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Abstract and Specific Aims 
 

Diffusion MRI (dMRI) is a rapidly expanding technique for non-invasively tracking the 

movement of water molecules throughout the brain. Within the microarchitectural environment of 

the brain, the free movement of water molecules is restricted by various cellular components, 

particularly the lipid bilayers that make up cell membranes and the myelin sheaths that wrap axons. 

As a consequence of the Brownian motion of water molecules1, there is a constant degree of 

movement within the brain that is directed and shaped by these cellular components. These patterns 

of diffusion are extremely complex and require mathematical models to interpret, the earliest and 

most widespread being diffusion tensor imaging (DTI) which provides a geometric representation 

of diffusion on a voxel-wise scale2,3. The geometric information available from DTI led to the 

development of diffusion tractography, a means to describe axonal connections between brain 

regions4,5. With tractography came a focus on isolating the white matter (WM) axonal diffusion 

signal from ‘noise’ generated by other tissue compartments within the brain, such as grey matter 

(GM), and cerebrospinal fluid (CSF). However the diffusion signal from these tissue 

compartments might be a useful biomarker for a number of conditions6–8 as well as across the 

lifespan in development and aging.  

 

 This project aims to use an advanced mathematical representation of diffusion to generate 

voxel-wise quantitative estimates of brain cellular microstructure, and then demonstrate the utility 

of these estimates in a range of subjects across the lifespan. Rather than relying on DTI, which has 

only 6 free terms to describe the diffusion signal, estimates of cellular microstructure will be 

derived from constrained spherical deconvolution (CSD). CSD is a more recently developed 

method that uses spherical harmonics with a theoretically unlimited number of terms available for 

describing the diffusion signal9–11. CSD will allow for more advanced and anatomically accurate 

estimates of 3 underlying tissue components, each of which predominates in specific brain areas: 

intracellular anisotropic signal (ICA) which is primarily located in myelinated axonal areas, 

intracellular isotropic signal (ICI) which is highest in GM areas such as the cortex, and 

extracellular isotropic signal (ECI) which predominates outside brain tissue but also represents 

freely diffusing water within the brain. Changes in these tissue compartments may be important 
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biomarkers for various disorders or may occur throughout the lifespan as a component of healthy 

development and aging.  

 

Aim 1: Assess the reliably and reproducibly of 3T-CSD measurements of ICA, ICI, and ECI signal 

fractions as a means of quantifiably assessing brain cellular microstructure from diffusion MRI. It 

will be determined if 3T-CSD measurements are affected by image quality and scanning location, 

if measurements are biased by CSD algorithm selection, and if the underlying CSD model can be 

used to register images to stereotaxic space.     

 

To achieve this aim a widely used CSD analysis implemented in the open-source dMRI 

processing software MRtrix12 will be adapted in order to derive quantitative information on a 

voxel-wise level about ICA, ICI, and ECI tissue compartments in the human brain. This will 

improve on existing quantitative dMRI models by capturing 3 easily interpretable tissue 

compartments from even single-shell data using a state-of-the-art spherical harmonic 

representation to capture the most complex microstructure arrangements. This technical 

development will encompass diffusion acquisition selection, CSD algorithm selection, novel 

image registration methods, and tests of reliability and reproducibility both longitudinally between 

timepoints and between MRI scanners. 

 

Aim 2a: To generate trajectories of 3T-CSD measurements of ICA, ICI, and ECI signal fractions 

across the lifespan and during a variety of developmental and degenerative processes similar to 

existing structural MRI modalities.  

 

The basic cellular processes that occur in the brain during human development, aging, and 

decline, are still poorly understood.  Volumetric MRI studies have established that the volumes of 

brain white matter and gray matter change dramatically across the lifespan13,14. However since 3T-

CSD is potentially more sensitive to cellular changes at the sub-voxel level it may be able to detect 

changes in brain microstructure before they manifest as changes in brain volume15. It is also 

necessary to explore the cellular microstructure that underlies volumetric change with detailed 

analysis of specific regions of the brain at multiple scales and between hemispheres. The goal of 

this study is to analyze a large number of subjects from a publicly available population cohort in 
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order to provide a lifespan trajectory for 3T-CSD measurements of cellular microstructure from 

multiple areas of the brain. Establishing the relationship between chronological age and 

microstructural metrics will establish normal reference ranges and trajectories that are essential 

before investigating abnormal populations. 

 

Aim 2b: Determine if 3T-CSD microstructure measurements are altered by pubertal development 

during the critical period of early adolescence.  

 

Adolescence is a time of rapid physiological and neurological change that is primarily 

driven by the surge in production of sex-specific hormones. Identifying microstructural changes 

that occur naturally during this time period will allow for further evaluation into life events that 

alter brain cellular microstructure. Understanding the relationship between the cells of the brain 

and maturation is an important component of adolescent health and well-being throughout the 

remainder of the lifespan. 

 

Aim 2c: Determine if the epigeneticly derived risk score ‘GrimAge’ is an effective peripheral 

blood biomarker of small vessel disease driven damage to brain microstructure in a ‘healthy’ aging 

cohort.  

 

Though macro-level changes in the aging brain are well described, the microstructural 

cellular alterations underlying these changes are relatively unknown. We would expect 

microstructural alterations to be more sensitive to physiological change or pathological 

development before they accumulated into macro-level changes in brain structure. The age-

adjusted version of GrimAge presents a powerful means for studying the effects of cardiovascular 

health on the brain and has been shown to be predictive of the presence and size of white matter 

hyperintensities (WMH)16. A specific focus will be made on white matter hyperintensities, a visible 

neurological manifestation of small vessel disease, and the microstructural composition of the 

axonal pathways throughout each individual’s brain affected by their unique white matter 

hyperintensity location and volume.   
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Introduction and Background 
 

 Diffusion weighted magnetic resonance imaging (dMRI) is a widely used, noninvasive, 

tool for measuring the movement of water molecules in the brain. Within the microarchitectural 

environment of the brain, the free movement of water molecules is restricted by various cellular 

components, particularly the lipid bilayers that make up cell membranes and the myelin sheaths 

that wrap axons. As a consequence of the Brownian motion of water molecules1, there is a 

constant degree of movement within the brain that is directed and shaped by these cellular 

components. Measuring diffusion using magnetic resonance has been performed by scientists for 

over a half century17, and has grown far beyond merely measuring the Einstein’s diffusion 

coefficient18 in various tissues.  

 

Two advances that greatly influenced the analysis of dMRI, as well as the general 

neuroimaging community, are the development of diffusion tensor imaging (DTI)19, which began 

to provide a geometric representation of diffusion on the voxel-wise scale, and diffusion 

tractography4,5, which used the geometric information from DTI to describe axonal connections 

between brain regions. With this came a focus on isolating the white matter (WM) axonal 

diffusion signal from ‘noise’ generated by other tissue compartments within the brain, such as 

grey matter (GM), and cerebrospinal fluid (CSF). A great deal of research in the following 

decade created various tensor-based models of varying complexity to describe the diffusion 

signal20–23.  

 

One of these tensor-based models, termed Free Water Elimination, included an isotropic 

tensor representing freely diffusing water, which was designed to be removed from an image to 

improve the accuracy of WM tractography24. However, it was quickly realized that the 

eliminated tensor, representing the proportion of each voxel composed of water and termed the 

Free Water Volume Fraction, could be a useful biomarker for a number of conditions6,8,25. 

Tensor-based models suffer from a number of different flaws26,27 and to resolve these issues, 

different models of diffusion became necessary. This line of thought led to the creation of 
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constrained spherical deconvolution, a model-free method of representing the diffusion signal 

using spherical harmonics9, and created by Tournier et al.,11. Constrained spherical 

deconvolution was extended to include multiple tissue types a few years later10. This extension 

allowed for signal from all three tissue compartments, WM, GM, and CSF, to be detected and 

described without the use of tensors.  

 

Mirroring the original use of Free Water Elimination, the GM and CSF compartments 

were discarded to improve the signal from WM10,28. While this led to improved resolution of WM 

fiber density and directionality for use in tractography, the discarded signal from the GM and 

CSF tissue compartments may also hold important microstructural information about the 

composition of brain tissue. This review will cover the historical and theoretical background of 

dMRI in general, as well as the specific effects this background has had on the development of 

microstructural models of diffusion, and finally, on the potential significance and applications of 

3-tissue constrained spherical deconvolution (3T-CSD).  

 

Historical Development and Grounding in Physics 

 

 The experiments of Stejskal & Tanner,17 built on the spin-echo work of Hahn,29 and 

demonstrated that magnetic resonance could be successfully used to determine the self-diffusion 

coefficient of molecules in a liquid state. This provided evidence that the diffusion coefficient 

(D) behaved as initially described by Einstein18:  

 

(1)                                                                ! =	 !"

#$%&
 

 

Where R is the universal gas constant, T is the temperature, k is the viscosity of fluid, and N is 

Avogadro’s number.  Stejskal & Tanner’s diffusion sequence was composed of two identical 

radiofrequency gradients, followed by an acquisition based on the resulting spin echo. The first 

radiofrequency gradient ‘tagged’ the molecules in a spatial position. After a brief period of time, 

the second identical radiofrequency gradient then refocuses the proton spins. This has the effect 

of generating an echo of magnitude proportional to the distance moved across the gradient17. 
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 Early research using the Stejskal & Tanner’s spin-echo technique focused on determining 

the diffusion coefficient of a particular tissue or sample, with many applications initially in 

physical chemistry30–32. It was rapidly discovered that diffusion was not consistent when the 

magnetic field gradient was applied in different orientations across a sample (Figure 1). The 

reason for this difference was inferred to be barriers that restricted the movement of water 

relative to its unrestricted self-diffusion coefficient17,33,34. This developed the idea of the Apparent 

Diffusion Coefficient (ADC) which made clear that the pattern of diffusion observed in tissue 

did not match the unrestricted movement assumed from Einstein’s isotropic diffusion coefficient 

despite it being treated as such for the purpose of calculation17,35. 

 

 It is important to remember that many of these developments occurred prior to the 

implementation of magnetic resonance imaging and instead were conducted under the auspices 

of nuclear magnetic resonance experiments, with a single diffusion coefficient as the measured 

variable. Despite this, many basic features of modern diffusion experiments were present such as 

early precursors to modern b-values. These were framed in regards to time intervals between, as 

well as the duration of, the two diffusion gradients. Early physiological experiments varied the 

gradient duration in order to capture longer diffusion times in tissues with more sparse cellular 

boundaries, also demonstrating how alteration of gradient duration provides differential signal 

from different tissue types (Figure 2). This b-value equation was first described by Stejskal & 

Tanner 17, and has become a descriptor for all modern diffusion acquisition schemes:  

 

(2)                                                               b = γ2  G2  δ2  (∆- δ/3 )  

 

Where γ is the gyromagnetic ratio (~42.577 MHz/T), G is the gradient strength (T/m), δ is the 

duration for which the diffusion gradients are applied, and D is the time interval between gradient 

applications.  
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Figure 1: Example of anisotropic diffusion observed from an early diffusion experiment using 
the Stejskal & Tanner spin echo technique on the mineral biotite vermiculite swollen in a capsule 
of water. The variable R is analogous to the observed diffusion signal measured as the sample 
was rotated relative to the applied radiofrequency gradient. The molecular structure of 
vermiculite forms sheets, and 0° is perpendicular to the sheet direction. Figure appears in Boss 
& Stejskal (1968)36.  
 

 
 

Figure 2: (A) Diffusion coefficient vs. time interval between gradient application (D) and 
gradient duration (d), the variables typically varied in modern b-values (as displayed is Eq. 2). 
Each graph shows a different diffusion coefficient response with increasing ‘b-value’ in three 
muscles of Rana pipiens. Symbols refer to different samples and diffusion sequences, “smooth 
curves were drawn by eye”. Figure adapted from Tanner37. (B) Chart describing the relationship 
between signal amplitude and gradient b-value from a modern diffusion experiment. This shows 
how multiple b-value shells can be useful for discriminating signal from different tissue types in 
the brain. CSF signal will be brightest on b0 images but at higher b-values signal will primarily 
be obtained from WM. Figure adapted from Jeurissen et al.,10.  

A B 
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Many of the early experiments calculating the diffusion coefficient followed along the idea that 

the object under study could be rotated within the magnetic field to determine which angle was 

the direction of primary diffusion, as in the experiment referenced in Figure 117,36,37. In liquid or 

mineral samples with simplistic underlying geometry this was acceptable, but in brain tissue and 

skeletal muscle the microgeometry is extremely complex and spatially heterogenous, with many 

different cell types and structures present especially throughout the brain. In brain white matter 

in particular, the myelin sheaths surrounding axons restrict diffusion along a narrow angular 

direction, imposing anisotropic movement, as opposed to the isotropic diffusion (i.e. lacking a 

specific summation vector and occurring relatively equally in all directions), that occurs in pure 

fluid38,39. Diffusion coefficient measurements along a single direction are not sufficient to 

spatially resolve these complexities38.  

 

Portraying Diffusion in 3D: The development of the diffusion tensor model 

 

 A crucial advance in relating the magnitude of diffusion to the underlying tissue 

environment came with the application of the tensor19. This allowed for an objective, orthotropic 

description of diffusion on a voxel-wise basis, and due to the relative ease of computation and 

the variety of derivative measures has rapidly become one of the primary mathematical models 

for analyzing diffusion MR in the neuroimaging community.  

 

 Tensors in diffusion imaging are defined as geometric objects composed of three primary 

vectors and their orientations, referred to as eigenvalues and eigenvectors, respectively19. These 

compose a matrix of directionality and magnitude displayed in Eq. 3: 

 

(3)                                         ! = 	[%'	|	%(	|	%)]	 (
)' 0 0
0 )( 0
0 0 ))

+ 

 

Where l represents each of the primary ADC magnitude eigenvalues and e represents each 

orthonormal eigenvector, orienting the tensor so that )' is maximized. This allows the principal 
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eigenvector (l1), which has the greatest diffusivity, to define diffusion along the principal 

direction, or axis, of a fiber tract. This is occasionally referred to as the axial diffusivity. The 

next two largest eigenvectors define diffusion along the two remaining orthotropic axes, and 

when averaged together are referred to as radial diffusivity2,40. Eq. 3 includes six independent 

elements and thus requires at least six non-colinear gradient directions in order to fully 

reconstruct each tensor19 and the model can be expanded to combine information from multiple 

different b-values41.  

 

 One of the most straightforward examples of the utility in using radial and axial 

diffusivity appears in studies of multiple sclerosis (MS). MS involves an immune response that 

damages the integrity of myelin that surrounds WM axonal tracts in the brain42. When this 

occurs, the previously highly impermeable myelin barrier allows water molecules to move with 

greater freedom perpendicular to the direction of principal diffusivity, increasing the radial 

diffusivity without decreasing the axial diffusivity43,44.  

 

 Axial and radial diffusivity can be accounted for in a single relative measurement 

describing the degree of anisotropy for the tensor by calculating the Fractional Anisotropy (FA) 

proposed by van Gelderen et al.,45. This formula (Eq. 4), is the standard deviation of the three 

ADC eigenvalues divided by the average ADC:  

 

(4)                                ,- = 	
*)((,!-∑[,])

"
2(,"-∑[,])

"
2(,#-∑[,])

"
)

*((,!"2,""2,#")
 

 

This creates a single scalar measurement to describe the overall diffusion pattern within a voxel. 

FA scales from 0-1, with 0 being perfectly isotropic and 1 being perfectly anisotropic, making 

interpretation relatively simple. Mean Diffusivity is another commonly cited diffusion tensor 

derived metric. It can simply be calculated as the average magnitude of the eigenvalues (for a 

full review of simple tensor-based measurements see Soares et al.,46).  

 

The orientation or directionality of WM fibers has become commonly visualized via the 

tensors themselves, or by tractography. Tractography of tensor-based diffusion models typically 
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involves the drawing of paths along the primary eigenvector direction in a step-wise function4. 

Visualizing this directionality has generally become standardized along an R-G-B color channel 

setup where each color channel represents directionality in the X-Y-Z plane. Bihan47 attributed 

this visualization scheme to have originated with Nakada et al.48, and it was formalized by 

Pajevic & Pierpaoli,49. It has become widely adopted in the diffusion community that red 

represents left-right directionality, green represents anterior-posterior directionality, and blue 

represents superior-inferior directionality.  

 

Criticisms of Tensors for Evaluating dMRI Data 

 

 One of the fundamental flaws with the basic tensor model of diffusion representation is 

that a single ellipsoid, while elegant, cannot describe the complex patterns of diffusion created 

by brain structure. Diffusion along neuronal axons is, by nature, anisotropic with the primary 

direction of diffusion following the direction of the fiber and myelin and cellular boundaries 

preventing water molecules from moving as easily in a radial direction. This model works well 

when there is a homogeneous sub-voxel orientation of WM fibers. However, when isotropic 

signals arising from GM or CSF tissue is present in the same voxel the tensor must still represent 

these mixed signal forms with a single ellipsoid. Even more damaging to tensor models is the 

effect that occurs when multiple directions of WM fibers are present in a single voxel. This is 

commonly referred to as the issue of ‘crossing fibers’ and can eliminate nearly all directional 

information by compacting the tensor into a flat disc50. This is essentially a failure of the model, 

as the typical diffusion tensor measurements such as FA are unable to provide meaningful 

values. This can be seen in an example of Wallerian degeneration, where a loss of WM fibers 

appears less serious in different brain regions due to the underlying directional pattern (Figure 3) 

and not due to the actual change in underlying tissue51.  
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Figure 3: Example of changes in diffusion measurements in patients following infarction 
showing how the Wallerian degeneration appears different and is dependent on the pre-injury 
directionality of WM in an ROI. The greatest change is in FA, when in the cerebral peduncle the 
affected side of the brain shows a significant decrease in FA, but in the rostral pons there is no 
significant drop even though both areas have experienced loss of neurons from the primary 
motor pathway. Figure adapted from Pierpaoli et al.,51.  
 

The directionality of WM fiber representations can also suffer when the underlying fiber 

distribution is not uniform due to curved fibers that are not linearly oriented within a voxel, such 

as in the ucinate fasciculus or in pyramidal projections27,52. Because of the construction of tensors 

as three vectors tied to a central point, the only way the model is capable of portraying these 

inhomogeneities is by widening the second or third eigenvalue. These crossing or multiple fibers 

are extremely common in the brain, and it has been estimated that up to 63-90% of WM voxels 

in the brain have more than one WM fiber orientation53. This indicates that the physical problem 

is widespread, but the underlying mathematical model is also the source of error. Further 

mathematical issues have been comprehensively described by Wheeler-Kingshott & 

Cercignani26, where theoretical tensor matrices can be easily manipulated and the effect of 

simple ratio changes between the three eigenvalues in opposite dimensions can have identical 

effects on the summary FA and mean diffusivity values.  

 

Modeling Brain Microstructure Using dMRI 
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The shortcomings of diffusion tensor analysis have led to the creation of a number of 

other models that have attempted to either correct a particular problem inherent to the original 

single tensor model or take advantage of new developments in sequence design and acquisition. 

As more powerful scanners and computational resources became available, it was proposed that 

increasing the angular resolution by adding more gradient directions would provide a clearer 

spatial description of tissue structure in the brain54. This eventually became known as high 

angular resolution diffusion imaging (HARDI) and with the enhanced resolution of crossing 

fibers was able to demonstrate that fiber orientation was frequently heterogenous within certain 

WM regions such as the forceps minor, fascicle base of the frontal gyri, and where the callosal 

striations crossed the projections of the superior frontal gyrus55. With the idea of crossing fibers 

becoming particularly acute, the field attempted to move into more complex models of diffusion 

that took the microstructure of the brain into account in interpreting the diffusion signal. This led 

to the creation of several models such as multiple tensor56,57, models that define specific shapes 

for the tensors to represent specific tissues of interest, such as ball and stick23, or Free Water 

Elimination24. Some models use the idea of intra- and extra-cellular compartments based on if the 

distance of diffusion is hindered or totally restricted such as CHARMED21. Neurite Orientation 

Dispersion and Density Imaging (NODDI) represents neurites and dendrites as sticks and uses 

the non-Gaussian signal response at high b-values to estimate neurite density58. Other methods 

attempted to fit probabilistic tracts to the tensors in order to re-create the heterogenous directions 

without a new model59. For a review in detail of many of these models see Seunarine & 

Alexander,60. Though there is a wealth of models currently proliferating in the field, the 

remainder of this review will focus on two models in particular that have become widely used in 

the field of diffusion microstructural imaging, and that add a key component beyond WM 

modeling. This is the free diffusion of water, and importantly, the ability to determine the 

fraction of freely diffusing water from the diffusion signal at the voxel level.  

 

Free Water Imaging 

 

 As discussed previously, isotropic CSF signal can be thought of as ‘contaminating’ the 

anisotropic signal from single axonal fibers. This effect reduces FA and makes the true 
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directionality of the underlying WM fibers more difficult to discern. In an attempt to reduce this 

effect, Paskternak et al.,24 designed a bi-tensor model of diffusion (Eq. 5) including two 

compartments (C), a tissue compartment composed of a variably shaped tensor (Ctissue), and a free 

water compartment composed of an isotropic tensor of fixed diameter (Cwater): 

 

(5) -34-56789:(!, 0) = 	25488;6 + 2<=56: = 0-5488;6(!) + (1 − 0)-<=56: 

 

Where the attenuated diffusion signal A , composed of the signal from brain tissue and free 

water, is described by the tissue tensor D modulated by the tissue volume fraction f24.This 

equation is then solved for the tensor D and tissue volume fraction f that minimizes the 

difference from the observed signal using a linear least squares metric. This outcome of 

implementing this model was both an improvement to WM fiber tracking by increasing the FA 

of tissue voxels (demonstrated via tracking the connection between the hippocampus and fornix), 

and the successful delineation of edema from the solid tissue components of a malignant 

meningioma24.  

 

 While this method was initially termed Free Water Elimination, relating to the 

improvement of WM tractography once the contaminating free water signal was detected and 

eliminated (Figure 4), it was quickly realized that the volume fraction of free water itself could 

serve as a useful biomarker for brain tissue integrity. This model assumes that altered fractions of 

freely diffusing water present in areas of brain tissue results from a change in the cohesiveness of 

brain tissue, allowing CSF to infiltrate into spatial areas previously occupied by cellular 

boundaries. If the cellular membranes are removed, either through cell death or a non-specified 

increase in permeability, the volume of water molecules present will present a signal profile 

more alike to unrestricted diffusion61.  
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Figure 4: Visual demonstration of the application of the Pasternak (2009) bi-tensor Free Water 
Elimination model to an acquired uncorrected diffusion signal. This free water-corrected, tissue 
compartment tensor, has an increased fractional anisotropy (FA) and a decreased mean 
diffusivity (MD) compared to the original, uncorrected signal. Figure adapted from Duering et 
al.,62.  
 

 Free water volume fraction was examined in the context of Parkinsonism as a potential 

non-invasive biomarker for disease progression7,25,63,64These studies specifically examined the 

free water content in the posterior substantia nigra, a region containing dopaminergic neurons 

known to degenerate severely in Parkinson’s disease65,66. By making use of the publicly available 

Parkinson’s Progression Marker Initiative longitudinal cohort67 as well as data from a local 

population, Ofori et al.25 found that free water was significantly increased in the posterior 

substantia nigra in patients with Parkinson’s disease compared to controls. The level of free 

water in the posterior substantia nigra was then found to increase in patients with Parkinson’s 

disease when followed longitudinally over one to four years while controls showed no significant 

change7,63. Additionally, the initial level of free water, and subsequent increase in the amount of 

free water, correlated with several symptom severity measures such as the Montreal Cognitive 

Assessment7,68, and the Hoehn & Yahr movement scale63,69. 

 

 It should also be noted that a study using the same publicly available cohort to analyze 

the substantia nigra using traditional FA measures, mean diffusivity, and radial diffusivity, and 

was unable to find a difference between subjects diagnosed with Parkinson’s and healthy 
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controls70, demonstrating the potential value of free water infiltration. The importance of free 

water infiltration was additionally demonstrated by Duering et al.,62 who found that changes in 

FA and mean diffusivity found in the WM of patients with small vessel disease were driven by 

changes in FW volume fraction and not by changes in the WM itself.  

 A number of publications have also examined free water volume fraction and found 

altered volume fraction, or altered WM measures following free water elimination; in the context 

of schizophrenia71–76 depression77, bipolar disorder78, and mild traumatic brain injury79. 

 

Criticism of Tensor-derived Free Water Imaging 

 

 The method described by Pasternak et al,24 has been valuable for demonstrating the 

usefulness of freely diffusing water in a neurobiological context, however beyond the 

shortcomings inherent to tensor-based methods that have been discussed earlier in this review, 

the method by which freely diffusing water is modeled is not valid in all cases. Additionally, the 

construction of the bi-tensor model of brain tissue can suffer from misidentification of tissue 

compartment due to an overly stringent classification of freely diffusing water. This 

misidentification results in the assigned compartments’ flipping classification, and the freely 

varying tissue tensor instead describing the signal from CSF. This leads to an obviously visible 

artifact in areas of high free water volume fraction (Figure 5) and is likely a major contributor to 

the finding that the accuracy of free water measurements can vary considerably (reproducibility 

error ranged from 5.2% (±3.6%, S.D.) - 18.2% (±11.6%, S.D.) across ROIs in a test-retest 

cohort) with the highest degrees of variability found in the superior fronto-occipital fasciculus 

and the uncinate fasciculus80. High variablility was also found in larger regions like the middle 

cerebellar peduncle (5.5% (±5.1%, S.D.). The heterogenous WM geometry of these regions may 

be playing a role in this variability (they have many fanning and curved WM tracts, 

respectively81), but for a measure that purports to quantify a directionless, isotropic phenomena it 

is concerning.  
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Figure 5: Image demonstrating the variability in free water volume fraction, particularly in the 
ventricles. The high voxel to voxel variation suggests that the CSF present is not meeting the 
exact classification of free water used in the algorithm, rather than there being pockets of tissue 
present within the ventricles of a healthy control subject. Figure adapted from Pasternak et al.,24. 
 

 The primary reason for this occurrence likely results from the overly stringent definition 

of freely diffusing water hard coded into the free water elimination algorithm. Pasternak et al.,24 

states that the attenuated diffusion signal for tissue (Atissue(D), Eq. 5) should be equal to the 

definition of a tensor (Eq. 6) taken from Pierpaoli & Basser3: 

 

(6)                                       [-5488;6(!)]% = exp	(−9	:%
" 	!	:%) 

 

Where k represents the k’th gradient direction, b represents the b-value, qT represents the 

obtained orientation matrix and q represents the identity matrix used to reorient the tensor to 

align the maximum eigenvalue. Based on this equation, Pasternak et al.,24 modified the Awater 

representation to evaluate isotopically diffusing water, since the magnitude of unrestricted freely 

diffusing water molecules should, on average, be equal in all directions. This allows for the 

removal of the eigenvector terms and for the holding of each eigenvalue equal (l1 = l2 =  l3) 

(Eq.7) resulting in a much more computationally simple equation:  

 

(7)                                              [-<=56:]% = exp	(−9	;) 
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Where b is the b-value and d represents a single, isotropic diffusion coefficient. Pasternak et al.,24 

sets the diffusion coefficient to 3 x 10-3 mm2/s, which is the diffusion self-coefficient of water at 

370 C. This was the division between CSF water and tissue proposed in bi-tensor model that 

briefly appeared in an abstract written by Pierpaoli & Jones82. That model had two independently 

varying tensors, one to capture CSF contamination and one to capture tissue, with the division 

between the information represented by the tensors being the fixed magnitude.  

 

 This simple, fixed diffusion coefficient follows Einstein’s18 equation (Eq. 1) which, when 

mathematical constants are removed, only has two variables that contribute toward variation in 

diffusion coefficient: temperature and viscosity. Viscosity itself, is dependent on pressure and 

temperature (Figure 5) as shown by classical physics experiments83. It has also been found that 

intracranial pressure varies in different parts of the brain (Figure 6) by insertion of a catheter into 

a patient84. This experiment showed that pressure can vary between a maximum of 190 mm. 

water to a minimum of -15 mm. water relative to atmospheric pressure across different 

microenvironments of the brain (Figure 6b). This is relatively mild compared to the full 

measured curves of possible viscosity, but this may drive the diffusion coefficient of water in the 

brain away from the stringent 3 x 10-3 mm2/s fixed isotropic water tensor. 

 

 

A B 
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Figure 6: (A) Plot demonstrating the relationship between temperature, pressure and viscosity 
for water. Note that the intracranial pressure due to CSF sits at around 1,000 kg/cm2 84. Figure 
adapted from Bett & Cappi83. (B) Diagram showing the pressure as mm. of water relative to 
atmosphere determined by catheter insertion into in-vivo human brain. Figure adapted from 
Bradley84. To relate the deviation from atmosphere in panel B to the chart in panel A, 100 mm. 
water is equivalent to 0.01 kg/cm2, while 1 atm is equivalent to ~1033 kg/cm2.  
 

 The other component of Einstein’s self-diffusion equation (Eq. 1) that varies enough to 

affect the output is the temperature. Pasternak et al.,24 assume the self-diffusion coefficient to be 

the assigned value at the standard human body temperature of 37°. This has been found to be 

both fairly variable (34.9°C to 37.1°C (median 36.5°C)) between individuals using in-vivo MR 

thermometry measurements of the brain85. These variations in temperature add variation to the 

actual self-diffusion coefficient of water that is attempted to be fit by the model. These variations 

have been known for some time, with CSF diffusion coefficient measured in-vivo in one 

experiment to be 2.5 x 10-3 mm2/s in a healthy control and was then measured to be 3.5 x 10-3 

mm2/s in a patient with hypertension86.  

 

 Given these variations, the free water elimination model remains relatively robust 

because the tissue signal in WM tends to be sufficiently anisotropic that the linear least squares 

equation that solves for f (Eq. 5) will settle on a best fit that approximates the direction of tissue. 

However, the greatest issue for the model comes when the isotropic free water volume fraction 

approaches a majority of the voxel. If the free water self-diffusion coefficient is not close enough 

to a magnitude of 3 x 10-3 mm2/s then the best fit is to use the variable tissue tensor to fit the 

freely diffusing water as is visible in Figure 5. The issue is not necessarily in fitting a single 

value to every water diffusivity, it is that if it is not exactly fitted, the freely varying tensor may 

incorporate this less than ideal free water diffusion signal to minimize the overall linear least 

squares equation. It is also important that the f term is used to account for both tissue and water 

volume fractions, this results in a model that potentially encourages pushing the f term closer to 

1 if the difference between actual free water self-diffusion and the fixed isotropic tensor 

contributes more error than can be made up by warping the tissue tensor.  

 These issues collectively cause a large degree of test-retest error. The single reliability 

study published, Albi et al.,80 looked specifically at WM tracts, which theoretically, where a 

model like free water elimination should be free from interference by isotropic GM signal. 
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However as mentioned previously, this still did not lead to good reproducibility in free water 

volume fraction. This suggests that there is room to develop a new method of quantifying brain 

structure from diffusion imaging that is more reliable, more adaptable to heterogeneous tissue 

signal profiles, and can separate the isotropic CSF and GM tissues.  

 

Constrained Spherical Deconvolution 

 

 First developed as a model-free way to describe the direction and degree of diffusion 

across a sphere using spherical harmonics9, Constrained Spherial Deconvolution (CSD) has seen 

success in providing detailed quantitative information regarding the signal from diffusing water 

obtained from HARDI protocols11,87. CSD uses a theoretically infinite number of spherical 

harmonics to describe the observed signal, allowing for detailed representation of the observed 

diffusion signal far beyond what is achievable with traditional tensor-based methods (Figure 7). 

The spherical harmonic series that describes the observed signal has an order directly related to 

the number of non-collinear gradient directions collected from the scanner sequence10. In order to 

relate this signal representation to the underlying tissue microarchitecture, we can posit the 

observed signal as the convolution of a response function, a unique prototypical diffusion profile 

from a category of tissue, and the fiber orientation distribution (FOD), how the set of response 

functions are oriented to compose the observed signal. The FOD is crucial for the determination 

of white matter fiber tract orientation, in which myelin sheaths impermeable to water impose a 

directionality on molecular diffusion within the axon. The orientation of the response function is 

not obviously not required for tissues with isotropically diffusing profiles, however the 

amplitude of the observed isotropic signal varies across b-value shells due to the inherent 

properties of the tissue10. This both aids in discrimination between the sources of isotropic signal 

as well as reduces the isotropic signal compartments to a scalar signal fraction.  

 

 Dhollander et al.,88 developed a means of selecting response functions from three 

different tissue compartments in the brain defined by the varying pattern of diffusion which 

appear to reflect commonly assumed divides in brain tissue: white matter (WM), grey matter 

(GM), and cerebrospinal fluid (CSF). By relying on exclusively the signal gained from the 

diffusion images, this algorithm involves calculating a signal decay metric (SDM), which 
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calculates the degree of signal intensity change between b-value shells in each voxel, Eq. (7)89. 

The SDM is additionally weighted toward shells containing more images in multi-shell data88.  
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This intensity decline is largest in voxels containing CSF, allowing for a quantitative means to 

identify voxels entirely or close-to-entirely composed of CSF, and thus obtain a CSF response 

function88. For WM, fractional anisotropy (FA) values were calculated across each voxel. CSD 

requires a single fiber response function in order to determine the contribution of WM to the 

observed signal. Thus, knowing voxels with a high degree of FA are likely composed of a single, 

identically oriented fiber population, the 0.5% of voxels with the highest FA values were 

selected to compose the WM response function. The GM response function was calculated by 

first separating out all voxels likely composed of WM via an FA threshold (0.2). The remaining 

voxels are additionally separated from CSF via the earlier described signal decay metric88 at a 

point determined by an optimal thresholding algorithm that compares intensity values between 

shells89. Exemplar GM voxels are selected as the 2% of remaining voxels closest to the median 

SDM value.  

 

 These response functions are then used in multi-shell, multi-tissue, constrained spherical 

deconvolution (MSMT-CSD) as described in Jeurissen et al.,10. MSMT-CSD expands upon the 

linear least squares CSD equation to include matrix terms for each included tissue type and each 

b-value shell at each voxel as well as imposing a non-negativity constraint as a soft regularizer to 

relate the relationship between the spherical harmonic representation and signal amplitude10,11,87.  

Eq. (8) displays this function for the FOD coefficients f in n tissue types, across i shells related to 

the observed signal m.  
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The presence of a term to relate the amplitude of the observed signal A to the coefficients 

generally provides for positive FOD coefficients. However, this imposes a limitation on the 

algorithm used to solve the CSD equation: if there are less than 2 non-zero b-value shells present 

in the diffusion data, the cost function inherent to the algorithm will assign a value close to 0 to 

the GM compartment. This has recently been overcome using an iterative approach developed by 

Dhollander & Connelly,90 where MSMT-CSD is applied on 2 tissue types at a time, utilizing a 

specialized optimizer to alternate between estimations of WM-GM and GM-CSF with the third 

tissue compartment successively acting as a constraint. This method has been termed Single-

Shell 3-Tissue (SS3T) and has been demonstrated to improve the analysis of single-shell 

diffusion data to a level comparable to that of multi-shell data when the highest shell b-value is 

equivalent90,91.  

 

3-Tissue Constrained Spherical Deconvolution 

 

 Solving the above equation (Eq. 8) for a single set of response functions provides a 

coefficient matrix [f1] -  [fn] which, following summing all present tissue coefficients to 1, can be 

understood as the fraction of the total signal observed in each voxel arising from either the WM-, 

GM-, or CSF-like compartments (Figure 7).These signal fractions are potentially of great 

biological interest, as the fraction of signal arising from each tissue compartment could be used 

to infer differences in the underlying microarchitectural arrangement of brain tissue92. This has 

been utilized to examine tissue changes in WM in patients diagnosed with Alzheimer’s disease 

and presenting with WM hyperintensities, finding that the tissue signal fraction from CSF was 

significantly elevated in periventricular WM hyperintensities compared with healthy WM. 

Additionally, it was found that within WM hyperintensities that appeared homogenous on MR 

images obtained with a FLAIR sequence displayed a heterogenous distribution of tissue types 

within them91. This illustrates a particular strength of the scalar signal fractions derived from 

MSMT-CSD: because the measure is calculated on a voxel-wise basis it can be used to evaluate 

tissue properties in a quantifiable manner between or within ROIs91,92. 
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Figure 7: (A) Representative axial images of a T1-weighted MPRAGE and the GM-, CSF-, and 
WM-like tissue compartments derived from the diffusion weighted images of a single subject 
using 3-tissue constrained spherical deconvolution. This represents an improvement over 
discriminate assignment of T1-weighted voxels to a single tissue type based on gross intensity93 
because the sub-voxel contributions of each tissue type are represented in each voxel. (B) 
Example difference between a tensor representation (top) and a spherical harmonic FOD from 
3T-CSD (bottom) taken from the same voxel in the frontal lobe of a healthy control subject 
(unpublished data). Note the additional direction present in the FOD that is not present in the 
tensor indicating the presence of a crossing WM fiber.  
 

 CSD-derived 3-tissue compartments are a promising, noninvasive method for exploring 

tissue composition in the brain. The utilization of state-of-the-art CSD approaches toward 

analyzing tissue composition should hold advantages over tensor-based methods such as Free 

Water Elimination24 which suffers from unreliable estimates (reproducibility error ranged from 

5.2-18.2% across ROIs in a test-retest cohort) for the free water volume fraction equivalent of 

the CSF compartment80. Additionally, MSMT-CSD is able to evaluate signal contribution from 3 

tissue compartments, providing more depth and detail for evaluating brain tissue 

microarchitecture. With the advances provided in SS3T, it is also able to provide signal 

contribution from the full 3 tissue compartments using data with only one non b0-shell, allowing 

for a broader range of input data compared to other 3 tissue compartment models such as 

NODDI58. In a recent review of microstructural diffusion imaging applied to psychiatric 

A B 
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disorders, Pasternak et al.,8 illustrated the acquisition sequence complexity compared to the 

number of microstructure compartments evaluated for several common dMRI analysis 

techniques. Addition of SS3T and MSMT-CSD clearly demonstrate the wide range of applicable 

data suitable for analysis as well as the full range of compartmental information available as 

output compared to other techniques (Figure 8). 

 

 
 

Figure 8: Chart adapted from Pasternak et al.,8; comparison of common DTI metrics to CSD 
derived quantitative signal fraction by complexity of acquisition (y-axis, acquisitions become 
more complex as they descend) and number of output compartments analyzed (x-axis, more 
compartments are analyzed toward the right). Methods derived from DTI follow blue lines, while 
methods derived from CSD have been added to the original image in red. MSMT-CSD is suitable 
with either single or multi-shell diffusion data for obtaining 2 or 3 tissue compartments, 
respectively10. When performed iteratively as part of SS3T-CSD, all 3 tissue compartments can 
be obtained using single shell data90. This demonstrates the potential utility of CSD derived 
methods to quantitatively measure data from multiple tissue compartments in commonly 
available diffusion sequences.    
 

For each subject, the FOD were intensity normalized in the log-domain so that the summed 

density of the three compartments averaged N1/(4Q). This had the additional benefit of 

removing residual bias field effects94. Each subject’s three FOD compartments were then 

summed to equal 1 in order to generate the final tissue signal fraction maps. For any averages of 

the CSF-like compartment our lab first sums in native subject space the tissue compartments 

from GM- and WM-like tissue in order to generate a tissue signal fraction. We then threshold 
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that tissue signal fraction at 50% in analyze the CSF-like signal in the voxels that remain. This is 

performed in order to remove global effects from the size of the ventricles and subarachnoid 

space, and to specifically examine the CSF-like tissue compartment that has infiltrated the tissue 

of the brain.  

 

Criticism of CSD 

 

 The primary criticisms of CSD-based analysis in regards to accuracy (there has also been 

considerable criticism of analysis time, especially early after CSD was introduced, but these 

criticisms have been greatly reduced with the proliferation of faster computing) is that CSD can 

be overly sensitive to directional noise. One particular area of concern has been noted as the 

generation of ‘false-fibers’ on tracking algorithms due to spurious fODF peaks95–97. While some 

studies using recent methodological improvements in both CSD, as well as validation using 

simulations or histology, have suggested that the prevalence of false-fibers in CSD is oversold 

compared to other methods98,99. In our lab’s reliability study 3T-CSD demonstrated excellent 

reliability across all compartments, suggesting that if false-fibers are present, they are not a large 

enough component of the overall signal in each voxel to introduce significant amounts of 

noise100. Additionally, by evaluating each compartment as a simple scalar value, errors in 

directional fiber orientation are negated. 

 

 Additional criticisms have focused on the use of a single response function to represent 

entire classes of tissue that may be quite heterogeneous in structure. Though similar to criticisms 

of the free water elimination method already discussed, CSD allows for variation in the 

magnitude of signal from each compartment, as well as changing magnitudes across b-value 

shells for better identification and matching of signal patterns. The lack of a spatially variable 

compartment ensures that all signal is assigned into the compartment that best matches the 

pattern established by the response function. As demonstrated by Pietsch et al.,101 additional 

subtypes of response function can be utilized to discriminate between heterogeneous tissue sub-

types, for instance two classes of WM in that example. The use of the selection algorithm from 

Dhollander et al.,88 allows the response functions to be obtained directly from the diffusion 

image being analyzed, allowing for flexibility with different subject populations or acquisition 
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parameters. These advances allow 3T-CSD to be flexible to different datasets and applications 

while maintaining robust and reproducible analysis100.  

 

Preprocessing of Images 

 

 The following preprocessing steps have been implemented in our lab’s pipeline for 

performing 3-tissue CSD. These correct for both common sources of error present in all MR 

imaging modalities (such as subject motion and susceptibility distortions) as well as sources of 

error with unique properties regarding diffusion imaging (such as the relationship between non-

colinear gradient directions and eddy currents). These preprocessing steps are largely similar 

with those in other recently published works101,102 and all of these algorithms are implemented 

using the software packages MRtrix103 and FSL104,105, both of which are free to use and installable 

on any Unix capable computer.  

 

Denoising 

 

 Due to the relatively long gradient application time inherent in diffusion imaging 

sequences17, images suffer from loss of signal due to intrinsic factors such as T2 decay and 

thermal fluctuations. This results in a low signal to noise ratio, making noise correction 

essential106. Due to the intrinsic nature of the noise being largely built into the sequence itself, it 

becomes necessary to perform a denoising step post-acquisition. Images were denoised using a 

Marchenko-Pastur distribution based principal component analysis technique that suppresses the 

effect of signal fluctuations107.  

 

Gibbs Ring Removal 

 

 Diffusion imaging, like most MR imaging modalities, is reconstructed from a spatial 

frequency domain referred to as k-space. This space is sampled in a regulated way during signal 

acquisition and is then reconstructed using a Fourier transform108. There is an inherent conflict 

between the sinc-function that composes the Fourier transform and the step-wise magnetic field 

gradients applied in diffusion imaging17. The oscillation pattern of the function can over- or 
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under- shoot the edges of the stepwise function, depending on the truncation of k-space109. Gibbs 

rings can be removed by reinterpolating the image to sample at different, zero-crossing points, of 

the intersection between the oscillating sinc-function performed by the Fourier transform and the 

stepwise function109.  

 

Susceptibility Distortion, Eddy Currents, and Subject Motion 

 

 These three separate sources of error are corrected in a single preprocessing function 

implemented by Andersson & Sotiropoulos110 as the interplay between two components of FSL. 

Susceptibility distortions occur due to the presence of the subject within the magnetic field. 

Organic matter is non-ferrous in nature but can still interact with, and distort, the magnetic field 

by virtue of its own electromagnetic properties. These properties can differ between types of 

tissue, or at the boundaries between tissue and liquid or air-filled space111. These distortions can 

be significant enough to significantly alter image quality, including resulting tractography112. 

Eddy currents are caused by application of magnetic field gradients. Diffusion imaging applies 

magnetic field gradient pulses in larger magnitude and for a greater duration than other MR 

imaging modalities, making it particularly susceptible to eddy current induced image 

distortions113.  

 

Gross subject motion is a problem in every MR imaging technique, and dMRI is 

especially sensitive given that diffusion imaging is specifically designed to measure motion on 

the molecular scale. If motion does occur between gradient applications, the subject’s head will 

need to be self-registered to the same spatial location between each gradient application. 

However, if the subject moves while the gradient is being applied, the resulting signal frequency 

will move outside the k-space frequency sampling range and no signal will be recorded114. This is 

referred to as signal dropout, and the best attempt should be made to re-run the sequence on the 

subject if severe information loss is observed during the scanning session. It is not uncommon 

though, to have a small number of gradient directions affected by movement, especially in 

certain subject populations such as young children or individuals with motion disorders.  
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 Two FSL program commands, termed topup and eddy, together perform the necessary 

corrections for susceptibility distortion, eddy currents, and subject motion104. Topup reconstructs 

the off-resonance field by warping the non-colinear gradient directions to minimize differences 

via a sum-of-squares equation115. This information is used by eddy to correct for susceptibility 

distortions. Eddy however is also involved in the correction of eddy currents and subject 

movement, conveniently performing all of these actions within a single, simplified package110. At 

the heart of this tool is a Gaussian Process that models the diffusion signal according to the 

assumptions: 

  

a. The signal from each direction should equal the signal from the inverse direction (i.e. the 

opposite phase-encoding direction). 

b. Gradient directions along two vectors that have a small angle between them result in 

acquisitions that are more similar than vectors with a large angle between them.  

 

This is used to create a predicted signal intensity at each voxel for each b-value shell acquired110. 

This predicted diffusion signal can then be used to replace erroneous voxels such as those 

affected by motion-induced signal dropout. Voxels that have suffered from total signal dropout 

due to motion can be detected by a simple test of signal intensity being below a set number of 

standard deviations from the mean 116.  

 

Upsampling 

 

The final preprocessing step prior to CSD-related analysis involves upsampling the diffusion 

images to a ‘super-resolution’ for higher image contrast and quality. In our lab we upsample all 

diffusion images to 1.3mm isotropic voxels as this has been recommended by the MRtrix team 

and performed by other research groups 102,117,118. Brain masks were obtained for all subjects in 

the upsampled space by first converting the images for use in FSL and performing a recursive 

application of the Brain Extraction Tool 119,120.  This allowed for faster processing time and a 

restriction of all analysis to the brain tissue.  

 

Applications of 3-tissue CSD 
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 One of the first applications of 3T-CSD was performed by Dhollander et al.,92 

demonstrating the detection of white matter hyperintensities in Alzheimer’s disease patients. 

This was work was expanded by Mito et al.,121 which found that the white matter hyperintensities 

displayed different profiles of tissue depending on location. White mater hyperintensities 

proximal to the ventricles showed a higher level of freely diffusing water (CSF-like signal 

fraction) than white matter hyperintensities located in the deep white matter. In this context, 3T-

CSD was able to both locate and characterize the hyperintense lesions in WM. Mito et al.,91 went 

further to show that this same pattern held in healthy controls with white matter hyperintensities 

and that 3T-CSD could be used to show that the CSF-signal fraction increased in a distance 

dependent manner with distance from the ventricles.  

 

 Other areas of research performed by other groups include using 3T-CSD in developing 

newborns, to measure the progression of WM maturation in these neonates and to examine the 

change in CSF-like signal fraction throughout early adolescence122. Publications have also 

examined results from 3T-CSD in delineating tissue types in tumors. This is a particularly well-

suited application as the output from 3T-CSD can be used to examine the extent of edema for 

example, and the areas of the brain affected, but also the spherical harmonic FODs generated can 

be used for tractography and thus surgical planning. 3T-CSD was able to perform this analysis 

even inside infiltrating gliomas123.  

 

 Our lab has first focused on studying the reliability and stability of 3T-CSD to ensure that 

measurements derived from the signal fraction analysis are reliable enough to be useful in 

longitudinal studies as a quantitative biomarker and will not bias results when used in patient 

populations. This was evaluated using a test-retest design, and study measures in this work were 

evaluated over three separate cohorts of healthy control subjects. Two of these cohorts were 

collected by our lab as part of separate studies and one cohort was collected as a test-retest 

sample from a publicly available dataset: the enhanced Nathanial Kline Institude (eNKI), 

Rockland community study, part of the 1000 Functional Connectomes Project124. These cohorts 

differed in image quality (for example, the first two cohorts were multi-shell data, whereas the 

eNKI study was single shell), in time scale between baseline test and retest scan, and in subject 
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composition (i.e. one cohort included individuals with prior diagnoses that are known to cause 

changes in brain structure125,126). This gave the study a wide range of factors to test if reliability 

would be affected by common sources of variation in typical control cohorts. The wide range of 

timescales, from the same scanning session to a full 3 months between baseline and rescan, 

allowed for the evaluation of the stability of 3T-CSD derived measurements, a crucial 

component for long-term tracking of longitudinal cohorts. The results from our study are 

presented in Table 1:   

 

Dataset Tissue Subjects ICC Pearson's Rho p-value 

Immediate rescan CSF 59 0.9731 0.9636 <0.001 

 WM 59 0.9868 0.9748 <0.001 

 GM 59 0.9929 0.9868 <0.001 

 LH 59 0.9578 0.9181 <0.001 

 RH 59 0.9376 0.8915 <0.001 

Short timescale (7-60 days) CSF 20 0.9546 0.9281 <0.001 

 WM 20 0.9692 0.9423 <0.001 

 GM 20 0.9852 0.9700 <0.001 

Long timescale (90 days) CSF 52 0.9564 0.9364 <0.001 

 WM 52 0.8157 0.7200 <0.001 

 GM 52 0.8746 0.8024 <0.001 

 

Table 1: Statistical analysis of the 3 test-retest cohorts in the experiment; p-values are calculated 

based on the Pearson’s correlation. For the immediate rescan cohort the left hippocampus (LH) 

and right hippocampus (RH) were selected as ROIs and the CSF signal-fraction was measured 

to examine the reliability of 3-tissue CSD in subcortical structures as well as on the whole brain 

level. CSF levels within the ROI are analogous to Free Water volume fraction measurements 

that have been previously published to examine specific ROIs in pathological conditions24,25. This 

table was adapted from Newman et al.,100.  

 

Each of the measures showed excellent reliability as measured by intraclass correlation 

coefficients (ICC) and Pearson’s correlation100. This was especially reliable in the immediate 
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rescan and short timescale cohorts as well as showing good reliability in the long timescale 

cohort. There was also excellent reliability in the CSF-like compartment within the bilateral 

hippocampus ROI while the measured average of CSF-like signal fraction showed an effect of 

laterality. When averaged across the entire cohort, the average left hippocampus had an average 

CSF-like signal fraction of 3.2% while the right had an average of 4.0%, (ANOVA, F1,232=120.2, 

p<0.001). This demonstrates the potential of 3T-CSD to be sensitive enough to detect 

biologically relevant differences in brain tissue, while still being stable and reliable enough to 

confidently obtain measurements.  

 

Future Directions 

 

 The formulation and development of the existing 3T-CSD pipeline has created a number 

of opportunities for evaluating free water from the CSF-like compartment, as well as the GM- 

and WM-like tissue signal fractions, in a number of contexts. A previous student has focused 

their research on performing grey matter density measurements on a number of ROIs in the 

brains of patients diagnosed with Parkinson’s disease. This has attempted to find a radiological 

marker corresponding to the ascending spread hypothesis proposed by Braak et al.,65. We believe 

that 3T-CSD may be more sensitive to changes in brain microstructure than grey matter density 

due to our recent work comparing the two in a correlation with age related change15. We are 

currently investigating both a longitudinal and cross-sectional database of Parkinson’s disease 

patients in order to investigate the feasibility of the CSF-like signal fraction as a biomarker for 

diagnosis and progression.  

 

 Additionally, corresponding to the work performed by Mito et al.,91 our lab wishes to 

further pursue changes in undiagnosed ‘healthy’ aging and lifespan measures derived from 3T-

CSD. We have begun investigating a subset of the Virginia Cognitive Aging Project, a 

diagnostically healthy aging cohort collected here at UVA. We have observed significant age-

related changes in 3T-CSD signal fractions as well as correlations between CSF-like signal 

fraction across the whole brain and the cognitive trail marking task, a cognitive task known to 

correlate with neuronal degeneration127. Examining which ROIs signal fraction measurements 
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contribute most to performance on the cognitive tasks could identify areas of the brain either 

susceptible to CSF infiltration in aging or identify particularly vulnerable areas.  

 

 Our lab is also interested in the use of extremely large cohorts to examine the effect of 

mild traumatic brain injury (mTBI) on the developing brain. The Adolescent Brain Cognitive 

Development study (ABCD) represents the largest dataset of developing adolescents collected in 

North America128. This size, combined with the narrow age range and longitudinal follow up, 

provide a unique opportunity to apply novel methods such as 3T-CSD to investigate 

microstructural changes resulting from traditionally difficult to detect events, such as mTBI. We 

would predict that the CSF-like signal fraction would be altered in the presence of 

neuroinflammation or injury, potentially giving insight into the previously unknown effect of 

mTBI on developing adolescent brain microstructure.  

 

 A fourth direction concerns the investigation of microstructural changes in focus 

ultrasound (FUS) ablation of the thalamus to treat essential tremor129. This treatment technique 

has recently been adopted as a means to perform non-invasive surgical intervention on over-

active thalamic neurons implicated in essential tremor. However, the surgery is not always 

completely successful and difficult targeting and evaluation challenges remain. It has been 

demonstrated that dMRI can be useful in determining if the FUS ablation damaged targeted WM 

tracts130. But a full microstructural characterization in humans of the cellular process underlying 

the surgery and lesion resolution has not occurred. 3T-CSD analysis could potentially track 

changes in the microstructure and determine why some surgical interventions do not permanently 

treat the condition, and potentially provide detailed information for prospective surgical 

planning.  
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Chapter 1 
Development of 3-Tissue Constrained Spherical Deconvolution 

 

Aim 1: Assess the reliably and reproducibly of 3T-CSD measurements of ICA, ICI, and ECI 

signal fractions as a means of quantifiably assessing brain cellular microstructure from diffusion 

MRI. It will be determined if 3T-CSD measurements are affected by image quality and scanning 

location, if measurements are biased by CSD algorithm selection, and if the underlying CSD 

model can be used to register images to stereotaxic space.     

 

Rationale: Development of a novel dMRI method necessitates testing in a wide variety of cohorts 

and acquisitions to ensure observed effects are reliable, repeatable, and accurate. As there is no 

standard acquisition protocol for dMRI even within research or clinical domains it is important to 

evaluate the effects of acquisition parameters on 3T-CSD metrics and to optimize a protocol for 

future studies. Particularly crucial is the comparison between MSMT-CSD and SS3T-CSD for 

analyzing either multi-shell or single-shell data. As all dMRI acquisitions by definition must 

have at least one non-b=0 shell SS3T-CSD is always an available option for modeling. However 

there may be an advantage to including multiple non-b=0 shells to gain contrast between tissue 

types. Finally, as much of this work will involve comparisons between large cohorts, adequate 

cross-subject registration will be essential for brain parcellation and metric comparison. Both 

CSD methods generate extremely detailed fiber orientation distribution maps that may be 

superior for registration compared to intensity-based techniques.  

 

Experimental Procedures: To meet this aim, several studies will be performed to assess various 

technical components of 3T-CSD analysis. These studies will establish which dMRI acquisition 

factors most influence 3T-CSD metrics, which CSD algorithm is optimal for distinguishing 

between anatomically variable regions, within-site reliability and longitudinal stability, between-

site reliability, and assessment of a novel registration method to warp 3T-CSD maps to 

stereotaxic space: 
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Study 1a: The first step in any neuroimaging analysis is acquisition of the images. There is 

currently no established standard for parameters such as image resolution, b-value shell number, 

value of outer b-value shell, number of gradient directions, or voxel size/shape and it is unknown 

if the effect from different acquisition parameters present in the imaging sequence will be greater 

on 3T-CSD metrics than subject-specific demographic characteristics. This work will be useful 

both for clinical data collected without standardization, and for harmonization of data between 

imaging sites.  

 

 For this study we will utilize a large dataset collected from clinical sources Clinical 

diffusion MRI data were collected from 100 patients with medication-refractory symptoms of 

Parkinson’s disease (PD) at the University of Virginia Hospital prior to the implantation of a 

deep brain stimulator electrode. These images were obtained with one of 27 different 

combinations of 8 separate acquisition parameters, however all datasets had a single non b=0 

valued shell of b=1000s/mm. All subjects have documented demographic information including 

age, time since initial PD diagnosis, Total Movement Disorders Society, Unified Parkinson’s 

Disease Rating Scale (MDS-UPDRS) scores, and Montreal Cognitive Assessment (MoCA) 

scores. Statistical analysis will be performed for the weighted average free water signal fractions 

in each ROI by creating linear models with each subject’s acquisition parameters and 

demographic factors as predictor variables. Stepwise model selection by Akaike Information 

Criterion will be performed to create final models with predictors.  

 

Study 1b: Investigate the utility of SS3T-CSD compared to MSMT-CSD for generating 3T-CSD 

results. SS3T-CSD is more flexible and can be applied to any dMRI dataset because it requires 

only a single non-b=0 shell. For a variety of reasons, both historical and clinical, many dMRI 

datasets have not been collected with multiple non-b=0 shells. To date though there has not been 

a comprehensive investigation into differences between the signal fractions obtained from either 

method. Because diffusion MRI data suitable for MSMT-CSD is also able to be analyzed by 

SS3T-CSD, it is possible to compare outputs of both methods from the same dataset (if it is 

multi-shell). In this work, we evaluate the ability of 3-tissue signal fractions from MSMT-CSD 

and SS3T-CSD in 7 hippocampal subregions to generate contrast between anatomically distinct 

brain areas. For reasons unique to each algorithmic approach, namely that MSMT-CSD weighs 
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each shell and tissue equally (Equation 2), it is expected that SS3T-CSD will generate better 

contrast between hippocampal subregions and be able to distinguish a unique microstructural 

profile from each while MSMT-CSD will be less successful.  

 

Study 1c: Any robust and widely applicable neuroimaging metric must be reliable and ideally 

provides consistent measurements. Equally, if a longitudinal study is being performed comparing 

healthy cohorts to injured or developmentally distinct groups, then any healthy control group 

would ideally provide stable and consistent measurements. The reliability and long-term stability 

of 3T-CSD metrics have not yet been evaluated. This study will examine estimates of whole-

brain microstructure for the three tissue compartments derived from 3T-CSD (ICA, ICI, and 

ECI), in three separate test-retest cohorts. Each cohort had different lengths of time between 

baseline and retest, ranging from within the same scanning session in the shortest interval to 3 

months in the longest interval. Each cohort was also collected with different acquisition 

parameters. By comparing output 3T-CSD measurements using intraclass correlation 

coefficients, Pearson’s correlations, and mean squared difference between images, we will be 

able to determine if the development pipeline and 3T-CSD are reliable and stable analysis tools 

appropriate for use in experimental cohorts.  

 

Study 1d: In recent years a number of large neuroimaging studies have embraced a big data 

approach to allow the investigation of more nuanced factors influencing the brain. Studies such 

as the Adolescent Brain Cognitive Development (ABCD) study128, Human Connectome 

Project131, and UK Biobank132 contain MRI data collected from thousands of subjects across 

multiple locations. Each study has attempted to harmonize acquisition sequences and data 

collection across sites, but differences in scanner setup and sometimes even manufacturer 

remain133. It is currently unknown how data from 3T-CSD signal fractions might vary from site 

specific factors. While Study 1c will establish same-site reliability if 3T-CSD is to be applied to 

data from large multi-site studies it is necessary to test inter-site reliability and compare it to 

same-site reliability. Fortunately, Tong et al.,134 have created a publicly available dataset that will 

allow this study to be performed. Three subjects were scanned at 10 different sites, each 

equipped with the same scanner hardware and using the same sequence. The 3 subjects were then 

scanned in triplicate at the final site, creating 12 images per subject to test reliability between 
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locations134. This study will involve parcellation of the brain into 212 ROIs for detailed analysis 

of reliability across the brain and give insight for studies involving data collected from multiple 

locations.  

 

Study 1e: One of the final processing steps in neuroimaging analysis involves parcellating the 

brain into regions of interest. Automated parcellation techniques are required for large-scale 

studies which potentially can involve thousands of subjects. Parcellation can be readily achieved 

through the registration of neuroimaging subjects to a common stereotaxic space. Images aligned 

with the stereotaxic space allows for comparisons between timepoints, subjects, or with reference 

atlases of regions of interest. Typically, this has been performed by computing a similarity metric 

between the voxel-wise intensity values in the subject image, and a reference image. Computing 

the FODs from either CSD method provides far more detailed voxel-wise information than a 

simple scalar intensity value. This allows for the potential to use this additional information to 

perform registration with added within-tissue contrast. In this study, I will adapt the NTU-DSI-

122 diffusion spectrum template into a flexible platform for the registration of subject images 

into stereotaxic space from a number of other studies and cohorts 135. The reliability and accuracy 

of this FOD-based registration method will be compared to a leading intensity-based registration 

method by registering 3T-CSD cellular microstructure maps from two separate cohorts to the 

NTU-DSI-122 template. Using Sorensen-Dice coefficients at multiple thresholds will measure 

the precise accuracy of the FOD-based registration method. 

 

The studies performed In Chapter 1 will satisfy the goals of Specific Aim 1 and will establish a 

reproducible, reliable, and accurate 3T-CSD pipeline for use in future exploratory studies.  

 

  



 38 

Study 1a 
Title: Investigating the effect of diffusion MRI acquisition parameters on free water signal 

fraction estimates from 3-tissue CSD techniques 

 

Synopsis: The CSF-like free water signal fraction is an advanced diffusion MRI metric 

representing the freely diffusing water in brain tissue. Different methods to calculate the free 

water signal fraction using constrained spherical deconvolution exist but it is still unknown how 

variation in data quality and acquisition affect measurements. Using a large clinical dataset with 

highly variable acquisition schemes, this study shows that the various acquisition parameters 

significantly affect outcome free water signal fraction, though the multi-shell analysis method is 

more susceptible than the single-shell method. This highlights the importance of harmonization 

and quality clinical imaging.  

 

Main Findings 

 

 Free water signal fraction can be heavily affected by inconsistent imaging acquisition 

parameters. Examining the performance of two diffusion analysis algorithms suggests one may 

be more robust, but acquisition harmonization is essential.  

 

Introduction 

  

Free water signal fraction is an advanced diffusion MRI-derived measure of brain 

microstructure that can reliably measure the infiltration of freely diffusing water into brain 

tissue100. It is possible to obtain the free water signal fraction from either single-shell (SS3T-

CSD)90 or multi-shell (MSMT-CSD)10 constrained spherical deconvolution methods. Data 

harmonization in diffusion MRI has been recently emphasized as a means to improve reliability 

and to minimize site and scanner effects136–139. Many clinical datasets however, are not collected 

using standardized protocols. It is necessary to assess the influence of changing acquisition 

parameters, especially on advanced diffusion analysis techniques, if there is a goal of eventual 

application in a clinical setting. Additionally, there are frequently unique clinical populations that 

are difficult to collect in a research setting. If retrospective analysis is to be performed on these 
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subjects the effect of different acquisitions must be determined. In this context the comparative 

robustness of different diffusion analysis techniques is important to consider. If the outcome of 

one technique is less dependent on input acquisition parameters, signal from an underlying 

pathology of interest may be easier to observe.  In this work, we evaluate the dependence of 

MSMT-CSD and SS3T-CSD derived free water fractions on acquisition parameters.  

 

Methods 

 

 Clinical diffusion MRI data were collected from 100 patients with medication-refractory 

symptoms of Parkinson’s disease (PD) at the University of Virginia Hospital prior to the 

implantation of a deep brain stimulator electrode. These images were obtained with one of 27 

different combinations of 8 separate acquisition parameters, however all datasets had a single 

non b=0 valued shell of b=1000s/mm2. All subjects had documented demographic information 

including age, time since initial PD diagnosis, Total Movement Disorders Society, Unified 

Parkinson’s Disease Rating Scale (MDS-UPDRS) scores, and Montreal Cognitive Assessment 

(MoCA) scores. The full list of acquisition parameters and ranges for all imaging and 

demographic factors are presented in Figure 1.   

 

 
Figure 1: Table detailing the full list of imaging acquisition parameters and patient 
demographic factors, as well as the range of values and mean. Of the imaging acquisition 

Predictor Variable Range of Values (mean) Factor Category
Voxel Height 3.0 – 6.0mm (4.85) Acquisition

Voxel Volume 2.4 –19.8mm3 (14.5) Acquisition

Isometric Ratio of Voxel (1 is perfect cube) 0.57 – 0.91 (0.67) Acquisition

In-plane Resolution 0.8 –3.8mm2 (2.9) Acquisition

Number of B0 Acquisitions 1 – 12 (3.5) Acquisition

Number of Gradient Directions 38 – 120 (71.1) Acquisition

Echo Time of Sequence (TE) 0.07 – 0.11ms (0.09) Acquisition

Total Readout Time 0.04 – 0.11ms (0.06) Acquisition

Subject Age 41.4 – 84.0 years (64.3) Demographic

Subject Time Since PD Diagnosis 1.2 – 36.1 years (9.1) Demographic

Subject Total MDS UPDRS Score 9.00 – 68.00 (34.98) Demographic

Subject MoCA Score 11.00 – 30.00 (24.50) Demographic
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factors, there were 27 unique combinations of parameters from 100 patients with complete 
demographic data.   
 

 The diffusion data were analyzed using MSMT-CSD10 in Mrtrix312 and SS3T-CSD90 

available in Mrtrix3Tissue (https://3tissue.github.io/), a fork of Mrtrix3. It should be noted that 

MSMT-CSD outputs only two compartments for these single-shell data: a white matter (WM) 

and a CSF compartment, the latter of which was used to calculate free water. Several 

preprocessing steps utilized FSL105. Diffusion images were denoised107, corrected for Gibbs 

ringing109, susceptibility distortions104, motion116, and eddy currents110. All images were then 

resampled to a voxel size of 1.3x1.3x1.3mm3. Average response functions were generated for 

WM, grey matter (GM), and CSF from the images88 and the fiber orientation distribution (FOD) 

calculated for each voxel10,90. Tissue signal fractions were calculated from the FODs in each 

cohort and the CSF-like tissue compartment was restricted to voxels where the majority of signal 

fraction was from a combination of the WM-like and GM-like compartments as a measurement 

of free water. All free water maps were transformed to MNI space via WM-FOD based 

registration of each subject’s diffusion data to the diffusion template created by Hsu et al.135. In 

MNI space a weighted average was calculated for 27 ROIs from bilateral probabilistic 

cytoarchitectonic maps140–142, free water signal fraction was additionally calculated across the 

whole brain parenchyma.  

 Statistical analysis was performed for the weighted average free water signal fractions in 

each ROI by creating linear models with each subject’s acquisition parameters and demographic 

factors as predictor variables. Stepwise model selection by Akaike Information Criterion143 was 

performed to create final models with predictors. 

 

Results 

 

 A significantly predictive model was able to be constructed for the free water signal 

fraction in each ROI across all subjects. Adjusted R2 ranged from 0.159 to 0.899 in the MSMT-

CSD results (Figure 2) and from 0.122 to 0.891 in the SS3T-CSD results (Figure 3).  
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Figure 2: Illustrating the number of predictive factors from each category that was significant in 
the final linear model for each ROI derived from MSMT-CSD. ROIs are ordered by overall 
adjusted R2 with best to worst fit proceeding top to bottom. Significant predictors that were 
directly related to the diffusion sequence are colored in red and predictors that are directly 
related to the voxel resolution are colored in blue.  
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Figure 3: Illustrating the number of predictive factors from each category that was significant in 
the final linear model for each ROI derived from SS3T-CSD. ROIs are ordered by overall 
adjusted R2 with best to worst fit proceeding top to bottom. Significant predictors that were 
directly related to the diffusion sequence are colored in red and predictors that are directly 
related to the voxel resolution are colored in blue.  
 

There was a significant difference in average model fit, with the acquisition parameter and 

demographic models significantly less able to predict free water signal fraction derived from 

SS3T-CSD (mean adj-R2 = 0.448) than MSMT-CSD (mean adj-R2 = 0.530; ANOVA F1,25 = 

25.89, p<0.001). The most common significant predictor in the MSMT-CSD derived-measures 

was age but PD symptomatic scores did not significantly predict free water signal fraction. The 

in-plane resolution, number of b=0 images, isometric ratio of voxel size, and voxel volume 

significantly predicted the outcome measurement for all but three ROIs. In the SS3T-CSD 

models, the in-plane resolution was the most common significant predictor, followed by age, the 

isometric ratio, number of b0s, voxel volume, and number of gradient directions (Figure 4). 

There was a significant negative correlation between model goodness-of-fit and the size of the 

ROI from MSMT-CSD but this was not significant in SS3T-CSD (Figure 5), suggesting that free 

water in smaller ROIs were more dependent on different acquisition parameters.   
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Figure 4: Illustration of the percent of final ROI models that included a specific predictor after 
stepwise AIC (light red for MSMT-CSD and light blue for SS3T-CSD) and the percent where that 
predictor was significantly predictive of free water signal fraction (dark red for MSMT-CSD and 
dark blue for SS3T-CSD).  
 

 
Figure 5: Correlation between R2 of final linear model and the size of the ROI (as calculated by 
volume of unthresholded probabilistic map). There was a significant correlation between ROI 
size and goodness-of-fit in models of free water signal fraction calculated by MSMT-CSD, with 
smaller ROIs being more likely to have a better predicted model fit. This trend was present in the 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Vox
el 

Heig
ht

Vox
el 

Volum
e

Iso
metr

ic R
ati

o

In 
Pla

ne R
es

olu
tio

n

Num
be

r o
f B

0s

Num
be

r o
f G

rad
ien

t D
ire

cti
on

s TE

To
tal

 Rea
do

ut T
im

e

Su
bject 

Age

Su
bject 

Tim
e S

inc
e D

iag
nosi

s

To
tal

 M
DS U

PDRS S
co

re

MoCA
 Sc

orePe
rc

en
ta

ge
 o

f F
in

al
 M

od
el

s (
n=

28
)

MSMT-CSD Predictor Included in Final Model MSMT-CSD Statistically Significant Predictor

SS3T-CSD Predictor Included in Final Model SS3T-CSD Statistically Significant Predictor



 44 

free water signal fractions derived from SS3T-CSD but was less well correlated and not 
significant.  
 
Conclusion 

 

 Free water signal fractions derived from MSMT-CSD and SS3T-CSD were both 

dependent on acquisition factors related to the selection of common imaging parameters. Further 

analysis suggests that SS3T-CSD is overall more robust and less affected. However, when 

employing these algorithms or collecting data, harmonization of imaging acquisition parameters 

is paramount in any case. 
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Study 1b 
Title: Single-shell derived tissue signal fraction maps show increased contrast between 

hippocampal subfields compared to multi-shell analysis.  

 

Synopsis: Recent advances in the analysis of diffusion MRI have allowed for the estimation of 3 

tissue compartments in the brain from data with only a single non b=0 shell. There is currently 

no published quantitative comparison between signal fractions derived from either single- or 

multi-shell methods. Applying both single-shell analysis and multi-shell analysis to the same 

dataset shows high b-value single-shell analysis may increase contrast between different 

hippocampal subfields. While this effect may occur due to differences in microstructure between 

ROIs it should be a noted factor when applying either model and deserving of further study. 

 

Main Findings 

 

 Single-shell and multi-shell derived signal fraction maps have significantly different 

results between hippocampal subregions. High b-value single-shell methods are significantly 

better able to discriminate between subregions by generating increased contrast.  

 

Introduction 

 

Quantitative 3-tissue signal fractions derived from constrained spherical deconvolution 

(CSD) based analysis of diffusion MRI are a recently developed means to assess tissue 

microstructure in the brain90,91,100. By measuring the relative contribution of white matter (WM), 

grey matter (GM), and CSF-like diffusion signals in each voxel, it is possible to both assess 

underlying tissue composition and improve WM tractography91,123. 3-tissue CSD was first 

performed using Multi-Shell, Multi-Tissue CSD (MSMT-CSD)10, which requires a multi-shell 

diffusion acquisition scheme to successfully tease apart contributions from three tissue 

compartments90. However, a range of studies, for reasons both historical and clinical do not 

collect multi-shell diffusion data, and instead only acquire single-shell data.  

To obtain the full benefits of 3-tissue CSD from single-shell data, an iterative CSD 

approach termed Single-Shell 3-Tissue CSD (SS3T-CSD)90 was proposed. Both MSMT-CSD 
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and SS3T-CSD deconvolve 3 tissue response functions from the data, and both calculate a WM 

fiber orientation distribution (FOD) for use in either tractography or as part of 3-tissue signal 

fractions. To date though there has not been a comprehensive investigation into differences 

between the signal fractions obtained from either method. Because diffusion MRI data suitable 

for MSMT-CSD is also able to be analyzed by SS3T-CSD, it is possible to compare outputs of 

both methods from the same dataset (if it is mult-shell). In this work, we evaluate the ability of 3-

tissue signal fractions from MSMT-CSD and SS3T-CSD in 7 hippocampal subregions to 

generate contrast between anatomically distinct brain areas.   

 

Methods 

 

 MRI images were collected as part of a separate study100 at the University of Virginia. 

118 total diffusion images from healthy controls were acquired using a Siemens Prisma 3T 

scanner with an isotropic voxel size of 1.7⨉1.7⨉1.7mm3, TE=70ms and TR=2900ms; using a 

multi-shell protocol, 10 b=0 images and 64 gradient directions at both b=1500s/mm2 and 

b=3000s/mm2 were acquired. This multi-shell dataset was split into two single-shell subsets by 

retaining the b=0 images and extracting all diffusion images at either b=1500s/mm2 or 

b=3000s/mm2.  

 The multi-shell dataset was analyzed using MSMT-CSD10 implemented in the open 

source software MRtrix12and the two single-shell datasets were analyzed using (SS3T-CSD)90 as 

available in MRtrix3Tissue (https://3tissue.github.io/), a fork of MRtrix3. Several preprocessing 

steps utilized FSL105. Diffusion images were denoised107, corrected for Gibbs ringing109, 

susceptibility distortions104, motion116, and eddy currents110. Average response functions were 

generated for white matter (WM), grey matter (GM), and CSF from the images in each of the 3 

image sets88 and the fiber orientation distribution (FOD) calculated for each voxel10,90. 3-tissue 

signal fractions were calculated from the FODs91. 

 In order to compare images across all datasets and subjects, a group average population 

template was constructed by non-linear, affine transformation and reorientation of the WM 

FODs generated by MSMT-CSD. The identical warps that transformed the subject images from 

native space to template space were then applied to each signal fraction map output from 

MSMT-CSD and SS3T-CSD, ensuring that each voxel moved identically with its partner from 
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each analysis group. A diffusion template generated to match MNI space135 was then registered 

to the population template and cytoarchitectonic maps of 7 hippocampal subdivisions140 (CA1, 

CA2, CA3, Dentate Gyrus, Entorhinal Cortex, and the Hippocampal-Amygdala Transition Area; 

all thresholded at 50% probability) were applied to calculate average signal fractions for each 

ROI.  

Given that the higher b-value shell would be more likely be utilized in analysis, 

Kolmogorov–Smirnov tests with Bonferroni corrections were performed between MSMT-CSD 

and SS3T-CSD at b=3000s/mm2 results from each hippocampal area from each tissue 

compartment. This calculation examined the discriminability between areas, if the signal 

fractions were sufficiently different to be drawn from a separate distribution it would indicate 

that the signal fraction analysis method would have sufficient contrast to discriminate between 

hippocampal subfields. 

 

Results 

 

 There was a significant difference between each of the measured signal fractions across 

all subregions of the hippocampus depending on method (Figure 1 & 2), with the exception of 

the CSF signal fraction derived from MSMT-CSD and SS3T-CSD at b=1500s/mm2 (T-test; p = 

0.794).   

 

 
Figure 1: Comparison of signal fraction results derived from SS3T-CSD performed on only the 
B=3000s/mm2 shell, with MSMT-CSD from the full multi-shell dataset. Tissue compartments are 
WM-like signal fraction, GM-like signal fraction, and CSF-like signal fraction from left to right. 
Gray areas are standard error.  
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Figure 2: Comparison of signal fraction results derived from SS3T-CSD performed on only the 
B=1500s/mm2 shell, with MSMT-CSD from the full multi-shell dataset. Tissue compartments are 
WM-like signal fraction, GM-like signal fraction, and CSF-like signal fraction from left to right. 
Gray areas are standard error.  
 

In each of the signal fractions calculated from the diffusion MRI data, SS3T-CSD at 

b=3000s/mm2 was able to successfully discriminate an individual distribution from 5 of the 7 

hippocampal subareas examined. MSMT-CSD in contrast, was not able to discriminate an 

individual distribution from any of the WM-like signal fraction areas; 3 of the 7 GM-like 

subareas; and 5 of the 7 CSF-like signal fraction areas (Figure 3&4).  
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Figure 3: Density plots of signal fraction results from the three tissue compartments as 
calculated by MSMT-CSD (top row) and SS3T-CSD at b=3000s/mm2 (bottom row).  

  
 

 
 

Figure 4: Table displaying the p-value results of Kolmogorov–Smirnov tests with Bonferroni 
corrections on distributions from each of the tissue compartments in each hippocampal subfield. 
Tests that did not find a significant difference between distributions are highlighted in red 
(indicating the contrast was not sufficient to discriminate between the two regions). MSMT-CSD 
had more overlapping distributions than SS3T-CSD at b=3000s/mm2. 
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Conclusion 

 

 We found that SS3T-CSD reveals greater contrast between hippocampal subareas 

compared to MSMT-CSD, by relying on high b-value single-shell data. While this initially 

appears counterintuitive, that SS3T-CSD could generate better contrast while using less data than 

MSMT-CSD, there are two plausible overlapping reasons this may be the case. Most 

importantly, the middle shell may not contribute much unique signal to the deconvolution 

algorithm, and may actually be a substantial source of noise when weighed equally to signal 

from the higher b-value. Secondly, SS3T-CSD operates iteratively, and is thus able to perform 

several attempts at fitting WM response functions and separating CSF from GM response 

functions, each iteration clear of signal that has already been fit, and thus improving the overall 

ability to clearly separate tissue proportions in each different subarea. 
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Study 1c 
Title: Test-retest reliability and long-term stability of 3-tissue constrained spherical 

deconvolution methods for analyzing diffusion MRI data 

Abstract 

 

Purpose: Several recent studies have utilized a 3-tissue constrained spherical deconvolution 

pipeline to obtain quantitative metrics of brain tissue microstructure from diffusion-weighted MRI 

data. The three tissue compartments, comprising white matter-, grey matter-, and CSF-like (free 

water) signals, are potentially useful in the evaluation of brain microstructure in a range of 

pathologies. However, the reliability and long-term stability of these metrics has not yet been 

evaluated.  

Methods: This study examined estimates of whole brain microstructure for the three tissue 

compartments, in three separate test-retest cohorts. Each cohort has different lengths of time 

between baseline and retest, ranging from within the same scanning session in the shortest interval 

to three months in the longest interval. Each cohort was also collected with different acquisition 

parameters. 

Results: The CSF-like compartment displayed the greatest reliability across all cohorts, with 

intraclass correlation coefficient (ICC) values being above 0.95 in each cohort. White matter-like 

and grey matter-like compartments both demonstrated very high reliability in the immediate cohort 

(both ICC>0.90), however this declined in the 3-month interval cohort to both compartments 

having ICC>0.80. Regional CSF-like signal fraction was examined in bilateral hippocampus and 

had an ICC>0.80 in each cohort. 

Conclusion: The 3-tissue CSD techniques provide reliable and stable estimates of tissue 

microstructure composition, up to 3 months longitudinally in a control population. This forms an 

important basis for further investigations utilizing 3-tissue CSD techniques to track changes in 

microstructure across a variety of brain pathologies. 

 

Introduction 
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Diffusion-weighted Magnetic Resonance Imaging (dMRI) is a widely used, noninvasive, 

method for measuring the diffusion of water molecules in the brain. Within the microarchitectural 

environment of the brain, diffusion of water molecules is hindered by various cellular components, 

particularly the lipid bilayers that make up cell membranes. This principle has been applied to 

study white matter fiber bundles (“tracts”), as the myelin sheaths surrounding neuronal axons 

result in anisotropic diffusion3,19,144. dMRI has seen widespread use in studies of brain connectivity 

as well as in clinical populations and neurosurgery145–148. 

 Initially, anisotropic diffusion was typically modelled using a tensor, which sought to 

quantify both the average orientation, anisotropy, and magnitude of diffusion within each voxel of 

the brain; this approach is known as Diffusion Tensor Imaging (DTI)19. More recently, the dMRI 

modelling domain has seen a proliferation in novel, more advanced, mathematical methods for 

analyzing the diffusion-weighted signal. These methods aim to overcome several shortcomings of 

applying the relatively simplistic DTI model to the complex diffusion-weighted signals observed 

in the brain. This complexity primarily arises from two physiological qualities of the brain itself: 

the first being crossing fibers, where white matter (WM) tracts occupying the same voxel are 

oriented differently in space149,150; and the second being the presence of other fluids and tissues, 

including cerebrospinal fluid (CSF) and grey matter (GM) and other cell bodies which 

“contaminate” the directional signal38,151–154. These are major issues as it has been estimated that 

up to 90% of WM tissue voxels contain more than one WM fiber tract orientation53, and partial 

voluming effects alone ensure that a substantial number of voxels contain proportions of multiple 

tissue and/or fluid compartments152,153,155. 

To address these issues, and with the advent of high angular resolution diffusion imaging 

(HARDI) acquisition protocols, more advanced methods for describing the observed dMRI data 

have been proposed by a number of researchers22,27,87. One such method, Constrained Spherical 

Deconvolution (CSD), allows for the presence of multiple fibers along different orientations11. 

CSD resolves these orientations by deconvolving the signal profile corresponding to a prototypical 

single fiber-like voxel (termed a response function) from the observed signal in each and every 

other voxel, resulting in the orientation of fibers as a continuous angular function termed the Fiber 

Orientation Distribution (FOD).  Quantitative information can also be obtained from the FOD, as 

a measure of “Apparent Fiber Density” (AFD) for each fiber population156. 
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The original (“single-tissue”) CSD has been expanded into Multi-Shell Multi-Tissue CSD 

(MSMT-CSD) by performing a similar deconvolution with 3 separate WM, GM, and CSF-like 

tissue response functions. The approach was initially aimed at separating signal originating from 

GM and CSF-like tissue compartments, in order to improve the accuracy of the WM FOD itself, 

which otherwise appears very noisy (with many false positive “peaks” or lobes) when using single-

tissue CSD in areas of partial voluming with other tissues and fluids10,152,153. This subsequently 

benefits several other analysis and processing steps, such as streamline tractography, which 

heavily rely on a “clean” and accurate WM FOD. MSMT-CSD thus attempted to address the main 

shortcomings of the DTI model as well as additional remaining shortcomings of single-tissue CSD.  

As its name hints at, MSMT-CSD requires a multi-shell diffusion acquisition scheme in 

order to successfully tease apart contributions from the 3 WM-, GM- and CSF-like compartments 

at once. However, to obtain the same benefits offered by MSMT-CSD, yet using only single-shell 

data, Dhollander & Connelly90, have proposed a novel approach named Single-Shell 3-Tissue CSD 

(SS3T-CSD) that can resolve the WM-, GM- and CSF-like compartments as well. By relying only 

on single-shell data, it allows for shorter acquisition times and is compatible with a wider range of 

data, both historical as well as clinical.  
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Figure 1: Axial slices showing a T1-weighted MPRAGE and the GM-, CSF-, and WM-like tissue 
compartments derived from the dMRI data using 3-tissue CSD.  

 

Resolving these different compartments using either 3-tissue CSD method (i.e., MSMT-

CSD or SS3T-CSD) holds value beyond improving WM tractography: it can also serve as a proxy 

for the evaluation of brain microstructure and tissue composition91,92,157. By interrogating brain 

voxels for diffusion signal patterns that look ‘like’ compositions of the diffusion signals 

represented by the WM/GM/CSF response functions, it might be possible to gain quantifiable 

information about microstructure (Figure 1). Using these basic compartments as a diffusion signal 

model focuses more on coarse properties of brain tissue microstructure rather than separating 

similar cell types (e.g. different populations of glial cells), or separating different types of 

pathology (e.g. edema, CSF-infiltration in neurodegeneration, and damage from ischemic stroke). 

Although, provided with a known context, reasonable inferences of such pathology might be 

possible to make nonetheless. Even for WM tractography in cases of infiltration by pathological 
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tissues, the 3-tissue CSD approach can provide direct benefits in terms of recovering healthy WM 

structures, e.g. in infiltrating tumors123. 

3-tissue CSD derived compartments are a promising, non-invasive method for exploring 

tissue composition in the brain. The utilization of this approach toward analyzing tissue 

composition might hold advantages over tensor-based models such as Free Water Elimination 

(FWE)24. The free water estimate from the FWE technique was shown to have limited 

reproducibility: errors ranged from 5.2-18.2% across ROIs in a test-retest cohort80. The CSF-like 

compartment from 3-tissue CSD techniques might provide an alternative way to recover free water 

contribution to the signal, using a WM model that does take into account crossing fibres (as 

opposed to a tensor method). With the advances provided in SS3T-CSD, it is also able to provide 

signal contribution from the full 3 tissue compartments using single-shell data (i.e. equivalent to 

acquisition requirements for the FWE technique), allowing for a broader range of input data 

compared to other 3-tissue compartment models such as NODDI 58. In a recent review of 

microstructural diffusion imaging applied to psychiatric disorders, Pasternak et al.8, illustrated the 

acquisition sequence complexity compared to the number of microstructure compartments 

evaluated for several common dMRI analysis techniques. Addition of MSMT-CSD and SS3T-

CSD illustrate the range of data required for input to a range of models and the capabilities of 

resolving compartments compared to other techniques (Figure 2). 

To date, there has not been a quantitative test-retest study examining the reliability and 

long-term stability of 3-tissue CSD techniques. The purpose of this study is to provide evidence 

that 3-tissue CSD techniques are a reliable and stable approach for assessing brain 

microarchitecture, via analysis of the 3 resulting tissue signal fractions. 
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Figure 2: Chart adapted from Pasternak et al.8; comparison of common DTI and other model 
metrics to CSD derived tissue signal fractions by requirements of acquisition (rows) and number 
of output compartments (columns). Methods derived from CSD have been added in red.  

Methods 

 

Cohorts  

 

Three test-retest cohorts were retrospectively evaluated in this study: two local datasets collected 

at the University of Virginia from ongoing research projects, and one publicly available dataset 

obtained from the Nathanial Kline Institute for Psychiatric Research: enhanced test-retest (eNKI-

TRT) as part of the 1000 Functional Connectomes Project124,158. Both studies collected at the 

University of Virginia received ethical approval from the University of Virginia Institutional 

Review Board for Health Sciences Research. Each cohort has different time intervals between 

baseline and retest scans, and was collected with different acquisition parameters. This approach 

allows reliability to be measured under conditions that represent a variety of different diffusion 

imaging parameters. Examining stability across different time periods allows for insight into the 

potential for longitudinal studies tracking changes in 3-tissue signal fractions in individuals or 

between groups over time.   
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 The first cohort (“immediate rescan” cohort) examined immediate test-retest reliability by 

performing identical dMRI acquisitions sequentially without table repositioning. This cohort 

consisted of individuals participating in a separate study at the University of Virginia that 

included multiple scanning sessions. The cohort consisted of 20 healthy control participants (all 

male, age at baseline 22.8±3.0 SD). Each participant was scanned twice at each of 3 visits (with 

the exception of one participant who only attended 2 scans) for a total of 59 baseline-rescan pairs 

collected for analysis.  

 

The second cohort (“short timescale” cohort) is representative of the quality of diffusion 

imaging found in large-scale, open science cohorts. Subjects were selected from the original NKI 

Rockland community study, a group intentionally recruited for similarity to the demographics of 

the broader United States as a whole158. 20 subjects (5 female, age at baseline: 34.4±12.9 SD) 

had diffusion MRI data available at both baseline and rescan. All participants were rescanned 

within a range of 7-60 days after baseline. Subjects were not excluded for any history of illness, 

and 2 participants had a diagnosed history of prior alcohol abuse while 2 other participants had a 

diagnosed history of a major depressive disorder. Both of these diagnoses are known to affect 

brain function and structure125,126; but the nature of the within-subjects design did not necessitate 

removing any individuals from the study.  

 

The third cohort (“long timescale” cohort) was collected as a healthy control group for a 

previously published study conducted at the University of Virginia examining college athletes159. 

52 participants (all male, age at baseline: 21.9±3.3 SD) were re-scanned 3-4 months after 

baseline (mean days between scans: 107.9±7.1 SD) and were screened for a history of neurologic 

disease or concussion.  

 

Image Acquisition  

 

As discussed previously, data from the three cohorts were acquired using different 

protocols. 
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The immediate rescan cohort was scanned using a Siemens Prisma 3T scanner with an 

isotropic voxel size of 1.7⨉1.7⨉1.7mm3, TE=70ms and TR=2900ms; using a multi-shell 

protocol, 10 b=0 images and 64 gradient directions at both b=1500s/mm2 and b=3000s/mm2 were 

acquired. This protocol was applied twice with one immediately following the other without 

actively repositioning the participant in the scanner.  

 

 The short timescale cohort was acquired externally and obtained through the 

Neuroimaging Tools and Resources Collaboratory at www.nitrc.org. Imaging data was collected 

using a Siemens Trio Tim with an isotropic voxel size of 2⨉2⨉2mm3, TE=85ms and 

TR=2400ms. Using a single-shell protocol, 9 b=0 images and 127 gradient directions at 

b=1500s/mm2 were acquired.  

 

 The long timescale cohort was scanned using the same Siemens Prisma 3T scanner as the 

first (immediate rescan) cohort using a different protocol with an isotropic voxel size of 

2.7⨉2.7⨉2.7mm3, TE=100ms. Using a multi-shell protocol, 1 b=0 image and 30 gradient 

directions at both b=1000s/mm2 and b=2000s/mm2 were acquired.     

 

Analysis  

 

 Data preprocessing was largely identical across all images in all cohorts in the study. 

Images were first denoised via use of the “dwidenoise” command in Mrtrix3107. Gibbs ringing 

was then corrected, also using MRtrix3109. This was followed by utilizing the FSL package 

(“topup” and “eddy”) to correct for susceptibility induced (EPI) distortions, eddy currents, and 

subject motion including the –repol flag to perform a Gaussian replacement of outliers 
104,110,115,116. Finally, using MRtrix3 we upsampled the preprocessed data to 1.3⨉1.3⨉1.3mm3 

isotropic voxels102,117,118. These preprocessing steps are largely similar to those used in other 

recently published works91,101,102,123. A description of a basic single subject pipeline for 

performing SS3T-CSD, including these preprocessing steps, is available at 

https://3tissue.github.io/doc/single-subject.html. Brain masks were obtained for all subjects by 

performing a recursive application of the Brain Extraction Tool120.  
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 For 3-tissue CSD processing, the 3-tissue response functions were obtained from the data 

themselves using an unsupervised method88, resulting in the single-fiber WM response function 

as well as isotropic GM and CSF response functions for each subject. For each tissue type (WM, 

GM, CSF), the response function was averaged across all individuals in each cohort to obtain a 

single unique set of 3-tissue response functions per cohort. For the multi-shell data in the 

immediate rescan and long timescale cohorts, MSMT-CSD was performed10. For the single-shell 

data in the short timescale cohort, SS3T-CSD was performed90. For all subjects in all cohorts, 

this resulted in their WM-like compartment (represented by a complete WM FOD) as well as 

GM-like and CSF-like compartments. The CSF-like compartment can in this context also be 

interpreted as a free-water (FW) compartment92. Finally, each subject’s three tissue 

compartments were then normalised to sum to 1 on a voxel-wise basis, resulting in the final 3-

tissue signal fraction maps91; the metrics for which we performed the test-retest analyses in this 

work. 

 

 To measure the mean squared difference between baseline and rescan for each of the 

three tissue compartments, a cohort-specific template was first produced. This was achieved 

using an affine, followed by a non-linear registration guided by the WM FODs themselves in an 

unbiased manner 160. The warp that registered each subject’s WM FODs to the template was then 

also applied to the WM-like, GM-like, and CSF-like maps, allowing all three tissue maps to be 

registered to the same template space and the mean squared difference between baseline and 

rescan to be calculated. CSF-like (free water) signal fraction in the hippocampus of each subject 

was measured in each subject relying on these same cohort-specific templates. A whole brain 

WM image from the LONI atlas161 was registered along with each hippocampus map to the 

template using the ANTs image registration toolbox ‘SyN’ algorithm162 and then subsequently 

warped to each individual scan using the reverse transform from template creation. In native 

space an average was computed of the CSF-like (free water) signal fractions in the ROI, using 

only voxels with a CSF-like signal fraction smaller than 0.5, to mimic free water analysis (i.e., to 

avoid accidentally including voxels outside of the brain parenchyma, which might be entirely 

CSF-filled spaces).  
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 All processing was performed using a combination of different software packages: 

MRtrix312, MRtrix3Tissue (https://3Tissue.github.io , a fork of MRtrix3), FSL105, ANTs162. 

 

Results 

 

 The CSF-like (free water) tissue signal fraction map was restricted to voxels where the 

corresponding WM and GM signal maps summed to greater than 50%. This allowed for analysis 

of the CSF-like signal fraction in tissue without including the ventricles or subarachnoid space, 

the bulk size of which would otherwise bias a proper whole-brain free water measurement. 

Additionally, the CSF-like infiltration into brain tissue is a potentially more interesting 

measurement in the context of healthy functioning or pathology; and is indeed designed to be 

comparable to measurements of free water encountered in the literature24. For all cohorts, results 

from the 3-tissue signal fractions were averaged across the brain parenchyma. Averages for 

baseline and retest values were compared by calculating the intraclass correlation coefficient 

(ICC) and Pearson’s correlations. The results for both of these measures are summarized in 

Table 1.   
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Table 1: Statistical analysis of the 3 test-retest cohorts in the experiment; p-values are calculated 
based on the Pearson’s correlation. For each cohort the left hippocampus (LH) and right 
hippocampus (RH) were selected as ROIs and the CSF-like (free water) signal-fraction was 
measured to examine the reliability of 3-tissue CSD derived free water estimates in subcortical 
structures specifically as well.  
 

  Specific test-retest correlations for each of the three tissue types derived from the 3-tissue 

CSD techniques are presented in Figures 3-5. All correlations between baseline and retest were 

significant in all cohorts; the highest whole brain ICC values were obtained from the immediate 

rescan cohort (Figure 3). In the short timescale cohort, similar to the immediate rescan cohort, all 

compartments had an ICC value above 0.95 and Pearson’s Rho above 0.90 (Figure 4). The long 

timescale cohort had slightly declined performance, yet with the ICC value for all compartments 

still being larger than 0.80 (Figure 5). To test the potential significance of this decline, 

bootstrapping of ICC values from each tissue type and cohort was performed to generate 95% 

confidence intervals after 100,000 bootstrap iterations. The 95% confidence interval generated 

from the long-timescale GM-like and WM-like signal fractions did not overlap with the 
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confidence interval from both the immediate-rescan and short-timescale GM-like and WM-like 

signal fraction ICCs. The 95% confidence intervals from the CSF-like signal fraction ICCs from 

each cohort did overlap (Figure 6).  

 

 
Figure 3: Immediate rescan baseline and re-scan values for CSF- (left), WM- (center), and GM-
like (right) signal fractions obtained from a cohort scanned with a duplicate sequence 
immediately following baseline. Includes ICC and Pearson’s correlation values.  

 
Figure 4: Short timescale baseline and re-scan values from CSF- (left), WM- (center), and GM-
like (right) signal fractions obtained from a cohort with 7-60 days between baseline and re-scan. 
Subjects were taken from the eNKI group and their single-shell dMRI data analyzed with SS3T-
CSD. Includes ICC and Pearson’s correlation values. 
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Figure 5: Long timescale baseline and re-scan values from CSF- (left), WM- (center), and GM-
like (right) signal fractions obtained from a cohort with 3 months between baseline and re-scan. 
Includes ICC and Pearson’s correlation values.  
 

 Additionally the mean squared difference was calculated for each tissue signal fraction 

map between each subject’s baseline and rescan. This showed results largely consistent with 

overall whole brain averages of the signal fraction maps: each signal fraction map showed good 

reliability, with the CSF-like map having a mean squared difference less than 0.01 in each 

cohort, the GM-like map having a mean squared difference less than 0.025 in each cohort, and 

the WM-like map having a mean squared difference less than 0.035 in each cohort (Figure 7).  
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Figure 6 (Left): Results from parametric ICC bootstrapping with ICC calculated from subject 
data (Table 1) and 95% confidence intervals displayed. There was overlap between the 95% 
confidence intervals from each cohort’s CSF-like ICC but in the long-timescale group the WM-
like and GM-like signal fraction ICC did not overlap with either other cohort.  
 
Figure 7 (Right): Bar plot (±SE) displaying the mean squared difference between scan and 
rescan, averaged across individuals for each tissue map and in each cohort. Comparison 
between different tissues’ mean squared differences is discouraged however, as the average 
absolute value of each voxel and the distribution of values across the brain is highly different for 
different tissue types.  
 

 

In each cohort, the hippocampi were also analyzed separately in order to demonstrate the 

utility of a 3-tissue CSD approach in a specific region of interest. Bilateral hippocampus was 

selected for this demonstration as a commonly studied brain ROI with representation from each 

of the three tissue compartments examined. Comparison of average CSF-like (free water) signal 

fraction in this ROI between baseline and retest resulted in an ICC value above 0.90 in both left 

and right hippocampus, as well as a significant Pearson’s correlation (Figure 8A). In the short 

timescale cohort both left and right hippocampus similarly had an ICC value above 0.90 and a 
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significant Pearson’s correlation (Figure 8B). In the long timescale cohort both hippocampus had 

an ICC value above 0.80 and a significant Pearson’s correlation (Figure 8C).  

 

There was a consistent asymmetrical effect observed between the CSF-like signal 

fraction in right and left hippocampus across all cohorts. The CSF-like signal fraction in each 

subject’s right and left hippocampus were averaged between baseline and rescan and a paired t-

test performed for each cohort. This showed that there was a significantly greater CSF-like signal 

fraction in the right versus the left hippocampus (T58 = -10.022, p<0.001; T19 = -6.002, p<0.001; 

and T51 = -23.486, p<0.001; for the immediate rescan, short timescale, and long timescale 

cohorts, respectively). 

 
Figure 8: (A) CSF-like signal fraction for the left and right hippocampus in the 59 pairs of 
baseline-retest scans in the immediate rescan cohort. Values for the right hippocampus of each 
individual are shown in red and values for the left hippocampus are shown in blue. (B) CSF-like 
signal fraction for the left and right hippocampus in the 20 pairs of baseline-retest scans in the 
short timescale cohort. Values for the right hippocampus of each individual are shown in red 
and values for the left hippocampus are shown in blue. (C) CSF-like signal fraction for the left 
and right hippocampus in the 52 pairs of baseline-retest scans in the long timescale cohort. 
Values for the right hippocampus of each individual are shown in red and values for the left 
hippocampus are shown in blue. 

 

Discussion 

 

 Each of the 3-tissue signal fractions demonstrated good reliability across all of the 

measured timescales we assessed in this work. ICC values were above 0.95 for each of the tissue 

compartments included in the immediate rescan and short timescale cohorts. This occurred 
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despite the short timescale cohort being single-shell data, a b-value of 1500, and a lower voxel 

size compared to the other two cohorts (both of which were multi-shell and had highest b-value 

of b=3000s/mm2 and b=2000 s/mm2 for the immediate timescale and long timescale cohorts, 

respectively). This result suggests that 3-tissue CSD techniques can reliably obtain quantitative 

measurements across a range of diffusion imaging protocols, including from openly available 

datasets. This performance, however, declined slightly in the long timescale cohort: the CSF-like 

(free water) signal fraction within tissue still had an ICC value above 0.95 while the WM-like 

and GM-like signal fractions had a slightly lower ICC value, which bootstrapping indicated did 

not overlap with the 95% confidence intervals from the immediate or short-timescale cohorts. 

Regardless, all Pearson’s correlations were highly significant, indicating that 3-tissue CSD 

techniques are still able to obtain reliable measurements of brain tissue microstructure, stable up 

to 3 months from baseline.  

 

 In our study it was observed that the reliability of the WM-like signal fraction maps 

declined in the long timescale cohort compared to the immediate and short-term rescan cohorts 

as measured by both bootstrapping of ICCs and by analysis of the mean squared difference. It is 

also possible that the lower number of gradient directions at each non-zero b-value in the long 

timescale cohort, compared to the other cohorts, caused the estimation of WM FODs to be more 

variable between rescans. Given the methodology employed for generating response functions 

and FODs, it would be expected that the ability to distinguish between WM and GM would be 

more dependent on angular resolution and contrast, while CSF would be more dependent on 

contrast between b-value shells. This may be supported by the observation that the CSF-like 

signal fraction map still had a high ICC which bootstrapping indicated was within the 95% 

confidence interval of both other cohorts. Given the nature of our datasets and the differences in 

site, acquisition, and subject cohorts, it is not possible to precisely disentangle each of these 

contributing factors. 

 

 The free water signal fraction additionally demonstrated good reliability in both 

hippocampi at each of the examined timescales. ICC values were above 0.80 and a significant 

effect of laterality was observed consistently across each cohort, with the right hippocampus 

having a significantly higher free water signal fraction than the left hippocampus. Though this 
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study does not suggest any hypothesis for why this laterality was observed, it is consistent with 

volumetric MRI findings that demonstrate hippocampal asymmetry163, as well as a recent study 

that reported asymmetry in hippocampal free water content164. That study reported a 1% higher 

free water content in the right hippocampus compared to the left hippocampus of healthy 

controls, remarkably similar to the significantly different average observed in this study (0.9% in 

the immediate timescale cohort, 0.7% in the short timescale cohort, and 1.5% in the long 

timescale cohort, with higher free water signal fraction in the right hippocampus in each cohort). 

This suggests that free water signal fraction is both a reliable quantitative measurement for 

subcortical ROIs, and that it may be able to detect meaningful microstructural properties of such 

regions.  

 

 Given the nature of the datasets and cohorts used in our study, we did not address the 

topic of reproducibility of tissue signal fractions between different diffusion acquisition methods, 

subject cohorts, especially cohorts of different age ranges and demographic compositions, and 

analysis protocols. Three different acquisition protocols were used in this study, each with 

different angular resolutions, b-value shells, and sequences. Also, two different 3-tissue CSD 

analysis methods were employed. Given the nature of our datasets and the intrinsic differences in 

site, acquisition, timescale, and subject cohorts, it is not possible to precisely disentangle each of 

these contributing factors retrospectively using the data available for this study nor do we believe 

that attempting to do so would provide robust estimates of variation. Prospectively designing a 

study to control for these factors would allow for these dimensions to be properly disentangled 

and the contributions to data variability from each to be determined.  

 

More traditional neuroimaging techniques do not provide quantifiable data on tissue 

microstructure, however this study has demonstrated a reproducible and reliable method for 

obtaining whole brain maps with quantifiable estimates of tissue microstructure. We observed 

these measures to be stable enough to be used in longitudinal studies lasting at least up to three 

months. They provide information on a voxel- or region-wise basis for analysis of subcortical 

structures, lesions, or developing brains91,92,102,157. Related microstructural analysis of free water 

signal fractions has been performed in the context of Parkinson’s disease7,165, Schizophrenia73,75, 
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and concussion79. 3-tissue CSD techniques may thus have the potential to be applied to a variety 

of these and other neurological conditions.  

 

 3-tissue CSD derived tissue fractions provide a flexible framework for analyzing 

diffusion images in ways not addressed in this paper. While we examined the reliability of 

WM/GM/CSF-like tissue signal fractions here, other researchers have used response functions 

representing different tissue compartments when contextually appropriate. Pietsch et al.101, 

applied two different WM response functions representing mature and immature WM in a 

developing adolescent cohort to observe WM maturation.  Mito et al.91, proposed to apply a 

statistical framework of compositional data analysis to analyze the full 3-tissue composition of 

WM-, GM- and CSF-like signal fractions directly to study microstructure in white matter lesions, 

following the initial suggestion of moving towards such WM/GM/CSF-like diffusion signal 

fraction interpretation by Dhollander et al.92. In Aerts et al.123, this idea was furthermore used for 

the purpose of disentangling WM FODs representing infiltrated WM tracts, in the presence of 

gliomas, so as to enable more reliable within-tumor tractography. Similar work has also recently 

been done by Chamberland et al.166, who illustrated the use of 3-tissue signal fractions in the 

presence of cerebral metastases, both to assess their microstructure as well as to enable 

tractography through nearby edematous regions. 

 

 The relatively recent use of CSD to describe the diffusion signal11 has led to some 

measure of controversy when compared to other established analysis techniques such as those 

based in multi-tensor models. One particular area of concern has been noted as the generation of 

‘false-fibers’ on tracking algorithms due to spurious fODF peaks96,97. Some studies using recent 

methodological improvements have suggested that the prevalence of false-fibers in CSD is 

oversold compared to other methods98,99. In this study 3-tissue CSD demonstrated good reliability 

across all compartments. However as recent work has shown, false-fibers have been found to be 

reproducible between acquisitions167,168. As this study has not explored the presence of false-

fibers, it is unknown to what degree they contributed to the WM-like signal fraction.  

 

 An additional benefit provided by 3-tissue CSD methods is in the potential for tissue type 

specific masking. The CSF-like compartment presented in this paper is calculated as CSF-like 
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diffusion in tissue by relying on the other compartments to identify which voxels were ‘tissue’. 

Unlike a binary tissue segmentation based on T1 intensity, calculations of WM- and GM-like 

signal fraction compartments together were used to define voxels where ‘tissue’ composed a 

majority of signal from each voxel. This process relied exclusively on the single, native space 

diffusion image instead of reslicing and warping a separate structural image or atlas. Future 

studies might be able to take advantage of this approach by examining tissue compartment 

magnitudes inside voxels defined by the behavior of other tissue compartments. For example, 

tracking CSF-like (free water) tissue infiltration into voxels defined by the high proportion of 

WM-like tissue during aging or in certain pathological contexts.  

 

Conclusion 

 

 In this study, we performed a test-retest reliability and longer term stability analysis of 

the 3-tissue signal fractions as obtained from 3-tissue CSD techniques. We found that 3-tissue 

CSD technique provide reliable and stable estimates of tissue microstructure composition, up to 

3 months longitudinally in a control population. This forms an important basis for further 

investigations utilizing 3-tissue CSD techniques to track changes in microstructure across a 

variety of conditions.  
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Study 1d 
Title: Inter-site reliability of diffusion microstructure measurements: A 3-tissue constrained 

spherical deconvolution study 

 

Abstract 

 

As large multi-site neuroimaging and diffusion MRI (dMRI) microstructure studies 

become more common, it is necessary to understand factors affecting reliability of outcome 

measurements collected across different sites. In this study, we analyze dMRI collected from 3 

subjects traveling to 10 different sites with identical MRI scanners, sequence protocols, and 

software. We perform a detailed microstructural analysis is in 212 grey matter and white matter 

brain regions and find that measurements are generally reliable across sites. However, there 

remains variation in specific locations that may suggest caution when interpreting small effects 

in small or hard to measure brain regions.  

 

Introduction 

 

Large multi-site neuroimaging studies are becoming more common (e.g. ABCD128,133, UK 

Biobank169, HCP170, and ADNI171) and come with the challenge of harmonizing dMRI across 

sites. Many factors are known to affect dMRI results, including a variety of MRI scanner, 

sequence protocol, and data analysis differences. However, the measurement variation effects of 

different sites having otherwise identical hardware, software, and data analysis is relatively 

understudied. In this study, we apply 3-tissue constrained spherical deconvolution (3T-CSD) to a 

publicly available dataset collected on 3 traveling subjects in 10 centers with 2 additional 

repeated scans in one center. We have previously demonstrated that 3T-CSD has high intrasite 

reliability when measured from scans at the same site100. Here we aim here to demonstrate that 

3T-CSD has similar intersite variability when controlling for technical factors of MRI scanner 

model, software, and data analysis technique.  
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Figure 1: Illustration of the 12 3T-CSD maps obtained from a single subject. The first three rows 
were obtained from different sites/scanners while the bottom row of 3 images was obtained from 
a single scanner. All images were rigidly registered to a subject-specific template and are 
presented from an identical plane in that template (z=55).  
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Methods 

 

In data collected and publicly released by Tong et al.134, three healthy traveling subjects 

(23 y.o. male, 26 y.o. female, and 23 y.o. female) were scanned at 10 different sites to measure 

intersite variation. At one of the sites, all three subjects were scanned 2 additional times to 

measure intrasite variation. All 10 scanners were 3T MR MAGNETOM Prisma (Siemens, 

Erlangen, Germany), equipped with max gradient strength of 80 mT/m and slew rate of 200 

T/m/s. Harmonized diffusion weight images were obtained on a 64-channel head coil using the 

following imaging parameters: TR/TE = 5.4 s/71 ms, FOV = 220 × 220 mm2, slice number = 93, 

voxel size = 1.5×1.5×1.5mm3. The diffusion scheme contained 30 directions each at b=1000, 

2000, and 3000 s/mm² and 6 b=0 images. Scanner software was identical across sites. 

 

Each subject was analyzed using SS3T-CSD172,173 implemented on the b=3000 s/mm2 

shell as available in MRtrix3Tissue (https://3tissue.github.io/), a fork of Mrtrix3174. Several 

preprocessing steps utilized FSL175. Diffusion images were denoised176, corrected for Gibbs 

ringing177, susceptibility distortions178, motion179, and eddy currents180 then voxels were 

upsampled to 1.3 mm isotropic181. Average response functions were generated for WM-, GM-, 

and CSF-like tissues from the images182 and the fiber orientation distribution (FOD) calculated 

for each voxel173. 3-tissue signal fractions were calculated from the FODs172, the ranges of each is 

between 0-1 in each voxel of the brain. 

 

A cohort specific template was constructed from a random selection of 3 subjects’ WM-

FODs using symmetric diffeomorphic registration of the FODs themselves. Each subject was 

then individually rigidly registered to the template (Fig. 1), alongside a affine non-linearly 

registered, b-value matched version of the NTU-DSI-122 template to allow the 48 ROIs from the 

ICBM-DTI-81 template (JHU-DTI atlas183,184,185) and 164 ROIs from the Destrieux cortical 

atlas186 to be moved into the cohort template187. The average signal fraction from each of the 3 

tissue compartments (extracellular isotropic/freely diffusing water, ECI; intracellular isotropic, 

ICI; and intracellular anisotropic, ICA) was measured within each of these 212 ROIs and 

compared between the 9 intersite measurements and the 3 intrasite measurements. Measurements 
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were pooled across participants and a t-test was performed for each signal fraction measurement 

from each ROI to compare intersite to intrasite variability. 

 

Results 

 

In each of the 3 signal fractions the majority of ROIs were not significantly different 

between intersite and intrasite measurements, suggesting that 3T-CSD measurements are 

generally as reliable between sites as they are when measured at the same site. The ECI signal 

fraction had the largest number of significantly different measurements with 46 ROIs 

significantly different between intersite and intrasite while 173 ROIs were not significantly 

different (Fig. 2). This improved in the ICI signal fraction measurements to 38 ROIs significantly 

different between intersite and intrasite while 181 ROIs were not significantly different (Fig. 3), 

and improved further in the ICA signal fraction measurement to 25 ROIs significantly different 

between intersite and intrasite while 194 were not significantly different (Fig. 4). However, in 

each signal fraction compartment no ROIs had more than 0.055 mean difference between inter- 

and intrasite scans, very few had more than 0.03 mean difference, and the vast majority had less 

than 0.01 mean difference.   
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Figure 2: Boxplot in Panel 1 displaying the mean difference between inter- and intrasite 
measurements of the ECI signal fraction within each ROI, across participants, separated by 
atlas ROIs are sourced from with the Destrieux cortical atlas (red) and JHU white matter atlas 
(blue). Each dot represents an ROI. The vast majority of JHU white matter atlas measurements 
are so clustered around zero that the boxplot appears flat. Bar chart in Panel 2 sums the color 
coding for individual ROIs where the difference between inter- and intrasite measurements is 
statistically significant.   
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Figure 3: Boxplot in Panel 1 displaying the mean difference between inter- and intrasite 
measurements of the ICI signal fraction within each ROI, across participants, separated by atlas 
ROIs are sourced from with the Destrieux cortical atlas (red) and JHU white matter atlas (blue). 
Each dot represents an ROI. Bar chart in Panel 2 sums the color coding for individual ROIs 
where the difference between inter- and intrasite measurements is statistically significant.   
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Figure 4: Boxplot in Panel 1 displaying the mean difference between inter- and intrasite 
measurements of the ICA signal fraction within each ROI, across participants, separated by 
atlas ROIs are sourced from with the Destrieux cortical atlas (red) and JHU white matter atlas 
(blue). Each dot represents an ROI. Bar chart in Panel 2 sums the color coding for individual 
ROIs where the difference between inter- and intrasite measurements is statistically significant.   
 

Discussion 

 

For multi-site studies this study provides evidence that measurements of diffusion 

microstructure from 3T-CSD are reliable and dependable. This study suggests a consistent 

pattern in each signal fraction where the mean difference within ROIs of the JHU-WM atlas 

were substantially closer to 0 and fewer were significantly different between intrer- and intrasite 

than ROIs taken from the Destrieux cortical atlas, suggesting that deep WM cellular 

microstructure may be more reliably determined than cortical cellular microstructure. We aimed 

here to provide the most straightforward comparison possible between scanning sites but do not 

have the data to account for what contributed to the small differences we did detect. It is possible 

this measurement was affected by differing effects of location and scanner setup, or by intrinsic 

subject factors such as hydration on brain macrostructure188, cardiac189, or breathing activity. 

Variation was more common in the cortex than in the deep white matter.  
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Conclusion 

 

This study provides evidence for 3T-CSD measurements of brain tissue microstructure 

being a reliable metric for multi-site studies. Variation tends to be less than 0.01 for most ROIs 

across the brain, and is observed to be especially reliable within the white matter skeleton.  

 

Summary 

 

This study investigates the reliability of diffusion microstructure measurements acquired 

from 10 different scanning sites. We compare measurements from across the brain for inter- and 

intrasite reliability, finding that 3T-CSD is reliable, especially in white matter. 
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Study 1e 
Title: The NTU-DSI-122 template as a flexible platform for fiber orientation distribution 

registration of diffusion microstructure into stereotaxic space. 

 

Abstract 

  

 The registration of neuroimaging subjects to a common stereotaxic space allows for 

comparisons between timepoints, subjects, or with reference atlases of regions of interest. 

Typically, this has been performed by computing a similarity metric between the voxel-wise 

intensity values in the subject image and a reference image. Diffusion MRI is a method that 

provides far more detailed voxel-wise information than a simple scalar intensity value. This 

allows for the potential to use this additional information to perform registration with added 

within-tissue contrast. In this study, we present a novel use of the NTU-DSI-122 template as a 

fiber orientation distribution (FOD) template, for the purpose of registering subject dMRI images 

to stereotaxic space. The reliability and accuracy of this FOD-based registration method are 

compared to the intensity-based registration method ANTs by registering cellular microstructure 

maps from two separate cohorts to the NTU-DSI-122 template. The stochastic FOD-based 

method significantly outperformed the stochastic intensity-based metric on reliability and was 

able to more consistently register the same subject multiple times independently. The FOD-based 

method also significantly outperformed the intensity-based metric on registration accuracy by 

more completely aligning the microstructure maps to the template as measured by the Sorenson-

Dice coefficient at multiple percentile thresholds. The NTU-DSI-122 template has the additional 

benefit of including multiple b-value shells between a wide range of feasible acquisition 

schemes, making the platform a flexible option for registering acquisitions of varying quality, 

including clinically acquired data.  

 

Introduction 

 

Registering subjects to a common template space is a necessary step in almost any 

neuroimaging study performing group-level comparisons. A straightforward process for doing so 

aligns the brains of each acquisition in a study cohort from the acquired ‘native’ space to a 
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‘common’ template space. This common space is intended to achieve voxel-voxel 

correspondence between images and allow for comparison between subjects without interference 

from factors such as head orientation in the scanner or naturally occurring anatomical variation. 

The idea of a stereotaxic common space that could allow for images, atlases, and ROIs from 

different studies to be applied in a standardized manner gained attention with the definition of 

Talairach space-registered atlases190, and the release of stereotaxic templates such as the Colin 27 

Average Brain191, and the MNI 152 linear template192. 

 

While manual segmentation by multiple experienced raters was once viewed as the gold 

standard in anatomical parcellation193, this procedure is not always available or practical for large 

volume multi-site cohorts. The Adolescent Brain Cognitive Development (ABCD) cohort, for 

example, contains imaging across multiple modalities and multiple timepoints for over 11,000 

subjects, far too many to reasonably manually segment ROIs in a timely and cost efficient 

manner128,133. Automated methods are thus necessary to align subject brain scans collected in 

their native space with a suitable reference template in order to apply an atlas in an unbiased 

manner.  

 

As the brain differs in size and proportion between subjects194,195 registration algorithms 

must be able to warp the brain along multiple axes in order to achieve an accurate alignment. 

This is typically performed using an algorithm with 12 degrees of freedom: rotation, translation, 

scale, and shear in a non-linear affine transform based on mutual information196. This process is 

most straightforward when dealing with T1-weighted structural images of subjects because the 

voxel intensity values create a consistent contrast between cortex, white matter (WM), and CSF 
197. One of the most widely applied registration algorithms in neuroimaging, the ‘SyN’ model 

implemented in the program ANTs119,120, utilizes a diffeomorphic regularization to minimize the 

intensity difference between images (by maximizing a cross-correlation metric), combined with 

assistance from anatomical priors119. This registration approach is highly reproducible119, and has 

performed well against other methods in open competition198,199. 

 

Diffusion MRI (dMRI) images can present a particular challenge for this process, as each 

individual gradient direction may have different voxels with high and low intensity based on 
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gradient angle and subject positioning. The use of multiple b-value shell acquisitions provides an 

additional complication, as each individual voxel may have different intensity at each shell in 

addition to global intensity shifts dependent on the cellular tissue contents within each voxel10. 

One solution to this problem has been to register the b=0 s/mm2 volumes collected with the 

diffusion images to a T2-weighted image due to the similar anatomical contrast present in both 

images200–202. However this method neglects the strength of dMRI’s ability to provide detailed 

information within tissue compartments, especially WM and areas where myelinated axons 

extend into the cortex. 

 

The voxel-wise image intensity between two WM fiber bundles may not be greatly 

different at b=0 (i.e., they lack within tissue contrast), thus intensity-based algorithms may have 

lower sensitivity toward within tissue location. However the orientation of those WM fiber 

bundles can vary, potentially including multiple directions within a single voxel depending on 

analysis method53. The presence of these crossing fibers complicates many common DTI derived 

metrics used in registration, such as fractional anisotropy based-registration203,204. Accounting for 

this orientation information during registration is important for tractography and reconstructing 

accurate connectomes. Additionally, some measures of cellular microstructure, such as free 

water signal fractions, have a small value range (between 0-1 in this case), making the measure 

sensitive to even small changes in value or introduction of noise. Symmetric diffeomorphic 

registration via cross-correlation of the spherical harmonic coefficients has previously been 

demonstrated as a means of accurately co-registering WM fiber orientation distributions (FODs) 

within a cohort160. This method allows for crossing fiber tracts to be registered between subjects, 

and can create group average templates composed of information from each subject in a 

particular study cohort. However, many neuroimaging methods such as connectome building or 

automated atlas fitting require registration to an existing template specifically in stereotaxic 

space. An additional requirement for any FOD template to achieve effective widespread use is 

for the FODs to be available for calculation from multiple b-values. Different b-values have 

greatly different FOD amplitudes205 and WM fiber bundle signal varies between b-value shells206, 

and constrained spherical deconvolution algorithms207.  
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These two requirements: 1) that a diffusion FOD template be located in stereotaxic space, 

and 2) that the template be adaptable to a variety of b-values in order to match collected data, are 

both met by the NTU-DSI-122 template135. This template was developed by combining diffusion 

spectrum images obtained from 122 individual subjects through a multi-step registration 

procedure. The result is a template fit to ICBM space with multiple b-values up to b=4000 

s/mm2. Though designed as a diffusion spectrum template the number of b-values at each shell 

are suitable for extraction and FOD calculation. It is then possible to register subject FOD 

images or group level template images with the NTU-DSI-122 at an appropriate b-value for 

parcellation and analysis. This study introduces the NTU-DSI-122 as a candidate FOD template 

in stereotaxic space for the registration of dMRI images. The utility of this method is compared 

in two experiments to a commonly used standard registration method for both reliability 

(Experiment 1) and accuracy (Experiment 2) with a specific focus on the registration of dMRI 

derived measures of cellular microstructure.  

 

Methods: 

 

Template: 

 

 The NTU-DSI-122 was developed by combining 122 individual subjects (61 male, age 

27.97 ± 5.25 years, ranging from 19-40 years-old) diffusion images through a two-step 

registration procedure incorporating structural and diffusion weighted registration135. This 

process involved 1) creating a mean tissue probability map from all input subjects, and aligning 

that mean image to stereotaxic space. 2) Aligning each subject’s diffusion spectrum image and q-

space information before averaging each subject to construct the final template 208. 

 

Experiment 1: Assessment of Reliability 

 

 To assess the reliability of each transform method the same identical registration was 

performed repeatedly for a number of images and the results were compared for consistency. We 

collected 5 diffusion MRIs from healthy controls (all male) using a Siemens Prisma 3T scanner 

with an isotropic voxel size of 1.7⨉1.7⨉1.7 mm, TE=70 ms and TR=2900 ms; 10 b=0 images 
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and 64 gradient directions at both b=1500 s/mm2 and b=3000 s/mm2. Each image set was 

analyzed using MSMT-CSD10 implemented in the open source software MRtrix12. Several 

preprocessing steps utilized FSL104,105. Diffusion images were denoised107, corrected for Gibbs 

ringing109, susceptibility distortions104, subject motion116, and eddy currents110. All images were 

upsampled to of 1.3⨉1.3⨉1.3 mm, and skull-stripping was performed using the Brain Extraction 

Tool105. Response functions were generated88 from both experimental data and the NTU-DSI-122 

template at b=1538 s/mm2 and b=3077 s/mm2 and used to generate FODs10. The number of 

directions was sufficient to generate FODs with a harmonic order of lmax = 4, which has been 

suggested to be optimal for registration160. Extracellular isotropic CSF-like free water signal 

fractions were calculated directly from the FODs using 3-tissue constrained spherical 

deconvolution (3T-CSD), a method that measures cellular microstructure within each voxel 

fitting into intracellular anisotropic (ICA, WM-like), intracellular isotropic (ICI, GM-like), and 

extracellular isotropic (ECI, CSF-like/Free Water) compartments100.  

 

 Each of the 5 diffusion MRIs were then registered from native space to MNI space using 

both ANTs SyN algorithm120 to register the processed b=0 s/mm2 images with the Colin 27 T2 

template191 and using MRtrix12 to register the WM FODs with the NTI-DSI-122 template WM 

FODs160,209. Each registration was used to generate a transform that was applied to the CSF-like 

free water signal fraction from that subject. Because these registrations are not deterministic 

processes, and can produce slightly different transforms each time it is performed on the same 

images, this procedure was repeated independently 5 times for each subject, via each method 

(Figure 1). 
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Figure 1: Study workflow illustrating the process of moving from native space images (three 
images on left), registering with the respective template for each method, applying the transform 
generated from that registration to the free water signal fraction map, and obtaining the free 
water signal fraction maps in stereotaxic MNI space (two images on right). This process was 
repeated 5 independent times for each of the 5 subjects for Experiment 1. In Experiment 2 this 
process was performed only once for each subject, and the resulting transform was used to move 
intracellular anisotropic (WM-like), intracellular isotropic (GM-like), and extracellular 
isotropic (CSF-like/Free Water) signal fraction maps to MNI space. 
 

 

Experiment 2: Assessment of Accuracy 

 

To assess the accuracy of each transform method we devised a new method for 

comparing signal fraction maps in stereotaxic space. A typical approach for registering structural 

MRIs using b=0 or T1-weighted images has less information for discriminating between voxels 

within the same tissue type (WM/GM/CSF). FODs however contain a great deal more 

information in both directional components and axonal fiber density160. We hypothesized that 

this additional information would lead to superior within-tissue registration of cellular 

microstructure signal fraction maps (as these are derived from FOD coefficients) and thus more 

accurate whole-brain registration. To test this hypothesis, we generated cellular microstructure 

signal fraction maps from a ‘ground-truth’ in stereotaxic space by applying the 3T-CSD analysis 
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to the NTU-DSI-122 template itself. Each subject image and the ‘ground-truth’ image could then 

be thresholded at different signal fraction values and in different directions (the threshold 

representing either an upper or lower based voxel-wise value limit, illustrated in Figures 2-4). 

The transformed and thresholded signal fraction image from each subject and from the 

appropriate tissue type could then be compared for accuracy at multiple levels of detail using the 

Sorensen-Dice coefficient, a metric of image overlap210,211. By thresholding the subject images 

after transformation the experiment is also able to account for the impact of interpolation on 

signal fraction maps. Both MRtrix and ANTs implement a nearest neighbor algorithm, however 

the greater local deformation that occurs can cause more severe distortions in values. So, while 

necessary to account for warped voxels, local interpolation changes can be severe for signal 

fraction maps with value ranges between 0-1. By creating threshold cutoffs between 0.10 or 0.25, 

large shifts from the ground truth values will cause regions to cross the cutoff threshold and the 

Dice coefficient value will be lower. 
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Figure 2: Map of the thresholding procedure for the intracellular, anisotropic (WM) signal 
fraction map. This is illustrated using the NTU-DSI-122 template which served as a ground-truth 
structural division in this study. The different direction of thresholding created 10 different 
ground truth maps for each tissue type, each covering different regions of the brain. For 
example, the region thresholded ‘Up’ at voxels where the WM signal fraction value was 25% 
includes both the red and yellow regions largely in the cortex where intracellular anisotropic 
signal is low, meanwhile the region thresholded ‘Down’ includes the yellow, green, cyan, and 
blue regions including deep WM but ecluding the outer cortex.  
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Figure 3: Map of the thresholding procedure for the intracellular, isotropic (GM) signal fraction 
map. This is illustrated using the NTU-DSI-122 template which served as a ground-truth 
structural division in this study. The different direction of thresholding created 10 different 
ground truth maps for each tissue type, each covering different regions of the brain. This 
patterning includes portions of central structures as well as detailed layering of the cortex 
without a large contribution from axonal WM areas. 
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Figure 4:  Map of the thresholding procedure for the extracellular, isotropic (CSF/free water) 
signal fraction map. This is illustrated using the NTU-DSI-122 template which served as a 
ground-truth structural division in this study. The different direction of thresholding created 10 
different ground truth maps for each tissue type, each covering different regions of the brain. 
This patterning includes detailed ventricles as well as a highly detailed layering of the cortex 
displaying the gradient of fluid infiltration into cortex toward the outer edge of the brain 
parenchyma.  
 

For subjects, diffusion MRI images were obtained from a random selection of 100 non-

twin individuals in the Human Connectome Project (HCP)131. Subjects were scanned using a 

specially modified Siemens Skyra 3T scanner with acquisition parameters of 

1.25x1.25x1.25mm3 isotropic voxels, TE=89ms and TR=5520ms; 36 b=0 images were acquired 

interleaved with 180 gradient directions each at b=1000s/mm2, b=2000s/mm2, and 

b=3000s/mm2131,212. Processing of dMRI data was performed identically to Experiment 1 with the 

exception of single-shell constrained spherical deconvolution following preprocessing90. Quality 

control was performed via manual visual inspection of each subject’s signal fraction maps to 

remove subjects who experienced registration failure (largely blank final images or the presence 

of extreme distortions) and 4 subjects were removed from the study (three for failure of the 

FOD-based method and one for failure of the ANTs method). 

 



 88 

 The closest matching non-b=0 shell was extracted and FODs were calculated as before. 

Using the NTU-DSI-122 allowed for the creation of a ‘ground-truth’ signal fraction map for each 

of the tissue types derived from 3T-CSD (ICA, ICI, and ECI). For the Colin-27 template used as 

an example comparison tissue segmentation was performed using FSL105. No additional 

preprocessing was necessary and response functions were derived from the dMRI image itself 

following the protocol established in Experiment 1.  

  

 

Statistical Approach 

 

In Experiment 1 once the free water signal fraction maps had been moved into stereotaxic 

space the mean squared difference was then calculated for each whole-brain image between 

every same-method same-subject combination to analyze which method more consistently 

transformed the free water signal fraction map into MNI space. This approach allowed for 

transform reliability to be assessed using traditional statistical approaches.  

 

In Experiment 2 Sorensen-Dice coefficients were calculated for each of the subjects’ 

signal fraction maps that passed quality control. Each subject had 5 cutoff maps per direction of 

thresholding (upper thresholding above the cutoff value and lower thresholding below the cutoff 

value) for each of the three tissue types derived from 3T-CSD (ICA, ICI, and ECI) in addition to 

whole brain maps (compared against both NTU-DSI-122 and Colin27 ground truth signal 

fraction or determinative tissue divisions) for a total of 36 measurements per subject. Each 

direction of thresholding and each tissue type was compared between registration methods to 

determine if registration using intensity or FOD-based methods were consistently more 

successful at correctly aligning each level of the signal fraction maps.  

 

Results 

 

Experiment 1: Assessment of Reliability 
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 Each of the subject’s calculated mean squared difference was lower for the MRtrix FOD 

transform compared to the ANTs SyN tansform. This resulted in a significantly lower mean 

squared difference between repetitions compared to the ANTs SyN generated transform 

(pairwise T-test, T49 = 8.02, p<0.001) indicating that the FOD algorithm was able to more 

consistently register and transform the free water signal fraction maps (Figure 5). 

 

 

 
Figure 5: The mean squared difference results from Experiment 1 between each of the 5 
independent registration attempts for each of the 5 subjects involved in analysis are presented, 
alongside the group mean (±SE). Grey bars represent the SyN intensity-based registration 
implemented in ANTs and yellow bars represent the WM-FOD based registration implemented in 
MRtrix. The reliability of the MRtrix implemented FOD-based registration method had a 
significantly lower mean squared difference between the transformed images of each subject 
(pairwise T-test, T49 = 8.02, p<0.001). 
 

Experiment 2: Assessment of Accuracy 

 

 Registration using the FOD-based template resulted in signal fraction maps with a greater 

Sorenson-Dice coefficient in upper thresholded ICA (Repeated measures ANOVA, 

F1,950=28485.01; p<0.001), upper thresholded ICI (Repeated measures ANOVA, F1,950=26033.74; 

p<0.001), upper thresholded ECI (Repeated measures ANOVA, F1,950=11189.9; p<0.001), lower 

thresholded ICA (Repeated measures ANOVA, F1,950=3600; p<0.001), and lower thresholded ICI 

(Repeated measures ANOVA, F1,950=23.5, p<0.001). Intensity-based registration implemented 
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using ANTs resulted in signal fraction maps with a greater Sorenson-Dice coefficient in lower 

thresholded ECI (Repeated measures ANOVA, F1,950=892.8; p<0.001). When each directional 

threshold was combined FOD-based registration had a significantly higher Dice coefficient for 

each tissue type (ECI Repeated measures ANOVA, F1,1910=25.78; p<0.001; ICI Repeated 

measures ANOVA, F1,1910=35.36; p<0.001; ICA Repeated measures ANOVA, F1,1910=40.26; 

p<0.001) These results are summarized in Figure 6. Whole brain registration results were 

compared by calculating Dice coefficients for both the 3T-CSD derived tissue signal fraction 

maps and the FSL intensity based determinative tissue segmentations. There was a significant 

effect of registration method on Dice coefficient (Fig. 6), with FOD-based registration 

performing better than intensity-based registration on each NTU-DSI-122 comparison while 

intensity-based registration had a higher dice coefficient when compared to the Colin-27 

segmentations, however the NTU-DSI-122 comparison was far higher for both methods 

(Repeated measures ANOVA, F1,1146=12.69; p<0.001). There was also a significant effect of 

tissue type (Repeated measures ANOVA, F1,1146=21.77; p<0.001), with the ECI free water tissue 

compartment having the lowest Dice coefficient for both methods when compared to the Colin-

27 segmentation and the highest Dice coefficient for both methods when compared to the NTU-

DSI-122 template. There was no significant interaction between registration method and tissue 

type (Repeated measures ANOVA, F1,1146=0.085; p=0.918 n.s.).  
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Figure 6: Chart displaying the Dice coefficient calculated for each tissue type and averaged 
across all subjects and threshold levels, and compared to the ground truth of either the Colin-27 
binary tissue division (Gray; CSF/GM/WM) or the NTU-DSI-122 signal fractions (Red; 
ECI/ICI/ICA). Dice coefficient calculated from the intensity-based registration method is 
displayed in gray (±SE) and the FOD-based registration method is displayed in red (±SE).  
 

Discussion 

 

 We have demonstrated the successful use of an FOD-based template for the reliable and 

accurate transformation of signal fraction maps into stereotaxic space. Using the NTU-DSI-122 

we are able to create an FOD template suitable for individual or template-based registration. The 

NTU-DSI-122 is a flexible template with a variety of b-value shells to create suitable b-value 

matched templates to the majority of common acquisition schemes. The additional directional 

information inherent in the FOD map provides a powerful means to register axonal fibers and to 

generate within-tissue contrast that is not possible using regular structural imaging techniques.  

 

 We have compared this FOD-based template registration technique to the widely used 

intensity-based SyN transform implemented in ANTs120,199. Registering dMRI images using the 

NTU-DSI-122 template with an FOD-based apodized point spread function209 was demonstrated 
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to be more reliable and, in a variety of contexts, more accurate at registering brain microstructure 

maps than the intensity-based method. The NTU-DSI-122 showed better whole brain registration 

and accuracy at various thresholds and in each of the tissue microstructure types examined. This 

is especially notable due to only information relating to the anisotropic tissue compartment 

(ICA/WM) being used in the registration process. Intensity-based registration uses information 

from each of the different tissue compartments, and so it would not have been unexpected to 

have performed better at the GM/CSF boundary at the edge of the cortex however each of the 

tissue compartments had a higher Dice coefficient when FOD-based registration was used. This 

finding supports the view that each tissue compartment contributes some signal to almost every 

voxel, in contrast to a binary view where voxels belong to a specific predominant tissue type. 

Perhaps unsurprisingly, the ECI compartment performed the worst in regards to accuracy at 

various thresholded levels between both FOD- and intensity-based registration methods. 

Interestingly however, the FOD-based registration outperformed the intensity-based registration 

method throughout the mid-range of thresholded values which suggests that the FOD-based 

method was more accurate at registering the sulci and gyri (the largest contributors to these 

thresholds as illustrated in Figs. 2-4). 

 

The increased accuracy of the FOD-based registration method is complemented by the 

range of b-value shells present in the NTU-DSI-122 template, allowing for a template to be 

created that matches experimentally acquired acquisitions. In this study we have exclusively 

tested registering dMRI images from natively acquired subject space to stereotaxic space, while 

this is not necessarily the optimal method for every study, it allowed for an easy to analyze 

experimental design and presented a reasonably challenging task for a registration algorithm to 

align subject brains with individual variations to a normalized template. A common alternative to 

direct native space to stereotaxic space registration is to create a cohort specific template to first 

register all subjects to, then performing a single registration between that template and 

stereotaxic space100,160. To illustrate the utility of the NTU-DSI-122 and the suitability of this 

method to register cohort specific templates from a variety of acquisitions a number of templates 

from a wide variety of subject cohorts and acquisitions have been warped into stereotaxic space. 

The FODs from these templates in MNI space are illustrated in Figure 7, they display accurate 

anatomical registration from cohorts across the lifespan and including clinical quality data.  
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Figure 7: Illustration of 5 cohort-specific templates transformed into MNI space using b-value 
matched variants of the NTU-DSI-122. Each template was constructed from between 30-50 
randomly selected individuals from their respective studies. Each cohort was collected with a 
different acquisition protocol (both single- and multi-shell acquisitions ranging from b=1000 
s/mm2 to b=3000 s/mm2 maximum b-value) across different age groups and template B was 
constructed from a clinically acquired dataset. Cohort age ranged from 9-11 years old (A), 41-
84 years old (B), 32-37 years old (C), 18-27 years old (D), and 56-82 years old (E). 

 

 The purpose of this study is to introduce a new template option for FOD-based 

registration of dMRI microstructure measurements to stereotaxic space. To that end, this study as 

much as possible strived to maintain a simple and straightforward registration pipeline that 

would mimic a typical user’s ‘out-of-the-box’ experience using the neuroimaging software 

available with MRtrix and ANTs12,120. There are a number of ways to increase registration 

algorithm performance by altering the settings of these algorithms and optimizing the algorithm 



 94 

to work with data from a particular pipeline or even from a specific subject. For example, the 

accuracy of both registration methods tested here can sometimes be improved if the number of 

iterations allowed before the algorithm terminates is increased, or if the hierarchical resolution 

steps are modified. While these are important considerations for implementing registration in any 

specific study, we aimed to demonstrate a simple comparison for validity, not to specify the total 

superiority of one method over another. Thus, optimizing the algorithms is beyond the scope of 

this paper.  

 

 Intensity-based registration has a number of advantages over an FOD-based method that 

were not evaluated. This study utilized two datasets with high-quality dMRI acquisitions 

intended for research applications, one collected locally and another from the HCP131,212. The 

high b-value shells and number of gradient directions are well-suited for generating FOD maps 

with sufficiently high Jmax spherical harmonic degree to detect multiple directions of crossing 

WM fibers10,206. A clinically acquired dataset or dMRI with only a limited number of directions 

intended for diffusion tensor imaging (DTI) may not be suitable for FOD-based registration or 

may suffer decreased accuracy while intensity-based registration only requires a single b=0 

image. This study also does not test the ability of intensity-based registration techniques to 

register single volume DTI derivative metrics, such as fractional anisotropy, to a template or 

stereotaxic space.  

 

 Given the rise in cellular microstructure models of dMRI data, it is imperative that well 

evaluated registration methods are used to ensure accurate and reliable transforms. This will only 

become more important as large cohort datasets require automated processing pipelines with 

minimal user intervention. The addition of multi-site data provides another imperative to have 

reliable registration that does not introduce a new source of variation into the study. This study 

describes a novel registration process that uses the NTU-DSI-122 as a FOD template located in 

stereotaxic space suitable for FOD-based registration. This template and the software used in this 

study are freely available and available for use by any dMRI researcher.  

 

Conclusion 
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 Using the NTU-DSI-122 as a template for FOD-based registration provides a means to 

register subject brain scans to stereotaxic space. This method is more reliable and more accurate 

than a leading intensity-based registration method at registering maps of brain cellular 

microstructure.  
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Chapter 2 
Applying 3T-CSD to study the brain throughout the lifespan 

 

With Chapter 1 focusing on the technical development of 3T-CSD as a reproducible 

technique for assessing and quantifying brain cellular microstructure Chapter 2 will focus on the 

application of 3T-CSD to assess major critical periods throughout the lifespan. While 3T-CSD 

has great potential for use in studying and quantifying nonstandard microstructure, or the brain in 

the context of gross pathology, it is important to demonstrate the utility and sensitivity of 3T-

CSD in normal and healthy appearing individuals. The brain undergoes intense periods of change 

during development and during aging and 3T-CSD must be able to quantify these changes as 

well as show sensitivity to factors that are known to have an effect on the brain, such as puberty, 

chronological age, and cardiovascular health. 

 

Aim 2a: To generate trajectories of 3T-CSD measurements of ICA, ICI, and ECI signal fractions 

across the lifespan and during a variety of developmental and degenerative processes similar to 

existing structural MRI modalities.  

 

The basic cellular processes that occur in the brain during human development, aging, and 

decline, are still poorly understood.  Volumetric MRI studies have established that the volumes of 

brain white matter and gray matter change dramatically across the lifespan13,14. However since 3T-

CSD is potentially more sensitive to cellular changes at the sub-voxel level it may be able to detect 

changes in brain microstructure before they manifest as changes in brain volume15. It is also 

necessary to explore the cellular microstructure that underlies volumetric change with detailed 

analysis of specific regions of the brain at multiple scales and between hemispheres. The goal of 

this study is to analyze a large number of subjects from a publicly available population cohort in 

order to provide a lifespan trajectory for 3T-CSD measurements of cellular microstructure from 

multiple areas of the brain. Establishing the relationship between chronological age and 

microstructural metrics will establish normal reference ranges and trajectories that are essential 

before investigating abnormal populations. 
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Aim 2b: Determine if 3T-CSD microstructure measurements are altered by pubertal development 

during the critical period of early adolescence.  

 

Adolescence is a time of rapid physiological and neurological change that is primarily 

driven by the surge in production of sex-specific hormones. Identifying microstructural changes 

that occur naturally during this time period will allow for further evaluation into life events that 

alter brain cellular microstructure. Understanding the relationship between the cells of the brain 

and maturation is an important component of adolescent health and well-being throughout the 

remainder of the lifespan. 

 

Aim 2c: Determine if the epigeneticly derived risk score ‘GrimAge’ is an effective peripheral 

blood biomarker of small vessel disease driven damage to brain microstructure in a ‘healthy’ aging 

cohort.  

 

Though macro-level changes in the aging brain are well described, the microstructural 

cellular alterations underlying these changes are relatively unknown. We would expect 

microstructural alterations to be more sensitive to physiological change or pathological 

development before they accumulated into macro-level changes in brain structure. The age-

adjusted version of GrimAge presents a powerful means for studying the effects of cardiovascular 

health on the brain and has been shown to be predictive of the presence and size of white matter 

hyperintensities (WMH)16. A specific focus will be made on white matter hyperintensities, a visible 

neurological manifestation of small vessel disease, and the microstructural composition of the 

axonal pathways throughout each individual’s brain affected by their unique white matter 

hyperintensity location and volume.   
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Study 2a 
 

Aim 2a: To generate trajectories of 3T-CSD measurements of ICA, ICI, and ECI signal fractions 

across the lifespan and during a variety of developmental and degenerative processes similar to 

existing structural MRI modalities. 

 

Rationale: The human brain undergoes a great deal of physical change throughout the lifespan, 

both in size and in arrangement. The brain changes both in response to chronological age (both 

developmentally in early age and decline in later age), and due to internal and external forces as 

varied as puberty, traumatic brain injury, socioeconomic status, exercise, and many others6,213–215. 

We hypothesize that 3T-CSD metrics of brain cellular microstructure will be highly sensitive to 

structural alterations of the brain and can provide deeper insight at the voxel-wise level regarding 

cellular processes underlying observed changes than traditional volumetric structural 

measurements15.  

 

As a novel metric, 3T-CSD measurements will benefit from proper contextualization 

within the lifespan. We expect significant changes to occur in 3T-CSD brain microstructure 

measurements as the brain develops and ages but the distribution of these changes within the 

brain and the direction of these changes is unknown. Establishing a baseline trajectory for brain 

microstructure will aid interpretation of future experiments and allow for comparisons between 

individual subjects and baseline or between a clinical population and baseline. Though this work 

could be extended using the concept of ‘brain age’ this aim is initially descriptive in nature, and 

will primarily be used to contextualize the results from models in later Study 2b and Study 2c. 

 

Experimental Design: To achieve this aim, we will first analyze a harmonized whole lifespan 

cohort and parcellate each subject to obtain measurements from 212 ROIs across the brain. This 

will be performed using the Nathaniel Kline Institute (NKI) Rockland Cohort, a well-established 

cohort of several hundred subjects ranging in age from 5-85 years-old158. The cross-sectional 

trajectory of cellular microstructure from ICA, ICI, and ECI tissue compartments will be plotted 

for each of the 212 ROIs for the entire age range present in the NKI-Rockland dataset. Results 

from this experiment will inform interpretation of results from subsequent experiments. 
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Direction of observed effects in particular, will give valuable insight into which factors 

accelerate/slow maturity in development and which accelerate/slow decline in aging. The ROI-

based approach will allow for compatibility with subsequent studies by covering a 

comprehensive series of distinct brain areas such as both cortical and subcortical GM, axonal 

skeleton, cerebellum, and including both left and right components of lateralized structures 

where appropriate.  

 

  



 100 

Study 2a 
Title: Diffusion MRI microstructure markers of changes in the human brain across the lifespan 

 

Abstract 

 

Understanding how the brain develops, matures, ages, and declines is one of the 

fundamental questions facing neuroscience. Recent advances in diffusion MRI microstructure 

analysis have allowed for detailed descriptions of neuronal change in humans. However, it is 

essential that findings from these studies are appropriately contextualized to general age-related 

changes in the brain. This study uses 3-tissue constrained spherical deconvolution (3T-CSD) to 

examine the relationship between brain diffusion microstructure and chronological age. 3T-CSD 

is able to quantify signal fraction measurements at the voxel-wise level from three different 

tissue microenvironments found in the brain: extracellular free water, intracellular isotropic, and 

intracellular anisotropic. This study applies 3T-CSD analysis to the Nathanial Kline Institute’s 

Rockland cohort, a large-scale community sample of brain MRI data across the lifespan. 

Microstructural measurements were taken in a number of structures throughout the white matter, 

subcortical gray matter, and lobar cortical regions while additionally evaluating lateral 

differences in microstructural measurements. The general trajectory of signal fraction 

measurements was a positive relationship with age and extracellular signal fraction, a negative 

relationship between age and intracellular isotropic signal fraction, and an inverted U-shaped 

trajectory for the intracellular anisotropic signal fraction. In individual sub-areas these trends 

tended to still be present, with some notable exceptions. However there were large differences in 

3T-CSD microstructure measurements between individual structures, including significant lateral 

differences between hemispheres for each of the subcortical gray matter structures and for each 

of the cortical regions. These results demonstrate that 3T-CSD is able to describe age-related 

change across the brain and lifespan. By using a healthy population cohort this study can be used 

as a point of comparison for 3T-CSD analysis of microstructure changes in the presence of 

pathology. Finally, the detailed analysis of lateralized ROI results can inform diffusion 

microstructure studies examining cortical and subcortical regions. 
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Introduction 

 

 Throughout the human lifespan the structure of the brain changes dynamically in 

response to internal and external factors. A wealth of volumetric MRI studies have shown that 

early in life the brain dramatically increases in size while in older individuals the brain shows a 

remarkable decrease in volume216–221. Two recent studies using extremely large numbers of 

subjects have firmly established a general trajectory for changes in brain volume, with peaks in 

volume occurring around 12 years of age (for subcortical GM, surface area, and cerebrum 

volume)14. However these trajectories show comparatively little movement following 

development (especially after puberty, but with the greatest rates of change occurring before 2 

years of age)13. This leads to a long and slightly downward plateau before decline begins in 

earnest in advanced age, with especially noticeable increases in ventricular volume and declines 

in cortical GM volume13,14. This lifespan trajectory is interwoven with complex processes during 

development and decline, such as hormone levels following the onset of puberty in early 

adolescence222 and changes in vascular health during aging223. Concurrent with changes in gross 

anatomy are changes occurring at the cellular level, such as extensive synaptic pruning in 

development224,225 and excessive atrophy and cellular death in mild cognitive impairment and 

progressive decline226. Understanding the trajectory of these changes in the brain, as well as 

understanding what processes drive these changes, are important for research into neurological 

disease.  

 

Recently, measures of cellular brain microstructure derived from diffusion MRI (dMRI) 

have proliferated in number and become more commonly applied in the analysis of development 

and pathology24,58. Each model has particularly defined functions applied to the raw diffusion 

signal, such as the separation of freely diffusing water from tissue in the bi-tensor free water 

elimination model24 the ‘ball and stick’ model of isotropic and anisotropic diffusion21, or the 

detailed delineation of cellular somas from neurites (dendrites, axons, etc.) and extracellular 

water available with NODDI58. While these models have seen widespread application in recent 

years, most are still reliant on tensor-based diffusion models or require sufficiently detailed 

acquisitions to accurately quantify all of their output metrics. Our lab has recently developed a 

model of diffusion microstructure known as 3-tissue constrained spherical deconvolution (3T-
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CSD)100. 3T-CSD relies on more complex models of diffusion signal calculated using spherical 

harmonics11 and is able to measure both isotropic and anisotropic intracellular microstructure and 

extracellular water compartments derived from single-shell clinical quality acquisitions with a 

high level of reliability and stability90,100. The ability of 3T-CSD and other quantitative diffusion 

models to measure multiple microstructure compartments provides a far greater level of detail at 

the voxel-wise level compared to well-established volumetric MRI and voxel-based 

morphometry measurements. These advantages mean that 3T-CSD is well-positioned to 

investigate changes in brain cellular microstructure across the lifespan. Within a specific age 

cohort, deviations from established age-related trajectories might indicate accelerated or slowed 

aging or development, depending on the context being studied. Microstructural measurements 

may have increased sensitivity by detecting changes in cellular architecture before they become 

apparent as changes in volume or density, particularly the signal from extracellular freely 

diffusing cerebrospinal fluid (CSF) infiltrating into brain tissue15. 

 

3T-CSD has several other advantages in examining changes in the brain across the 

lifespan. Importantly the intracellular isotropic component is flexible and nonspecific, and is 

intentionally not restricted to any specific cellular type or location within the brain. Changes in 

this signal fraction compartment are thought to arise from either neuronal soma or glial cell 

population changes. Voxels with the highest intracellular isotropic signal fraction occur in the 

typically defined gray matter areas (GM) in the cortex and subcortical structures. However 

nearly all voxels have a non-trivial contribution from each signal fraction compartment, 

including in axonal areas (so called ‘deep’ white matter (WM)) where neuronal somas are 

unlikely to be found91,227. This makes the intra- and extracellular isotropic signal fraction 

compartments excellent markers for changes in axonal white matter areas. 3T-CSD can detect 

meaningful shifts from very high (~90% or more) intracellular anisotropic signal fraction in 

healthy axonal areas toward increasing intra- and extracellular isotropic signal fraction 

measurements in early development101 or in the presence of pathology227. But this specific 

pathological context is not always available and as 3T-CSD begins to be applied to the study of 

broader conditions and developmental situations additional context is necessary to formulate 

hypotheses regarding the physiological change to the cellular microstructure that is observed in 

human studies. This context is especially necessary to interpret results from studies observing the 
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relationship between cellular microstructure and variables with undetermined effects on neuronal 

physiology, such as pubertal hormones.   

 

With the trajectory of volumetric MRI well established it is necessary to explore the 

cellular microstructure that underlies volumetric change with much greater detail, both with 

advanced dMRI models such as 3T-CSD and with detailed analysis of specific regions of the 

brain at multiple scales and between hemispheres. The goal of this study is to analyze a large 

number of subjects from a publicly available population cohort in order to provide a lifespan 

trajectory for 3T-CSD measurements of cellular microstructure from multiple areas of the brain. 

Establishing the relationship between chronological age and microstructural metrics will 

establish normal reference ranges and trajectories that are essential before investigating abnormal 

populations. This study will additionally investigate differences in cortical and subcortical areas 

and lateralized effects to inform future studies of significant regional and laterality differences 

that must be accounted for.  

 

Methods  

 

NKI/Rockland Cohort Data Acquisition 

 

Data for this study was obtained from the Nathaniel Kline Institute’s Rockland Study 

(NKI/Rockland) cohort158. NKI/Rockland is a large-scale community sample of participants with 

ages across the lifespan gathered in Rockland County, New York. Rockland County was selected 

in part because its diverse ethnic and economic demographics resemble those of the United 

States as a whole, which aids generalizability to the broader population. A wide array of 

physiological, cognitive, genetic and neuroimaging assessments are collected and publicly 

released (available at: http://fcon_1000.projects.nitrc.org/indi/enhanced/index.html )158.  

 

In this study the 409 subjects from the NKI/Rockland study that passed quality control 

and were publicly available at the time proceeded to analysis. These subjects ranged in age from 

6-85 years-old (mean 42.67 ± 20.79 S.D.). There were 144 male and 265 female participants 

with average ages of 36.09 ± 21.22 S.D. and 46.25 ± 19.68 S.D., respectively. These ages were 



 104 

not equivalently distributed between sexes (Kolmogorov-Smirnov; D=0.276, p<0.001) which 

precluded performing analysis to compare trajectories between sexes. 

 

Diffusion image processing and analysis 

 

dMRI data from 521 subjects was acquired using a Siemens MAGNETOM TrioTim 3T 

scanner with an isotropic voxel size of 2.0⨉2.0⨉2.0mm3, TE=85ms and TR=2400ms; 9 

b=0s/mm2 images and 127 gradient directions at b=1500 s/mm2. These images were processed 

through an automated pipeline with several manual quality control steps as follows. Each 

diffusion image set was analyzed using SS3T-CSD10,90 implemented in the open source software 

MRtrix and Mrtrix3Tissue12,90. Several preprocessing steps utilized FSL104,105. Diffusion images 

were denoised 107, corrected for Gibbs ringing109, susceptibility distortions104, subject motion116, 

and eddy currents110. All images were upsampled to of 1.3⨉1.3⨉1.3mm, and skull-stripping was 

performed using the Brain Extraction Tool 105. Response functions were generated88 from each 

tissue type and used to generate fiber orientation distributions (FODs)10. Signal fractions were 

calculated directly from the FODs using 3-tissue constrained spherical deconvolution (3T-CSD), 

a method that measures cellular microstructure within each voxel fitting into intracellular 

anisotropic (ICA, white matter-like), intracellular isotropic (ICI, gray matter-like), and 

extracellular isotropic (ECI, cerebrospinal fluid-like/Free Water) compartments100. Whole brain 

measurements were calculated from native space signal fraction compartments. These metrics 

used a smaller whole brain mask that excluded the ventricles and subarachnoid space via a ECI 

threshold that restricted the voxels to only those containing a majority signal fraction from brain 

tissue compartments and not extracellular fluid.  

 

White matter FODs were used to generate a cohort-specific FOD template image from 50 

individuals between ages 32-38 years-old and each subject’s individual WM FOD image was 

registered to this template. Manual quality control of registration to the cohort-specific FOD 

template was performed by visual inspection, excluding any subjects with obvious distortions or 

extreme shears. Following this procedure 409 subjects remained in the study for analysis. An 

FOD template in stereotaxic space was created using the NTU-DSI-122 template 

(https://www.nitrc.org/projects/ntu-dsi-122/ ), extracting the equivalent single b-value shell and 
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was registered to the cohort-specific template generated from this study135. This allowed for two 

separate atlases to be warped into the cohort template space to measure signal fraction averages 

within specific regions of interest.  

 

Regions of Interest 

 

In order to cover a wide range of brain regions including cortex and deep white matter 

both the JHU-DTI based ICBM-DTI-81 white matter atlas (available as part of FSL, hereafter 

referred to as the JHU WM atlas) including 48 ROIs105,228–230, and the Destrieux atlas including 

164 ROIs186 were warped into the study space. The cortical ROIs from the Destrieux atlas were 

summarized in a whole cortical ribbon ROI, as well as a cerebellum GM, and a total subcortical 

GM ROI. The 48 ROIs from the JHU WM atlas were also combined to provide a summary of the 

WM skeleton. 

 

Subcortical GM ROIs were utilized from the Destrieux atlas, the nucleus accumbens, 

amygdala, caudate, hippocampus, putamen, and thalamus were included without alteration. The 

Destrieux atlas cortical ROIs were also separately combined into one of 8 lobar cortical regions 

per hemisphere as specified by the atlas and packaged in Freesurfer186,231. The cortical ROIs 

separately encompassed frontal, insular, limbic, motor, occipital, parietal, sensory, and temporal 

cortices.  

 

Statistical Approach 

 

Signal fraction values from each of the three tissue compartments (ICA, ICI, and ECI) 

were averaged within each of the ROIs for use in analysis. The average values for the three tissue 

compartments were plotted against age for each of the 409 subjects. Total age-related change 

was examined both across these age groups and within each phase by the plotting of locally 

weighted scatterplot smoothing lines (loess) lines of best fit. This was performed in R using the 

default settings of a 2nd order polynomial and span of 0.75 (meaning the localized slope reflects 

the closest 75% of data points). As a model-free way of displaying general trends loess lines 

were selected for descriptive purposes to show overall change in each signal fraction and 
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facilitate between ROI comparisons. To provide more precise information on rates of change 

simple linear models were calculated predicting signal fraction from subject age and the slope of 

that relationship displayed for each ROI. For ease of comprehension as well as to delineate 

periods of particular interest across the lifespan (i.e. development, late age-related decline) we 

have divided the subject cohort into 4 different life phases: 1) developmental phase before 20 

years of age, 2) early adulthood phase between 20-40 years of age, 3) late adulthood phase 

between 40-60 years of age, and 4) senescence phase greater than 60 years of age. This division 

allows for an overview of the entire lifespan as well as comparisons to studies which only feature 

cohorts within a particular age range (for example, development or advanced age).  

 

The lateralized approach taken in this study for each of the subcortical and cortical ROIs 

allows for the comparison for each signal fraction between the left and right hemispheres. 

Measurements were taken from the left and right ROIs and compared across the lifespan using 

pairwise t-tests to compare each lateralized region within subjects. P-values were subsequently 

adjusted using a Benjamini & Hochberg correction for multiple comparisons. 

 

Results 

 

Whole brain shows developmental shift from ICI to ICA, followed by increasing ECI in aging 

 

As each whole brain signal fraction was individually collected in an equivalent native 

space they are displayed, colored by age, as a ternary plot to illustrate change across the brain, 

across the lifespan (Fig. 1). It was observed that whole brain metrics begin with a higher 

percentage of signal from the ICI compartment early in development, then progressing toward a 

greater signal fraction contribution from ICA in adulthood. Signal fraction contribution from ECI 

does not appear to change greatly during this time. During aging however, ECI increases at the 

expense of both ICA and ICI as the brain declines and atrophy occurs.  
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Figure 1: Ternary plot showing whole brain relationship between each of the 3T-CSD tissue 
compartments and subject age. Blue lines divide subjects into five 20%-tile groups based on age 
to illustrate change in signal fraction values across the lifespan. Whole brain tissue has the 
highest proportion of ICI signal fraction early in the lifespan, as development occurs the ICA 
signal fraction reaches its highest peak, and in later life the ECI signal fraction increases as the 
brain tissue declines.  
 

Large anatomical subregions show increasing ECI, decreasing ICI, and an inverted U-shaped 

ICA signal fraction across the lifespan 

 

Loess lines of best fit (A) and the linear slope of change per year within each age group 

(B) are presented for the initial 4 generalized regions in Fig. 2. While the specific proportion of 

ICA, ICI, and ECI is different in each region, which is to be expected given that each region is 

largely defined by the predominance of a specific cell type, there is largely a consistent pattern of 

change in each across the lifespan. Matching the whole brain results, ECI showed low levels in 
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development before 20 years of age, ECI even decreased in white matter areas covered by the 

JHU WM atlas and in subcortical GM structures. ECI remained largely flat in the early 

adulthood phase, between 20-40 years of age, but began to rise sharply during late adulthood 

between 40-60 years of age, with the sharpest increase occurring in the subcortical structures and 

cortical ribbon. In senescence greater than 60 years of age all major regions showed increasing 

levels of ECI reflecting widespread brain atrophy, loss of cellular integrity, and decline. The ICI 

signal fraction largely declined in all regions of the brain across the lifespan, though with 

important exceptions. The WM skeleton in the senescence phase showed a surprising increase in 

ICI signal fraction, especially considering that this is an area with very little ICI signal fraction. 

The cerebellum also remained relatively static in ICI signal fraction measurements until the 

senescence phase. The ICA signal fraction however, displays an inverted U shape across the 

lifespan, first rising greatly during development, slowing during the early adulthood phase, then 

increasing in decline during the early and senescence phases. The cerebellum is relatively 

consistent in ICA signal fraction in the development and late adulthood phases but otherwise 

each region is consistent in the trajectory of ICA measurements. 

 

Subcortical GM ROIs typically follow whole brain trajectory but differ greatly from each other 

    

Proceeding to a greater level of detail in different components of the subcortical GM, 

were independently measured in each hemisphere and plotted similarly to the larger anatomical 

areas (Fig. 3). A majority of the ROIs in this sample followed the general pattern observed for 

the area as a whole, but several important deviations can be observed, both in absolute 

differences in tissue composition as well as different trajectories across the lifespan. For 

example, the caudate nucleus early in life has a relatively low ECI signal fraction closer to the 

more internally located nucleus accumbens, but by middle age this structure contains a higher 

ECI signal fraction than the hippocampus, and the rate of increase then continues to accelerate 

until the structure has the highest average signal fraction of any subcortical structure late in life. 

Other structures demonstrate substantial deviations from the trajectory of the subcortex as a 

whole, most notably the putamen, which appears largely resistant to large age-related increases 

in ECI signal fraction, but in early development also the amygdala and hippocampus which 

decrease in ECI signal fraction more akin to the WM skeletal trajectory than the cortical 
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trajectory. The basal ganglia appear to have the least ECI signal fraction and have matching 

trajectories, but the ventral striatum nucleus accumbens and the dorsal striatum putamen show 

different trajectories in the other signal fraction compartments indicating different responses to 

age-related change. 
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Figure 2: Charts displaying the lifespan trajectories of each 3T-CSD metric in 4 large anatomical brain subareas. The relationship 
between age and signal fraction is displayed either across the whole lifespan (A, C, & E for ECI, ICI, & ICA respectively) or as the 
slope of the linear relationship during a limited age range (B, D, & F for ECI, ICI, & ICA respectively). Overall, signal fraction 
compartment trajectories were relatively consistent between brain subareas, with a positive relationship between ECI and age, a 
negative relationship between ICI and age, and a positive relationship between ICA and age in the first two life phases, followed by a 
negative relationship between ICA and age in the later two life phases. There were however several interesting exceptions to this 
general trend. Within the WM skeleton there was a negative relationship between age and ECI signal fraction in the developmental 
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phase, likely due to increased myelination reducing the extracellular space available for freely diffusing water. On the opposite end of 
the lifespan, in the senescence phase the WM skeleton displays an increase in ICI signal fraction.   
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Figure 3:  Charts displaying the lifespan trajectories of each 3T-CSD metric in 6 subcortical gray matter structures, including both 
left and right structures. The relationship between age and signal fraction is displayed either across the whole lifespan (A, C, & E for 
ECI, ICI, & ICA respectively) or as the slope of the linear relationship during a limited age range (B, D, & F for ECI, ICI, & ICA 
respectively). Trajectories largely follow the pattern established for the whole subcortical GM structure in Fig. 2, however some 
notable deviations: for the ECI signal fraction both amygdala, hippocampal, and amygdala drive the slight decrease in ECI signal 
fraction before 20 years of age, while caudate and thalamus surprisingly show steep increases during this time period and the 
hippocampus continues decreasing until reaching the late adulthood phase. In the ICI tissue compartment the thalamus, caudate, and 
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putamen follow the whole subcortical trajectory, but the amygdala, nucleus accumbens, and to a near degree the hippocampus, are 
more resistant to age-related decline. In the ICA tissue compartment the putamen is likewise resilient to age-related decline. 
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While the trajectory of each subarea largely appears more or less extreme in the ECI 

signal fraction, in the ICI and ICA signal fraction compartments some of the subareas deviate 

entirely from the established trajectory. The amygdala, nucleus accumbens, and to a near degree 

the hippocampus, are more resistant to age-related decline and do not display substantial ICI 

signal fraction decrease in the early adulthood and late adulthood phases. These three regions 

approach the highest age included in this study with approximately 15% points higher (a greater 

than 50% increase over) ICI signal fraction than the putamen and caudate which begin 

development at a reasonably similar ICI signal fraction. The hippocampus follows a trajectory 

more akin to the cerebral cortex, but this is not relevant for the deep internal structure of the 

amygdala and nucleus accumbens. While each of the subcortical GM structures shows a wide 

range of ICA signal fraction compositions, the largest outlier is the putamen, which shows an 

increase in ICA signal fraction throughout the lifespan even as every other region begins to 

decline in the early and senescence phases. Toward the end of the lifespan the putamen even 

approaches within 10% points of the ICA signal fraction within the WM skeleton.  

 

Subcortical GM show significant and consistent lateralized differences 

 

Results from lateralized comparisons are presented in Table 1. There was a high degree 

of lateralization in nearly all signal fractions with 15 out of 18 possible signal fraction/ROI 

combinations showing a significant difference between right and left hemispheres after 

correction for multiple comparisons. The ECI signal fraction was significantly higher in the right 

hemisphere in 4 of the 6 ROIs, as was the ICA signal fraction. The ICI signal fraction was higher 

in each left hemisphere ROI and was significantly so in all but the amygdala. The putamen, 

thalamus, and amygdala were observed to have the greatest laterality (at least one signal fraction 

compartment with a mean difference greater than 2%). The Hippocampus displayed the smallest 

average difference between left and right hemispheres, but was still significantly different for 2 

of the 3 signal fractions, displaying how prevalent lateralized differences in structure are in the 

brain.  
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ROI Tissue 
Type 

Higher 
Signal 

Fraction 

Mean 
Difference 

t-value Adjusted p-value  

N. Accumbens ECI Left 0.0005 0.359 0.720 n.s. 
 ICI Left 0.0106 2.634 0.012 * 
 ICA Right 0.0100 2.139 0.040 * 

Amygdala ECI Right 0.0232 19.596 <0.001 *** 
 ICI Left 0.0010 0.554 0.614 n.s. 
 ICA Left 0.0226 11.264 <0.001 *** 

Caudate ECI Right 0.0049 3.073 0.003 ** 
 ICI Left 0.0156 10.608 <0.001 *** 
 ICA Right 0.0106 7.158 <0.001 *** 

Hippocampus ECI Right 0.0029 2.517 0.016 * 
 ICI Left 0.0066 3.995 <0.001 *** 
 ICA Right 0.0031 1.768 0.088 n.s. 

Thalamus ECI Right 0.0169 21.483 <0.001 *** 
 ICI Left 0.0324 32.87 <0.001 *** 
 ICA Right 0.0155 12.574 <0.001 *** 

Putamen ECI Left 0.0021 5.632 <0.001 *** 
 ICI Left 0.0578 22.783 <0.001 *** 
 ICA Right 0.0598 22.542 <0.001 *** 

 

Table 1: Lateral differences between subcortical GM structures across the lifespan. Pairwise t-
tests were used to compare each lateralized region within subjects and p-values were adjusted 
using a Benjamini & Hochberg correction for multiple comparisons. The ICI signal fraction was 
higher in each left hemisphere ROI and was significantly so in all but the amygdala. The 
putamen, thalamus, and amygdala were observed to have the greatest laterality (at least one 
signal fraction compartment with a mean difference greater than 2%).  
 

Lobar cortical regions show similar trajectories across the lifespan but different absolute 

measurements and inconsistent but significant lateral differences 

 

The cerebral cortex was then subdivided into 8 regions of cortex separated by left and 

right hemisphere as defined by the Destrieux atlas and measurements were made as before (Fig. 

4). The signal fraction measurements in these regions generally followed the overall region 

trajectory displayed in Figure 3 but as with the subcortical GM there were some exceptions. The 
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ECI signal fraction increased in every ROI in both the early and senescence phases. In the ICI 

and ICA signal fractions the insular and limbic cortices displayed markedly higher solid tissue 

values than other cortical regions while still following relatively similar trajectories. There was a 

significant degree of hemispheric laterality between the left and right sides of the brain (Table 2), 

with little consistent differences between the signal fraction compartments.  
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Figure 4: Charts displaying the lifespan trajectories of each 3T-CSD metric in 8 cortical ROIs. The relationship between age and 
signal fraction is displayed either across the whole lifespan (A, C, & E for ECI, ICI, & ICA respectively) or as the slope of the linear 
relationship during a limited age range (B, D, & F for ECI, ICI, & ICA respectively). Several deviations from the average trajectory 
occur in the middle age phases in the cortex in the insular and limbic cortices in the ICI signal fraction but otherwise declines across 
the lifespan. The frontal cortex in the developmental age phase shows little to slightly positive change in the ICA signal fraction but 
otherwise follows a consistent upward trajectory during the initial two life phases followed by decreases in the next two life phases.   
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ROI Tissue 
Type 

Higher 
Signal 
Fraction 

Mean 
Difference 

t-value Adjusted p-value   

Frontal Cortex ECI Right 0.0052 6.861 <0.001 *** 
  ICI Right 0.0088 9.783 <0.001 *** 
  ICA Left 0.0111 12.376 <0.001 *** 

Insular Cortex ECI Left 0.0121 16.632 <0.001 *** 
  ICI Left 0.0207 15.656 <0.001 *** 
  ICA Right 0.0339 30.966 <0.001 *** 

Limbic Cortex ECI Left 0.0021 4.365 <0.001 *** 
  ICI Right 0.0012 1.896 0.067 n.s. 
  ICA Right 0.0036 4.665 <0.001 *** 

Motor Cortex ECI Left 0.0088 5.579 <0.001 *** 
  ICI Left 0.0009 0.742 0.4583 n.s. 
  ICA Right 0.0021 1.425 0.1692 n.s. 

Occipital Cortex ECI Left 0.0124 14.573 <0.001 *** 
  ICI Left 0.0196 7.591 <0.001 *** 
  ICA Right 0.0078 4.227 <0.001 *** 

Parietal Cortex ECI Right 0.0116 10.953 <0.001 *** 
  ICI Right 0.0137 15.809 <0.001 *** 
  ICA Right 0.0089 12.574 <0.001 *** 

Sensory Cortex ECI Right 0.0312 16.461 <0.001 ***  
ICI Left 0.0186 13.752 <0.001 ***  
ICA Left 0.0124 8.283 <0.001 *** 

Temporal Cortex ECI Right 0.0008 1.232 0.2282 n.s.  
ICI Right 0.0209 14.775 <0.001 ***  
ICA Right 0.0308 19.764 <0.001 *** 

 
Table 2: Lateral differences between cortical GM regions across the lifespan. Pairwise t-tests 
were used to compare each lateralized region within subjects and p-values were adjusted using a 
Benjamini & Hochberg correction for multiple comparisons. All cortical regions showed some 
significant degree of lateralization with the insular and temporal cortices each having a mean 
difference of greater than 2% ICA and ICI signal fraction measurements between left and right 
hemispheres. Conversely the limbic and motor cortices each had a mean difference of less than 
0.5% excepting the ECI signal fraction in the motor cortex. Interestingly, as opposed to the 
subcortical areas which demonstrated relatively consistent right/left biases for the signal 
fraction compartments, there was a more balanced distribution of right/left biases for each of the 
signal fractions.  
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Discussion 

 

 This study examined a large population cohort using an advanced diffusion 

microstructure analysis technique to describe the relationship between chronological age and 

changes in brain cellular structure. The slope of these changes was steeper during the 

developmental phase before 20 years of age and in the senescence phase after 60 years of age 

with more gradual changes occurring between 20 and 60 years of age in the middle of the adult 

phases of the lifespan. The pattern established at the whole brain level, a shift toward increasing 

ICA signal fraction in the first half of the lifespan largely coupled with decreasing ICI signal 

fraction (as they sum to 1, any increase/decrease in one signal fraction compartment must be 

coupled with equivalent increases/decreases in the others); subsequently gives way to a decline 

pattern later in life characterized by increasing ECI signal fraction coupled with decreasing ICA 

signal fraction.  

 

 When the WM skeleton, cerebral cortex, cerebellular cortex, and subcortical GM were 

parcellated from the cohort it was observed that the ECI signal fraction increased precipitously 

with increasing age after 40 in all 4 ROIs but during development was stable in the subcortical 

GM and cerebellum, declined in the WM skeleton, and increased in the cortex. Despite three of 

the ROIs being thought of as predominantly GM areas there was observed a widespread negative 

correlation with age throughout the lifespan. During the developmental phase the ICA signal 

fraction increased dramatically in each of the 4 ROIs, matching the well-established trajectories 

observed in volumetric data from this time period232,233. Interestingly, the increased axonal 

innervation of the cortex during development can be observed in this trajectory as well as in the 

subcortical GM structures. This axonal innervation has been suggested to shift the WM/GM 

boundary line in volumetric studies234 and this study certainly supports the cortex and subcortical 

GM structures becoming more similar to the WM skeleton in microstructural profile as 

development progresses. An interesting exception to this trend is in the frontal cortex, which has 

a flat slope for the relationship between ICA signal fraction and age during the developmental 

phase. This study also showed far more dramatic changes throughout the lifespan compared to 

large-scale volumetric MRI studies13,14. Change in brain metrics in this study was not solely 

confined to early development and late senescence, and there was very large and distinct 
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trajectories for each tissue compartment across different ROIs, suggesting that age-related 

change is a highly complex process with different, distributed effects in different brain 

structures.    

 

 Laterality was examined and was found to have a highly significant effect across multiple 

regions but this was typically without a consistent direction. The putamen, thalamus, amygdala, 

insular cortex, and temporal cortex were observed to have the greatest laterality (at least one 

signal fraction compartment with a mean difference greater than 2%). The Hippocampus 

displayed the smallest average difference between left and right hemispheres, but the ECI and 

ICI signal fraction compartments were still significantly different, recapitulating previous work 

that found a significantly increased ECI signal fraction in the right hippocampus100. 

 

 Other advanced dMRI models have examined the relationship between their quantitative 

measurements and age across the lifespan. In a recent study NODDI outputs of isotropic volume 

fraction, roughly comparable to 3T-CSD’s ECI signal fraction, increased throughout the lifespan 

across the whole brain. Meanwhile intracellular volume fraction displayed an inverted U shaped 

pattern similar to 3T-CSD’s companion ICA signal fraction235. Another NODDI study however 

found conflicting results using orientation dispersion index, which does not have a direct 3T-

CSD parallel, with results from Nazeri et al., finding orientation dispersion decreased across the 

lifespan in 4 cortical lobe ROIs, and Beck et al., finding that orientation dispersion increased 

across the whole brain235,236. The current study found much more complicated relationships 

between many of the cortical lobes and age across the lifespan, and while this study did not 

directly compare results from different quantitative dMRI models, it is notable that NODDI and 

other advanced models did not perform better than traditional DTI metrics at predicting brain 

age235. 

 

 There may be an expressed relationship in this study between signal fraction (particularly 

the relative proportion of ICA and ICI signal fractions) and neuronal cellular density as 

determined by histology. In particular the limbic cortex is known as having a particularly low 

neuronal density in humans237 and in this study was surprisingly found to have the highest level 

of ICI signal fraction (along with the insular cortex) throughout the lifespan. This suggests that a 
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relatively low density of neurons may not cause a high ECI signal fraction but will instead be 

represented as an overly high ICI signal fraction, perhaps due to increased glial cell population or 

larger levels of intracellular space in comparison to areas of high neuronal and dendritic density, 

such as the cerebellum. This ROI did subsequently follow similar trajectories to other ROIs with 

differing levels of neuronal density and arrangement, but it regardless may hold promise as an 

effect replicable in pathological conditions affecting neuronal density. Decreased neuronal 

density in the prefrontal cortex has been implicated in major depressive and bipolar disorders, 

suggesting 3T-CSD may be a potential mechanism for tracking alterations in these patients238,239.  

 

Other disorders may result from increased neuronal density including schizophrenia 

which may present a different signal fraction profile that is able to be detected using 3T-

CSD240,241. The developmental component of schizophrenia may allow for early detection if 

adolescents begin deviating from age-related trajectories similar to those established in this 

study. Another dMRI microstructural analysis technique, termed free water elimination, has 

suggested that increased extracellular water may also contribute to the development of 

schizophrenia75, however this method does not measure both extracellular and isotropic 

intracellular tissue compartments and thus makes an imperfect point of comparison to the 3T-

CSD technique used here.   

 

 A known feature of the aging brain that was not accounted for in this study is the 

development of white matter hyperintensities (WMH). Previous work has demonstrated that 

developed and developing WMH are detectable using 3T-CSD and have increased ECI and ICI 

signal fraction with correspondingly reduced ICA signal fraction compared to normal appearing 

areas of the WM skeleton91. The presence of WMH not accounted for in this study for several 

reasons, including that the location of the WMH in the brain was largely determinative of its 

microstructural properties, with WMH located proximal to the ventricles having a greater 

amount of ECI signal fraction than WMH located within the deep WM91. Additionally, there is 

evidence that 3T-CSD is sensitive to developing WMH that subsequently appear after cerebral 

infarction227. This created a situation where removing tissue identified via independent means as 

a WMH might contribute noise to estimates of subjects in the senescence phase and would be 

difficult to account for in the whole lifespan trajectories. Another feature not accounted for was 
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subject sex due to the imbalance of women to men especially in the late adulthood and 

senescence phases, but this is undoubtably a subject worth investigating for differences between 

sexes in future lifespan work.  

 

 In conclusion these results describe the relationship between brain microstructure and age 

and illustrate how dMRI correlates of cellular microstructure changes throughout the lifespan. 

These results provide a powerful illustration of the dramatic shifts in microstructure metrics 

during development and aging and highlight the potential of 3T-CSD as a tool to study 

development and aging. Establishing patterns of microstructure change across the lifespan will 

aid in studying and interpreting microstructure change in the presence of pathology. Studies 

analyzing dMRI microstructure in developing or aging cohorts should address shifts in 

anisotropic and isotropic signal in development and dramatically increased levels of extracellular 

water in aging. 
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Study 2b 
 

Aim 2b: Determine if 3T-CSD microstructure measurements are altered by pubertal development 

during the critical period of early adolescence.  

 

Rationale: Adolescent development is a time of great structural and functional change. 3T-CSD 

measurements of brain microstructure may be more sensitive to factors affecting development than 

traditional structural metrics. This sensitivity can be augmented by the recent release of the 

massive Adolescent Brain Cognitive Development (ABCD) Study, an exceptionally high quality 

longitudinal dataset tracking over 11,000 children128. Understanding neuronal development during 

the critical period of puberty will support understanding of lifelong brain and mental health. During 

puberty the developing brain undergoes substantial neuroanatomical reorganization at both global 

and cellular scales222. This critical period can leave the brain particularly vulnerable, and puberty 

marks the peak emergence of a majority of neuropsychiatric disorders242,243. Understanding the 

relationship between the cells of the brain and pubertal maturation is an important component of 

adolescent health and well-being throughout the remainder of the lifespan.  

 

Experimental Design: The ABCD Study will be analyzed using the previously established 3T-

CSD pipeline and microstructure measurements will be analyzed from the same 212 ROIs 

examined in the NKI-Rockland dataset in Study 2a. Pubertal development has been assessed by 

the ABCD Study and the pubertal development score (PDS) is available for each subject244. The 

PDS measures physical manifestations of pubertal development on a scale from 1 (no 

development) to 4 (development seems complete) across 3 measures common to both sexes and 

2 measures each for adrenarche and gonadarche features. A total PDS score (PDSS) was 

calculated for each individual by summing the combined common, adrenarche, and gonadarche 

features of the questionnaire245. Microstructure measurements from ICA, ICI, and ECI tissue 

compartments will be taken in each of the 212 ROIs across the axonal areas and cortex in each 

subject. Once the microstructural results from the ABCD study are controlled for chronological 

age, sex, brain volume, and handedness, this will allow for identification of how puberty affects 

brain development trajectory and if this effect is localized to particular regions of the brain. 
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Study 2b 
Title: More than just axons: A positive relationship between an intracellular isotropic diffusion 

signal and pubertal development in white matter regions in a massive adolescent cohort 

 

Abstract  

 

Puberty is a key event in adolescent development that involves significant, hormone-

driven changes to many aspects of physiology including the brain. Understanding how the brain 

responds during this time period is important for evaluating neuronal developments that affect 

mental health throughout adolescence and the adult lifespan. This study examines diffusion MRI 

scans from the cross-sectional ABCD Study baseline cohort, a large multi-site study containing 

thousands of participants, to describe the relationship between pubertal development and brain 

microstructure. Using advanced, 3-tissue constrained spherical deconvolution methods, this 

study is able to describe multiple tissue compartments beyond only white matter (WM) axonal 

qualities. After controlling for age, sex, brain volume, and subject handedness, we observe a 

positive relationship between an isotropic, intracellular diffusion signal fraction and pubertal 

development, and a negative relationship between an anisotropic, intracellular tissue 

compartment and pubertal development throughout the WM regions. We also observe a small, 

regional effect from an extracellular isotropic free water-like compartment in several ROIs.  This 

work suggests that changes during pubertal development elicit a complex response from brain 

tissue that cannot be completely described by traditional methods focusing only on WM axonal 

properties. This work brings in vivo human neuroimaging studies more into line with work 

performed on animal models, which describe an interaction between increased myelination, 

neurogenesis, angiogenesis, and glial cell proliferation in response to pubertal hormones.  

 

Introduction 

 

In adolescent development, puberty is a critical period that marks the hormonally driven 

transition into reproductive maturity246. Extensive physical, behavioral, and neurological changes 

occur rapidly and can have lifelong consequences for health and well-being. The developing 

brain undergoes substantial neuroanatomical reorganization at both global and cellular scales222. 
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This critical period can leave the brain particularly vulnerable, and puberty marks the peak 

emergence of a majority of neuropsychiatric disorders242,243. Understanding the relationship 

between the cells of the brain and pubertal maturation is an important component of adolescent 

health and well-being throughout the remainder of the lifespan222,247. Previous neuroimaging 

studies have largely focused on axonal changes, however the white matter regions of the brain 

contain numerous glial cell varieties and extracellular space that contributes to a diverse 

diffusion profile248. In this study we present evidence for a widespread positive relationship 

between pubertal stage and an isotropic, intracellular, gray matter-like diffusion signal within the 

white matter skeleton. This signal may be indicative of the beginning of pubertal neuronal 

reorganization, with implications for understanding the neurobiology of maturing brain tissue.  

 

Evidence from studies in animal models, where the levels of pubertal hormones can be 

directly manipulated, has demonstrated the effect of these hormones on the organization of brain 

tissue249. Pre-pubertal gonadectomy was shown to reduce the number of new, BrdU-positive cells 

in the brains of male and female rats, localized in a sex-dependent manner to regions that show 

post-pubertal sex-dependent differences in volume250. In female songbirds, axonal organization 

in song motor pathways have been reversibly manipulated via a testosterone injecting implant251. 

It has been suggested that pubertal hormones can influence the proliferation and survival of 

neurons mediated by local production of vascular endothelial growth factor and brain-derived 

neurotrophic factor252. Though it is unknown to what degree this process is analogous to human 

development, and in vivo human studies must largely rely on neuroimaging techniques for 

insight.  

 

Structural neuroimaging studies have consistently described a pattern of brain changes 

following the onset of puberty: an increase in the global volume of white matter (WM) and a 

decrease in the volume of gray matter (GM) both cortically, sub-cortically, and at the WM-GM 

boundary232,233,253. It was long thought that this ‘thinning’ of the GM cortical areas was the result 

of synaptic pruning of unnecessary or inefficient synapses254. However, treating brain tissue as 

homogenous, binary, compartments to be examined individually may have obscured the process 

underlying the observed effect. The microstructural mechanism for this decrease in GM and 

increase in WM has been suggested to rely on increased myelination into the cortical GM areas 
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which then appear to shift the location of the GM/WM boundary on T1-weighted images234. This 

highlights the necessity for neuroimaging methods that can examine within-tissue cellular 

characteristics. 

 

Diffusion MRI (dMRI) has provided more detailed measurements of in vivo brain 

development and allows for characterization of cellular microstructure within WM areas. Early 

dMRI studies using diffusion tensor imaging (DTI) found an increase in fractional anisotropy 

(FA), a measurement of axon coherence and myelination, and a decrease in mean diffusivity 

(MD) and radial diffusivity, indicative of reduced cellular permeability, as adolescents 

matured232,255–257. DTI is limited however, by a lack of specificity and from interference from 

heterogenous tissue composition or from multiple WM orientations (the ‘crossing fibers’ 

problem) in a single voxel53,150. By collapsing the diffusion signal into a single tensor, standard 

DTI metrics may be obscuring subtle but important cellular and sub-cellular changes in tissue 

composition.  

 

More advanced diffusion analysis techniques such as multi-compartment models and 

constrained spherical deconvolution methods have improved on DTI by characterizing signals 

from multiple tissue types, multiple WM fiber orientations, or both. Two studies have examined 

the early adolescent period using multi-compartment neurite orientation dispersion and density 

imaging (NODDI) which can provide more detailed measurements of brain microstructure than 

DTI58. Both studies found a widespread positive association with age in neurite density index, a 

model of intra-neurite space thought to describe myelination and axonal growth, but no 

relationship between age and orientation dispersion index, a model of inter-neurite space258,259.  

 

Fixel-based analysis (FBA) is a promising dMRI model that builds off of spherical 

harmonic representations of WM that can overcome the pitfalls of DTI by being both sensitive 

and specific to WM fiber bundles without interference from isotropic signal from cell 

bodies/somas or from extra-cellular CSF94,260. A pair of studies have used FBA to examine a 

cross-sectional258 and longitudinal sample261 of developing subjects from the Children’s Attention 

Project study262. These studies explored the relationship between pubertal development, as 

measured by the pubertal development scale244,245, and WM measurements derived from FBA in 
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ROIs defined by the JHU-ICBM atlas183,228,230. The cross-sectional study only found a significant 

relationship between fiber density and pubertal development in the splenium of the corpus 

callosum, while the longitudinal study found a broader range of significant areas throughout the 

WM skeleton.  

 

In this study, we aim to move away from the WM axon focused metrics toward a more 

holistic measurement of brain microstructure accounting for multiple cellular environments 

encountered in the brain: axonal, anisotropic, WM-like diffusion; intracellular, isotropic, GM-

like diffusion; and extracellular, isotropic, CSF-like diffusion91,100. Each of these compartments 

allow for the evaluation of different and distinct cellular environments within the same voxel. 

This study examines the relationship between pubertal development and cellular microstructure 

at the beginning of adolescence within ‘WM’ areas but measuring the whole microstructural 

environment, not exclusively axonal characteristics, as previous literature has done.  

 

 

Methods 

 

Participants 

 

This study utilized baseline data obtained from the Adolescent Brain Cognitive 

Development (ABCD) Study, a publicly available neuroimaging and demographic study 

examining child development and factors leading to substance abuse. The ABCD study is the 

largest adolescent neuroimaging dataset ever acquired in the United States with an enrollment of 

11,874 subjects at baseline. From this we selected a subset of 7,219 subjects enrolled at sites 

equipped with Siemens manufacturer scanners for processing and analysis. Following an 

automated quality control process including removing subjects without completed diffusion 

scans, excessive motion, or other imaging artifacts, we were able to successfully analyze 5,245 

subjects in native, scanner space. Following template construction successful registration and 

warp into the template space was assessed by visual inspection aided by a semi-automated 

process and 4752 subjects remained for final analysis.   
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Imaging data 

 

Unprocessed dMRI images were obtained from the ABCD study and were acquired with 

a multiband accelerated sequence that had an isotropic voxel size 1.7 x 1.7 x 1.7 mm3 with TE = 

88 ms and TR = 4100 ms.  Using a multi-shell protocol 7 images were acquired at b= 0, 6 

directions were acquired at b=500 s/mm2, 15 directions were acquired at both b=1000 s/mm2 and 

at b=2000 s/mm2, and 60 directions were acquired at b=3000 s/mm2 133. Only images acquired 

using the Siemens Prisma 3T platform were analyzed to avoid manufacturer and sequence 

differences, including field gradient strength, TE, and TR, that have previously been 

demonstrated to affect outcome 3T-CSD signal fraction results100.  

 

Total brain volume was obtained from the ABCD study which released processed data as 

part of the baseline data release. Study organizers obtained this volumetric data from T1 

weighted images with an isotropic voxel size 1.0 x 1.0 x 1.0 mm3 with TE = 2.88 and TR = 2500 

with a flip angle of 8 degrees and an FOV of 256 x 256 mm133. Volumetric data was calculated 

using an automated processing pipeline in Freesurfer and released as part of the ABCD data 

release 2.0.1. For further ABCD image processing details see263.  

 

Image Preprocessing and Analysis 

 

Image preprocessing was performed consistent with prior protocols that have been shown 

to result in consistent and reliable signal fraction measurements100. All dMRI images were 

corrected for thermal noise using the “dwidenoise” command implemented in MRtrix3107. Gibbs 

rings were then removed with the “dwidegibbs” MRtrix3 function109. The FSL package (“topup” 

and “eddy”) was subsequently applied to correct for susceptibility-induced (EPI) distortions, 

eddy currents, and subject motion, including the Gaussian replacement of outliers104,110,115,116. 

Finally the preprocessed images were upsampled using MRtrix3 to 1.3 x 1.3 x 1.3 mm3 isotropic 

voxel size, similar to the high-resolution of images in the Human Connectome Project117,212. The 

b=0 and b=3000 s/mm2 shells were then extracted to form a single-shell image set suitable for 

SS3T-CSD. This step was performed because prior investigations have suggested SS3T-CSD is 

superior at differentiating between brain regions compared to MSMT-CSD at b=3000 s/mm2 100.  
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Brain masks were obtained for all subjects by performing a recursive application of the 

Brain Extraction Tool264. Response functions from each of the three tissue types were estimated 

from a randomly selected subset of nearly 500 subjects and averaged to produce a single set of 

tissue response functions88. SS3T-CSD was then performed using the average response functions 

with MRtrix3Tissue, a fork of MRtrix3, to estimate an anisotropic WM-like (represented by a 

complete WM FOD); an isotropic, intracellular GM-like; and an isotropic, extracellular CSF-like 

compartments90. An example of this general pipeline, including preprocessing steps, is available 

at https://3tissue.github.io/doc/single-subject.html.  Each subject’s three tissue compartments 

were then normalized to sum to 1 on a voxel-wise basis, resulting in the final three-tissue signal 

fraction maps91,100. Summing the spherical harmonic coefficients on a rotational-invariant voxel-

wise basis provides the added benefit of harmonizing inter-scanner and inter-subject signal 

intensity differences while preserving between-subject biological variation265. 

 

A cohort specific template was constructed from a random selection of 50 subjects’ WM-

FODs (Fig. 1a) using symmetric diffeomorphic registration of the FOD themselves and 

implemented in MRtrix3 with the “population_template” function160. Each subject was then 

individually registered to the cohort template using an affine, followed by a nonlinear 

registration guided by the WM FODs themselves in an unbiased manner. The resulting warp was 

used to move each of the subjects’ three-tissue signal fraction maps into template space. Quality 

control was performed on the transformed signal fraction maps via visual confirmation of a semi-

automated method that flagged images with abnormal values.  
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Figure 1: Graphic displaying the WM FODs of the cohort specific group template constructed 
from the average of 50 randomly selected ABCD subjects. The top row (A) displays the FODs 
themselves while the bottom row (B) shows the positioning of the 48 ROIs in the JHU-ICBM 
atlas after being warped into the template.  
 

The cohort template was then registered to stereotaxic space with a similar FOD-based 

diffeomorphic registration procedure to a b-value matched version of the NTU-DSI-122 

template187. The resulting warp from stereotaxis space was used to move the 48 ROIs included in 

the JHU-DTI based ICBM-DTI-81 white matter atlas (available as part of FSL, hereafter referred 

to as the JHU WM atlas; Fig. 1b) into the cohort specific template space105,183,228,230. The average 

value of each signal fraction map within each of the 48 ROIs was calculated using the “mrstats” 

function from MRtrix3. 

 

Pubertal Development Scale 

 

Measures of pubertal development were assessed via parental completion of the Pubertal 

Development Scale (PDS) questionnaire during the baseline subject visit244,266. The PDS 

measures physical manifestations of pubertal development on a scale from 1 (no development) to 
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4 (development seems complete) across 3 measures common to both sexes and 2 measures each 

for adrenarche and gonadarche features. A total PDS score (PDSS) was calculated for each 

individual by summing the combined common, adrenarche, and gonadarche features of the 

questionnaire245. PDSS has been demonstrated to significantly correlate with saliva testosterone, 

DHEA, and estradiol levels245, was recorded for nearly every ABCD subject, and allows for more 

simplified direct comparison between sexes compared to saliva or serum hormone levels.  

 

Statistical Analyses  

 

Data summarization:  Categorical data are summarized by frequencies (n) and 

percentages (%).  Continuous scaled data are summarized by the mean, standard deviation, and 

range of the empirical distribution.   

 

Patient demographic and patient characteristic analyses:   A one-sample binomial exact test was 

performed to compare gender cross-sectional frequencies.  A two-sample t-test was performed to 

compare the age distributions of the female and male cross-sectional samples.  A two-sample t-

test was also performed to compare the subject-specific average puberty score between female 

and male children.   

 

Tissue signal fraction regression analyses:  Ordinary least-square (OLS) regression was 

performed to predict the mean ROI tissue signal fraction (i.e. extracellular isotropic CSF-like; or 

intracellular isotropic GM-like; or intracellular anisotropic WM-like) in a given JHU atlas ROI 

as a function of the sum of the child’s PDS scores (PDSS-sum), the child’s age (years) and sex 

(female, male), the child’s handedness (left, right, and ambidextrous) and the child’s total brain 

volume (cm3).   The OLS regression model also included sex by age interaction, sex by PDSS-

sum interaction, age by PDSS-sum interaction, and sex by age by PDSS-sum interaction. All of 

the OLS regression model predictor variables and interactions that were selected a priori based 

on scientific merit.      

 

With regards to hypothesis testing, ANOVA type III F-tests were conducted to identify 

among the entire set of predictor variables and the entire set of predictor variable interactions 
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those predictor variables and those predictor interactions that explained unique information about 

tissue signal fraction variability that would not be expected to be explained purely by chance.  

Since a total of 48 OLS regression analyses were conducted per tissue signal fraction type (e.g. 

CSF), the Benjamini and Hochberg false discovery procedure267 was used to identify pre JHU 

atlas ROI the predictor variables and the predictor interactions that were important predictors of 

tissue signal fraction.  Predictor variables that produced an ANOVA type III F-test p-value for 

the null hypothesis test that the complete set of the OLS regression model coefficients associated 

with predictor variable (main effects and interactions combined) are equal to 0, less than the 

Benjamini and Hochberg 0.05 false discovery error rate threshold were deemed unique 

predictors of tissue signal fraction. Similarly, predictor variables that produced an ANOVA type 

III F-test p-value for the null hypothesis test that the complete set of OLS regression model 

coefficients associated with the interaction terms of the predictor variable are equal to 0, less 

than the Benjamini and Hochberg 0.05 false discovery error rate threshold were deem significant 

interaction terms with respect to predicting tissue signal fraction.   Finally, per JHU atlas ROI, an 

ANOVA type III F-test was conducted to test the null hypothesis that the complete set of OLS 

regression model coefficients associated with the OLS regression model interaction terms are 

equal to 0.   Benjamini and Hochberg 0.05 false discovery error rate procedure was applied to the 

entire set of 48 p-values. If the p-value was less than the Benjamini and Hochberg 0.05 false 

discovery error rate threshold value, the null hypothesis the complete set of OLS regression 

model coefficients associated with the OLS regression model interaction terms are equal to 0 was 

rejected.           

  

Concomitant variable adjusted associations between tissue signal fraction and PDSS-sum.  

OLS regression was performed to examine concomitant variable adjusted associations between 

tissue signal fraction and PDSS-sum.  The concomitant variables of the OLS regression model 

were child age and sex, child handedness, and child total brain volume.  For each JHU atlas ROI, 

the concomitant variable adjusted association between tissue signal fraction (extracellular 

isotropic CSF-like, or intracellular isotropic GM-like, or intracellular anisotropic WM-like) and 

PDSS-sum was quantified by the regression slope coefficient estimate associated with PDSS-

sum.  For each JHU atlas ROI, a null hypothesis test was performed to test the null hypothesis 

that the slope of the association between the tissue signal fraction and PDSS-sum is equal to 0, 
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versus the alternative that the slope of the association between the tissue signal fraction and 

PDSS-sum is not equal to 0. The complete set of p-values from the 48 different JHU atlas ROI 

were then subjected to the Benjamini and Hochberg false discovery procedure to identify those 

ROI, in which the ANOVA type II F-test p-value of the null hypothesis test was less than the 

Benjamini and Hochberg 0.05 false discovery threshold.       

 

Note that with respect to predictor variable interaction, only 7 null hypothesis out of 192 

null hypotheses produced a p-value that meet the Benjamini and Hochberg false discovery error 

rate rejection threshold (summarized in Table 1), and no p-value meet the Benjamini and 

Hochberg false discovery error rate rejection threshold for the null hypothesis test that the 

complete set of the OLS regression model interactions provide no unique information about 

tissue signal fraction. Due to the sparsity of ROIs in which predictor variable interactions were 

identified, the entire set of interaction terms of the OLS regression model were removed for the 

OLS regression model so that partial associations between tissue signal fraction and PDSS-sum 

could be estimated by way of a more parsimonious OLS regression model in which child age and 

sex, child handedness, and child total volume served as the concomitant variables.     

 

Tissue Signal 
Fraction 

PDSS-sum 
# ROI (%) 

Sex 
# ROI (%) 

Age 
# ROI (%) 

Total 
Volume 

# ROI (%) 

Handedness 
# ROI (%) 

CSF-like 18 (37.5) 22 (45.8) 40 (83.3) 35 (72.9) 6 (1.25) 
GM-like 39 (81.3%) 45 (93.8) 48 (100) 43 (89.6) 0 (0) 
WM-like 34 (70.8) 42 (87.5) 46 (95.8) 43 (89.6) 0 (0) 

 
Table 1: Number of JHU ROI, in which the global hypothesis test for testing for no adjusted 
association between the tissue signal fraction and the predictor variable was be rejected after 
implementation of the Benjamini and Hochberg false discovery error rate procedure with an 
overall false discovery error rate of 0.05 for the entire set of 48 null hypothesis tests.         
 

Results 

 

Participant Demographics 

 

There were significantly more males than females in the cross-sectional sample (2496 

males (52.5%) versus 2256 females (47.5%), p<0.001) and significantly more right-handed 
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subjects (right = 3806 (80.2%) versus left = 628 (13.2) versus ambidextrous = 315, p<0.001 for 

all).  The age range was the same for the female cohort and the male cohort (107.0 to 132 

months), and there was no significant difference between the average age of females (119.5 

months ± 7.4 SD) and the average age of males (119.9 months ± 7.5 SD) (p=0.086).   As 

predicted by the early age range of participants, the distribution of the pubertal development 

scale score (PDSS) was not uniformly distributed across the range of PDSS values (i.e.  1 to 4).  

The mean of the distribution for average PDSS was 1.62 units (95% CI: [1.60, 1.63]).   There 

was a highly significant relationship between average PDSS and age (slope = 0.118 

PDSS/month; 95% CI: [0.096, 0.141], p<0001); which remained true for both females (slope = 

0.212 PDSS/year; 95% CI: [0.181, 0.244], p<0.001) and males (slope = 0.049; 95% CI: [0.02, 

0.078], p=0.001), but the slope for rate in change in average PDSS/month was greater for 

females than for males (p<0.001).  Females also had a significantly higher average PDSS score 

compared to males (1.77; 95% CI: [1.76, 1.80] versus 1.47; 95% CI: [1.45,1.49], respectively, 

p<0.001) (Fig. 2).  
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Figure 2: The relationship between subject age and average PDSS score with each boxplot and 
corresponding color representing a 2-month bin of participants. A linear model is displayed 
(shading is SE) to illustrate the relationship between age and average PDSS score. Both male 
and female members of the participant cohort tended to have a higher mean PDSS score as age 
increased, with this positive relationship being significantly more pronounced for female 
participants compared to males.  
 

Regression Analyses  

 

Tissue signal fraction regression analyses:   The ANOVA summaries for the OLS 

regression models that were utilized to predict tissue signal fraction (i.e. extracellular isotropic 

CSF-like; or intracellular isotropic GM-like or intracellular anisotropic WM-like) as a function 

of the sum of the child’s PDS scores (PDSS-sum), the child’s age and sex, the child’s 

handedness, child’s total brain volume, PDSS-sum by sex interaction, PDSS-sum by age 

interaction, PDSS-sum by sex by age interaction, and sex by age interaction are presented in 

supplemental Tables S1-S3. These results are summarized in Table 2 displaying the number of 

JHU ROI that had a significant association with each of the predictor variables. Of note is the 

widespread reliability of PDSS-score, age, sex, and total brain volume as significant predictors 

across multiple tissue types, particularly of intracellular signal fraction compartments (GM-like 

and WM-like). Also of note is the complete lack of handedness as a predictor of intracellular 

signal fraction compartments. Table 1 lists the number of JHU ROI in which the global 

hypothesis test for testing for no partial-association between the tissue signal fraction and the 

predictor variable was rejected after implementation of the Benjamini and Hochberg 0.05 false 

discovery error rate procedure for the complete set of 48 null hypothesis tests. Table 2 lists the 

number of JHU ROI in which the global null hypothesis test for testing for no predictor variable 

interaction, with respect to predicting tissue signal fraction, was rejected after implementation of 

the Benjamini and Hochberg 0.05 false discovery error rate procedure for the entire set of 48 null 

hypothesis tests.  

 

Tissue 

Signal 

Fraction  

All PDSS-sum 

Interactions  

# ROI (%) 

All Sex 

Related 

Interactions  

# ROI (%) 

All Age  

Related 

Interactions 

# ROI (%) 

All 

Model  

Interactions 

Combined   
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CSF-like 0 (0) 0 (0) 0 (0) 0 (0) 

GM-like 2 (4.2) 0 (0) 0 (0) 0 (0) 

WM-like 4 (8.3) 0 (0) 1 (2.1) 0 (0) 

 

Table 2: Number of JHU ROI, in which the global null hypothesis test for testing for no predictor 
variable associated interaction, with respect to the adjusted association between the tissue signal 
fraction and the predictor variable, was be rejected after implementation of the Benjamini and 
Hochberg false discovery error rate procedure with an overall false discovery error rate of 0.05 
for the entire set of 48 null hypothesis tests. Note that in the final column it lists the number of 
ROI in which the null hypothesis that all of the OLS regression model coefficients related to the 
model interaction terms are equal to 0, was rejected after implementation of the Benjamini and 
Hochberg false discovery error rate procedure with an overall false discovery error rate of 0.05 
for the entire set of 48 null hypothesis tests  
 

 

Concomitant variable adjusted associations between tissue signal fraction and PDSS-sum: 

  

Listed in Tables S4 and S5 are the OLS regression model adjusted slopes, 95% 

confidence intervals, and p-values for predicting tissue signal fraction as a function of PDSS sum 

when the OLS regression model input values for child age and sex, the child handedness and 

child total brain volume are held constant.  The intracellular anisotropic WM-like, intracellular 

isotropic GM-like, and extracellular isotropic CSF-like tissue signal fraction related adjusted 

slopes, and 95% confidence intervals atlas are graphically displayed for the 48 different JHU 

atlas ROIs in Figure 3, Figure 4, and Figure 5, respectively.  
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Figure 3: Chart displaying the adjusted slope with 95% confidence interval for the relationship 
between WM-like signal fraction and average PDSS score in each of the 48 JHU atlas ROIs. 
Blue bars indicate the model calculated a significant relationship (p<0.05) after Benjamini and 
Hochberg (1995) adjustment.  
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Figure 4: Chart displaying the adjusted slope with 95% confidence interval for the relationship 
between GM-like signal fraction and average PDSS score in each of the 48 JHU atlas ROIs. 
Blue bars indicate the model calculated a significant relationship (p<0.05) after Benjamini and 
Hochberg (1995) adjustment. 
 

 
Figure 5: Chart displaying the adjusted slope with 95% confidence interval for the relationship 
between CSF-like signal fraction and average PDSS score in each of the 48 JHU atlas ROIs. 
Blue bars indicate the model calculated a significant relationship (p<0.05) after Benjamini and 
Hochberg (1995) adjustment. 
 

For each significant ROI from the intracellular tissue compartments the direction of the 

association is consistent, with intracellular isotropic GM-like signal fraction increasing with 

PDSS and intracellular anisotropic WM-like signal fraction decreasing. The direction of 

association for extracellular signal fraction was not consistent. The location of significant 

intracellular anisotropic WM-like, intracellular isotropic GM-like, and extracellular isotropic 

CSF-like tissue signal fraction adjusted model slopes are displayed in position on the cohort 

specific template in Figure 6, Figure 7, and Figure 8, respectively. Significant regions for both 

the intracellular tissue types tended to localize to the posterior portions of the brain, while 

significant extracellular regions had a located below the brainstem had a positive association 

with PDSS, while those above had a negative association with PDSS score.    
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Figure 6: Display of significant adjusted anisotropic intracellular WM-like signal fraction model 
slopes from ROIs in the JHU WM atlas colored by slope and displayed on the cohort specific 
template. ROIs located in the posterior parts of the brain appear to be more strongly negatively 
associated with PDSS score than regions elsewhere. 
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Figure 7: Display of significant adjusted isotropic intracellular GM-like signal fraction model 
slopes from ROIs in the JHU WM atlas colored by slope and displayed on the cohort specific 
template. ROIs located in the posterior parts of the brain appear to be more strongly positively 
associated with PDSS score than regions elsewhere.  
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Figure 8: Display of significant adjusted isotropic extracellular CSF-like signal fraction model 
slopes from ROIs in the JHU WM atlas colored by slope and displayed on the cohort specific 
template. The CSF-like signal fraction was the only tissue compartment to have ROIs with 
significant adjusted model slopes both positive and negatively associated with PDSS score. 
Significant ROIs located below the brainstem had a positive association with PDSS, while those 
above had a negative association with PDSS score. 
 

Discussion 

 

In this cross-sectional diffusion MRI study of 4752 adolescents from the baseline 

collection of the ABCD study we have identified a relationship between physical manifestations 

of pubertal status and several measurements of brain tissue microstructure across a widespread 

number of WM brain regions. In ROIs for which the relationship was significant, 3T-CSD 

measures of intracellular anisotropic WM-like signal fraction were found to have a negative 

relationship with PDSS, while 3T-CSD measures of intracellular isotropic GM-like signal 

fraction were found to have a positive relationship with PDSS. The extracellular isotropic CSF-

like signal fraction, in contrast, did not have a consistent direction across all significant ROIs.  
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There are several plausible mechanisms occurring at the cellular level of the brain that 

might underly the effect observed in this study. Studies in animal models have previously 

described neurogenesis and the development of new astrocytes occurring during puberty which 

could be a plausible reason for the observed GM-like signal fraction increase249,250,268,269. 

Neurogenesis and astrocytic growth would add to the intra-cellular space within a voxel without 

necessarily contributing immediately to the axonal volume and would thus appear as an increase 

in intracellular isotropic GM-like signal fraction at the expense of intracellular anisotropic WM-

like signal fraction instead of extracellular isotropic CSF-like signal fraction (already relatively 

low in the predominantly WM JHU-ICBM atlas ROIs). Work performed using a songbird model 

observed angiogenesis and altered neuronal processes such as dendrite outgrowth, cell spacing, 

and an increased number of synaptic vesicles in response to increased levels of androgenic and 

estrogenic exposure252. These changes could underly the changes observed in this study, 

especially as recent work has found relationships between CSD- and DTI-based measures of 

microstructure in song-specific brain areas and plasma testosterone levels251. 

 

It is also possible that our results largely reflect a critical period early in pubertal 

development due to the early age and pubertal status of our cross-sectional sample. Some studies 

have suggested that GM volume peaks around the age of our cohort. One DTI study found that 

for males in an early stage of pubertal development, as determined by hormone measures, there 

was a positive relationship between MD and age270. While they are not equivalent, increasing 

MD and increasing isotropic GM-like signal fraction could both occur from the same underlying 

cause in predominantly axonal areas, such as neurogenesis or increased cellularity. Given the 

ages of males in our study and the low average PDSS score for individually in the group it is 

possible that this effect contributed to the observed results in this study. 

 

This study also observed significant effects of age, sex, and total brain volume on the 

signal fraction measurements across the vast majority of ROIs. Several neuroimaging studies 

have not reported sex differences or have reported a limited effect of sex despite an earlier onset 

of puberty in girls. Genc et al.,261 for example reported a significant effect of sex on fiber density 

in only one ROI. Similarly, a longitudinal study focusing on cortical thickness found changes 

associated with pubertal development and a significant effect of sex in only two ROIs271. Despite 
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being cross-sectional in design, this study has included a great deal more participants (over 

4,700, compared to 74 in Genc et al.,258 130 in Genc et al.,261 and 126 in Herting et al.,271) which 

may have provided the necessary statistical power while performing a conservative family-wise 

error correction across 48 ROIs. Our study also benefitted from the design of the ABCD study, 

which recruited an extremely diverse sample of participants that may have insulated our results 

from biases due to variables outside of our model design, such as socioeconomic status or racial 

group. Larger studies across longer timescales have reported findings that appear more similar to 

the present study. One longitudinal study examining DTI metrics across a 5 year longitudinal 

sample of 8-28 year-olds’ found broad changes across a number of ROIs, suggesting that WM 

maturation is a gradual process that requires either large cohorts of subjects or long longitudinal 

data to fully detect257. 

 

The findings from this study detailing an intracellular isotropic signal positively 

associated with puberty appear counterintuitive compared to prior studies examining the 

relationship between puberty and dMRI measures of brain microstructure, which have generally 

found that measures related to WM integrity (such as FA) increase while measures of 

permeability (such as MD) decrease (for review see272). This review includes studies using other 

similar CSD-based metrics such as fixels, which have found significantly increased axonal fiber 

development related to the same PDSS measurement employed in our study258,261 and to 

testosterone273.  Our results however, surprisingly diverge from these studies in that the 

intracellular anisotropic WM-like tissue compartment was negatively associated with pubertal 

development, and the intracellular isotropic GM-like tissue compartment was positively 

associated with pubertal development in the same atlas and with the same pubertal measurements 

used previously258,261. It is important to note that the 3T-CSD technique measures relative levels 

of each tissue compartment and does not exclude the possibility WM fibers also mature in 

response to pubertal development. Possible physiological interpretations of this effect include 

changes in the number or activity of glial cells, such as oligodendrocytes responsible for 

increased myelin274, or apoptotic events that are thought to occur during neuronal pruning, which 

may contribute to an increased intracellular isotropic signal via the breakup of axons and their 

consumption by glial cells275. 
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Another study focusing on fixel-based metrics found a significant relationship between 

pubertal hormone levels and fiber density and fiber cross section across much of the posterior 

voxels in the JHU-ICBM atlas in a longitudinal cohort of children aged 8.5-10 years old273. 

While the pattern of significant voxels largely matches expectations from earlier structural 

studies249 and ROIs found to be significant in this study, there are several methodological reasons 

why this result may be similar to volumetric studies without shedding light on brain 

microstructure. The authors used a CSD method previously shown to systematically overestimate 

the contribution of WM fibers to the diffusion signal90 and the analyses did not control for 

longitudinal effects of change in brain volume. The combination of these two methodologic 

choices may be enough to cause some of the reported effects. These same methodologic factors 

could also plausibly explain the lack of sex effects, as well as the largely testosterone-based 

hormone relationship as testosterone has been reported as having a large effect on brain 

volume276.  

 

Perhaps the most straightforward reconciliation between the fixel results and the present 

study is that fixel-based metrics are - at the voxel level - freely-varying descriptions of WM 

signal characteristics whereas 3T-CSD signal fractions are relative measurements of each tissue 

compartment’s contribution to total signal94,100. Fixel-based analysis discards the isotropic signal 

from CSF and GM in order to better characterize the WM signal while 3T-CSD examines how 

each tissue exists to some degree in every voxel. It is thus entirely possible that axonal 

microstructure matures in response to pubertal development, and that this process is 

accompanied by a local increase in cellularity with a GM-like intracellular diffusion profile. 3T-

CSD is not specific enough to determine if this is caused by increased glial cell activity, 

neurogenesis, developing myelination, or a gross change in cellular architecture as axons 

reorganize, but it does suggest that a focus exclusively on WM is insufficient to understand the 

whole brain response to pubertal development.   

 

While it is difficult to attribute the origin of the effects observed in this study to a specific 

cellular process, it is apparent that there is a broad and significant change within axonal regions 

of the brain in response to adolescent pubertal development. Using advanced dMRI 

measurements we have found a positive relationship between an isotropic, intracellular GM-like 
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signal fraction and pubertal development a corresponding negative relationship between 

anisotropic WM-like signal fraction and pubertal development in a cross-sectional cohort. This 

finding has implications for the study of the cellular basis of human brain development, 

suggesting microstructure beyond axons or processes such as neurogenesis or phagocytosis 

contribute to adolescent brain WM development and are measurable by dMRI. This work also 

suggests that future adolescent neuroimaging studies should account for changes in non-axonal 

tissue compartments and pubertal development.   

 

Conclusion 

 

In this cross-sectional dMRI study of 4752 adolescents from the baseline collection of the 

ABCD study we have identified a relationship between physical manifestations of pubertal status 

and several measurements of brain tissue microstructure across a widespread number of 

primarily axonal brain regions. Our multicompartment 3T-CSD model agrees with evidence 

from animal models that cellular processes other than axonal signal are involved in white matter 

development and that future neuroimaging studies of WM in pubertal cohorts might benefit from 

a focus on cellular signal beyond axons. 
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Supplementary Tables 

 

Table S1.  Regression model term p-values for predicting CSF tissue signal fraction as a function of sex, PDSS-sum, age, brain 
volume, and handedness with PDSS-sum by sex, PDSS-sum by age, sex by age, and PDSS-sum by sex by age interaction. Note that the 
“Global” p-values involve a test that includes all regression terms related to the predictor and “All Interactions” p-values involve a 
test that includes all interaction terms related to the predictor. Note that when the false discovery error rate is set at 0.05, applying the 
Benjamini and Hochberg false discovery procedure results in none of the “All Model Interactions” p-values meeting the threshold 
required to declare the model interactions -as a whole- statistically relevant. Bold and italicized p-values had magnitude less than the 
Benjamini and Hochberg false discovery procedure threshold for a p-value in its sequential position among 48 p-values ranked from 
smallest to largest. 

Region 
Global  

Puberty  

All PDSS-sum 

Interaction 

Global  

Sex  

All Sex  

Interaction  

Global  

Age 

All Age  

Interaction  

Global  

Volume 

Global  

Handedness 

All Model  

Interactions 

1 Anterior Corona Radiata L 0.93662 0.849329 0.02030 0.73656 0.00044 0.72002 <0.00001 0.05322 0.60109 

2Anterior Corona Radiata R 0.93910 0.864853 0.00130 0.84778 0.00001 0.91588 <0.00001 0.00326 0.57641 

3Anterior Limb of Internal Capsule L <0.00001 0.135924 0.19261 0.21485 <0.00001 0.14659 0.22897 0.01240 0.69693 

4Anterior Limb of Internal Capsule R 0.00015 0.005177 0.00018 0.01948 <0.00001 0.00917 0.06628 0.08904 0.24618 

5Body of corpus callosum 0.48352 0.538036 0.00001 0.54356 0.00003 0.57684 <0.00001 0.03645 0.23552 

6Cerebral Peduncle L 0.00119 0.14668 0.07790 0.19418 <0.00001 0.56695 <0.00001 0.34577 0.63547 

7Cerebral Peduncle R 0.00498 0.507962 0.72201 0.64378 <0.00001 0.56832 <0.00001 0.50597 0.72626 

8Cingulum (cingulate gyrus) L <0.00001 0.671039 0.12357 0.54280 <0.00001 0.55196 0.08730 0.24857 0.18308 

9Cingulum (cingulate gyrus) R <0.00001 0.383244 0.15430 0.36532 <0.00001 0.75832 0.00196 0.03612 0.45678 

10Cingulum (hippocampus) L <0.00001 0.250556 0.00530 0.10025 <0.00001 0.11478 0.79651 0.40314 0.89911 

11Cingulum (hippocampus) R <0.00001 0.016918 0.00412 0.02042 <0.00001 0.02970 0.02409 0.45980 0.89575 

12Corticospinal Tract L 0.16595 0.677999 0.35598 0.80132 0.00002 0.63792 <0.00001 0.29415 0.46999 

13Corticospinal Tract R 0.48471 0.67344 0.17649 0.89641 <0.00001 0.67077 <0.00001 0.88190 0.73602 

14External Capsule L <0.00001 0.597848 0.50940 0.66001 <0.00001 0.77845 0.16128 0.17565 0.53136 

15External Capsule R <0.00001 0.056367 0.02076 0.10551 <0.00001 0.53960 0.00443 0.02148 0.30087 
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16Fornix 0.58538 0.445362 0.94166 0.98749 0.12213 0.33620 <0.00001 0.02988 0.85583 

17Fornix / Stria terminalis L 0.51997 0.515241 0.62392 0.46112 0.00003 0.39572 <0.00001 0.74936 0.29872 

18Fornix / Stria terminalis R 0.04468 0.46358 0.86158 0.82767 0.00001 0.27370 <0.00001 0.39297 0.73560 

19Genu of Corpus Callosum 0.40570 0.309191 0.21586 0.41418 0.39229 0.25389 0.00510 0.00856 0.29043 

20Inferior Cerebellar Peduncle L 0.00002 0.270426 0.35013 0.25757 0.35698 0.57456 0.10354 0.35990 0.41232 

21Inferior Cerebellar Peduncle R <0.00001 0.797835 0.23749 0.69652 0.54458 0.73466 0.10715 0.79259 0.39074 

22Medial Lemniscus L 0.00318 0.054527 0.01274 0.24522 0.00105 0.11815 <0.00001 0.24841 0.28056 

23Medial Lemniscus R 0.00008 0.003906 0.00041 0.14636 <0.00001 0.00366 <0.00001 0.80595 0.15621 

24Middle Cerebellar Peduncle 0.00306 0.207496 0.08195 0.11139 0.06122 0.08445 <0.00001 0.55330 0.22139 

25Pontine Crossing Tract 0.17649 0.281217 0.10217 0.57666 <0.00001 0.21731 <0.00001 0.98901 0.18863 

26Posterior Corona Radiata L 0.92323 0.903635 0.73863 0.83221 <0.00001 0.63422 <0.00001 0.00198 0.67968 

27Posterior Corona Radiata R 0.72323 0.55855 0.00825 0.70638 <0.00001 0.77455 <0.00001 0.00128 0.71632 

28Posterior Limb of Internal Capsule L 0.07262 0.050345 0.17006 0.11637 <0.00001 0.37589 0.42784 0.64424 0.46010 

29Posterior Limb of Internal Capsule R 0.00123 0.007621 0.02570 0.01163 <0.00001 0.01387 0.11401 0.34294 0.40040 

30Posterior Thalamic Radiation L 0.22113 0.375666 <0.00001 0.54057 0.04008 0.52795 <0.00001 0.00562 0.31367 

31Posterior Thalamic Radiation R 0.80239 0.653204 <0.00001 0.67426 <0.00001 0.61635 <0.00001 0.03019 0.23318 

32Retrolenticular Part of Internal 

Capsule L 
0.28847 

0.173284 
0.00499 0.11042 <0.00001 0.20200 0.19494 0.09564 

0.49619 

33Retrolenticular Part of Internal 

Capsule R 
0.06008 

0.030695 
0.00004 0.03954 <0.00001 0.20302 <0.00001 0.01858 

0.67164 

34Sagittal Stratum L 0.40017 0.620267 <0.00001 0.79045 0.00171 0.38494 0.69341 0.02080 0.67939 

35Sagittal Stratum R 0.09774 0.061917 <0.00001 0.06465 <0.00001 0.79601 0.00180 0.00051 0.43600 

36Splenium of Corpus Callosum 0.88576 0.861585 <0.00001 0.94395 <0.00001 0.67149 0.00459 0.01011 0.92750 

37Superior Cerebellar Peduncle L 0.09031 0.208828 <0.00001 0.44203 0.00232 0.12155 <0.00001 0.10821 0.12257 

38Superior Cerebellar Peduncle R 0.12439 0.187882 <0.00001 0.60604 0.00016 0.15958 <0.00001 0.30149 0.23913 

39Superior Corona Radiata L 0.66693 0.708189 0.29168 0.55098 <0.00001 0.57942 <0.00001 0.02669 0.28606 
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40Superior Corona Radiata R 0.57196 0.670039 0.80983 0.76840 <0.00001 0.73230 <0.00001 0.00033 0.76607 

41Superior Fronto-Occipital Fasciculus 

L 
0.56424 

0.562506 
0.62013 0.47769 0.13179 0.58595 0.00002 0.35868 

0.26277 

42Superior Fronto-Occipital Fasciculus 

R 
0.98043 

0.996925 
0.91706 0.98676 0.00129 0.98383 0.00006 0.44055 

0.85958 

43Superior Longitudinal Fasciculus L 0.16779 0.325761 <0.00001 0.31810 <0.00001 0.93228 <0.00001 0.05585 0.73797 

44Superior Longitudinal Fasciculus R 0.32292 0.207055 0.00001 0.25789 <0.00001 0.47125 <0.00001 0.02031 0.23204 

45Tapetum L 0.85370 0.845863 0.02261 0.72549 0.59841 0.47297 <0.00001 0.02894 0.74992 

46Tapetum R 0.70834 0.564513 0.71426 0.88420 0.71447 0.60810 <0.00001 0.18518 0.56302 

47Uncinate Fasciculus L 0.01540 0.529203 0.41446 0.32958 <0.00001 0.43781 0.13364 0.56290 0.64013 

48Uncinate Fasciculus R 0.00009 0.226723 0.21624 0.32912 <0.00001 0.11787 0.24092 0.18315 0.17688 
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Table S2.  Regression model term p-values for predicting GM tissue signal fraction as a function of sex, PDSS-sum, age, brain 
volume, and handedness with PDSS-sum by sex, PDSS-sum by age, sex by age, and PDSS-sum by sex by age interaction. Note that the 
“Global” p-values involve a test that includes all regression terms related to the predictor and “All Interactions” p-values involve a 
test that includes all interaction terms related to the predictor. Note that when the false discovery error rate is set at 0.05, applying the 
Benjamini and Hochberg false discovery procedure results in none of the “All Model Interactions” p-values meeting the threshold 
required to declare the model interactions -as a whole- statistically relevant. Bold and italicized p-values had magnitude less than the 
Benjamini and Hochberg false discovery procedure threshold for a p-value in its sequential position among 48 p-values ranked from 
smallest to largest. 

Region 
Global  

Puberty  

All PDSS-

sum 

Interaction 

Global  

Sex  

All Sex  

Interaction  

Global  

Age 

All Age  

Interaction  

Global  

Volume 

Global  

Handedness 
All  Model  

Interaction 

1 Anterior Corona Radiata L 0.25483 0.41450 0.00947 0.56437 <0.00001 0.65814 0.01272 0.12566 0.75630 

2Anterior Corona Radiata R 0.13300 0.46759 0.00009 0.45119 <0.00001 0.46538 0.06737 0.23338 0.35873 

3Anterior Limb of Internal 

Capsule L 0.00121 0.28514 <0.00001 0.34300 <0.00001 0.45780 <0.00001 0.97192 0.41885 

4Anterior Limb of Internal 

Capsule R 0.01368 0.04544 <0.00001 0.67932 <0.00001 0.07103 <0.00001 0.98907 0.52816 

5Body of corpus callosum <0.00001 0.03834 0.00002 0.05654 <0.00001 0.08326 <0.00001 0.37242 0.01654 

6Cerebral Peduncle L 0.00001 0.19043 <0.00001 0.26534 <0.00001 0.15239 <0.00001 0.76919 0.79286 

7Cerebral Peduncle R <0.00001 0.13598 <0.00001 0.15355 <0.00001 0.00272 <0.00001 0.93541 0.66947 

8Cingulum (cingulate gyrus) L 0.32684 0.72331 0.01025 0.05551 <0.00001 0.04573 <0.00001 0.79098 0.28589 

9Cingulum (cingulate gyrus) R 0.75129 0.91315 0.07913 0.13858 <0.00001 0.12971 <0.00001 0.98008 0.38813 

10Cingulum (hippocampus) L 0.00002 0.16172 <0.00001 0.19557 <0.00001 0.01833 <0.00001 0.06574 0.16243 

11Cingulum (hippocampus) R <0.00001 0.55629 <0.00001 0.91529 <0.00001 0.56528 <0.00001 0.30128 0.55044 

12Corticospinal Tract L 0.11219 0.57697 <0.00001 0.78110 <0.00001 0.61961 <0.00001 0.83269 0.48417 

13Corticospinal Tract R 0.16243 0.13338 0.00001 0.67120 <0.00001 0.18679 <0.00001 0.69977 0.78573 

14External Capsule L 0.05867 0.35904 <0.00001 0.29793 <0.00001 0.62507 <0.00001 0.54772 0.50413 

15External Capsule R 0.00032 0.39296 <0.00001 0.27945 <0.00001 0.27045 <0.00001 0.82279 0.17824 
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16Fornix <0.00001 0.03478 0.00031 0.43505 0.00009 0.03193 <0.00001 0.23655 0.80298 

17Fornix / Stria terminalis L <0.00001 0.78995 <0.00001 0.40194 <0.00001 0.33739 <0.00001 0.14261 0.40175 

18Fornix / Stria terminalis R <0.00001 0.67292 <0.00001 0.33587 <0.00001 0.38230 <0.00001 0.15939 0.75087 

19Genu of Corpus Callosum 0.09261 0.98140 0.46704 0.98233 0.00001 0.97627 <0.00001 0.43879 0.78849 

20Inferior Cerebellar Peduncle L 0.00231 0.02436 <0.00001 0.16921 <0.00001 0.03205 <0.00001 0.96756 0.17297 

21Inferior Cerebellar Peduncle R 0.01835 0.03455 <0.00001 0.27337 <0.00001 0.05778 <0.00001 0.77478 0.12044 

22Medial Lemniscus L <0.00001 0.02740 0.00082 0.70872 <0.00001 0.02651 <0.00001 0.41507 0.34446 

23Medial Lemniscus R <0.00001 0.00178 0.00152 0.42506 <0.00001 0.00315 <0.00001 0.13489 0.29231 

24Middle Cerebellar Peduncle <0.00001 0.14107 0.00001 0.05182 <0.00001 0.01421 <0.00001 0.26207 0.04134 

25Pontine Crossing Tract <0.00001 0.86492 <0.00001 0.87215 0.00014 0.95836 <0.00001 0.43930 0.61587 

26Posterior Corona Radiata L <0.00001 0.90379 <0.00001 0.61927 <0.00001 0.65427 0.00088 0.39649 0.93162 

27Posterior Corona Radiata R <0.00001 0.34523 <0.00001 0.40551 <0.00001 0.63376 <0.00001 0.77820 0.25102 

28Posterior Limb of Internal 

Capsule L <0.00001 0.01403 0.00964 0.06433 <0.00001 0.05326 <0.00001 0.18548 0.21778 

29Posterior Limb of Internal 

Capsule R <0.00001 0.00873 0.00972 0.16176 <0.00001 0.00474 <0.00001 0.38158 0.23746 

30Posterior Thalamic Radiation L <0.00001 0.00960 <0.00001 0.18867 <0.00001 0.07231 0.04205 0.32346 0.73935 

31Posterior Thalamic Radiation R <0.00001 0.07907 <0.00001 0.16473 <0.00001 0.40456 0.03129 0.05289 0.32682 

32Retrolenticular Part of Internal 

Capsule L <0.00001 0.00168 <0.00001 0.05311 <0.00001 0.01434 <0.00001 0.11980 0.12787 

33Retrolenticular Part of Internal 

Capsule R <0.00001 0.00249 <0.00001 0.05937 <0.00001 0.01740 <0.00001 0.21434 0.14948 

34Sagittal Stratum L <0.00001 0.04593 0.00015 0.18455 <0.00001 0.21020 <0.00001 0.64347 0.25363 

35Sagittal Stratum R 0.00001 0.34925 <0.00001 0.67107 <0.00001 0.25782 <0.00001 0.74194 0.53659 

36Splenium of Corpus Callosum 0.00106 0.13459 <0.00001 0.09610 <0.00001 0.68492 0.00877 0.18289 0.39694 

37Superior Cerebellar Peduncle L <0.00001 0.13785 <0.00001 0.77816 <0.00001 0.07801 <0.00001 0.12794 0.59814 
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38Superior Cerebellar Peduncle R <0.00001 0.14454 <0.00001 0.56910 <0.00001 0.18173 <0.00001 0.04602 0.87308 

39Superior Corona Radiata L <0.00001 0.19517 <0.00001 0.20304 <0.00001 0.59684 0.99266 0.92974 0.71058 

40Superior Corona Radiata R 0.00010 0.19574 <0.00001 0.21697 <0.00001 0.22346 0.19751 0.98761 0.75054 

41Superior Fronto-Occipital 

Fasciculus L 0.12006 0.21964 <0.00001 0.31084 0.04541 0.67971 <0.00001 0.77676 0.42915 

42Superior Fronto-Occipital 

Fasciculus R 0.01808 0.04694 <0.00001 0.25944 0.00004 0.18878 0.48439 0.61417 0.31686 

43Superior Longitudinal 

Fasciculus L <0.00001 0.12904 <0.00001 0.44421 <0.00001 0.13629 0.00019 0.24746 0.31445 

44Superior Longitudinal 

Fasciculus R <0.00001 0.00873 <0.00001 0.31422 <0.00001 0.00762 0.23089 0.17740 0.10326 

45Tapetum L <0.00001 0.39571 0.00007 0.20044 0.00122 0.40647 <0.00001 0.21590 0.46062 

46Tapetum R 0.00023 0.78503 0.76323 0.63161 0.00013 0.62218 <0.00001 0.35138 0.37593 

47Uncinate Fasciculus L <0.00001 0.51743 <0.00001 0.03230 <0.00001 0.03283 <0.00001 0.03175 0.43171 

48Uncinate Fasciculus R <0.00001 0.25691 0.01279 0.20263 <0.00001 0.28224 <0.00001 0.00491 0.65538 
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Table S3.  Regression model term p-values for predicting WM tissue signal fraction as a function of sex, PDSS-sum, age, brain 
volume, and handedness with PDSS-sum by sex, PDSS-sum by age, sex by age, and PDSS-sum by sex by age interaction. Note that the 
“Global” p-values involve a test that includes all regression terms related to the predictor and “All Interactions” p-values involve a 
test that includes all interaction terms related to the predictor. Note that when the false discovery error rate is set at 0.05, applying the 
Benjamini and Hochberg false discovery procedure results in none of the “All Model Interactions” p-values meeting the threshold 
required to declare the model interactions -as a whole- statistically relevant. Bold and italicized p-values had magnitude less than the 
Benjamini and Hochberg false discovery procedure threshold for a p-value in its sequential position among 48 p-values ranked from 
smallest to largest. 

Region 
Global  

Puberty  

All  PDSS-

sum 

Interaction 

Global  

Sex  

All Sex  

Interaction  

Global  

Age 

All Age  

Interaction  

Global  

Volume 

Global  

Handedness 

All Model 

Interactions  

1 Anterior Corona Radiata L 0.35475 0.47705 0.25662 0.52556 <0.00001 0.71657 0.01347 0.07070 0.69970 

2Anterior Corona Radiata R 0.06932 0.21301 0.03246 0.25113 <0.00001 0.31646 0.00489 0.15097 0.23631 

3Anterior Limb of Internal 

Capsule L 0.02553 0.18516 0.00010 0.36325 <0.00001 0.44143 <0.00001 0.83166 0.41805 

4Anterior Limb of Internal 

Capsule R 0.01804 0.01238 <0.00001 0.38805 <0.00001 0.03430 <0.00001 0.86741 0.40431 

5Body of corpus callosum 0.00007 0.07467 <0.00001 0.09943 <0.00001 0.13251 <0.00001 0.34851 0.03086 

6Cerebral Peduncle L 0.00114 0.10070 <0.00001 0.24371 <0.00001 0.21153 <0.00001 0.87047 0.89939 

7Cerebral Peduncle R 0.00002 0.07799 <0.00001 0.31886 <0.00001 0.00646 <0.00001 0.87708 0.61869 

8Cingulum (cingulate gyrus) L 0.73843 0.60540 0.00432 0.04830 <0.00001 0.04175 <0.00001 0.78942 0.17916 

9Cingulum (cingulate gyrus) R 0.96510 0.90356 0.07931 0.20052 <0.00001 0.19139 <0.00001 0.95872 0.31551 

10Cingulum (hippocampus) L 0.01288 0.07767 <0.00001 0.30199 <0.00001 0.02463 <0.00001 0.05558 0.16279 

11Cingulum (hippocampus) R 0.03511 0.30218 <0.00001 0.86283 <0.00001 0.30239 <0.00001 0.24839 0.58807 

12Corticospinal Tract L 0.23172 0.46572 <0.00001 0.78774 <0.00001 0.50900 <0.00001 0.64898 0.64855 

13Corticospinal Tract R 0.21588 0.18661 0.00013 0.94938 <0.00001 0.12191 <0.00001 0.81014 0.79640 

14External Capsule L 0.39690 0.26489 <0.00001 0.28810 <0.00001 0.63153 <0.00001 0.33100 0.43672 

15External Capsule R 0.13472 0.17771 <0.00001 0.16304 <0.00001 0.24428 <0.00001 0.49998 0.14661 
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16Fornix <0.00001 0.07638 0.56925 0.84568 0.00045 0.03922 <0.00001 0.02446 0.98211 

17Fornix / Stria terminalis L 0.00073 0.74681 <0.00001 0.35042 <0.00001 0.20690 <0.00001 0.16720 0.27665 

18Fornix / Stria terminalis R <0.00001 0.48617 <0.00001 0.31893 <0.00001 0.18358 <0.00001 0.28719 0.68035 

19Genu of Corpus Callosum 0.00362 0.04772 0.12384 0.06489 0.00006 0.03799 <0.00001 0.02535 0.08547 

20Inferior Cerebellar Peduncle L 0.00001 0.02719 <0.00001 0.56162 <0.00001 0.00971 <0.00001 0.99580 0.26662 

21Inferior Cerebellar Peduncle R 0.00010 0.04116 <0.00001 0.45024 <0.00001 0.02559 <0.00001 0.77822 0.21854 

22Medial Lemniscus L <0.00001 0.01313 0.00012 0.58989 <0.00001 0.00751 <0.00001 0.40524 0.20964 

23Medial Lemniscus R <0.00001 0.00060 0.00011 0.35861 <0.00001 0.00065 <0.00001 0.51412 0.15492 

24Middle Cerebellar Peduncle 0.00005 0.22201 0.00030 0.05088 0.00004 0.02072 <0.00001 0.77233 0.06776 

25Pontine Crossing Tract 0.00036 0.66004 <0.00001 0.62236 0.00001 0.61600 <0.00001 0.76013 0.32451 

26Posterior Corona Radiata L <0.00001 0.91821 <0.00001 0.82181 <0.00001 0.92835 0.67899 0.05092 0.82130 

27Posterior Corona Radiata R <0.00001 0.45882 <0.00001 0.46645 <0.00001 0.87559 0.09631 0.19648 0.43094 

28Posterior Limb of Internal 

Capsule L 0.00007 0.00620 0.01108 0.04912 <0.00001 0.07118 <0.00001 0.39141 0.21360 

29Posterior Limb of Internal 

Capsule R <0.00001 0.00063 0.01366 0.10770 <0.00001 0.00406 <0.00001 0.70757 0.18806 

30Posterior Thalamic Radiation L 0.08059 0.82675 <0.00001 0.90065 <0.00001 0.85487 <0.00001 0.00181 0.47971 

31Posterior Thalamic Radiation R 0.00006 0.48484 <0.00001 0.55305 <0.00001 0.95455 <0.00001 0.01437 0.85973 

32Retrolenticular Part of Internal 

Capsule L 0.00002 0.00328 <0.00001 0.03437 <0.00001 0.02404 <0.00001 0.10965 0.16728 

33Retrolenticular Part of Internal 

Capsule R 0.00003 0.00142 <0.00001 0.01705 <0.00001 0.02321 0.70421 0.05173 0.24015 

34Sagittal Stratum L 0.00004 0.09167 <0.00001 0.15077 <0.00001 0.48312 <0.00001 0.15769 0.21720 

35Sagittal Stratum R 0.00028 0.13570 <0.00001 0.30035 <0.00001 0.36443 <0.00001 0.15594 0.40575 

36Splenium of Corpus Callosum 0.04092 0.44831 <0.00001 0.41808 <0.00001 0.95375 0.00191 0.05356 0.53997 

37Superior Cerebellar Peduncle L <0.00001 0.03098 <0.00001 0.37626 <0.00001 0.00897 <0.00001 0.08070 0.13314 
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38Superior Cerebellar Peduncle R <0.00001 0.03036 <0.00001 0.41412 <0.00001 0.02878 <0.00001 0.04327 0.36389 

39Superior Corona Radiata L 0.00036 0.48180 <0.00001 0.35746 <0.00001 0.62442 0.00407 0.47473 0.95126 

40Superior Corona Radiata R 0.00114 0.15523 <0.00001 0.18856 <0.00001 0.18807 0.00002 0.46801 0.71341 

41Superior Fronto-Occipital 

Fasciculus L 0.50050 0.57640 <0.00001 0.61459 0.02062 0.84726 0.00001 0.94343 0.75284 

42Superior Fronto-Occipital 

Fasciculus R 0.04502 0.07887 <0.00001 0.31787 0.00001 0.25073 0.92024 0.52645 0.33957 

43Superior Longitudinal 

Fasciculus L <0.00001 0.24025 <0.00001 0.43232 <0.00001 0.38752 <0.00001 0.15567 0.47677 

44Superior Longitudinal 

Fasciculus R <0.00001 0.01335 <0.00001 0.25609 <0.00001 0.01972 0.15310 0.11765 0.09799 

45Tapetum L 0.81406 0.81712 0.16435 0.78495 0.75321 0.62465 <0.00001 0.04272 0.86837 

46Tapetum R 0.63371 0.59681 0.75742 0.90197 0.71885 0.63983 <0.00001 0.22186 0.71639 

47Uncinate Fasciculus L <0.00001 0.65696 0.00023 0.03661 <0.00001 0.03816 <0.00001 0.08411 0.69938 

48Uncinate Fasciculus R 0.00002 0.16741 0.04306 0.13390 <0.00001 0.20714 <0.00001 0.02553 0.53629 
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Table S4: Adjusted slopes, 95% confidence levels, and p-values for the relationship between tissue signal fraction and PDSS sum in 
each of the JHU atlas ROIs.   

Region 

CSF GM WM 

ADJ 

Slope 

Lower 

95% CL 

Upper 

95% CL 

ADJ 

P-value 

ADJ 

Slope 

Lower 

95% CL 

Upper 

95% CL 

ADJ 

P-value 

ADJ 

Slope 

Lower 

95% CL 

Upper 

95% CL 

ADJ 

P-value 

Anterior Corona Radiata 

L 
0.00002 -0.00016 0.00019 0.83487 0.00033 -0.00007 0.00074 0.10461 -0.00037 -0.00088 0.00013 0.14916 

Anterior Corona Radiata 

R 
-0.00002 -0.00016 0.00013 0.82952 0.00046 0.00005 0.00086 0.02676 -0.00054 -0.00104 -0.00004 0.03325 

Anterior Limb of Internal 

Capsule L 
-0.00021 -0.00029 -0.00012 <0.00001 0.00075 0.00035 0.00115 0.00026 -0.00054 -0.00098 -0.00010 0.01588 

Anterior Limb of Internal 

Capsule R 
-0.00012 -0.00021 -0.00004 0.00265 0.00028 0.00001 0.00056 0.04024 -0.00016 -0.00048 0.00016 0.32691 

Body of corpus callosum 0.00010 -0.00007 0.00027 0.23804 0.00063 0.00040 0.00085 <0.00001 -0.00073 -0.00107 -0.00039 0.00003 

Cerebral Peduncle L -0.00013 -0.00021 -0.00006 0.00042 0.00064 0.00037 0.00091 <0.00001 -0.00050 -0.00080 -0.00020 0.00099 

Cerebral Peduncle R -0.00016 -0.00025 -0.00007 0.00046 0.00073 0.00049 0.00097 <0.00001 -0.00057 -0.00083 -0.00030 0.00003 

Cingulum (cingulate 

gyrus) L 
-0.00046 -0.00061 -0.00031 <0.00001 0.00047 -0.00014 0.00108 0.12982 -0.00002 -0.00068 0.00063 0.94533 

Cingulum (cingulate 

gyrus) R 
-0.00042 -0.00054 -0.00030 <0.00001 0.00030 -0.00033 0.00092 0.34923 0.00011 -0.00054 0.00076 0.73299 

Cingulum (hippocampus) 

L 
-0.00070 -0.00087 -0.00054 <0.00001 0.00151 0.00085 0.00216 0.00001 -0.00079 -0.00149 -0.00009 0.02655 

Cingulum (hippocampus) 

R 
-0.00081 -0.00096 -0.00065 <0.00001 0.00156 0.00101 0.00210 <0.00001 -0.00076 -0.00133 -0.00019 0.00872 

Corticospinal Tract L -0.00010 -0.00020 -0.00001 0.02853 0.00031 0.00006 0.00057 0.01727 -0.00030 -0.00064 0.00003 0.07609 

Corticospinal Tract R -0.00006 -0.00016 0.00003 0.17431 0.00009 -0.00011 0.00029 0.39239 -0.00013 -0.00042 0.00016 0.37658 
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External Capsule L -0.00029 -0.00038 -0.00021 <0.00001 0.00032 0.00005 0.00060 0.02166 -0.00003 -0.00034 0.00028 0.84498 

External Capsule R -0.00040 -0.00049 -0.00031 <0.00001 0.00062 0.00032 0.00091 0.00004 -0.00022 -0.00056 0.00012 0.19666 

Fornix 0.00016 -0.00083 0.00115 0.75136 0.00308 0.00247 0.00369 <0.00001 -0.00324 -0.00449 -0.00199 <0.00001 

Fornix / Stria terminalis L -0.00013 -0.00036 0.00010 0.25898 0.00134 0.00086 0.00181 <0.00001 -0.00121 -0.00179 -0.00062 0.00005 

Fornix / Stria terminalis R -0.00040 -0.00068 -0.00012 0.00466 0.00201 0.00158 0.00243 <0.00001 -0.00160 -0.00216 -0.00105 <0.00001 

Genu of Corpus Callosum 0.00015 -0.00025 0.00054 0.46972 0.00042 0.00013 0.00070 0.00454 -0.00067 -0.00112 -0.00022 0.00368 

Inferior Cerebellar 

Peduncle L 
0.00022 0.00013 0.00031 <0.00001 0.00048 0.00010 0.00085 0.01245 -0.00102 -0.00149 -0.00056 0.00002 

Inferior Cerebellar 

Peduncle R 
0.00023 0.00016 0.00031 <0.00001 0.00033 -0.00005 0.00070 0.08832 -0.00090 -0.00136 -0.00044 0.00015 

Medial Lemniscus L 0.00021 0.00007 0.00036 0.00459 0.00123 0.00096 0.00151 <0.00001 -0.00144 -0.00179 -0.00108 <0.00001 

Medial Lemniscus R 0.00019 0.00008 0.00030 0.00089 0.00105 0.00081 0.00128 <0.00001 -0.00122 -0.00154 -0.00090 <0.00001 

Middle Cerebellar 

Peduncle 
0.00016 0.00006 0.00026 0.00142 0.00055 0.00033 0.00078 <0.00001 -0.00075 -0.00110 -0.00041 0.00002 

Pontine Crossing Tract -0.00008 -0.00018 0.00001 0.09343 0.00071 0.00050 0.00091 <0.00001 -0.00061 -0.00088 -0.00033 0.00002 

Posterior Corona Radiata 

L 
-0.00005 -0.00025 0.00015 0.63892 0.00156 0.00112 0.00200 <0.00001 -0.00151 -0.00205 -0.00098 <0.00001 

Posterior Corona Radiata 

R 
<0.00001 -0.00019 0.00019 0.96158 0.00165 0.00123 0.00207 <0.00001 -0.00165 -0.00218 -0.00113 <0.00001 

Posterior Limb of Internal 

Capsule L 
-0.00002 -0.00007 0.00003 0.39065 0.00033 0.00018 0.00049 0.00002 -0.00031 -0.00049 -0.00013 0.00098 

Posterior Limb of Internal 

Capsule R 
-0.00007 -0.00014 -0.00001 0.02125 0.00038 0.00023 0.00053 <0.00001 -0.00031 -0.00048 -0.00014 0.00047 

Posterior Thalamic 

Radiation L 
-0.00035 -0.00079 0.00009 0.12239 0.00104 0.00076 0.00133 <0.00001 -0.00069 -0.00119 -0.00020 0.00625 
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Posterior Thalamic 

Radiation R 
-0.00001 -0.00027 0.00026 0.96603 0.00097 0.00071 0.00122 <0.00001 -0.00096 -0.00136 -0.00056 <0.00001 

Retrolenticular Part of 

Internal Capsule L 
0.00001 -0.00011 0.00013 0.81451 0.00054 0.00032 0.00076 <0.00001 -0.00056 -0.00085 -0.00026 0.00025 

Retrolenticular Part of 

Internal Capsule R 
-0.00002 -0.00016 0.00012 0.78742 0.00049 0.00031 0.00068 <0.00001 -0.00047 -0.00075 -0.00019 0.00090 

Sagittal Stratum L -0.00019 -0.00046 0.00008 0.16518 0.00139 0.00091 0.00188 <0.00001 -0.00120 -0.00174 -0.00067 0.00001 

Sagittal Stratum R -0.00007 -0.00026 0.00012 0.48845 0.00105 0.00062 0.00147 <0.00001 -0.00098 -0.00147 -0.00048 0.00011 

Splenium of Corpus 

Callosum 
0.00006 -0.00010 0.00023 0.46048 0.00042 0.00018 0.00066 0.00055 -0.00048 -0.00084 -0.00013 0.00750 

Superior Cerebellar 

Peduncle L 
0.00030 -0.00003 0.00063 0.07932 0.00148 0.00119 0.00177 <0.00001 -0.00178 -0.00222 -0.00134 <0.00001 

Superior Cerebellar 

Peduncle R 
0.00023 -0.00007 0.00052 0.13525 0.00146 0.00116 0.00176 <0.00001 -0.00169 -0.00212 -0.00126 <0.00001 

Superior Corona Radiata 

L 
-0.00005 -0.00018 0.00007 0.37910 0.00082 0.00053 0.00112 <0.00001 -0.00077 -0.00111 -0.00043 0.00001 

Superior Corona Radiata 

R 
-0.00005 -0.00014 0.00004 0.25934 0.00067 0.00038 0.00096 0.00001 -0.00062 -0.00094 -0.00029 0.00018 

Superior Fronto-Occipital 

Fasciculus L 
-0.00010 -0.00032 0.00013 0.39533 0.00051 -0.00007 0.00109 0.08671 -0.00041 -0.00108 0.00025 0.22367 

Superior Fronto-Occipital 

Fasciculus R 
-0.00003 -0.00011 0.00006 0.56369 0.00044 <0.00001 0.00087 0.04975 -0.00041 -0.00089 0.00006 0.08897 

Superior Longitudinal 

Fasciculus L 
0.00008 -0.00001 0.00018 0.08868 0.00131 0.00103 0.00159 <0.00001 -0.00139 -0.00175 -0.00104 <0.00001 

Superior Longitudinal 

Fasciculus R 
-0.00002 -0.00011 0.00008 0.76045 0.00100 0.00070 0.00130 <0.00001 -0.00098 -0.00135 -0.00061 <0.00001 
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Tapetum L -0.00061 -0.00264 0.00142 0.55616 0.00150 0.00105 0.00195 <0.00001 -0.00089 -0.00279 0.00102 0.36058 

Tapetum R -0.00027 -0.00195 0.00140 0.74742 0.00096 0.00054 0.00138 0.00001 -0.00068 -0.00232 0.00096 0.41375 

Uncinate Fasciculus L -0.00036 -0.00058 -0.00015 0.00088 0.00304 0.00217 0.00391 <0.00001 -0.00273 -0.00373 -0.00172 <0.00001 

Uncinate Fasciculus R -0.00051 -0.00073 -0.00029 <0.00001 0.00251 0.00175 0.00327 <0.00001 -0.00207 -0.00297 -0.00117 0.00001 
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Table S5: Adjusted p-values for the concomitant covariates in the models for predicting tissue signal fraction in each JHU atlas ROI. 

Region 

CSF GM WM 

Sex 

P-value 

Age 

P-value 

Volume 

P-value 

Handed 

P-value 

Sex 

P-value 

Age 

P-value 

Volume 

P-value 

Handed 

P-value 

Sex 

P-value 

Age 

P-value 

Volume 

P-value 

Handed 

P-value 

Anterior Corona Radiata L 0.00109 0.00001 <0.00001 0.05521 0.00056 <0.00001 0.01199 0.12333 0.07018 <0.00001 0.01400 0.06808 

Anterior Corona Radiata R 0.00003 <0.00001 <0.00001 0.00320 <0.00001 <0.00001 0.06571 0.23568 0.00916 <0.00001 0.00514 0.14919 

Anterior Limb of Internal 

Capsule L 0.24312 <0.00001 0.23981 0.01286 <0.00001 <0.00001 <0.00001 0.95631 <0.00001 <0.00001 <0.00001 0.81093 

Anterior Limb of Internal 

Capsule R 0.00024 <0.00001 0.06087 0.09307 <0.00001 <0.00001 <0.00001 0.96253 <0.00001 <0.00001 <0.00001 0.85507 

Body of corpus callosum <0.00001 <0.00001 <0.00001 0.03482 0.00001 <0.00001 <0.00001 0.36045 <0.00001 <0.00001 <0.00001 0.32468 

Cerebral Peduncle L 0.06353 <0.00001 <0.00001 0.35750 <0.00001 <0.00001 <0.00001 0.71694 <0.00001 <0.00001 <0.00001 0.84090 

Cerebral Peduncle R 0.47829 <0.00001 <0.00001 0.48226 <0.00001 <0.00001 <0.00001 0.89922 <0.00001 <0.00001 <0.00001 0.79853 

Cingulum (cingulate gyrus) L 0.02414 <0.00001 0.08660 0.24730 0.02256 <0.00001 <0.00001 0.83054 0.00903 <0.00001 <0.00001 0.82001 

Cingulum (cingulate gyrus) 

R 0.06326 <0.00001 0.00191 0.03439 0.09527 <0.00001 <0.00001 0.98048 0.05720 <0.00001 <0.00001 0.95173 

Cingulum (hippocampus) L 0.00283 <0.00001 0.78459 0.40757 <0.00001 <0.00001 <0.00001 0.04981 <0.00001 <0.00001 <0.00001 0.04295 

Cingulum (hippocampus) R 0.01321 <0.00001 0.02640 0.46442 <0.00001 <0.00001 <0.00001 0.28032 <0.00001 <0.00001 <0.00001 0.23151 

Corticospinal Tract L 0.05632 <0.00001 <0.00001 0.30682 <0.00001 <0.00001 <0.00001 0.84891 <0.00001 <0.00001 <0.00001 0.67659 

Corticospinal Tract R 0.01343 <0.00001 <0.00001 0.89858 <0.00001 <0.00001 <0.00001 0.72854 <0.00001 <0.00001 <0.00001 0.86712 

External Capsule L 0.17682 <0.00001 0.16481 0.17088 <0.00001 <0.00001 <0.00001 0.51942 <0.00001 <0.00001 <0.00001 0.30812 

External Capsule R 0.01498 <0.00001 0.00488 0.01920 <0.00001 <0.00001 <0.00001 0.78767 <0.00001 <0.00001 <0.00001 0.46200 

Fornix 0.50172 0.04693 <0.00001 0.02243 0.00001 0.00007 <0.00001 0.21363 0.09499 0.00043 <0.00001 0.01670 

Fornix / Stria terminalis L 0.91964 <0.00001 <0.00001 0.73122 <0.00001 <0.00001 <0.00001 0.13193 <0.00001 <0.00001 <0.00001 0.15470 

Fornix / Stria terminalis R 0.44237 <0.00001 <0.00001 0.33636 <0.00001 <0.00001 <0.00001 0.15256 <0.00001 <0.00001 <0.00001 0.25370 
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Genu of Corpus Callosum 0.10207 0.85320 0.00536 0.00790 0.06717 <0.00001 <0.00001 0.44472 0.98475 0.00004 <0.00001 0.02204 

Inferior Cerebellar Peduncle 

L 0.50004 0.14696 0.10390 0.40448 <0.00001 <0.00001 <0.00001 0.93516 <0.00001 <0.00001 <0.00001 0.96103 

Inferior Cerebellar Peduncle 

R 0.04051 0.18890 0.10612 0.80323 <0.00001 <0.00001 <0.00001 0.72336 <0.00001 <0.00001 <0.00001 0.67692 

Medial Lemniscus L 0.00211 0.00056 <0.00001 0.20219 0.00001 <0.00001 <0.00001 0.33328 <0.00001 <0.00001 <0.00001 0.30668 

Medial Lemniscus R 0.00004 <0.00001 <0.00001 0.85550 0.00004 <0.00001 <0.00001 0.09310 <0.00001 <0.00001 <0.00001 0.39968 

Middle Cerebellar Peduncle 0.10583 0.14422 <0.00001 0.53584 <0.00001 <0.00001 <0.00001 0.21290 0.00016 0.00009 <0.00001 0.72365 

Pontine Crossing Tract 0.01181 <0.00001 <0.00001 0.99034 <0.00001 <0.00001 <0.00001 0.42934 <0.00001 <0.00001 <0.00001 0.72325 

Posterior Corona Radiata L 0.32180 <0.00001 <0.00001 0.00228 <0.00001 <0.00001 0.00082 0.37851 <0.00001 <0.00001 0.68574 0.04921 

Posterior Corona Radiata R 0.00054 <0.00001 <0.00001 0.00140 <0.00001 <0.00001 <0.00001 0.76430 <0.00001 <0.00001 0.09477 0.19389 

Posterior Limb of Internal 

Capsule L 0.41231 <0.00001 0.41014 0.63718 0.00759 <0.00001 <0.00001 0.15858 0.01340 <0.00001 <0.00001 0.34616 

Posterior Limb of Internal 

Capsule R 0.70601 <0.00001 0.12257 0.34484 0.00181 <0.00001 <0.00001 0.33262 0.00492 <0.00001 <0.00001 0.62221 

Posterior Thalamic Radiation 

L <0.00001 0.00649 <0.00001 0.00660 <0.00001 <0.00001 0.04900 0.28959 <0.00001 <0.00001 <0.00001 0.00168 

Posterior Thalamic Radiation 

R <0.00001 <0.00001 <0.00001 0.03317 <0.00001 <0.00001 0.03447 0.04858 <0.00001 <0.00001 <0.00001 0.01402 

Retrolenticular Part of 

Internal Capsule L 0.00237 <0.00001 0.20023 0.09256 <0.00001 <0.00001 <0.00001 0.09254 <0.00001 <0.00001 <0.00001 0.08913 

Retrolenticular Part of 

Internal Capsule R 0.00002 <0.00001 <0.00001 0.01712 <0.00001 <0.00001 <0.00001 0.17294 <0.00001 <0.00001 0.66893 0.04190 

Sagittal Stratum L <0.00001 0.00015 0.71456 0.02359 0.00001 <0.00001 <0.00001 0.59764 <0.00001 <0.00001 <0.00001 0.14539 

Sagittal Stratum R <0.00001 <0.00001 0.00189 0.00046 <0.00001 <0.00001 <0.00001 0.68678 <0.00001 <0.00001 <0.00001 0.13714 
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Splenium of Corpus 

Callosum <0.00001 <0.00001 0.00490 0.01178 <0.00001 <0.00001 0.00811 0.18685 <0.00001 <0.00001 0.00186 0.05595 

Superior Cerebellar Peduncle 

L <0.00001 0.00094 <0.00001 0.09427 <0.00001 <0.00001 <0.00001 0.09449 <0.00001 <0.00001 <0.00001 0.05325 

Superior Cerebellar Peduncle 

R <0.00001 0.00003 <0.00001 0.25593 <0.00001 <0.00001 <0.00001 0.03181 <0.00001 <0.00001 <0.00001 0.02625 

Superior Corona Radiata L 0.10024 <0.00001 <0.00001 0.02920 <0.00001 <0.00001 0.99379 0.92809 <0.00001 <0.00001 0.00418 0.47513 

Superior Corona Radiata R 0.46237 <0.00001 <0.00001 0.00031 <0.00001 <0.00001 0.20551 0.98379 <0.00001 <0.00001 0.00003 0.45916 

Superior Fronto-Occipital 

Fasciculus L 0.73865 0.02753 0.00002 0.37400 <0.00001 0.00287 <0.00001 0.77818 <0.00001 0.00077 0.00001 0.93950 

Superior Fronto-Occipital 

Fasciculus R 0.37220 0.00002 0.00006 0.44312 <0.00001 <0.00001 0.45874 0.60888 <0.00001 <0.00001 0.95028 0.51875 

Superior Longitudinal 

Fasciculus L <0.00001 <0.00001 <0.00001 0.05893 <0.00001 <0.00001 0.00023 0.20487 <0.00001 <0.00001 <0.00001 0.13420 

Superior Longitudinal 

Fasciculus R <0.00001 <0.00001 <0.00001 0.01901 <0.00001 <0.00001 0.20825 0.12781 <0.00001 <0.00001 0.16969 0.08849 

Tapetum L 0.00111 0.62013 <0.00001 0.03344 0.00001 0.00006 <0.00001 0.22543 0.01606 0.67690 <0.00001 0.04930 

Tapetum R 0.25963 0.61429 <0.00001 0.20912 0.73395 <0.00001 <0.00001 0.35546 0.28792 0.50474 <0.00001 0.24829 

Uncinate Fasciculus L 0.45396 <0.00001 0.13618 0.56028 <0.00001 <0.00001 <0.00001 0.03143 0.00026 <0.00001 <0.00001 0.08060 

Uncinate Fasciculus R 0.15691 <0.00001 0.22783 0.17529 0.00329 <0.00001 <0.00001 0.00347 0.03042 <0.00001 <0.00001 0.01883 
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Study 2c 
 

Aim 2c: Determine if the epigeneticly derived risk score ‘GrimAge’ is an effective peripheral 

blood biomarker of small vessel disease driven damage to brain microstructure in a ‘healthy’ 

aging cohort. 

 

Rationale: All humans experience age-related decline toward the end of the lifespan. This can 

affect the brain in a number of ways, including atrophy, loss of volume particularly in cortex, 

and the appearance and enlargement of white matter hyperintensities. These structural changes 

can occur in otherwise seemingly ‘healthy’ aged individuals, without any diagnosed neurological 

issue. Using 3T-CSD measurements of brain microstructure we will be able to examine how the 

brain declines due to age at a cellular level. This will give insight into factors affecting age-

related decline, as well as highlight areas of the brain that may be more closely associated with 

behavioral and cognitive outcomes.  

 

Experimental Design: dMRI images from the Virginia Cognitive Aging Project (VCAP) will be 

leveraged to explore age-related decline. VCAP is a longitudinal study currently featuring 100 

healthy elderly subjects at baseline and 42 scanned 2 years later. Rates of change will be 

measured longitudinally to investigate how factors might influence the acceleration or slowing of 

decline. 

 

Additionally, there is a growing understanding within the dMRI microstructure 

community that not all brain injuries or instances of decline are generalizable across subjects in a 

fashion amenable to traditional parametric mean testing. To address this deficiency there is a 

need to move toward subject-specific analysis techniques that can incorporate differences in 

anatomical structure and lesion burden or location. Age-related changes later in life include the 

appearance of areas within the deep WM termed white matter hyperintensities. White matter 

hyperintensities are a manifestation of small vessel disease and can indicate damage to 

extracellular matrix, demyelination, or even axonal loss277. White matter hyperintensities are 

common features of the aging brain but appear differently in location or size across subjects and 

presumably have subsequently different effects on cognitive functioning or indicate different 
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susceptibility to brain damage. Using VCAP, we will analyze white matter hyperintensities as 

subject-specific, independent ROIs both for analyzing the composition of the hyperintensities 

and the relationship of the longitudinal change between scanning sessions to behavioral outputs. 

A lesionometric framework will be applied to examine areas of the brain affected by white 

matter hyperintensities278,279. This method uses tractography to select axonal fiber bundles 

traversing ‘lesioned’ areas of the brain and assesses microstructure in areas traversed by affected 

tracts. This has the practical application of expanding the regions of the brain affected by the 

lesion but also generates a subject-specific area that may be more sensitive to detecting the full 

extent of neuronal damage inflicted by factors such as lesion size and location.  

 

Finally, VCAP includes epigenetic clock data which seeks to determine if aging is 

accelerating or slowing compared to chronological age. Termed GrimAge, the epigenetic clock is 

based off of 12 DNA methylation sites that correlate with blood plasma proteins and smoking 

pack years and represents a mortality risk estimator when compared to chronological age280,281. 

The approach using VCAP will be twofold: first, microstructural correlates of epigenetic clocks 

will be explored to discover microstructural markers of aging and decline, especially subject-

specific markers of existing neuroradiological decline due to the presence and lesionometric 

burden of white matter hyperintensities. Second, the longitudinal component of VCAP will 

inform the relationship between GrimAge and differing rates of decline across participants.  
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Study 2c 
 

Title: Epigenetic age acceleration predicts subject-specific white matter degeneration in the 

human brain. 

 

Abstract  

 

Epigenetic clocks provide powerful tools for estimating health and lifespan but their 

ability to predict brain degeneration and neuronal damage during the aging process is unknown. 

In this study, we use GrimAge, an epigenetic clock correlated to several blood plasma proteins, 

to longitudinally investigate brain cellular microstructure in axonal white matter from a cohort of 

healthy aging individuals. Given the blood plasma correlations used to develop GrimAge, a 

specific focus was made on white matter hyperintensities, a visible neurological manifestation of 

small vessel disease, and the axonal pathways throughout each individual’s brain affected by 

their unique white matter hyperintensity location and volume. 98 subjects over 55 years of age 

were scanned at baseline with 41 returning for a follow-up scan 2 years later. Using diffusion 

MRI lesionometry, we reconstructed subject-specific networks of affected axonal tracts and 

examined the diffusion cellular microstructure composition of these areas, both at baseline and 

longitudinally, for evidence of cellular degeneration. A chronological age-adjusted version of 

GrimAge was significantly correlated with baseline WMH volume and markers of neuronal 

decline, indicated by increased extracellular free water, increased intracellular signal, and 

decreased axonal signal within WMH. By isolating subject-specific axonal regions ‘lesioned’ by 

crossing through a WMH, age-adjusted GrimAge was also able to predict longitudinal 

development of similar patterns of neuronal decline throughout the brain. This study is the first 

to establish a relationship between accelerated epigenetic GrimAge and brain cellular 

microstructure in humans. 

 

Introduction 
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Recent advances in epigenetic sequencing and analysis have led to the development of a 

number of epigenetic clocks that act as biomarkers for chronological age282,283. GrimAge is an 

epigenetic clock that calculates expected time-to-death due to all-cause mortality based on a 

number of surrogate DNA methylation based biomarkers of stress and physiological risk280. 

AgeAccelGrim is an age-adjusted version of GrimAge shown to be highly predictive of time-to-

coronary heart disease, congestive heart failure, hypertension, type 2 diabetes, and physical 

functioning280. It is well established that cardiovascular health affects brain integrity and 

cognitive functioning223,284,285 and has been implicated in the formation of white matter 

hyperintensities (WMH) on T2-weighted brain MRI. WHM are thought to be the consequence of 

small vessel disease (SVD) which can cause microinfarcts, edema, and cortical thinning286–288. 

WMH are associated with declining cognitive and perceptual functioning and are thus an 

important marker for age-related brain health289,290. In this study, we pair AgeAccelGrim with an 

advanced diffusion microstructure analysis technique, 3-Tissue Constrained Spherical 

Deconvolution (3T-CSD), in a subject-specific manner to test associations between 

AgeAccelGrim estimates of mortality risk and brain cellular microstructure. Analyses will be 

focused on WMH due to their connection to SVD, as well as on the ability of AgeAccelGrim to 

predict future neuronal decline in an aging cohort.  

 

The GrimAge model was generated from the Framingham Heart Study Offspring 

Cohort291 and is specifically composed of 12 DNA methylation (DNAm) based biomarkers for 

plasma proteins, plus age, gender, and smoking pack-years, regressed to time-to-death. The age-

adjusted version of GrimAge presents a powerful means for studying the effects of 

cardiovascular health on the brain. Not only is the clock optimized to estimate plasma proteins 

sensitive to aging and general heart health, but by finding DNAm correlates for factors such as 

smoking pack-years GrimAge allows for the assessment of levels of methylation present on the 

relevant site even in the absence of self-report metrics or any history of smoking at all. Age-

adjusted GrimAge is not only reported to be more closely correlated with time-to-death than self-

reported smoking pack-years alone, but it allows for risk evaluation and stratification of all non-

smokers, providing a more powerful and accurate statistical sample280. 

 



 167 

At the population level, cardiovascular risk factors in humans have been strongly linked 

to degenerative changes in brain structure using brain diffusion MRI (dMRI). Greater arterial 

stiffness has been associated with reduced white matter (WM) fractional anisotropy in the corpus 

callosum and corona radiata as well as lower grey matter (GM) density in the thalamus292. In a 

recent study using dMRI and positron emission tomography (PET), MRI-based markers of SVD 

(measured by WMH volume) were more correlated with dMRI extracellular free water than  PET 

measures of Tau or Ab, and SVD contributed more to diffusion alterations than did biomarkers 

of Alzheimer’s disease286. Another dMRI study suggested that diffusion differences between 

patients with SVD and healthy controls were primarily driven by increased extracellular free 

water rather than neuronal tissue alterations, and that this finding predicted clinical status62. 

These dMRI-based degenerative changes follow similar trajectories across the ‘healthy’ 

population (those explicitly without a diagnosed neurodegenerative disease), but there is wide 

individual variation in the chronological age at which degenerative brain changes begin and how 

they progress.  

 

GrimAge metrics may be a useful biomarker for decline related to WMH and SVD as 

WMH volume is one of the few neuroimaging markers of SVD to be positively associated with 

AgeAccelGrim16. Though previous studies have examined this relationship no conclusive link 

between AgeAccelGrim and WMH has been established293–295. The difficulty in establishing this 

link highlights the shortcomings of whole brain or one-size-fits-all approaches to studying 

features such as WMH that vary greatly in presentation between individuals. Individual 

differences in age-related neuronal decline are evident in whole-brain metrics and particularly in 

the presentation of WMH. Analyzing the composition of WMH presents a challenge for typical 

neuroimaging analysis pipelines but particularly using 3T-CSD. Each subject has a different 

spatial location of WMH volume and a distinct spatial progression longitudinally. The location 

of WMH has been implicated in cognitive deficits in patients with SVD296 so it is crucial to 

account for subject-specific WMH features. Being located in the predominantly axonal WM, 

WMH can induce damage and Wallerian degeneration on axonal pathways traversing the 

lesioned area288 presenting a challenge to investigate distant regions of the brain that may show 

signs of damage that form unique subject-specific spatial patterns.  
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To address this problem, our study will apply 3T-CSD microstructural metrics within a 

lesionometry framework278,279. 3T-CSD analysis of cellular microstructure has previously been 

used to successfully characterize WMH and is also able to detect areas of ‘normal appearing’ 

WM that develop into WMH following cerebrovascular injury91,227. Lesionometry is a fusion of 

voxel-wise diffusion metrics and subject specific lesion analysis to isolates axonal networks that 

traverse lesioned voxels with diffusion tractography and analyze the cellular microstructure 

within that network (Figure 1). This technique has previously been applied to the study of 

multiple sclerosis, and was able to correlate a number of diffusion metrics and network 

measures, such as the proportion of lesioned volume to whole affected network volume referred 

to as ‘lesion load’, to cognitive, learning, and memory symptoms279. 

 

Using this subject-specific method to focus highly sensitive 3T-CSD microstructural 

methods may be the key to finding a relationship between GrimAge clock measurements and 

changes in brain microstructure. Due to its connection to cardiovascular risk factors, GrimAge 

may be well-suited to determining where an individual falls on the age-related decline trajectory. 

This study aims to evaluate GrimAge as an effective peripheral blood biomarker of SVD driven 

damage to the brain. 

 

 

Methods 

 

Subjects 

 

Participants were recruited from the ongoing Virginia Cognitive Aging Project (VCAP), 

a multi-year cross-sectional and longitudinal study of cognition in over 5,000 participants297,298. 

VCAP subjects have been recruited from the local community and have agreed to participate in 

multiple study visits over several years. A subset of aged subjects was selected from VCAP and 

an equal number of subjects from each quantile of performance based on cognitive tasks during 

prior visits was recruited for additional MR imaging.  
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98 subjects were recruited for baseline neuroimaging with an age range between 58-81 

(mean = 68 ± 5.67 S.D.) years old. There were 30 male and 68 female participants with average 

ages of 67.53 ± 5.44 S.D. and 68.84 ± 5.75 S.D., respectively. Follow-up neuroimaging planned 

for 1 year was delayed by the COVID-19 pandemic and ended up occurring approximately 2 

years later. Many of the elderly subjects declined the follow-up neuroimaging study due to 

ongoing COVID-related concerns. A total of 41 subjects were successfully recruited for follow-

up scans with an age range of 61-81 (mean = 69 ± 5.00 S.D.) years old. This follow up group 

was composed of 16 male and 25 female participants with average ages of 68.19 ± 4.96 S.D. and 

69.86 ± 5.02 S.D., respectively. 

 

Image Acquisition 

 

All subjects were scanned at the University of Virginia using a Siemens Prisma 3T MRI 

with a 32-channel head coil. T1-weighted images were acquired using the ADNI3 designed MP-

RAGE sequence299 with an isotropic voxel size 1.0×1.0×1.0mm3, TE=2980ms and TR=2300ms 

with full dimensions of a 208×240×256 viewing window. Diffusion-weighted images were 

acquired with an isotropic voxel size of 1.7×1.7×1.7mm3, TE=70ms and TR=2900ms; using a 

multi-shell protocol, 10 b=0 images and 64 gradient directions were collected at both 

b=1500s/mm2 and b=3000s/mm2. An identical imaging protocol was used at both baseline and 

follow-up. 

 

Preprocessing 

 

Each diffusion image set was analyzed using SS3T-CSD10,90 implemented in the open 

source software MRtrix and MRtrix3Tissue12,90. Several preprocessing steps utilized FSL104,105. 

Diffusion images were denoised107, corrected for Gibbs ringing109, susceptibility distortions104, 

subject motion116, and eddy currents110. Skull-stripping was performed and volumetric data was 

gathered by analyzing each subject’s T1 image from each visit using the ‘recon-all’ pipeline in 

Freesurfer version 6.0.1231. All images were upsampled to 1.3⨉1.3⨉1.3mm and a whole brain 

mask was derived by rigidly registering each subject’s skull-stripped T1 image from the 

appropriate scanning session to the average b=0 s/mm2 dMRI acquisition using ANTs120. 
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Response functions were generated88 from each tissue type (WM, GM, and CSF) and the white 

matter fiber orientation distribution (FOD) was then resolved at the voxel-wise level by 

processing the outermost b-value shell (b=3000s/mm2) using single-shell constrained spherical 

deconvolution, a technique to separate directional axonal signal from intracellular and 

extracellular isotropic diffusion90. Primarily for the purposes of visualization, a cohort-specific 

FOD template was generated from 20 subject’s WM FODs acquired from both baseline and 

follow-up for a total of 40 FOD images being used in template construction. Each subject was 

subsequently registered to this template using the individual WM FODs from each timepoint to 

warp tractography and signal fraction maps into a common space300. However, all calculations 

used in the analysis were derived from native, acquisition space images. 

 

Tractography 

 

Probabilistic tractography was performed on each subject’s diffusion images by applying 

the iFOD2 algorithm which propagates streamlines between voxels based on the direction and 

amplitude of the underlying WM FOD301. Seeding of streamlines was performed by randomly 

selecting voxels within the whole brain mask. Streamlines were seeded and generated until 

10,000,000 tracts were created that were each longer than 2.6mm without terminating. These 

streamlines were then pruned to 2,000,000 total tracts using spherical-deconvolution informed 

filtering of tractograms (SIFT), which ties the number of streamlines in each voxel to the 

magnitude of the underlying FOD302. This process matches the randomly generated streamlines 

to the underlying anatomically derived signal and prevents a biologically implausible number of 

tracts from traversing the same voxel. As all subjects provide the same number of total 

streamlines, the number of tracts inferences can be made in a between-subject or longitudinal 

manner.  

 

Diffusion Microstructure 

 

3T-CSD measurements of brain cellular microstructure were calculated directly from 

each subject’s FODs at each timepoint. 3T-CSD is a voxel-wise quantitative method that 

measures cellular microstructure within each voxel fitting into intracellular anisotropic (ICA, 
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WM-like), intracellular isotropic (ICI, GM-like), and extracellular isotropic (ECI, CSF-like/Free 

Water) compartments100. This approach allows for contributions from each cellular 

microstructure compartment to be calculated for each image in any defined ROI. The 

quantitative measurement of 3 different tissue compartments, the improvements to tractography 

by separating isotropic signal from anisotropic WM for tractography, and the specific ability to 

measure extracellular freely diffusing water (a potentially highly sensitive marker for neuronal 

degeneration during aging15). 

 

Identification of WMH 

 

Voxels composing WMH were identified through application of the ‘recon-all’ pipeline 

to each subject’s T1 images at each timepoint collected. Freesurfer identifies WMH via 

segmentation of WM voxels followed by a voxel-wise probabilistic local and intensity-related 

analysis informed by a library of manually segmented images231. While Freesurfer has been 

shown to systematically underestimate WMH volume when applied to T1 images, volume 

estimations were closely correlated with Fazekas score, a measure of WMH severity303. No 

FLAIR acquisition was collected during this study. Masks highlighting voxels containing WMH 

were rigidly transformed into the space of the respective diffusion image acquired during the 

same session using the previously generated ANTs rigid transform from the T1 to average b=0 

registration described previously120.   

 

Lesionometry 

 

Lesionometry was used to examine the relationship between WMH volume, cellular 

microstructure composition, and spatial positioning to whole brain structure. This recently 

developed technique was applied to generate subject- and timepoint-specific measures of ‘lesion-

load’278,279. This method examines microstructural metrics within voxels traversed by WM fiber 

bundles, and theoretically the axons they model, that also traverse WMH (Fig. 1). WMH masks 

generated by Freesurfer and registered to the diffusion space were used to filter tracts from the 

final whole brain tractogram after the processing pipeline described earlier. To reduce spurious 

individual tracts from being overrepresented in analysis a threshold was applied so that voxels 
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were only included in the final ROI if at least 10 separate tracts traversed both the voxel and a 

WMH. Volumetric and 3T-CSD measurements were then measured within each ROI from all 

subjects at both timepoints excluding voxels that were part of the original WMH mask so that no 

voxels were in both the lesionometric ROI and a WMH (for individual examples see Fig. 2). 

 

 
Figure 1: Flowchart demonstrating Lesionometry analysis pipeline, first described in 
Chamberland et al. (2020) and Winter et al. (2021). Subjects dMRI data is processed thorough 
the 3T-CSD microstructure pipeline and FODs are used to generate a whole brain tractogram. 
‘Lesions’ representing WMH are derived from T1-weighted images taken from the ‘recon-all’ 
processing pipeline in freesurfer. Voxels traversed by tracts that also traverse WMH lesions are 
included for final microstructure statistical analysis.  
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Figure 2: Illustration of subject-specific lesionometry ROIs in the whole-group template space 
from 3 example participants. Each subject in the study at each timepoint contributed a unique 
scan- and subject-specific ROI for analysis. ROIs were generated by filtering any ‘lesioned’ 
axonal tracts from the whole brain tractogram that passed through a voxel identified as being 
part of a WMH. This WMH-derived tractogram was then converted to a typical binary voxel ROI 
with the use of a low pass filter to only include voxels containing 10 or more tracts to ensure 
consistency. The volume of the ROI once the WMH volume was corrected for was not 
significantly different between baseline and follow-up (F1,36=0.0272, p=0.870 n.s.). 
 

Epigenetic Analysis 

 

For full description of the epigenetic protocol see supplementary methods. Briefly, 8.5 ml 

blood were drawn from each participant at the baseline visit and DNA was extracted and 

amplified with PCR before being assayed using the Illumina Infinium MethylationEPIC 

BeadChip according to manufacturer instruction. The R packages minfi and shinyMethyl were 

used for background subtraction, dye-bias normalization, removal of missing values, quality 

control, and to check for batch effects304–308. All samples passed Illumina quality controls as 

assessed using the ewastools R package309. Unnormalized betas were filtered to include CpGs 

specified by Horvath as necessary for calculation of various clocks282. The betas were uploaded 

to Horvath’s online DNA methylation age calculator (htpps://dnamage.genetics.ucla.edu), which 

provides measures of DNA methylation GrimAge280. AgeAccelGrim was calculated by 

regression of GrimAge onto subject age, providing a chronological age normed value of 

accelerated or decelerated mortality risk relative to the subject’s age at baseline. 

 

Statistical Analysis 

 

After AgeAccelGrim was calculated for each subject at baseline a general linear model 

was constructed using a planned set of covariates to test their association with GrimAge. Subject 

chronological age at baseline, sex, and total brain volume at baseline were initially tested for 

relationship with AgeAccelGrim.  Following this analysis for all imaging results unless 

otherwise noted, chronological age at scan acquisition, sex, and a volumetric component of either 

the whole brain or the subject- and scan-specific ROI were used as covariates.  
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For longitudinal results, a within-subjects ANOVA approach was used to specifically 

examine the 41 subjects scanned longitudinally, with controls for subject sex, age at baseline, 

and total brain volume at both timepoints when appropriate.  

 

Results 

 

AgeAccelGrim is associated with sex and brain volume 

 

As expected, there was no significant relationship between AgeAccelGrim and 

chronological age in the baseline sample (T4,94=-0.431, p=0.667 n.s.), interestingly however there 

was a highly significant relationship between AgeAccelGrim and sex (T4,94=-5.200, p<0.001) 

with female subjects typically having a lower AgeAccelGrim, particularly after 65 years of age 

which is to be expected given that sex is included in GrimAge calculation280. There was also a 

significant relationship between AgeAccelGrim and total brain volume (T4,94=-2.782, p<0.01). 

 

AgeAccelGrim is not associated with whole brain dMRI microstructure metrics 

 

Significance values that follow are for AgeAccelGrim as a predictor of the respective 

microstructural signal fraction. Whole brain microstructural composition was first assessed at 

baseline for relationships to AgeAccelGrim. There was no significant relationship between 

global ICI signal fraction (T5,93=1.353, p=0.179 n.s.), nor global ICA signal fraction (T5,93=-

0.298, p=0.766 n.s.), but there was a trend toward significance with global ECI signal fraction 

(T5,93=1.797, p=0.0755 n.s.) indicating that AgeAccelGrim may be indicating the presence of 

extracellular water in the aging brain (Fig. 3a).  

 

AgeAccelGrim predicts WMH size and microstructural composition at baseline 

 

Moving into subject specific analysis of WMH, 3T-CSD microstructure and volume were 

measured within each subjects’ WMH at baseline. Greater WMH volume was significantly 

predicted by increased AgeAccelGrim (T5,93=2.931, p<0.01) and was added as an additional 

volumetric control variable for the WMH microstructure model to account for variances in 
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WMH volume between subjects. All three microstructural tissue compartments averaged across 

the WMH had a significant relationship with AgeAccelGrim (ECI: T6,92=2.844, p<0.01; ICI: 

T6,92=2.741, p<0.01; ICA: T6,92=-3.140, p<0.01). For these models ECI and ICA had additional 

significant relationships with WMH volume (ECI: T6,92=5.537, p<0.001; ICA: T6,92=-2.494, 

p<0.05) while ICI did not have a significant relationship with WMH volume (ICI: T6,92=0.348, 

p=0.728 n.s.) suggesting that spatial location of the WMH plays a role in tissue composition but 

that AgeAccelGrim is able to predict ICI signal fraction, a potential marker for 

neuroinflammation, and increased ECI, a marker for neuronal degeneration and atrophy, 

occurring at the expense of ICA, or healthy axonal signal (Fig. 3b). 
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Figure 3: (A) Charts showing the relationship between whole brain (top row) and WMH (bottom 
row) 3T-CSD microstructure measurements (from left to right: ECI, ICI, and ICA signal 
fractions) and AgeAccelGrim at baseline. All three microstructural tissue compartments 
averaged across the whole brain did not have a significant relationship with AgeAccelGrim ECI: 
T6,93=1.797, p=0.076 n.s.; ICI: T6,93=1.353, p=0.179 n.s.; ICA: T6,93=-0.298, p=.767 n.s.). But 
when measured exclusively within the WMH all microstructure compartments had a significant 
relationship with AgeAccelGrim (ECI: T6,92=2.844, p<0.01; ICI: T6,92=2.741, p<0.01; ICA: 
T6,92=-3.140, p<0.01). (B) Image of an example subject with low AgeAccelGrim with voxels 
composing the WMH RGB color-coded based on the respective proportion of signal fraction 
composition (ECI in red, ICI in green, and ICA in blue). (C) Image of an example subject with 
high AgeAccelGrim with voxels composing the WMH colored using the same approach. The 
subject with high AgeAccelGrim shows characteristically elevated levels of ECI and ICI signal 
fraction throughout the area identified as belonging to a WMH while in the low AgeAccelGrim 
subject the WMH is still largely composed of ICA signal fraction, indicating that it’s composition 
is still similar to healthy nearby WM.  
 

AgeAccelGrim does not predict WMH size and microstructural composition longitudinally 

 

Looking longitudinally however AgeAccelGrim collected at baseline was less predictive 

of rates of changes in these metrics. As expected in an aging cohort total brain volume 

significantly declined between baseline and follow-up scans (F1,40=9.163, p<0.01), while WMH 

volume significantly increased (F1,40=7.688, p<0.01). For the microstructural metrics between 

baseline and follow-up whole brain ECI signal fraction significantly increased (F1,36=5.395, 

p<0.05), while significant decreases were observed in whole brain ICI signal fraction 

(F1,36=4.075, p<0.05) and no significant change was observed in ICA signal fraction (F1,36=1.776, 

p=0.189 n.s.). AgeAccelGrim was not significantly predictive of changes in total brain volume 

(F1,37=3.172, p=0.083 n.s.) (Fig. 4) nor was it predictive of any changes in whole brain cellular 

microstructure measurements (ECI: F1,36= 0.412, p=0.525 n.s.; ICI: F1,36=0.173, p=0.680 n.s.; 

ICA: F1,36=1.292, p=0.263 n.s.). Despite strong correlations in the baseline data AgeAccelGrim 

was also not predictive of changes in WMH volume (F1,36=2.377, p=0.131 n.s.) nor any 

microstructural composition measures (ECI: F1,36=1.738, p=0.195 n.s.; ICI: F1,36=0.141, p=0.709 

n.s.; ICA: F1,36=0.861, p=0.359 n.s.) (Fig. 5).  
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Figure 4: (A) Charts displaying the observed longitudinal change in total brain volume, WMH 
volume, lesion load ratio (WMH volume to lesionometry ROI volume), and the volume of the 
lesionometry ROI volume corrected for total brain volume, from left to right. Individual subjects 
are represented in each chart by points at both baseline and follow-up, and are colored 
according to AgeAccelGrim measured at baseline (Blue = low AgeAccelGrim (less than -2), Red 
= high AgeAccelGrim (greater than 2), Gray = AgeAccelGrim close to chronological age 
(between -2 and 2)). Longitudinally, AgeAccelGrim was not significantly predictive of changes in 
total brain volume (F1,37=3.172, p=0.083 n.s.) and was also not predictive of changes in WMH 
volume (F1,36=2.377, p=0.131 n.s.). AgeAccelGrim was also did not significantly predict the 
longitudinal change in size of the network passing through the WMH (F1,36=3.476, p=0.070 n.s.) 
but had a significant relationship with lesion load (F1,36=5.397, p<0.05). (B) Images displaying 
the overlapping locations included in the lesionometry ROIs. The baseline lesionometry ROIs in 
template space from each subject were divided into two groups depending on AgeAccelGrim, 
with the positive group having a value greater than 0 indicating accelerated aging and the 
negative group having a value lower than 0 indicating slowed aging. A voxel was included in 
that group’s mask if it was present in a majority (>50%) of subject’s lesionometry ROIs. Both 
groups masks are presented above with voxels unique to each colored respectively (red for 
positive and blue for negative) and voxels common to both colored in yellow. Positive 
AgeAccelGrim subjects were more likely to have affected tracts that extended into the thalamus 
and frontal lobe, while negative AgeAccelGrim subjects were more likely to have affected 
periventricular and cingulate tracts. 
 

 

AgeAccelGrim predicts baseline and longitudinal changes in microstructural composition in 

lesionometry ROIs 

 

The microstructure measurements taken from the lesionometry ROIs however, were able 

to be predicted by AgeAccelGrim both cross-sectionally at baseline and longitudinally. At 

baseline AgeAccelGrim was trending toward a significant positive relationship with the size of 

the network passing through the WMH (volume of lesionometry ROI; T5,93=1.976, p=0.0512) 

and was not significantly predictive of longitudinal change (F1,36=3.476, p=0.070 n.s.) (Fig. 4). 

The subsequent microstructural models are corrected for subject age at baseline, sex, and volume 

of the lesionometry ROI. At baseline AgeAccelGrim had a significantly positive relationship 

with ECI signal fraction in the lesionometric ROI (T5,93=2.586, p<0.05), a significantly positive 

relationship with ICI signal fraction (T5,93=2.073, p<0.05), and a significantly negative 

relationship with ICA signal fraction (T5,93=-2.299, p<0.05). Longitudinally AgeAccelGrim was 

able to significantly predict the change in microstructural measurements in the lesionometry ROI 

between baseline and follow-up for each signal fraction compartment (Fig. 5), with a positive 
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relationship between AgeAccelGrim and ECI signal fraction (F1,36=11.11, p<0.01), a positive 

relationship between AgeAccelGrim and ICI signal fraction (F1,36=4.352, p<0.05), and a negative 

relationship between AgeAccelGrim and ICA signal fraction (F1,36=6.243, p<0.05). This is 

particularly interesting because when AgeAccelGrim is removed and the lesionometry ROIs are 

exclusively tested for longitudinal change between scanning sessions (including sex, age at 

baseline, and ROI volume as controls identical to before) there was only a significant difference 

between baseline and follow-up for the ECI signal fraction (F1,37=8.846, p<0.01) and there was 

no significant difference between baseline and follow-up for the ICI signal fraction (F1,37=1.143, 

p=0.291 n.s.) nor for the ICA signal fraction (F1,37=4.051, p=0.051 n.s.). Finally, AgeAccelGrim 

had a significantly positive relationship with lesion load, a ratio between the volume of each 

subject’s WMH and the volume of the lesionometry ROI (which does not include the WMH) at 

baseline (T5,93=4.245, p<0.001) and longitudinally (F1,36=5.397, p<0.05) (Fig. 4). 
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Figure 5: Charts displaying longitudinal 3T-CSD microstructural results from both WMH and 
lesionometry ROIs from each of the 3 signal fraction compartments (ECI, ICI, and ICA, 
arranged left to right). Individual subjects are colored according to AgeAccelGrim measured at 
baseline (Blue = low AgeAccelGrim (less than -2), Red = high AgeAccelGrim (greater than 2), 
Gray = AgeAccelGrim close to chronological age (between -2 and 2)). Despite strong 
correlations in the baseline data AgeAccelGrim was not predictive of longitudinal changes in 
any WMH microstructural composition measures (ECI: F1,36=1.738, p=0.195 n.s.; ICI: 
F1,36=0.141, p=0.709 n.s.; ICA: F1,36=0.861, p=0.359 n.s.). However AgeAccelGrim in the 
lesionometry ROI was able to significantly predict longitudinal change in each signal fraction 
compartment, with a positive relationship between AgeAccelGrim and ECI signal fraction 
(F1,36=11.11, p<0.01), a positive relationship between AgeAccelGrim and ICI signal fraction 
(F1,36=4.353, p<0.05), and a negative relationship between AgeAccelGrim and ICA signal 
fraction (F1,36=6.243, p<0.05). 
 

Discussion 

 

By examining markers of SVD using advanced measures of diffusion microstructure in a 

subject-specific lesionometry approach this study has established a connection between a blood-

based measure of mortality risk and neuronal damage. AgeAccelGrim was significantly 

correlated with WMH volume, supporting previous findings from other groups16 and was 

significantly correlated with WMH microstructural composition. To date, this study is the first to 

demonstrate an association between accelerated epigenetic age derived from peripheral blood 

and brain cellular microstructure293–295. Specifically, AgeAccelGrim was associated with higher 

WMH ECI or extracellular free water signal fraction, higher ICI signal fraction, and lower ICA 

or axonal signal fraction (which in healthy WM areas can be typically observed at values 

exceeding 90-95% signal fraction). This either indicates that cellular microstructure in WMH 

areas was more heavily damaged in individuals with accelerated epigenetic age, or that that 

WMH in these subjects was located in a specific spatial pariventricular arrangement91 or a 

combination of both (Fig. 3b&c, Fig. 4b).  

 

Analyzing the axonal bundles that passed through the WMH showed that AgeAccelGrim 

was able to predict the size of the lesionometric ROI, an increased lesion burden, and increased 

degeneration within the lesionometric ROI. Many of these differences were not observable from 

a straightforward longitudinal perspective, highlighting the utility in using epigenetic clocks to 

measure age acceleration. The subject-specific lesionometric approach combined with 3T-CSD 
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analysis of cellular microstructure was able to isolate areas of the brain vulnerable to SVD-

related damage. This further reinforced by the lack of longitudinal association between 

accelerated DNAm and whole brain microstructural measurements. It is necessary to narrowly 

define localized regions of the brain where vascular damage is likely occurring at an individual 

level. Related to this idea is the observed significant relationship between AgeAccelGrim and 

increased ICI signal fraction. When 3T-CSD is applied to the brain the ICI signal fraction (also 

referred to as the GM-like signal fraction) predominates in the cortex. Observing increased ICI 

signal fraction, especially within the WM skeleton where the WMH and lesionometry ROIs are 

located, is likely indicative of increased neuroinflammation or activated glial cells in response to 

injury310. The increased ECI signal fraction however, is straightforwardly interpretable as either 

edema or the absence of cellular tissue as a result of axonal degeneration. Together these 

longitudinal microstructure results indicate that AgeAccelGrim can predict subsequent neuronal 

deterioration over multiple years. This suggests that GrimAge may be a useful marker for 

positioning an individual on the trajectory of age-related neuronal decline, mediated via 

cardiovascular factors and SVD.  

 

This study did not address the potential change in GrimAge calculation between baseline 

and follow-up, which is a missed opportunity to evaluate how changes in the metric relate to 

outcomes. It is possible that participants could have undertaken a major lifestyle change that 

would have altered their AgeAccelGrim, such as beginning a prolific smoking habit, between the 

baseline and follow-up recruitment. However, the relatively short period of time would likely not 

be long enough to impart significant change. Follow-up work to this study will aim to tie 

performance on cognitive tasks performed during assessment to epigenetic, cardiovascular, and 

diffusion microstructure metrics to evaluate the behavioral output of changed observed here. 

Further refinement of the GrimAge clock could include different combinations of plasma-

proteins in order to discern which proteins are primarily driving observed changed in brain 

microstructure instead of general mortality.  

 

The degree to which these results are based in WMH suggests a cardiovascular 

connection via SVD between the epigenetic clock estimates provided by AgeAccelGrim and 

brain cellular microstructure. While GrimAge has generally been shown to be highly predictive 
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of the development of several cardiovascular health related pathologies such as time-to-coronary 

heart disease, congestive heart failure, hypertension, type 2 diabetes, and physical functioning280, 

it is still unknown exactly which features of the cardiovascular system drive this change and 

contribute to the results seen in this study. Several other studies have found that GrimAge is 

related to heart failure311 and composite measures of whole cardiovascular health including diet, 

smoking, physical activity body mass index, blood pressure, total cholesterol, and blood glucose 
312 but physiological measures of brain cardiovascular health have not been clearly associated 

with GrimAge313. WMH volume has previously been used as a biomarker for SVD severity286 

and ECI signal fraction analogues such as free water have been established as a marker for 

cerebral SVD314. These studies suggest that the results presented in this study indicate that 

AgeAccelGrim may be a biomarker for SVD-related brain injury and degeneration.  

 

This study has provided evidence that a blood-based epigenetic marker of age 

acceleration can predict the degenerative effects of SVD in the brain. AgeAccelGrim was able to 

predict the volume and composition of WMH as well as widespread diffusion microstructure 

signatures of neuronal decline in a subject-specific manner.  
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Supplementary Methods 

 

Epigenetic Age  

 

Eight and a half milliliters of whole blood were drawn into a PAXgene Blood DNA Tube 

(PreAnalytiX, Hombrechtikon, Switzerland). Samples were stored at 20°C for short-term storage 

(up to 3 months) then transferred to -80°C for long-term storage. DNA was extracted using the 

PAXgene Blood DNA kit (PreAnalytiX, Hombrechtikon, Switzerland) according to 

manufacturer instructions. DNA concentration was determined by Quant-iT™ PicoGreen® 

dsDNA reagent (Thermofisher Scientific, Waltham, MA, USA) per manufacturers instruction. 

Florescence was detected using a Tecan Infinite M200 Pro microplate reader (Tecan, 

Switzerland). 500 ng of DNA was bisulfite treated using a Zymo EZ DNA Methylation kit 

(Zymo Research, Irvine, CA) using PCR conditions for Illumina's Infinium Methylation assay 

(95°C for 30 seconds, 50°C for 60 minutes×16 cycles). DNA methylation was assayed using the 

Illumina Infinium MethylationEPIC BeadChips. Briefly, a total of 4μL of bisulfite converted 

DNA was hybridized to Illumina BeadChips using the manufacturer's protocols. Samples were 

denatured and amplified overnight for 20 to 24 hours. Fragmentation, precipitation, and 

resuspension of the samples followed overnight incubation, before hybridization to EPIC 

BeadChips for 16 to 24 hours. BeadChips were then washed to remove any unhybridized DNA 

and labeled with nucleotides to extend the primers to the DNA sample. Following the Infinium 

HD Methylation protocol, the BeadChips were imaged using the Illumina iScan system 

(Illumina). 

 

Raw .idat files were read and preprocessed using the minfi R package304,306. The data set 

was preprocessed using noob for background subtraction and dye-bias normalization. All 

methylation values with detection P>0.01 were set to missing (median sample: 765 probes, 

range: 319 to 4453), and probes with >1% missing values (n=6,663) were removed from further 

analysis. All samples were checked and confirmed to ensure that predicted sex matched reported 

sex. Additionally, samples were checked for excessive missing data (>5%) and unusual cell 

mixture estimates, which was estimated using the Houseman method as implemented in 

minfi307,308. All samples passed these quality controls. Principal components analysis, as 
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implemented in the shinyMethyl R package, was used to examine batch effects 305. The first 

seven principal components were examined using plots and potential batch effects were tested 

using linear models. Principal components 3 and 6, which account for 2.38% and 1.65% of total 

variance respectively, were associated with position on the array (PC3: F(7, 100) = 6.668, p = 1.77e-

6, adjusted R2 = 0.271; PC6: F(7, 100) = 2.328, p = 0.030, adjusted R2 = 0.080). Principal 

components 1, 4, and 5, which account for 3.63%, 1.89%, and 1.77% of the total variance were 

associated with bisulfite conversion plate (PC1: F(1, 106) = 9.918, p = 0.002, adjusted R2 = 0.077; 

PC4: F(1, 100) = 34.04, p = 5.932e-8, adjusted R2 = 0.236; PC5: F(1, 100) = 31.07, p = 1.91e-7, 

adjusted R2 = 0.219). Principal components 4 and 5, were associated with array (PC4: F(13, 94) = 

4.332, p = 1.14e-5, adjusted R2 = 0.288; PC5: F(13, 94) = 4.229, p = 1.06e-5, adjusted R2 = 0.282). 

Bisulfite conversion plate and array number were associated with each other, as samples on the 

same array originated from the same bisulfite conversion plate. Because samples were 

randomized across plates and arrays, and proportions of variance explained by associated 

principle components were low, no batch correction method was used. The ewastools R package 

was used to assess Illumina quality control metrics and call genotypes and donor IDs to ensure 

the identity of repeated samples from the same individual309.  All samples passed Illumina quality 

controls. 

 

To determine assay variability, we included one set of five technical replicates and an 

additional three sets of two technical replicates. After quality control filters and normalization 

procedures were applied, the 5,000 CpGs with the most variable M values were used as input for 

calculating Pearson’s correlation coefficients among all pairwise combinations of samples. 

Pearson’s correlation of unrelated samples (different individuals) were below 0.8. Pearson’s 

while correlations of technical replicates ranged from 0.988-0.994, indicating high agreement 

between technical replicates. 

 

Unnormalized betas were filtered to include CpGs specified by Horvath as necessary for 

calculation of various clocks. The betas were uploaded to Horvath’s online DNA methylation 

age calculator (htpps://dnamage.genetics.ucla.edu), which provides measures of Horvath’s multi-

tissue age estimator282, DNA methylation GrimAge280, and cell type abundance. A sample 

annotation file was included. The options to normalize data and apply advanced analysis were 
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selected. Technical replicates were used to determine measurement error of DNAmAge, the 

output of Horvath’s multi-tissue age estimator. The absolute difference of DNAmAge between 

technical replicate pairs was taken, as was the highest absolute difference in the set of five 

technical replicates. The median of the absolute difference was 2.02 years (range: 0.44-5.73 

years).
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Conclusion 

 

This completed dissertation expands the field of neuroimaging by creating a novel, 

reproducible, and reliable, quantitative technique for the estimation of brain cellular 

microstructure from diffusion MRI. Termed 3T-CSD, this dissertation has extensively tested 3T-

CSD metrics under a variety of research and clinical conditions and MR acquisition parameters 

in order to confidently present a ready to use method applicable in traditional research studies. In 

the second chapter of this dissertation 3T-CSD was applied to the study of the human lifespan, 

deploying the method both in large ‘big data’ cohorts of thousands of individuals and in a 

subject-specific manner. Studies covered the range of the lifespan and characterized neuronal 

development and decline at the microstructural level. By relating observed changes in neuronal 

microstructure to biological outputs in developing and aging cohorts this dissertation connects 

observable phenotypes to neurology and advances scientific understanding of the brain. 

 

To summarize, the various components of this project have addressed the following: 

  

Aim 1 

 

Study 1a: Evaluated a number of acquisition factors and their effect on output 

extracellular free water signal fraction measurements. This highlighted components of the 

acquisition that biased output measurements as well as suggested that smaller ROIs were more 

vulnerable to these effects. Deploying SS3T-CSD reduced the relationship between smaller ROIs 

and acquisition factors so that it was no longer significant.  

 

Study 1b: Further explored the differences between single- and multi-shell CSD 

algorithms, and found that SS3T-CSD was more able to differentiate between subregions of the 

hippocampus based on 3T-CSD microstructure profiles.  

 

Study 1c: Established the reliability and stability of 3T-CSD microstructure profiles in 

both immediate scan-rescan conditions, with 2 weeks between scan rescan, and with 3-4 months 
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between scan and rescan. All tissue signal fraction compartments showed excellent reliability 

across a number of assessment metrics though there was a slight decline in the 3-4 month group 

especially in ICI (GM-like) and ICA (WM-like) signal fraction measurements.  

 

Study 1d: Investigated reliability of 3T-CSD measurements when taken at multiple 

scanning sites. Measurements were taken from 212 ROIs across the cortex and WM the large 

majority of ROIs were not significantly different when measured at different sites vs when 

measured repeatedly at a single site. This supports the use of 3T-CSD in cohorts collected across 

multiple scanning sites such as ABCD.  

 

Study 1e: Described a novel means to register 3T-CSD signal fraction maps to stereotaxic 

space for subsequent measurement or parcellation. Using underlying FOD information from WM 

axon bundle orientation alongside an FOD template derived from the NTU-DSI-122 template 

provided superior registration to intensity-based methods.  

 

Aim 2 

 

Study 2a: Described 3T-CSD measurements across the brain and lifespan in a number of 

ROIs. Demonstrated a general trend where ECI increased throughout the lifespan, ICI decreased, 

and ICA had an initial increase until middle age then a steady decrease into advanced age. Some 

degree of hemispheric laterality was also generally present in most ROIs examined.  

 

Study 2b: Examined the relationship between 3T-CSD measurements in deep white 

matter ROIs and pubertal development in a cross-sectional group of 4752 adolescents. An 

anisotropic diffusion signal fraction was found to have a negative correlation, while an 

intracellular isotropic diffusion signal fraction had a positive correlation with pubertal 

development across the majority of axonal ROIs. These results provide evidence for complex 

microstructural changes in brain development within the white matter skeleton. 

 

Study 2c: Used a subject-specific approach applying lesionometry to the study of WMH 

for the first time to compare 3T-CSD microstructure output with GrimAge, an epigenetic marker 
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for mortality risk. GrimAge is correlates with 12 plasma-proteins and may be sensitive to 

cardiovascular health. Using WMH as a symptom of SVD, we found a relationship between an 

age-adjusted version of GrimAge and 3T-CSD measurements both within WMH and in areas 

across the brain where axonal tracts also traversed WMH areas. GrimAge was associated with 

increased ECI signal fraction, increased ICI signal fraction, and decreased ICA signal fraction. 

This is the first study to demonstrate a connection between GrimAge and brain cellular 

microstructure, as well as suggesting GrimAge as a proxy for the degenerative effects of SVD on 

the brain.  

 

The studies performed in Chapter 1 of this dissertation describe the technical 

development and testing of the novel 3T-CSD model for quantitatively assessing brain 

microstructure. The ability of 3T-CSD to measure brain microstructure in both clinical and 

experimental situations was examined, as was the ability of different CSD algorithms to 

discriminate between anatomical structures. Reliability of ICA, ICI, and ECI tissue compartment 

signal fractions were assessed both cross-sectionally between scanning locations and 

longitudinally in the same scanning location. Finally, a novel method of registering the signal 

fraction maps to a common space was developed and demonstrated with comparisons to previous 

best practices. This technical development was followed by 3 novel applications: First to study 

3T-CSD metrics across the lifespan similar to volumetric MRI lifespan studies, showing that 

there was significant variation across the lifespan and between hemispheres. Secondly during 

development, to demonstrate that 3T-CSD signal fractions are sensitive to pubertal development. 

Lastly during aging, to establish a relationship between cardiovascular health and accelerated 

epigenetic aging that drives subject-specific patterns of neuronal degeneration and decline. 

Together the studies in this dissertation establish 3T-CSD as an effective tool to measure brain 

cellular microstructure throughout development and aging. These studies provide an analysis 

pipeline and strategy for continued application of 3T-CSD signal fractions in lifespan studies, as 

well as the possibility to expand use into the study of pathology.  
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