging LEDs, load resistors, and connectors. Figure #3 shows the top-level
schematic of both the humidity and the gas sensor. At the same time, Figure #4 takes a closer
look inside the humidity sensor's hierarchical block and explores the gas sensor’s inner circuit.
Both sensors communicate through the I2C bus and therefore require the same pull-up resistors
and bypass capacitors. It was realized not until phase two testing, unfortunately, the two sensors
could not be connected to the I2C bus simultaneously; physical isolation was needed to avoid
interference. The result became a small change to the original sensor node design; the gas sensor
was cut out for the humidity sensor to function correctly. Figure #9 in the appendix shows a
printout of the PCB layout.

Page 14 of 36

Figure #3: Sensor Subsystem Schematic

Figure #4: Sensor Configuration Schematics
The webpage (found at https://ndd7xv.github.io/This-ButterBeWorth-It/) is hosted on

GitHub pages [22] and was created with the Angular [5] framework and Chart.js library [6]. For
security, it accesses the database of sensing data through a federated Cognito identity for AWS
DynamoDB [4] read permissions. It queries the database mentioned above for each node’s past
ten readings, which comes in 15-minute increments. Note that the dashboard will only display
data when a sensor is running.

Page 15 of 36

https://ndd7xv.github.io/This-ButterBeWorth-It/

Figure #5: Lambda Visualization and Code

Figure #6: Visual Dashboard of Sensor Data
Using a POST request to transmit data was a choice between ease of security and

implementation/scalability. In the future, both factors could be improved. For the sake of time
constraints and troubles integrating embedded firmware into AWS, the POST request was the
most feasible approach to take. Using GitHub Pages to host the dashboard was chosen over an

Page 16 of 36

AWS Elastic Compute Cloud (EC2) instance [23] because of cost. Still, AWS’s extensive use
was a decision made while keeping software/processing capabilities in mind. The ease of
implementing variously related tasks like receiving, processing, and storing data, sending
subscribers alerts, and getting the data onto a web page made Amazon Web Services the best
suite of tools for the software challenges.

Project Timeline
The Gantt chart from the initial proposal and the final chart can be seen in Figures #7 and

8 below. The final chart was more detailed than the one seen in the proposal as more definite
tasks were added and outlined as the semester progressed. Furthermore, the outline for tasks,
completed in parallel and a serial manner, was also determined in the final chart, which cannot
be seen in the initial diagram. Additionally, throughout the semester, tasks that were not
completed as expected on their end date were highlighted in red and were completed on the dates
marked by the “extended” cell.

Figure #7: Initial Project Timeline

Figure #8: Final Project Timeline
Parallel tasks were executed alongside each other for the same timeframe; these tasks can

be distinguished by reading the final chart vertically and finding tasks that overlap for the

Page 17 of 36

specific period. For example, it can be seen that the following tasks were completed in a parallel
manner as their time frame (9-15-2020 to 9-29-2020) overlap with each other: Sensor Selection,
PF Protocol Selection, Node Synchronization Scheme, Firmware Architecture, Multisim/KiCad
Symbol, Footprint Create, and Visual Dashboard Architecture. Serial tasks were initiated upon
completing a prerequisite task; these can be distinguished in the final chart by looking at the end
date (extended included) for a given task followed immediately by a new task’s start date. For
example, completing the Circuit Design task on 9-15-2020 initiated the new task for Sensor
Selection (9-15-2020 to 9-29-2020).

The tasks were allocated among the team members based on their primary roles and
secondary roles. As Nathan held the primary role of software architect and firmware support's
secondary role, he contributed to the following tasks: Visual Dashboard Architecture, Firmware
Architecture, Visual Dashboard Development, Wi-Fi Integration with ESP8266 microcontroller,
and Wi-Fi Integration with Visual Dashboard. As Shreejan acted as the primary program
manager, he was in charge of constructing and maintaining the Gantt charts and the timeline
throughout the semester. Besides holding the secondary role of a software architect, Shreejan
also contributed to the following task: Visual Dashboard Architecture, Visual Dashboard
Development, and Wi-Fi Integration with Visual Dashboard. Tahmid’s primary role was
firmware architect; thus, he contributed to the following task: Node Synchronization Scheme,
Firmware Architecture, and Wi-Fi Integration with ESP8266 microcontroller. Alec’s primary
role and Bill’s second role were hardware architect; as such, they contributed to the following
tasks: Circuit Design, PF Protocol Selection, Multisim/KiCad Symbol, and Footprint Creation,
Multisim Development, Power Subsystem Integration with ESP8266 microcontroller, and Power
Subsystem Integration with Sensors. Bill’s primary responsibility dealt with embedded systems
and design; thus, he contributed to Embedded Development.

Finally, all team members contributed to the remainder of the tasks as they met on call for
substantial hours, all contributing to the final result. This includes the initial proposal, the final
proposal, generating the components and constraints list, making system test plans, and the
submission documents (the presentation deck also includes the midterm review, the final
demonstration, and the final report).

Test Plan
The test plans for the power subsystem, sensor subsystem, Wi-Fi firmware, and the visual

dashboard can be referenced in Figures #12, #13, #14, and #15, respectively, in the Appendix.
These test plans were developed as flow charts with two outcomes for each action, yes or no.
Based on the test result in the current step, the next step’s corresponding path was followed. If
any issues or errors were found, incident responses were handled accordingly at that time to
ensure appropriate steps were followed afterward.

Power Subsystem:

The initial test plan seen in Figure #12 was followed through without much alteration;
voltage (and current, if the voltage is inaccurate) was measured at both the input and the LDO
output. However, during the prototype’s testing, a significant heat dissipation design flaw was

Page 18 of 36

found on the LDO and nearly led to a device change. Eventually, consultations led to close
re-examinations of the datasheet, specifically at the recommended layout. Large copper pads
were added to the PCB for the subsequent design in response to the findings. In addition,
multiple diodes were added to prevent current backflow from endangering the battery, and LEDs
were attached at critical input and output joints to facilitate the testing. The final prototype
successfully solved the heat dispersion problem but produced the side-effect of “unlimited heat
sink,” where solder became a lot more difficult to melt. This negative externality generated by
the copper pads unsurprisingly led to connectivity issues with the LDO’s ground pin. Ultimately,
this problem was solved with the extensive usage of an ohmmeter, and the power system finally
began to deliver the desired 3.3V output. The circumstance caused considerable delays in the
sensor configuration progress, but no deadline was changed to the timeline to stay on track.

Sensor Subsystem:

Though the power system’s complication caused a delay in the sensor development, the
test plan was unchanged and followed through. As seen in Figure 13 in the proposed test plan,
addressing and power are the two critical components for running the sensors. After the input
voltage to the power system sensors was confirmed, the sensors were turned on from the
microcontroller. The sensors’ data outputs were first measured using the NI VirtualBench digital
analyzer to verify the reading. The incorrect addressing and significant noise interference led to
cutting one of the sensors because this design did not have any isolation techniques between the
sensors sharing the same I2C bus. Once the gas sensor was clipped and the humidity sensor was
correctly verified functioning, the rest of the issues were addressed based on the
microcontroller’s UART terminal’s output.

Wi-Fi-Firmware:

As seen in Figure #14, the original test plan included the use of MSP as the
microcontroller for the Wi-Fi module. However, after initial success testing Wi-Fi capabilities
with the MSP, errors were found integrating to the AWS IoT Core and subsequently AWS API
Gateway to complete the visualization data pipeline. After countless attempts to resolve the
errors, the decision was made to make the switch from the MSP432 to ESP8266. This decision
was made as Tahmid, the firmware architect, had more experience working with the ESP
microcontroller and developed more features with data transfer, including email notifications and
SSL encryption from the Wi-Fi modules, AWS API Gateway, and IFTTT. Changes to the
technical project, test plans, budget were made accordingly to account for this change. No
significant changes to the timeline were made because the main functionalities left to be
implemented the same as with the MSP microcontroller.

Visual Dashboard

As seen in Figure #15, preliminary testing was conducted with dummy test values to
ensure functional connection from the microcontroller to AWS's database. After establishing a
successful connection, storing the data into the database was tested. At this step, few errors were
encountered, such as loss in data and undesirable format. These errors were fixed after changing
the structure for the sensor data's primary keys, and little changes were made to the overall

Page 19 of 36

process and test plan. In addition, testing the data transfer pipeline from the database to the visual
database also threw minor syntax and logical errors and were resolved quickly. As stated above,
a switch in microcontroller choice was made (from MSP432 to ESP8266), which subsequently
resulted in the switch from using AWS IoT Core to integrate the data transfer pipeline to using
AWS API Gateway using HTTPS POST requests.

Final Results
The success criteria defined in the proposal can be seen in Figure #19 in the appendix.

All expectations were met in each category's highest level in the implementation of the sensor
monitoring system. The overall device was able to function solely on the power subsystem with a
rechargeable battery. The power supply consistently delivers a 3.3 V output and draws no more
than 500 mA of current, satisfying all requirements for successfully powering the entire unit
described in the proposal.

Regarding the Data Acquisition and Transmission, information from the sensors was
indeed gathered from the sensors, processed by the microcontroller, packetized into JSON, sent
via Wi-Fi (using an HTTPS POST request) to AWS Cloud API, and then correctly channeled to
the database using the implemented transfer pipeline. This firmware category lies in this project's
heart, and it is the cornerstone of the entire system. Though one of the two sensors (the gas
sensor) was ultimately not included in the finished prototype, this design met the primary
communication goal over the I2C bus. A battery level indicator was added as an essential feature
indicating any device's state. A bonus feature was added in battery indication, that the indicator
would output a voltage of “0” when the device is charging.

The data collected was successfully visualized in the dashboard in real-time and in a clear
and easily readable manner. The visual dashboard also included a warning system (involving the
email notification system as seen in our video demonstration) for any measurements that crossed
the predefined thresholds, thus satisfying all the requirements outlined in the rubric for this
category.

Costs
The cost and bill of materials for the hardware subsystems can be found in Figures 16,

17, and 18 in the Appendix. As indicated in the budget breakdown (Figure #16), the total cost for
the project came to approximately $394, while the total cost of the build for two units
(microcontrollers with Wi-Fi modules, sensors and power system, assembly labor cost, and cloud
service) was approximately $334. This resulted in an average of $167 in total per unit, including
the cloud service fee. The average cost may seem jaw-dropping at first, but this conservative
calculation represented the total cost of the entire project, and the average per unit took into
account the loud service’s fixed cost. In reality, the average cloud service fee would only
decrease as the quantity of units increases, rendering it insignificant in the long run. The total
production cost of the two sensor nodes in this project, excluding the cloud fee, comes down to
$283, averaging around $142 each. However, this average still seems exceptionally high for a
supposedly low-power and low-cost device, and that is because half of this cost is from the
MSP432 and its CC3120 Wi-Fi Booster Pack. Different microcontroller choices will

Page 20 of 36

significantly impact the average cost per unit. Looking at the PCB boards only, the two
prototypes cost around $164, averaging $82 each. With further breakdown, the PCB fabrication
was $36 each, the assembly fee totaled approximately $63, averaging to less than $32 each,
while the BoM for each unit came just above $41 buying in cut-tape.

For the production of large quantities, such as 10,000 units of sensor nodes (including the
power supply and the sensor module), however, could tremendously decrease the cost. Not only
does DigiKey offer a lower unit price for reel-tape per BoM, but finding an appropriate long term
production point would also adjust PCB fabrication and assembly labor accordingly. The BoM’s
estimations for mass production can be seen in Figure #17 below based on Digikey’s pricing. A
conservative estimate of the PCB fabrication and assembly labor should cut their current cost in
half, averaging a total just shy of $50 per sensor unit.

The switch from MSP32 and CC3120 to ESP8266 is an even more cost-saving measure
as the per-unit cost of an ESP8266 is only around $3~$6. In contrast, the MSP432 and CC3120
(requiring the integration of 2 processors into the custom PCBs) came up to a total of around
$14~16 in reel-tape. Furthermore, all the firmware running on the embedded system utilized free
and open-source libraries, averting potentially expensive multi-year SDK contracts with
companies like Texas Instruments. Doing so also ensured the possibility to maintain the firmware
even if the companies were to abandon their SDK. Besides, improvements in manufacturing and
the increase in automation would also decrease each sensor node's unit cost. To come up with an
exact estimate for these changes would require much more research about the manufacturer and
the market beyond this project's scope.

Regarding the visual dashboard, the highest cost would be for the use of AWS cloud
services (storage, read and write to DynamoDB, etc.) and external applications required for the
implementation of the data transfer pipeline. For this project, $50 was allocated towards the
complete development of the visual dashboard. But realistically, improvements and maintenance
for a sizable sensor system will most likely see a substantial increase in the cost and, therefore,
will need to be accounted for in the long-term planning to find the optimal production point on
the cost curve.

Future Work
In retrospect, there were a variety of pitfalls and difficulties completing the project. While

the established goals were achieved, a lot of time and effort was spent to address a variety of
problems that, while seemingly inevitable, could have been anticipated and mitigated. This
project's underlying concept and the system can be expanded upon, howbeit its standing
professionality, in terms of costs, security, and performance/power efficiency to be less of a
proof-of-concept and more of a commercialized product.

To elaborate on improvement and expansions, it is essential to establish that this project
involved creating a system for wildfire detection using sensing nodes composed of
microcontrollers. In achieving this, hardware was designed to develop a sensing node, embedded
firmware was programmed to obtain temperature/gas data, and cloud infrastructure was created
to receive information and display it on a webpage. However, to make a commercially viable

Page 21 of 36

product, improvements to reducing each sensing node's cost would be necessary. In the same
vein, securing transmitted data and the cloud infrastructure that supports the processing and
storage of said data would also need to be deliberately designed. While having a cloud-native
environment makes the system optimal for scalability, further changes to the firmware and the
cloud database and API would be required to support a more extensive network of sensors and
data.

In addition, the physical capabilities of the system were also minimal; while it can be
incredibly insightful to know the gas and temperature information around a node, the use of
machine learning to process such data can be used to make informed decisions about where and
when a fire might occur. Besides, if physically independent, additional sensors (such as the
second initial gas sensor) can also be added to the system, providing even more informative data.
The system also uses Wi-Fi, which has a more limited range and greater power consumption than
some other communication protocols, like Zigbee or LoRa. The high-power usage was made
more problematic because each sensing node is powered by a battery, which would need to be
replaced once drained. Therefore, in future iterations of the system, it could be beneficial to look
into renewable energy sources, such as solar power.

Ultimately, all of these concerns could be addressed if a future group of students wanted
to create a similar project based on this one; the challenges encountered with this project came
more from designing and implementing things from scratch than power, security, and capability
issues. Regardless of specifications, any similar project should expect to run into all sorts of
problems. The trouble with advising future groups of students on the tribulations encountered
during this project is that there are many variables at play simultaneously, and it is impossible to
say what specific parts of a project will throw what error when. A perfect example is the I 2C bus
configuration; multiple sensors cannot talk to the microcontroller simultaneously. Though this is
well-known, it is often hard to pinpoint the issue in an integration environment. While all groups
were warned that hardware and software problems would be inevitable and time-consuming,
such problems that ended up using more time troubleshooting than anticipated still occurred. For
example, connecting the webpage to the database took less time than perceived, and connecting
the device to the internet took a lot longer than planned. Being conscious of the constraints and
the reality of a situation is a must. There were various ways to transmit sensor information to the
database, and the final choice to implement was ultimately due to the time and design
constraints.

Finally, it is also helpful to have a fleshed-out game plan initially, but it is also necessary
to be flexible and assume anything can go wrong because it will. With so many potential
problems and so many different solutions with various limitations, one should never take for
granted that the final product will be the way it was envisioned in the beginning. It is crucial to
think, design, and solve like an engineer, after all.

Page 22 of 36

References

[1] A. Alkhatib, “Forest Fire Monitoring,” Forest Fire, pp. 53-72, DOI:
10.5772/intechopen.72059

[2] Aeris. 2020. Fight Forest Fires With Tech: How Forest Fire-Prone Regions Leverage IoT To
Limit Wildfires And Mitigate Destruction. [online] Available:
https://www.aeris.com/news/post/fight-forest-fires-with-tech-how-forest-fire-prone-regions-l
everage-iot-to-limit-wildfires-and-mitigate-destruction/

[3] Espressif Systems, “ESP8266EX Datasheet,” ESP8266 Datasheet, Dec-2015. [Online].
Available:
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf.
[Accessed: 10-Dec-2020].

[4] "What Is Amazon DynamoDB? - Amazon DynamoDB", Docs.aws.amazon.com, 2020.
[Online]. Available:
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html.
[Accessed: 10- Dec- 2020].

[5] “Angular Documentation.” Angular.io. https://angular.io/docs (accessed 13 September 2020).

[6] "Introduction · Chart.js documentation", Chartjs.org, 2020. [Online]. Available:
https://www.chartjs.org/docs/latest/. [Accessed: 10- Dec- 2020].

[7] “Electronics Donation and Recycling.” The United States Environmental Protection Agency |
US EPA. https://www.epa.gov/recycle/electronics-donation-and-recycling (accessed Sep. 13,
2020).

[8] "What is Amazon API Gateway? - Amazon API Gateway", Docs.aws.amazon.com, 2020.
[Online]. Available:
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html. [Accessed:
10- Dec- 2020].

[9] "What is AWS Lambda? - AWS Lambda", Docs.aws.amazon.com, 2020. [Online]. Available:
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html. [Accessed: 10- Dec- 2020].

[10] "What is Amazon SNS? - Amazon Simple Notification Service", Docs.aws.amazon.com,
2020. [Online]. Available: https://docs.aws.amazon.com/sns/latest/dg/welcome.html.
[Accessed: 10- Dec- 2020].

[11] Texas Instruments, CC3120 SimpleLink™ Wi-Fi® Wireless Network Processor,
Internet-of-Things Solution for MCU Applications, Feb-2017. [Online]. Available:

Page 23 of 36

https://www.ti.com/lit/ds/symlink/cc3120.pdf?ts=1607635592646&ref_url=https%253A
%252F%252Fwww.ti.com%252Fproduct%252FCC3120. [Accessed: 10-Dec-2020].

[12] Texas Instruments, MSP432P401R, MSP432P401M SimpleLink™ Mixed-Signal
Microcontrollers, Mar-2015. [Online]. Available:
https://www.ti.com/lit/ds/symlink/msp432p401r.pdf?ts=1607568848716&ref_url=https
%253A%252F%252Fwww.google.com%252F. [Accessed: 10-Dec-2020].

[13] "IEEE Standard for Information Technology - Telecommunications and Information
Exchange Between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications," in IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999), vol.,
no., pp.1-1076, 12 June 2007, doi: 10.1109/IEEESTD.2007.373646.

[14] Espressif Systems, “esp8266/Arduino,” GitHub. [Online]. Available:
https://github.com/esp8266/Arduino. [Accessed: 10-Dec-2020].

[15] Espressif Systems, “ESP8266 Arduino Core's documentation,” Welcome to ESP8266
Arduino Core's documentation! - ESP8266 Arduino Core documentation. [Online].
Available: https://arduino-esp8266.readthedocs.io/en/latest/. [Accessed: 10-Dec-2020].

[16] T. Pornin, “earlephilhower/bearssl-esp8266,” GitHub. [Online]. Available:
https://github.com/earlephilhower/bearssl-esp8266. [Accessed: 10-Dec-2020].

[17] Texas Instruments. Code Composer Studio User Guide (2019). Accessed: Sep. 13 2020.
[Online]. Available: https://software-dl.ti.com/ccs/esd/documents/users_guide/index.html

[18] "KiCad EDA", Kicad.org, 2020. [Online]. Available: https://www.kicad.org/. [Accessed: 10-
Dec- 2020].

[19] National Instruments. NI Multisim User Manual (2009). Accessed: Sep. 13 2020 [Online].
Available: https://www.ni.com/pdf/manuals/374483d.pdf

[20] The Arduino Team, Arduino IDE. [Online]. Available: https://www.arduino.cc/en/software.
[Accessed: 10-Dec-2020].

[21] “Documentation for Visual Studio Code.” Visual Studio Code - Code Editing. Refined.
https://software-dl.ti.com/ccs/esd/documents/users_guide/index.html (accessed Sep. 13,
2020).

[22] "GitHub Pages", GitHub Pages, 2020. [Online]. Available: https://pages.github.com/.
[Accessed: 10- Dec- 2020].

[23] "What is Amazon EC2? - Amazon Elastic Compute Cloud", docs.aws.amazon.com, 2020.
[Online]. Available: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html.
[Accessed: 10- Dec- 2020].

Page 24 of 36

[24] R. Bohn. “Nema Rating Buying Guide.” NEMA Enclosures.
https://www.integraenclosures.com/resources/about-nema-enclosure-types/ (accessed Sep.
13, 2020).

[25] Forest Fire Monitoring System. https://patents.google.com/patent/CN104658156A/en.
Accessed 10 Dec. 2020.

[26] Forest Fire Monitoring and Early Warning System Based on IOT.
https://patents.google.com/patent/CN202472841U/en. Accessed 10 Dec. 2020.

[27] Wireless Home Fire and Security Alarm System.
https://patents.google.com/patent/US6624750B1/en. Accessed 10 Dec. 2020.

Page 25 of 36

Appendix

Figure #9: PCB Design

Figure #10: 200 HTTP Response in UART Terminal

Page 26 of 36

Figure #11: Project Design Overview

Page 27 of 36

Figure #12: Power Subsystem Test Plan

Page 28 of 36

Figure #13: Sensor Subsystem Test Plan

Page 29 of 36

Figure #14: Firmware Test Plan

Page 30 of 36

Figure #15: Visual Dashboard Test Plan

Page 31 of 36

Figure #16: Total Budget Breakdown

Figure #17: DigiKey Bill of Materials

Figure #18: Mouser Bill of Materials

Page 32 of 36

Figure #19: Proposal Expectations (Rubric)

import json
import datetime
import boto3
import dateutil.tz

def lambda_handler(event, context):
sns = boto3.client('sns')
dynamodb = boto3.client('dynamodb', region_name = 'us-east-1')
eastern = dateutil.tz.gettz('US/Eastern')

data = event

Parse Information from the Payload (temperature, gas, humidity data, device ID)
temperature = data["Temperature"]
gas = data["Gas"]
humidity = data["Humidity"]
device_id = data["Device ID"]

Create additional attributes (like date/time)
time = str(roundTime(datetime.datetime.now(tz=eastern), roundTo=15*60).strftime("%H:%M:%S"))
date = str(datetime.datetime.now(tz=eastern).strftime("%b %d %Y"))
primary_key = device_id + "-" + time + "-" + date

message = "Temperature: " + temperature + "\n" + "Gas: " + gas + "\n" + "Humidity: " + humidity + "\n" + "Device ID: " + device_id + "\n"
+ "Time: " + str(time) + "\n" + "Primary Key: " + primary_key

message = "You are receiving this message because some readings in the wildfire detection threshold were reached. See details below. \n\n"
+ message

Page 33 of 36

Send a notification if forest fire could happen
if(float(temperature) > 125):

response = sns.publish(
TopicArn='arn:aws:sns:us-east-1:064764567903:This_ButterBeWorth_It',
Message= message,
Subject='Lambda Triggered with the API Gateway',

)

Update the database
add_to_db = dynamodb.put_item(
TableName = 'test',
Item = {

'primaryKey' : {'S': primary_key},
'time' : {'S': time},
'deviceID' : {'S': device_id},
'date' : {'S': date},
'temp' : {'S': temperature},
'humidity' : {'S': humidity},
'gas' : {'S': gas},

})

return {
'statusCode': 200,
'body': json.dumps('Hello from Lambda!')

}

def roundTime(dt=None, roundTo=60):
if dt == None : dt = datetime.datetime.now()
seconds = (dt.replace(tzinfo=None) - dt.min).seconds
rounding = (seconds+roundTo/2) // roundTo * roundTo
return dt + datetime.timedelta(0,rounding-seconds,-dt.microsecond)

Figure #20: Lambda Function and Dashboard Code*

*For the sake of readability, the code for the dashboard is not all listed out. It can be found at
https://github.com/ndd7xv/This-ButterBeWorth-It - the most crucial files are src/app and are
linegraph/linegraph-component.ts, app.component.ts, app.component.html, and data.service.ts.

Page 34 of 36

https://github.com/ndd7xv/This-ButterBeWorth-It

Page 35 of 36

Figure #21: Firmware Code for Wi-Fi/HTTPS Communication & I2C Sensor Integration

Page 36 of 36

