
Algorithmic Fairness in Graph Machine
Learning: Explanation, Optimization, and

Certification

YUSHUN DONG

Ph.D. Dissertation

Advisor: Dr. Jundong Li

Doctoral Committee:
Dr. Cong Shen, Chair

Dr. Jundong Li
Dr. Nikolaos D. Sidiropoulos

Dr. Hanghang Tong
Dr. Aidong Zhang

A report submitted in fulfillment of the requirements for
the Ph.D. Dissertation

Department of Electrical and Computer Engineering

University of Virginia

June 2024



Abstract

Network data is ubiquitous across diverse domains such as credit scoring, social networking,
recommendation systems, and medical diagnosis. In this landscape, graph machine learning
algorithms, e.g., Graph Neural Networks (GNNs), have emerged as powerful tools for model-
ing such data and performing predictive tasks. However, despite the effectiveness of existing
graph machine learning algorithms, they usually bear the problem of exhibiting bias in the
prediction results. This is particularly alarming under high-stakes decision-making contexts,
since these algorithms could play pivotal roles and influence life-altering choices for involved
individuals. Consequently, it becomes paramount to delve into the root causes of such biases
and improve the level of fairness, thereby enhancing the trustworthiness of these algorithms.

Nevertheless, addressing such a problem is non-trivial, and a plethora of unresolved questions
loom large. For example, why does bias arise in graph machine learning? How to quantitat-
ively measure the exhibited bias under different notions? How can we mitigate these biases,
ensuring fair outcomes when these algorithms guide critical decisions? How to robustify the
fairness level of graph machine learning algorithms against potential malicious attacks? How
to remove the sensitive information that may lead to bias when it has been encoded in the
graph machine learning algorithms in the training stage? It is necessary to properly answer
these questions to ensure the trustworthiness of graph machine learning algorithms deployed
in real-world applications. However, despite the significance of the algorithmic bias issue, the
corresponding study remains at an early stage.

To answer the questions above, my Ph.D. dissertation mainly contributes to the advancement
of graph machine learning through a fairness lens. Specifically, this dissertation mainly
focuses on three research themes, including algorithmic fairness explanation in graph machine
learning, algorithmic fairness optimization in graph machine learning, and fairness certific-
ation in graph machine learning. In the first theme, we present qualitative and quantitative
analysis to understand why bias arises and where the bias comes from in graph machine
learning. In the second theme, we present principled frameworks and strategies to mitigate
the bias exhibited in graph machine learning algorithms, where multiple fairness notions
are taken into consideration. In the third theme, we propose theoretical certification on
graph machine learning algorithms to achieve defense on the level of fairness and removal of
sensitive information that may bring bias from the model to achieve protection for privacy.

With these research themes, this dissertation aims to enhance the understanding of fair
decision-making in the realm of graph machine learning and paves the way for future advances.
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CHAPTER 1

Introduction

Background. Network data is ubiquitous over a wide range of applications, e.g., finan-
cial fraud detection [193, 159] and social recommendation [64], due to its proficiency of
representing pervasive relational data. To gain deeper understanding of such data, various
graph machine learning models, e.g., Graph Neural Networks (GNNs), have become popular
over the years [111, 74]. Nevertheless, most existing graph machine learning models do
not consider algorithmic fairness. Correspondingly, these models often yield results with
discrimination towards specific demographic subgroups described by certain sensitive at-
tributes [47, 37], e.g., gender and race. For example, in financial applications, such as loan
approval prediction for bank clients [193, 216], different clients form a network based on
their transactions, and the records of clients form their features. Here, the prediction goal is to
classify whether a client will be approved for a loan, where GNNs have demonstrated superior
performance. However, GNNs usually deliver biased classification results [3], e.g., rejecting
a loan request only because the applicant belongs to an underprivileged group. Note that
graph machine learning models have been widely deoplyed in various real-world applications,
including high-stake decision-making scenarios such as healthcare. Therefore, the decisions
made by those graph machine learning models could be life-changing for those involved
individuals, and biased predictions could lead to serious consequences. It is thus critical to
perform comprehensive study on the algorithmic fairness of graph machine learning for the
trustworthiness of the deployed models.

Challenges. The primary goal of my research is to achieve trustworthy graph machine learning
models from the perspective of algorithmic fairness. To achieve this goal, various questions
remain to be answered. For example, why bias arises in graph machine learning? How to avoid
biased decisions in scenarios where graph machine learning algorithms are deployed to help
decision-making? How to robustify the fairness level of graph machine learning algorithms
against potential malicious attacks? We note that this remains a daunting task due to the
following three challenges. (C1): Challenge of Fairness Explanation. Most graph machine
learning models are black-box, which makes them lack explanability. Although there are
existing works explaining certain popular graph machine learning models (e.g., Graph Neural
Networks), most of them only focus on given specific classification results, ignoring the level
of fairness over the whole population. (C2): Challenge of Fairness Optimization. There are
already a plethora of existing works focusing on debiasing traditional machine learning models
on i.i.d. data. However, compared with them, debiasing graph machine learning models is
more difficult. This is because most existing graph machine learning models are equipped
with mechanisms that effectively learns the information from the dependency between nodes
in the network data, e.g., the message-passing mechanism in GNNs. At the same time,
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FIGURE 1.1. An overview of the research themes covered in this dissertation.

however, the bias originated from different nodes could also influence each other through
the network topology, which makes debiasing more difficult to achieve. (C3): Challenge of
Fairness Certification. Different from empirical debiasing, theoretical certification for the
fairness of graph learning models can provide a way to guarantee trustworthy deployment.
For example, by simply injecting several adversarial links in the network data, an attacker can
make GNNs deliver advantaged predictions for a specific subgroup (e.g., individuals with a
certain gender or nationality) while damaging the interest of others [83]. The defense on such
attacks can be guaranteed if the fairness levels of the graph learning models are certified. As
another example, biased information may be encoded in graph learning models during the
training process. If the removal of such information can be guaranteed, the model can avoid
biased outcomes that arise from such information. Nevertheless, such certification is difficult
to achieve due to the randomness of optimization (e.g., the randomly initiated parameters)
and the complex operations built in the graph learning models.

Dissertation Contributions. To tackle the challenges above (C1, C2, and C3), my research
works mainly cover three research themes, including algorithmic fairness explanation in graph
machine learning, algorithmic fairness optimization in graph machine learning, and fairness
certification in graph machine learning. We present an overview in Fig. 1.1. Specifically,
to tackle challenge C1, we introduce two research works that perform interpretation for the
bias exhibited by graph learning models from the node and the graph structure perspective,
respectively. To tackle challenge C2, we present three research works which aims to mitigate
the exhibited bias of graph machine learning models, such that a satisfying balance can be
achieved between the model utility and fairness. To tackle challenge C3, we introduce two
works that guarantee the fairness level of the model and the removal of certain sensitive
information from the model, respectively.

Dissertation Organizations. The remainder of this dissertation is organized as follows. We
first review related work in Chapter 2. In Chapter 3, we introduce two research works that
perform interpretation for the fairness of graph machine learning algorithms. In Chapter
4, we present three research works that achieve bias mitigation for graph machine learning
algorithms. Chapter 5 introduces two research works that achieve certification on top of graph
machine learning models to secure fairness levels and achieve information removal. Finally,
in Chapter 6, we introduce the conclusion and several potential future directions in this area.
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CHAPTER 2

Related Works

2.1 Explaining Graph Machine Learning Models

Among existing graph machine learning models, GNNs are among the most widely studied
models in terms of explanation due to its superior performance in various network-based tasks.
Generally, existing GNN explanation approaches can be divided into data-level approaches
and model-level ones [229]. For data-level approaches, the explanation models identify critical
components in the input network data of GNNs, e.g., node features or edges. For example,
squared gradient values are regarded as the importance scores of different input features in
the node classification task [7]; interpretable surrogate models are leveraged to approximate
the prediction of a certain GNN model, where the explanations from the surrogate model
can be regarded as the explanation for the corresponding GNN prediction [81, 191]. Another
popular approach to identify important components of the input network data is to make
perturbations on the input network, then observe the corresponding change in the output. The
basic rationale is that if small perturbations lead to dramatic changes in the GNN prediction,
then what has been perturbed is regarded as critical for the GNN prediction [228, 170, 197].
However, despite the significance in explaining GNNs, the corresponding study remains
scarce. To provide model-level explanations for GNNs, graph generation can be leveraged to
maximize the prediction of a GNN regarding a specific prediction (e.g., the probability of a
class in graph classification) [230]. If the prediction probability of GNN regarding a specific
prediction result can be maximized, then the generated input graph can be regarded as the
explanation for this GNN that includes critical graph patterns. Note that most approaches
above are designed to explain any specific prediction of the GNNs, while explaining how
fairness arises is ignored. To handle such a problem, Dong et al. proposed to explain the
exhibited bias at both data and model level. At the data level, a novel framework is proposed
to characterize the edges that contribute to the fairness and bias the most [48], through which
the exhibited bias can be attributed to each training node. At the model level, explanation
strategies are proposed from the perspective of the GNN optimization [51], where the bias in
GNNs is attributed to the labeled training nodes via influence function.

2.2 Debiasing Graph Machine Learning Models

Efforts have been made to mitigate bias exhibited by graph machine learning models, where
these works can be broadly categorized into either focusing on group fairness or individual
fairness. One of the pioneering methods employed to ensure group fairness is adversarial
learning. This technique plays a min-max game between the generator and the discriminator.
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If the learned node embeddings from the generator are unbiased, it then becomes difficult
for the discriminator to differentiate. This indicates that the model’s outputs are more fair
across different demographic subgroups. Such an approach has been extensively discussed in
studies such as those by Bose et al. [13] and by Dai et al. [37]. Debiasing with adversarial
learning can also be achieved in a pre-processing manner, where the debiased network
data can then be adopted by different GNNs. For example, Dong et al. [47] proposed a
framework based on adversarial learning to pre-process the network data, such that the
bias exhibited during the propagation of node attributes is mitigated. Another approach
towards achieving group fairness is rebalancing. Such a method mainly aims to ensure any
demographic subgroup should not be under-represented. For instance, Rahman et al. [162]
proposed to mitigate bias by rebalancing the appearance rate of minority groups during
random walks. By ensuring that minority groups appear more frequently during these walks,
the model can be trained in a manner that doesn’t marginalize these demographic subgroups.
Other commonly used approaches include regularization [240, 3], edge re-wiring [47], and
orthogonal projection [147].

Compared with the vast amount of works on group fairness, only few works promote individual
fairness for graph machine learning models. Dwork et al. [58] first proposed the definition of
individual fairness: similar individuals should be treated similarly. Here Lipschitz condition
is utilized as the distance constraint for instance pairs between the input and outcome of
the decision-making model. In graph machine learning, Kang et al. [104] first propose
to systematically debias multiple graph mining algorithms based on individual fairness.
Specifically, individual fairness is fulfilled by deriving an individual fairness loss on graph
datasets and reduce it before, during, and after training of the graph mining model. In addition,
individual fairness is also defined and optimized from a ranking perspective, such that this
fairness notion can naturally calibrated across different datasets and applications. For example,
Dong et al. [46] treat optimization of individual fairness in GNNs as a ranking problem, which
helps to bypass the limitation of Lipschitz condition.

2.3 Securing Graph Machine Learning Models

Achieving certification serves as a key strategy to secure the graph machine learning mod-
els in different perspectives. In particular, here we mainly focus on two perspectives of
securing graph machine learning models, including securing the performance and privacy
of graph machine learning models with certification. In terms of securing the performance,
existing works are categorized into five mainstreams, namely adversarial training, graph data
purification, perturbation detection, adaptive information aggregation, and certified defense.
Adversarial training aims to inject adversarial examples (e.g., edges) during training, such that
the GNN tends to yield correct predictions for adversarial examples during inference [220,
41, 198]. Graph data purification also works during training, where graph data is purified
during learning to weaken the influence of adversarial examples [110]. Perturbation detec-
tion is mostly applied in the pre-processing stage, where adversarial edges or nodes can be
identified before training [223]. Adaptive information aggregation aims to learn personalized
aggregation weights for edges and nodes, such that adversarial examples can be excluded
from message passing. Different from all approaches above, certified defense aims to secure
the model theoretically, such that attackers cannot find any adversary [171, 192, 10, 89].
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However, most existing certified defense approaches only secure the prediction for a specific
data point (e.g., a node in node classification). We note that the fairness levels of graph
learning models has also been proved to be vulnerable to adversarial attacks [83], while most
existing works can hardly be adapted. In fact, the fairness levels of the model predictions are
influenced by all inference results under most commonly used fairness notions (e.g., statistical
parity [83]), which makes this task more challenging. Different from other existing works,
Dong et al. proposed to secure the level of fairness for GNNs [49] based on randomized
smoothing [33], which took the first step to achieve fairness certification for various types of
GNNs. In addition, securing GNNs in terms of the privacy and other sensitive information of
the involved individuals (e.g., their gender or race) is also critical. For example, GNNs have
been found to be vulnerable to privacy attacks and thus could leak sensitive information of
the involved individuals [146]. In terms of securing the privacy of graph machine learning
models, common approaches can be divided into three mainstreams, including the approaches
based on differential privacy, federated learning, and adversarial learning [40]. Differential
privacy provides theoretical guarantee on the privacy security by adding randomized noise to
the training network data [217]; federated learning mainly aims to achieve data storage in a
decentralized manner to protect sensitive information [215]; adversarial learning is commonly
utilized to exclude certain sensitive information from the learned network embeddings [123].
Correspondingly, the excluded sensitive information cannot be inferred by malicious attackers.
However, we note that in real-world applications, it is also necessary to remove certain inform-
ation from an optimized graph learning model once the consent of using certain information
has been withdrawn, i.e., unlearn such information from the model. Here, information removal
not only serves as a critical approach for privacy protection, but also facilitates the level
of fairness when such removed information brings bias. Several recent studies have taken
early steps to achieve certified unlearning for GNNs [209, 30]. However, these works are not
flexible enough to handle different types of unlearning requests, nor can they be generalized
to different GNNs. Different from existing works, Dong et al. proposed a flexible unlearning
framework for GNNs that can handle different common types of unlearning requests and be
generalized to different types of GNNs to achieve information removal [53].
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CHAPTER 3

Fairness Explanation for Graph Machine Learning

3.1 Interpreting Unfairness in Graph Neural Networks via
Training Node Attribution

3.1.1 Introduction

Graph data is pervasive among a plethora of realms, e.g., financial fraud detection [193,
159, 28], social recommendation [64, 178, 72], and chemical reaction prediction [45, 175,
117]. As one of the state-of-the-art approaches to handle graph data, Graph Neural Networks
(GNNs) have been attracting increasing attention [111, 74, 188]. Over the years, various
graph analytical tasks have benefited from GNNs, where node classification is among the
most widely studied ones [111, 205, 214]. Nevertheless, in node classification, GNNs often
yield results with discrimination towards specific demographic subgroups described by certain
sensitive attributes [47, 37, 3, 237, 201], such as gender, race, and religion. In many high-stake
applications, critical decisions are made based on the classification results of GNNs [176],
e.g., crime forecasting [92], and the exhibited bias (i.e., unfairness) is destructive for the
involved individuals [50, 48, 177]. To tackle this problem, there has been a line of works
focusing on debiasing GNNs in node classification [47, 37, 3, 46, 131, 39]. Their goal is to
relieve the bias in GNN predictions on the test set, and here we refer to it as model bias.

In addition to debiasing GNNs, it is also critical to interpret how the model bias arises in
GNNs. This is because such an understanding not only helps to determine whether a specific
node should be involved in the training set, but also has much potential to guide the design
of GNN debiasing methods [47, 131, 125]. Nevertheless, most existing GNN interpretation
methods aim to understand how a prediction is made [229, 128] instead of other aspects such
as fairness. Consequently, although the graph data has been proved to be a significant source
of model bias [47, 125], existing works are unequipped to tackle this problem. In this paper,
we aim to address this problem at the instance (node) level. Specifically, given a GNN trained
for node classification, we aim to answer: “To what extent the GNN model bias is influenced
by the existence of a specific training node in this graph?”

Nevertheless, answering the above question is technically challenging. Essentially, there are
three main challenges: (1) Influence Quantification. To depict the influence of each training
node on the model bias of GNNs, the first and foremost challenge is to design a principled
fairness metric. A straightforward approach is to directly employ traditional fairness metrics
(e.g., ∆SP for Statistical Parity [58] and ∆EO for Equal Opportunity [77]). However, these
metrics are not applicable in our task. The reason is that most of them are computed based on
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the predicted labels, while a single training node can barely twist these predicted labels on test
data [236, 180]. Consequently, the influence of a single training node on the model bias would
be hard to capture. (2) Computation Efficiency. To compute the influence of each training
node on the model bias, a natural way is to re-train the GNN on a new graph with this specific
training node being deleted and observe how the exhibited model bias changes. However, such
a re-training process is prohibitively expensive. (3) Non-I.I.D. Characterization. Graph data
goes against the widely adopted i.i.d. assumption, as neighboring nodes are often dependent
on each other [135, 228]. Therefore, when a specific node is deleted from the graph, all its
neighbors could exert different influences on the model bias of GNN during training. Such
complex dependencies bring obstacles towards the node influence analysis on model bias.

To tackle the above challenges, in this paper, we propose a novel framework named BIND
(Biased traIning Node iDentification) to quantify and estimate the influence of each training
node on the model bias of GNNs. Specifically, to handle the first challenge, we propose
Probabilistic Distribution Disparity (PDD) as a principled strategy to quantify the model
bias. PDD directly quantifies the exhibited bias in the GNN probabilistic output instead of the
predicted labels. Therefore, PDD is with finer granularity and is more suitable for capturing
the influence of each specific training node compared with traditional fairness metrics. To
handle the second challenge, we propose an estimation algorithm for the node influence
on model bias, which avoids the re-training process and thus achieves better efficiency. To
tackle the third challenge, we also characterize the dependency between nodes based on
the analysis of the training loss for GNNs. Finally, experiments on real-world datasets
corroborate the effectiveness of BIND. Our contributions are mainly summarized as (1)
Problem Formulation. We formulate a novel problem of interpreting the bias exhibited
in GNNs through attributing to the influence of training nodes; (2) Metric and Algorithm
Design. We propose a novel framework BIND to quantify and efficiently estimate the
influence of each training node on the model bias of GNNs; (3) Experimental Evaluation.
We perform comprehensive experiments on real-world datasets to evaluate the effectiveness
of the proposed framework BIND.

3.1.2 Preliminaries

We first present the notations used in this paper. Then, we define the problem of interpreting
GNN unfairness through quantifying the influence of each specific training node.

Notations. In this paper, matrices, vectors, and scalars are represented with bold uppercase
letters (e.g., A), bold lowercase letters (e.g., x), and normal lowercase letters (e.g., n),
respectively. We denote an input graph as G = {V , E ,X}, where V = {v1, ..., vn} denotes
the node set, E ⊆ V × V represents the edge set, X = {x1, ...,xn} is the node attribute
vectors, and xi (1 ≤ i ≤ n) represents the attribute vector of node vi. We denote G−i as
the new graph with node vi being deleted from G. Additionally, we employ V ′ (V ′ ⊆ V)
to represent the training node set, where |V ′| = m. The nodes in graph G are mapped to
the output space with a trained GNN fW , where W represents the learnable parameters of
the GNN model. We denote the optimized parameters (i.e., the parameters after training) as
Ŵ . In node classification, the probabilistic classification output for the n nodes is denoted
as Ŷ = {ŷ1, ..., ŷn}, where ŷi ∈ Rc, and c is the number of classes. We use Y and S to
denote the ground truth label and the sensitive attribute for nodes, respectively. For an L-layer
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GNN fW , we define the subgraph up to L hops away centered on vi as its computation graph
(denoted as Gi = {Vi, Ei,Xi}). Here Vi, Ei, and Xi denote the set of nodes, edges, and node
attributes in Gi, respectively. It is worth noting that existing works have proven that Gi fully
determines the information fW utilizes to make the prediction of vi [228]. For node vi, we
use V ′

i to indicate the intersection between Vi and V ′, i.e., V ′
i = Vi ∩ V ′, which is the set of

training nodes in Gi.

Problem Statement. The problem of interpreting GNN unfairness is defined below.

PROBLEM 3.1.1. GNN Unfairness Interpretation. Given the graph G and a GNN model fŴ
trained based on G, we define the problem of interpreting GNN unfairness as to quantify the
influence of each training node to the unfairness exhibited in GNN predictions on the test set.

3.1.3 Methodology

In this section, we first briefly introduce GNNs for the node classification task. Then, to tackle
the challenge of Influence Quantification, we propose Probabilistic Distribution Disparity
(PDD) to measure model bias and define node influence on the bias in a trained GNN.
Furthermore, to tackle the challenge of Computation Efficiency, we design an algorithm to
estimate the node influence on the model bias. Finally, we introduce how to characterize the
dependency between nodes in influence estimation, which tackles the challenge of Non-I.I.D.
Characterization.

3.1.3.1 GNNs in Node Classification

In the node classification task, GNNs take the input graph G and output a probabilistic
output matrix Ŷ , where the i-th row in Ŷ is ŷi, i.e., the probabilistic prediction of a node’s
membership over all possible classes. Usually, there are multiple layers in GNNs, where the
formulation of the l-th layer can be summarized as:

z
(l+1)
i =σ

(
AGG

(
z
(l)
i , h

({
z
(l)
j : vj ∈ N (vi)

})))
. (3.1)

Here z
(l)
i is the embedding of node i at the l-th layer; N (vi) is the set of one-hop neighbors

around vi; h(·) is a function with learnable parameters; AGG(·) and σ(·) denote the aggrega-
tion function (e.g., mean operator) and activation function (e.g., ReLU), respectively. Later
on, a loss function LV ′ (e.g., cross-entropy loss) defined on the set of training nodes V ′ is
employed for GNN training.

3.1.3.2 Probabilistic Distribution Disparity

Traditional bias metrics such as ∆SP for statistical parity and ∆EO for equal opportunity
are computed on the predicted class labels. However, a single training node can hardly
twist these predicted labels [236, 180]. Hence the node-level contribution to model bias can
barely be captured by traditional bias metrics. To capture the influence of a single training
node on model bias, we propose Probabilistic Distribution Disparity (PDD) as a novel bias
quantification strategy. PDD can be instantiated with different fairness notions to depict the
model bias from different perspectives. Specifically, we assume the population is divided into
different sensitive subgroups, i.e., demographic subgroups described by the sensitive attribute.
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To achieve finer granularity, we define PDD as the Wasserstein-1 distance [107] between the
probability distributions of a variable of interest in different sensitive subgroups. Compared
with traditional fairness metrics, continuous changes brought by each specific training node
are reflected in the measured distributions, and Wasserstein distance is theoretically more
sensitive to the change of the measured distributions over other commonly used distribution
distance metrics [5]. In addition, we note that the variable of interest depends on the chosen
fairness notion in applications, and a larger value of PDD indicates a higher level of model
bias. We introduce two instantiations of PDD based on two traditional fairness notions,
including Statistical Parity [58] and Equal Opportunity [77]. Both notions are based on binary
classification tasks and binary sensitive attributes (generalizations to non-binary cases can be
found in the online version1). For example, Statistical Parity requires the probability of positive
predictions to be the same across two sensitive subgroups, where the variable of interest is the
GNN probabilistic output ŷ. We use Ŷ(S=j) to denote the set of the probabilistic predictions
for test nodes whose sensitive attribute S equals to j (j ∈ {0, 1}). Let the distribution of the
probabilistic predictions in Ŷ(S=0) and Ŷ(S=1) be P

(S=0)
ŷ and P

(S=1)
ŷ , respectively. The PDD

instantiated with statistical parity ΓSP is

ΓSP = Wasserstein1(P
(S=0)
ŷ , P

(S=1)
ŷ ), (3.2)

where Wasserstein1(·, ·) takes two distributions as input and outputs the Wasserstein-1 distance
between them. Denote Y as the ground truth for node classification. Similarly, we can also
instantiate PDD based on Equal Opportunity ΓEO as

ΓEO = Wasserstein1(P
(S=0,Y=1)
ŷ , P

(S=1,Y=1)
ŷ ). (3.3)

P
(S=0,Y=1)
ŷ and P

(S=1,Y=1)
ŷ are model prediction distributions for nodes with (S = 0, Y = 1)

and (S = 1, Y = 1), respectively. We then define node influence on model bias.

DEFINITION 3.1.1. Node Influence on Model Bias. Let fŴ and fŴ ′ denote the GNN model
trained on graph G and G−i (i.e., G with node vi ∈ V ′ being deleted), respectively. Let Γ1 and
Γ2 be the Probabilistic Distribution Disparity value based on the output of fŴ and fŴ ′ for
nodes in test set. We define ∆Γ = Γ2 − Γ1 as the influence of node vi on the model bias.

The rationale behind this definition is to measure to what extent Γ changes if the GNN model
is trained on a graph without vi. Thus, ∆Γ depicts the influence of node vi on the model
bias. For both instantiations of Γ (i.e., ΓSP and ΓEO), if ∆Γ > 0, deleting the training
node vi from G leads to a more unfair (or biased) GNN model. This indicates that node vi
contributes to improving the fairness level, i.e., vi is helpful for fairness. Nevertheless, the
above computation requires re-training the GNN to obtain the influence of each training node,
which is too expensive if we want to compute the influence of all nodes in the training set. In
Section 3.1.3.3, we introduce how to efficiently estimate ∆Γ.

3.1.3.3 Node Influence on Model Bias Estimation

It is noteworthy that PDD is a function of Ŵ for a trained GNN, as Ŵ directly determines
the probabilistic predictions for test nodes. Hence we first characterize how a training node
in G influences Ŵ , followed by how this node influences PDD via applying the chain rule.

1See online version here https://ojs.aaai.org/index.php/AAAI/article/view/25905
for supplementary discussion and experimental results.
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Training Node Loss Value Loss Value Decreases Loss Value Increases

vivivj1vj1vj2vj2

vj3vj3

vivivj1vj1vj2vj2

vj3vj3

vj1vj1vj2vj2

vj3vj3
Down-weight vivi Down-weight vivi

ϵ = 0ϵ = 0 ϵ = 1/mϵ = 1/m

FIGURE 3.1. An illustration of how down-weighting node vi influences the
loss values of the training nodes in Gi (including vi, vj1 , vj2 , and vj3). Scenarios
from ϵ = 0 to ϵ = 1/m are presented.

Formally, the optimal parameters Ŵ minimize the objective function LV ′(G,W ) of the node
classification task, so that:

Ŵ
def
= argmin

W
LV ′(G,W ) = argmin

W

1

m

m∑
i=1

Lvi (Gi,W ) .

Here Lvi (Gi,W ) denotes the loss term associated with node vi; Gi is the computation graph
of vi; m is the total number of training nodes. If a training node vi is deleted from G, the loss
function will change and thus leads to a different Ŵ . We take vi as an example to analyze the
influence on Ŵ after deleting a training node from G. Traditionally, the existence of node
vi is considered as a binary state, which is either one (if vi exists in G) or zero (otherwise).
But in our analysis, we treat it as a continuous variable to depict the intermediate states of the
existence of vi. Suppose that the existence of vi is down-weighted in the training of a GNN
on G. This operation leads to two changes in the loss function: (1) the loss term associated
with node vi, i.e., Lvi (Gi,W ), is down-weighted; (2) the loss terms associated with other
training nodes in the computation graph of vi would also be influenced. The reason is that
these nodes could be affected by the information from node vi during the message passing in
GNNs [111, 228]. Based on the above analysis, we define Ŵϵ,vi as the optimal parameter that
minimizes the loss function when node vi is down-weighted as follows:

Ŵϵ,vi
def
= argmin

W
LV ′(G,W )− ϵ

(
Lvi (Gi,W ) + L̃V ′

i
(Gi,W )

)
, (3.4)

where ϵ ∈ [0, 1/m] controls the scale of down-weighting vi. An illustration in Fig. 3.1 shows
how down-weighting vi affects the loss values of training nodes in its computation graph.
To formally characterize how node vi influences Ŵ , we have Theorem 3.1.1 as follows (see
proofs in the online version2).

THEOREM 3.1.1. According to the optimization objective of Ŵϵ,vi in Eq. (3.4), we have

dŴϵ,vi

dϵ

∣∣∣∣∣
ϵ=0

=

(
∂2LV ′(G, Ŵ )

∂W 2

)−1

·

∂Lvi

(
Gi, Ŵ

)
∂W

+
∂L̃V ′

i
(Gi, Ŵ )

∂W

 . (3.5)

Then, we characterize the influence of down-weighting node vi on the value of PDD. We
present Corollary 3.1.1 based on the chain rule as follows (see the proofs in the online
version3).

2See online version for supplementary discussion and experimental results.
3See online version for all proofs.
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COROLLARY 3.1.1. Define the derivative of Γ w.r.t. ϵ at ϵ = 0 as IΓ(vi). According to
Theorem 3.1.1, we have

IΓ(vi)
def
=

∂Γ

∂ϵ

∣∣∣∣
ϵ=0

=

(
∂Γ

∂W

)⊤
dŴϵ,vi

dϵ

∣∣∣∣∣
ϵ=0

. (3.6)

With Corollary 3.1.1, we can estimate the value change of Γ when node vi is down-weighted
via

Γϵ,vi − Γ0,vi = −ϵ · IΓ(vi) + o(ϵ) ≈ −ϵ · IΓ(vi) (3.7)

according to the first-order Taylor expansion. Here Γϵ,vi and Γ0,vi are the PDD values after
and before node vi is down-weighted, respectively. To estimate the value change in Γ for a
GNN trained on G−i, we introduce Theorem 3.1.2 as follows (see the proofs in the online
version).

THEOREM 3.1.2. Compared with the GNN trained on G, ∆Γ = Γ 1
m
,vi

− Γ0,vi is equivalent to
the value change in Γ when the GNN mode is trained on graph G−i.

Theorem 3.1.2 enables us to directly compute the ∆Γ for an arbitrary training node vi,
which helps avoid the expensive re-training process. In the next section, we further define
L̃V ′

i
(Gi, Ŵ ) and present an algorithm to efficiently estimate the node influence on model bias.

3.1.3.4 Non-I.I.D. Characterization

Generally, there are two types of dependencies between a training node vi and other nodes in
its computation graph Gi, namely its dependency on other training nodes and its dependency
on test nodes. The dependency between training nodes directly influences W during GNN
training, and thus influences the probabilistic outcome of all test nodes. Hence it is critical
to properly characterize the dependency between vi and other training nodes. Specifically,
we aim to characterize how the loss summation of all training nodes in Gi changes due to the
existence of vi. We denote the training nodes other than node vi in Gi as V ′

i\{vi}. For any
node vj ∈ V ′

i\{vi}, we denote Gj,−i as the computation graph of node vj with node vi being
deleted. L̃Vi

(Gi, Ŵ ) is then formally given as

L̃Vi
(Gi, Ŵ ) =

∑
vj∈V ′

i\{vi}

(
Lvj

(
Gj, Ŵ

)
− Lvj

(
Gj,−i, Ŵ

))
. (3.8)

The first term represents the summation of loss for nodes in V ′
i\{vi} on G, and the second term

denotes the summation of loss for these nodes on G−i. In this regard, L̃Vi
(Gi, Ŵ ) generally

depicts to what extent the loss summation changes for nodes in V ′
i\{vi} on graph G compared

with G−i. If vi is down-weighted by a certain degree, the change of the loss summation
for nodes in V ′

i\{vi} can be depicted by a linearly re-scaled L̃Vi
(Gi, Ŵ ), as described in

Eq. (3.4).

Additionally, there could also be dependencies between vi and test nodes in Gi, as vi can
influence the representations of its neighboring test nodes due to the information propagation
mechanism in GNNs during inference. Such a dependency could also influence the value of
PDD when vi is deleted from G. Correspondingly, we introduce the characterization of the
dependency between vi and test nodes. Specifically, we present an upper bound to depict the
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Algorithm 1 Node Influence on Model Bias Estimation
Input: G: the graph data; fŴ : the trained GNN model; V ′: the set of training nodes;
Output: IΓ = {Γ 1

m ,vi
− Γ0,vi : vi ∈ V ′};

1: Initialize IΓ = ∅;
2: Compute { ∂Γ

∂W : vi ∈ V ′} based on fŴ ;
3: while vi ∈ V ′ do
4: Compute dŴϵ,vi

dϵ

∣∣∣
ϵ=0

according to Eq. (3.5) and (3.8);

5: Compute IΓ(vi) according to Eq. (3.6);
6: Compute Γ 1

m ,vi
− Γ0,vi according to Eq. (3.7);

7: Append element Γ 1
m ,vi − Γ0,vi onto IΓ;

8: end while
9: Return: IΓ;

normalized change magnitude of the neighboring test nodes’ representations when a training
node vi is deleted. Here the analysis is based on the prevalent GCN model [111], and can be
easily generalized to other GNNs. Following widely adopted assumptions in [80, 221], we
have Proposition 3.1.1 (see the proofs in the online version4).

PROPOSITION 3.1.1. Denote the representations of node vj(vj ∈ V\V ′) based on G and
G−i as zj and z⋆

j , respectively. Define h(j,i) and q(j,i) as the distance from vj to vi and
the number of all possible paths from vj to vi, respectively. Define the set of geometric
mean node degrees of q(j,i) paths as D = {d(j,i)1 , ..., d

(j,i)

q(j,i)
}. Define d

(j,i)
min as the minimum

value of D. Assume the norms of all node representations are the same. We then have
∥z⋆

j − zj∥2/∥zj∥2 ≤ q(j,i)/(d
(j,i)
min)

h(j,i)
.

From Proposition 3.1.1, we observe that (1) deleting vi exerts an upper-bounded impact on
the representations of other test nodes in its computation graph; and (2) this upper-bound
exponentially decays w.r.t. the distance between vi and test nodes. Hence the dependency
between vi and test nodes has limited influence on Γ during inference when vi is deleted from
the graph. On the contrary, considering that the dependency between vi and other training
nodes directly influences Ŵ and thus influences the inference results of all nodes, such a
dependency should not be neglected. Consequently, we argue that it is reasonable to estimate
the influence of each training node on Γ by only considering the dependency between training
nodes. We present the algorithmic routine of ∆Γ estimation in Algorithm 2.

3.1.3.5 Complexity Analysis

To better understand the computational cost, here we analyze the time complexity of estimating
∆Γ according to Algorithm 2. We denote the number of parameters in W and the average
number of training nodes in the computation graph of an arbitrary training node as t and
r̄, respectively. For each node vi, the time complexity to compute ∂Lvi

(
Gi, Ŵ

)
/∂W and

∂L̃V ′
i
(Gi, Ŵ )/∂W is O(t) and O(r̄t), respectively. Hence the time complexity is O(mr̄t)

to traverse all training nodes. For the Hessian matrix inverse, we employ a widely-used
estimation approach (see the online version for details5) with linear time complexity w.r.t t.
Thus the time complexity of Eq. (3.5) and (3.8) is O(mr̄t). Additionally, the time complexity

4See online version for all proofs.
5See online version for supplementary discussion and experimental results.
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of Eq. (3.6) and (3.7) is O(mt) and O(m), respectively. To summarize, the time complexity
of Algorithm 2 is O(mr̄t). Considering that r̄ ≤ m, the algorithm has a quadratic time
complexity w.r.t. training node number. This verifies the time efficiency of our algorithm.

3.1.4 Experiments

We aim to answer the following research questions in experiments. RQ1: How efficient is
BIND in estimating the influence of training nodes on the mode bias? RQ2: How well can
BIND estimate the influence of training nodes on the model bias? RQ3: How well can we
debias GNNs via deleting harmful training nodes based on our estimation? More details of
experimental settings, supplementary experiments, and analysis are in the online version.

3.1.4.1 Experimental Setup

Downstream Task & Datasets. Here the downstream task is node classification. Four
real-world datasets are adopted in our experiments, including Income, Recidivism, Pokec-z,
and Pokec-n. Specifically, Income is collected from Adult Data Set [56]. Each individual
is represented by a node, and we establish connections (i.e., edges) between individuals
following a similar criterion adopted in [3]. The sensitive attribute is race, and the task is to
classify whether the salary of a person is over $50K per year or not. Recidivism is collected
from [99]. A node represents a defendant released on bail, and defendants are connected
based on their similarity. The sensitive attribute is race, and the task is to classify whether a
defendant is on bail or not. Pokec-z and Pokec-n are collected from Pokec, which is a popular
social network in Slovakia [182]. In both datasets, each user is a node, and each edge stands
for the friendship relation between two users. The locating region of users is the sensitive
attribute. The task is to classify the user working field. More details are in the online version.

Baselines & GNN Backbones. We compare our method with three state-of-the-art GNN
debiasing baselines, namely FairGNN [37], NIFTY [3], and EDITS [47]. To perform GNN
debiasing, FairGNN employs adversarial training to filter out the information of sensitive
attributes from node embeddings; NIFTY maximizes the agreement between the predictions
based on perturbed sensitive attributes and unperturbed ones; EDITS pre-processes the input
graph data to be less biased via attribute and structural debiasing. We mainly present the
results of using GCN [111] as the backbone GNN model, while experiments with other GNNs
are discussed in the online version.

Evaluation Metrics. First, we employ running speedup factors to evaluate efficiency. Second,
we use the widely adopted Pearson Correlation [113, 24] between the estimated and actual
∆Γ to evaluate the effectiveness of node influence estimation. Third, we adopt two traditional
fairness metrics, namely ∆SP (the metric for Statistical Parity) [58] and ∆EO (the metric
for Equal Opportunity) [77], to evaluate the effectiveness of debiasing GNNs via harmful
nodes deletion. Additionally, the classification accuracy is also employed to evaluate the
utility-fairness trade-off.

3.1.4.2 Efficiency of Node Influence Estimation

To answer RQ1, we evaluate the efficiency of ∆Γ estimation by comparing its running time
with that of GNN re-training. The running time of GNN re-training is computed as follows.
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(A) Evaluation of efficiency (B) Evaluation of effectiveness

FIGURE 3.2. (A) Evaluation of efficiency: speedup factors of ∆ΓSP and ∆ΓEO

estimation over GNN re-training. (B) Evaluation of effectiveness: correlation
between estimated and actual ∆ΓSP and ∆ΓEO.

We first delete the target node from the original input graph G and re-train the GCN to obtain
fŴ ′ . We then obtain ∆Γ based on the values of Γ given by fŴ and fŴ ′ . The above running
time is defined as the time cost of GNN re-training. The running time averaged across all
training nodes is compared between GNN re-training and BIND, and we present the running
speedup factors of BIND on the four real-world datasets in Fig. 3.2a. We observe that the
running speedup factors are over 450× on all four real-world datasets, which corroborates
the efficiency superiority of BIND in estimating the value of ∆Γ. Additionally, we observe
that the estimation on Pokec-z and Pokec-n datasets has higher speedup factors on both ∆ΓSP

and ∆ΓEO compared with the other two datasets. A reason could be that nodes in Pokec-z
and Pokec-n have lower average degrees (see online version for supplementary discussion
and experimental results). This facilitates the computation of L̃V ′

i
(Gi, Ŵ ) (the term that

characterizes non-i.i.d.) and corresponding derivatives.

3.1.4.3 Effectiveness of Node Influence Estimation

We now evaluate the effectiveness of ∆Γ estimation. It is worth noting that the numerical
values of the estimated influence on model bias are small for most of the nodes (see online
version for supplementary discussion and experimental results). Here we introduce a strategy
to evaluate the estimation effectiveness across a wider value range of ∆Γ. The basic intuition
here is that we select node sets and evaluate how well their estimated ∆Γ summation aligns
with the actual one. Specifically, we first follow the widely adopted routine [113, 24] to
truncate the helpful and harmful nodes with top-ranked ∆Γ values. We then construct a series
of node sets associated with the largest positive and negative estimated ∆Γ summations under
different set size thresholds. The range of these thresholds is between zero and a maximum
possible value (determined by the training set size). It is worth noting that only nodes with
non-overlapping computation graphs are selected in constructing each node set. This ensures
that these nodes result in an estimated ∆Γ equivalent to the summation of their estimated ∆Γ6.
We present the Pearson correlation of estimated ∆ΓSP and ∆ΓEO with the actual values on four

6See online version for supplementary discussion and experimental results.
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TABLE 3.1. Comparison on GNN utility and bias mitigation between BIND
and baselines. BIND 1% and BIND 10% denote the node deletion budget k
being 1% and 10% of the training node set size, respectively. (↑) denotes the
larger, the better; (↓) denotes the opposite. Numerical results are in percentages.
Best ones and runner-ups are in bold and underline, respectively.

Van. GCN FairGNN NIFTY EDITS BIND 1% BIND 10%

Income
(↑) Acc 74.7 ± 1.4 69.1 ± 0.6 70.8 ± 0.9 68.3 ± 0.8 75.2 ± 0.0 71.7 ± 0.7
(↓) ∆SP 25.9 ± 1.9 12.4 ± 4.7 24.4 ± 1.6 24.0 ± 1.9 19.2 ± 0.6 14.7 ± 1.4
(↓) ∆EO 32.3 ± 0.8 15.6 ± 6.8 26.9 ± 3.7 24.9 ± 1.0 26.4 ± 0.4 16.2 ± 2.0

Recidivism
(↑) Acc 89.8 ± 0.0 89.7 ± 0.2 79.1 ± 0.9 89.6 ± 0.1 88.7 ± 0.0 88.5 ± 0.2
(↓) ∆SP 7.47 ± 0.2 7.31 ± 0.5 1.82 ± 0.8 5.02 ± 0.0 7.40 ± 0.0 6.57 ± 0.2
(↓) ∆EO 5.23 ± 0.1 5.17 ± 0.0 1.28 ± 0.5 2.89 ± 0.1 5.09 ± 0.1 4.23 ± 0.2

Pokec-z
(↑) Acc 63.2 ± 0.7 64.0 ± 0.7 65.3 ± 0.2 61.6 ± 0.9 63.5 ± 0.4 62.9 ± 0.4
(↓) ∆SP 7.32 ± 2.2 4.95 ± 0.8 2.34 ± 1.0 1.29 ± 0.8 6.75 ± 2.3 1.02 ± 0.9
(↓) ∆EO 7.60 ± 2.3 4.29 ± 0.7 1.46 ± 1.3 1.62 ± 1.6 5.41 ± 3.4 2.28 ± 1.5

Pokec-n
(↑) Acc 58.5 ± 0.8 60.3 ± 0.5 61.1 ± 0.3 56.8 ± 0.9 60.6 ± 0.8 58.8 ± 1.8
(↓) ∆SP 6.57 ± 2.6 5.30 ± 1.4 6.55 ± 0.7 2.75 ± 1.8 5.85 ± 2.0 2.45 ± 0.9
(↓) ∆EO 2.33 ± 0.5 1.67 ± 0.2 1.83 ± 0.6 2.24 ± 1.5 1.15 ± 0.7 2.22 ± 1.6

datasets in Fig. 3.2b. It is worth noting that achieving an exact linear correlation (i.e., Pearson
correlation equals one) between the estimated and actual ∆Γ is almost impossible, since we
only employ the first-order Taylor expansion in our estimation for ∆Γ. From Fig. 3.2b, we
observe that the estimation achieves Pearson correlation values over 0.9 on both ΓSP and
ΓEO across all datasets. Such consistencies between estimated and actual values verify the
effectiveness of BIND.

Additionally, to understand how the non-i.i.d. characterization benefits the estimation, we also
estimate ∆Γ with BIND after the non-i.i.d. characterization being disabled (i.e., setting the
L̃V ′

i
(Gi,W ) term in Eq. (3.4) as 0). We present the estimated ∆Γ v.s. actual ∆Γ on Income

dataset with non-i.i.d. characterization being enabled and disabled in Fig. 3.3a and 3.3b,
respectively. We observe the correlation decreases between the estimated and actual ∆Γ after
the non-i.i.d. characterization is disabled. Such a decrease is also observed on other datasets
in terms of both statistical parity and equal opportunity. Such an observation verifies the
contribution of non-i.i.d. characterization to the estimation of ∆Γ.

Finally, we evaluate how well the values of the proposed PDD matches the values of traditional
fairness metrics. We collect the value pairs of (∆SP, ΓSP) and (∆EO, ΓEO) during the GNN
re-training process. The values of ∆SP v.s. actual ΓSP are presented in Fig. 3.3c, and the
values of ∆EO v.s. actual ΓEO are shown in Fig. 3.3d. We observe a satisfying match between
Γ and traditional metrics, which corroborates that PDD is a valid indicator of the fairness
level depicted by traditional fairness metrics.

3.1.4.4 Debiasing via Harmful Nodes Deletion

In this subsection, we demonstrate how BIND could be employed for GNN debiasing. The
basic intuition here is to identify and delete those harmful nodes according to the estimated
node influence on model bias, and evaluate whether GNNs can be debiased when they are
trained on this new graph. Specifically, we set Γ = λΓSP + (1 − λ)ΓEO and estimate the
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(A) With non-i.i.d. term (B) Without non-i.i.d. term

(C) ∆SP v.s. ΓSP (Income) (D) ∆EO v.s. ΓEO (Recid.)

FIGURE 3.3. In (a) and (b), we compare the estimation effectiveness of
∆ΓSP with and without characterizing non-i.i.d.; in (c) and (d), we present
the consistency between Γ and traditional fairness metrics (∆SP for statistical
parity and ∆EO for equal opportunity) under different node deletion budgets.

node influence on Γ to consider both statistical parity and equal opportunity. We then set
a budget k, and follow the strategy adopted in Section 3.1.4.3 to select and delete a set of
training nodes with the largest positive influence summation on Γ under this budget. We
set λ = 0.5 to assign statistical parity and equal opportunity the same weight, and perform
experiments with k being 1% (denoted as BIND 1%) and 10% (denoted as BIND 10%) of
the total number of training nodes. We present the results on the four adopted datasets in
Table 3.1. The following observations are made: (1) compared with other baselines, BIND
achieves competitive performance (i.e., lower values) on both ∆SP and ∆EO. Hence training
GNNs on a new graph after deleting harmful nodes (to fairness) is an effective approach for
GNN debiasing; (2) there is no obvious performance decrease on the model utility of BIND
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FIGURE 3.4. The estimated ∆ΓSP values follow a long-tail distribution. Here,
the color red and blue represent those helpful and harmful nodes, respectively.
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(B) Shuffling on GCN

FIGURE 3.5. In (a), the estimated ∆ΓSP v.s. the actual ∆ΓSP based on a GIN
model and Income dataset is presented. In (b), we present the estimated ∆ΓSP

v.s. the actual ∆ΓSP after randomly shuffling the order of estimated ∆ΓSP

values for the training nodes. The correlation value decrease further validates
the effectiveness of estimation.

compared with other baselines. We thus argue that deleting harmful nodes can also lead to a
satisfying fairness-utility trade-off.

3.1.5 Supplementary Discussion

Distribution of Estimated ∆Γ. We present the estimated ∆ΓSP on Recidivism dataset in
Fig. 3.4. Generally, the values of the estimated node influence on bias follow a long-tail
distribution, i.e., only a small amount of nodes have large positive/negative influence values
on the model bias. Similar phenomena can also be observed on other datasets.

Effectiveness of ∆Γ Estimation. We follow the same strategy introduced in the Effective-
ness of Node Influence Estimation section to obtain the estimated ∆ΓSP values and their
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(A) ∆ΓSP on Income (B) ∆ΓSP on Recidivism

(C) ∆ΓSP on Pokec-z (D) ∆ΓSP on Pokec-n

FIGURE 3.6. Estimated ∆ΓSP v.s. actual ∆ΓSP on four real-world datasets are
presented for effectiveness analysis of ∆Γ estimation based on GCN. Helpful
data points (marked in red) are with positive estimated ∆ΓSP values, while
harmful ones (marked in blue) are with negative estimated ∆ΓSP values.

corresponding actual ∆ΓSP values. We present the estimated ∆ΓSP v.s. the actual ∆ΓSP on
the four datasets in Fig. 3.6a, 3.6b, 3.6c, and 3.6d, respectively; we also present the estimated
∆ΓEO v.s. the actual ∆ΓEO on the four datasets in Fig. 3.7a, 3.7b, 3.7c, and 3.7d, respectively.
Experiments are carried out based on a random seed of 42. We draw the conclusion that on
both ∆ΓSP and ∆ΓEO, our estimation results show a satisfying match with the actual values
across the four adopted datasets. This validates the effectiveness of ∆Γ estimation.

Generalization of ∆Γ Estimation to Different GNNs. We then test the generalization
ability of our proposed estimation algorithm to different GNNs. Specifically, we present the
estimated ∆ΓSP v.s. the actual ∆ΓSP based on a trained GIN model [222] and Income dataset
in Fig. 3.5a. We have the observation that the estimated ∆ΓSP also shows a satisfying match
with the actual values based on the GIN model, which validates the generalization ability of
the proposed estimation algorithm to GNNs other than GCN.

Shuffled Node Influence v.s. Actual PDD Difference. To further validate the effectiveness
of the proposed estimation algorithm, we first perform node influence on bias estimation
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(A) ∆ΓEO on Income (B) ∆ΓEO on Recidivism

(C) ∆ΓEO on Pokec-z (D) ∆ΓEO on Pokec-n

FIGURE 3.7. Estimated ∆ΓEO v.s. actual ∆ΓEO on four real-world datasets
are presented for effectiveness analysis of ∆ΓEO estimation based on GCN.
Helpful data points (marked in red) are with positive estimated ∆Γ values,
while harmful ones (marked in blue) are with negative estimated ∆ΓEO values.

based on a trained GCN model and Income dataset. Then, we randomly shuffle the estimated
influence values (i.e., estimated ∆ΓSP) for the training node set. This operation leads to a
mismatch between training node indices and estimated ∆ΓSP. We follow the same strategy
introduced in the Effectiveness of Node Influence Estimation section to obtain the estimated
∆ΓSP values and their corresponding actual ∆ΓSP values. We present the estimated ∆ΓSP v.s.
actual ∆ΓSP in Fig. 3.5b. A decrease in Pearson correlation value is observed compared with
those presented in Fig. 3.6. This observation further corroborates the effectiveness of the
proposed estimation algorithm.

3.1.6 Related Work

Graph Neural Networks. GNNs can be divided into two mainstreams, including spectral-
based and spatial-based ones [214, 245]. Specifically, spectral GNNs inherit the insights
from Convolutional Neural Networks (CNNs) [15], and followed by many works [43, 122,
111]. Their goal is to design graph filters to extract task-related information from the input
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graphs [32]. Differently, spatial GNNs design message-passing mechanisms in the spatial
domain to extract information from each node’s neighbors [214, 245]. Various aggregation
strategies contribute to different tasks [188, 222, 181, 153].

Algorithmic Fairness. Algorithmic fairness can be defined from different perspectives [155,
134, 55, 22, 35, 142], where Group Fairness and Individual Fairness are two popular no-
tions [58]. Generally, group fairness enforces similar statistics (e.g., positive prediction
rate in binary classification tasks) across different demographic subgroups [58]. Typically,
these demographic subgroups are described by certain sensitive attributes, such as gender,
race, and religion. Individual fairness argues for similar outputs for similar individuals [58].
Algorithmic fairness can be considered in different stages of learning pipelines, including
pre-processing [47], in-processing [46, 120, 38], and post-processing [104]. Particularly,
re-weighting training samples to mitigate model bias is a popular fairness-enhancing method
during in-processing stage [196, 76, 224, 90, 156]. However, most of these methods only
yield a set of weights for training samples to mitigate bias [224, 196], while to what extent
each sample influences the exhibited bias is still unclear. Different from them, this work
aims to understand the influence of each training node on model bias. To the best of our
knowledge, this is a first-of-its-kind study. Moreover, most of existing methods based on
re-weighting training samples are developed under the IID assumption. However, in this
paper, we also analyze the non-IID characteristic between nodes to understand how each
training node influences model bias.

Interpretation of Deep Learning Models. Deep learning models have huge parameter
size and high complexity [16, 168, 67, 218]. To make these models more trustworthy and
controllable, many studies have been devoted to improving their transparency [67]. Generally,
these works are divided into transparency design and post-hoc explanation [218]. The basic
goal of transparency design is to understand the model in terms of model structure [127, 235]
and training algorithms [158], while post-hoc explanation aims to explain specific prediction
results via visualization [44] and explanatory examples [25]. In the realm of learning on
graphs, some existing works aim to interpret GNNs [228, 132, 230], and they mainly focus
on understanding the utility (e.g., node classification accuracy) of GNNs on the test set. Our
work is different from them in two aspects: (1) we focus on interpreting the model bias instead
of the utility for GNNs; (2) we aim to understand the model bias via attributing to the training
set instead of only focusing on the test set.

3.1.7 Conclusion

In this paper, we study a novel problem of characterizing how each training node influences the
bias exhibited in a trained GNN. We first propose a strategy named Probabilistic Distribution
Disparity (PDD), which can be instantiated with different existing fairness notions, to quantify
the node influence on the model bias. We then propose a novel framework named BIND
to achieve an efficient influence estimation for each training node. We also develop a
node deletion strategy to achieve GNN debiasing based on influence estimation. Extensive
experiments verify (1) the consistency between the proposed PDD and traditional fairness
metrics; (2) the efficiency and effectiveness of the influence estimation algorithm; and (3)
the performance of the proposed strategy on GNN debiasing. We leave interpreting how the
unfairness arises in other graph learning tasks as future works.
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3.2 On Structural Explanation of Bias in Graph Neural
Networks

3.2.1 Introduction

Graph Neural Networks (GNNs) have shown satisfying performance in various real-world
applications, e.g., online recommendation [211], chemical reaction prediction [45], and
complex physics simulation [169], to name a few. The success of GNNs is generally attributed
to their message-passing mechanism [214, 245, 200]. Such a mechanism enables GNNs to
capture the correlation between any node and its neighbors in a localized subgraph (i.e., the
computation graph of the node [228]), which helps to extract information from both node
attributes and network structure for node embedding learning [74]. Despite the remarkable
success, most of the existing GNNs do not have fairness consideration [46, 47, 37, 105, 50,
138]. Consequently, GNN predictions could exhibit discrimination (i.e., bias) towards specific
demographic subgroups that are described by sensitive features, e.g., age, gender, and race.
Such discrimination has become one of the most critical societal concerns when GNNs are
deployed in high-stake decision-making scenarios [103].

There is a rich body of literature on alleviating the bias of GNNs. Generally, these works
aim to decouple the learned node embeddings from sensitive features [37, 47, 125, 179, 201].
However, they cannot provide explanations on how bias arises in GNNs. In fact, it is worth
noting that in various high-stake decision-making scenarios, we not only need to alleviate
bias in GNNs, but also need to understand how bias is introduced to the prediction of each
individual data instance (e.g., a node in a graph). Such instance-level understanding is critical
for the safe deployment of GNNs in decision-critical applications [228]. For example, GNNs
have demonstrated superior performance in many financial applications, such as loan approval
prediction for bank clients [193, 216]. In this scenario, different clients form a graph based on
their transaction interactions, and the records of clients form their features. Here, the goal is
to predict whether a client will be approved for a loan, and such a problem can be formulated
as a node classification task that can be solved by GNNs. However, GNNs could lead to
undesired discrimination against clients from certain demographic subgroups (e.g., rejecting
a loan request mainly because the applicant belongs to an underprivileged group). In this
example, understanding how bias is introduced to the prediction of each individual client
enables bank managers to scrutinize each specific loan decision and take proactive actions to
improve the algorithm and reduce potential discrimination.

In fact, biased GNN predictions can be attributed to a variety of factors. Among them, biased
network structure has shown to be a critical source [125, 47, 179]. Additionally, bias in the
network structure could be amplified by the core operation of GNNs – the message-passing
mechanism [47]. Therefore, understanding which part of the network structure leads to
biased GNN predictions for each node is vitally important. Towards this goal, we aim to
provide an instance-level (i.e., node-level) structural explanation of bias in GNN predictions.
More specifically, for any node in an input network for GNNs, we aim to understand and
explain how different edges in its computation graph contribute to the level of bias for
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its prediction7. Nevertheless, it remains a daunting task. Essentially, we mainly face the
following three challenges: (1) Fairness Notion Gap: how to measure the level of bias for
the GNN prediction at the instance level? For each node, understanding how the edges in its
computation graph make its prediction biased requires a principled bias metric at the instance
level. However, most of the existing bias metrics are defined over the whole population
or the sub-population [58, 77], thus they cannot be directly grafted to our studied problem.
In this regard, it is crucial to design a bias metric that can quantify the level of bias for
the GNN prediction at the instance level. (2) Usability Gap: is a single bias explainer
sufficient? It should be noted that our ultimate goal goes beyond explaining bias as we also
aim to achieve fairer GNNs, which provide better model usability and enable ethical decision-
making. Consequently, it is also critical to explain which edges in a node’s computational
graph contribute more to the fairness level of its prediction. However, edges that introduce
the least bias cannot be simply regarded as the edges that maximally contribute to the fairness
level of the prediction. This is because edges that introduce the least bias could also be those
prediction-irrelevant edges — such edges could barely contribute any information to the GNN
prediction. Therefore, only explaining how each edge in a computational graph contributes
to the exhibited node-level bias is not sufficient. (3) Faithfulness Gap: how to obtain bias
(fairness) explanations that are faithful to the GNN prediction? To ensure the obtained
explanations reflect the true reasoning results based on the given GNN model, most existing
works on the instance-level GNN explanation obtain explanations that encode as much critical
information as possible for a given GNN prediction [228, 191, 132]. In this way, the obtained
explanations are considered to be faithful to the given GNN model, as they generally reflect
the critical information the GNN utilized to make the given prediction. Similarly, when
explaining how the bias or the fairness level of the GNN prediction is achieved, we are also
supposed to identify the critical information the GNN utilized to achieve such a level of bias
or fairness for the given prediction.

As an attempt to tackle the challenges above, in this paper, we propose a principled framework
named REFEREE (stRuctural Explanation oF biasEs in gRaph nEural nEtworks) for post-
hoc explanation of bias in GNNs. Specifically, towards the goal of obtaining instance-
level structural explanations of bias, we formulate a novel research problem of Structural
Explanation of Node-Level Bias in GNNs. To tackle the first challenge, we propose a novel
fairness notion together with the corresponding metric to measure the level of bias for a
specific node in terms of GNN prediction. To tackle the second challenge, we design two
explainers in the proposed framework REFEREE, namely bias explainer and fairness explainer.
In any given computation graph, they are able to identify edges that maximally account for the
exhibited bias in the prediction and edges that maximally contribute to the fairness level of the
prediction, respectively. To tackle the third challenge, we design a constraint to enforce the
faithfulness for the identified explanations, which can be incorporated into a unified objective
function for the proposed framework. In this way, apart from the goal of explaining the
exhibited bias and identifying edges that help with fairness, such a unified objective function
also enforces the identified explanations to be faithful to the given GNN prediction. To better
differentiate these two types of edges, the two explainers are designed to work in a contrastive
manner. Finally, we evaluate the effectiveness of REFEREE on multiple real-world network

7Here, we only consider the edges in its corresponding computation graph. This is because the computation
graph of a node fully encodes all information that GNN models leverage to generate its prediction [228].
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datasets. The main contributions of this paper are as follows. (1) Problem Formulation. We
formulate and study a novel problem of structural explanation of biases in GNNs given any
instance-level GNN prediction. (2) Metric and Algorithmic Design. We propose a novel
metric to measure how biased the GNN outcome prediction of a node is. We then propose
a novel explanation framework named REFEREE to provide explanations on both fairness
and bias, and maintain faithfulness to the given prediction. (3) Experimental Evaluations.
We perform experimental evaluations on various real-world networks. Extensive experiments
demonstrate the effectiveness of REFEREE and its superiority over other alternatives.

3.2.2 Problem Definition
In this section, we first present the notations used in this paper and some preliminaries. We
then formulate a novel problem of Structural Explanation of Bias in GNNs.

Notations. We use bold uppercase letters (e.g., A), bold lowercase letters (e.g., x), and
normal uppercase letters (e.g., N ) to represent matrices, vectors, and scalars, respectively.
Uppercase letters in math calligraphy font (e.g., V) represent sets. The k-th entry of a vector,
e.g., x, is represented as x[k]. For any number, | · | is the absolute value operator; for any set,
| · | outputs its cardinality.

Preliminaries. We denote an attributed network as G = {V , E ,X}, where V = {v1, ..., vN}
represents the set of N nodes; E ⊆ V × V is the set of all edges; X = {x1, ...,xN} is the
set of node attribute vectors. A trained GNN model fΘ maps each node to the outcome
space, where Θ denotes the parameters of the GNN model. Without loss of generality, we
consider node classification as the downstream task. The GNN outcome for N nodes can be
given as Ŷ = {ŷ1, ..., ŷi, ..., ŷN}, where ŷi ∈ RC . Here C is the number of classes for node
classification, and each dimension in ŷi represents the probability of the node belonging to
the corresponding class. Based on Ŷ , the predicted label set by GNN for these N nodes is
denoted by {Ŷ1, ..., Ŷi, ..., ŶN}. Here Ŷi is determined by the highest predicted probability
across all C classes given by ŷi. For GNN explanation, we consider the most widely studied
instance-level explanation problem in this paper, i.e., we aim to explain the given prediction of
a node based on its computation graph [228, 191, 132]. At the instance level, the explanations
can be provided from different perspectives. Here we focus on the structural explanation, i.e.,
the explanation is given as an edge set Ẽi by any GNN explanation model hΦ. Specifically,
given a specific node vi, its computation graph Gi = {Vi, Ei,Xi} (i.e., the L-hop subgraph
centered on node vi [228], where L is the total layer number of the studied GNN), and the
corresponding outcome ŷi, the GNN structural explanation model hΦ with parameter Φ
identifies an explanation as an edge set Ẽi corresponding to the outcome ŷi. Ẽi is identified
through learning a weighted mask matrix M ∈ R|Vi|×|Vi| that indicates the importance score of
each edge in Ei. Edges in Ẽi are selected from Ei based on such importance score. We denote
the computation graph with the identified edge set Ẽi as a new subgraph G̃i = {Vi, Ẽi,Xi}.
Based on the new subgraph G̃i with the identified edge set Ẽi, the given GNN yields a different
probabilistic outcome ỹi = fΘ(G̃i) compared with the vanilla outcome ŷi.

Based on the above notations and preliminaries, we formulate the problem of Structural
Explanation of Bias in GNNs as follows.

PROBLEM 3.2.1. Structural Explanation of Node-Level Bias in GNNs. Given a trained
GNN fΘ, a node vi to be explained, and its computation graph Gi = {Vi, Ei,Xi}, our goal is
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FIGURE 3.8. Framework structure of REFEREE: the edges in the edge set
given by Bias Explainer maximally account for the node-level bias, while the
edges in the edge set given by Fairness Explainer maximally alleviates the
node-level bias.

to: (1) identify edges that are faithful to the prediction of vi (based on fΘ) and maximally
account for the bias exhibited in the GNN outcome of vi; (2) identify edges that are faithful to
the prediction of vi (based on fΘ) and maximally contribute to the fairness level of the GNN
outcome of vi.

Intuitively, Problem 3.2.1 aims to identify two edge sets as two structural explanations:
the bias explanation that accounts for the exhibited bias, and the fairness explanation that
contributes to the fairness level of the given prediction. From the perspective of usability, the
first explanation aims to identify edges that introduce the most bias to the instance-level GNN
prediction, while the second explanation aims to identify edges that maximally contribute to
the fairness level of the GNN prediction for any given node.

3.2.3 The Proposed Framework
In this section, we first present a principled metric to quantify the node-level bias for any
given GNN prediction. Then we provide an overview of REFEREE, which is the proposed
bias explanation framework for GNNs. Finally, we design a unified objective function for the
proposed bias explanation framework REFEREE.

3.2.3.1 Node-Level Bias Modeling

To tackle the challenge of Fairness Notion Gap, here we aim to formulate a novel metric
to quantify the bias for the node-level GNN prediction. Here we propose to formulate such
a bias metric in the probabilistic outcome space of GNN predictions. The reason is that
the information about the exhibited bias in the node-level prediction could be lost when the
probabilistic outcomes are transformed into discrete predicted labels. In this regard, a bias
metric based on the probabilistic outcome can better reflect the exhibited bias in the node-level
predictions. This is also in align with some existing bias measures [37, 47, 63]. However,
although these existing bias metrics are defined in the probabilistic outcome space, they can
only measure the level of bias for the predictions over the whole population, and thus cannot
be directly grafted to our problem.

We introduce the rationale of our proposed bias metric for node-level GNN predictions as
follows. Intuitively, by measuring how much a node’s outcome contributes to the overall
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bias on the whole population, we can have a better understanding of the bias level of this
node’s outcome. More specifically, assume the nodes can be divided into two sensitive
subgroups based on the values of their sensitive features8. The GNN outcome of nodes in
the two sensitive subgroups forms two distributions, where the distance between the two
distributions generally reflects the overall bias [63, 47]. For any specific node, if we change
the probabilistic outcome of this node, the distribution distance between the outcome sets of
the two sensitive subgroups will also change accordingly. Ideally, if the outcome of a node
has no contribution to the outcome distribution distance between the two sensitive subgroups,
then the distribution distance cannot be further reduced no matter how the outcome of this
node is changed. In other words, a node that does not contribute to the overall bias should
have an outcome with which the outcome distribution distance between the two sensitive
subgroups is minimized. Meanwhile, we can also employ the potential distribution distance
reduction to measure the contribution of a node’s outcome to the overall bias. Based on such
intuition, we then define Node-Level Bias in GNNs as follows.

DEFINITION 3.2.1. Node-Level Bias in GNNs. Denote a probabilistic GNN outcome set as
Ŷ . Divide Ŷ into Ŷ0 and Ŷ1 as the outcome sets of the two demographic subgroups based on
the sensitive feature. Denote D as the distance between the distributions of Ŷ0 and Ŷ1. For
node vi, denote Dmin(i) as the minimum distance between the distributions of Ŷ0 and Ŷ1 by
changing the value of ŷi ∈ Ŷ while maintaining

∑C
k=1 ŷi[k] = 1. We define Bi = D−Dmin(i)

as the node-level bias of node vi for the GNN prediction.

Definition 1 introduces how to measure the bias exhibited in the node-level prediction given a
trained GNN. Clearly, the minimum value of Bi is 0, i.e., if no change on the value of ŷi can
be found to further reduce the distance between the distribution of Ŷ0 and Ŷ1, we say that
node vi does not exhibit any node-level bias in the GNN outcome. In this paper, we adopt
the Wasserstein distance as the metric for distribution distance measurement, considering its
superior sensitivity over other distance metrics [5]. We will validate the consistency between
Definition 1 and traditional fairness notions (e.g., Statistical Parity and Equal Opportunity) in
Section 3.2.4.8.

3.2.3.2 Overview of Proposed Framework

Here we present an overview of the proposed bias explanation framework for node-level
GNN predictions. In particular, to tackle the challenge of Usability Gap, REFEREE is
designed with two different explainers, i.e., a bias explainer hΦ and a fairness explainer hΦ′ .
The two explainers aim to identify two different edge sets in the given computation graph
as two structural explanations, i.e., the bias explanation and the fairness explanation. The
two explanations are learned in a contrastive manner, in which way edges that account for
different explanations can be better distinguished. The basic goal of the bias explainer is to
identify the edges that maximally account for the exhibited node-level bias, while the goal of
the fairness explainer is to identify the edges whose existence can maximally alleviate the
node-level bias for the instance-level GNN prediction. Different GNN explanation models
that are able to identify edge sets as the node-level explanations can be the backbone of
the two explainers. Besides, to reflect the true reasoning result in the given GNN model,
both identified explanations should be faithful to the given GNN prediction. This leads

8Without loss of generality, we focus on binary sensitive attribute here.
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to the challenge of Faithfulness Gap: how to achieve the bias(fairness)-related goal of
each explanation and maintain faithfulness to the given GNN prediction at the same time?
To tackle this challenge, we design a constraint to enforce the faithfulness of the identified
explanations, and incorporate such constraint into a unified objective function for the proposed
framework. Optimizing such a unified objective function helps to achieve two goals: (1) the
bias(fairness)-related explanation goals of both explainers; and (2) the goal of faithfulness
through end-to-end training. The overall structure of REFEREE is presented in Fig. 4.7.
Given a trained GNN fΘ, a node vi, and its computation graph Gi, the goal of Bias Explainer
is to identify an edge set Ẽi that maximally accounts for the exhibited node-level bias of vi as
the bias explanation, while the goal of Fairness Explainer is to identify an edge set Ẽ ′

i as the
fairness explanation, where the edges in Ẽ ′

i maximally alleviate the node-level bias of vi.

3.2.3.3 Objective Function

In this subsection, we introduce the unified objective function formulation of our proposed
framework REFEREE. Generally, the unified objective function includes three components,
namely explaining bias (fairness), enforcing fidelity, and refining explanation.

3.2.3.4 Explaining Bias (Fairness).

Here we first introduce the bias (fairness)-related constraints to enable the two explainers
to identify the edges that maximally account for the node-level bias and the edges whose
existence maximally alleviate the node-level bias for a given GNN prediction, respectively.
We start from the constraint for the Bias Explainer. Given any computation graph, the basic
goal of Bias Explainer is to identify the edges that maximally account for the node-level bias
as an obtained edge set for the explanation. Intuitively, if only edges that maximally account
for the exhibited node-level bias are identified and preserved in such edge set, the probabilistic
outcome based on such edge set will exhibit more node-level bias. This is because some
edges whose existence help to alleviate the node-level bias in the vanilla computation graph
are not involved in the obtained edge set anymore. As such, we develop the first component
of our unified objective function towards the goal of explaining bias (fairness) below.

We denote the identified edge set given by Bias Explainer as Ẽi. Here Ẽi ∈ G̃i, and G̃i is the
computation graph with the obtained edge set Ẽi. We represent the probabilistic outcome of
the GNN model based on the computation graph G̃i for node vi as ỹi = fΘ(G̃i), where fΘ is a
given trained GNN model with fixed parameter Θ. We utilize Ỹ to denote the GNN outcome
set Ŷ with the original element ŷi being replaced by ỹi, i.e., Ỹ = Ŷ\{ŷi} ∪ {ỹi}. According
to the sensitive feature, we split Ỹ into two outcome sets as Ỹ0 and Ỹ1 (Ỹ0 ∪ Ỹ1 = Ỹ). We
denote the distribution of Ỹ0 and Ỹ1 as P (Ỹ0) and P (Ỹ1), respectively. Generally, if the
vanilla probabilistic outcome ŷi is replaced with ỹi, the outcome distribution distance between
the two sensitive subgroups will also be changed accordingly. Considering that ỹi is derived
based on the input computation graph G̃i, the identified edges in Ẽi ∈ G̃i then determine how
the distribution distance changes. As discussed above, the probabilistic outcome based on Ẽi
will exhibit more node-level bias. From Definition 3.2.1, we know that the identified edges in
Ẽi are supposed to lead to a larger distribution distance between P (Ỹ0) and P (Ỹ1). Hence we
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formulate the goal of bias explanation based on Wasserstein-1 distance as

max
Ẽi

W1(P (Ỹ0), P (Ỹ1)), (3.9)

where W1(P (Ỹ0), P (Ỹ1)) is formally presented as

W1(P (Ỹ0), P (Ỹ1)) = inf E(ỹ(0),ỹ(1))∼κ[∥ỹ(0) − ỹ(1)∥1]. (3.10)

Here κ ∈ Π(P (Ỹ0), P (Ỹ1)); Π(P (Ỹ0), P (Ỹ1)) is the set including all possible joint distribu-
tions of κ(ỹ(0), ỹ(1)) whose marginals are P (Ỹ0) and P (Ỹ1), respectively. Generally, Eq. (3.9)
encourages the Bias Explainer to identify edges that maximally account for the Wasserstein-1
distance between P (Ỹ0) and P (Ỹ1). Nevertheless, the infimum in Eq. (3.10) is intractable.
To perform effective optimization with gradient-based optimizing techniques (e.g., stochastic
gradient descent), we adopted a widely used approximation strategy [36] for the Wasserstein
distance and the corresponding gradients during optimization, which has been empirically
proved to be effective [71].

We follow a similar approach to set up the other goal for Fairness Explainer to encourage
the identification of edges whose existence can maximally alleviate the node-level bias for
the given GNN prediction. We assume the edge set given by Fairness Explainer as Ẽ ′

i , where
Ẽ ′
i ∈ G̃ ′

i. Here G̃ ′
i is the computation graph with the identified Ẽ ′

i . We denote the outcome of
the GNN model based on G̃ ′

i for node vi as ỹ′
i = fΘ(G̃ ′

i). We use Ỹ ′
0 and Ỹ ′

1 to denote the
subsets of Ỹ ′ = Ŷ\{ŷi} ∪ {ỹ′

i} according to the sensitive feature. Correspondingly, P (Ỹ ′
0)

and P (Ỹ ′
1) are the distributions of Ỹ ′

0 and Ỹ ′
1, respectively. We formulate the goal of Fairness

Explainer as

min
Ẽ ′
i

W1(P (Ỹ ′
0), P (Ỹ ′

1)), (3.11)

where Ẽ ′
i is the edge set given by the Fairness Explainer for explanation. To summarize, we

formulate the objective function term towards explaining bias (fairness) as

L1(Φ,Φ′) = W1(P (Ỹ ′
0), P (Ỹ ′

1))− W1(P (Ỹ0), P (Ỹ1)). (3.12)

The basic rationale is that when L1 is minimized, W1(P (Ỹ0), P (Ỹ1)) is maximized to
encourage Bias Explainer to identify edges that account for the exhibited node-level bias;
W1(P (Ỹ ′

0), P (Ỹ ′
1)) is minimized to encourage Fairness Explainer to identify edges whose

existence can maximally alleviate the node-level bias.

Nevertheless, considering that the probabilistic outcome corresponding to only one explained
node is changed during the optimization of Eq. (3.9) (or Eq. (3.11)), the numerical change
of Wasserstein-1 distance could be small. Correspondingly, when using gradient-based
techniques to optimize the two explainers in REFEREE, the gradients of L1 w.r.t. the
learnable parameters in the two explainers could be similar. This could lead to a phenomenon
that the two explainers tend to converge at similar solutions, which means that Ẽi ∈ G̃i and
Ẽ ′
i ∈ G̃ ′

i could be close. To better differentiate the edges that are supposed to be separated
into two different explanations, here we propose to add a contrastive loss between the two
explainers. The intuition here is to encourage the Bias Explainer and the Fairness Explainer
to identify different edges from each other. Specifically, the distribution difference between
the edges in Ẽi and Ẽ ′

i are maximized as an encouragement for identifying different edges.
It should be noted that the edge sets given by both the two explainers (i.e., Ẽi and Ẽ ′

i) are
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based on the edge set Ei in the given computation graph. Correspondingly, we denote the
distribution of Ẽi and Ẽ ′

i conditional on the given Ei as PΦ(Ẽi|Ei) and PΦ′(Ẽ ′
i|Ei), respectively.

We give the optimization problem as

max
Φ,Φ′

Dist_Diff(PΦ′(Ẽ ′
i|Ei)∥PΦ(Ẽi|Ei)), (3.13)

Various metrics can be adopted as the distribution difference operator Dist_Diff(.), e.g.,
Jensen–Shannon divergence and Wasserstein distance, etc. We give the second objective
function term as

L2(Φ,Φ′) = −Dist_Diff(PΦ′(Ẽ ′
i|Ei)∥PΦ(Ẽi|Ei)). (3.14)

Minimizing L2 helps to encourage the two explainers to yield different edge sets from each
other as the identified explanations.

3.2.3.5 Enforcing Fidelity.

The explanations given by the two explainers should be able to reflect the true reasoning
result given the node-level GNN prediction. Hence, for both explainers (i.e., the Bias
Explainer and Fairness Explainer), the output explanation should be faithful to the given GNN
prediction. In other words, given a node vi, the structural explanations given by both the two
explainers should lead to the same predicted label based on the given GNN fΘ. Based on such
intuition, here we leverage the mutual information between the original predicted label and
the subgraph with the identified edge set for explanation to formulate fidelity enforcement.
This also aligns with some existing works on GNN explanation [228]. We first introduce
the fidelity enforcement formulation for the Bias Explainer. Specifically, for node vi, the
mutual information between the original GNN prediction Ŷi ∈ {1, ..., C} and the underlying
subgraph G̃i is maximized to ensure that Ẽi ∈ G̃i encodes the critical information of the given
GNN prediction, which is formulated as

max
G̃i

MI(Ŷi, G̃i) = H(Ŷi)− H(Ŷi|G̃i). (3.15)

Here MI(·, ·) denotes the mutual information computation operator, and H(·) represents the
entropy function. It is worth mentioning that in Eq. (3.15), the value of the entropy term
H(Ŷi) = H(fΘ(Gi)) is fixed, as the explanation model is post-hoc (i.e., the parameters in
the given GNN model are fixed). Therefore, the optimization problem in Eq. (3.15) can be
reduced to only minimizing the second entropy term, where H(Ŷi|G̃i) can be presented as

H(Ŷi|G̃i) = −EŶi|G̃i
[logPΘ(Ŷi|G̃i)]. (3.16)

Considering fidelity is necessary for both explainers, we give the fidelity constraint for Fairness
Explainer similarly. The objective function term to enforce fidelity for both explainers is
given as

L3(Φ,Φ′) = −EŶi|G̃i
[logPΘ(Ŷi|G̃i)]− EŶi|G̃′

i
[logPΘ(Ŷi|G̃ ′

i)]. (3.17)

Minimizing L3 enforces the identified edges in G̃i and G̃ ′
i to encode as much critical informa-

tion to Ŷi as possible.
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3.2.3.6 Refining Explanation.

As mentioned in Section 4.2.1, our proposed explanation framework should be able to identify
two edge sets, where the edges in one set can maximally account for the exhibited node-level
bias, and the existence of the edges in the other set can maximally alleviate the node-level
bias in GNNs. Therefore, the identified explanations for both explainers should be maximally
refined. Intuitively, to refine the learned explanations, those goal-irrelevant edges for the
GNN outcome of node vi should be maximally identified and removed from the structural
explanations of both explainers, i.e., the learned edge sets from both explainers should be
sparse. Here we propose to regularize the sparsity of the identified edge set to remove those
goal-irrelevant edges maximally. We take the sparsity regularization of the Bias Explainer as
an example. Note that the explanation of the identified edge set is identified via a weighted
mask matrix M ∈ R|Vi|×|Vi| which indicates the edge importance score with entry values.
We propose to utilize the ℓ1-norm of the mask matrix M for the Bias Explainer as the
regularization, i.e., ∥M∥1. Considering both explainers, the corresponding objective function
term L4 is formulated as

L4(Φ,Φ′) = ∥M∥1 + ∥M′∥1 (3.18)

for the two explainers. Here Φ is the parameter of Bias Explainer hΦ, and Φ′ denotes the
parameter of Fairness Explainer hΦ′ . M and M′ are used to indicate the edge weights given
by the explanations from the Bias Explainer and Fairness Explainer, respectively. Besides,
there are also cases where people are only interested in a certain number of top-ranked critical
edges. In other words, there could be a pre-assigned budget T for the explanation edge set Ẽi,
i.e., |Ẽi| ≤ T . In this case, we formulate the L4 as

L4(Φ,Φ′, T, T ′) = ReLU(∥M∥1 − T ) + ReLU(∥M′∥1 − T ′) (3.19)

given pre-assigned budget T and T ′ for Ẽi and Ẽ ′
i , respectively. Intuitively, minimizing L4

helps to remove those goal-irrelevant edges maximally to refine the identified explanation.

3.2.3.7 Unified Objective Function Formulation.

Based on our discussions on enforcing fidelity, explaining bias (fairness), and refining explan-
ation, we formally formulate the unified objective function for the proposed GNN explanation
framework REFEREE as

L = L1 + αL2 + βL3 + γL4. (3.20)

Here α, β, and γ are hyper-parameters controlling the effect of the three constraining terms.
For any specific node to be explained, minimizing the objective function in Eq. (3.20) aims
to: (1) encourage the Bias Explainer to identify an edge set that maximally accounts for the
node-level bias in the given GNN; and (2) encourage the Fairness Explainer to identify an
edge set that maximally contributes to the fairness for the given GNN prediction.

3.2.4 Experimental Evaluations
In this section, we first introduce the downstream learning task and the real-world datasets
adopted for evaluation. The experimental settings and the implementation details are then
introduced. Next, we present the empirical evaluation results of our proposed framework
from the perspective of Effectiveness of Explaining Bias (Fairness), Explanation Fidelity, and
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Debiasing GNN with Explanations. In particular, we aim to answer the following research
questions: RQ1: How well can REFEREE identify edges to explain bias (fairness) in GNNs
given the prediction of a specific node? RQ2: How well can the explanations given by the
two explainers in REFEREE be faithful to the given GNN? RQ3: How will the obtained
explanations from REFEREE help with GNN debiasing for the whole population?

3.2.4.1 Experimental Settings

3.2.4.2 Downstream Task & Real-world Dataset.

In this paper, we focus on the widely studied node classification as the downstream task. We
adopt three real-world attributed networks for experiments – German Credit, Recidivism, and
Credit Defaulter [3], where all node labels are binary. A detailed description, supplementary
discussion, and experimental results are in the online version.

3.2.4.3 Explainer Backbones.

Different GNN explanation approaches that are able to identify edge sets as the node-level
explanations can be adopted as the backbone of the two explainers in REFEREE. To evaluate
how well the proposed framework can be generalized to different explanation backbones, we
adopt GNN Explainer [228] and PGExplainer [132] as explainer backbones for evaluation.

3.2.4.4 Baselines.

To the best of our knowledge, no other work is able to give structural explanations for the
exhibited node-level bias of GNNs. Therefore, we modify some existing GNN explanation
approaches to adapt them to explain exhibited node-level bias in terms of the computation
graph structure. The adopted existing GNN explanation approaches for adaptation include the
attention-based GNN explanation [188], the gradient-based GNN explanation [188], and two
state-of-the-art GNN explanation approaches (GNN Explainer [228] and PGExplainer [132]).
We elaborate more details on how we achieve the adaptation for these approaches as follows.

First, we introduce how we adapt these approaches as the baselines to evaluate Effective-
ness of Explaining Bias (Fairness). For attention-based explanation, we directly add a
bias(fairness)-related objective onto the vanilla loss function of a Graph Attention Network
(GAT) model [188] to maximize (as Eq. (3.9)) or minimize (as Eq. (3.11)) the Wasserstein-1
distance between the outcome distributions of the two sensitive subgroups. This enables the
GAT model to identify the two types of critical edges for bias and fairness explanation, i.e.,
edges that maximally account for the exhibited node-level bias and edges whose existence
can maximally alleviate the node-level bias. The learned attention weights are regarded as
the indicator of the final explanations. For gradient-based explanation, we utilize the same
objective function as the objective function adopted by attention-based explanation. The
two types of critical edges for bias and fairness explanation are identified through gradient
ascend w.r.t. the adjacency matrix of the given computation graph. For GNN Explainer and
PGExplainer, we modified their objective function in a similar way as the attention-based
explanation. Specifically, a bias(fairness)-related objective is added onto the vanilla loss
function for both explanation models. For any given computation graph, the two types of
critical edges for bias and fairness explanation are identified through maximizing (as Eq. (3.9))
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or minimizing (as Eq. (3.11)) the Wasserstein-1 distance between the outcome distributions
of the two sensitive subgroups.

Second, for the evaluation of Explanation Fidelity, we aim to compare whether the GNN
explanation backbones in REFEREE can still maintain their faithfulness to the given GNN
prediction. Here the most widely-used GNN Explainer is adopted as the baseline model.
Correspondingly, GNN Explainer is also adopted as the backbone of the two explainers in
REFEREE for a fair comparison.

Third, for the evaluation of Debiasing GNNs with Explanation, we adopt the same baselines
as those adopted in the evaluation of Effectiveness of Explaining Bias (Fairness).

3.2.4.5 Evaluation Metrics.

We first introduce the metrics for the evaluation of Effectiveness of Explaining Bias (Fair-
ness). Specifically, we evaluate how much the node-level bias Bi is promoted or reduced
between the two sensitive subgroups when only the identified edge set is utilized for the GNN
prediction of the given node. Intuitively, this enables us to evaluate how well each explainer
can identify those edges that maximally account for the exhibited bias and edges whose
existence can maximally alleviate the node-level bias for the prediction, respectively. For the
evaluation of Explanation Fidelity, a widely acknowledged metric is Fidelity− score [229].
Traditionally, Fidelity− score measures the ratio of the consistent pairs between the vanilla
correct predictions and the correct predictions based on the identified edge set. Nevertheless,
to reflect the true reasoning process in GNNs, we argue that the faithfulness of those incorrect
predictions is also critical, as bias may also exhibit and need to be explained for those incorrect
predictions from the perspective of the usability of the GNNs. As a consequence, we extend
the Fidelity− score to measure the ratio of the consistent pairs between all vanilla predictions
and the predictions based on the identified edge set. Formally, the extended fidelity metric
for M explained nodes can be measured with Fidelity = 1

M

∑M
i=1

(
1
(
Ŷi = Ỹi

))
. Here Ŷi

represents the vanilla GNN prediction for node vi. Ỹi denotes the prediction of the given
GNN fΘ for node vi, where only the identified edges for explanation are preserved in the
corresponding computation graph. 1(·) is the indicator function, which returns 1 if Ŷi = Ỹi

and 0 otherwise. Finally, for Debiasing GNNs with Explanation, we utilize two traditional
fairness metrics ∆SP and ∆EO to quantitatively evaluate how much the predictions of a GNN
are debiased in terms of the whole population. Here ∆SP and ∆EO measure the positive
prediction rate difference between two sensitive subgroups over all nodes and nodes with
only positive class labels, respectively. Additionally, we use node classification accuracy to
evaluate the GNN utility.

3.2.4.6 Effectiveness of Explaining Bias (Fairness)

To answer RQ1, we compare our proposed framework REFEREE with other baselines to
evaluate the effectiveness of explaining bias (fairness). Here we adopt the widely used model
GAT as the trained GNN for experiments, and similar results can be observed based on other
GNNs. Specifically, we first randomly sample 50 nodes to be explained (i.e., M = 50). Then
for each node, we obtain the two predictions of the given GNN fΘ based on the computation
graph corresponding to each of the two identified edge sets given by the two explainers. For
obtained predictions, the normalized average value of how much the node-level bias Bi is
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TABLE 3.2. Promoted ∆Bi, denoted as ∆Bi (P), and reduced ∆Bi, denoted
as ∆Bi (R), present how much Wasserstein-1 distance between the outcome
distribution of two sensitive subgroups improves and reduces on average,
respectively. Absolute values of normalized promotion and reduction are given
in ×10−4 scale. Larger values indicate better effectiveness in explaining bias
(fairness). GE- and PGE- prefixes indicate the backbone of both explainers in
REFEREE as GNN Explainer and PGExplainer, respectively. The best results
are in Bold.

German Recidivism Credit
∆Bi (P) ∆Bi (R) ∆Bi (P) ∆Bi (R) ∆Bi (P) ∆Bi (R)

Att. 6.11 ± 2.51 7.84 ± 3.48 4.58 ± 1.67 7.18 ± 2.24 6.72 ± 0.75 8.48 ± 3.29
Grad. 4.27 ± 0.98 5.60 ± 1.85 3.59 ± 2.02 4.42 ± 2.01 5.97 ± 1.07 9.79 ± 1.78

GNN Explainer 5.17 ± 1.20 3.37 ± 1.53 1.74 ± 0.72 3.55 ± 2.08 7.41 ± 1.75 9.24 ± 2.66
PGExplainer 8.73 ± 0.74 9.37 ± 1.87 6.36 ± 2.39 8.66 ± 1.82 7.48 ± 2.70 10.54 ± 3.22

GE-REFEREE 14.29 ± 2.73 14.45 ± 2.29 13.94 ± 3.74 12.05 ± 2.79 10.30 ± 2.64 15.07 ± 3.35
PGE-REFEREE 15.72 ± 2.31 11.97 ± 2.62 10.39 ± 4.08 12.57 ± 3.12 11.57 ± 2.91 14.67 ± 3.49

promoted (given by Bias Explainer) or reduced (given by Fairness Explainer) compared with
the vanilla Bi based on the complete computation graph is presented in Table 3.2. For both
promotion and reduction of Bi, a larger value indicates better results, as more biased or fairer
node-level outcome can be obtained based on the identified structural explanation. We make
the following observations from Table 3.2:

• Stable promotion and reduction of node-level bias is observed in all GNN explanation
approaches. This indicates that the Wasserstein distance-based objective functions
formulated in Eq. (3.9) and Eq. (3.11) effectively help to identify edges that ac-
count for the exhibited node-level bias and edges whose existence can alleviate the
exhibited node-level bias.

• Existing GNN explanation models (e.g., GNN Explainer and PGExplainer) do not
show any superior performance over other straightforward GNN explanation ap-
proaches such as Att and Grad. This observation implies that for these representative
GNN explanation approaches, simply adding a constraint to explain bias (fairness)
at the instance level only achieves limited effectiveness.

• Among all GNN explanation approaches, REFEREE yields the structural explan-
ations that lead to the highest promotion and reduction of node-level bias in all
datasets. Based on such observations, we argue that REFEREE achieves the best
performance over other alternatives on identifying edges that account for the ex-
hibited bias and whose existence can alleviate the exhibited node-level bias for the
prediction.

3.2.4.7 Explanation Fidelity

We then answer RQ2 in this subsection. Generally, it is necessary to ensure that the structural
explanation results given by both explainers in REFEREE are faithful to the given trained
GNN, i.e., the identified edge sets should encode critical information for the given GNN
predictions. More specifically, in our experiments, the predicted labels given by the GNN
model based on the computation graph with the identified edge sets should be the same as
those based on the vanilla computation graph. To evaluate how well the proposed framework
can maintain faithfulness when it is generalized to different GNNs, here we choose three
widely used GNNs, namely GCN [111], GAT [188], and GIN [222] for explanation. Fidelity
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TABLE 3.3. Explanation fidelity evaluation for different GNNs. Numerical
results are in percentage. Vanilla denotes the explanation results given by
the vanilla GNN Explainer. B. Explainer and F. Explainer represent the Bias
Explainer and Fairness Explainer, respectively. The best results are in Bold.

German Recidivism Credit

GCN
Vanilla 88.02 ± 1.48 90.04 ± 1.43 85.26 ± 1.67

B. Explainer 92.20 ± 1.39 90.26 ± 3.24 87.60 ± 2.79
F. Explainer 89.17 ± 0.85 92.08 ± 2.44 89.41 ± 4.08

GAT
Vanilla 83.65 ± 3.02 87.91 ± 2.04 88.64 ± 3.41

B. Explainer 85.71 ± 2.31 90.51 ± 4.58 86.09 ± 2.07
F. Explainer 84.40 ± 1.57 91.98 ± 3.95 87.04 ± 3.10

GIN
Vanilla 88.58 ± 2.50 91.77 ± 1.42 87.62 ± 2.60

B. Explainer 88.11 ± 1.78 90.26 ± 4.13 86.47 ± 2.13
F. Explainer 89.67 ± 2.23 91.45 ± 1.78 88.17 ± 2.98

(A) ∆SP (B) ∆EO (C) Accuracy

FIGURE 3.9. Debiasing GAT with explanations given by REFEREE with two
different backbones and other baselines.

is adopted as the metric for evaluation. Intuitively, fidelity measures to what proportion the
predicted labels based on the identified explanation are maintained to be the same as the
vanilla ones. Here we adopt the GNN Explainer as the backbone of the two explainers in
REFEREE. For both the baseline model and our proposed framework, we train and make
predictions five times separately for 50 randomly selected nodes. We present the performance
comparison between the two explainers in our framework and vanilla GNN Explainer on
the average performance of fidelity in Table 3.3. We can make the observation that both
Bias Explainer and Fairness Explainer achieve comparable performance on fidelity with the
vanilla GNN Explainer across different datasets and GNNs. Consequently, we argue that the
explanation given by REFEREE maintains faithfulness to the GNN predictions.

3.2.4.8 Debiasing GNNs with Explanations

In this subsection, our goal is to answer RQ3 to study how the instance-level explanations
given by REFEREE help with GNN debiasing in terms of the whole population. A straightfor-
ward approach here is to first identify the edges that tend to introduce bias in the outcome of
GNNs for some randomly sampled nodes, then remove such bias-introducing edges and input
the network data into the GNN model to obtain less biased predictions. Nevertheless, the
edges involved in the bias structural explanation (given by Bias Explainer) cannot be directly
removed as a whole, as some edges could be critical for the GNN prediction of the explained
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node. Besides, it is neither reasonable to only preserve the edges whose existence can maxim-
ally alleviate the node-level bias, as some removed non-critical edges for the explained node
could be vital for the prediction of other nodes. Here we adopt an alternative strategy to study
how the explanations help with GNN debiasing in terms of the whole population. Specifically,
for those baseline explanation models, we randomly sample a subset of nodes for explanation.
For each node, baselines are trained to learn structural explanations towards more biased and
fairer predictions independently. Then edges that appear in the bias explanation but not in
the fairness explanation are removed from the original input network. The intuition here is
that if an edge only appears in the edge set that maximally accounts for the exhibited bias
but not in the edge set whose existence can maximally alleviate the node-level bias of the
prediction, such edge can be regarded as being more critical to the exhibited bias instead of
being more critical to an accurate and fair prediction. Therefore, removing edges bearing
such property has the potential to reduce the exhibited bias while maintaining the utility
(i.e., yielding accurate and fair predictions) of the GNN. Correspondingly, for our proposed
framework REFEREE, we also randomly sample nodes and remove edges that appear in the
explanation given by Bias Explainer but not in the explanation from Fairness Explainer, i.e.,
removing edges in set Ẽi\Ẽ ′

i . In this way, edges are removed from the input network data
towards the goal of debiasing the GNN and maintaining its usability at the same time. It
is worth mentioning that such an edge removal strategy does not necessarily lead to graph
structure modifications that are globally optimal for debiasing. However, if fairer GNNs
can be achieved via removing edges that exhibit node-level bias defined in Definition 3.2.1,
the consistency between Definition 3.2.1 and traditional fairness notions can be validated,
i.e., reducing the node-level bias also helps to promote the overall fairness level of the GNN
predictions in terms of traditional fairness metrics.

We adopt GAT as the explained GNN model here, and similar observations can also be found
based on other GNNs. We vary the random sampling ratio of the number of explained nodes
over the number of all nodes among {0%, 5%, 10%, 15%, 20%}. The changes of node
classification accuracy, ∆SP , and ∆EO w.r.t. the sampled node ratio on German dataset is
presented in Fig. 3.9. We make the following observations: (1) With more nodes being
sampled and more edges that only appear in the bias explanations being removed, both ∆SP

and ∆EO reduce significantly. This verifies that removing the edges that account for the node-
level bias generally alleviates the exhibited bias in terms of the whole population. Besides, the
reduction of both ∆SP and ∆EO also validates the consistency between traditional fairness
notions and node-level bias given in Definition 3.2.1. (2) Removing the edges that only appear
in the bias explanations generally reduces the GAT prediction accuracy. We argue that it
is because some edges that lead to more biased results could also be critical for accurate
predictions. However, the accuracy reduction is within an acceptable range. (3) Compared
with other baseline approaches, REFEREE leads to limited accuracy reduction but achieves a
more significant reduction on ∆SP and ∆EO. Such observation indicates that a fairer GNN
is achieved (in terms of traditional fairness notions) based on the explanations identified
by REFEREE compared with the explanations given by other alternatives. Considering our
baselines also bear constraints for fidelity and explaining bias(fairness), it is safe to attribute
such superiority to the designed contrastive mechanism of REFEREE. Consequently, we argue
that REFEREE outperforms baselines in helping achieve fairer GNNs in terms of traditional
fairness notions.
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FIGURE 3.10. A parameter study of the proposed framework REFEREE
based on hyper-parameter α and β. In (a), higher ∆Bi (Reduced) indicates bet-
ter performance on explaining fairness for the Fairness Explainer in REFEREE.
In (b), lower ∆SP indicates a higher level of fairness is achieved based on the
obtained explanations in terms of debiasing GNNs for the whole population.
In (c), higher accuracy represents better GNN utility performance.

3.2.5 Parameter Sensitivity

We present the parameter sensitivity of our proposed framework REFEREE in this section.
More specifically, we explore how the hyper-parameters α and β influence the performance
of REFEREE on (1) explaining the bias (fairness) in GNNs and (2) debiasing the GNN across
the whole population. Here α and β control the effect of the distribution difference constraint
between the two explanations from the two explainers and the constraint to achieve better
fidelity, respectively. In our experiments, we choose the widely used GAT model as the GNN
to be explained, and we present the parameter study based on the performance of debiasing
GNNs with explanations on German dataset. Similar observations can also be drawn on other
GNN models and datasets.
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Now we introduce the experimental settings for the parameter sensitivity study. Specifically,
we fix the value for parameter γ as 1e-4 (the same as the setting in our implementation). First,
for the parameter study of α, we set β =1e-4 (the same as the setting in our implementation),
and we vary α from {1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2}. Second, for the parameter
study of β, we set α = 1 (the same as the setting in our implementation), and we also vary β
from {1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2}. The performance changes of the proposed
framework on explaining fairness (with ∆Bi (Reduced) being the node-level bias metric)
and debiasing the GNN predictions over the whole population (with ∆SP being the fairness
metric and accuracy being the utility metric) are presented in Section 5.1.4.4. We can draw
observations as below:

• From the perspective of explaining fairness (i.e., identifying the edges whose ex-
istence can maximally alleviate the exhibited node-level bias), we observe that a
relatively larger α and a relatively smaller β help to achieve better performance, i.e.,
larger ∆Bi (Reduced), in Fig. 3.10a. This is because larger α and smaller β help the
framework better differentiate the edges between the two types of explanations given
by the two explainers. In this way, the fairness explainer is able to identify an edge
set that leads to more significant node-level bias reduction, i.e., to give a fairness
explanation that brings higher ∆Bi (Reduced) for any given node to be explained.

• From the perspective of debiasing the GNN predictions, we observe that a relatively
larger α and a relatively smaller β help to achieve better debiasing performance
in Fig. 3.10b. This is because: (1) Larger α helps to better differentiate the edges
between bias explanation and the fair explanation. This makes it easier for the
framework to distinguish the edges that account for the exhibited bias and edges
whose existence can alleviate the node-level bias. (2) Smaller β means that the
constraint strength on prediction fidelity is weak. This enables the framework to
focus more on explaining bias (fairness) for edges in any given computation graph.

• From the perspective of maintaining GNN utility, we observe that a relatively smaller
α and a relatively larger β help achieve higher prediction accuracy in Fig. 3.10c.
This is because smaller α and larger β enforce the framework to focus more on the
fidelity of the explanation. Therefore, more critical information could be encoded in
the identified edges. Such an advantage leads to higher prediction accuracy based on
the identified edges for any given node.

• Practically, it is necessary to balance the performance of bias reduction and model
utility for any given GNN. In this regard, moderate values (e.g., values between 1e-4
and 1e0) for both α and β are recommended.

3.2.6 Related Work

Explanation of GNNs. Generally, existing GNN explanation approaches can be divided into
data-level approaches and model-level ones [229]. For data-level approaches, the explanation
models identify critical components in the input network data of GNNs, e.g., node features
or edges. For example, squared gradient values are regarded as the importance scores of
different input features in the node classification task [7]; interpretable surrogate models are
leveraged to approximate the prediction of a certain GNN model, where the explanations
from the surrogate model can be regarded as the explanation for the corresponding GNN
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prediction [81, 191]. Another popular approach to identify important components of the input
network data is to make perturbations on the input network, then observe the corresponding
change in the output. The basic rationale is that if small perturbations lead to dramatic
changes in the GNN prediction, then what has been perturbed is regarded as critical for the
GNN prediction [228, 132, 231, 170, 197]. Despite its significance, this is a less studied
topic. To provide model-level explanations for GNNs, graph generation can be leveraged to
maximize the prediction of a GNN regarding a specific prediction (e.g., the probability of a
class in graph classification) [230]. If the prediction probability of GNN regarding a specific
prediction result can be maximized, then the generated input graph can be regarded as the
explanation for this GNN that includes critical graph patterns. Different from the existing
GNN explanation approaches, our proposed framework REFEREE not only explores critical
edges for GNN predictions, but also identifies their contribution to the bias in GNNs. Hence,
REFEREE is able to provide explanations for bias in GNNs, which helps understand how
bias arises. This is with significance for GNN deployment in decision-critical scenarios and
potentially facilitates the development of fairer GNNs.

Fairness of GNNs. With the increasing societal concerns on the fairness of GNNs [193],
explorations have been made to alleviate the bias exhibited in GNNs. Generally, existing works
focus either on group fairness [58] or individual fairness [233]. Group fairness requires that
GNNs should not yield biased predictions against any specific demographic subgroups [134].
Among existing works, promoting group fairness through adversarial learning is one of the
most popular GNN debiasing approaches [37]. Its goal is to train a discriminator to identify
the sensitive information from the learned node embeddings. When the discriminator can
barely distinguish the sensitive feature given any learned embedding, the sensitive feature can
be regarded as being decoupled from the learned embeddings. Additionally, GNN debiasing
can also be performed based on the input network data. For example, the network structure
can be modified such that nodes in different demographic subgroups bear similar distributions
on their neighbor node attribute values [47]. Moreover, edge dropout [179] is also proved to
be effective in debiasing GNNs. On the other hand, individual fairness requires that similar
individuals should be treated similarly [233, 104]. However, promoting individual fairness
for GNNs remains under-explored. To the best of our knowledge, the only approach to fulfill
such a goal is developed from a ranking perspective [46].

3.2.7 Conclusion
In this paper, we focus on a novel problem of structural explanation of node-level bias in
GNNs. Specifically, we first propose to model node-level bias quantitatively, and then develop
a principled post-hoc explanation framework named REFEREE with two different explainers:
the bias explainer and the fairness explainer. Conditional on being faithful to the given
GNN prediction, the two explainers aim to identify structural explanations that maximally
account for the exhibited bias and that maximally contribute to the fairness level of the GNN
prediction. Experiments on real-world network datasets demonstrate the effectiveness of
REFEREE in identifying edges that maximally account for the exhibited node-level bias
and edges whose existence can maximally alleviate the node-level bias for any given GNN
prediction. Furthermore, REFEREE also shows superior performance over baselines on
helping debias GNNs.
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CHAPTER 4

Fairness Optimization for Graph Machine Learning

4.1 Individual Fairness for Graph Neural Networks: A
Ranking-Based Approach

4.1.1 Introduction

Graph structured data is ubiquitous in today’s increasingly connected world. Examples
include social networks, biological networks, knowledge graphs, and critical infrastructure
systems, to name a few. To gain deep insights from these graphs, a plethora of sophisticated
graph mining algorithms have been developed in the past few decades [4, 68, 173, 199].
Among these efforts, Graph Neural Networks (GNNs) have emerged as a promising learning
paradigm recently and demonstrated superior learning performance in diverse settings [111,
188, 74], which makes GNNs play an increasingly important role in various high-stake
decision-making scenarios, e.g., credit scoring [176], recommendation [64], and medical
diagnosis [64]. Nevertheless, close on the heels of the successful adoption of GNNs in various
real-world scenarios has been the increasing societal concerns that these algorithms often do
not have the fairness consideration, resulting in discriminatory actions toward specific groups
or populations [133, 55, 77, 8]. For example, there is a growing practice of credit scoring
using social network information [203], in which graph neural networks have become a de
facto solution [193, 75]. Although these practices have shown to broaden opportunities for a
larger portion of the population, they still yield unfair decisions for people in certain protected
groups (e.g., low-income people) [133, 55].

To date, a wide spectrum of fairness measures has been developed to quantify and mitigate the
bias of underlying learning algorithms [58, 233, 162, 118]. Existing fairness measures can be
mainly divided into group fairness measures and individual fairness measures [133]. On the
one hand, group fairness ensures that members of different protected groups (e.g., gender, race,
and income) bear similar outcome statistics regarding model predictions [65, 77, 77, 232].
On the other hand, individual fairness scrutinizes potential bias and discrimination at a much
finer granularity, and ensures similar individuals should yield similar prediction outcomes [58,
233]. Although much progress has been made in the field of algorithmic fairness, the studies
of fairness issues in graph mining algorithms are fairly recent. Specifically, in the context
of graph representation learning, a vast majority of existing works focus on the notion of
group fairness, aiming to learn node embeddings that are independent of any protected
attributes [162, 13, 18]. However, as graph data is naturally heterogeneous, different data
modalities (i.e., graph structure and node attributes) are often coupled together. Thus bias
and discrimination can exist in various shapes and formats. In this regard, beyond the notion
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FIGURE 4.1. (a) Outcome distance for all instance pairs. (b) Lipschitz condi-
tion sanity check for pairs (u1, u4) and (u2, u4).

of group fairness regarding protected attributes, it is also desired to dig into the atomic
components of graphs (i.e., a node) to ensure that graph representation learning renders
similar results for similar individuals—in achieving individual fairness.

Despite the fundamental importance of achieving individual fairness for graph mining al-
gorithms, the related studies are still in their infancy. In this work, we make an initial
investigation to enhance the individual fairness of graph neural networks for decision-making.
However, it remains a daunting problem mainly because of the following challenges: (1)
Constraint Formulation. Formulating proper constraints to improve individual fairness is non-
trivial. Traditionally, given a pair of instances, such constraint is achieved via the Lipschitz
condition1 [58, 104]. Nevertheless, the Lipschitz constant is often hard to be specified due to
distance metric difference between the input and outcome space. (2) Distance Calibration.
The absolute distance comparison in the Lipschitz condition fails to calibrate the differences
between different instances. For example in Fig. 4.1, on the one hand for instance u1, instance
u4 is the closest one to it in the outcome space. However, the distance between them violates
the Lipschitz condition and thus we do not impose the individual fairness constraint between
them (although we should since u1 is much closer to u4 than other instances). On the other
hand for u2, although u4 is the second farthest one to it, Lipschitz condition is still satisfied and
individual fairness constraint is imposed (in fact we may not need to do that since u2 is much
further to u4 than u2, u5, and u6). (3) End-to-End Learning Paradigm. A major advantage of
GNNs over traditional unsupervised graph embedding algorithms is their end-to-end learning
mechanism, i.e., the node embeddings are tailored for specific downstream learning tasks. In
this regard, how to incorporate the individual fairness constraint seamlessly into the learning
process without jeopardizing its end-to-end paradigm is another challenge to be tackled.

1Given a pair of instance x and y, their distance in the outcome space is upper bounded by their distance in
the input space such that D(f(x), f(y)) ≤ Ld(x, y), where f(.) maps instances to the output space, and L is
the Lipschitz constant. D(., .) and d(., .) are two functions that measure the distance of instances in the output
space and input space, respectively.
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TABLE 4.1. Symbols and descriptions.

Symbols Definitions or Descriptions
M backbone GNN model
G input graph
A adjacency matrix of graph G
X node feature matrix of graph G
Y ground truth of downstream learning task
Ŷ prediction of downstream learning task
SG oracle pairwise similarity matrix
SŶ pairwise similarity matrix from Ŷ
n number of nodes
d number of node features
l layer number in the backbone GNN model

In this paper, to tackle these challenges, we propose a principled framework REDRESS
(short for Ranking basEd inDividual faiRnESS) to promote the individual fairness of graph
neural networks. Specifically, to tackle the first two challenges, we refine the definition of
individual fairness from a ranking perspective, and formulate the individual fairness constraint
as “for each instance ui, the two ranking lists of other instances (based on their distances
to ui) in the input space and outcome space should be as similar as possible". As such,
we can avoid the delicate distance comparison between two different distance metrics in
the Lipschitz condition, and the relative ranking comparison can also naturally alleviate the
issue of uncalibrated distance. To tackle the third challenge, two optimization modules are
encapsulated in REDRESS to improve model utility and individual fairness, respectively. To
fit into the end-to-end training process, the two optimization modules are designed to adapt
to the gradient-based optimization techniques. The main contributions of this paper can be
summarized as follows.

• Problem Formulation. We study a novel problem of promoting individual fairness
for graph neural networks from a ranking perspective.

• Algorithmic Design. We address the limitations of existing individual fairness
constraints and propose a novel plug-and-play framework to mitigate the individual
biases without jeopardizing the utility of underlying graph neural networks.

• Experimental Evaluations. We perform comprehensive experimental evaluations
on real-world datasets to demonstrate the superiority of our proposed framework in
terms of both bias mitigation and model utility maximization.

4.1.2 Problem Statement

In this section, we firstly present the notations used throughout this paper. Then we introduce
the definition of individual fairness from a ranking perspective, followed by the problem
formulation of promoting ranking based individual fairness of GNNs.

Notations. We use bold uppercase letters (e.g., S), bold lowercase letters (e.g., s), and normal
lowercase letters (e.g., s) to denote matrices, vectors and scalars, respectively. Also, for any
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matrix, e.g., S, we represent its i-th row as si, its (i,j)-th entry as Sij or sij , and its transpose
as S⊤. For any scalar, | · | is the absolute value operator.

Let G = (A, X) be an input graph, where A ∈ Rn×n denotes the adjacency matrix of the
graph and X ∈ Rn×d denotes the matrix for node features (n nodes and d node features). Y
and Ŷ represent the ground truth and predictions for a specific downstream task, respectively.
For example, if the downstream task is node classification, Y ∈ {0, 1}n×c and Ŷ ∈ Rn×c are
the ground truth and predicted class membership matrix (c classes), respectively.

To tackle the aforementioned challenges of Constraint Formulation and Distance Calibration,
we refine the definition of individual fairness from a ranking perspective (Definition 4.1.1)2.
We follow similar settings in [104, 120, 118], where the oracle pairwise similarity matrix SG
is given apriori (e.g., assigned by specialists in [118]).

DEFINITION 4.1.1. Individual fairness from a ranking perspective. Given the oracle
pairwise similarity matrix SG of the input graph G, and the similarity matrix SŶ among
instances in the outcome space (defined upon a similarity metric), we say the predictions are
individually fair if for each instance i, the two ranking lists that encode the relative order of
other instances (ranked based on the similarity between instance i and other instances in
descending order) from SG and SŶ are consistent with each other.

Example: Given a graph G with five nodes, suppose the ranking list that encodes the similarity
between node u1 and other nodes from SG is {u4, u3, u2, u5}, we say the predictions are are
individually fair for node u1 if the ranking list that encodes the similarity between u1 and
other nodes from SŶ is also {u4, u3, u2, u5}.

Based on Definition 4.1.1, we formulate the problem of promoting ranking based individual
fairness of GNNs as follows.

PROBLEM 4.1.1. Promoting ranking based individual fairness of GNNs. Given an input
graph G, a backbone GNN model M (e.g., GCN [111]), the ground truth Y and the predictions
Ŷ corresponding to a specific downstream task (e.g., node classification), oracle pairwise
similarity matrix SG from G, and pairwise similarity matrix SŶ obtained from Ŷ, our goal is
to promote the individual fairness of each node in the graph G according to Definition 4.1.1
without jeopardizing the utility of the model predictions (i.e., making Ŷ close to Y).

4.1.3 The Proposed Framework—REDRESS

In this section, we firstly introduce the overall structure of the proposed framework REDRESS.
Then details of utility maximization and individual fairness promotion are presented, followed
by the overall objective function formulation for training.

4.1.3.1 Overall Framework Structure

As the main focus of this work is to promote the individual fairness of GNNs during the
decision-making process while maximally preserve the utility of the underlying learning
models, we formulate these two desiderata as two separate modules and encapsulate them

2For the ease of presentation convenience, we use similarity measures instead of distance metrics. Similarity
measure can be considered as an inverse distance metric.
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FIGURE 4.2. An illustration of the proposed REDRESS structure. Module
1 and 2 is utilized for model utility maximization and individual fairness
promotion, respectively.

together with the GNN backbone into an end-to-end learning framework—REDRESS. The
overall architecture of REDRESS is shown in Fig. 4.2. Essentially, it consists of three
key parts: GNN backbone model, utility maximization (Module 1), and individual fairness
promotion (Module 2).

• GNN backbone model. It provides a basic GNN architecture for downstream learn-
ing tasks. Some prevalent choices include GCN [111], GAE [110], and SGC [205].

• Utility maximization. To maximize the utility of the backbone model for a specific
learning task, this module aims to minimize the prediction loss of the corresponding
task.

• Individual fairness optimization. To relieve the individual bias toward fair decision-
making, this module enforces the similarity ranking lists from SŶ and SG of each
instance to be consistent according to Definition 1.

4.1.3.2 GNN Backbone Model

Acting as the backbone of the proposed framework, the GNN model takes the input G and
outputs Ŷ as the predictions for a specific downstream learning task. The basic operation of
GNN between l-th and (l + 1)-th layer can be summarized as

h(l+1)
v = σ(COMBINE(h(l)

v , f({h(l)
u : u ∈ N (v)}))), (4.1)

where h(l)
v and h

(l+1)
v represent the embedding of node v at l-th and (l+1)-th layer, respectively.

For a graph with node feature matrix X, h(0)
v can be initialized as the input node feature xv.

N (v) indicates the neighbor set of node v according to the adjacency matrix A. f (.) denotes
the aggregating function, e.g., weighted sum. COMBINE(.) indicates the combining function
for output of f (.) and h

(l)
v , which combines the representation from the centering node and the
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FIGURE 4.3. An illustrative example of the relative ranking order comparison
for our proposed framework.

representations of its neighbors. σ(.) represents the activation function (e.g., ReLU). Denote
the output of the last GNN layer as matrix Z ∈ Rn×c, then the predictions Ŷ of GNN can then
be obtained as softmax(Z) ∈ Rn×c for node classification [111] and sigmoid(Z⊤Z) ∈ Rn×n

for link prediction [110].

4.1.3.3 Model Utility Maximization

To maximize the utility of the backbone GNN model in advancing downstream learning
tasks, we need to enforce the predictions Ŷ to be closer to the ground truth Y. To this end,
a loss function corresponding to the specific learning task should be defined in Module 1
between Y and Ŷ. For example, for the node classification and the link prediction tasks, the
corresponding cross-entropy loss can be used to quantify the utility of the GNN model

Lutility = −
∑

(i,j)∈T

YijlnŶij. (4.2)

Here T represents the (node, class) tuple set for training nodes in the node classification
task and (node, node) tuple set for the vertices of training edges in the link prediction task.
The utility maximization can be achieved by minimizing the cross-entropy loss in Eq. (4.2).
Note that for this module, gradient-based optimization techniques can be directly applied for
end-to-end training as the loss function is differentiable w.r.t. the model parameters.

4.1.3.4 Individual Fairness Promotion

As mentioned above, this module aims to promote the ranking based individual fairness for
GNN such that for each node, the two ranking lists obtained from the oracle similarity matrix
SG and the outcome similarity matrix SŶ are consistent with each other. Since the ranking list
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from the oracle similarity matrix SG is fixed, and SŶ is derived from the prediction outcome
Ŷ via certain similarity metric, the ranking list from SŶ should be optimized via learning
more appropriate Ŷ—we refer it as ranking optimization. One straightforward solution to
achieve this goal is to derive two ranking lists from SG and SŶ for each node, then define
a loss function to quantify the difference between these two ranking lists. After that, we
can combine the loss function over all nodes together and minimize the overall loss for a
better Ŷ that can promote individual fairness. However, such a straightforward solution is
often impractical as the ranking operations for the ranking lists will make the overall loss
function not differentiable (w.r.t. the GNN model parameters) anymore, in a way the prevalent
gradient-based optimization techniques cannot be directly applied. In other words, there is a
gap between the involvement of ranking operations pertaining to Definition 1 and the need
for gradient-based optimization techniques. To bridge the gap, we propose a novel ranking
optimization strategy and we will elaborate more details in the following part.

4.1.3.5 Ranking Optimization

As mentioned above, minimizing the difference between two ranking lists (for each node)
from SŶ and SG with gradient-based optimization techniques is difficult because of the
non-differentiable ranking operations. Instead of formulating the loss based on ranking lists,
here we propose a new loss formulation directly upon the outcome similarity matrix SŶ and
oracle similarity matrix SG . Since the new loss formulation does not rely on the ranking lists,
gradient-based optimization techniques can then be applied. The new loss formulation is
based on a probabilistic approach inspired by [161]. For each node, the new loss formulation
will enforce the relative order of each node pair decided by SŶ and that decided by SG to be
consistent. More specifically, for each node ui, if it is with higher similarity value to uj than
um in SŶ (i.e., ŝi,j > ŝi,m, i ̸= j ̸= m, where ŝi,j denotes the (i, j)-th entry of SŶ), then it
should also be with higher similarity value to uj than um in the oracle similarity matrix SG
(i.e., si,j > si,m, i ̸= j ̸= m, where si,j denotes the (i, j)-th entry of SG). In other words, the
loss aims to penalize the node pairs whose relative similarity order are not consistent across
the predicted similarity matrix SŶ and the oracle similarity matrix SG (as shown in Fig. 4.3).
We then introduce the details of the loss formulation below.

To illustrate the formulation of the loss function, we take the loss computation of the node
pair (uj , um) centered on node ui as an example. For node ui, we define P̂j,m(ŝi,j, ŝi,m) as
the predicted probability that the node ui is more similar to node uj than to node um. Here
ŝi,j and ŝi,m represent the similarity score between node pairs (ui, uj) and (ui, um) from the
outcome similarity matrix SŶ, respectively. To formulate it as a probability score between 0
and 1, we make use of the sigmoid function:

P̂j,m(ŝi,j, ŝi,m) =
1

1 + e−α(ŝi,j−ŝi,m)
, (4.3)

where α here is a scalar. Accordingly, define the known probability that the node ui is more
similar to node uj than to node um as Pj,m(si,j, si,m), which can be formulated as follows:

Pj,m(si,j, si,m) =


1, si,j > si,m,
0.5, si,j = si,m,
0, si,j < si,m.

(4.4)
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Here si,j and si,m denote the similarity between node pairs (ui, uj) and (ui, um) from the oracle
similarity matrix SG , respectively. To promote individual fairness via ranking optimization,
it is necessary to quantify and minimize the difference between the predicted probability
distribution and the known one. Here, we make use of cross-entropy loss for the difference
quantification between the two distributions. For example, the cross-entropy loss of node pair
(uj , um) centered on ui can be expressed as

Lj,m(i) = −Pj,mlogP̂j,m − (1− Pj,m)log(1− P̂j,m). (4.5)

Then, the total loss function over all node pairs centered on node ui can be formulated as

Lfairness(i) =
∑
j,m

Lj,m(i) , (4.6)

where i ̸= j ̸= m. By minimizing the above loss function, the relative order of all node pairs
(centered on node ui) decided by SŶ will be enforced to be consistent with the corresponding
order decided by SG . When the loss of all nodes is aggregated and minimized, the ranking
based individual fairness can be achieved.

4.1.3.6 Training Facilitation.

Minimizing Eq. (4.6) for node ui requires the ranking of all other nodes centered on node
ui being optimal (i.e., the ranking follows a descending order according to the similarity
score from SG). This is usually hard to achieve, especially for graphs with a large number
of nodes. Consequently, for each node ui, we propose to focus on the ranking optimization
of the top-k nodes given by the outcome similarity matrix SŶ. This strategy is motivated
by the basic principle of individual fairness [58], which is only emphasizing the outcome
of “similar people" to be similar. Motivated by existing research on learning to rank [161],
we achieve this goal by developing a simple but effective approach. Specifically, we define
z@k(·, ·) as the similarity metric (e.g., NDCG@k [88] or ERR@k [23]) between the top-k
ranking list derived from SG and the predicted top-k ranking list derived from SŶ for each
node. For the loss of each node pair given by Eq. (4.5), we scale the loss term by the absolute
value change of z@k if the ranking positions of the corresponding node pair uj and um in the
predicted ranking list are swapped. Then the loss for each node ui can be presented as

Lfairness(i) =
∑
j,m

Lj,m(i)|∆z@k|j,m , (4.7)

where i ̸= j ̸= m. To illustrate the computation of |∆z@k|j,m, we take k = 4, i = 1, j = 4 and
m = 2 as an example. Assume the top-4 ranking of node u1 with other nodes in SŶ is ˆListui

=
{u4, u3, u2, u5}, and the corresponding ranking in SG is Listui

= {u4, u3, u5, u2}. Then the
|∆z@k|4,2 corresponding to node pair (u4, u2) centered on node u1 is |z@k(Listu1 , ˆListu1) −
z@k(Listu1 , ˆList

′
u1
)|. Here ˆList

′
u1

= {u2, u3, u4, u5}, i.e., ˆListu1 with the positions of node u2

and u4 swapped. With such method, the ranking optimization will be enforced to focus more
on the top-k nodes for each node ui. Here, k is often specified as a very number (k ≪ n).

Besides, |∆z@k|j,m is always zero if neither node uj nor um is from the top-k nodes of
ui according to SŶ. Consequently, this strategy also reduces the time complexity from
O(n·

(
n−1
2

)
) = O(n3) to O(n·

(
n−1
1

) (
k
1

)
) = O(n2k) for the total loss computation. Neverthe-

less, the time complexity of O(n2k) is still expensive for the training on large graphs. To
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further reduce the time complexity, here we constrain that both nodes in the pair (uj , um)
are from the top-k ranked nodes of ui according to SŶ. Then the total fairness loss can be
formulated as

Lfairness =
∑
i

∑
j,m:j,m∈K(i)

Lj,m(i)|∆z@k|j,m , (4.8)

where i ̸= j ̸= m, and K(i) represents the top-k ranked node set for node ui. In this way,
the computational complexity can be further reduced from O(n2k) to O(n·

(
k
2

)
) = O(nk2),

which facilitates the training process of REDRESS.

4.1.3.7 Overall Objective Function

Now we have Lutility for the model utility maximization (formulated in Section 4.1.3.3), and
Lfairness for the model individual fairness promotion (formulated in Section 4.1.3.4). Then
the overall objective function of the proposed framework REDRESS can be attained by
combining the two formulations together:

Ltotal = Lutility + γLfairness. (4.9)

Here γ is a tunable hyperparameter controlling the strength of individual fairness constraint.
For training of the proposed framework, the gradient-based techniques can be directly adopted
to minimize the total objective function Ltotal.

4.1.4 Experimental Evaluations

In this section, we first introduce the adopted downstream learning tasks and the used datasets.
Then we present the experimental settings and the implementation details. At last, we show
the empirical evaluation results of REDRESS.

4.1.4.1 Downstream Tasks and Datasets

Downstream Tasks. To assess the performance of our proposed framework REDRESS, we
choose the widely adopted semi-supervised node classification task [111, 193, 205] and link
prediction task [110, 150] as the downstream learning tasks. Both of these two tasks are of
high practical significance in many areas.

Datasets. To comprehensively explore how REDRESS promotes the individual fairness of
GNNs from a ranking perspective, we adopt three different real-world datasets for each of the
chosen downstream task. Specifically, for the semi-supervised node classification task, we
adopt one citation network (ACM [183]) and two co-authorship networks (Co-author-CS and
Co-author-Phy [174] from the KDD Cup 2016 challenge). For the link prediction task, three
social networks (BlogCatalog [184], Flickr [82], and Facebook [121]) are used for evaluation.
All of these datasets are publicly available. For citation networks, each node represents a
paper, and an edge between two nodes denotes the citation relationship between two papers.
For co-author networks, nodes represent authors, and an edge between two nodes indicates
that the linked two authors have co-authored a paper together. Node attributes of both citation
and co-author networks are generated by the bag-of-words model based on the abstract of
the published paper. For social networks, each node represents a user, and links represent
the corresponding interactions between users. The attributes here are constructed by the
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profiles or descriptions of users. Here, CS and Phy are short for the datasets Co-author-CS and
Co-author-Phy, respectively. The detailed statistics of these datasets are shown in Table 4.2.

4.1.4.2 Experiment Settings

GNN Backbone Models. As mentioned previously, our proposed REDRESS is a plug-and-
play framework which can be easily generalized to any prevalent GNN architectures. Hence,
we choose two different backbone GNN architectures for each downstream learning task in our
experiments. For the semi-supervised node classification task, Graph Convolutional Network
(GCN) [111] and Simplifying Graph Convolutional Network (SGC) [205] are adopted as
our backbones. For the link prediction task, GCN and Variational Graph Auto-Encoders
(GAE) [110] are employed.

Oracle Similarity Matrix. Following the settings of [104, 120, 118], the oracle similarity
matrix SG of the input graph G is a given apriori. In practice, the oracle similarity matrix is
often problem-specific and is determined by humans. To show the generalization capability of
REDRESS in handling different types of oracle similarity matrix, we construct two different
types of oracle similarity matrix from the feature perspective and the structural perspective.
From the feature perspective, we compute the cosine similarity between input node features
as the SG; while from the structural perspective, we compute the Jaccard similarity between
node pairs as the SG . For the outcome similarity matrix SŶ, we utilize the cosine distance,
which is a widely adopted distance metric to measure similarity in the embedding space.

Baselines. To demonstrate the superiority of our proposed ranking-based individual fair-
ness framework, we compare REDRESS with the following individual fairness promotion
approaches on top of the backbone GNN models. It should be noted that the existing group
fairness graph embedding methods (such as [162, 13]) cannot be used for comparison as they
achieve fairness for subgroups determined by specific protected attributes while we focus on
the notion of individual fairness without such protected attributes.

• PFR [118]: PFR aims to learn fair representations to achieve the notion of individual
fairness. It has demonstrated to outperform traditional approaches such as [120,
233, 77] on individual fairness promotion. Since PFR can be considered as a pre-
processing strategy and is not tailored for graph data, we employ it on the input
node features to generate a new fair node feature representation and feed it into the
backbone GNN models for learning.

• InFoRM [104]: InFoRM is a recently proposed individual fairness framework for
conventional graph mining tasks (e.g., PageRank, Spectral Clustering) based on the
Lipschitz condition. Here, we adapt InFoRM to different backbone GNN models by
combing its individual fairness promotion loss and the unity loss of the backbone
GNN model together, and then optimize the final loss in an end-to-end manner.

Evaluation Metrics. For model utility evaluation, we adopt classification accuracy (ACC)
and area under receiver operating characteristic curve (AUC) for the node classification task
and the link prediction task, respectively. For individual fairness evaluation, we adopt two
widely used ranking metrics NDCG@k [88] and ERR@k [23] to measure the similarity
between the ranking list from SŶ (outcome similarity matrix) and SG (oracle similarity matrix)
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TABLE 4.2. Detailed statistics of the used datasets for node classification
(short as NC) and link prediction (short as LP).

Dataset # Nodes # Edges # Features # Classes

NC
ACM 16,484 71,980 8,337 9

CS 18,333 81,894 6,805 15
Phy 34,493 247,962 8,415 5

LP
BlogCatalog 5,196 171,743 8,189 N/A

Flickr 7,575 239,738 12,047 N/A
Facebook 4,039 88,234 1,406 N/A

for each node. The average value of NDCG@k and ERR@k across all nodes3 are reported.
k = 10 is adopted for quantitative performance comparison, but different choices of k are
also studied. The quantitative performance and corresponding discussion based on ERR@k
is provided in the online version4.

4.1.4.3 Implementation Details

REDRESS is implemented in Pytorch [154]. For all GNN backbones adopted in our ex-
periments (i.e., GCN5, SGC6 and GAE7), we utilize their released implementations. We set
the learning rate of all experiments as 0.01 for both the node classification task and the link
prediction task. For GCN and SGC based models, the layer and hidden unit number is set as
2 and 16, respectively. For GAE based models, we set the graph convolutional layer number
as 3, with the two hidden unit number being 32 and 16. For the training of REDRESS in all
experiments, we set γ and k in the loss function as 1 and 10, respectively. All models are
optimized with Adam optimizer [109]. For both of the two downstream tasks, datasets are
randomly shuffled, and only training data is visible for all models. More details, including
dataset split and hyper-parameter settings, are provided in the online version.

4.1.4.4 Effectiveness of REDRESS

Now we perform experiments on real-world networks to validate the effectiveness of the
proposed REDRESS framework. We aim to answer the following research questions:

• RQ1: How well can REDRESS balance the GNN model utility and individual
fairness compared with other baselines?

• RQ2: How will the individual fairness promotion hyperparameter γ affect the
performance of REDRESS?

• RQ3: How will the choice of parameter k affect the performance of REDRESS?

RQ1: Performance on Balancing Utility and Fairness. First, we investigate the effective-
ness of the proposed REDRESS framework by comparing its performance on balancing the

3all nodes in the test set for node classification and all nodes for link prediction
4See online version here: https://dl.acm.org/doi/abs/10.1145/3447548.3467266 for

supplementary discussion and experimental results.
5https://github.com/tkipf/pygcn
6https://github.com/Tiiiger/SGC
7https://github.com/tkipf/gae
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TABLE 4.3. Node classification results on ACM, Co-author-CS (CS) and
Co-author-Phy (Phy) datasets. BB represents the backbone GNN model.
Vanilla denotes the vanilla GNN. All values are reported in percentage. Best
performance is marked in bold.

BB Model Feature Similarity Structural Similarity
ACC NDCG@10 ACC NDCG@10

ACM

GCN

Vanilla 72.49 ± 0.6 47.33 ± 1.0 72.49 ± 0.6 25.42 ± 0.6
InFoRM 68.03 ± 0.3 39.79 ± 0.3 69.13 ± 0.5 12.02 ± 0.4

PFR 67.88 ± 1.1 31.20 ± 0.2 69.00 ± 0.7 23.85 ± 1.3
REDRESS (Ours) 71.75 ± 0.4 49.13 ± 0.4 72.03 ± 0.9 29.09 ± 0.4

SGC

Vanilla 68.40 ± 1.0 55.75 ± 1.1 68.40 ± 1.0 37.18 ± 0.6
InFoRM 68.81 ± 0.5 48.25 ± 0.5 66.71 ± 0.6 28.33 ± 0.6

PFR 67.97 ± 0.7 34.71 ± 0.1 67.78 ± 0.1 37.15 ± 0.6
REDRESS (Ours) 67.16 ± 0.2 58.64 ± 0.4 67.77 ± 0.4 38.95 ± 0.1

CS

GCN

Vanilla 90.59 ± 0.3 50.84 ± 1.2 90.59 ± 0.3 18.29 ± 0.8
InFoRM 88.66 ± 1.1 53.38 ± 1.6 87.55 ± 0.9 19.18 ± 0.9

PFR 87.51 ± 0.7 37.12 ± 0.9 86.16 ± 0.2 11.98 ± 1.3
REDRESS (Ours) 90.70 ± 0.2 55.01 ± 1.9 89.16 ± 0.3 21.28 ± 0.3

SGC

Vanilla 87.48 ± 0.8 74.00 ± 0.1 87.48 ± 0.8 32.36 ± 0.3
InFoRM 88.07 ± 0.1 74.29 ± 0.1 88.65 ± 0.4 32.37 ± 0.4

PFR 88.31 ± 0.1 48.40 ± 0.1 84.34 ± 0.3 28.87 ± 0.9
REDRESS (Ours) 90.01 ± 0.2 76.60 ± 0.1 89.35 ± 0.1 34.24 ± 0.2

Phy

GCN

Vanilla 94.81 ± 0.2 34.83 ± 1.1 94.81 ± 0.2 1.57 ± 0.1
InFoRM 89.33 ± 0.8 31.25 ± 0.0 94.46 ± 0.2 1.77 ± 0.0

PFR 89.74 ± 0.5 24.16 ± 0.4 87.26 ± 0.2 1.20 ± 0.1
REDRESS (Ours) 94.63 ± 0.7 43.64 ± 0.5 93.94 ± 0.3 1.93 ± 0.1

SGC

Vanilla 94.45 ± 0.2 49.63 ± 0.1 94.45 ± 0.2 3.61 ± 0.1
InFoRM 92.01 ± 0.1 43.87 ± 0.2 94.27 ± 0.3 3.64 ± 0.0

PFR 89.74 ± 0.3 28.54 ± 0.1 89.73 ± 0.3 2.62 ± 0.1
REDRESS (Ours) 94.30 ± 0.1 53.40 ± 0.1 93.94 ± 0.2 4.03 ± 0.0

model utility and individual fairness against state-of-the-art alternatives. For generalization
purpose, the performance of REDRESS is compared with other baselines under different
settings of oracle similarity matrices (i.e., feature similarity and structure similarity) and
different GNN backbones (i.e., GCN, SGC, and GAE). Quantitative results for the node clas-
sification task and the link prediction task are shown in Table 4.3 and Table 4.4, respectively.
In these two tables, higher ACC and AUC represents better performance on model utility,
and higher NDCG@10 indicates better performance on individual fairness. We can make the
following observations from these two tables:

• From the perspective of model utility (i.e., ACC in node classification and AUC
in link prediction), our proposed framework REDRESS provides competitive per-
formance compared with other state-of-the-art baselines. Besides, our proposed
framework REDRESS achieves better utility performance compared with the vanilla
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GNN backbones in some cases. We conjecture that this is partly because the indi-
vidual fairness promotion term plays the role of regularization to prevent over-fitting
of the backbone GNN models.

• From the perspective of ranking based individual fairness, our framework outper-
forms all baseline methods in all cases with different levels of improvement w.r.t. the
fairness evaluation metric NDCG@10. This verifies the effectiveness of the indi-
vidual fairness promotion of our proposed framework REDRESS. PFR and InFoRM
do not improve NDCG@10 in some cases due to the fact that their algorithms are
not designed for ranking based individual fairness optimization.

• From the perspective of balancing the model utility and individual fairness, our
framework achieves both competitive model utility performance and superior indi-
vidual fairness promotion in all cases compared with other baselines. Based on such
observations, we argue that our framework achieves better performance on balancing
the model utility and individual fairness compared with other alternatives.

RQ2: Influence of Individual Fairness Promotion Hyperparameter γ. In our framework,
the strength of individual fairness promotion is controlled by hyperparameter γ as defined in
Eq. (4.9). To explore how γ affects the performance of REDRESS, we vary it among {1e-4,
1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3, 1e4} and report the performance on utility and individual
fairness within fixed training epochs. Due to space limit, here we only present the results
from (a) ACM with SGC backbone based on Jaccard similarity, and (b) Facebook with GAE
backbone based on cosine similarity as Fig. 4.4. We can make the following observations (we
also have similar observations in other datasets):

• When γ is relatively small (e.g., smaller than 1e-1 for ACM and 1e-2 for Facebook),
the individual fairness constraint makes little difference to the performance of
REDRESS on the model utility and NDCG@10 for both tasks.

• When γ is a modest value (e.g., between 1e-1 and 1e1 for ACM or between 1e-2
and 1 for Facebook), NDCG@10 can be improved with little sacrifice on ACC or
AUC. In other words, an appropriate γ helps to achieve better individual fairness
performance without jeopardizing the model utility compared with the vanilla SGC
and GAE. This shows that REDRESS achieves a proper balance between promoting
individual fairness and maintaining the model utility.

• When γ is relatively large (e.g., larger than 1e1 for ACM and 1 for Facebook), ACC
and AUC will be affected by the strength of individual fairness promotion. At the
same time, NDCG@10 also drops as γ gets larger. This is because when γ falls
in this area, the top-10 ranked nodes are far from optimal, and individual fairness
promotion module can hardly achieve better performance within fixed epochs.

RQ3: Influence of the Choice of k. At last, we investigate what the performance of
REDRESS will be like under different choices of k. We also present the model utility and
individual fairness performance of REDRESS on: (a) ACM with SGC backbone based on
Jaccard similarity, and (b) Facebook with GAE backbone based on cosine similarity in Fig.
4.5. Here we vary k among {2, 5, 10, 20, 50, 100}. Based on the tendencies presented, we
can make the following observations (similar observations in other datasets).
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TABLE 4.4. Link prediction results on BlogCatalog (Blog), Flickr and Face-
book (FB) datasets. BB represents the backbone GNN model. Vanilla denotes
the vanilla GNN. All values are reported in percentage. Best performance is
marked in bold.

BB Model Feature Similarity Structural Similarity
AUC NDCG@10 AUC NDCG@10

Blog

GCN

Vanilla 85.87 ± 0.1 16.73 ± 0.1 85.87 ± 0.1 32.47 ± 0.5
InFoRM 79.85 ± 0.6 15.57 ± 0.2 84.00 ± 0.1 26.18 ± 0.3

PFR 84.25 ± 0.2 16.37 ± 0.0 83.88 ± 0.0 29.60 ± 0.4
REDRESS (Ours) 86.49 ± 0.8 17.66 ± 0.2 86.25 ± 0.3 34.62 ± 0.7

GAE

Vanilla 85.72 ± 0.1 17.13 ± 0.1 85.72 ± 0.1 41.99 ± 0.4
InFoRM 80.01 ± 0.2 16.12 ± 0.2 82.86 ± 0.0 27.29 ± 0.3

PFR 83.83 ± 0.1 16.64 ± 0.0 83.87 ± 0.1 35.91 ± 0.4
REDRESS (Ours) 84.67 ± 0.9 18.19 ± 0.1 86.36 ± 1.5 43.51 ± 0.7

Flickr

GCN

Vanilla 92.20 ± 0.3 13.10 ± 0.2 92.20 ± 0.3 22.35 ± 0.3
InFoRM 91.39 ± 0.0 11.95 ± 0.1 91.73 ± 0.1 23.28 ± 0.6

PFR 91.91 ± 0.1 12.94 ± 0.0 91.86 ± 0.2 19.80 ± 0.4
REDRESS (Ours) 91.38 ± 0.1 13.58 ± 0.3 92.67 ± 0.2 28.45 ± 0.5

GAE

Vanilla 89.98 ± 0.1 12.77 ± 0.0 89.98 ± 0.1 23.58 ± 0.2
InFoRM 88.76 ± 0.7 12.07 ± 0.1 91.51 ± 0.2 15.78 ± 0.3

PFR 90.30 ± 0.1 12.12 ± 0.1 90.10 ± 0.1 20.46 ± 0.3
REDRESS (Ours) 89.45 ± 0.5 14.24 ± 0.1 89.52 ± 0.3 29.83 ± 0.2

FB

GCN

Vanilla 95.60 ± 1.7 23.07 ± 0.2 95.60 ± 1.7 16.55 ± 1.1
InFoRM 90.26 ± 0.1 23.23 ± 0.3 96.66 ± 0.6 15.18 ± 0.7

PFR 87.11 ± 1.2 21.83 ± 0.2 94.87 ± 1.9 19.53 ± 0.5
REDRESS (Ours) 96.49 ± 1.6 29.60 ± 0.1 92.66 ± 0.4 27.73 ± 1.1

GAE

Vanilla 98.54 ± 0.0 26.75 ± 0.1 98.54 ± 0.0 27.03 ± 0.1
InFoRM 90.50 ± 0.4 22.77 ± 0.2 95.03 ± 0.1 15.38 ± 0.2

PFR 96.91 ± 0.1 23.52 ± 0.1 98.28 ± 0.0 22.89 ± 0.3
REDRESS (Ours) 95.98 ± 1.5 28.43 ± 0.3 94.07 ± 1.7 33.53 ± 0.2

(A) ACM (B) Facebook

FIGURE 4.4. Study on individual fairness constraint strength: (a) REDRESS
with SGC backbone and Jaccard similarity on ACM; (b) REDRESS with GAE
backbone and cosine similarity on Facebook.
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(A) ACM (B) Facebook

FIGURE 4.5. Study on k choices: (a) REDRESS with SGC backbone and
Jaccard similarity on ACM; (b) REDRESS with GAE backbone and cosine
similarity on Facebook.

• As k goes larger, REDRESS achieves larger improvement on NDCG@10. This
proves that larger k brings better optimization effectiveness on individual fairness
promotion.

• Model utility performance is barely influenced when k gets larger. This implies
REDRESS achieves a proper balance between maintaining the model utility and
promoting individual fairness under different choices of k in the optimization. In
practice, a modest k (e.g., 20 for ACM and 10 for Facebook) achieves best balancing
performance.

4.1.5 Supplementary Discussion

Supplementary quantitative performance of REDRESS and other alternatives based on ERR
(Expected Reciprocal Rank) are also provided in Table 4.5 and Table 4.6 for node classification
and link prediction task, respectively. Similar to section 4.1.4.4, the performance of REDRESS
is also compared with other baselines under different settings of oracle similarity matrix (i.e.,
feature similarity and structure similarity) and different GNN backbones (i.e., GCN, SGC,
and GAE). It should be noted that higher ACC and AUC represents better performance on
model utility, and higher ERR@10 indicates better performance on individual fairness. We
can make the following observations from the two tables:

• From the perspective of model utility (i.e., ACC in node classification and AUC in
link prediction), REDRESS provides competitive performance compared with other
state-of-the-art baselines. Besides, similar to the NDCG@10 based experiments
(Table 4.3 and Table 4.4), better utility performance from REDRESS can also be
found compared with the vanilla GNN backbones. This further verifies that the
individual fairness promotion term plays the role of regularization to prevent over-
fitting of the backbone GNN models.

• From the perspective of ranking based individual fairness, our framework outper-
forms all baseline methods in all cases with different levels of improvement w.r.t.
the fairness evaluation metric ERR@10. Considering that similar observation can
also be found in NDCG@10 based experiments as in Table 4.3 and Table 4.4, the
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TABLE 4.5. Node classification results on ACM, Co-author-CS (CS) and
Co-author-Phy (Phy) datasets. BB represents the backbone GNN model.
Vanilla denotes the vanilla GNN. All values are reported in percentage. Best
performance is marked in bold.

BB Model Feature Similarity Structural Similarity
ACC ERR@10 ACC ERR@10

ACM

GCN

Vanilla 72.49 ± 0.6 75.70 ± 0.6 72.49 ± 0.6 37.55 ± 0.4
InFoRM 67.65 ± 1.0 73.49 ± 0.5 65.91 ± 0.2 19.96 ± 0.6

PFR 68.48 ± 0.6 76.28 ± 0.1 70.22 ± 0.7 36.54 ± 0.4
REDRESS (Ours) 73.46 ± 0.2 82.27 ± 0.1 71.87 ± 0.4 43.74 ± 0.0

SGC

Vanilla 68.40 ± 1.0 80.06 ± 0.1 68.40 ± 1.0 45.95 ± 0.3
InFoRM 67.96 ± 0.5 75.63 ± 0.5 66.16 ± 0.6 39.79 ± 0.1

PFR 67.69 ± 0.4 76.80 ± 0.1 66.69 ± 0.3 46.99 ± 0.5
REDRESS (Ours) 66.51 ± 0.3 82.32 ± 0.3 67.10 ± 0.7 49.02 ± 0.2

CS

GCN

Vanilla 90.59 ± 0.3 80.41 ± 0.1 90.59 ± 0.3 26.69 ± 1.3
InFoRM 88.37 ± 0.9 80.63 ± 0.6 87.10 ± 0.9 29.68 ± 0.6

PFR 87.62 ± 0.2 76.26 ± 0.1 85.66 ± 0.7 19.80 ± 1.4
REDRESS (Ours) 90.06 ± 0.5 83.24 ± 0.2 89.81 ± 0.2 32.42 ± 1.6

SGC

Vanilla 87.48 ± 0.8 90.58 ± 0.1 87.48 ± 0.8 43.28 ± 0.2
InFoRM 87.31 ± 0.5 90.64 ± 0.1 88.21 ± 0.9 43.37 ± 0.1

PFR 87.95 ± 0.2 79.85 ± 0.2 86.93 ± 0.1 38.83 ± 0.8
REDRESS (Ours) 90.48 ± 0.2 92.03 ± 0.1 90.39 ± 0.1 45.81 ± 0.0

Phy

GCN

Vanilla 94.81 ± 0.2 73.25 ± 0.3 94.81 ± 0.2 2.58 ± 0.1
InFoRM 88.67 ± 0.7 73.80 ± 0.6 94.68 ± 0.2 2.45 ± 0.1

PFR 88.79 ± 0.2 73.32 ± 0.4 89.69 ± 1.0 1.67 ± 0.1
REDRESS (Ours) 93.71 ± 0.1 80.23 ± 0.1 93.91 ± 0.4 3.22 ± 0.3

SGC

Vanilla 94.45 ± 0.2 77.48 ± 0.2 94.45 ± 0.2 4.50 ± 0.1
InFoRM 92.06 ± 0.2 75.13 ± 0.4 94.27 ± 0.1 4.44 ± 0.0

PFR 87.39 ± 1.2 73.42 ± 0.2 89.16 ± 0.3 3.41 ± 0.2
REDRESS (Ours) 94.81 ± 0.2 79.57 ± 0.2 94.54 ± 0.1 4.98 ± 0.1

generalization ability of REDRESS on individual fairness promotion can be further
verified.

• From the perspective of balancing the model utility and individual fairness, our frame-
work achieves both competitive model utility performance and superior individual
fairness promotion in all ERR@10 based cases compared with other baselines. Sim-
ilar observation can also be found in NDCG@10 based experiments as in Table 4.3
and Table 4.4. Based on these observations, we argue that our framework generally
achieves better performance on balancing the model utility and individual fairness
compared with other alternatives under different ranking similarity metrics.

4.1.6 Related Work

Individual Fairness. Dwork et al. [58] first argue that only emphasizing group fairness
regarding protected attributes can barely treat each individual user in a fair manner, and
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TABLE 4.6. Link prediction results on BlogCatalog (Blog), Flickr and Face-
book (FB) datasets. BB represents the backbone GNN model. Vanilla denotes
the vanilla GNN. All values are reported in percentage. Best performance is
marked in bold.

BB Model Feature Similarity Structural Similarity
AUC ERR@10 AUC ERR@10

Blog

GCN

Vanilla 85.87 ± 0.1 67.95 ± 0.1 85.87 ± 0.1 38.63 ± 0.2
InFoRM 80.14 ± 0.1 68.55 ± 0.1 83.68 ± 0.0 34.26 ± 0.9

PFR 83.65 ± 0.0 68.04 ± 0.3 84.72 ± 0.1 37.28 ± 0.4
REDRESS (Ours) 83.90 ± 0.2 72.83 ± 0.2 86.44 ± 0.0 42.16 ± 0.1

GAE

Vanilla 85.72 ± 0.1 67.92 ± 0.1 85.72 ± 0.1 44.23 ± 0.2
InFoRM 81.87 ± 0.1 68.36 ± 0.4 82.50 ± 0.1 33.98 ± 0.5

PFR 83.49 ± 0.1 67.89 ± 0.0 84.31 ± 0.1 39.89 ± 0.2
REDRESS (Ours) 85.30 ± 1.5 69.62 ± 0.4 85.77 ± 2.0 47.44 ± 0.3

Flickr

GCN

Vanilla 92.20 ± 0.3 70.39 ± 0.1 92.20 ± 0.3 38.44 ± 0.5
InFoRM 91.28 ± 0.0 72.17 ± 0.0 92.24 ± 0.0 39.03 ± 0.4

PFR 92.43 ± 0.2 71.36 ± 0.2 92.06 ± 0.2 37.29 ± 0.7
REDRESS (Ours) 87.89 ± 0.4 73.90 ± 0.3 91.39 ± 0.0 44.82 ± 0.5

GAE

Vanilla 89.98 ± 0.1 70.34 ± 0.2 89.98 ± 0.1 36.98 ± 0.3
InFoRM 90.56 ± 1.4 71.54 ± 0.1 91.55 ± 0.2 35.58 ± 0.4

PFR 90.44 ± 0.2 71.65 ± 0.2 90.09 ± 0.2 33.89 ± 0.3
REDRESS (Ours) 93.06 ± 0.3 72.41 ± 0.2 87.96 ± 0.4 44.00 ± 0.1

FB

GCN

Vanilla 95.60 ± 1.7 61.52 ± 0.5 95.60 ± 1.7 32.18 ± 1.7
InFoRM 90.66 ± 0.0 61.49 ± 0.2 94.65 ± 1.3 30.03 ± 1.7

PFR 89.85 ± 2.0 62.02 ± 0.3 92.30 ± 0.5 30.62 ± 1.8
REDRESS (Ours) 95.99 ± 1.9 64.08 ± 0.1 92.93 ± 0.8 43.74 ± 1.5

GAE

Vanilla 98.54 ± 0.0 63.19 ± 0.1 98.54 ± 0.0 42.17 ± 0.4
InFoRM 92.80 ± 0.1 62.29 ± 0.0 94.75 ± 0.2 31.93 ± 0.6

PFR 96.85 ± 0.1 61.71 ± 0.1 98.18 ± 0.1 39.04 ± 0.3
REDRESS (Ours) 95.10 ± 0.7 64.40 ± 0.7 92.35 ± 0.3 44.54 ± 0.3

propose the definition of individual fairness: similar individuals should be treated similarly.
In their work, Lipschitz condition is utilized as the distance constrain for instance pairs
between the input and outcome of the decision-making model. Zemel et al. [233] propose
to emphasize the balance between the decision-making model utility and individual fairness.
Individual fairness is promoted in their work via sharing the mapping function from the
model input to corresponding outcome over all individuals. Lahoti et al. [120] point out
that most individual fairness works are limited within binary classification problems. They
firstly extend the problem setting to multi-class, and improve the model performance on
individual fairness via learning low-rank representations for individuals in a model-agnostic
way. Another work from Lahoti et al. [118] specifies similar individual pairs by human
experts before training, and only emphasize the individual fairness optimization over these
pre-assigned pairs. Different from these mentioned works, we define individual fairness from
a ranking perspective, and promote individual fairness via ranking-based optimization. To
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the best of our knowledge, we are the first to define and promote individual fairness from the
ranking perspective.

Fairness in Graphs. Graph structured data has become ubiquitous in various high-impact
areas. Nevertheless, most previous efforts achieving fairness in graphs focus on group
fairness. Basically, group fairness emphasizes that all demographic groups (defined by
sensitive features) should receive their fair share of interest. Among previous works, Rahman
et al. [162] achieve the first-of-its-kind study to realize graph embedding learning with group
fairness considerations. A modified random walk algorithm is proposed to ensure that the
minority (according to sensitive features) bears the same appearing probability in the walk
compared with other demographic groups. Bose et al. [13] propose to disentangle the learned
embeddings from the sensitive features with an adversarial learning framework. A similar
adversarial approach is also adopted by Dai et al. [37] for debiasing graph mining results.
Palowitch et al. [147] promote group fairness via ensuring that the node embeddings are
trained on a hyperplane orthogonal to sensitive features. Buyl et al. [18] disentangle the node
embedding from sensitive features via enforcing the prior distribution to encode sensitive
information as strongly as possible. Different from group fairness, individual fairness is much
less studied on graphs. Kang et al. [104] propose to reduce bias in all three stages of a graph
mining pipeline (i.e., pre-processing, processing, and post-processing [18]). However, their
framework is for unattributed networks and does not allow end-to-end training. To our best
knowledge, we are the first to study individual fairness for GNNs on attributed networks.

4.1.7 Conclusion

Due to the superior learning capability, GNNs have been widely adopted to handle graph-
structured data for various decision-making scenarios. However, leaving more and more
decisions and judgments to GNNs raises societal concerns as the GNNs often do not have
fairness considerations. Although some recent works have aimed to improve the fairness of
GNNs for certain subgroups defined by a protected attribute, the fairness notion of GNNs
at a much finer granularity (i.e., individual fairness) remains under-explored. To promote
individual fairness, existing studies often need to rely on the Lipschitz condition to guarantee
similar individuals have similar outcomes. In this paper, we argue the conventional definition
of individual fairness based on the Lipschitz condition may have some potential issues w.r.t.
the subtle Lipschitz constant and the uncalibrated distance metrics. Thus, we refine the
definition of individual fairness from a ranking perspective, such that for each individual, the
two ranking lists that encode its similarity with other individuals in the input space and output
space are consistent with each other. To achieve this goal, we develop a novel plug-and-play
framework REDRESS, which encapsulates the GNN model utility optimization and ranking-
based individual fairness optimization in a joint framework and enables end-to-end training.
To demonstrate the effectiveness of our proposed framework REDRESS, we present empirical
evaluations on different real-world graphs under two downstream tasks. The experimental
results imply that REDRESS outperforms the state-of-the-art individual fairness promoting
approaches without jeopardizing the prediction performance. REDRESS is not only restricted
on GNNs but can be extended to other graph mining models and tasks as future works.
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4.2 Modeling and Mitigating Data Bias for Graph Neural
Networks

4.2.1 Introduction

Attributed networks are ubiquitous in a plethora of web-related applications including online
social networking [184], web advertising [226], and news recommendation [160]. To better
understand these networks, various graph mining algorithms have been proposed. In particular,
the recently emerged Graph Neural Networks (GNNs) have demonstrated superior capability
of analyzing attributed networks in various tasks, such as node classification [111, 188]
and link prediction [234, 110]. Despite the superior performance of GNNs, they usually
do not consider fairness issues in the learning process [37]. Extensive research efforts have
shown that many recently proposed GNNs [37, 176, 216] could make biased decisions
towards certain demographic groups determined by sensitive attributes such as gender [59]
and political ideology [152]. For example, e-commerce platforms generate a huge amount
of user activity data, and such data is often constructed as a large attributed network in
which entities (e.g., buyers, sellers, and products) are nodes while activities between entities
(e.g.., purchasing and reviewing) are edges. To prevent potential losses, fraud entities (e.g.,
manipulated reviews and fake buyers) need to be identified on these platforms, and GNNs
have become the prevalent solution to achieve such goal [54, 129]. Nevertheless, GNNs may
have the risk of using sensitive information (e.g., race and gender) to identify fraud entities,
yielding inevitable discrimination. Therefore, it is a crucial problem to mitigate bias in these
network-based applications.

Various efforts have been made to mitigate the bias exhibited in graph mining algorithms. For
example, in online social networks, random walk algorithms can be modified via improving
the appearance rate of minorities [162, 17]; adversarial learning is another popular approach,
which aims to learn node embeddings that are not distinguishable on sensitive attributes [13,
141]. Some recent efforts have also been made to mitigate bias in the outcome of GNNs. For
example, adversarial learning can also be adapted to GNNs for outcome bias mitigation [37].
Nevertheless, existing approaches to debias GNN outcomes are tailored for a specific GNN
model on a certain downstream task. In practical scenarios, different applications could
adopt different GNN variants [111, 74], and it is costly to train and fine-tune the debiasing
approaches based on diverse GNN backbones. As a consequence, to mitigate bias more
efficiently for different GNNs and tasks, developing a one-size-fits-all approach becomes
highly desired. Then the question is: how can we perform debiasing regardless of specific
GNNs and downstream tasks? Considering that a model trained on biased datasets also tends
to be biased [233, 37, 9], directly debiasing the dataset itself can be a straightforward solution.
There are already debiasing approaches modifying original datasets via perturbing data
distributions or reweighting the data points in the dataset [195, 102, 19]. These approaches
obtain less biased datasets, which help to mitigate bias in learning algorithms. In this regard,
considering that debiasing for different GNNs is costly, it is also highly desired to mitigate
the bias in attributed networks before they are fed into GNNs. Nevertheless, to the best of our
knowledge, despite its fundamental importance, no existing literature has taken such a step.
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In this paper, we make an initial investigation on debiasing attributed networks towards
more fair GNNs. Specifically, we tackle the following challenges. (1) Data Bias Modeling.
Traditionally, bias modeling is coupled with the outcome of a specific GNN [37]. Based on the
GNN outcome, bias can be modeled via different fairness notions, e.g., Statistical Parity [58]
and Equality of Opportunity [77], to determine whether the outcome is discriminatory towards
some specific demographic groups. Nevertheless, if debiasing is carried out directly based on
the input attributed networks instead of the GNN outcome, the first and foremost challenge is
how to appropriately model such data bias. (2) Multi-Modality Debiasing. In fact, attributed
networks contain both graph structure and node attribute information. Correspondingly, bias
may exist with diverse formats across different data modalities. In this regard, how to debias
attributed networks that have different data modalities is the second challenge that needs to
be tackled. (3) Model-Agnostic Debiasing. Existing GNN debiasing approaches require the
outcome of a specific GNN for objective function optimization during training. Different
from these approaches, model-agnostic debiasing for GNNs should not rely on any specific
GNN, as our goal is to develop a one-size-fits-all data debiasing approach to benefit various
GNNs. Clearly, such model-agnostic debiasing could have better generalization capability but
becomes much more difficult compared with the model-oriented GNN debiasing approaches.
Nevertheless, the ultimate goal of debiasing is still to ensure the GNN outcome does not exhibit
any discrimination. Such a contradiction poses the challenge of how to properly formulate a
debiasing objective that can be universally applied to different GNNs in downstream tasks.

To tackle the challenges above, we present novel data bias modeling approaches and a
principled debiasing framework named EDITS (modEling anD mItigating daTa biaS) to
achieve model-agnostic attributed network debiasing for GNNs. Specifically, we first carry
out preliminary analysis to illustrate how bias exists in the two data modalities of an attributed
network (i.e., node attributes and network structure) and affects each other in the information
propagation of GNNs. Then, we formally define attribute bias and structural bias, together
with the corresponding metrics for data bias modeling. Besides, we formulate the problem
of debiasing attributed networks for GNNs, and propose a novel framework named EDITS
for bias mitigation. It is worth mentioning that EDITS is model-agnostic for GNNs. In other
words, our goal is to obtain less biased attributed networks for the input of any GNNs. Finally,
empirical evaluations on both synthetic and real-world datasets corroborate the validity of the
proposed bias metrics and the effectiveness of EDITS. Our contributions are summarized as:

• Problem Formulation. We formulate and make an initial investigation on a novel
research problem: debiasing attributed networks for GNNs based on the analysis of
the information propagation mechanism.

• Metric and Algorithm Design. We design novel bias metrics for attributed networks,
and propose a model-agnostic debiasing framework named EDITS to mitigate the
bias in attributed networks before they are fed into GNNs.

• Experimental Evaluation. We conduct comprehensive experiments on both syn-
thetic and real-world datasets to verify the validity of the proposed bias metrics and
the effectiveness of the proposed framework EDITS.
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4.2.2 Preliminary Analysis

We provide two exemplary cases to show how the two data modalities of an attributed network
(i.e., node attribute and network structure) introduce bias in information propagation – the
most common operation in GNNs. These two cases also bring insights on tackling the three
challenges mentioned in Section 4.2.1. Specifically, two synthetic datasets are generated
with either biased node attribute or network structure, and then attributes are propagated
across the network structure to show how bias is introduced in GNNs. Here we consider
the attribute distribution difference between different demographic groups as the bias in
attribute, while the group membership distribution difference of the neighbors for nodes
between different demographic groups is regarded as the bias in network structure. Such bias
in attribute and structure can be regarded as the bias that existed in two data modalities in an
attributed network. It should be noted that using distribution difference to define the level of
bias is consistent with many algorithmic fairness studies [58, 233], Now we explain how the
synthetic datasets are generated. We assume the sensitive attribute is gender, and 1,000 nodes
are generated with half males (blue) and half females (orange) for both cases. In addition
to the sensitive attribute, each node is with an extra two-dimensional attribute vector, which
will be initialized and fed as input for information propagation. To introduce bias to either
of the data modalities, different strategies are adopted to generate the attribute vector and
the network structure. To study how the two data modalities introduce bias in information
propagation, we compare the distribution difference of attributes between groups before and
after the propagation mechanism in GCN [111].

Case 1: Biased attributes and unbiased structure. In this case, we generate biased two-
dimensional attribute vectors for nodes from the two groups (i.e., males and females) and
unbiased network structure. Specifically, biased attributes at each dimension is generated
independently with Gaussian distribution N (-1.5, 12) for female and N (1.5, 12) for male. The
distributions are shown in Fig. 4.6a. We then introduce how an unbiased network structure is
generated. For each node in an unbiased network structure, the expected membership ratio of
any group in its neighbor node set should be independent of the membership of the node itself.
In this regard, we generate unbiased network structure via random graph model with edge
formation probability as 2× 10−3. The visualization of the network is presented in Fig. 4.6b.
The attribute distribution after information propagation according to the network structure is
shown in Fig. 4.6c. Comparing Fig. 4.6a (attribute distribution before propagation) with 4.6c
(attribute distribution after propagation), we can see the unbiased structure helps mitigate the
original attribute bias after attributes are propagated according to the network structure. This
not only implies that the attribute distribution difference between groups is a vital source of
bias, but also demonstrates that unbiased structure helps mitigate bias in attributes after the
information propagation process.

Case 2: Unbiased attributes and biased structure. In this case, unbiased attributes are
generated independently at each dimension with N (0, 12) for both males and females. The
distributions are shown in Fig. 4.6d. The biased network structure is generated as follows.
For each node, we sum up its attribute values. Then, we rank all nodes in descending order
according to the summation of attribute values. After that, given a threshold integer t, for the
top-ranked t males and bottom-ranked t females, we assume that they form two separated
communities. The two communities are shown as the bottom right community (males) and
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(A) Biased attributes (B) Unbiased structure (C) After propagation

(D) Unbiased attributes (E) Biased structure (F) After propagation

FIGURE 4.6. Two exemplary cases illustrating how bias in the two data mod-
alities of an attributed network introduce bias in GNN information propagation.
Here (c) is the node attribute distribution after propagation with biased node
attributes (a) and unbiased network structure (b); while (f) is the attribute
distribution after propagation with unbiased node attributes (d) and biased
network structure (e).

the upper left community (females) in Fig. 4.6e. We generate edges via random graph model
with edge formation probability as 5 × 10−2 within each community. Similarly, the rest
nodes form the third community via random graph model with edge formation probability
as 1× 10−2. We also generate edges between nodes from the male (or female) community
and the third community with the probability of 2× 10−4. In this way, we introduce bias in
network structure. The final network is presented in Fig. 4.6e. The attribute distribution after
propagation according to the network structure is shown in Fig. 4.6f. Comparing Fig. 4.6d
with 4.6f, we find that even if the original attributes are unbiased, the biased structure still
turns the attributes into biased ones after information propagation. This implies that the bias
contained in the network structure is also a significant source of bias.

Based on the discussions, we draw three preliminary conclusions to help us tackle the
challenges in Section 4.2.1. (1) For Data Bias Modeling, bias in attributes can be modeled
based on the difference of attribute distribution between two groups. Also, bias in network
structure can be modeled based on the difference of attribute distribution between two groups
after information propagation. (2) For Multi-Modality Debiasing in an attributed network,
at least two debiasing processes should be carried out targeting the two data modalities (i.e.,
attributes and structure). (3) For Model-Agnostic Debiasing, if the attribute distributions
between groups can be less biased both before and after information propagation, the learned
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node representations tend to be indistinguishable between groups. Then GNNs trained on
such data could also be less biased.

4.2.3 Modeling Data Bias for GNNs

In this section, we define attribute bias and structural bias in attributed networks together
with their metrics. For the sake of simplicity, we focus on binary sensitive attribute and leave
the generalization to non-binary cases in the online version8. Theoretical analysis of our
proposed metrics is also presented in the online version.

4.2.3.1 Preliminaries

In this paper, without further specification, bold uppercase letters (e.g., X), bold lowercase
letters (e.g., x), and normal lowercase letters (e.g., x) represent matrices, vectors, and scalars,
respectively. For any matrix, e.g., X, we use Xi denote its i-th row.

Let G = (A, X) be an undirected attributed network. Here A ∈ RN×N is the adjacency
matrix, and X ∈ RN×M is the node attribute matrix, where N is the number of nodes and
M is the attribute dimension. Let a diagonal matrix D be the degree matrix of A, where
its (i,i)-th entry Di,i =

∑
j Ai,j , and Di,j = 0 (i ̸= j). L = D −A is the graph Laplacian

matrix. Denote the normalized adjacency matrix and the normalized Laplacian matrix as
Anorm = D− 1

2AD− 1
2 and Lnorm = D− 1

2LD− 1
2 . |.| is the absolute value operator.

4.2.3.2 Definitions of Bias

We consider two types of bias on attributed networks, i.e., attribute bias and structural bias.
We first define attribute bias as follows.

DEFINITION 4.2.1. Attribute bias. Given an undirected attributed network G = (A, X) and
the group indicator (w.r.t. the sensitive attribute) for each node s = [s1, s2, ..., sN ], where
si ∈ {0, 1} (1 ≤ i ≤ N ). For any attribute, if its value distributions between different
demographic groups are different, then attribute bias exists in G.

Besides, as shown in the second example in Section 4.2.2, bias can also emerge after attributes
are propagated in the network even when original attributes are unbiased. Therefore, an
intuitive idea to identify structural bias is to check whether information propagation in the
network introduces or exacerbates bias [87]. Formally, we define structural bias on attributed
networks as follows.

DEFINITION 4.2.2. Structural bias. Given an undirected attributed network G = (A, X) and
the corresponding group indicator (w.r.t. sensitive attribute) for each node s = [s1, s2, ..., sN ],
where si ∈ {0, 1} (1 ≤ i ≤ N ). For the attribute values propagated w.r.t. A, if their
distributions between different demographic groups are different at any attribute dimension,
then structural bias exists in G.

Apart from these definitions, it is also necessary to quantitatively measure the attribute bias
and structural bias. In the sequel, we introduce our proposed metrics for the two types of bias.

8See online version herehttps://dl.acm.org/doi/abs/10.1145/3485447.3512173 for
supplementary discussion and experimental results.
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FIGURE 4.7. An illustration of EDITS with H = 2: Wasserstein Distance Ap-
proximator yields the approximated Wasserstein distance between P Joint

0,m and
P Joint
1,m ; Attribute Debiasing and Structural Debiasing are optimized towards

less biased X̃ and Ã.

4.2.3.3 Bias Metrics

Here we take the first step to define metrics for both attribute bias and structural bias for an
undirected attributed network G.

Attribute bias metric. Let Xnorm ∈ RN×M be the normalized attribute matrix. For the m-th
dimension (1 ≤ m ≤ M ) of Xnorm, we use X 0

m and X 1
m to denote attribute value set for nodes

with si = 0 and si = 1 (1 ≤ i ≤ N ). Then, attributes of all nodes can be divided into tuples:
Xtotal = {(X 0

1 ,X 1
1 ), (X 0

2 ,X 1
2 ), ..., (X 0

M ,X 1
M)}. We measure attribute bias with Wasserstein-1

distance [190] between the distributions of the two groups:

battr =
1

M

∑
m

W (pdf(X 0
m), pdf(X 1

m)). (4.10)

Here pdf(·) is the probability density function for a set of values, and W (., .) is the Wasserstein
distance between two distributions. Intuitively, battr describes the average Wasserstein-1
distance between attribute distributions of different groups across all dimensions. It should be
noted that taking the distribution difference between demographic groups as the indication of
bias is in align with many existing algorithmic fairness studies [233, 13, 37].

Structural bias metric. As illustrated in Section 4.2.2, the key mechanism of GNNs is
information propagation, during which the structural bias could be introduced. Let Pnorm =
αAnorm + (1 − α)I. Here Pnorm can be regarded as a normalized adjacency matrix with
re-weighted self-loops, where α ∈ [0, 1] is a hyper-parameter. Before measuring structural
bias, we define the propagation matrix MH ∈ RN×N as:

MH = β1Pnorm + β2P
2
norm + ...+ βHP

H
norm, (4.11)

where βh (1 ≤ h ≤ H) is re-weighting parameters. The rationale behind the formulation
above is to measure the aggregated reaching likelihood from each node to other nodes
within a distance of H . To achieve localized effect for each node, a desired choice is to let
β1 ≥ β2 ≥ ... ≥ βH , i.e., emphasizing short-distance terms and reducing the weights of
long-distance terms. For example, assume H = 3, then the value (M3)i,j is the aggregated
reaching likelihood from node i to node j within 3 hops with re-weighting parameters being
β1, β2 and β3. Also, given attributes Xnorm, we define the reachability matrix R ∈ RN×M as
R = MHXnorm. Intuitively, Ri,m is the aggregated reachable attribute value for attribute m
of node i. We utilize R0

m and R1
m to represent the set of values of the m-th dimension in R
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for nodes with si = 0 and si = 1 (1 ≤ i ≤ N ). The entries in R can also be divided into
tuples according to attribute dimensions: Rtotal = {(R0

1,R1
1), (R0

2,R1
2), ..., (R0

M ,R1
M)}. We

define structural bias as:

bstru =
1

M

∑
m

W (pdf(R0
m), pdf(R1

m)). (4.12)

Here bstru is defined in a similar way as battr, except that the former uses R0
m and R1

m instead
of X 0

m and X 1
m. In this way, structural bias bstru describes the average difference between

aggregated attribute distributions of different groups after several rounds of propagation.

4.2.3.4 Problem Statement

Based on the definitions and metrics in Section 4.2.3.2 and 4.2.3.3, we argue that if both battr
and bstru are reduced, bias in an attributed network can be mitigated. As a result, if GNNs are
trained on such data, the bias issues in downstream tasks could also be alleviated. Formally,
we define the debiasing problem as follows.

PROBLEM 4.2.1. Debiasing attributed networks for GNNs. Given an attributed network G =
(A, X), our goal is to debias G by reducing battr and bstru to obtain G̃ = (Ã, X̃), so that the
bias of GNNs trained on G̃ is mitigated. The debiasing is independent of any specific GNNs.

4.2.4 Mitigating Data Bias for GNNs

In this section, we discuss how to tackle Problem 4.2.1 with our proposed framework EDITS.
We focus on the binary sensitive attribute for the sake of simplicity and discuss the extension
later. We first present an overview of EDITS, followed by the formulation of the objective
function. Finally, we present the optimization process.

4.2.4.1 Framework Overview

An overview of the proposed framework EDITS is shown in Fig. 4.7. Specifically, EDITS
consists of three modules. The parameters of these three modules are optimized alternatively
during training.

• Attribute Debiasing. This module learns a debiasing function gθ with learnable
parameter θ ∈ RM . The debiased version of X is obtained as output where X̃ =
gθ(X).

• Structural Debiasing. This module outputs Ã as the debiased A. Specifically, Ã is
initialized with A at the beginning of the optimization process. The entries in Ã are
optimized via gradient descent with clipping and binarization.

• Wasserstein Distance Approximator. This module learns a function f for each
attribute dimension. Here f is utilized to estimate the Wasserstein distance between
the distributions of different groups for any attribute dimension.

4.2.4.2 Objective Function

In this subsection, we introduce the details of our framework. Following the Definition 4.2.1
and Definition 4.2.2, our goal is to reduce battr and bstru simultaneously. For the ease of
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understanding, we first only consider the m-th attribute dimension as an example, and then
extend it to all M dimensions to obtain our final objective function.

Let P0,m and P1,m be the value distribution at the m-th attribute dimension in X for nodes
with sensitive attribute s = 0 and s = 1, respectively. Denote x0,m ∼ P

(h)
0,m and x1,m ∼ P

(h)
1,m

as two random variables drawn from the two distributions. Assume that we have a function
gθm : R → R to mitigate attribute bias, where 1 ≤ m ≤ M . For the m-th dimension, we
denote x

(0)
0,m = gθm(x0,m) ∼ P

(0)
0,m and x

(0)
1,m = gθm(x1,m) ∼ P

(0)
1,m as the debiasing results for

x0,m and x1,m, respectively. Here the superscript (0) indicates that no information propagation
is performed in the debaising process. Correspondingly, when such operation is extended
to all M dimensions, we will have the debiased attribute matrix X̃. Apart from the goal of
mitigating attribute bias, we also want to mitigate structural bias. Let Ã be the adjacency
matrix from the debiased network structure, and P̃norm denotes the normalized Ã with re-
weighted self-loops. Information propagation with h hops using the debiased adjacency
matrix could be expressed as P̃h

normX̃, where 1 ≤ h ≤ H . Let P (h)
0,m and P

(h)
1,m be the value

distribution at the m-th column of P̃h
normX̃ for nodes with sensitive attribute s = 0 and s = 1,

respectively. Denote x
(h)
0,m ∼ P

(h)
0,m and x

(h)
1,m ∼ P

(h)
1,m as two random variables drawn from the

two distributions. We hope that Ã could mitigate structural bias. We combine attribute and
structural debiasing as below.

Based on the random variables x(0)
0,m to x

(H)
0,m and x

(0)
1,m to x

(H)
1,m, we have (H + 1)-dimensional

vectors x0,m = [x
(0)
0,m, x

(1)
0,m, ..., x

(H)
0,m] and x1,m = [x

(0)
1,m, x

(1)
1,m, ..., x

(H)
1,m] following the joint

distribution P Joint
0,m and P Joint

1,m , respectively. To reduce both battr and bstru at the m-th dimen-
sion, our goal is to minimize the Wasserstein distance between P Joint

0,m and P Joint
1,m , which is

formulated as minθm,Ã W (P Joint
0,m , P Joint

1,m ). W (P Joint
0,m , P Joint

1,m ) can be expressed as

W (P Joint
0,m ,P Joint

1,m ) = (4.13)

inf
γ∈Π(PJoint

0,m ,PJoint
1,m )

E(x0,m,x1,m)∼γ[∥x0,m − x1,m∥1].

Here Π(P Joint
0,m , P Joint

1,m ) represents the set of all joint distributions γ(x0,m,x1,m) whose mar-
ginals are P Joint

0,m and P Joint
1,m , respectively. After considering all the M dimensions, the overall

objective is

min
θ,Ã

1

M

∑
1≤m≤M

W (P Joint
0,m , P Joint

1,m ). (4.14)

It is non-trivial to optimize Eq. (4.14) as the infimum is intractable. Therefore, in the
next subsection, we show how to convert it into a tractable optimization problem through
approximation, which enables end-to-end gradient-based optimization.

4.2.4.3 Framework Optimization

In this subsection, we introduce our optimization algorithm. For simplicity, first we still use the
m-th attribute dimension in X to illustrate the idea. Considering the infimum in Wasserstein
distance computation is intractable, we apply the Kantorovich-Rubinstein duality [189] to
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convert the problem of Eq. (4.13) as:

W (P Joint
0,m , P Joint

1,m ) = (4.15)

sup
∥f∥L≤1

Ex0,m∼PJoint
0,m

[f(x0,m)]− Ex1,m∼PJoint
1,m

[f(x1,m)].

Here ∥f∥L ≤ 1 denotes that the supremum is taken over all 1-Lipschitz functions f :
RH+1 → R. The problem can be solved by learning a neural network as f . Nevertheless, it is
worth noting that the 1-Lipschitz function is difficult to obtain during optimization. Therefore,
here we relax ∥f∥L ≤ 1 to ∥f∥L ≤ k (k is a constant). In this case, the left side of Eq.
(4.15) also changes to kW (P Joint

0,m , P Joint
1,m ). Then, the Wasserstein distance between P Joint

0,m

and P Joint
1,m up to a multiplicative constant can be attained via:

max
fm∈F

Ex0,m∼PJoint
0,m

[fm(x0,m)]− Ex1,m∼PJoint
1,m

[fm(x1,m)], (4.16)

where F denotes the set of all k-Lipschitz functions (i.e., ∥fm∥L ≤ k, fm ∈ F). Then,
extending Eq. (4.16) to all M dimensions leads to our final objective function as:

L1 =
∑

1≤m≤M

{Ex0,m∼PJoint
0,m

[fm(x0,m)]− Ex1,m∼PJoint
1,m

[fm(x1,m)]}, (4.17)

where {fm : 1 ≤ m ≤ M} ⊂ F . To model the function f in Eq. (4.17), a single-layered
neural network serves as the Wasserstein Distance Approximators in Fig. 4.7 to approximate
each fm (1 ≤ m ≤ M ), where the objective can be formulated as:

max
{fm:1≤m≤M}⊂F

L1 . (4.18)

The weights of neural networks are clipped within [−c, c] (c is a pre-defined constant), which
has been proved to be a simple but effective way to enforce the Lipschitz constraint for
every fm [5]. For the Attribute Debiasing module in Fig. 4.7, we choose a linear function,
i.e., gθm(xs,m) = θmxs,m (s ∈ {0, 1}). One advantage is that it acts as the role of feature re-
weighting by assigning a feature weight for each attribute, which enables better interpretability
for the debiased result. In matrix form, assume Θ is a diagonal matrix with the m-th diagonal
entry being θm, we have X̃ = gθ(X) = XΘ. Then the optimization goal for attribute
debiasing is:

min
Θ

L1 + µ1∥X̃−X∥2F + µ2∥Θ∥1, (4.19)

where µ1 and µ2 are hyper-parameters. The second term ensures that the debiased attributes
after feature re-weighting are close to the original ones (i.e., preserve as much information as
possible). The third term controls the sparsity of re-weighting parameters. For the Structural
Debiasing module in Fig. 4.7, Ã is optimized through:

min
Ã

L1 + µ3∥Ã−A∥2F + µ4∥Ã∥1 s.t., Ã = Ã⊤. (4.20)

where µ3 and µ4 are hyper-parameters. The second term ensures the debiased result Ã is
close to the original structure A. The third term enforces the debiased network structure is
also sparse, which is aligned with the characteristics of real-world networks [96].

Optimization Strategy. To optimize function f , parameter Θ, and Ã, we propose a gradient-
based optimization approach for alternatively training9. First, for the optimization of f

9See online version for algorithmic routine.
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w.r.t. Eq. (4.18), we directly utilize Stochastic Gradient Descent (SGD). Second, for the
optimization of parameter Θ w.r.t. Eq. (4.19), we adopt Proximal Gradient Descent (PGD).
In the projection operation in PGD, we clip the parameters in Θ within [0, 1]. Finally, to
remove the most biased attribute channels, the z smallest weights in the diagonal of Θ are
masked with 0, where z is a pre-assigned hyper-parameter for attribute debiasing. Third, for
the optimization of parameter Ã w.r.t. Eq. (4.20), we also adopt PGD with similar clipping
strategy as the optimization of Θ. Finally, the proposed approach outputs X̃ and Ã after
multiple epochs of optimization.

Edge Binarization. Here we introduce how we binarize the elements in Ã to indicate
existence of edges. The basic intuition is to set a numerical threshold to determine the edge
existence based on the entry-wise value change between Ã and A. Specifically, for the "0"
entries in A, if the corresponding weight of any entry in Ã exceeds r ·max(Ã−A), then we
flip such entry from 0 to 1. Here r is a pre-set threshold for binarization, and max(·) outputs
the largest entry of a matrix. Similarly, for the "1" entries in A, if the corresponding weight of
any entry in Ã is reduced by a number exceeding r · |min(Ã−A)|, then such entry should be
flipped as 0. Here min(·) gives the smallest entry of a matrix. To summarize, this operation
aims to flip the entries with significant changes in value directly, and maintain other entries as
their original values. Finally, the binarized matrix is assigned to Ã as the final outcome.

4.2.5 Experimental Evaluations

We conduct experiments on both real-world and synthetic datasets to evaluate the effectiveness
of EDITS. In particular, we answer the following research questions. RQ1: How well can
EDITS mitigate the bias in attributed networks together with the outcome of different GNN
variants for the downstream task? RQ2: How well can EDITS balance utility maximization
and bias mitigation compared with other debiasing baselines tailored for a specific GNN?

4.2.5.1 Downstream Task and Datasets

Downstream Task. We choose the widely adopted node classification task to assess the
effectiveness of our proposed framework.

Datasets. We use two types of datasets in our experiments, including six real-world datasets
and two synthetic datasets. Statistics of the real-world datasets can be found in the online
version. We elaborate more details as follows: (1) Real-world Datasets. We use six real-
world datasets, namely Pokec-z, Pokec-n [182, 37], UCSD34 [187], German Credit, Credit
Defaulter, and Recidivism [3]. We first introduce the three web-related networks. Pokec-z and
Pokec-n are collected from a popular social network in Slovakia. Here a node represents a
user, and an edge denotes the friendship relation between two users [182]. We take "region" as
the sensitive attribute, and the task is to predict the user working field. UCSD34 is a Facebook
friendship network of the University of California San Diego [187]. Each node denotes a user,
and edges represent the friendship relations between nodes. We take "gender" as the sensitive
attribute, and the task is to predict whether a user belongs to a specific major. Users with
incomplete information (e.g., missing attribute values) are filtered out from the three web
networks above. Besides, we also adopt three networks beyond web-related data. In German
Credit, nodes represent clients in a German bank, and edges are formed between clients if their
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credit accounts are similar. With "gender" being the sensitive attribute, the task is to classify
the credit risk of the clients as high or low. In Recidivism, nodes are defendants released
on bail during 1990-2009. Nodes are connected based on the similarity of past criminal
records and demographics. The task is to classify defendants into bail vs. no bail, with "race"
being the sensitive attribute. In the Credit Defaulter, nodes are credit card users, and they
are connected based on the pattern similarity of their purchases and payments. Here "age"
is the sensitive attribute, and the task is to predict whether a user will default on credit card
payment. (2) Synthetic Datasets. For the ablation study of EDITS, we use the two datasets
generated in Section 4.2.2. One network has biased attributes and an unbiased structure, while
the other network is on the opposite. We add eight extra attribute dimensions besides the two
attribute dimensions for both datasets. The attribute values in the extra attribute dimensions
are generated uniformly between 0 and 1. For labels, we compute the sum of the first two
extra attribute dimensions. Then, we add Gaussian noise to the sum values, and rank them by
the values in descending order. Labels of the top-ranked 50% individuals are set as 1, while
the labels of the other 50% are set as 0. The task is to predict the labels.

4.2.5.2 Experimental settings

GNN Models. Here we adopt three popular GNN variants in our experiments: GCN [111],
GraphSAGE [74], and GIN [222].

Baselines. Since there is no existing work directly debiasing network data for GNNs, here
we choose two state-of-the-art GNN-based debiasing approaches for comparison, namely
FairGNN [37] and NIFTY [3]. (1) FairGNN. It is a debiasing method based on adversarial
training. A discriminator is trained to distinguish the representations between different
demographic groups. The goal of FairGNN is to train a GNN that fools the discriminator
for bias mitigation. (2) NIFTY. It is a recently proposed GNN-based debiasing framework.
With counterfactual perturbation on the sensitive attribute, bias is mitigated via learning node
representations that are invariant to the sensitive attribute. It should be noted that both of
them take GNNs as their backbones in the downstream task. While on the other hand, EDITS
attempts at debiasing attributed networks without referring to the output of downstream GNN
models (i.e., EDITS is model-agnostic). The hyper-parameters of EDITS are tuned only based
on our proposed bias metrics. Obviously, the debiasing performed by EDITS is with better
generalization ability but more difficult compared with the model-oriented baselines.

Evaluation Metrics. We evaluate model performance from two perspectives: model utility
and bias mitigation. Good performance means low bias and high model utility. We introduce
the adopted metrics for model utility and bias mitigation: (1) Model Utility Metrics. For node
classification, we use the area under the receiver operating characteristic curve (AUC) and
F1 score as the indicator of model utility; (2) Bias Mitigation Metrics. We use two widely-
adopted metrics ∆SP and ∆EO to show to what extent the bias in the output of different GNNs
are mitigated [130, 9, 37]. For both metrics, a lower value means better bias mitigation.

4.2.5.3 Debiasing Attributed Network for GNNs

To answer RQ1, we first evaluate the effectiveness of EDITS in reducing the bias measured
by the two proposed metrics and traditional bias metrics with different GNN backbones. The
attribute and structural bias of the six real-world datasets before and after being debiased by
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TABLE 4.7. Attribute and structural bias comparison between original net-
works and debiased ones from EDITS (in scale of ×10−3). The lower, the
better. Best ones are marked in bold.

Attribute Bias Structural Bias
Vanilla EDITS Vanilla EDITS

Pokec-z 0.43 0.33 (−23.3%) 0.83 0.75 (−9.64%)
Pokec-n 0.54 0.42 (−22.2%) 1.03 0.89 (−13.6%)
UCSD34 0.53 0.48 (−9.43%) 0.68 0.63 (−7.35%)
German 6.33 2.38 (−62.4%) 10.4 3.54 (−66.0%)
Credit 2.46 0.56 (−77.2%) 4.45 2.36 (−47.0%)

Recidivism 0.95 0.39 (−58.9%) 1.10 0.52 (−52.7%)

TABLE 4.8. Comparison on utility and bias mitigation between GNNs with
original networks (denoted as Vanilla) and debiased networks (denoted as
EDITS) as input. ↑ denotes the larger, the better; ↓ denotes the opposite. Best
ones are in bold.

GCN GraphSAGE GIN

Vanilla EDITS Vanilla EDITS Vanilla EDITS

Pokec-z

AUC ↑ 67.83 ± 0.7% 67.38 ± 0.3% 68.00 ± 0.3% 66.37 ± 0.7% 66.74 ± 0.8% 65.64 ± 0.5%

F1 ↑ 61.95 ± 0.6% 61.91 ± 0.1% 61.58 ± 1.3% 60.62 ± 0.6% 61.55 ± 0.5% 60.65 ± 1.2%

∆SP ↓ 5.70 ± 1.2% 2.74 ± 0.9% 7.10 ± 1.2% 2.89 ± 0.4% 5.20 ± 1.0% 1.90 ± 1.3%

∆EO ↓ 4.88 ± 1.3% 2.87 ± 1.0% 6.37 ± 0.8% 2.54 ± 0.7% 4.65 ± 1.1% 2.09 ± 1.1%

Pokec-n

AUC ↑ 63.24 ± 0.5% 61.82 ± 0.9% 64.07 ± 0.4% 62.05 ± 0.6% 62.53 ± 1.4% 61.60 ± 1.4%

F1 ↑ 54.32 ± 0.4% 52.84 ± 0.3% 53.45 ± 1.2% 52.53 ± 0.1% 52.62 ± 1.2% 52.56 ± 1.0%

∆SP ↓ 3.36 ± 0.4% 0.91 ± 0.9% 3.85 ± 0.2% 2.08 ± 1.2% 5.90 ± 2.5% 0.96 ± 0.5%

∆EO ↓ 3.97 ± 1.6% 1.10 ± 1.0% 2.64 ± 0.3% 1.82 ± 0.9% 4.47 ± 3.7% 0.47 ± 0.4%

UCSD34

AUC ↑ 63.33 ± 0.3% 62.43 ± 0.9% 62.62 ± 1.0% 62.82 ± 2.4% 62.57 ± 0.7% 64.50 ± 0.9%

F1 ↑ 94.16 ± 0.3% 94.69 ± 0.1% 94.00 ± 0.2% 94.55 ± 0.1% 92.24 ± 1.6% 92.48 ± 0.5%

∆SP ↓ 1.27 ± 0.4% 0.27 ± 0.1% 1.27 ± 0.5% 0.35 ± 0.3% 2.11 ± 1.3% 0.36 ± 0.1%

∆EO ↓ 1.40 ± 0.4% 0.39 ± 0.1% 1.40 ± 0.4% 0.25 ± 0.3% 2.32 ± 1.6% 0.47 ± 0.4%

German

AUC ↑ 74.46 ± 0.7% 71.01 ± 1.3% 75.28 ± 2.1% 73.21 ± 0.5% 71.35 ± 1.7% 71.51 ± 0.6%

F1 ↑ 81.54 ± 0.9% 82.43 ± 0.7% 81.52 ± 1.0% 80.62 ± 1.5% 83.08 ± 0.9% 83.78 ± 0.4%

∆SP ↓ 43.14 ± 2.5% 2.04 ± 1.3% 26.83 ± 0.5% 8.30 ± 3.1% 18.55 ± 2.0% 1.26 ± 0.7%

∆EO ↓ 33.75 ± 0.4% 0.63 ± 0.4% 20.66 ± 3.0% 3.75 ± 3.3% 11.27 ± 3.5% 2.87 ± 1.4%

Credit

AUC ↑ 73.62 ± 0.3% 70.16 ± 0.6% 74.99 ± 0.2% 75.28 ± 0.5% 73.82 ± 0.4% 72.06 ± 0.9%

F1 ↑ 81.86 ± 0.1% 81.44 ± 0.2% 82.31 ± 0.7% 83.39 ± 0.3% 82.11 ± 0.1% 85.10 ± 0.7%

∆SP ↓ 12.93 ± 0.1% 9.13 ± 1.2% 17.03 ± 3.3% 12.25 ± 0.2% 12.18 ± 0.3% 8.79 ± 5.6%

∆EO ↓ 10.65 ± 0.0% 7.88 ± 1.0% 15.31 ± 4.0% 9.58 ± 0.1% 9.48 ± 0.3% 7.19 ± 3.8%

Recidivism

AUC ↑ 86.91 ± 0.4% 85.96 ± 0.3% 88.12 ± 1.4% 88.15 ± 0.9% 82.40 ± 0.8% 81.55 ± 1.5%

F1 ↑ 78.30 ± 1.0% 75.80 ± 0.5% 76.23 ± 2.8% 76.30 ± 1.4% 70.36 ± 1.9% 71.09 ± 2.3%

∆SP ↓ 7.89 ± 0.3% 5.39 ± 0.2% 2.42 ± 1.2% 0.79 ± 0.5% 9.97 ± 0.7% 4.98 ± 0.9%

∆EO ↓ 5.58 ± 0.2% 3.36 ± 0.3% 2.98 ± 2.2% 1.01 ± 0.5% 6.10 ± 1.2% 5.47 ± 0.7%

71



EDITS are shown in Table 4.7. The comparison on ∆SP and ∆EO between GNNs trained
on debiased networks from EDITS and original networks is presented in Table 4.8. We
make the following observations: (1) From the perspective of bias mitigation in the attributed
network, EDITS demonstrates significant advantages over the vanilla approach as indicated
by Table 4.7. This verifies the effectiveness of EDITS in reducing the bias existing in the
attributed network data. (2) From the perspective of bias mitigation in the downstream task,
we observe from Table 4.8 that EDITS achieves desirable bias mitigation performance with
little utility sacrifice in all cases compared with GNNs with the original network as input
(i.e., the vanilla one). This verifies that attributed networks debiased by EDITS can generally
mitigate the bias in the outcome of different GNNs. (3) When comparing bias mitigation
performance indicated by Table 4.7 and Table 4.8, we can find that the bias in the outcome of
GNNs is also mitigated after EDITS mitigates attribute bias and structural bias in the attributed
networks. Such consistency verifies the validity of our proposed metrics on measuring the
bias that existed in the attributed networks.

4.2.5.4 Comparison with Other Debiasing Models

To answer RQ2, we then compare the balance between model utility and bias mitigation
with other baselines based on a given GNN. Here we present the comparison of AUC and
∆SP based on GCN in Fig. 4.8. Similar results can be obtained for other GNNs, which are
omitted due to space limit. Experimental results include the performance of baselines and
EDITS on the six real-world datasets. The following observations can be made: (1) From
the perspective of model utility (indicated by Fig. 4.8a and Fig. 4.8b), EDITS and baselines
achieve comparable results with the vanilla GCN. This implies that the debiasing process of
EDITS preserves as much useful information for the downstream task as the original attributed
network. (2) From the perspective of bias mitigation (indicated by Fig. 4.8c and Fig. 4.8d),
all baselines achieve effective bias mitigation. Compared with debiasing in downstream
tasks, debiasing the attributed network is more difficult due to the lack of supervision signals
from GNN prediction. Observation can be drawn that the debiasing performance of EDITS
is similar to or even better than that of the adopted baselines. This verifies the superior
performance of EDITS on debiasing attributed networks for more fair GNNs. (3) From the
perspective of balancing the model utility and bias mitigation, EDITS achieves comparable
model utility with alternatives but exhibits better bias mitigation performance. Consequently,
we argue that EDITS achieves superior performance on balancing the model utility and bias
mitigation over other baselines.

4.2.5.5 Ablation Study

To evaluate the effectiveness of the two debiasing modules (i.e., attribute debiasing module
and structural debiasing module) in EDITS, here we investigate how each of them individually
contributes to bias mitigation under our proposed bias metrics and the traditional bias metrics
in the downstream task. We choose GCN as the GNN model in our downstream task. For
better visualization purposes, the two datasets showing large attribute bias and structural
bias (i.e., German and Credit) are selected for experiments. Besides, to better demonstrate
the functionality of the two debiasing modules, we also adopt the two synthetic datasets we
mentioned in Section 4.2.2 (i.e., the network with only biased attributes and the network with
only biased structure), which are further modified according to Section 4.2.5.1. Based on
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FIGURE 4.8. Performance comparison between EDITS and baselines on
utility (AUC) and bias mitigation (∆SP ).

the four selected datasets, four different variants of EDITS are tested, namely EDITS with
both debiasing modules, EDITS without the structural debiasing module (i.e., *w/o-SD),
EDITS without the attribute debiasing module (i.e., *w/o-AD), vanilla GCN model without
debiased input (i.e., Vanilla). We present their performance of attribute bias, structural bias,
AUC, and ∆SP on the four datasets in Fig. 4.9. We make the following observations: (1) The
value of attribute bias can be reduced with the attribute debiasing module of EDITS, which
maintains the model utility (i.e., AUC) but reduces ∆SP in the downstream task. (2) The
value of structural bias can be reduced with both attribute debiasing and structural debiasing
modules. With only structural debiasing, EDITS still maintains comparable model utility but
reduces ∆SP in the downstream task. (3) Although both attribute debiasing and structural
debiasing module help mitigate structural bias, only debiasing the network structure achieves
better bias mitigation performance on all four datasets compared with only debiasing the
attributes as implied by Fig. 4.9d. This demonstrates the indispensability of the structural
debiasing module in EDITS.

4.2.5.6 Extension to Non-Binary Sensitive Attributes

Here, we show how our proposed framework EDITS can be generalized to handle non-binary
sensitive attributes. More specifically, we use a synthetic dataset to showcase the extension.

Synthetic Dataset Generation. Our goal here is to generate a synthetic attributed network
with both biased node attributes and network structure, where nodes should come from at
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FIGURE 4.9. Performance EDITS and its variants on two real-world datasets
and two synthetic datasets. EDITS denotes that both debiasing modules
are included; *w/o-SD means EDITS without structural debiasing module;
*w/o-AD means EDITS is without attribute debiasing module; Vanilla means
applying GNN with the original attributed network as input.

least three different groups based on the sensitive attribute. We elaborate more details from
three perspectives: biased network structure generation, biased node attribute generation,
and node label generation. (1) Biased Network Structure Generation. We adopt a similar
approach as presented in Fig. 4.6 to generate three communities with dense intra-community
links but sparse inter-community links. (2) Biased Node Attributes Generation. We generate
a ten-dimensional attribute vector for each node. The values at the first two dimensions are
generated independently with Gaussian distribution N (-1, 12), N (0, 12), and N (1, 12) for the
nodes in the three communities, respectively. The attribute values for all other dimensions are
generated with independent Gaussian Distribution N (0, 12). Besides, We generate a ternary
variable s ∈ {0, 1, 2} based on the node community membership for all nodes as an extra
attribute dimension. Here the community membership is regarded as the sensitive attribute
of nodes in this network. (3) Node Label Generation. We sum up the values at the first two
unbiased attribute dimensions for all nodes, and then add Gaussian noise to the summation
values. The summation values with noise are ranked in descending order. Labels of the
top-ranked 50% nodes are set as 1, while the labels of the other 50% nodes are set as 0. The
task is to predict the generated labels.

Framework Extension. To extend the proposed framework EDITS to handle non-binary
sensitive attributes, the basic rationale is to encourage the function fm introduced in Sec-
tion 4.2.4.3 to help approximate the squared Wasserstein distance sum between all group
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pairs based on ternary sensitive attribute. Therefore, we modify the L1 in Eq. (4.17) as

L̃1 =
∑
i,j

∑
m

{Exi,m
[fm(xi,m)]− Exj,m

[fm(xj,m)]}2. (4.21)

Here 1 ≤ m ≤ M , and i, j ∈ {0, 1, 2} (i < j). xi,m and xj,m follows P Joint
i,m and P Joint

j,m ,
respectively. The L1 in Eq. (4.18), (4.19), and (4.20) are repalced with L̃1. This helps
approximate and minimize the squared Wasserstein distance sum between all group pairs.

Research Questions. Here we aim to answer two research questions. RQ1: Can EDITS
mitigate the bias in the network dataset with ternary sensitive attributes? RQ2: Can EDITS
achieve a good balance between mitigating bias and maintaining utility for GNN predictions
with ternary sensitive attributes?

Evaluation Metrics. We introduce the metrics following the two research questions above.
(1) For RQ1, to measure the bias in the network dataset, we adopt the battr and bstru introduced
in Sec. 4.2.3.3. (2) For RQ2, to measure the bias exhibited in GNN predictions, we adopt two
traditional fairness metrics: ∆SP and ∆EO. Considering that these two metrics are designed
only for binary sensitive attributes, ∆SP and ∆EO for each pair of groups are utilized to
evaluate the fairness level of GNN predictions. Besides, AUC and F1 are adopted to evaluate
the utility of GNN predictions.

Results Analysis. Results based on GCN are presented in Fig. 4.10 and Table 4.10, and
similar observations can also be found on other GNN backbones. We evaluate the performance
of EDITS from two perspectives. (1) RQ1: the fairness level of the network dataset. As
presented in Table 4.10, battr and bstru of the dataset are clearly reduced with EDITS. This
verifies the effectiveness of EDITS on debiasing the attributed network data. (2) RQ2: the
balance between fairness and utility for GNN predictions. As presented in Fig. 4.10, ∆SP

and ∆EO for every group pair are reduced. This corroborates the effectiveness of EDITS on
achieving more fair GNN predictions. At the same time, Table 4.10 indicates that the GNN
with debiased input data still maintains similar utility performance compared with the GNN
with vanilla input. This indicates that EDITS achieves a good balance between fairness and
utility for GNN predictions.
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TABLE 4.9. Parameter study for µ1 and µ3. The values of battr and bstru are in
scale of ×10−3.

µ1 battr F1(%) ∆SP (%) µ3 bstru F1(%) ∆SP (%)
1e2 6.33 81.69 35.3 1e2 10.2 82.26 34.2
1e1 5.02 80.69 19.9 1e1 9.97 80.89 25.0
1e0 3.74 80.28 7.76 1e0 9.81 79.77 14.1
1e-1 2.38 80.00 4.58 1e-1 4.89 79.46 3.96
1e-2 2.34 79.95 4.08 1e-2 3.53 78.93 3.26
1e-3 2.35 79.46 3.96 1e-3 3.34 78.89 2.76
1e-4 2.34 79.03 3.29 1e-4 3.29 78.37 2.06
1e-5 2.34 76.22 2.86 1e-5 3.22 78.06 2.00

TABLE 4.10. Comparison of fairness level and utility between the original
synthetic network and the debiased one based on the ternary sensitive attributes.
The values of battr and bstru are in scale of ×10−3. Best ones are in bold.

Attribute Bias & Structural Bias Comparison
Group 0 v.s. 1 Group 0 v.s. 2 Group 1 v.s. 2
battr bstru battr bstru battr bstru

Vanilla 13.7 25.5 26.5 48.8 11.0 20.4
EDITS 5.33 9.63 13.4 24.1 4.73 8.73

Utility Comparison
AUC F1

Vanilla 67.09 ± 0.3% 64.50 ± 0.6%
EDITS 67.05 ± 0.2% 62.91 ± 0.8%

4.2.5.7 Parameter Study

Here we aim to study the sensitivity of EDITS w.r.t. hyper-parameters. Specifically, we show
the parameter study of µ1 and µ3 on German dataset, but similar observations can also be
found on other datasets. Here µ1 and µ3 control how much original information should be
preserved from the original attributes and graph structure, respectively. We first vary µ1 in the
range of {1e2, 1e1, 1e0, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5} while fix other parameters as µ2=1e-4,
µ3=1e-1, µ4=1e-4; then we vary µ1 in the same range with µ1=1e-3, µ2=1e-4, µ4=1e-4. The
results in Table 4.9 indicate that the trade-off between debiasing and utility performance is
stable when µ1 and µ3 are in a wide range between 1e-3 and 1e-1. Therefore, it is safe to tune
these parameters in a wide range without significantly affecting fairness and utility.

4.2.6 Related Work

Mitigating Bias in Machine Learning. Bias can be defined from a variety of perspectives
in machine learning algorithms [55, 77, 8, 213, 133, 125]. Commonly used algorithmic
bias notions can be broadly categorized into group fairness and individual fairness [58].
Group fairness emphasizes that algorithms should not yield discriminatory outcomes for
any specific demographic groups [58]. Such groups are usually determined by sensitive
attributes, e.g., gender or race [102]. Existing debiasing approaches work in one of the
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three data flow stages, i.e., pre-processing, processing and post-processing stage. In pre-
processing stage, a common method is to re-weight training samples from different groups to
mitigate bias before model training [102]. Perturbing data distributions between groups is
another popular approach to debias the data in the pre-processing stage [195]. In processing
stage, a popular method is to add regularization terms to disentangle the outcome from
sensitive attribute [164, 126] or minimize the outcome difference between groups [2]. Besides,
utilizing adversarial learning to remove sensitive information from representations is also
widely adopted [60]. In post-processing stage, bias in outcomes is usually mitigated by
constraining the outcome to follow a less biased distribution [242, 77, 157, 119, 114]. Usually,
all above-mentioned approaches are evaluated via measuring how much certain fairness
notion is violated. Statistical Parity [58], Equality of Opportunity, Equality of Odds [77] and
Counterfactual Fairness [115] are commonly studied fairness notions. Different from group
fairness, individual fairness focuses on treating similar individuals similarly [58, 233]. The
similarity can be given by oracle similarity scores from domain experts [118]. Most existing
debiasing methods based on individual fairness work in the processing stage. For example,
constraints can enforce similar predictions between similar instances [118, 101]. Consistency
is a popular metric for individual fairness evaluation [118, 120].

Mitigating Bias in Graph Mining. Efforts have been made to mitigate bias in graph mining
algorithms, where these works can be broadly categorized into either focusing on group
fairness or individual fairness. For group fairness, adversarial learning can be adopted to learn
less biased node representations that fool the discriminator [13, 37]. Rebalancing between
groups is also a popular approach to mitigate bias [17, 62, 162, 185, 125]. For example,
Rahman et al. mitigate bias via rebalancing the appearance rate of minority groups in random
walks [162]. Projecting the embeddings onto a hyperplane orthogonal to the hyperplane of
sensitive attributes is another approach for bias mitigation [147]. Compared with the vast
amount of works on group fairness, only few works promote individual fairness in graphs. To
the best of our knowledge, Kang et al. [104] first propose to systematically debias multiple
graph mining algorithms based on individual fairness. Dong et al. [46] argue that for each
individual, if the similarity ranking of others in the GNN outcome follows the same order of
an oracle ranking given by domain experts, then people can get a stronger sense of fairness.
Different from the above approaches, this paper proposes to directly debias the attributed
networks in a model-agnostic way.

4.2.7 Conclusion

GNNs are increasingly critical in various applications. Nevertheless, there is an increasing
societal concern that GNNs could yield discriminatory decisions towards certain demographic
groups. Existing debiasing approaches are mainly tailored for a specific GNN. Adapting
these methods to different GNNs can be costly, as they need to be fine-tuned. Different from
them, in this paper, we propose to debias the attributed network for GNNs. With analysis
of the source of bias existing in different data modalities, we define two kinds of bias with
corresponding metrics, and formulate a novel problem of debiasing attributed networks for
GNNs. To tackle this problem, we then propose a principled framework EDITS for model-
agnostic debiasing. Experiments demonstrate the effectiveness of EDITS in mitigating the
bias and maintaining the model utility.
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4.3 Fair Knowledge Distillation for Graph Neural Networks

4.3.1 Introduction

In recent years, Graph Neural Networks (GNNs) have shown satisfying performance in a
plethora of real-world applications, e.g., medical diagnosis [166] and credit risk scoring [194],
to name a few. In practice, the depth and the number of parameters of GNNs largely determine
their expressive power [78], which directly influence their performances in various graph
learning tasks [27]. Typically, deeper GNN layers enable the model to capture information
that is multiple hops away from any node [111], while a larger number of learnable parameters
enable GNN to fit more complex underlying data patterns [27]. However, in most cases, the
inference efficiency of GNNs is inevitably degraded by the deep layers or the large number
of parameters. Such low efficiency makes these GNNs inapplicable to be deployed on edge
devices (e.g., mobile phones) with limited computational resources [78, 100].

Due to the problem above, it is necessary to compress those computationally expensive
GNNs for deployment on edge devices. Knowledge Distillation (KD) is a common approach
to compress GNNs but still maintains a similar level of prediction performance [225, 78,
100]. Here, the basic idea of KD is to let a light-weighted student model (as the compressed
GNN) learn to mimic the behavior (e.g., output logits) of the teacher model (usually a
computationally expensive GNN). However, most existing KD approaches do not have any
fairness consideration over different demographic subgroups, and the optimized student model
often preserves and even exaggerates the exhibited bias from the teacher GNN. Consequently,
when the compressed model is deployed in real-world application scenarios, there could
exist discrimination toward specific populations. Here we provide preliminary analysis
based on two representative GNN knowledge distillation frameworks, namely CPF [225]
and GraphAKD [78]. Specifically, we measure the exhibited bias in the widely-studied node
classification task on two real-world datasets. Here Recidivism is a network of defendants [99,
3], while Credit is a network between bank clients [227, 3]. We adopt two traditional metrics,
i.e., ∆SP (measuring the level of bias under Statistical Parity [58]) and ∆EO (measuring the
level of bias under Equal Opportunity [77]), to measure the exhibited bias of GNN predictions.
We present a comparison of the exhibited bias between teacher and student models in Fig. 4.11.
Empirical results show that student models tend to yield more biased results compared with
the teacher GNN model, which could be attributed to the biased guidance from the teacher
GNN during training. It is worth noting that in most cases, directly retraining the teacher
GNN for debiasing is infeasible, since retraining the teacher GNN with a large number of
parameters is computationally expensive. Hence, mitigating the bias for the student model is
an urgent need.

Despite the necessity of mitigating bias for the student model, existing exploration remains
scarce. In this paper, we aim to make an initial step towards developing a debiasing framework
that can be easily adapted to various existing GNN-based KD methods. However, this task is
non-trivial mainly due to the following three challenges: (1) Gap towards Fair Knowledge:
For most KD frameworks designed for compressing GNNs, the teacher GNN model usually
serves as the sole source of supervision signal for the training of the student model. Therefore,
if the teacher GNN exhibits any bias, such biased knowledge tends to be inherited by the
student model. Hence, learning a fair student model with biased supervision from the teacher
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FIGURE 4.11. A comparison of exhibited bias between teacher and student
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(CPF and GraphAKD). "T" and "S" represent the teacher and the student
model, respectively. The names of GNNs mark out the teacher models.

GNN is our first challenge. (2) Gap towards End-to-End Learning: A critical advantage
of existing KD models is the end-to-end learning paradigm, which enables the distilled
knowledge to be tailored to specific downstream tasks. In such an end-to-end learning
process, highly efficient gradient-based optimization techniques are widely adopted. However,
widely-used fairness notions (e.g., Statistical Parity and Equal Opportunity) are defined on the
predicted labels. Hence the corresponding bias metrics are naturally non-differentiable w.r.t.
the student model parameters. Developing a debiasing framework suitable for gradient-based
optimization techniques in the end-to-end learning paradigm is our second challenge. (3) Gap
towards Generalization: Various KD models have been proposed for compressing GNNs
to satisfy different application scenarios. In fact, most KD models are developed based on
certain designs of student models. Developing a framework that is student-agnostic and easily
adapted to different KD models is our third challenge.

To tackle the above challenges, in this paper, we propose a novel framework named RELIANT
(faiR knowlEdge distiLlatIon for grAph Neural neTworks) to mitigate the bias learned by the
student model. Specifically, we first formulate a novel research problem of Fair Knowledge
Distillation for GNN-based Teacher-Student Frameworks. To tackle the first challenge, we
incorporate a learnable proxy of the exhibited bias for the student model. In this way, despite
the knowledge (from the teacher GNN) being biased, the student model still makes less
biased predictions under proper manipulations on the proxy. To tackle the second challenge,
we propose to approximate the bias level of the student model, where the approximation is
differentiable (w.r.t. the student model parameters) manner. In this way, the highly efficient
end-to-end learning paradigm is preserved, and the gradient-based optimization techniques are
still applicable. To tackle the third challenge, we design the proposed framework RELIANT
in a student-agnostic manner. In other words, the debiasing for the student model does not
rely on any specific design tailored for the student model structure. Therefore, RELIANT
can be easily adapted to different GNN-based knowledge distillation approaches. The main
contributions of this paper are summarized as follows.
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FIGURE 4.12. An overview of the proposed framework RELIANT including
the training and inference stage.

• Problem Formulation. We formulate and make an initial investigation on a novel
research problem of fair knowledge distillation for GNN-Based teacher-student
frameworks.

• Algorithmic Design. We propose a principled framework named RELIANT that
learns the proxy of bias for the student model during KD. RELIANT achieves
student-agnostic debiasing via manipulating the proxy during inference.

• Experimental Evaluation. We conduct comprehensive experiments on multiple
real-world datasets to verify the effectiveness of the proposed framework RELIANT
in learning less biased student models.

4.3.2 Problem Definition

Notations. We denote matrices, vectors, and scalars by bold uppercase letters (e.g., X), bold
lowercase letters (e.g., x), and regular lowercase letters (e.g., x), respectively. For any matrix,
e.g., X, we use Xi,j to indicate the element at the i-th row and j-th column.

Preliminaries. We utilize G = {V , E ,X} to denote an attributed network (graph). Here,
V = {v1, ..., vn} is the set of nodes, E ⊆ V × V is the set of edges, and X = {x1, ...,xn}
(xi ∈ Rd, 1 ≤ i ≤ n) is the set of node attribute vectors. We use A ∈ {0, 1}n×n to denote
the adjacency matrix of the graph. If there is an edge from the i-th node to the j-th node,
Ai,j = 1; otherwise Ai,j = 0. Moreover, we denote the pre-trained teacher GNN model in a
knowledge distillation framework as fθ̂ parameterized by θ̂. Here θ̂ denotes the optimized θ
of the pre-trained teacher model. Similarly, we denote the student model as gϕ parameterized
by ϕ. We represent the optimized ϕ after the training of the student model as ϕ̂. Without loss
of generality, we consider the most widely studied node classification as the downstream task.
For the teacher model fθ̂(v), we denote the set of outcome logits, i.e., the continuous output
vector corresponding to each node, as Ŷ(t) = {ŷ(t)

1 , ŷ
(t)
2 , ..., ŷ

(t)
n }, where ŷ

(t)
i ∈ Rc. Here c is

the total number of node classes. Correspondingly, we represent the set of outcome logits of
the student model gϕ(v) as Ŷ(s) = {ŷ(s)

1 , ŷ
(s)
2 , ..., ŷ

(s)
n }. For any node vi, the predicted label
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given by the student model (denoted as Ŷ (s)
i for the i-th node) is determined by the largest

value across all c dimensions in ŷ
(s)
i .

Based on the definitions above, we formulate the problem of Fair Knowledge Distillation for
GNN-based Teacher-Student Frameworks as follows.

PROBLEM 4.3.1. Fair Knowledge Distillation for GNN-Based Teacher-Student Frameworks.
Given an attributed network G and a GNN-based teacher-student framework including a
trained teacher GNN fθ̂ and a student model gϕ to be trained, our goal is to achieve a more
fair student model with similar prediction utility compared with fθ̂ in node classification.

4.3.3 Methodology

In this section, we first present an overview of the proposed framework RELIANT, followed
by the objective function formulation and optimization strategy.

4.3.3.1 Workflow of RELIANT

Here we first introduce the workflow of the proposed framework RELIANT. In general,
we introduce the three main functionalities involved in the proposed framework RELIANT,
namely maximizing the utility, learning proxy of bias, and enforcing the attribution of bias to
the proxy. We present an overview of RELIANT in Fig. 4.12. Specifically, to tackle the first
challenge (gap towards fair knowledge), we propose to first learn the proxy of bias as extra
input attributes for the student model to account for the exhibited bias (on training nodes),
and then exclude the information of proxy during test with manipulated pseudo proxy. To
tackle the second challenge (gap towards end-to-end learning), we formulate our debiasing
objectives in a differentiable (w.r.t. the parameters of the student model) manner. To tackle
the third challenge (gap towards generalization), we achieve debiasing in a student-agnostic
manner. In other words, the proposed framework RELIANT does not rely on any specific
student model structure to achieve debiasing. We elaborate more details as follows.

Maximizing Utility. In general, existing GNN-based KD frameworks consider the GNNs with
high computational costs as the teacher model, and the goal is to learn a student model with
limited computational costs but similar prediction utility (e.g., accuracy in node classification
tasks). To maintain the utility of the teacher model, it is necessary to utilize the knowledge
from the teacher model as the supervision signal for the training of the student. In particular,
a common approach is to utilize the output classification logits from the teacher model as the
supervision signal, which we take as an example here. Specifically, we minimize the distance
between the logits from the student model and the teacher model. We formally formulate the
optimization goal as

min
ϕ

∑
vi∈V

γd

(
ŷ
(t)
i , ŷ

(s)
i

)
, (4.22)

where ŷ
(s)
i and ŷ

(t)
i are the output logits from the student model gϕ(vi) and teacher model

fθ̂(vi), respectively. The function γd(., .) measures the distance between two logit vectors.
Different choices can be adopted to measure the distance, e.g., cosine distance and Euclidean
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distance. Correspondingly, to maximize the prediction utility, we minimize the objective

LUtility(ϕ) =
∑
vi∈V

γd

(
ŷ
(t)
i , ŷ

(s)
i

)
. (4.23)

Learning Proxy of Bias. It is worth noting that even if the sensitive attributes are removed
from the input data, the student model could still exhibit bias in its predictions. The main
reason is that there could exist dependencies between those sensitive attributes and non-
sensitive ones. Moreover, the information about sensitive attributes could also be encoded in
the input network structure [47]. As a consequence, it is difficult to prevent the student model
from leveraging information about sensitive attributes. To handle such a problem, we propose
to learn the proxy of bias x(p)

i as extra input attributes for each node vi. Here, the rationale is
that if much information about bias comes from the learned proxy instead of those encoded in
the non-sensitive attributes or the network structures, then we are able to achieve less biased
predictions by not using the information from such a proxy during test. As a consequence,
such a proxy of bias should account for the exhibited bias of the student model as much
as possible. In other words, the exhibited bias should be largely attributed to the proxy of
bias rather than the sensitive information encoded in the network data. More specifically, to
enforce the proxy of bias contributing to the exhibited bias in the student model, we propose
to maximize the exhibited bias when these proxies are taken as input into the student model
together with other attributes and the network structure. We formally formulate our goal as

max
X(p)

JBias({gϕ(γ(vi,X(p))) : i ∈ V}), (4.24)

where γ(., .) is a function that takes a node and the proxy of bias matrix as input, and outputs
the node with a concatenated node attribute vector [xi,x

(p)
i ]. Here x

(p)
i is the i-th row of X(p).

JBias(.) is a function that takes the set of logits from the student model as input and outputs a
value indicating the level of exhibited bias. Nevertheless, the computation is non-differentiable
under traditional fairness notions such as Statistical Parity and Equal Opportunity. Here
we propose to utilize orthogonal polynomials (e.g., Legendre polynomials [42]) that are
differentiable w.r.t. the output logits to approximate the level of bias under traditional fairness
notions. This makes JBias differentiable w.r.t. the learnable parameter ϕ. Correspondingly, we
formally give the objective function towards the goal above as

LProxy(X
(p)) = −JBias({gϕ(γ(vi,X(p))) : i ∈ V}). (4.25)

Enforcing the Attribution of Bias to the Proxy. Only achieving Eq. (4.24) is not enough
to enforce the proxy of bias largely accounting for the exhibited bias of the student model.
This is because the vanilla node attributes could still contribute to the exhibited bias. More
specifically, we denote P (Ŷ (s)) as the probability of a certain classification prediction given
by the student model for any specific node. We assume that there are underlying unbiased
and biased node attributes X(u) and X(b), respectively. When Eq. (4.24) is achieved, it is
clear that P (Ŷ (s)|X(u),X(b),X(p)), i.e., P (Ŷ (s)|X,X(p)), is biased. However, both X(b) and
X(p) could be the source of the exhibited bias. It is worth noting that our goal is to learn
proxy X(p) to account for as much of the exhibited bias as possible. Therefore, to enforce
the effectiveness of the proxy, it is necessary to ensure that the exhibited bias is attributed
to the biased information from X(p) instead of X(b). In other words, we need to enforce
P (Ŷ (s)|X(u),X(b)) being less biased, which ensures that X(p) accounts for the exhibited bias
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TABLE 4.11. The basic information about the real-world datasets adopted
for experimental evaluation. Sens. denotes the semantic meaning of sensitive
attribute.

Dataset Recidivism Credit Defaulter DBLP DBLP-L
# Nodes 18,876 30,000 39,424 129,726
# Edges 321,308 1,436,858 52,460 591,039
# Attributes 18 13 5,693 5,693
Avg. degree 34.0 95.8 1.3 4.6
Sens. Race Age Continent of Affiliation Continent of Affiliation
Label Bail Decision Future Default Research Field Research Field

as much as possible. Nevertheless, P (Ŷ (s)|X(u),X(b)) is intractable considering that the
number of the input dimension number for the student model is fixed. Hence we propose an
alternative approach. Denote the learned proxy of bias and the underlying sensitive attribute
vector of any node as x(p) and s, respectively. We propose to utilize a vector E[x(p)] to replace
each row in X(p) as the manipulated pseudo proxy X̃(p). In this way, the rows in X̃(p) are
independent from s, i.e., the information about sensitive attributes encoded in X(p) is wiped
out. To enforce the attribution of bias to the proxy X(p), the predictions should be as fair
as possible when the information about X(p) is removed. Therefore, we formulate our last
optimization goal as

min
ϕ

JBias({gϕ(γ̃(vi, X̃(p))) : i ∈ V}), (4.26)

where γ̃(., .) is a function that takes a node and the matrix X̃(p) as input, and returns the input
node with a concatenated node attribute vector [xi, x̃

(p)
i ]. Here x̃

(p)
i is the i-th row of matrix

X̃(p). We formally present the corresponding objective function as

LAttr(ϕ) = JBias({gϕ(γ̃(vi, X̃(p))) : i ∈ V}). (4.27)

Inference with Student Model. To achieve less biased inference, an ideal case is to make
predictions with P (Ŷ (s)|X(u)). However, it is difficult to explicitly extract X(u) from X.
Instead, we argue that P (Ŷ (s)|X(u),X(b), X̃(p)) exhibits similar level of bias compared with
P (Ŷ (s)|X(u)). This is because (1) the bias exhibited by P (Ŷ (s)|X(u),X(b), X̃(p)) minimally
relies on X(b) after enforcing Eq. (4.24) and Eq. (4.26); and (2) there is no further information
about sensitive attributes encoded in X̃(p) (as discussed above). Consequently, we propose to
utilize gϕ(γ̃(vi, X̃

(p))) to achieve less biased prediction for node vi in the inference stage.

4.3.4 Optimization Objectives & Strategy

We present the optimization objectives of RELIANT followed by the training strategy in this
section.

Optimization Objectives. Based on our discussions above, here we present a summary of
the optimization objectives for the proposed RELIANT. First, to optimize the parameter ϕ,
we formally formulate a unified objective function as

Lϕ = LUtility(ϕ) + λ · LAttr(ϕ). (4.28)
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Here λ serves as a hyper-parameter controlling the effect of debiasing the student model.
Second, to optimize the learnable proxy of bias X(p), we formally present the objective
function as

LX(P) = LProxy(X
(p)). (4.29)

Optimization Strategy. To train the proposed framework RELIANT, we propose to optimize
the parameter ϕ and learnable proxy of bias X(p) in an alternating manner. We present the
algorithmic routine of RELIANT in Algorithm 2.

Algorithm 2 Fair Knowledge Distillation for GNNs
Input: G: the graph data; fθ̂: the trained teacher GNN model; gϕ: the student model;
Output: gϕ̂: the optimized student model; X(p): the proxy of bias matrix;
1: Randomly initialize X(p);
2: while stop training condition not satisfied do
3: Compute Lϕ according to Eq. (4.28);
4: Update ϕ with ∂Lϕ

∂ϕ ;
5: Compute LX(p) according to Eq. (4.29);
6: Update X(p) with

∂L
X(p)

∂X(p) ;
7: end while
8: Return: gϕ̂ and X(p);

4.3.5 Experimental Evaluations

In this section, we will first introduce the downstream learning task and adopted real-world
datasets, followed by the backbone models, baseline methods, and evaluation metrics. Next,
we present the implementation details of the models. Finally, we discuss the evaluation results
of the proposed RELIANT. In particular, we aim to answer the following research questions
through experiments: RQ1: How well can RELIANT balance the utility and fairness of the
student model compared with other baselines? RQ2: To what extent each component of
RELIANT contributes to the overall debiasing performance? RQ3: How will the choice of
the hyper-parameter λ affect the performance of RELIANT?

4.3.5.1 Experimental Settings

Here we introduce the settings for our experimental evaluation.

Downstream Task & Real-world Datasets. We adopt the widely studied node classification
as the downstream task in this paper. We adopt four real-world datasets for the experimental
evaluations, including two widely used network datasets (Recidivism [99, 3] and Credit
Defaulter [227, 3]) and two newly constructed ones based on real-world data (DBLP and
DBLP-L). In Recidivism, nodes are defendants released on bail, and edges denote the con-
nections between defendants computed from their past criminal records. Here the sensitive
feature is race, and we aim to classify if a certain defendant is unlikely to commit a crime after
bail. In Credit Defaulter, nodes are credit card users, and edges are the connections between
these users. Here we consider the age period of these users as their sensitive feature, and we
aim to predict the future default of credit card payments. Additionally, we also construct two
co-author networks, namely DBLP and DBLP-L based on AMiner network [183], which is a
co-author network collected from computer science bibliography. Specifically, we first filter
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TABLE 4.12. The experimental results based on node classification accuracy
and ∆SP. We use "(T)" and "(S)" suffixes to represent the teacher model and
the student model, respectively. Here Vanilla(S) denotes the student model
trained with the vanilla KD framework; One-Hot(S) represents the student
model trained with the one-hot bias proxy; RELIANT(S) is the student model
trained with our proposed model. ↑ denotes the larger, the better; while ↓
denotes the opposite. All quantitative results are presented in percentages. The
best results are in Bold.

DBLP DBLP-L Credit Recidivism

CPF
+GCN

Accuracy (↑)

GCN(T) 92.37 ± 0.06 94.20 ± 0.09 76.39 ± 0.48 93.68 ± 0.21
Vanilla(S) 93.14 ± 0.10 94.30 ± 0.04 77.85 ± 0.10 89.41 ± 0.12
One-Hot(S) 93.04 ± 0.34 94.16 ± 0.02 77.65 ± 0.10 89.15 ± 0.37
RELIANT(S) 92.70 ± 0.40 94.07 ± 0.18 77.82 ± 0.45 88.88 ± 0.57

∆SP (↓)

GCN(T) 7.66 ± 0.26 7.33 ±0.44 15.81 ±0.40 6.10 ±0.05
Vanilla(S) 8.55 ± 0.50 7.16 ± 0.16 14.90 ± 0.89 6.85 ± 0.05
One-Hot(S) 7.97 ± 0.63 7.46 ± 0.24 13.80 ± 0.32 6.78 ± 0.51
RELIANT(S) 2.27 ± 1.00 3.09 ± 0.36 10.28 ± 1.86 4.06 ± 0.64

CPF
+SAGE

Accuracy (↑)

SAGE(T) 92.57 ± 0.28 94.10 ± 0.25 77.88 ± 0.06 89.71 ± 0.14
Vanilla(S) 93.25 ± 0.15 94.97 ± 0.10 77.97 ± 0.26 89.20 ± 0.11
One-Hot(S) 93.07 ± 0.10 94.32 ± 0.07 78.01 ± 0.23 89.11 ± 0.29
RELIANT(S) 92.91 ± 0.51 94.17 ± 0.93 78.28 ± 0.36 88.85 ± 0.27

∆SP (↓)

SAGE(T) 8.32 ±0.24 7.81 ±0.08 14.08 ± 1.37 6.50 ±0.39
Vanilla(S) 8.29 ± 0.85 7.02 ± 0.13 13.44 ± 5.23 4.41 ± 0.43
One-Hot(S) 8.01 ± 0.25 7.52 ± 0.32 16.86 ± 3.86 6.62 ± 0.38
RELIANT(S) 2.01 ± 1.21 2.97 ± 0.61 10.06 ± 1.70 3.94 ± 0.60

AKD
+GCN

Accuracy (↑)

GCN(T) 92.37 ± 0.06 94.20 ± 0.09 76.39 ± 0.48 93.68 ± 0.21
Vanilla(S) 92.06 ± 0.16 94.07 ± 0.11 76.35 ± 0.31 92.08 ± 0.29
One-Hot(S) 91.55 ± 0.40 94.07 ± 0.04 75.65 ± 0.75 92.07 ± 0.03
RELIANT(S) 91.39 ± 0.24 93.98 ± 0.08 75.64 ± 0.06 91.21 ± 0.14

∆SP (↓)

GCN(T) 7.66 ±0.26 7.33 ±0.44 15.81±0.40 6.10 ±0.05
Vanilla(S) 7.87 ± 0.25 6.79 ± 0.10 13.61 ± 2.00 6.54 ± 0.17
One-Hot(S) 7.39 ± 0.35 6.72 ± 0.19 14.30 ± 0.24 6.44 ± 0.32
RELIANT(S) 3.66 ± 1.09 5.18 ± 0.16 8.47 ± 1.92 5.70 ± 0.18

AKD
+SAGE

Accuracy (↑)

SAGE(T) 92.57 ± 0.28 94.10 ± 0.25 77.88 ± 0.06 89.71 ± 0.14
Vanilla(S) 92.23 ± 0.07 94.45 ± 0.03 78.10 ± 0.24 89.67 ± 0.07
One-Hot(S) 92.31 ± 0.06 94.52 ± 0.11 78.24 ± 0.45 89.60 ± 0.12
RELIANT(S) 92.07 ± 0.07 94.28 ± 0.06 78.60 ± 0.33 88.87 ± 0.31

∆SP (↓)

SAGE(T) 8.32 ±0.24 7.81 ±0.08 14.08 ± 1.37 6.50 ±0.39
Vanilla(S) 7.53 ± 0.29 7.34 ± 0.41 14.41 ± 0.15 6.24 ± 0.20
One-Hot(S) 7.72 ± 0.44 7.26 ± 0.36 11.69 ± 0.93 6.18 ± 0.30
RELIANT(S) 4.91 ± 0.64 4.05 ± 0.14 5.00 ± 1.63 6.06 ± 0.26

out the nodes in AMiner network with incomplete information. Then we adopt two different
approaches to sample a connected network from the filtered dataset: DBLP is a subgraph
sampled with random walk, while DBLP-L is the largest connected component of the filtered
AMiner network. In both datasets, nodes represent the researchers in different fields, and
edges denote the co-authorship between researchers. The sensitive attribute is the continent
of the affiliation each researcher belongs to, and we aim to predict the primary research field
of each researcher. The detailed statistics of these four datasets are in Table 4.11.
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KD Framework Backbones & Teacher GNNs. To evaluate the capability of RELIANT in
generalizing to different GNN-based KD backbones, here we adopt two representative KD
frameworks designed for compressing GNNs, namely CPF [225] and GraphAKD [78]. In
general, CPF minimizes the distribution distance between the logits from teacher and student
to provide supervision information for the student, while GraphAKD utilizes adversarial
training to achieve knowledge distillation for the student. The student model of CPF and
GraphAKD is PLP [225] and SGC [205], respectively. For each KD framework, we adopt
two types of GNNs (including GCN [111] and GraphSAGE [74]) as the teacher GNN.

Baselines. To the best of our knowledge, this is the first study on how to mitigate the bias
exhibited in GNN-based KD frameworks. In experiments, we adopt the student model yielded
by the vanilla KD framework as our first baseline. For our second baseline, we replace the
learnable proxy of bias with a naive proxy for the input of the KD framework. Specifically,
we utilize one-hot vectors as the naive proxy for different demographic subgroups during
training, where the one-hot vector flags the membership of different nodes. We replace all
proxy vectors during inference with an averaged proxy vector across all instances. Here, the
rationale is that more distinguishable attributes are easier for deep learning models to learn
during training, and these one-hot vectors serve as an "easier" indicator of biased information.
In this way, if these one-hot proxy accounts for the exhibited bias of the student model
after training, then the exhibited bias could also be mitigated during inference, where such
information is wiped out.

Evaluation Metrics. We evaluate the performance of the compressed GNN models (i.e.,
the output student model of KD frameworks) from two perspectives, namely utility and
fairness. Specifically, in terms of utility, we adopt the node classification accuracy as the
corresponding metric; in terms of fairness, we adopt two traditional metrics ∆SP and ∆EO.
Here ∆SP measures the bias level (of predictions) under the fairness notion of Statistical Parity,
while ∆EO measures the bias level under the notion of Equal Opportunity. See online version
of this paper for other results in the online version10.

Implementation Details. RELIANT is implemented in PyTorch [154] and optimized with
Adam optimizer [109]. In our experiments, the learning rate is chosen in {10−2, 10−3, 10−4}
and the training epoch number is set as 1,000 for CPF and 600 for GraphAKD. Experiments
are carried out on an Nvidia RTX A6000, and the reported numerical results are averaged
across three different runs. We introduce more details in the online version.

4.3.5.2 Effectiveness of RELIANT

Here we aim to answer RQ1. Specifically, we evaluate our proposed framework RELIANT
on two KD backbones, namely CPF and GraphAKD. For each KD backbone, we adopt two
different GNNs (GCN and GraphSAGE) to evaluate the capability of our proposed framework
in generalizing to different GNNs. We compare the corresponding performances between
the teacher GNN model and the student models trained with three different frameworks
(i.e., the vanilla KD framework, the KD framework with the one-hot proxy of bias, and our
proposed RELIANT). We present quantitative results on node classification accuracy and ∆SP

in Table 4.12. In addition, we also perform experiments based on Equal Opportunity (see the
10See online version here https://epubs.siam.org/doi/abs/10.1137/1.9781611977653.

ch18 for supplementary discussion and experimental results.
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online version), where we have consistent observations. We make the following observations
from Table 4.12.

• From the perspective of prediction utility, student models trained with all three KD
frameworks achieve comparable performances with the teacher model. This implies
that effective knowledge distillation can be achieved by all three KD frameworks.

• From the perspective of bias mitigation, the student models trained with the vanilla
KD frameworks inherit and even exaggerate the exhibited bias from the teacher GNN
model in all cases. Training the student models with the one-hot proxy can mitigate
bias in most cases. Compared with the student models trained with the vanilla KD
framework and the one-hot proxy, RELIANT consistently exhibits less bias w.r.t.
Statistical Parity.

• Based on the performance of RELIANT in both perspectives, RELIANT achieves
effective debiasing for the student model but still maintains comparable model utility
with the teacher model. Therefore, we argue that RELIANT achieves a satisfying
balance between debiasing and maintaining utility.

4.3.5.3 Ablation Study

We aim to answer RQ2 in this subsection. Specifically, for each framework, we evaluate to
what extent the two modules of RELIANT (including learning proxy of bias and enforcing
the attribution of bias to the proxy) contribute to the performance of the student model. We
present the results in Fig. 4.13. Here, Fig. 4.13a is the performance of accuracy vs. ∆SP from
CPF based on the DBLP-L dataset, while Fig. 4.13b is the performance of accuracy vs. ∆EO

from GraphAKD based on the Recidivism dataset. Notably, we also have similar observations
under other settings. We make the following observations.

• From the perspective of prediction utility, we observe that the prediction utility is
comparable among all three cases. This corroborates that both modules exert limited
influence on the node classification accuracy.

• From the perspective of bias mitigation, adding the module of learning proxy of
bias to the vanilla KD framework brings limited bias mitigation. This is because
the bias could also come from the non-sensitive node attributes (as discussed in
Section 4.3.3.1). After the module of enforcing the attribution of bias to the proxy
is added together with learning proxy of bias, RELIANT is then able to achieve
satisfying performance on bias mitigation.

4.3.5.4 Parameter Sensitivity

We answer RQ3 by studying the tendency of model utility and exhibited bias w.r.t. the change
of hyper-parameter λ. Here λ controls the effect of LAttr. More specifically, we vary λ in
{100, 101, 102, 103, 104}, and we present the corresponding tendency of node classification
accuracy and the exhibited bias of the trained student model with RELIANT in Fig. 4.14.
Here, Fig. 4.14a is based on the Credit dataset under GraphAKD, while Fig. 4.14b is based
on the DBLP dataset under CPF. We also have similar observations on other datasets. We
make the following observations from Fig. 4.14.
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FIGURE 4.13. Ablation study of RELIANT. "Vanilla" denotes the student
model trained with the original KD framework, while "V. w/ Proxy" represents
the student model trained under the KD framework with only learning the
proxy of bias.
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FIGURE 4.14. Parameter sensitivity of λ based on two different KD back-
bones on two real-world datasets. We also have similar observations on other
datasets.

• From the perspective of prediction utility, the node classification accuracies on both
datasets and KD backbones do not exhibit apparent reduction when the value of λ
increases from 1 to 104. This verifies that the prediction utility is not sensitive to λ.

• From the perspective of bias mitigation, the student model exhibits less bias when λ
increases from 1 to 104. Specifically, when λ is relatively small (e.g., 1), the learned
proxy of bias only partially accounts for the exhibited bias; when the value of λ
increases, more bias is then attributed to the learned proxy. Considering the balance
between model utility and bias mitigation, a recommended range of λ is between
102 and 103.
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FIGURE 4.15. Performance comparison on balancing prediction utility and
bias mitigation between the proposed framework RELIANT and state-of-the-
art methods that directly debias GNNs. All values are in percentage.

4.3.5.5 Effectiveness of RELIANT

Here we present complementary experiments to answer RQ1, where the fairness notion is
instantiated with Equal Opportunity (measured with ∆EO). Here we adopt the same settings as
those in Section 4.3.5.2. We compare the performances between the teacher GNN model and
the student models trained with three different framework variants, including the vanilla KD
framework, the KD framework with the one-hot proxy of bias, and our proposed RELIANT.
We present quantitative results on node classification accuracy and ∆EO in Table 4.13. We
make the following observations from Table 4.13.

• From the perspective of prediction utility, all student models trained with the adopted
three KD frameworks are able to achieve comparable performances with the teacher
model. This corroborates that all three KD frameworks are capable of achieving
effective knowledge distillation.

• From the perspective of bias mitigation, the student models trained with the vanilla
KD frameworks inherit or exaggerate the bias from the teacher GNN in all cases.
Compared with the student models trained with the vanilla KD framework and the
one-hot proxy, RELIANT consistently exhibits less bias under the fairness notion of
Equal Opportunity. The student model trained with RELIANT even exhibits less bias
than the teacher model in certain cases, which further corroborates the effectiveness
of RELIANT in training less biased student models.

• According to the performance of RELIANT in both perspectives above, RELIANT
is proved to achieve effective debiasing for the student model but maintains com-
parable prediction utility compared with the teacher model. Therefore, we argue
that RELIANT achieves a satisfying balance between debiasing and maintaining the
prediction utility.

4.3.5.6 RELIANT vs. GNN-Debiasing Methods

Here we perform experiments and compare the performance of RELIANT with other state-of-
the-art GNN debiasing methods on balancing the prediction utility and bias mitigation.

Baselines. Here we choose two state-of-the-art GNN debiasing methods as our baselines,
namely EDITS [47] and NIFTY [3]. EDITS is a recent GNN debiasing method that learns less
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biased network data in the pre-processing stage. After debiasing, the network data will be fed
into the GNN model for evaluation. NIFTY is another recent GNN-based debiasing framework
that achieves bias mitigation in the processing stage. During training, node representations
are learned to be invariant to the sensitive attributes after counterfactual perturbations.

Backbones. Here we choose the most widely used GCN as the backbone GNN model for all
methods. We choose GraphAKD as the KD backbone of the proposed RELIANT. It is also
worth noting that we also have similar observations with other GNN backbones.

Discussion. We present the performance comparison results on node classification accuracy
and ∆SP in Fig. 4.15. We make the following observations.

• From the perspective of prediction utility, RELIANT keeps comparable to the teacher
GCN model, while other debiasing methods bear different levels of prediction utility
corruption. Therefore, RELIANT achieves satisfying performance in maintaining
the prediction utility among all methods.

• From the perspective of bias mitigation, RELIANT is able to achieve comparable
debiasing performance with other baselines when all models bear similar prediction
utility (e.g., on Credit dataset); when baselines outperform RELIANT on bias
mitigation, there is also much more prediction utility sacrifice (e.g., on Recidivism
dataset). Considering that debiasing the student model with biased supervision is
much more difficult than directly debiasing GNNs, we argue that the performances
of RELIANT in both cases should be considered satisfying.

• According to the performance of RELIANT in both perspectives above, we argue
that RELIANT achieves comparable performance with other state-of-the-art GNN
debiasing approaches, which further corroborates its satisfying performance on
balancing the prediction utility and bias mitigation.

4.3.6 Related Works

Algorithmic Fairness in GNNs. Most existing works promoting the algorithmic fairness of
GNNs focus either on Group Fairness [58] or Individual Fairness [233]. Specifically, group
fairness is defined based on a set of pre-defined sensitive attributes (e.g., gender and race).
These sensitive attributes divide the whole population into different demographic subgroups.
Group fairness requires that each subgroup should receive their fair share of interest according
to the output GNN predictions [134]. Various explorations have been made towards achieving
a higher level of group fairness for GNNs [50]. Decoupling the output predictions from
sensitive attributes via adversarial learning is one of the most popular approaches among
existing works [201, 37]. Other common strategies include reformulating the objective
function with fairness regularization [63, 144], rebalancing the number of intra-group edges
between two demographic subgroups [47, 125], deleting nodes or edges that contribute the
most to the exhibited bias [51, 48], etc. On the other hand, individual fairness does not rely on
any sensitive attributes. Instead, individual fairness requires that similar nodes (in the input
space) should be treated similarly (in the output space) [58]. To fulfill individual fairness in
GNNs, adding fairness-aware regularization terms to the optimization objective is the most
widely adopted approach [46, 177].
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TABLE 4.13. The experimental results based on node classification accuracy
and ∆EO. We use "(T)" and "(S)" suffixes to represent the teacher model and
the student model, respectively. Here Vanilla(S) denotes the student model
trained with the vanilla KD framework; One-Hot(S) represents the student
model trained with the one-hot bias proxy; RELIANT(S) is the student model
trained with our proposed model. ↑ denotes the larger, the better; while ↓
denotes the opposite. All quantitative results are presented in percentages. The
best results are in Bold.

DBLP DBLP-L Credit Recidivism

CPF
+GCN

Accuracy (↑)

GCN(T) 92.37 ± 0.06 94.20 ± 0.09 76.39 ± 0.48 93.68 ± 0.21
Vanilla(S) 93.24 ± 0.18 94.15 ± 0.04 77.58 ± 0.20 89.36 ± 0.16
One-Hot(S)) 93.07 ± 0.35 94.15 ± 0.07 77.65 ± 0.10 89.38 ± 0.15
RELIANT(S) 93.20 ± 0.12 94.15 ± 0.08 77.00 ± 1.57 89.30 ± 0.19

∆EO (↓)

GCN(T) 2.31 ± 0.13 2.29 ± 0.34 12.63 ± 0.24 0.52 ± 0.06
Vanilla(S) 2.56 ± 0.11 2.34 ± 0.29 11.56 ± 0.38 1.25 ± 0.19
One-Hot(S) 2.21 ± 0.32 2.17 ± 0.26 10.69 ± 0.31 0.96 ± 0.28
RELIANT(S) 0.42 ± 0.21 1.08 ± 0.10 6.02 ± 4.78 0.35 ± 0.12

CPF
+SAGE

Accuracy (↑)

SAGE(T) 92.57 ± 0.28 94.10 ± 0.25 77.88 ± 0.06 89.71 ± 0.14
Vanilla(S) 93.22 ± 0.03 94.37 ± 0.08 78.30 ± 0.23 89.15 ± 0.27
One-Hot(S) 93.13 ± 0.11 94.36 ± 0.06 78.01 ± 0.23 88.98 ± 0.55
RELIANT(S) 93.24 ± 0.09 94.32 ± 0.06 78.11 ± 0.40 89.01 ± 0.26

∆EO (↓)

SAGE(T) 2.51 ± 0.33 2.67 ± 0.19 11.05 ± 0.71 0.86 ± 0.03
Vanilla(S) 2.83 ± 0.34 2.00 ± 0.18 11.07 ± 4.61 1.17 ± 0.11
One-Hot(S) 2.16 ± 0.27 2.05 ± 0.21 12.73 ± 2.29 1.23 ± 0.08
RELIANT(S) 0.63 ± 0.42 0.86 ± 0.18 6.72 ± 4.49 0.51 ± 0.25

AKD
+GCN

Accuracy (↑)

GCN(T) 92.37 ± 0.06 94.20 ± 0.09 76.39 ± 0.48 93.68 ± 0.21
Vanilla(S) 92.12 ± 0.09 94.06 ± 0.06 78.12 ± 0.65 92.29 ± 0.06
One-Hot(S) 91.68 ± 0.28 93.98 ± 0.13 77.87 ± 0.48 92.28 ± 0.13
RELIANT(S) 91.69 ± 0.19 94.09 ± 0.12 77.88 ± 0.82 92.46 ± 0.09

∆EO (↓)

GCN(T) 2.31 ± 0.13 2.29 ± 0.34 12.63 ± 0.24 0.52 ± 0.06
Vanilla(S) 2.76 ± 0.33 1.88 ± 0.08 8.26 ± 3.41 0.82 ± 0.17
One-Hot(S) 2.69 ± 0.28 1.87 ± 0.17 8.43 ± 5.08 0.97 ± 0.45
RELIANT(S) 1.79 ± 0.31 1.43 ± 0.09 4.96 ± 3.77 0.66 ± 0.21

AKD
+SAGE

Accuracy (↑)

SAGE(T) 92.57 ± 0.28 94.10 ± 0.25 77.88 ± 0.06 89.71 ± 0.14
Vanilla(S) 92.23 ± 0.07 94.45 ± 0.03 78.10 ± 0.24 90.56 ± 0.14
One-Hot(S) 92.31 ± 0.06 94.52 ± 0.11 78.24 ± 0.45 90.85 ± 0.20
RELIANT(S) 92.15 ± 0.16 94.42 ± 0.05 79.08 ± 0.29 90.00 ± 0.64

∆EO (↓)

SAGE(T) 2.51 ± 0.33 2.67 ± 0.19 11.05 ± 0.71 0.86 ± 0.03
Vanilla(S) 2.06 ± 0.06 2.23 ± 0.23 10.56 ± 0.43 1.61 ± 0.39
One-Hot(S) 2.21 ± 0.39 2.11 ± 0.21 8.38 ± 0.73 1.10 ± 0.37
RELIANT(S) 1.60 ± 0.45 1.89 ± 0.21 2.33 ± 0.80 0.91 ± 0.22

Knowledge Distillation. In recent years, knowledge distillation has been proven to be effect-
ive in compressing the model but still maintaining similar model prediction performance [69].
Correspondingly, it has been widely adopted in a plethora of applications, including visual
recognition [212], natural language processing [73, 91], etc. The main idea of knowledge
distillation is to transfer the knowledge of a computationally expensive teacher model to
a light student model, and thus the student model is able to fit in platforms with limited
computing resources [78, 100]. It is worth noting that such a strategy is also proved to be
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effective in compressing GNNs [225, 78, 100]. Consequently, there is growing research
attention on utilizing knowledge distillation to compress GNNs for more efficient inference.
For example, encouraging the student model to yield similar output to the teacher GNN via
regularization is proved to be effective [78]. In addition, adversarial learning is also a popular
technique to obtain light-weighted but accurate student models [78]. However, most of these
frameworks for GNNs do not have fairness consideration. Hence the student model tends to
be influenced by biased knowledge from the teacher GNN. Different from existing works, we
develop a generalizable knowledge distillation framework that explicitly considers fairness in
GNNs but still maintains the utility of GNN predictions.

4.3.7 Conclusion

Despite the success of Knowledge Distillation (KD) in compressing GNNs, most existing
works do not consider fairness. Hence the student model trained with the KD framework
tends to inherit and even exaggerate the bias from the teacher GNN. In this paper, we take
initial steps towards learning less biased student models for GNN-based KD frameworks.
Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based
teacher-student frameworks, then propose a framework named RELIANT to achieve a less
biased student model. Notably, the design of RELIANT is agnostic to the specific structures
of teacher and student models. Therefore, it can be easily adapted to different KD approaches
for debiasing. Extensive experiments demonstrate the effectiveness of RELIANT in fulfilling
fairness for GNN compression with KD.
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CHAPTER 5

Fairness Certification for Graph Machine Learning

5.1 Certified Defense on the Fairness of Graph Neural
Networks

5.1.1 Introduction

Graph Neural Networks (GNNs) have emerged to be one of the most popular models to
handle learning tasks on graphs [111, 188] and made remarkable achievements in various
domains [66, 124]. Nevertheless, as GNNs are increasingly deployed in real-world decision-
making scenarios, there has been an increasing societal concern on the fairness of GNN
predictions. A primary reason is that most traditional GNNs do not consider fairness, and thus
could exhibit bias against certain demographic subgroups. Here the demographic subgroups
are usually divided by certain sensitive attributes, such as gender and race. To prevent GNNs
from biased predictions, multiple recent studies have proposed fairness-aware GNNs [3, 37,
105] such that potential bias could be mitigated.

Unfortunately, despite existing efforts towards fair GNNs, it remains difficult to prevent the
corruption of their fairness level due to their common vulnerability of lacking adversarial
robustness. In fact, malicious attackers can easily corrupt the fairness level of GNNs by
perturbing the node attributes (i.e., changing the values of node attributes) and/or the graph
structure (i.e., adding and deleting edges) [83], which could lead to serious consequences in
the test phase [37, 83]. For example, GNNs are leveraged to determine the salary of employees
over a network based on their relational information. Yet, by simply injecting adversarial
links in such a network of employees, attackers can make GNNs deliver advantaged salary
predictions for a subgroup (e.g., employees with a certain nationality) while damaging the
interest of others [83]. Hence achieving defense over the fairness of GNNs is crucial for safe
deployment.

It is worth noting that despite the abundant empirical defense strategies for GNNs [238, 61,
93, 96, 207], they are always subsequently defeated by novel attacking techniques [171, 21],
and the defense over the fairness of GNNs also faces the same problem. Therefore, an ideal
way is to achieve certifiable defense on fairness (i.e., certified fairness defense). A few recent
works aim to certify the fairness for traditional deep learning models [108, 106, 95, 140,
12, 165]. Nevertheless, most of them require specially designed training strategies [108, 95,
165] and thus cannot be directly applied to optimized GNNs ready to be deployed. More
importantly, they mostly rely on assumptions on the optimization results [108, 95, 12, 165]
or data distributions [106, 140] over a continuous input space. Hence they can hardly be
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generalized to GNNs due to the binary nature of the input graph topology. Several other
works propose certifiable GNN defense approaches to achieve theoretical guarantee [192,
10, 11, 94, 247, 248]. However, they mainly focus on securing the GNN prediction for a
certain individual node to ensure model utility, ignoring the fairness defense over the entire
population. Despite the significance, the corresponding study still remains in its infancy.

It is worth noting that achieving certifiable defense on the fairness of GNNs is a daunting
task due to the following key challenges: (1) Generality: different types of GNNs could be
designed and optimized for different real-world applications [245]. Correspondingly, our
first challenge is to design a plug-and-play framework that can achieve certified defense on
fairness for any optimized GNN models that are ready to be deployed. (2) Vulnerability: a
plethora of existing studies have empirically verified that most GNNs are sensitive to input
data perturbations [238, 249, 220]. In other words, small input perturbations may cause
significant changes in the GNN output. Hence our second challenge is to properly mitigate
the common vulnerabilities of GNNs without changing its structure or re-training. (3) Multi-
Modality: the input data of GNNs naturally bears multiple modalities. For example, there
are node attributes and graph topology in the widely studied attributed networks. In practice,
both data modalities may be perturbed by malicious attackers. Therefore, our third challenge
is to achieve certified defenses of fairness on both data modalities for GNNs.

As an early attempt to address the aforementioned challenges, in this paper, we propose a prin-
cipled framework named ELEGANT (cEtifiabLE GNNs over the fAirNess of PredicTions).
Specifically, we focus on the widely studied task of node classification and formulate a novel
research problem of Certifying GNN Classifiers on Fairness. To handle the first challenge, we
propose to develop ELEGANT on top of an optimized GNN model without any assumptions
over its structure or parameters. Hence ELEGANT is able to serve as a plug-and-play frame-
work for any optimized GNN model ready to be deployed. To handle the second challenge,
we propose to leverage randomized smoothing [192, 33] to defend against malicious attacks,
where most GNNs can then be more robust over the prediction fairness level. To handle the
third challenge, we propose two different strategies working in a concurrent manner, such that
certified defense against the attacks on both the node attributes (i.e., add and subtract attribute
values) and graph topology (i.e., flip the existence of edges) can be realized. Finally, we
evaluate the effectiveness of ELEGANT on multiple real-world network datasets. In summary,
our contributions are three-fold: (1) Problem Formulation. We formulate and make an
initial investigation on a novel research problem of Certifying GNN Classifiers on Fairness.
(2) Algorithm Design. We propose a framework ELEGANT to achieve certified fairness
defense against attacks on both node attributes and graph structure without relying on assump-
tions about any specific GNNs. (3) Experimental Evaluation. We perform comprehensive
experiments on real-world datasets to verify the effectiveness of ELEGANT.

5.1.2 Problem Definition

Preliminaries. Let G = {V , E} be an undirected attributed network, where V = {v1, ..., vn}
is the set of n nodes; E ⊆ V ×V is the set of edges. Let A ∈ {0, 1}n×n and X ∈ Rn×d be the
adjacency matrix and attribute matrix of G, respectively. Assume each node in G represents
an individual, and sensitive attribute s divides the population into different demographic
subgroups. We follow a widely studied setting [3, 37] to assume the sensitive attribute is

94



binary, i.e., s ∈ {0, 1}. We use si to denote the value of the sensitive attribute for node vi.
In node classification tasks, we use Vtrn and Vtst (Vtrn,Vtst ∈ V) to represent the training and
test node set, respectively. We denote the GNN classifier as fθ parameterized by θ. fθ takes
A and X as input, and outputs Ŷ as the predictions for the nodes in G. Each row in Ŷ is a
one-hot prediction. We use fθ∗ to denote the GNN with optimal parameter θ∗.

Threat Model. We focus on the attacking scenario of model evasion, i.e., the attack happens
in the test phase. In particular, we assume that the victim model under attack is an optimized
GNN node classifier fθ∗ . We follow a widely adopted setting [10, 247, 136, 143] to assume
that a subset of nodes Vvul ∈ Vtst are vulnerable to attacks. Specifically, attackers may perturb
their links (i.e., flip the edge existence) to other nodes and/or their node attributes (i.e., change
their attribute values). We denote the perturbations on adjacency matrix as A⊕∆A. Here
⊕ denotes the element-wise XOR operator; ∆A ∈ {0, 1}n×n is the matrix representing the
perturbations made by the attacker, where 1 only appears in rows and columns associated
with the vulnerable nodes while 0 appears elsewhere. Correspondingly, in ∆A, 1 entries
represent edges that attackers intend to flip, while 0 entries are associated with edges that are
not attacked. Similarly, we denote the perturbations on node attribute matrix as X +∆X ,
where ∆X ∈ Rn×n is the matrix representing the perturbations made by the attacker. Usually,
if the total magnitude of perturbations is within certain budgets (i.e., ∥∆A∥0 ≤ ϵA for A
and ∥∆X∥2 ≤ ϵX for X), the perturbations are regarded as unnoticeable. The goal of an
attacker is to add unnoticeable perturbations to nodes in Vvul, such that the GNN predictions
for nodes in Vtst based on the perturbed graph exhibit as much bias as possible. In addition,
we assume that the attacker has access to any information about the victim GNN (i.e., a
white-box setting). This is the worst case in practice, which makes it even more challenging
to achieve defense.

To defend against the aforementioned attacks, we aim to establish a node classifier on top of
an optimized GNN backbone, such that this classifier, theoretically, will not exhibit more bias
than a given threshold no matter what unnoticeable perturbations (i.e., perturbations within
budgets) are added. We formally formulate the problem of Certifying GNN Classifiers on
Fairness below.

PROBLEM 5.1.1. Certifying GNN Classifiers on Fairness. Given an attributed network G, a
test node set Vtst, a vulnerable node set Vvul ∈ Vtst, a threshold η for the exhibited bias, and an
optimized GNN classifier fθ∗ , our goal is to achieve a classifier on top of fθ∗ associated with
budgets ϵA and ϵX , such that this classifier will bear comparable utility with fθ∗ but provably
not exhibit more bias than η on the nodes in Vtst, no matter what unnoticeable node attributes
and/or graph structure perturbations (i.e., perturbations within budgets) are made over the
nodes in Vvul.

5.1.3 The Proposed Framework – ELEGANT

Here we first introduce the modeling of attack and defense on the fairness of GNNs, then
discuss how we achieve certified defense on node attributes. After that, we propose a strategy
to achieve both types of certified defense (i.e., defense on node attributes and graph structure)
at the same time. Finally, we introduce strategies to achieve the designed certified fairness
defense for GNNs in practice.
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5.1.3.1 Bias Indicator Function

We first construct an indicator g to mathematically model the attack and defense on the
fairness of GNNs. Our rationale is to use g to indicate whether the predictions of fθ∗ exhibit
a level of bias exceeding a given threshold. We present the formal definition below.

DEFINITION 5.1.1. (Bias Indicator Function) Given adjacency matrix A and node at-
tribute matrix X , a test node set Vtst, a threshold η for the exhibited bias, and an op-
timized GNN model fθ∗ , the bias indicator function is defined as g(fθ∗ ,A,X, η,Vtst) =
1 (π(fθ∗(A,X),Vtst) < η), where 1(·) takes an event as input and outputs 1 if the event hap-
pens (otherwise 0); π(·, ·) denotes the bias metric for predictions (taken as its first parameter)
over a set of nodes (taken as its second parameter). Traditional bias metrics include ∆SP [37,
58] and ∆EO [37, 77].

Correspondingly, the goal of the attacker is to ensure that the indicator g outputs 0 for an η as
large as possible, while the goal of certified defense is to ensure for a given threshold η, the
indicator g provably yields 1 as long as the attacks are within certain budgets. Note that a
reasonable η should ensure that g outputs 1 based on the clean graph data (i.e., graph data
without any attacks). Below we first discuss the certified fairness defense over node attributes
to maintain the output of g as 1.

5.1.3.2 Certified Fairness Defense over Node Attributes

We now introduce how we achieve certified defense over the node attributes for the fairness
of the predictions yielded by fθ∗ . Specifically, we propose to construct a smoothed bias
indicator function g̃X(fθ∗ ,A,X,Vvul, η) via adding Gaussian noise over the node attributes
of vulnerable nodes in Vvul. For simplicity, we use g̃X(A,X) to represent the smoothed bias
indicator function over node attributes by omitting Vvul, fθ∗ and η. We define g̃X below.

DEFINITION 5.1.2. (Bias Indicator with Node Attribute Smoothing) We define the bias indic-
ator with smoothed node attributes over the nodes in Vvul as g̃X(A,X) = argmaxc∈{0,1}Pr(g(fθ∗ ,
A,X + γX(ωX ,Vvul), η,Vtst) = c). Here ωX is a (d · |Vvul|)-dimensional vector, where each
entry is a random variable following a Gaussian Distribution N (0, σ2); γX(·, ·) maps a vec-
tor (its first parameter) to an (n×d)-dimensional matrix, where the vector values are assigned
to rows whose indices associate with the indices of a set of nodes (its second parameter) while
other matrix entries are zeros.

We denote ΓX = γX(ωX ,Vvul) and g(A,X + ΓX) = g(fθ∗ ,A,X + γX(ωX ,Vvul), η,Vtst)
below for simplicity. We are then able to derive the theoretical certification for the defense on
fairness with the defined g̃X in Definition 5.1.2. We now present the defense certification on
fairness below.

THEOREM 5.1.1. (Certified Fairness Defense for Node Attributes) Denote the probability for
g(A,X + ΓX) to return class c (c ∈ {0, 1}) as P (c). Then g̃X(A,X) will provably return
argmaxc∈{0,1}P (c) for any perturbations (over the attributes of vulnerable nodes) within an l2
radius ϵ̃X = σ

2

(
Φ−1(maxc∈{0,1} P (c))− Φ−1(minc∈{0,1} P (c))

)
, where Φ−1(·) is the inverse

of the standard Gaussian cumulative distribution function.
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Correspondingly, for an η that enables maxc∈{0,1} P (c) = 1, it is then safe to say that no
matter what perturbations ∆X are made on vulnerable nodes, as long as ∥∆X∥2 ≤ ϵ̃X , the
constructed g̃X will provably not yield predictions for Vtst with a level of bias exceeding
η. Nevertheless, it is worth noting that, in GNNs, perturbations may also be made on the
structure of the vulnerable nodes, i.e., adding and/or deleting edges between these vulnerable
nodes and any nodes in the graph. Hence it is also necessary to achieve certified defense
against such structural attacks. Here we propose to also smooth the constructed g̃X over the
graph structure (of the vulnerable nodes) for the purpose of certified fairness defense on the
graph structure. However, the adjacency matrix describing the graph structure is naturally
binary, and thus should be smoothed in a different way.

5.1.3.3 Certified Fairness Defense over Node Attributes and Graph Structure

We then introduce achieving certified fairness defense against attacks on both node attributes
and graph structure. We propose a strategy to leverage noise following Bernoulli distribution
to smooth g̃X over the rows and columns (due to symmetricity) associated with the vulnerable
nodes in A. In this way, we can smooth both the node attributes and graph structure for g in a
randomized manner, and we denote the constructed function as g̃A,X . We present the formal
definition below.

DEFINITION 5.1.3. (Bias Indicator with Attribute-Structure Smoothing) We define the bias
indicator function with smoothed node attributes and graph structure over the nodes in Vvul as
g̃A,X(A,X) = argmaxc∈{0,1}Pr(g̃X(A⊕γA(ωA,Vvul),X) = c). Here ωA is an (n · |Vvul|)-
dimensional random variable, where each dimension takes 0 and 1 with the probability of β
(0.5 < β ≤ 1) and 1− β, respectively; function γA(·, ·) maps a vector (its first parameter) to
a symmetric (n× n)-dimensional matrix, where the vector values are assigned to rows whose
indices associated with the indices of a set of nodes (its second parameter) and then mirrored
to the corresponding columns, while other values are left as zeros.

We let ΓA = γA(ωA,Vvul) below for simplicity. To better illustrate how classifier g̃A,X

achieves certified fairness defense over both data modalities of an attributed network, we
provide an exemplary case in Fig. 5.1. Here we assume node vi ∈ Vvul. Considering the
high dimensionality of node attributes and adjacency matrix, we only analyze two entries
Xi,j and Ai,j and omit other entries after noise for simplicity. Here the superscript (i, j)
represents the i-th row and j-th column of a matrix. Under binary noise, entry Ai,j only has
two possible values, i.e., Ai,j ⊕ 0 and Ai,j ⊕ 1. We denote the two cases as Case (1) and
Case (2), respectively. We assume that the area where g returns 1 in the span of the two
input random entries of g (i.e., Xi,j and Ai,j under random noise) is an ellipse (marked out
with green), where the decision boundary is marked out with deep green. In Case (1), Xi,j

under random noise follows a Gaussian distribution, whose probability density function is
marked out as deep red. We assume that, in this case, the integral of the probability density
function within the range of the ellipse (marked out with shallow red) is larger than 0.5.
Correspondingly, according to Definition 5.1.2, g̃X returns 1 in this case. In Case (2), we
similarly mark out the probability density function and the area used for integral within the
range of the ellipse. We assume that in this case, the integral is smaller than 0.5, and thus
g̃X returns 0. Note that to compute the output of g̃A,X , we need to identify the output of g̃X
with the largest probability. Notice that β > 0.5, we have that Ai,j ⊕ 0 happens with a larger
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FIGURE 5.1. An example illustrating how ELEGANT works.

probability than Ai,j ⊕ 1. Therefore, g̃A,X outputs 1 in this example. In other words, the bias
level of the predictions of fθ∗ is satisfying (i.e., smaller than η) based on g̃A,X .

Below we introduce a desirable property of g̃A,X , i.e., certified fairness defense associated
with tractable budgets over both node attributes and graph topology can be achieved.

LEMMA 1. (Perturbation-Invariant Budgets Existence) There exist tractable budgets ϵA and
ϵX , such that for any perturbations made over the node attributes and graph structure of the
vulnerable nodes within ϵA and ϵX , g̃A,X provably maintains the same classification results.

Correspondingly, for an η that enables g̃A,X to return 1, we are then able to achieve certified
fairness defense over g̃A,X against perturbations on both node attributes and graph structure.
Below we derive the certified fairness defense budgets over the graph structure ϵA and
node attributes ϵX for g̃A,X . We first introduce the derivation of ϵA. Here, our rationale is:
considering that g̃A,X is a binary classifier, we need to ensure that under structure attacks,
the probability of g̃X returning 1 (denoted as Pr(g̃X(A⊕∆A ⊕ ΓA,X) = 1)) is provably
greater than 0.5, such that g̃A,X will still return 1. To this end, we propose to derive a lower
bound of Pr(g̃X(A⊕∆A ⊕ ΓA,X) = 1), which we denote as Pg̃X=1. Finally, we identify
the largest perturbation size that keeps such a lower bound larger than 0.5, and the identified
perturbation size is then the graph structure perturbation budget. We present the lower bound
of Pr(g̃X(A⊕∆A ⊕ ΓA,X) = 1) below.

LEMMA 2. (Positive Probability Bound Under Noises) There exists a tractable Pg̃X=1 ∈ (0, 1),
such that Pr(g̃X(A⊕∆A ⊕ ΓA,X) = 1) ≥ Pg̃X=1.
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To derive the perturbation budget ϵA, we only need to find a ∆A with the largest l0-norm that
still enables Pg̃X=1 to be greater than 0.5 (according to Definition 5.1.3). Correspondingly,
we derive the theoretical perturbation-invariant budget ϵA in Theorem 5.1.2 below.

THEOREM 5.1.2. (Certified Defense Budget for Structure Perturbations) The certified defense
budget over the graph structure ϵA for g̃A,X is given as

ϵA = max ϵ̃A, s.t. Pg̃X=1 > 0.5, ∀ ∥∆A∥0 ≤ ϵ̃A. (5.1)

To solve the optimization problem in Eq. (5.1), we introduce Theorem 5.1.3 to compute
Pg̃X=1.

THEOREM 5.1.3. (Positive Probability Lower Bound) We have Pg̃X=1 = Pr(A⊕∆A⊕ΓA ∈
H). Here H = ∪n·|Vvul|

i=µ+1Hi ∪H′
µ; Hi is given by

Hi =

{
Ā :

Pr(A⊕ ΓA = Ā)

Pr(A⊕∆A ⊕ ΓA = Ā)
=

(
β

1− β

)i

,

∀vi ∈ V \ Vvul, ∥Āi −Ai∥0 = 0

}
;

and µ is defined over the optimization problem of argmax−n·|Vvul|≤j≤n·|Vvul|j, s.t. Pr(g̃X(A⊕
ΓA,X) = 1) ≤ Pr

(
A⊕ ΓA ∈ ∪n·|Vvul|

k=j Hj

)
. Here H′

µ is any subregion of Hµ that satisfies

Pr(A⊕ ΓA ∈ H′
µ) = Pr(g̃X(A⊕ ΓA,X) = 1)− Pr

(
A⊕ ΓA ∈ ∪n·|Vvul|

k=j Hj

)
.

We provide detailed steps to solve the optimization problem given in Eq. (5.1) in the online
version1. Now we introduce the theoretical analysis of how to derive ϵX in Theorem 5.1.4.

THEOREM 5.1.4. (Certified Defense Budget over Node Attributes) Denote Ā as the set of all
possible (n×n)-matrices, where entries in rows whose indices associate with those vulnerable
nodes may take 1 or 0, while other entries are zeros. The certified defense budget ϵX for g̃A,X

is given as ϵX = min
{
ϵ̃X : ϵ̃X is derived with classifier g̃X(A⊕ΓA,X) , where ΓA ∈ Ā

}
.

5.1.3.4 Certification in Practice

Estimating the Predicted Label Probabilities. According to Definition 5.1.3, it is necessary
to obtain Pr(g̃X(A⊕ ΓA,X) = c) (c ∈ {0, 1}) to determine the output of classifier g̃X . We
propose to leverage a Monte Carlo method to estimate such a probability. Specifically, we
first randomly pick N samples of ΓA as Ā′ (Ā′ ⊂ Ā). Considering the output of g̃X is binary,
we then follow a common strategy [33] to consider this problem as a parameter estimation of
a Binomial distribution: we first count the number of returned label 1 and 0 under noise as N1

and N0 (N1 +N0 = N ); then we choose a confidence level 1− α and take the α-th quantile
of the beta distribution with parameters N1 and N0 as the estimated probability lower bound
for returning label c = 1. We proved that all theoretical analysis still holds true for such an
estimation in the online version. We follow a similar strategy to estimate the probability lower
bound of yielding 1 for g(A,X + ΓX).

1See online version here https://arxiv.org/abs/2311.02757 for supplementary discussion and
experimental results.
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Obtaining Fair Classification Results. After achieving certified fairness defense based on
g̃A,X , we also need to obtain the corresponding node classification results (given by fθ∗) over
Vtst. We propose to collect all classification results associated with the sampled Γ′

A ∈ Ā′

that leads to an estimated lower bound of Pr(g̃X(A ⊕ Γ′
A,X) = 1) to be larger than 0.5

as Ŷ ′. Here Ŷ ′ is a set of output matrices of fθ∗ , where each matrix consists of the one-hot
output classification results (as each row in the matrix) for all nodes. We propose to take
argminŶ ′π(Ŷ ′,Vtst), s.t. Ŷ

′ ∈ Ŷ ′ as the final node classification results. Correspondingly,
consider Pr(g̃X(A⊕ Γ′

A,X) = 1) falls into the confidence interval characterized by 1− α,
we have a neat probabilistic theoretical guarantee below.

PROPOSITION 5.1.1. (Probabilistic Guarantee for the Fairness Level of Node Classification).
For Ŷ = argminŶ ′π(Ŷ ′,Vtst), s.t. Ŷ

′ ∈ Ŷ ′, we have Pr(π(Ŷ ,Vtst) > η) < 0.5|Ŷ
′|.

Note that for a large enough sample size N , the cardinality of Ŷ ′ also tends to be large in
practice. Hence it is safe to argue that Pr(π(Ŷ ,Vtst) > η) tends to be small enough. In other
words, we have a probability that is large enough to obtain results with a bias level lower than
threshold η.

Calculation of Perturbation Budgets. We calculate ϵA by solving the optimization problem
given in Eq. (5.1), and we provide the completed procedure in the online version. For
ϵX , we utilize a Monte Carlo method to estimate its value. More specifically, we leverage
min{ϵ̃X : ϵ̃X is derived with classifier g̃X(A ⊕ Γ′

A,X) , where Γ′
A ∈ Ā′} to estimate the

value of ϵX .

5.1.4 Experimental Evaluations

In this section, we aim to answer three research questions: RQ1: How well does ELEGANT
perform in achieving certified fairness defense? RQ2: How does ELEGANT perform under
fairness attacks compared to other popular fairness-aware GNNs? RQ3: How does ELEGANT
perform under different settings of parameters? We present the main experimental settings and
representative results in this section due to space limits. Detailed settings and supplementary
experiments are in the online version.

5.1.4.1 Experimental Settings

Downstream Task and Datasets. We focus on the widely studied node classification task,
which is one of the most representative tasks in the domain of learning on graphs. We adopt
three real-world network datasets that are widely used to perform studies on the fairness of
GNNs, namely German Credit [3, 6], Recidivism [3, 99], and Credit Defaulter [3, 227]. We
provide their basic information, including how these datasets are built and their statistics, in
the online version.

Evaluation Metrics. We perform evaluation from three main perspectives, including model
utility, fairness, and certified defense. To evaluate utility, we adopt the node classification
accuracy. To evaluate fairness, we adopt the widely used metrics ∆SP (measuring bias under
Statistical Parity) and ∆EO (measuring bias under Equal Opportunity). To evaluate certified
defense, we extend a traditional metric named Certified Accuracy [192, 33] in our experiments,
and we name it as Fairness Certification Rate (FCR). Specifically, existing GNN certification
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works mainly focus on a certain individual node, and utilize certified accuracy to measure
the ratio of nodes that are correctly classified and also successfully certified out of all test
nodes [192]. In this paper, however, we perform certified (fairness) defense for individuals
over an entire test set (instead of for any specific individual). Accordingly, we propose to
sample multiple test sets out of nodes that are not involved in the training and validation set.
Then we perform certified fairness defense for all sampled test sets, and utilize the ratio of
test sets that are successfully certified over all sampled sets as the metric of certified defense.
The rationale of FCR is leveraging a Monte Carlo method to estimate the probability of being
successfully certified for a randomly sampled test node set.

GNN Backbones and Baselines. Note that ELEGANT serves as a plug-and-play framework
for any optimized GNNs ready to be deployed. To evaluate the generality of ELEGANT
across GNNs, we adopt three of the most representative GNNs spanning across simple and
complex ones, namely Graph Sample and Aggregate Networks [74] (GraphSAGE), Graph
Convolutional Networks [111] (GCN), and Jumping Knowledge Networks (JK). Note that
to the best of our knowledge, existing works on fairness certification cannot certify the
attacks over two data modalities (i.e., continuous node attributes and binary graph topology)
at the same time, and thus cannot be naively generalized onto GNNs. Hence we compare
the usability of GNNs before and after certification with ELEGANT. Moreover, we also
adopt two popular fairness-aware GNNs as baselines to evaluate bias mitigation, including
FairGNN [37] and NIFTY [3]. Specifically, FairGNN utilizes adversarial learning to debias
node embeddings, while NIFTY designs regularizations to debias node embeddings.

Threat Models. We propose to evaluate the performance of ELEGANT and other fairness-
aware GNN models under actual attacks on fairness. We first introduce the threat model over
graph structure. To the best of our knowledge, FA-GNN [83] is the only work that performs
graph structure attacks targeting the fairness of GNNs. Hence we adopt FA-GNN to attack
graph structure. In terms of node attributes, to the best of our knowledge, no existing work
has made any explorations. Hence we directly utilize gradient ascend to perform attacks.
Specifically, after structure attacks have been performed, we identify the top-ranked node
attribute elements (out of the node attribute matrix) that positively influence the exhibited bias
the most via gradient ascend. For any given budget (of attacks) on node attributes, we add
perturbations to these elements in proportion to their gradients.

5.1.4.2 RQ1: Fairness Certification Effectiveness

To answer RQ1, we investigate the performance of different GNNs after certification across
different real-world attributed network datasets over FCR, utility, and fairness. We present
the experimental results across three GNN backbones and three real-world attributed network
datasets in Table 5.1. Here bias is measured with ∆SP, and we have similar observations
on ∆EO. We summarize the main observations as follows: (1) Fairness Certification Rate
(FCR). We observe that ELEGANT realizes values of FCR around or even higher than 90%
for all three GNN backbones and three attributed network datasets, especially for the German
Credit dataset, where vanilla GNNs tend to exhibit a high level of bias. The corresponding
intuition is that, for nodes in any randomly sampled test set, we have a probability around or
higher than 90% to successfully certify the fairness level of the predictions yielded by the GNN
model with our proposed framework ELEGANT. Hence ELEGANT achieves a satisfying
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TABLE 5.1. Comparison between vanilla GNNs and certified GNNs under
ELEGANT over three popular GNNs across three real-world datasets. Here
ACC denotes node classification accuracy; E- prefix marks out the GNNs
under ELEGANT with certification. ↑ denotes the larger, the better; ↓ denotes
the opposite. Numbers are in percentage, and the bests are in bold.

German Credit Recidivism Credit Defaulter
ACC (↑) Bias (↓) FCR (↑) ACC (↑) Bias (↓) FCR (↑) ACC (↑) Bias (↓) FCR (↑)

SAGE 67.3 ±2.14 50.6 ±15.9 N/A 89.8 ±0.66 9.36 ±3.15 N/A 75.9 ±2.18 13.0 ±4.01 N/A
E-SAGE 71.0 ±1.27 16.3 ±10.9 98.7 ±1.89 89.9 ±0.90 6.39 ±2.85 94.3 ±6.65 73.4 ±0.50 8.94 ±0.99 94.3 ±3.30

GCN 59.6 ±3.64 37.4 ±3.24 N/A 90.5 ±0.73 10.1 ±3.01 N/A 65.8 ±0.29 11.1 ±3.22 N/A
E-GCN 58.2 ±1.82 3.52 ±3.77 96.3 ±1.89 89.6 ±0.74 9.56 ±3.22 96.0 ±3.56 65.2 ±0.99 7.28 ±1.46 92.7 ±5.19

JK 63.3 ±4.11 41.2 ±18.1 N/A 91.9 ±0.54 10.1 ±3.15 N/A 76.6 ±0.69 9.24 ±0.60 N/A
E-JK 62.3 ±4.07 22.4 ±1.95 97.0 ±3.00 89.3 ±0.33 6.26 ±2.78 89.5 ±10.5 77.7 ±0.27 3.37 ±2.64 99.3 ±0.47
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relatively large attacking perturbation size, i.e., (23, 102), although the attacking budgets go beyond352

the certified budgets, GCN under ELEGANT still exhibits a fairness level far lower than the given353

bias threshold ⌘, and the fairness superiority still maintains. This corroborates that the estimation354

strategies adopted in ELEGANT are safe in achieving fairness certification.355

�EO (in log2 scale)356

⌘357

4.4 RQ3: Parameter Study358

To answer RQ3, we propose to perform parameter study focusing on the two most critical parameters,359

� and �. Note that on the one hand, only a proportion of the sampled test sets could be successfully360

certified over all sampled test sets; on the other hand, those test sets that are successfully certified may361

also associate with different values of certified defense budgets. To examine how � and � influence362

the effectiveness of ELEGANT in terms of both FCR and certified defense budgets, we set numerical363

ranges for ✏X (from 0 to 1e1) and ✏A (from 0 to 24) and divide the two ranges into grids. In both364

ranges, we consider the dividing values of the grids as thresholds. Under each threshold, we only365

consider the test sets with the corresponding certified defense budget being larger than this threshold366

as successfully certified ones, and the values of FCR are re-computed accordingly. Our rationale here367

is that with the thresholds (for ✏X and ✏A) increasing, if FCR reduces slowly, this demonstrates that368

most successfully certified test sets are associated with large certified defense budgets. However, if369

FCR reduces fast, then most successfully certified test sets only bears small certified defense budgets.370

Here we present the experimental results of � and � with the most widely used GCN model based371

on German Credit in Fig. 3(a)) and Credit Defaulter in Fig. 3(b), respectively. We also have similar372

observations on other GNNs and datasets. We summarize the main observations as follows: (1)373

Analysis on �. We observe that most cases with larger � are associated with a larger FCR compared374

with the cases where � is relatively small. In other words, larger values of � typically make FCR375

reduce slower w.r.t. the increasing of ✏X threshold. This indicates that increasing the value of �376
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alsocontributestobiasmitigation.Weconjecturethatsuchadvantageofdebiasingcouldbearesult 323

ofaddingrandomnoiseonbothnodeattributesandgraphtopology.Specifically,multipleexisting 324

workshavepointedoutthatthedistributiondifferenceinthenodeattributevaluesandedgeexistence 325

acrossdifferentdemographicsubgroupsisasignificantsourceofbias.However,addingrandomnoise 326

onbothnodeattributesandgraphtopologycouldbeabletoreducesuchdistributionaldivergence. 327

4.3RQ2:FairnessCertificationunderAttacks 328

Figure2:ThebiaslevelsofGCN,E-GCN,
FairGNN,andNIFTYunderfairnessattackson
GermanCredit.Theshadedbarindicatesthatthe
attackingbudgetsgobeyondthecertifiedbudgets.

ToanswerRQ2,weperformattacksonthe 329

fairnessofGCN,E-GCN,FairGNN(witha 330

GCNbackbone),andNIFTY(withaGCN 331

backbone).Consideringthelargesizeofthe 332

quadraticspacespannedbythesizeofpertur- 333

bations�Aand�Xmadebyattackers,we 334

presenttheevaluationunderfourrepresentative 335

(k�Ak0,k�Xk2)pairs.Wesetthethreshold 336

forbias⌘tobe50%higherthanthefairness 337

levelofthevanillaGCNmodeloncleandata. 338

Thisempiricallyhelpstoachieveahighcertifi- 339

cationsuccessfulrateunderlargeperturbations. 340

Wepresentthefairnesslevelsofthefourmod- 341

elsintermsof�EOinFig.2.Noetthatwe 342

alsohavesimilarobservationson�SPandother 343

GNNs/datasets.Wesummarizethemainobservationsasfollows:(1)Fairness.Wefoundthatthe 344

GCNmodelwiththeproposedframeworkELEGANTachievesthelowestlevelofbiasinallcasesof 345

fairnessattacks.ThisobservationisconsistentwiththesuperiorityinfairnessfoundinTable1,which 346

demonstratesthatthefairnesssuperiorityofELEGANTmaintainsunderattackswithawiderange 347

ofattackingperturbationsizes.(2)CertificationonFairness.Wenowcomparetheperformance 348

ofE-GCNacrossdifferentattackingperturbationsizes.Weobservedthatunderrelativelysmallat- 349

tackingperturbationsizes,i.e.,(2
0
,10�1

),(2
1
,10

0
),and(2

2
,10

1
),ELEGANTsuccessfullyachieves 350

certificationoverfairness,andthebiaslevelincreasesslowlyasthesizeofattacksincreases.Under 351

relativelylargeattackingperturbationsize,i.e.,(2
3
,10

2
),althoughtheattackingbudgetsgobeyond 352

thecertifiedbudgets,GCNunderELEGANTstillexhibitsafairnesslevelfarlowerthanthegiven 353

biasthreshold⌘,andthefairnesssuperioritystillmaintains.Thiscorroboratesthattheestimation 354

strategiesadoptedinELEGANTaresafeinachievingfairnesscertification. 355

�EO(inlog2scale) 356

⌘ 357

4.4RQ3:ParameterStudy 358

ToanswerRQ3,weproposetoperformparameterstudyfocusingonthetwomostcriticalparameters, 359

�and�.Notethatontheonehand,onlyaproportionofthesampledtestsetscouldbesuccessfully 360

certifiedoverallsampledtestsets;ontheotherhand,thosetestsetsthataresuccessfullycertifiedmay 361

alsoassociatewithdifferentvaluesofcertifieddefensebudgets.Toexaminehow�and�influence 362

theeffectivenessofELEGANTintermsofbothFCRandcertifieddefensebudgets,wesetnumerical 363
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Figure 2: The bias levels of GCN, E-
GCN, FairGNN, and NIFTY under fair-
ness attacks on German Credit. The
shaded bar indicates that certified bud-
get ✏A  k�Ak0 or ✏X  k�Xk2.

(20, 10�1) (21, 100) (22, 101) (23, 102)331

4.3 RQ2: Fairness Certification under Attacks332

To answer RQ2, we perform attacks on the fairness of333

GCN, E-GCN, FairGNN (with a GCN backbone), and334

NIFTY (with a GCN backbone). Considering the large335

size of the quadratic space spanned by the size of pertur-336

bations �A and �X made by attackers, we present the337

evaluation under four representative (k�Ak0, k�Xk2)338

pairs. We set the threshold for bias ⌘ to be 50% higher339

than the fairness level of the vanilla GCN model on clean340

data, since it empirically helps to achieve a high certifica-341

tion success rate under large perturbations.342

We present the fairness levels of the four models in terms343

of �EO in Fig. 2, and we also have similar observations on �SP and other GNNs/datasets. We344

summarize the main observations as follows: (1) Fairness. We found that the GCN model with the345

proposed framework ELEGANT achieves the lowest level of bias in all cases of fairness attacks. This346

observation is consistent with the superiority in fairness found in Table 1, which demonstrates that347

the fairness superiority of ELEGANT maintains even under attacks within a wide range of attacking348

perturbation sizes. (2) Certification on Fairness. We now compare the performance of E-GCN across349

different attacking perturbation sizes. We observed that under relatively small attacking perturbation350

sizes, i.e., (20, 10�1), (21, 100), and (22, 101), ELEGANT successfully achieves certification over351

fairness, and the bias level increases slowly as the size of attacks increases. Under relatively large352

attacking perturbation size, i.e., (23, 102), although the attacking budgets go beyond the certified353

budgets, GCN under ELEGANT still exhibits a fairness level far lower than the given bias threshold354

⌘, and the fairness superiority still maintains. This corroborates that the estimation strategies adopted355

in ELEGANT are safe in achieving fairness certification.356

4.4 RQ3: Parameter Study357

To answer RQ3, we propose to perform parameter study focusing on two most critical parameters,358

� and �. To examine how � and � influence the effectiveness of ELEGANT in terms of both FCR359

and certified defense budgets, we set numerical ranges for ✏X (from 0 to 1e1) and ✏A (from 0 to360

24) and divide the two ranges into grids. In both ranges, we consider the dividing values of the361

grids as thresholds for certification budgets. In other words, under each threshold, we only consider362

the test sets with the corresponding certified defense budget being larger than this threshold as363

successfully certified ones, and the values of FCR are re-computed accordingly. Our rationale here is364

that with the thresholds (for ✏X and ✏A) increasing, if FCR reduces slowly, this demonstrates that365

most successfully certified test sets are associated with large certified defense budgets. However, if366

FCR reduces fast, then most successfully certified test sets only bear small certified defense budgets.367

Here we present the experimental results of � and � with the most widely used GCN model based368

on German Credit in Fig. 3(a)) and Credit Defaulter in Fig. 3(b), respectively. We also have similar369

observations on other GNNs and datasets. We summarize the main observations as follows: (1)370

Analysis on �. We observe that most cases with larger � are associated with a larger FCR compared371

with the cases where � is relatively small. In other words, larger values of � typically make FCR372

reduce slower w.r.t. the increasing of ✏X threshold. This indicates that increasing the value of �373

helps realize larger certified defense budgets on node attributes, i.e., the increase of � dominates374

the tendency of ✏X given in Theorem 4. Nevertheless, it is worth mentioning that if � is too large,375

the information encoded in the node attributes could be swamped by the Gaussian noise and finally376

corrupt the classification accuracy. Hence moderately large values for �, e.g., 5e-1 and 5e0, are377

recommended. (2) Analysis on �. We found that (1) for cases with relatively large � (e.g., 0.8 and378

0.9), the FCR also tends to be larger (compared with cases where � is smaller) at ✏A threshold being379

0. Such a tendency is reasonable, since in these cases, the expected magnitude of the added Bernoulli380
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of adding random noise on node attributes and graph topology. In fact, existing works have pointed327

out that the distribution difference in the node attribute values and edge existence across different328

subgroups is a significant source of bias [43, 8, 44]. However, adding random noise on both node329

attributes and graph topology may reduce such distributional divergence and mitigate bias.330

also contributes to bias mitigation. We conjecture that such advantage of debiasing could be a result323

of adding random noise on both node attributes and graph topology. Specifically, multiple existing324

works have pointed out that the distribution difference in the node attribute values and edge existence325

across different demographic subgroups is a significant source of bias. However, adding random noise326

on both node attributes and graph topology could be able to reduce such distributional divergence.327

4.3 RQ2: Fairness Certification under Attacks328

Figure 2: The bias levels of GCN, E-GCN,
FairGNN, and NIFTY under fairness attacks on
German Credit. The shaded bar indicates that the
attacking budgets go beyond the certified budgets.
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GCN backbone), and NIFTY (with a GCN331

backbone). Considering the large size of the332

quadratic space spanned by the size of pertur-333

bations �A and �X made by attackers, we334

present the evaluation under four representative335

(k�Ak0, k�Xk2) pairs. We set the threshold336

for bias ⌘ to be 50% higher than the fairness337

level of the vanilla GCN model on clean data.338

This empirically helps to achieve a high certifi-339

cation successful rate under large perturbations.340

We present the fairness levels of the four mod-341
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GNNs/datasets. We summarize the main observations as follows: (1) Fairness. We found that the344

GCN model with the proposed framework ELEGANT achieves the lowest level of bias in all cases of345

fairness attacks. This observation is consistent with the superiority in fairness found in Table 1, which346

demonstrates that the fairness superiority of ELEGANT maintains under attacks with a wide range347

of attacking perturbation sizes. (2) Certification on Fairness. We now compare the performance348

of E-GCN across different attacking perturbation sizes. We observed that under relatively small at-349

tacking perturbation sizes, i.e., (20, 10�1), (21, 100), and (22, 101), ELEGANT successfully achieves350

certification over fairness, and the bias level increases slowly as the size of attacks increases. Under351

relatively large attacking perturbation size, i.e., (23, 102), although the attacking budgets go beyond352

the certified budgets, GCN under ELEGANT still exhibits a fairness level far lower than the given353

bias threshold ⌘, and the fairness superiority still maintains. This corroborates that the estimation354

strategies adopted in ELEGANT are safe in achieving fairness certification.355

4.4 RQ3: Parameter Study356

To answer RQ3, we propose to perform parameter study focusing on the two most critical parameters,357

� and �. Note that on the one hand, only a proportion of the sampled test sets could be successfully358

certified over all sampled test sets; on the other hand, those test sets that are successfully certified may359

also associate with different values of certified defense budgets. To examine how � and � influence360

the effectiveness of ELEGANT in terms of both FCR and certified defense budgets, we set numerical361

ranges for ✏X (from 0 to 1e1) and ✏A (from 0 to 24) and divide the two ranges into grids. In both362

ranges, we consider the dividing values of the grids as thresholds. Under each threshold, we only363

consider the test sets with the corresponding certified defense budget being larger than this threshold364

as successfully certified ones, and the values of FCR are re-computed accordingly. Our rationale here365

is that with the thresholds (for ✏X and ✏A) increasing, if FCR reduces slowly, this demonstrates that366

most successfully certified test sets are associated with large certified defense budgets. However, if367

FCR reduces fast, then most successfully certified test sets only bears small certified defense budgets.368

Here we present the experimental results of � and � with the most widely used GCN model based369

on German Credit in Fig. 3(a)) and Credit Defaulter in Fig. 3(b), respectively. We also have similar370

observations on other GNNs and datasets. We summarize the main observations as follows: (1)371

Analysis on �. We observe that most cases with larger � are associated with a larger FCR compared372

with the cases where � is relatively small. In other words, larger values of � typically make FCR373

reduce slower w.r.t. the increasing of ✏X threshold. This indicates that increasing the value of �374

helps realize larger certified defense budgets on node attributes, i.e., the increasing of � dominates375

the tendency of ✏X given in Theorem 4. Nevertheless, it is worth mentioning that if � is too large,376

the information encoded in the node attributes could be swamped by the Gaussian noise and finally377

8

also contributes to bias mitigation. We conjecture that such advantage of debiasing could be a result323

of adding random noise on both node attributes and graph topology. Specifically, multiple existing324

works have pointed out that the distribution difference in the node attribute values and edge existence325

across different demographic subgroups is a significant source of bias. However, adding random noise326

on both node attributes and graph topology could be able to reduce such distributional divergence.327

4.3 RQ2: Fairness Certification under Attacks328

Figure 2: The bias levels of GCN, E-GCN,
FairGNN, and NIFTY under fairness attacks on
German Credit. The shaded bar indicates that the
attacking budgets go beyond the certified budgets.

To answer RQ2, we perform attacks on the329

fairness of GCN, E-GCN, FairGNN (with a330

GCN backbone), and NIFTY (with a GCN331

backbone). Considering the large size of the332

quadratic space spanned by the size of pertur-333

bations �A and �X made by attackers, we334

present the evaluation under four representative335

(k�Ak0, k�Xk2) pairs. We set the threshold336

for bias ⌘ to be 50% higher than the fairness337

level of the vanilla GCN model on clean data.338

This empirically helps to achieve a high certifi-339

cation successful rate under large perturbations.340

We present the fairness levels of the four mod-341

els in terms of �EO in Fig. 2. Noet that we342

also have similar observations on �SP and other343

GNNs/datasets. We summarize the main observations as follows: (1) Fairness. We found that the344

GCN model with the proposed framework ELEGANT achieves the lowest level of bias in all cases of345

fairness attacks. This observation is consistent with the superiority in fairness found in Table 1, which346

demonstrates that the fairness superiority of ELEGANT maintains under attacks with a wide range347

of attacking perturbation sizes. (2) Certification on Fairness. We now compare the performance348

of E-GCN across different attacking perturbation sizes. We observed that under relatively small at-349

tacking perturbation sizes, i.e., (20, 10�1), (21, 100), and (22, 101), ELEGANT successfully achieves350

certification over fairness, and the bias level increases slowly as the size of attacks increases. Under351

relatively large attacking perturbation size, i.e., (23, 102), although the attacking budgets go beyond352

the certified budgets, GCN under ELEGANT still exhibits a fairness level far lower than the given353

bias threshold ⌘, and the fairness superiority still maintains. This corroborates that the estimation354

strategies adopted in ELEGANT are safe in achieving fairness certification.355
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To answer RQ3, we propose to perform parameter study focusing on the two most critical parameters,359

� and �. Note that on the one hand, only a proportion of the sampled test sets could be successfully360

certified over all sampled test sets; on the other hand, those test sets that are successfully certified may361

also associate with different values of certified defense budgets. To examine how � and � influence362

the effectiveness of ELEGANT in terms of both FCR and certified defense budgets, we set numerical363

ranges for ✏X (from 0 to 1e1) and ✏A (from 0 to 24) and divide the two ranges into grids. In both364

ranges, we consider the dividing values of the grids as thresholds. Under each threshold, we only365

consider the test sets with the corresponding certified defense budget being larger than this threshold366

as successfully certified ones, and the values of FCR are re-computed accordingly. Our rationale here367

is that with the thresholds (for ✏X and ✏A) increasing, if FCR reduces slowly, this demonstrates that368

most successfully certified test sets are associated with large certified defense budgets. However, if369

FCR reduces fast, then most successfully certified test sets only bears small certified defense budgets.370

Here we present the experimental results of � and � with the most widely used GCN model based371

on German Credit in Fig. 3(a)) and Credit Defaulter in Fig. 3(b), respectively. We also have similar372

observations on other GNNs and datasets. We summarize the main observations as follows: (1)373

Analysis on �. We observe that most cases with larger � are associated with a larger FCR compared374

with the cases where � is relatively small. In other words, larger values of � typically make FCR375
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alsocontributestobiasmitigation.Weconjecturethatsuchadvantageofdebiasingcouldbearesult 323

ofaddingrandomnoiseonbothnodeattributesandgraphtopology.Specifically,multipleexisting 324

workshavepointedoutthatthedistributiondifferenceinthenodeattributevaluesandedgeexistence 325

acrossdifferentdemographicsubgroupsisasignificantsourceofbias.However,addingrandomnoise 326

onbothnodeattributesandgraphtopologycouldbeabletoreducesuchdistributionaldivergence. 327

4.3RQ2:FairnessCertificationunderAttacks 328

Figure2:ThebiaslevelsofGCN,E-GCN,
FairGNN,andNIFTYunderfairnessattackson
GermanCredit.Theshadedbarindicatesthatthe
attackingbudgetsgobeyondthecertifiedbudgets.

ToanswerRQ2,weperformattacksonthe 329

fairnessofGCN,E-GCN,FairGNN(witha 330

GCNbackbone),andNIFTY(withaGCN 331

backbone).Consideringthelargesizeofthe 332

quadraticspacespannedbythesizeofpertur- 333

bations�Aand�Xmadebyattackers,we 334

presenttheevaluationunderfourrepresentative 335

(k�Ak0,k�Xk2)pairs.Wesetthethreshold 336

forbias⌘tobe50%higherthanthefairness 337

levelofthevanillaGCNmodeloncleandata. 338

Thisempiricallyhelpstoachieveahighcertifi- 339

cationsuccessfulrateunderlargeperturbations. 340

Wepresentthefairnesslevelsofthefourmod- 341

elsintermsof�EOinFig.2.Noetthatwe 342

alsohavesimilarobservationson�SPandother 343

GNNs/datasets.Wesummarizethemainobservationsasfollows:(1)Fairness.Wefoundthatthe 344

GCNmodelwiththeproposedframeworkELEGANTachievesthelowestlevelofbiasinallcasesof 345

fairnessattacks.ThisobservationisconsistentwiththesuperiorityinfairnessfoundinTable1,which 346

demonstratesthatthefairnesssuperiorityofELEGANTmaintainsunderattackswithawiderange 347

ofattackingperturbationsizes.(2)CertificationonFairness.Wenowcomparetheperformance 348

ofE-GCNacrossdifferentattackingperturbationsizes.Weobservedthatunderrelativelysmallat- 349

tackingperturbationsizes,i.e.,(2
0
,10�1

),(2
1
,10

0
),and(2

2
,10

1
),ELEGANTsuccessfullyachieves 350

certificationoverfairness,andthebiaslevelincreasesslowlyasthesizeofattacksincreases.Under 351

relativelylargeattackingperturbationsize,i.e.,(2
3
,10

2
),althoughtheattackingbudgetsgobeyond 352

thecertifiedbudgets,GCNunderELEGANTstillexhibitsafairnesslevelfarlowerthanthegiven 353

biasthreshold⌘,andthefairnesssuperioritystillmaintains.Thiscorroboratesthattheestimation 354

strategiesadoptedinELEGANTaresafeinachievingfairnesscertification. 355

�EO(inlog2scale) 356

⌘ 357

4.4RQ3:ParameterStudy 358

ToanswerRQ3,weproposetoperformparameterstudyfocusingonthetwomostcriticalparameters, 359

�and�.Notethatontheonehand,onlyaproportionofthesampledtestsetscouldbesuccessfully 360

certifiedoverallsampledtestsets;ontheotherhand,thosetestsetsthataresuccessfullycertifiedmay 361

alsoassociatewithdifferentvaluesofcertifieddefensebudgets.Toexaminehow�and�influence 362

theeffectivenessofELEGANTintermsofbothFCRandcertifieddefensebudgets,wesetnumerical 363

rangesfor✏X(from0to1e1)and✏A(from0to2
4
)anddividethetworangesintogrids.Inboth 364

ranges,weconsiderthedividingvaluesofthegridsasthresholds.Undereachthreshold,weonly 365

considerthetestsetswiththecorrespondingcertifieddefensebudgetbeinglargerthanthisthreshold 366

assuccessfullycertifiedones,andthevaluesofFCRarere-computedaccordingly.Ourrationalehere 367

isthatwiththethresholds(for✏Xand✏A)increasing,ifFCRreducesslowly,thisdemonstratesthat 368

mostsuccessfullycertifiedtestsetsareassociatedwithlargecertifieddefensebudgets.However,if 369

FCRreducesfast,thenmostsuccessfullycertifiedtestsetsonlybearssmallcertifieddefensebudgets. 370

Herewepresenttheexperimentalresultsof�and�withthemostwidelyusedGCNmodelbased 371

onGermanCreditinFig.3(a))andCreditDefaulterinFig.3(b),respectively.Wealsohavesimilar 372

observationsonotherGNNsanddatasets.Wesummarizethemainobservationsasfollows:(1) 373

Analysison�.Weobservethatmostcaseswithlarger�areassociatedwithalargerFCRcompared 374

withthecaseswhere�isrelativelysmall.Inotherwords,largervaluesof�typicallymakeFCR 375

reduceslowerw.r.t.theincreasingof✏Xthreshold.Thisindicatesthatincreasingthevalueof� 376
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Figure 2: The bias levels of GCN, E-
GCN, FairGNN, and NIFTY under fair-
ness attacks on German Credit. The
shaded bar indicates that certified bud-
get ✏A  k�Ak0 or ✏X  k�Xk2.

(20, 10�1) (21, 100) (22, 101) (23, 102)331

4.3 RQ2: Fairness Certification under Attacks332

To answer RQ2, we perform attacks on the fairness of333

GCN, E-GCN, FairGNN (with a GCN backbone), and334

NIFTY (with a GCN backbone). Considering the large335

size of the quadratic space spanned by the size of pertur-336

bations �A and �X made by attackers, we present the337

evaluation under four representative (k�Ak0, k�Xk2)338

pairs. We set the threshold for bias ⌘ to be 50% higher339

than the fairness level of the vanilla GCN model on clean340

data, since it empirically helps to achieve a high certifica-341

tion success rate under large perturbations.342

We present the fairness levels of the four models in terms343

of �EO in Fig. 2, and we also have similar observations on �SP and other GNNs/datasets. We344

summarize the main observations as follows: (1) Fairness. We found that the GCN model with the345

proposed framework ELEGANT achieves the lowest level of bias in all cases of fairness attacks. This346

observation is consistent with the superiority in fairness found in Table 1, which demonstrates that347

the fairness superiority of ELEGANT maintains even under attacks within a wide range of attacking348

perturbation sizes. (2) Certification on Fairness. We now compare the performance of E-GCN across349

different attacking perturbation sizes. We observed that under relatively small attacking perturbation350

sizes, i.e., (20, 10�1), (21, 100), and (22, 101), ELEGANT successfully achieves certification over351

fairness, and the bias level increases slowly as the size of attacks increases. Under relatively large352

attacking perturbation size, i.e., (23, 102), although the attacking budgets go beyond the certified353

budgets, GCN under ELEGANT still exhibits a fairness level far lower than the given bias threshold354

⌘, and the fairness superiority still maintains. This corroborates that the estimation strategies adopted355

in ELEGANT are safe in achieving fairness certification.356

4.4 RQ3: Parameter Study357

To answer RQ3, we propose to perform parameter study focusing on two most critical parameters,358

� and �. To examine how � and � influence the effectiveness of ELEGANT in terms of both FCR359

and certified defense budgets, we set numerical ranges for ✏X (from 0 to 1e1) and ✏A (from 0 to360

24) and divide the two ranges into grids. In both ranges, we consider the dividing values of the361

grids as thresholds for certification budgets. In other words, under each threshold, we only consider362

the test sets with the corresponding certified defense budget being larger than this threshold as363

successfully certified ones, and the values of FCR are re-computed accordingly. Our rationale here is364

that with the thresholds (for ✏X and ✏A) increasing, if FCR reduces slowly, this demonstrates that365

most successfully certified test sets are associated with large certified defense budgets. However, if366

FCR reduces fast, then most successfully certified test sets only bear small certified defense budgets.367

Here we present the experimental results of � and � with the most widely used GCN model based368

on German Credit in Fig. 3(a)) and Credit Defaulter in Fig. 3(b), respectively. We also have similar369

observations on other GNNs and datasets. We summarize the main observations as follows: (1)370

Analysis on �. We observe that most cases with larger � are associated with a larger FCR compared371

with the cases where � is relatively small. In other words, larger values of � typically make FCR372

reduce slower w.r.t. the increasing of ✏X threshold. This indicates that increasing the value of �373

helps realize larger certified defense budgets on node attributes, i.e., the increase of � dominates374

the tendency of ✏X given in Theorem 4. Nevertheless, it is worth mentioning that if � is too large,375

the information encoded in the node attributes could be swamped by the Gaussian noise and finally376

corrupt the classification accuracy. Hence moderately large values for �, e.g., 5e-1 and 5e0, are377

recommended. (2) Analysis on �. We found that (1) for cases with relatively large � (e.g., 0.8 and378

0.9), the FCR also tends to be larger (compared with cases where � is smaller) at ✏A threshold being379

0. Such a tendency is reasonable, since in these cases, the expected magnitude of the added Bernoulli380
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of adding random noise on node attributes and graph topology. In fact, existing works have pointed327

out that the distribution difference in the node attribute values and edge existence across different328

subgroups is a significant source of bias [43, 8, 44]. However, adding random noise on both node329

attributes and graph topology may reduce such distributional divergence and mitigate bias.330

also contributes to bias mitigation. We conjecture that such advantage of debiasing could be a result323

of adding random noise on both node attributes and graph topology. Specifically, multiple existing324

works have pointed out that the distribution difference in the node attribute values and edge existence325

across different demographic subgroups is a significant source of bias. However, adding random noise326

on both node attributes and graph topology could be able to reduce such distributional divergence.327

4.3 RQ2: Fairness Certification under Attacks328

Figure 2: The bias levels of GCN, E-GCN,
FairGNN, and NIFTY under fairness attacks on
German Credit. The shaded bar indicates that the
attacking budgets go beyond the certified budgets.
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fairness of GCN, E-GCN, FairGNN (with a330

GCN backbone), and NIFTY (with a GCN331
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quadratic space spanned by the size of pertur-333

bations �A and �X made by attackers, we334

present the evaluation under four representative335

(k�Ak0, k�Xk2) pairs. We set the threshold336

for bias ⌘ to be 50% higher than the fairness337

level of the vanilla GCN model on clean data.338

This empirically helps to achieve a high certifi-339

cation successful rate under large perturbations.340
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GCN model with the proposed framework ELEGANT achieves the lowest level of bias in all cases of345

fairness attacks. This observation is consistent with the superiority in fairness found in Table 1, which346

demonstrates that the fairness superiority of ELEGANT maintains under attacks with a wide range347

of attacking perturbation sizes. (2) Certification on Fairness. We now compare the performance348

of E-GCN across different attacking perturbation sizes. We observed that under relatively small at-349

tacking perturbation sizes, i.e., (20, 10�1), (21, 100), and (22, 101), ELEGANT successfully achieves350
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relatively large attacking perturbation size, i.e., (23, 102), although the attacking budgets go beyond352

the certified budgets, GCN under ELEGANT still exhibits a fairness level far lower than the given353

bias threshold ⌘, and the fairness superiority still maintains. This corroborates that the estimation354

strategies adopted in ELEGANT are safe in achieving fairness certification.355

4.4 RQ3: Parameter Study356

To answer RQ3, we propose to perform parameter study focusing on the two most critical parameters,357

� and �. Note that on the one hand, only a proportion of the sampled test sets could be successfully358

certified over all sampled test sets; on the other hand, those test sets that are successfully certified may359

also associate with different values of certified defense budgets. To examine how � and � influence360

the effectiveness of ELEGANT in terms of both FCR and certified defense budgets, we set numerical361

ranges for ✏X (from 0 to 1e1) and ✏A (from 0 to 24) and divide the two ranges into grids. In both362

ranges, we consider the dividing values of the grids as thresholds. Under each threshold, we only363

consider the test sets with the corresponding certified defense budget being larger than this threshold364

as successfully certified ones, and the values of FCR are re-computed accordingly. Our rationale here365

is that with the thresholds (for ✏X and ✏A) increasing, if FCR reduces slowly, this demonstrates that366

most successfully certified test sets are associated with large certified defense budgets. However, if367

FCR reduces fast, then most successfully certified test sets only bears small certified defense budgets.368

Here we present the experimental results of � and � with the most widely used GCN model based369

on German Credit in Fig. 3(a)) and Credit Defaulter in Fig. 3(b), respectively. We also have similar370

observations on other GNNs and datasets. We summarize the main observations as follows: (1)371

Analysis on �. We observe that most cases with larger � are associated with a larger FCR compared372

with the cases where � is relatively small. In other words, larger values of � typically make FCR373

reduce slower w.r.t. the increasing of ✏X threshold. This indicates that increasing the value of �374

helps realize larger certified defense budgets on node attributes, i.e., the increasing of � dominates375

the tendency of ✏X given in Theorem 4. Nevertheless, it is worth mentioning that if � is too large,376

the information encoded in the node attributes could be swamped by the Gaussian noise and finally377
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also contributes to bias mitigation. We conjecture that such advantage of debiasing could be a result323

of adding random noise on both node attributes and graph topology. Specifically, multiple existing324

works have pointed out that the distribution difference in the node attribute values and edge existence325

across different demographic subgroups is a significant source of bias. However, adding random noise326

on both node attributes and graph topology could be able to reduce such distributional divergence.327

4.3 RQ2: Fairness Certification under Attacks328

Figure 2: The bias levels of GCN, E-GCN,
FairGNN, and NIFTY under fairness attacks on
German Credit. The shaded bar indicates that the
attacking budgets go beyond the certified budgets.

To answer RQ2, we perform attacks on the329

fairness of GCN, E-GCN, FairGNN (with a330

GCN backbone), and NIFTY (with a GCN331

backbone). Considering the large size of the332

quadratic space spanned by the size of pertur-333

bations �A and �X made by attackers, we334

present the evaluation under four representative335

(k�Ak0, k�Xk2) pairs. We set the threshold336

for bias ⌘ to be 50% higher than the fairness337

level of the vanilla GCN model on clean data.338

This empirically helps to achieve a high certifi-339

cation successful rate under large perturbations.340

We present the fairness levels of the four mod-341

els in terms of �EO in Fig. 2. Noet that we342

also have similar observations on �SP and other343

GNNs/datasets. We summarize the main observations as follows: (1) Fairness. We found that the344

GCN model with the proposed framework ELEGANT achieves the lowest level of bias in all cases of345

fairness attacks. This observation is consistent with the superiority in fairness found in Table 1, which346

demonstrates that the fairness superiority of ELEGANT maintains under attacks with a wide range347

of attacking perturbation sizes. (2) Certification on Fairness. We now compare the performance348

of E-GCN across different attacking perturbation sizes. We observed that under relatively small at-349

tacking perturbation sizes, i.e., (20, 10�1), (21, 100), and (22, 101), ELEGANT successfully achieves350

certification over fairness, and the bias level increases slowly as the size of attacks increases. Under351

relatively large attacking perturbation size, i.e., (23, 102), although the attacking budgets go beyond352

the certified budgets, GCN under ELEGANT still exhibits a fairness level far lower than the given353

bias threshold ⌘, and the fairness superiority still maintains. This corroborates that the estimation354

strategies adopted in ELEGANT are safe in achieving fairness certification.355
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To answer RQ3, we propose to perform parameter study focusing on the two most critical parameters,359

� and �. Note that on the one hand, only a proportion of the sampled test sets could be successfully360

certified over all sampled test sets; on the other hand, those test sets that are successfully certified may361

also associate with different values of certified defense budgets. To examine how � and � influence362

the effectiveness of ELEGANT in terms of both FCR and certified defense budgets, we set numerical363

ranges for ✏X (from 0 to 1e1) and ✏A (from 0 to 24) and divide the two ranges into grids. In both364

ranges, we consider the dividing values of the grids as thresholds. Under each threshold, we only365

consider the test sets with the corresponding certified defense budget being larger than this threshold366

as successfully certified ones, and the values of FCR are re-computed accordingly. Our rationale here367

is that with the thresholds (for ✏X and ✏A) increasing, if FCR reduces slowly, this demonstrates that368

most successfully certified test sets are associated with large certified defense budgets. However, if369

FCR reduces fast, then most successfully certified test sets only bears small certified defense budgets.370

Here we present the experimental results of � and � with the most widely used GCN model based371

on German Credit in Fig. 3(a)) and Credit Defaulter in Fig. 3(b), respectively. We also have similar372

observations on other GNNs and datasets. We summarize the main observations as follows: (1)373

Analysis on �. We observe that most cases with larger � are associated with a larger FCR compared374

with the cases where � is relatively small. In other words, larger values of � typically make FCR375

reduce slower w.r.t. the increasing of ✏X threshold. This indicates that increasing the value of �376

8

of
ad

di
ng

ra
nd

om
no

is
e

on
no

de
at

tr
ib

ut
es

an
d

gr
ap

h
to

po
lo

gy
.I

n
fa

ct
,e

xi
st

in
g

w
or

ks
ha

ve
po

in
te

d
32

7

ou
tt

ha
tt

he
di

st
ri

bu
tio

n
di

ff
er

en
ce

in
th

e
no

de
at

tr
ib

ut
e

va
lu

es
an

d
ed

ge
ex

is
te

nc
e

ac
ro

ss
di

ff
er

en
t

32
8

su
bg

ro
up

s
is

a
si

gn
ifi

ca
nt

so
ur

ce
of

bi
as

[4
3,

8,
44

].
H

ow
ev

er
,a

dd
in

g
ra

nd
om

no
is

e
on

bo
th

no
de

32
9

at
tr

ib
ut

es
an

d
gr

ap
h

to
po

lo
gy

m
ay

re
du

ce
su

ch
di

st
ri

bu
tio

na
ld

iv
er

ge
nc

e
an

d
m

iti
ga

te
bi

as
.

33
0

al
so

co
nt

ri
bu

te
s

to
bi

as
m

iti
ga

tio
n.

W
e

co
nj

ec
tu

re
th

at
su

ch
ad

va
nt

ag
e

of
de

bi
as

in
g

co
ul

d
be

a
re

su
lt

32
3

of
ad

di
ng

ra
nd

om
no

is
e

on
bo

th
no

de
at

tr
ib

ut
es

an
d

gr
ap

h
to

po
lo

gy
.S

pe
ci

fic
al

ly
,m

ul
tip

le
ex

is
tin

g
32

4

w
or

ks
ha

ve
po

in
te

d
ou

tt
ha

tt
he

di
st

rib
ut

io
n

di
ff

er
en

ce
in

th
e

no
de

at
tri

bu
te

va
lu

es
an

d
ed

ge
ex

is
te

nc
e

32
5

ac
ro

ss
di

ff
er

en
td

em
og

ra
ph

ic
su

bg
ro

up
s

is
a

si
gn

ifi
ca

nt
so

ur
ce

of
bi

as
.H

ow
ev

er
,a

dd
in

g
ra

nd
om

no
is

e
32

6

on
bo

th
no

de
at

tr
ib

ut
es

an
d

gr
ap

h
to

po
lo

gy
co

ul
d

be
ab

le
to

re
du

ce
su

ch
di

st
ri

bu
tio

na
ld

iv
er

ge
nc

e.
32

7

4.
3

R
Q

2:
Fa

ir
ne

ss
C

er
tifi

ca
tio

n
un

de
r

A
tt

ac
ks

32
8

Fi
gu

re
2:

T
he

bi
as

le
ve

ls
of

G
C

N
,

E
-G

C
N

,
Fa

ir
G

N
N

,a
nd

N
IF

T
Y

un
de

r
fa

ir
ne

ss
at

ta
ck

s
on

G
er

m
an

C
re

di
t.

T
he

sh
ad

ed
ba

ri
nd

ic
at

es
th

at
th

e
at

ta
ck

in
g

bu
dg

et
s

go
be

yo
nd

th
e

ce
rt

ifi
ed

bu
dg

et
s.

To
an

sw
er

R
Q

2,
w

e
pe

rf
or

m
at

ta
ck

s
on

th
e

32
9

fa
ir

ne
ss

of
G

C
N

,
E

-G
C

N
,

Fa
ir

G
N

N
(w

ith
a

33
0

G
C

N
ba

ck
bo

ne
),

an
d

N
IF

T
Y

(w
ith

a
G

C
N

33
1

ba
ck

bo
ne

).
C

on
si

de
ri

ng
th

e
la

rg
e

si
ze

of
th

e
33

2

qu
ad

ra
tic

sp
ac

e
sp

an
ne

d
by

th
e

si
ze

of
pe

rt
ur

-
33

3

ba
tio

ns
�

A
an

d
�

X
m

ad
e

by
at

ta
ck

er
s,

w
e

33
4

pr
es

en
tt

he
ev

al
ua

tio
n

un
de

rf
ou

rr
ep

re
se

nt
at

iv
e

33
5

(k
�

A
k 0

,k
�

X
k 2

)
pa

ir
s.

W
e

se
tt

he
th

re
sh

ol
d

33
6

fo
r

bi
as

⌘
to

be
50

%
hi

gh
er

th
an

th
e

fa
ir

ne
ss

33
7

le
ve

lo
f

th
e

va
ni

lla
G

C
N

m
od

el
on

cl
ea

n
da

ta
.

33
8

T
hi

s
em

pi
ri

ca
lly

he
lp

s
to

ac
hi

ev
e

a
hi

gh
ce

rt
ifi

-
33

9

ca
tio

n
su

cc
es

sf
ul

ra
te

un
de

rl
ar

ge
pe

rt
ur

ba
tio

ns
.

34
0

W
e

pr
es

en
tt

he
fa

ir
ne

ss
le

ve
ls

of
th

e
fo

ur
m

od
-

34
1

el
s

in
te

rm
s

of
�

E
O

in
Fi

g.
2.

N
oe

t
th

at
w

e
34

2

al
so

ha
ve

si
m

ila
ro

bs
er

va
tio

ns
on

�
SP

an
d

ot
he

r
34

3

G
N

N
s/

da
ta

se
ts

.W
e

su
m

m
ar

iz
e

th
e

m
ai

n
ob

se
rv

at
io

ns
as

fo
llo

w
s:

(1
)F

ai
rn

es
s.

W
e

fo
un

d
th

at
th

e
34

4

G
C

N
m

od
el

w
ith

th
e

pr
op

os
ed

fr
am

ew
or

k
EL

EG
A

N
T

ac
hi

ev
es

th
e

lo
w

es
tl

ev
el

of
bi

as
in

al
lc

as
es

of
34

5

fa
irn

es
s

at
ta

ck
s.

Th
is

ob
se

rv
at

io
n

is
co

ns
is

te
nt

w
ith

th
e

su
pe

rio
rit

y
in

fa
irn

es
s

fo
un

d
in

Ta
bl

e
1,

w
hi

ch
34

6

de
m

on
st

ra
te

s
th

at
th

e
fa

ir
ne

ss
su

pe
ri

or
ity

of
E

L
E

G
A

N
T

m
ai

nt
ai

ns
un

de
ra

tta
ck

s
w

ith
a

w
id

e
ra

ng
e

34
7

of
at

ta
ck

in
g

pe
rt

ur
ba

tio
n

si
ze

s.
(2

)C
er

tifi
ca

tio
n

on
Fa

ir
ne

ss
.W

e
no

w
co

m
pa

re
th

e
pe

rf
or

m
an

ce
34

8

of
E

-G
C

N
ac

ro
ss

di
ff

er
en

ta
tta

ck
in

g
pe

rt
ur

ba
tio

n
si

ze
s.

W
e

ob
se

rv
ed

th
at

un
de

rr
el

at
iv

el
y

sm
al

la
t-

34
9

ta
ck

in
g

pe
rtu

rb
at

io
n

si
ze

s,
i.e

.,
(2

0
,1

0
�

1
),

(2
1
,1

00
),

an
d

(2
2
,1

01
),

EL
EG

A
N

T
su

cc
es

sf
ul

ly
ac

hi
ev

es
35

0

ce
rt

ifi
ca

tio
n

ov
er

fa
ir

ne
ss

,a
nd

th
e

bi
as

le
ve

li
nc

re
as

es
sl

ow
ly

as
th

e
si

ze
of

at
ta

ck
s

in
cr

ea
se

s.
U

nd
er

35
1

re
la

tiv
el

y
la

rg
e

at
ta

ck
in

g
pe

rt
ur

ba
tio

n
si

ze
,i

.e
.,

(2
3
,1

0
2
),

al
th

ou
gh

th
e

at
ta

ck
in

g
bu

dg
et

s
go

be
yo

nd
35

2

th
e

ce
rt

ifi
ed

bu
dg

et
s,

G
C

N
un

de
rE

L
E

G
A

N
T

st
ill

ex
hi

bi
ts

a
fa

ir
ne

ss
le

ve
lf

ar
lo

w
er

th
an

th
e

gi
ve

n
35

3

bi
as

th
re

sh
ol

d
⌘

,a
nd

th
e

fa
ir

ne
ss

su
pe

ri
or

ity
st

ill
m

ai
nt

ai
ns

.
T

hi
s

co
rr

ob
or

at
es

th
at

th
e

es
tim

at
io

n
35

4

st
ra

te
gi

es
ad

op
te

d
in

E
L

E
G

A
N

T
ar

e
sa

fe
in

ac
hi

ev
in

g
fa

ir
ne

ss
ce

rt
ifi

ca
tio

n.
35

5

4.
4

R
Q

3:
Pa

ra
m

et
er

St
ud

y
35

6

To
an

sw
er

R
Q

3,
w

e
pr

op
os

e
to

pe
rf

or
m

pa
ra

m
et

er
st

ud
y

fo
cu

si
ng

on
th

e
tw

o
m

os
tc

rit
ic

al
pa

ra
m

et
er

s,
35

7

�
an

d
�

.N
ot

e
th

at
on

th
e

on
e

ha
nd

,o
nl

y
a

pr
op

or
tio

n
of

th
e

sa
m

pl
ed

te
st

se
ts

co
ul

d
be

su
cc

es
sf

ul
ly

35
8

ce
rti

fie
d

ov
er

al
ls

am
pl

ed
te

st
se

ts
;o

n
th

e
ot

he
rh

an
d,

th
os

e
te

st
se

ts
th

at
ar

e
su

cc
es

sf
ul

ly
ce

rti
fie

d
m

ay
35

9

al
so

as
so

ci
at

e
w

ith
di

ff
er

en
tv

al
ue

s
of

ce
rt

ifi
ed

de
fe

ns
e

bu
dg

et
s.

To
ex

am
in

e
ho

w
�

an
d
�

in
flu

en
ce

36
0

th
e

ef
fe

ct
iv

en
es

s
of

EL
EG

A
N

T
in

te
rm

s
of

bo
th

FC
R

an
d

ce
rti

fie
d

de
fe

ns
e

bu
dg

et
s,

w
e

se
tn

um
er

ic
al

36
1

ra
ng

es
fo

r
✏ X

(f
ro

m
0

to
1e

1)
an

d
✏ A

(f
ro

m
0

to
24

)
an

d
di

vi
de

th
e

tw
o

ra
ng

es
in

to
gr

id
s.

In
bo

th
36

2

ra
ng

es
,w

e
co

ns
id

er
th

e
di

vi
di

ng
va

lu
es

of
th

e
gr

id
s

as
th

re
sh

ol
ds

.
U

nd
er

ea
ch

th
re

sh
ol

d,
w

e
on

ly
36

3

co
ns

id
er

th
e

te
st

se
ts

w
ith

th
e

co
rr

es
po

nd
in

g
ce

rt
ifi

ed
de

fe
ns

e
bu

dg
et

be
in

g
la

rg
er

th
an

th
is

th
re

sh
ol

d
36

4

as
su

cc
es

sf
ul

ly
ce

rti
fie

d
on

es
,a

nd
th

e
va

lu
es

of
FC

R
ar

e
re

-c
om

pu
te

d
ac

co
rd

in
gl

y.
O

ur
ra

tio
na

le
he

re
36

5

is
th

at
w

ith
th

e
th

re
sh

ol
ds

(f
or

✏ X
an

d
✏ A

)i
nc

re
as

in
g,

if
FC

R
re

du
ce

s
sl

ow
ly

,t
hi

s
de

m
on

st
ra

te
s

th
at

36
6

m
os

ts
uc

ce
ss

fu
lly

ce
rt

ifi
ed

te
st

se
ts

ar
e

as
so

ci
at

ed
w

ith
la

rg
e

ce
rt

ifi
ed

de
fe

ns
e

bu
dg

et
s.

H
ow

ev
er

,i
f

36
7

FC
R

re
du

ce
s

fa
st

,t
he

n
m

os
ts

uc
ce

ss
fu

lly
ce

rti
fie

d
te

st
se

ts
on

ly
be

ar
s

sm
al

lc
er

tifi
ed

de
fe

ns
e

bu
dg

et
s.

36
8

H
er

e
w

e
pr

es
en

tt
he

ex
pe

ri
m

en
ta

lr
es

ul
ts

of
�

an
d
�

w
ith

th
e

m
os

tw
id

el
y

us
ed

G
C

N
m

od
el

ba
se

d
36

9

on
G

er
m

an
C

re
di

ti
n

Fi
g.

3(
a)

)a
nd

C
re

di
tD

ef
au

lte
ri

n
Fi

g.
3(

b)
,r

es
pe

ct
iv

el
y.

W
e

al
so

ha
ve

si
m

ila
r

37
0

ob
se

rv
at

io
ns

on
ot

he
r

G
N

N
s

an
d

da
ta

se
ts

.
W

e
su

m
m

ar
iz

e
th

e
m

ai
n

ob
se

rv
at

io
ns

as
fo

llo
w

s:
(1

)
37

1

A
na

ly
si

so
n
�

.W
e

ob
se

rv
e

th
at

m
os

tc
as

es
w

ith
la

rg
er

�
ar

e
as

so
ci

at
ed

w
ith

a
la

rg
er

FC
R

co
m

pa
re

d
37

2

w
ith

th
e

ca
se

s
w

he
re

�
is

re
la

tiv
el

y
sm

al
l.

In
ot

he
r

w
or

ds
,l

ar
ge

r
va

lu
es

of
�

ty
pi

ca
lly

m
ak

e
FC

R
37

3

re
du

ce
sl

ow
er

w
.r.

t.
th

e
in

cr
ea

si
ng

of
✏ X

th
re

sh
ol

d.
T

hi
s

in
di

ca
te

s
th

at
in

cr
ea

si
ng

th
e

va
lu

e
of

�
37

4

he
lp

s
re

al
iz

e
la

rg
er

ce
rt

ifi
ed

de
fe

ns
e

bu
dg

et
s

on
no

de
at

tr
ib

ut
es

,i
.e

.,
th

e
in

cr
ea

si
ng

of
�

do
m

in
at

es
37

5

th
e

te
nd

en
cy

of
✏ X

gi
ve

n
in

T
he

or
em

4.
N

ev
er

th
el

es
s,

it
is

w
or

th
m

en
tio

ni
ng

th
at

if
�

is
to

o
la

rg
e,

37
6

th
e

in
fo

rm
at

io
n

en
co

de
d

in
th

e
no

de
at

tr
ib

ut
es

co
ul

d
be

sw
am

pe
d

by
th

e
G

au
ss

ia
n

no
is

e
an

d
fin

al
ly

37
7

8

alsocontributestobiasmitigation.Weconjecturethatsuchadvantageofdebiasingcouldbearesult 323

ofaddingrandomnoiseonbothnodeattributesandgraphtopology.Specifically,multipleexisting 324

workshavepointedoutthatthedistributiondifferenceinthenodeattributevaluesandedgeexistence 325

acrossdifferentdemographicsubgroupsisasignificantsourceofbias.However,addingrandomnoise 326

onbothnodeattributesandgraphtopologycouldbeabletoreducesuchdistributionaldivergence. 327

4.3RQ2:FairnessCertificationunderAttacks 328

Figure2:ThebiaslevelsofGCN,E-GCN,
FairGNN,andNIFTYunderfairnessattackson
GermanCredit.Theshadedbarindicatesthatthe
attackingbudgetsgobeyondthecertifiedbudgets.

ToanswerRQ2,weperformattacksonthe 329

fairnessofGCN,E-GCN,FairGNN(witha 330

GCNbackbone),andNIFTY(withaGCN 331

backbone).Consideringthelargesizeofthe 332

quadraticspacespannedbythesizeofpertur- 333

bations�Aand�Xmadebyattackers,we 334

presenttheevaluationunderfourrepresentative 335

(k�Ak0,k�Xk2)pairs.Wesetthethreshold 336

forbias⌘tobe50%higherthanthefairness 337

levelofthevanillaGCNmodeloncleandata. 338

Thisempiricallyhelpstoachieveahighcertifi- 339

cationsuccessfulrateunderlargeperturbations. 340

Wepresentthefairnesslevelsofthefourmod- 341

elsintermsof�EOinFig.2.Noetthatwe 342

alsohavesimilarobservationson�SPandother 343

GNNs/datasets.Wesummarizethemainobservationsasfollows:(1)Fairness.Wefoundthatthe 344

GCNmodelwiththeproposedframeworkELEGANTachievesthelowestlevelofbiasinallcasesof 345

fairnessattacks.ThisobservationisconsistentwiththesuperiorityinfairnessfoundinTable1,which 346

demonstratesthatthefairnesssuperiorityofELEGANTmaintainsunderattackswithawiderange 347

ofattackingperturbationsizes.(2)CertificationonFairness.Wenowcomparetheperformance 348

ofE-GCNacrossdifferentattackingperturbationsizes.Weobservedthatunderrelativelysmallat- 349

tackingperturbationsizes,i.e.,(2
0
,10�1

),(2
1
,10

0
),and(2

2
,10

1
),ELEGANTsuccessfullyachieves 350

certificationoverfairness,andthebiaslevelincreasesslowlyasthesizeofattacksincreases.Under 351

relativelylargeattackingperturbationsize,i.e.,(2
3
,10

2
),althoughtheattackingbudgetsgobeyond 352

thecertifiedbudgets,GCNunderELEGANTstillexhibitsafairnesslevelfarlowerthanthegiven 353

biasthreshold⌘,andthefairnesssuperioritystillmaintains.Thiscorroboratesthattheestimation 354

strategiesadoptedinELEGANTaresafeinachievingfairnesscertification. 355

�EO(inlog2scale) 356

⌘ 357

4.4RQ3:ParameterStudy 358

ToanswerRQ3,weproposetoperformparameterstudyfocusingonthetwomostcriticalparameters, 359

�and�.Notethatontheonehand,onlyaproportionofthesampledtestsetscouldbesuccessfully 360

certifiedoverallsampledtestsets;ontheotherhand,thosetestsetsthataresuccessfullycertifiedmay 361

alsoassociatewithdifferentvaluesofcertifieddefensebudgets.Toexaminehow�and�influence 362

theeffectivenessofELEGANTintermsofbothFCRandcertifieddefensebudgets,wesetnumerical 363

rangesfor✏X(from0to1e1)and✏A(from0to2
4
)anddividethetworangesintogrids.Inboth 364

ranges,weconsiderthedividingvaluesofthegridsasthresholds.Undereachthreshold,weonly 365

considerthetestsetswiththecorrespondingcertifieddefensebudgetbeinglargerthanthisthreshold 366

assuccessfullycertifiedones,andthevaluesofFCRarere-computedaccordingly.Ourrationalehere 367

isthatwiththethresholds(for✏Xand✏A)increasing,ifFCRreducesslowly,thisdemonstratesthat 368

mostsuccessfullycertifiedtestsetsareassociatedwithlargecertifieddefensebudgets.However,if 369

FCRreducesfast,thenmostsuccessfullycertifiedtestsetsonlybearssmallcertifieddefensebudgets. 370

Herewepresenttheexperimentalresultsof�and�withthemostwidelyusedGCNmodelbased 371

onGermanCreditinFig.3(a))andCreditDefaulterinFig.3(b),respectively.Wealsohavesimilar 372

observationsonotherGNNsanddatasets.Wesummarizethemainobservationsasfollows:(1) 373

Analysison�.Weobservethatmostcaseswithlarger�areassociatedwithalargerFCRcompared 374

withthecaseswhere�isrelativelysmall.Inotherwords,largervaluesof�typicallymakeFCR 375

reduceslowerw.r.t.theincreasingof✏Xthreshold.Thisindicatesthatincreasingthevalueof� 376
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Figure 2: The bias levels of GCN, E-
GCN, FairGNN, and NIFTY under fair-
ness attacks on German Credit. The
shaded bar indicates that certified bud-
get ✏A  k�Ak0 or ✏X  k�Xk2.

(20, 10�1) (21, 100) (22, 101) (23, 102)331

4.3 RQ2: Fairness Certification under Attacks332

To answer RQ2, we perform attacks on the fairness of333

GCN, E-GCN, FairGNN (with a GCN backbone), and334

NIFTY (with a GCN backbone). Considering the large335

size of the quadratic space spanned by the size of pertur-336

bations �A and �X made by attackers, we present the337

evaluation under four representative (k�Ak0, k�Xk2)338

pairs. We set the threshold for bias ⌘ to be 50% higher339

than the fairness level of the vanilla GCN model on clean340

data, since it empirically helps to achieve a high certifica-341

tion success rate under large perturbations.342

We present the fairness levels of the four models in terms343

of �EO in Fig. 2, and we also have similar observations on �SP and other GNNs/datasets. We344

summarize the main observations as follows: (1) Fairness. We found that the GCN model with the345

proposed framework ELEGANT achieves the lowest level of bias in all cases of fairness attacks. This346

observation is consistent with the superiority in fairness found in Table 1, which demonstrates that347

the fairness superiority of ELEGANT maintains even under attacks within a wide range of attacking348

perturbation sizes. (2) Certification on Fairness. We now compare the performance of E-GCN across349

different attacking perturbation sizes. We observed that under relatively small attacking perturbation350

sizes, i.e., (20, 10�1), (21, 100), and (22, 101), ELEGANT successfully achieves certification over351

fairness, and the bias level increases slowly as the size of attacks increases. Under relatively large352

attacking perturbation size, i.e., (23, 102), although the attacking budgets go beyond the certified353

budgets, GCN under ELEGANT still exhibits a fairness level far lower than the given bias threshold354

⌘, and the fairness superiority still maintains. This corroborates that the estimation strategies adopted355

in ELEGANT are safe in achieving fairness certification.356

4.4 RQ3: Parameter Study357

To answer RQ3, we propose to perform parameter study focusing on two most critical parameters,358

� and �. To examine how � and � influence the effectiveness of ELEGANT in terms of both FCR359

and certified defense budgets, we set numerical ranges for ✏X (from 0 to 1e1) and ✏A (from 0 to360

24) and divide the two ranges into grids. In both ranges, we consider the dividing values of the361

grids as thresholds for certification budgets. In other words, under each threshold, we only consider362

the test sets with the corresponding certified defense budget being larger than this threshold as363

successfully certified ones, and the values of FCR are re-computed accordingly. Our rationale here is364

that with the thresholds (for ✏X and ✏A) increasing, if FCR reduces slowly, this demonstrates that365

most successfully certified test sets are associated with large certified defense budgets. However, if366

FCR reduces fast, then most successfully certified test sets only bear small certified defense budgets.367

Here we present the experimental results of � and � with the most widely used GCN model based368

on German Credit in Fig. 3(a)) and Credit Defaulter in Fig. 3(b), respectively. We also have similar369

observations on other GNNs and datasets. We summarize the main observations as follows: (1)370

Analysis on �. We observe that most cases with larger � are associated with a larger FCR compared371

with the cases where � is relatively small. In other words, larger values of � typically make FCR372

reduce slower w.r.t. the increasing of ✏X threshold. This indicates that increasing the value of �373

helps realize larger certified defense budgets on node attributes, i.e., the increase of � dominates374

the tendency of ✏X given in Theorem 4. Nevertheless, it is worth mentioning that if � is too large,375

the information encoded in the node attributes could be swamped by the Gaussian noise and finally376

corrupt the classification accuracy. Hence moderately large values for �, e.g., 5e-1 and 5e0, are377

recommended. (2) Analysis on �. We found that (1) for cases with relatively large � (e.g., 0.8 and378

0.9), the FCR also tends to be larger (compared with cases where � is smaller) at ✏A threshold being379

0. Such a tendency is reasonable, since in these cases, the expected magnitude of the added Bernoulli380
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of adding random noise on node attributes and graph topology. In fact, existing works have pointed327

out that the distribution difference in the node attribute values and edge existence across different328

subgroups is a significant source of bias [43, 8, 44]. However, adding random noise on both node329

attributes and graph topology may reduce such distributional divergence and mitigate bias.330

also contributes to bias mitigation. We conjecture that such advantage of debiasing could be a result323

of adding random noise on both node attributes and graph topology. Specifically, multiple existing324

works have pointed out that the distribution difference in the node attribute values and edge existence325

across different demographic subgroups is a significant source of bias. However, adding random noise326

on both node attributes and graph topology could be able to reduce such distributional divergence.327

4.3 RQ2: Fairness Certification under Attacks328

Figure 2: The bias levels of GCN, E-GCN,
FairGNN, and NIFTY under fairness attacks on
German Credit. The shaded bar indicates that the
attacking budgets go beyond the certified budgets.
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fairness of GCN, E-GCN, FairGNN (with a330

GCN backbone), and NIFTY (with a GCN331

backbone). Considering the large size of the332

quadratic space spanned by the size of pertur-333

bations �A and �X made by attackers, we334

present the evaluation under four representative335

(k�Ak0, k�Xk2) pairs. We set the threshold336

for bias ⌘ to be 50% higher than the fairness337

level of the vanilla GCN model on clean data.338

This empirically helps to achieve a high certifi-339

cation successful rate under large perturbations.340

We present the fairness levels of the four mod-341

els in terms of �EO in Fig. 2. Noet that we342

also have similar observations on �SP and other343

GNNs/datasets. We summarize the main observations as follows: (1) Fairness. We found that the344

GCN model with the proposed framework ELEGANT achieves the lowest level of bias in all cases of345

fairness attacks. This observation is consistent with the superiority in fairness found in Table 1, which346

demonstrates that the fairness superiority of ELEGANT maintains under attacks with a wide range347

of attacking perturbation sizes. (2) Certification on Fairness. We now compare the performance348

of E-GCN across different attacking perturbation sizes. We observed that under relatively small at-349

tacking perturbation sizes, i.e., (20, 10�1), (21, 100), and (22, 101), ELEGANT successfully achieves350

certification over fairness, and the bias level increases slowly as the size of attacks increases. Under351

relatively large attacking perturbation size, i.e., (23, 102), although the attacking budgets go beyond352

the certified budgets, GCN under ELEGANT still exhibits a fairness level far lower than the given353

bias threshold ⌘, and the fairness superiority still maintains. This corroborates that the estimation354

strategies adopted in ELEGANT are safe in achieving fairness certification.355

4.4 RQ3: Parameter Study356

To answer RQ3, we propose to perform parameter study focusing on the two most critical parameters,357

� and �. Note that on the one hand, only a proportion of the sampled test sets could be successfully358

certified over all sampled test sets; on the other hand, those test sets that are successfully certified may359

also associate with different values of certified defense budgets. To examine how � and � influence360

the effectiveness of ELEGANT in terms of both FCR and certified defense budgets, we set numerical361

ranges for ✏X (from 0 to 1e1) and ✏A (from 0 to 24) and divide the two ranges into grids. In both362

ranges, we consider the dividing values of the grids as thresholds. Under each threshold, we only363

consider the test sets with the corresponding certified defense budget being larger than this threshold364

as successfully certified ones, and the values of FCR are re-computed accordingly. Our rationale here365

is that with the thresholds (for ✏X and ✏A) increasing, if FCR reduces slowly, this demonstrates that366

most successfully certified test sets are associated with large certified defense budgets. However, if367

FCR reduces fast, then most successfully certified test sets only bears small certified defense budgets.368

Here we present the experimental results of � and � with the most widely used GCN model based369

on German Credit in Fig. 3(a)) and Credit Defaulter in Fig. 3(b), respectively. We also have similar370

observations on other GNNs and datasets. We summarize the main observations as follows: (1)371

Analysis on �. We observe that most cases with larger � are associated with a larger FCR compared372

with the cases where � is relatively small. In other words, larger values of � typically make FCR373

reduce slower w.r.t. the increasing of ✏X threshold. This indicates that increasing the value of �374

helps realize larger certified defense budgets on node attributes, i.e., the increasing of � dominates375

the tendency of ✏X given in Theorem 4. Nevertheless, it is worth mentioning that if � is too large,376

the information encoded in the node attributes could be swamped by the Gaussian noise and finally377
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also contributes to bias mitigation. We conjecture that such advantage of debiasing could be a result323

of adding random noise on both node attributes and graph topology. Specifically, multiple existing324

works have pointed out that the distribution difference in the node attribute values and edge existence325

across different demographic subgroups is a significant source of bias. However, adding random noise326

on both node attributes and graph topology could be able to reduce such distributional divergence.327

4.3 RQ2: Fairness Certification under Attacks328

Figure 2: The bias levels of GCN, E-GCN,
FairGNN, and NIFTY under fairness attacks on
German Credit. The shaded bar indicates that the
attacking budgets go beyond the certified budgets.

To answer RQ2, we perform attacks on the329

fairness of GCN, E-GCN, FairGNN (with a330

GCN backbone), and NIFTY (with a GCN331

backbone). Considering the large size of the332

quadratic space spanned by the size of pertur-333

bations �A and �X made by attackers, we334

present the evaluation under four representative335

(k�Ak0, k�Xk2) pairs. We set the threshold336

for bias ⌘ to be 50% higher than the fairness337

level of the vanilla GCN model on clean data.338

This empirically helps to achieve a high certifi-339

cation successful rate under large perturbations.340

We present the fairness levels of the four mod-341

els in terms of �EO in Fig. 2. Noet that we342

also have similar observations on �SP and other343

GNNs/datasets. We summarize the main observations as follows: (1) Fairness. We found that the344

GCN model with the proposed framework ELEGANT achieves the lowest level of bias in all cases of345

fairness attacks. This observation is consistent with the superiority in fairness found in Table 1, which346

demonstrates that the fairness superiority of ELEGANT maintains under attacks with a wide range347

of attacking perturbation sizes. (2) Certification on Fairness. We now compare the performance348

of E-GCN across different attacking perturbation sizes. We observed that under relatively small at-349

tacking perturbation sizes, i.e., (20, 10�1), (21, 100), and (22, 101), ELEGANT successfully achieves350

certification over fairness, and the bias level increases slowly as the size of attacks increases. Under351

relatively large attacking perturbation size, i.e., (23, 102), although the attacking budgets go beyond352

the certified budgets, GCN under ELEGANT still exhibits a fairness level far lower than the given353

bias threshold ⌘, and the fairness superiority still maintains. This corroborates that the estimation354

strategies adopted in ELEGANT are safe in achieving fairness certification.355
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4.4 RQ3: Parameter Study358

To answer RQ3, we propose to perform parameter study focusing on the two most critical parameters,359

� and �. Note that on the one hand, only a proportion of the sampled test sets could be successfully360

certified over all sampled test sets; on the other hand, those test sets that are successfully certified may361

also associate with different values of certified defense budgets. To examine how � and � influence362

the effectiveness of ELEGANT in terms of both FCR and certified defense budgets, we set numerical363

ranges for ✏X (from 0 to 1e1) and ✏A (from 0 to 24) and divide the two ranges into grids. In both364

ranges, we consider the dividing values of the grids as thresholds. Under each threshold, we only365

consider the test sets with the corresponding certified defense budget being larger than this threshold366

as successfully certified ones, and the values of FCR are re-computed accordingly. Our rationale here367

is that with the thresholds (for ✏X and ✏A) increasing, if FCR reduces slowly, this demonstrates that368

most successfully certified test sets are associated with large certified defense budgets. However, if369

FCR reduces fast, then most successfully certified test sets only bears small certified defense budgets.370

Here we present the experimental results of � and � with the most widely used GCN model based371

on German Credit in Fig. 3(a)) and Credit Defaulter in Fig. 3(b), respectively. We also have similar372

observations on other GNNs and datasets. We summarize the main observations as follows: (1)373

Analysis on �. We observe that most cases with larger � are associated with a larger FCR compared374

with the cases where � is relatively small. In other words, larger values of � typically make FCR375

reduce slower w.r.t. the increasing of ✏X threshold. This indicates that increasing the value of �376
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alsocontributestobiasmitigation.Weconjecturethatsuchadvantageofdebiasingcouldbearesult 323

ofaddingrandomnoiseonbothnodeattributesandgraphtopology.Specifically,multipleexisting 324

workshavepointedoutthatthedistributiondifferenceinthenodeattributevaluesandedgeexistence 325

acrossdifferentdemographicsubgroupsisasignificantsourceofbias.However,addingrandomnoise 326

onbothnodeattributesandgraphtopologycouldbeabletoreducesuchdistributionaldivergence. 327

4.3RQ2:FairnessCertificationunderAttacks 328

Figure2:ThebiaslevelsofGCN,E-GCN,
FairGNN,andNIFTYunderfairnessattackson
GermanCredit.Theshadedbarindicatesthatthe
attackingbudgetsgobeyondthecertifiedbudgets.

ToanswerRQ2,weperformattacksonthe 329

fairnessofGCN,E-GCN,FairGNN(witha 330

GCNbackbone),andNIFTY(withaGCN 331

backbone).Consideringthelargesizeofthe 332

quadraticspacespannedbythesizeofpertur- 333

bations�Aand�Xmadebyattackers,we 334

presenttheevaluationunderfourrepresentative 335

(k�Ak0,k�Xk2)pairs.Wesetthethreshold 336

forbias⌘tobe50%higherthanthefairness 337

levelofthevanillaGCNmodeloncleandata. 338

Thisempiricallyhelpstoachieveahighcertifi- 339

cationsuccessfulrateunderlargeperturbations. 340

Wepresentthefairnesslevelsofthefourmod- 341

elsintermsof�EOinFig.2.Noetthatwe 342

alsohavesimilarobservationson�SPandother 343

GNNs/datasets.Wesummarizethemainobservationsasfollows:(1)Fairness.Wefoundthatthe 344

GCNmodelwiththeproposedframeworkELEGANTachievesthelowestlevelofbiasinallcasesof 345

fairnessattacks.ThisobservationisconsistentwiththesuperiorityinfairnessfoundinTable1,which 346

demonstratesthatthefairnesssuperiorityofELEGANTmaintainsunderattackswithawiderange 347

ofattackingperturbationsizes.(2)CertificationonFairness.Wenowcomparetheperformance 348

ofE-GCNacrossdifferentattackingperturbationsizes.Weobservedthatunderrelativelysmallat- 349

tackingperturbationsizes,i.e.,(2
0
,10�1

),(2
1
,10

0
),and(2

2
,10

1
),ELEGANTsuccessfullyachieves 350

certificationoverfairness,andthebiaslevelincreasesslowlyasthesizeofattacksincreases.Under 351

relativelylargeattackingperturbationsize,i.e.,(2
3
,10

2
),althoughtheattackingbudgetsgobeyond 352

thecertifiedbudgets,GCNunderELEGANTstillexhibitsafairnesslevelfarlowerthanthegiven 353

biasthreshold⌘,andthefairnesssuperioritystillmaintains.Thiscorroboratesthattheestimation 354

strategiesadoptedinELEGANTaresafeinachievingfairnesscertification. 355

�EO(inlog2scale) 356

⌘ 357

4.4RQ3:ParameterStudy 358

ToanswerRQ3,weproposetoperformparameterstudyfocusingonthetwomostcriticalparameters, 359

�and�.Notethatontheonehand,onlyaproportionofthesampledtestsetscouldbesuccessfully 360

certifiedoverallsampledtestsets;ontheotherhand,thosetestsetsthataresuccessfullycertifiedmay 361

alsoassociatewithdifferentvaluesofcertifieddefensebudgets.Toexaminehow�and�influence 362

theeffectivenessofELEGANTintermsofbothFCRandcertifieddefensebudgets,wesetnumerical 363

rangesfor✏X(from0to1e1)and✏A(from0to2
4
)anddividethetworangesintogrids.Inboth 364

ranges,weconsiderthedividingvaluesofthegridsasthresholds.Undereachthreshold,weonly 365

considerthetestsetswiththecorrespondingcertifieddefensebudgetbeinglargerthanthisthreshold 366

assuccessfullycertifiedones,andthevaluesofFCRarere-computedaccordingly.Ourrationalehere 367

isthatwiththethresholds(for✏Xand✏A)increasing,ifFCRreducesslowly,thisdemonstratesthat 368

mostsuccessfullycertifiedtestsetsareassociatedwithlargecertifieddefensebudgets.However,if 369

FCRreducesfast,thenmostsuccessfullycertifiedtestsetsonlybearssmallcertifieddefensebudgets. 370

Herewepresenttheexperimentalresultsof�and�withthemostwidelyusedGCNmodelbased 371

onGermanCreditinFig.3(a))andCreditDefaulterinFig.3(b),respectively.Wealsohavesimilar 372

observationsonotherGNNsanddatasets.Wesummarizethemainobservationsasfollows:(1) 373

Analysison�.Weobservethatmostcaseswithlarger�areassociatedwithalargerFCRcompared 374

withthecaseswhere�isrelativelysmall.Inotherwords,largervaluesof�typicallymakeFCR 375

reduceslowerw.r.t.theincreasingof✏Xthreshold.Thisindicatesthatincreasingthevalueof� 376
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Figure 2: The bias levels of GCN, E-
GCN, FairGNN, and NIFTY under fair-
ness attacks on German Credit. The
shaded bar indicates that certified bud-
get ✏A  k�Ak0 or ✏X  k�Xk2.

(20, 10�1) (21, 100) (22, 101) (23, 102)331

4.3 RQ2: Fairness Certification under Attacks332

To answer RQ2, we perform attacks on the fairness of333

GCN, E-GCN, FairGNN (with a GCN backbone), and334

NIFTY (with a GCN backbone). Considering the large335

size of the quadratic space spanned by the size of pertur-336

bations �A and �X made by attackers, we present the337

evaluation under four representative (k�Ak0, k�Xk2)338

pairs. We set the threshold for bias ⌘ to be 50% higher339

than the fairness level of the vanilla GCN model on clean340

data, since it empirically helps to achieve a high certifica-341

tion success rate under large perturbations.342

We present the fairness levels of the four models in terms343

of �EO in Fig. 2, and we also have similar observations on �SP and other GNNs/datasets. We344

summarize the main observations as follows: (1) Fairness. We found that the GCN model with the345

proposed framework ELEGANT achieves the lowest level of bias in all cases of fairness attacks. This346

observation is consistent with the superiority in fairness found in Table 1, which demonstrates that347

the fairness superiority of ELEGANT maintains even under attacks within a wide range of attacking348

perturbation sizes. (2) Certification on Fairness. We now compare the performance of E-GCN across349

different attacking perturbation sizes. We observed that under relatively small attacking perturbation350

sizes, i.e., (20, 10�1), (21, 100), and (22, 101), ELEGANT successfully achieves certification over351

fairness, and the bias level increases slowly as the size of attacks increases. Under relatively large352

attacking perturbation size, i.e., (23, 102), although the attacking budgets go beyond the certified353

budgets, GCN under ELEGANT still exhibits a fairness level far lower than the given bias threshold354

⌘, and the fairness superiority still maintains. This corroborates that the estimation strategies adopted355

in ELEGANT are safe in achieving fairness certification.356

4.4 RQ3: Parameter Study357

To answer RQ3, we propose to perform parameter study focusing on two most critical parameters,358

� and �. To examine how � and � influence the effectiveness of ELEGANT in terms of both FCR359

and certified defense budgets, we set numerical ranges for ✏X (from 0 to 1e1) and ✏A (from 0 to360

24) and divide the two ranges into grids. In both ranges, we consider the dividing values of the361

grids as thresholds for certification budgets. In other words, under each threshold, we only consider362

the test sets with the corresponding certified defense budget being larger than this threshold as363

successfully certified ones, and the values of FCR are re-computed accordingly. Our rationale here is364

that with the thresholds (for ✏X and ✏A) increasing, if FCR reduces slowly, this demonstrates that365

most successfully certified test sets are associated with large certified defense budgets. However, if366

FCR reduces fast, then most successfully certified test sets only bear small certified defense budgets.367

Here we present the experimental results of � and � with the most widely used GCN model based368

on German Credit in Fig. 3(a)) and Credit Defaulter in Fig. 3(b), respectively. We also have similar369

observations on other GNNs and datasets. We summarize the main observations as follows: (1)370

Analysis on �. We observe that most cases with larger � are associated with a larger FCR compared371

with the cases where � is relatively small. In other words, larger values of � typically make FCR372

reduce slower w.r.t. the increasing of ✏X threshold. This indicates that increasing the value of �373

helps realize larger certified defense budgets on node attributes, i.e., the increase of � dominates374

the tendency of ✏X given in Theorem 4. Nevertheless, it is worth mentioning that if � is too large,375

the information encoded in the node attributes could be swamped by the Gaussian noise and finally376

corrupt the classification accuracy. Hence moderately large values for �, e.g., 5e-1 and 5e0, are377

recommended. (2) Analysis on �. We found that (1) for cases with relatively large � (e.g., 0.8 and378

0.9), the FCR also tends to be larger (compared with cases where � is smaller) at ✏A threshold being379

0. Such a tendency is reasonable, since in these cases, the expected magnitude of the added Bernoulli380
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ofaddingrandomnoiseonnodeattributesandgraphtopology.Infact,existingworkshavepointed 327

outthatthedistributiondifferenceinthenodeattributevaluesandedgeexistenceacrossdifferent 328

subgroupsisasignificantsourceofbias[43,8,44].However,addingrandomnoiseonbothnode 329

attributesandgraphtopologymayreducesuchdistributionaldivergenceandmitigatebias. 330

alsocontributestobiasmitigation.Weconjecturethatsuchadvantageofdebiasingcouldbearesult 323

ofaddingrandomnoiseonbothnodeattributesandgraphtopology.Specifically,multipleexisting 324

workshavepointedoutthatthedistributiondifferenceinthenodeattributevaluesandedgeexistence 325

acrossdifferentdemographicsubgroupsisasignificantsourceofbias.However,addingrandomnoise 326

onbothnodeattributesandgraphtopologycouldbeabletoreducesuchdistributionaldivergence. 327

4.3RQ2:FairnessCertificationunderAttacks 328

Figure2:ThebiaslevelsofGCN,E-GCN,
FairGNN,andNIFTYunderfairnessattackson
GermanCredit.Theshadedbarindicatesthatthe
attackingbudgetsgobeyondthecertifiedbudgets.

ToanswerRQ2,weperformattacksonthe 329

fairnessofGCN,E-GCN,FairGNN(witha 330

GCNbackbone),andNIFTY(withaGCN 331

backbone).Consideringthelargesizeofthe 332

quadraticspacespannedbythesizeofpertur- 333

bations�Aand�Xmadebyattackers,we 334

presenttheevaluationunderfourrepresentative 335

(k�Ak0,k�Xk2)pairs.Wesetthethreshold 336

forbias⌘tobe50%higherthanthefairness 337

levelofthevanillaGCNmodeloncleandata. 338

Thisempiricallyhelpstoachieveahighcertifi- 339

cationsuccessfulrateunderlargeperturbations. 340

Wepresentthefairnesslevelsofthefourmod- 341

elsintermsof�EOinFig.2.Noetthatwe 342

alsohavesimilarobservationson�SPandother 343

GNNs/datasets.Wesummarizethemainobservationsasfollows:(1)Fairness.Wefoundthatthe 344

GCNmodelwiththeproposedframeworkELEGANTachievesthelowestlevelofbiasinallcasesof 345

fairnessattacks.ThisobservationisconsistentwiththesuperiorityinfairnessfoundinTable1,which 346

demonstratesthatthefairnesssuperiorityofELEGANTmaintainsunderattackswithawiderange 347

ofattackingperturbationsizes.(2)CertificationonFairness.Wenowcomparetheperformance 348

ofE-GCNacrossdifferentattackingperturbationsizes.Weobservedthatunderrelativelysmallat- 349

tackingperturbationsizes,i.e.,(2
0
,10�1

),(2
1
,10

0
),and(2

2
,10

1
),ELEGANTsuccessfullyachieves 350

certificationoverfairness,andthebiaslevelincreasesslowlyasthesizeofattacksincreases.Under 351

relativelylargeattackingperturbationsize,i.e.,(2
3
,10

2
),althoughtheattackingbudgetsgobeyond 352

thecertifiedbudgets,GCNunderELEGANTstillexhibitsafairnesslevelfarlowerthanthegiven 353

biasthreshold⌘,andthefairnesssuperioritystillmaintains.Thiscorroboratesthattheestimation 354

strategiesadoptedinELEGANTaresafeinachievingfairnesscertification. 355

4.4RQ3:ParameterStudy 356

ToanswerRQ3,weproposetoperformparameterstudyfocusingonthetwomostcriticalparameters, 357

�and�.Notethatontheonehand,onlyaproportionofthesampledtestsetscouldbesuccessfully 358

certifiedoverallsampledtestsets;ontheotherhand,thosetestsetsthataresuccessfullycertifiedmay 359

alsoassociatewithdifferentvaluesofcertifieddefensebudgets.Toexaminehow�and�influence 360

theeffectivenessofELEGANTintermsofbothFCRandcertifieddefensebudgets,wesetnumerical 361

rangesfor✏X(from0to1e1)and✏A(from0to2
4
)anddividethetworangesintogrids.Inboth 362

ranges,weconsiderthedividingvaluesofthegridsasthresholds.Undereachthreshold,weonly 363

considerthetestsetswiththecorrespondingcertifieddefensebudgetbeinglargerthanthisthreshold 364

assuccessfullycertifiedones,andthevaluesofFCRarere-computedaccordingly.Ourrationalehere 365

isthatwiththethresholds(for✏Xand✏A)increasing,ifFCRreducesslowly,thisdemonstratesthat 366

mostsuccessfullycertifiedtestsetsareassociatedwithlargecertifieddefensebudgets.However,if 367

FCRreducesfast,thenmostsuccessfullycertifiedtestsetsonlybearssmallcertifieddefensebudgets. 368

Herewepresenttheexperimentalresultsof�and�withthemostwidelyusedGCNmodelbased 369

onGermanCreditinFig.3(a))andCreditDefaulterinFig.3(b),respectively.Wealsohavesimilar 370

observationsonotherGNNsanddatasets.Wesummarizethemainobservationsasfollows:(1) 371

Analysison�.Weobservethatmostcaseswithlarger�areassociatedwithalargerFCRcompared 372

withthecaseswhere�isrelativelysmall.Inotherwords,largervaluesof�typicallymakeFCR 373

reduceslowerw.r.t.theincreasingof✏Xthreshold.Thisindicatesthatincreasingthevalueof� 374

helpsrealizelargercertifieddefensebudgetsonnodeattributes,i.e.,theincreasingof�dominates 375

thetendencyof✏XgiveninTheorem4.Nevertheless,itisworthmentioningthatif�istoolarge, 376

theinformationencodedinthenodeattributescouldbeswampedbytheGaussiannoiseandfinally 377
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ertification

on
Fairness.W

e
now

com
pare

the
perform

ance
348

ofE
-G

C
N

across
differentattacking

perturbation
sizes.W

e
observed

thatunderrelatively
sm

allat-
349

tacking
perturbation

sizes,i.e.,(2
0,10 �

1),(2
1,10

0),and
(2

2,10
1),ELEG

A
N

T
successfully

achieves
350

certification
overfairness,and

the
bias

levelincreases
slow

ly
as

the
size

ofattacks
increases.U

nder
351

relatively
large

attacking
perturbation

size,i.e.,(2
3,1

0
2),although

the
attacking

budgets
go

beyond
352

the
certified

budgets,G
C

N
underE

L
E

G
A

N
T

stillexhibits
a

fairness
levelfarlow

erthan
the

given
353

bias
threshold

⌘,and
the

fairness
superiority

stillm
aintains.

T
his

corroborates
thatthe

estim
ation

354

strategies
adopted

in
E

L
E

G
A

N
T

are
safe

in
achieving

fairness
certification.

355

�
E

O
(in

log
2

scale)
356

⌘
357

4.4
R

Q
3:Param

eter
Study

358

To
answ

erR
Q

3,w
e

propose
to

perform
param

eterstudy
focusing

on
the

tw
o

m
ostcriticalparam

eters,
359

�
and

�
.N

ote
thaton

the
one

hand,only
a

proportion
ofthe

sam
pled

testsets
could

be
successfully

360

certified
overallsam

pled
testsets;on

the
otherhand,those

testsets
thatare

successfully
certified

m
ay

361

also
associate

w
ith

differentvalues
ofcertified

defense
budgets.To

exam
ine

how
�

and
�

influence
362

the
effectiveness

ofELEG
A

N
T

in
term

s
ofboth

FC
R

and
certified

defense
budgets,w

e
setnum

erical
363

ranges
for

✏
X

(from
0

to
1e1)

and
✏
A

(from
0

to
2
4)

and
divide

the
tw

o
ranges

into
grids.

In
both

364

ranges,w
e

consider
the

dividing
values

of
the

grids
as

thresholds.
U

nder
each

threshold,w
e

only
365

considerthe
testsets

w
ith

the
corresponding

certified
defense

budgetbeing
largerthan

this
threshold

366

as
successfully

certified
ones,and

the
values

ofFC
R

are
re-com

puted
accordingly.O

urrationale
here

367

is
thatw

ith
the

thresholds
(for

✏
X

and
✏
A

)increasing,ifFC
R

reduces
slow

ly,this
dem

onstrates
that

368

m
ostsuccessfully

certified
testsets

are
associated

w
ith

large
certified

defense
budgets.H

ow
ever,if

369

FC
R

reduces
fast,then

m
ostsuccessfully

certified
testsets

only
bears

sm
allcertified

defense
budgets.

370

H
ere

w
e

presentthe
experim

entalresults
of

�
and

�
w

ith
the

m
ostw

idely
used

G
C

N
m

odelbased
371

on
G

erm
an

C
reditin

Fig.3(a))and
C

reditD
efaulterin

Fig.3(b),respectively.W
e

also
have

sim
ilar

372

observations
on

other
G

N
N

s
and

datasets.
W

e
sum

m
arize

the
m

ain
observations

as
follow

s:
(1)

373

A
nalysison

�.W
e

observe
thatm

ostcases
w

ith
larger

�
are

associated
w

ith
a

largerFC
R

com
pared

374

w
ith

the
cases

w
here

�
is

relatively
sm

all.
In

other
w

ords,larger
values

of
�

typically
m

ake
FC

R
375

reduce
slow

er
w

.r.t.
the

increasing
of

✏
X

threshold.
T

his
indicates

thatincreasing
the

value
of

�
376

8

alsocontributestobiasmitigation.Weconjecturethatsuchadvantageofdebiasingcouldbearesult 323

ofaddingrandomnoiseonbothnodeattributesandgraphtopology.Specifically,multipleexisting 324

workshavepointedoutthatthedistributiondifferenceinthenodeattributevaluesandedgeexistence 325

acrossdifferentdemographicsubgroupsisasignificantsourceofbias.However,addingrandomnoise 326

onbothnodeattributesandgraphtopologycouldbeabletoreducesuchdistributionaldivergence. 327

4.3RQ2:FairnessCertificationunderAttacks 328

Figure2:ThebiaslevelsofGCN,E-GCN,
FairGNN,andNIFTYunderfairnessattackson
GermanCredit.Theshadedbarindicatesthatthe
attackingbudgetsgobeyondthecertifiedbudgets.

ToanswerRQ2,weperformattacksonthe 329

fairnessofGCN,E-GCN,FairGNN(witha 330

GCNbackbone),andNIFTY(withaGCN 331

backbone).Consideringthelargesizeofthe 332

quadraticspacespannedbythesizeofpertur- 333

bations�Aand�Xmadebyattackers,we 334

presenttheevaluationunderfourrepresentative 335

(k�Ak0,k�Xk2)pairs.Wesetthethreshold 336

forbias⌘tobe50%higherthanthefairness 337

levelofthevanillaGCNmodeloncleandata. 338

Thisempiricallyhelpstoachieveahighcertifi- 339

cationsuccessfulrateunderlargeperturbations. 340

Wepresentthefairnesslevelsofthefourmod- 341

elsintermsof�EOinFig.2.Noetthatwe 342

alsohavesimilarobservationson�SPandother 343

GNNs/datasets.Wesummarizethemainobservationsasfollows:(1)Fairness.Wefoundthatthe 344

GCNmodelwiththeproposedframeworkELEGANTachievesthelowestlevelofbiasinallcasesof 345

fairnessattacks.ThisobservationisconsistentwiththesuperiorityinfairnessfoundinTable1,which 346

demonstratesthatthefairnesssuperiorityofELEGANTmaintainsunderattackswithawiderange 347

ofattackingperturbationsizes.(2)CertificationonFairness.Wenowcomparetheperformance 348

ofE-GCNacrossdifferentattackingperturbationsizes.Weobservedthatunderrelativelysmallat- 349

tackingperturbationsizes,i.e.,(2
0
,10�1

),(2
1
,10

0
),and(2

2
,10

1
),ELEGANTsuccessfullyachieves 350

certificationoverfairness,andthebiaslevelincreasesslowlyasthesizeofattacksincreases.Under 351

relativelylargeattackingperturbationsize,i.e.,(2
3
,10

2
),althoughtheattackingbudgetsgobeyond 352

thecertifiedbudgets,GCNunderELEGANTstillexhibitsafairnesslevelfarlowerthanthegiven 353

biasthreshold⌘,andthefairnesssuperioritystillmaintains.Thiscorroboratesthattheestimation 354

strategiesadoptedinELEGANTaresafeinachievingfairnesscertification. 355

�EO(inlog2scale) 356

⌘ 357

4.4RQ3:ParameterStudy 358

ToanswerRQ3,weproposetoperformparameterstudyfocusingonthetwomostcriticalparameters, 359

�and�.Notethatontheonehand,onlyaproportionofthesampledtestsetscouldbesuccessfully 360

certifiedoverallsampledtestsets;ontheotherhand,thosetestsetsthataresuccessfullycertifiedmay 361

alsoassociatewithdifferentvaluesofcertifieddefensebudgets.Toexaminehow�and�influence 362

theeffectivenessofELEGANTintermsofbothFCRandcertifieddefensebudgets,wesetnumerical 363

rangesfor✏X(from0to1e1)and✏A(from0to2
4
)anddividethetworangesintogrids.Inboth 364

ranges,weconsiderthedividingvaluesofthegridsasthresholds.Undereachthreshold,weonly 365

considerthetestsetswiththecorrespondingcertifieddefensebudgetbeinglargerthanthisthreshold 366

assuccessfullycertifiedones,andthevaluesofFCRarere-computedaccordingly.Ourrationalehere 367

isthatwiththethresholds(for✏Xand✏A)increasing,ifFCRreducesslowly,thisdemonstratesthat 368

mostsuccessfullycertifiedtestsetsareassociatedwithlargecertifieddefensebudgets.However,if 369

FCRreducesfast,thenmostsuccessfullycertifiedtestsetsonlybearssmallcertifieddefensebudgets. 370

Herewepresenttheexperimentalresultsof�and�withthemostwidelyusedGCNmodelbased 371

onGermanCreditinFig.3(a))andCreditDefaulterinFig.3(b),respectively.Wealsohavesimilar 372

observationsonotherGNNsanddatasets.Wesummarizethemainobservationsasfollows:(1) 373

Analysison�.Weobservethatmostcaseswithlarger�areassociatedwithalargerFCRcompared 374

withthecaseswhere�isrelativelysmall.Inotherwords,largervaluesof�typicallymakeFCR 375

reduceslowerw.r.t.theincreasingof✏Xthreshold.Thisindicatesthatincreasingthevalueof� 376
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Figure2:ThebiaslevelsofGCN,E-
GCN,FairGNN,andNIFTYunderfair-
nessattacksonGermanCredit.The
shadedbarindicatesthatcertifiedbud-
get✏Ak�Ak0or✏Xk�Xk2.
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GCN,E-GCN,FairGNN(withaGCNbackbone),and 334

NIFTY(withaGCNbackbone).Consideringthelarge 335

sizeofthequadraticspacespannedbythesizeofpertur- 336

bations�Aand�Xmadebyattackers,wepresentthe 337

evaluationunderfourrepresentative(k�Ak0,k�Xk2) 338

pairs.Wesetthethresholdforbias⌘tobe50%higher 339

thanthefairnesslevelofthevanillaGCNmodelonclean 340

data,sinceitempiricallyhelpstoachieveahighcertifica- 341

tionsuccessrateunderlargeperturbations. 342

Wepresentthefairnesslevelsofthefourmodelsinterms 343

of�EOinFig.2,andwealsohavesimilarobservationson�SPandotherGNNs/datasets.We 344

summarizethemainobservationsasfollows:(1)Fairness.WefoundthattheGCNmodelwiththe 345

proposedframeworkELEGANTachievesthelowestlevelofbiasinallcasesoffairnessattacks.This 346

observationisconsistentwiththesuperiorityinfairnessfoundinTable1,whichdemonstratesthat 347

thefairnesssuperiorityofELEGANTmaintainsevenunderattackswithinawiderangeofattacking 348

perturbationsizes.(2)CertificationonFairness.WenowcomparetheperformanceofE-GCNacross 349

differentattackingperturbationsizes.Weobservedthatunderrelativelysmallattackingperturbation 350

sizes,i.e.,(2
0
,10�1

),(2
1
,10

0
),and(2

2
,10

1
),ELEGANTsuccessfullyachievescertificationover 351

fairness,andthebiaslevelincreasesslowlyasthesizeofattacksincreases.Underrelativelylarge 352

attackingperturbationsize,i.e.,(2
3
,10

2
),althoughtheattackingbudgetsgobeyondthecertified 353

budgets,GCNunderELEGANTstillexhibitsafairnesslevelfarlowerthanthegivenbiasthreshold 354

⌘,andthefairnesssuperioritystillmaintains.Thiscorroboratesthattheestimationstrategiesadopted 355

inELEGANTaresafeinachievingfairnesscertification. 356

4.4RQ3:ParameterStudy 357

ToanswerRQ3,weproposetoperformparameterstudyfocusingontwomostcriticalparameters, 358

�and�.Toexaminehow�and�influencetheeffectivenessofELEGANTintermsofbothFCR 359

andcertifieddefensebudgets,wesetnumericalrangesfor✏X(from0to1e1)and✏A(from0to 360

2
4
)anddividethetworangesintogrids.Inbothranges,weconsiderthedividingvaluesofthe 361

gridsasthresholdsforcertificationbudgets.Inotherwords,undereachthreshold,weonlyconsider 362

thetestsetswiththecorrespondingcertifieddefensebudgetbeinglargerthanthisthresholdas 363

successfullycertifiedones,andthevaluesofFCRarere-computedaccordingly.Ourrationalehereis 364

thatwiththethresholds(for✏Xand✏A)increasing,ifFCRreducesslowly,thisdemonstratesthat 365

mostsuccessfullycertifiedtestsetsareassociatedwithlargecertifieddefensebudgets.However,if 366

FCRreducesfast,thenmostsuccessfullycertifiedtestsetsonlybearsmallcertifieddefensebudgets. 367

Herewepresenttheexperimentalresultsof�and�withthemostwidelyusedGCNmodelbased 368

onGermanCreditinFig.3(a))andCreditDefaulterinFig.3(b),respectively.Wealsohavesimilar 369

observationsonotherGNNsanddatasets.Wesummarizethemainobservationsasfollows:(1) 370

Analysison�.Weobservethatmostcaseswithlarger�areassociatedwithalargerFCRcompared 371

withthecaseswhere�isrelativelysmall.Inotherwords,largervaluesof�typicallymakeFCR 372

reduceslowerw.r.t.theincreasingof✏Xthreshold.Thisindicatesthatincreasingthevalueof� 373

helpsrealizelargercertifieddefensebudgetsonnodeattributes,i.e.,theincreaseof�dominates 374
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subgroupsisasignificantsourceofbias[43,8,44].However,addingrandomnoiseonbothnode 329

attributesandgraphtopologymayreducesuchdistributionaldivergenceandmitigatebias. 330

alsocontributestobiasmitigation.Weconjecturethatsuchadvantageofdebiasingcouldbearesult 323

ofaddingrandomnoiseonbothnodeattributesandgraphtopology.Specifically,multipleexisting 324

workshavepointedoutthatthedistributiondifferenceinthenodeattributevaluesandedgeexistence 325

acrossdifferentdemographicsubgroupsisasignificantsourceofbias.However,addingrandomnoise 326

onbothnodeattributesandgraphtopologycouldbeabletoreducesuchdistributionaldivergence. 327
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Figure2:ThebiaslevelsofGCN,E-GCN,
FairGNN,andNIFTYunderfairnessattackson
GermanCredit.Theshadedbarindicatesthatthe
attackingbudgetsgobeyondthecertifiedbudgets.

ToanswerRQ2,weperformattacksonthe 329

fairnessofGCN,E-GCN,FairGNN(witha 330

GCNbackbone),andNIFTY(withaGCN 331

backbone).Consideringthelargesizeofthe 332

quadraticspacespannedbythesizeofpertur- 333

bations�Aand�Xmadebyattackers,we 334

presenttheevaluationunderfourrepresentative 335

(k�Ak0,k�Xk2)pairs.Wesetthethreshold 336

forbias⌘tobe50%higherthanthefairness 337

levelofthevanillaGCNmodeloncleandata. 338

Thisempiricallyhelpstoachieveahighcertifi- 339

cationsuccessfulrateunderlargeperturbations. 340

Wepresentthefairnesslevelsofthefourmod- 341

elsintermsof�EOinFig.2.Noetthatwe 342

alsohavesimilarobservationson�SPandother 343

GNNs/datasets.Wesummarizethemainobservationsasfollows:(1)Fairness.Wefoundthatthe 344

GCNmodelwiththeproposedframeworkELEGANTachievesthelowestlevelofbiasinallcasesof 345

fairnessattacks.ThisobservationisconsistentwiththesuperiorityinfairnessfoundinTable1,which 346

demonstratesthatthefairnesssuperiorityofELEGANTmaintainsunderattackswithawiderange 347

ofattackingperturbationsizes.(2)CertificationonFairness.Wenowcomparetheperformance 348

ofE-GCNacrossdifferentattackingperturbationsizes.Weobservedthatunderrelativelysmallat- 349

tackingperturbationsizes,i.e.,(2
0
,10�1

),(2
1
,10

0
),and(2

2
,10

1
),ELEGANTsuccessfullyachieves 350

certificationoverfairness,andthebiaslevelincreasesslowlyasthesizeofattacksincreases.Under 351

relativelylargeattackingperturbationsize,i.e.,(2
3
,10

2
),althoughtheattackingbudgetsgobeyond 352

thecertifiedbudgets,GCNunderELEGANTstillexhibitsafairnesslevelfarlowerthanthegiven 353

biasthreshold⌘,andthefairnesssuperioritystillmaintains.Thiscorroboratesthattheestimation 354

strategiesadoptedinELEGANTaresafeinachievingfairnesscertification. 355

4.4RQ3:ParameterStudy 356

ToanswerRQ3,weproposetoperformparameterstudyfocusingonthetwomostcriticalparameters, 357

�and�.Notethatontheonehand,onlyaproportionofthesampledtestsetscouldbesuccessfully 358

certifiedoverallsampledtestsets;ontheotherhand,thosetestsetsthataresuccessfullycertifiedmay 359

alsoassociatewithdifferentvaluesofcertifieddefensebudgets.Toexaminehow�and�influence 360

theeffectivenessofELEGANTintermsofbothFCRandcertifieddefensebudgets,wesetnumerical 361

rangesfor✏X(from0to1e1)and✏A(from0to2
4
)anddividethetworangesintogrids.Inboth 362

ranges,weconsiderthedividingvaluesofthegridsasthresholds.Undereachthreshold,weonly 363

considerthetestsetswiththecorrespondingcertifieddefensebudgetbeinglargerthanthisthreshold 364

assuccessfullycertifiedones,andthevaluesofFCRarere-computedaccordingly.Ourrationalehere 365

isthatwiththethresholds(for✏Xand✏A)increasing,ifFCRreducesslowly,thisdemonstratesthat 366

mostsuccessfullycertifiedtestsetsareassociatedwithlargecertifieddefensebudgets.However,if 367

FCRreducesfast,thenmostsuccessfullycertifiedtestsetsonlybearssmallcertifieddefensebudgets. 368

Herewepresenttheexperimentalresultsof�and�withthemostwidelyusedGCNmodelbased 369

onGermanCreditinFig.3(a))andCreditDefaulterinFig.3(b),respectively.Wealsohavesimilar 370

observationsonotherGNNsanddatasets.Wesummarizethemainobservationsasfollows:(1) 371

Analysison�.Weobservethatmostcaseswithlarger�areassociatedwithalargerFCRcompared 372

withthecaseswhere�isrelativelysmall.Inotherwords,largervaluesof�typicallymakeFCR 373

reduceslowerw.r.t.theincreasingof✏Xthreshold.Thisindicatesthatincreasingthevalueof� 374

helpsrealizelargercertifieddefensebudgetsonnodeattributes,i.e.,theincreasingof�dominates 375

thetendencyof✏XgiveninTheorem4.Nevertheless,itisworthmentioningthatif�istoolarge, 376

theinformationencodedinthenodeattributescouldbeswampedbytheGaussiannoiseandfinally 377
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ToanswerRQ2,weperformattacksonthe 329

fairnessofGCN,E-GCN,FairGNN(witha 330

GCNbackbone),andNIFTY(withaGCN 331

backbone).Consideringthelargesizeofthe 332

quadraticspacespannedbythesizeofpertur- 333

bations�Aand�Xmadebyattackers,we 334

presenttheevaluationunderfourrepresentative 335

(k�Ak0,k�Xk2)pairs.Wesetthethreshold 336

forbias⌘tobe50%higherthanthefairness 337

levelofthevanillaGCNmodeloncleandata. 338

Thisempiricallyhelpstoachieveahighcertifi- 339

cationsuccessfulrateunderlargeperturbations. 340

Wepresentthefairnesslevelsofthefourmod- 341

elsintermsof�EOinFig.2.Noetthatwe 342

alsohavesimilarobservationson�SPandother 343

GNNs/datasets.Wesummarizethemainobservationsasfollows:(1)Fairness.Wefoundthatthe 344

GCNmodelwiththeproposedframeworkELEGANTachievesthelowestlevelofbiasinallcasesof 345

fairnessattacks.ThisobservationisconsistentwiththesuperiorityinfairnessfoundinTable1,which 346

demonstratesthatthefairnesssuperiorityofELEGANTmaintainsunderattackswithawiderange 347

ofattackingperturbationsizes.(2)CertificationonFairness.Wenowcomparetheperformance 348

ofE-GCNacrossdifferentattackingperturbationsizes.Weobservedthatunderrelativelysmallat- 349

tackingperturbationsizes,i.e.,(2
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),ELEGANTsuccessfullyachieves 350

certificationoverfairness,andthebiaslevelincreasesslowlyasthesizeofattacksincreases.Under 351

relativelylargeattackingperturbationsize,i.e.,(2
3
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2
),althoughtheattackingbudgetsgobeyond 352

thecertifiedbudgets,GCNunderELEGANTstillexhibitsafairnesslevelfarlowerthanthegiven 353

biasthreshold⌘,andthefairnesssuperioritystillmaintains.Thiscorroboratesthattheestimation 354

strategiesadoptedinELEGANTaresafeinachievingfairnesscertification. 355
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certifiedoverallsampledtestsets;ontheotherhand,thosetestsetsthataresuccessfullycertifiedmay 361
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rangesfor✏X(from0to1e1)and✏A(from0to2
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considerthetestsetswiththecorrespondingcertifieddefensebudgetbeinglargerthanthisthreshold 366

assuccessfullycertifiedones,andthevaluesofFCRarere-computedaccordingly.Ourrationalehere 367

isthatwiththethresholds(for✏Xand✏A)increasing,ifFCRreducesslowly,thisdemonstratesthat 368

mostsuccessfullycertifiedtestsetsareassociatedwithlargecertifieddefensebudgets.However,if 369
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ToanswerRQ2,weperformattacksonthefairnessof 333

GCN,E-GCN,FairGNN(withaGCNbackbone),and 334

NIFTY(withaGCNbackbone).Consideringthelarge 335

sizeofthequadraticspacespannedbythesizeofpertur- 336

bations�Aand�Xmadebyattackers,wepresentthe 337

evaluationunderfourrepresentative(k�Ak0,k�Xk2) 338

pairs.Wesetthethresholdforbias⌘tobe50%higher 339

thanthefairnesslevelofthevanillaGCNmodelonclean 340

data,sinceitempiricallyhelpstoachieveahighcertifica- 341

tionsuccessrateunderlargeperturbations. 342

Wepresentthefairnesslevelsofthefourmodelsinterms 343

of�EOinFig.2,andwealsohavesimilarobservationson�SPandotherGNNs/datasets.We 344

summarizethemainobservationsasfollows:(1)Fairness.WefoundthattheGCNmodelwiththe 345

proposedframeworkELEGANTachievesthelowestlevelofbiasinallcasesoffairnessattacks.This 346

observationisconsistentwiththesuperiorityinfairnessfoundinTable1,whichdemonstratesthat 347

thefairnesssuperiorityofELEGANTmaintainsevenunderattackswithinawiderangeofattacking 348

perturbationsizes.(2)CertificationonFairness.WenowcomparetheperformanceofE-GCNacross 349
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3
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4
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successfullycertifiedones,andthevaluesofFCRarere-computedaccordingly.Ourrationalehereis 364
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onGermanCreditinFig.3(a))andCreditDefaulterinFig.3(b),respectively.Wealsohavesimilar 369

observationsonotherGNNsanddatasets.Wesummarizethemainobservationsasfollows:(1) 370

Analysison�.Weobservethatmostcaseswithlarger�areassociatedwithalargerFCRcompared 371

withthecaseswhere�isrelativelysmall.Inotherwords,largervaluesof�typicallymakeFCR 372

reduceslowerw.r.t.theincreasingof✏Xthreshold.Thisindicatesthatincreasingthevalueof� 373

helpsrealizelargercertifieddefensebudgetsonnodeattributes,i.e.,theincreaseof�dominates 374

thetendencyof✏XgiveninTheorem4.Nevertheless,itisworthmentioningthatif�istoolarge, 375

theinformationencodedinthenodeattributescouldbeswampedbytheGaussiannoiseandfinally 376
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Figure2:ThebiaslevelsofGCN,E-GCN,
FairGNN,andNIFTYunderfairnessattackson
GermanCredit.Theshadedbarindicatesthatthe
attackingbudgetsgobeyondthecertifiedbudgets.
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fairnessofGCN,E-GCN,FairGNN(witha 330

GCNbackbone),andNIFTY(withaGCN 331

backbone).Consideringthelargesizeofthe 332

quadraticspacespannedbythesizeofpertur- 333

bations�Aand�Xmadebyattackers,we 334

presenttheevaluationunderfourrepresentative 335

(k�Ak0,k�Xk2)pairs.Wesetthethreshold 336

forbias⌘tobe50%higherthanthefairness 337

levelofthevanillaGCNmodeloncleandata. 338

Thisempiricallyhelpstoachieveahighcertifi- 339

cationsuccessfulrateunderlargeperturbations. 340

Wepresentthefairnesslevelsofthefourmod- 341

elsintermsof�EOinFig.2.Noetthatwe 342

alsohavesimilarobservationson�SPandother 343

GNNs/datasets.Wesummarizethemainobservationsasfollows:(1)Fairness.Wefoundthatthe 344

GCNmodelwiththeproposedframeworkELEGANTachievesthelowestlevelofbiasinallcasesof 345

fairnessattacks.ThisobservationisconsistentwiththesuperiorityinfairnessfoundinTable1,which 346

demonstratesthatthefairnesssuperiorityofELEGANTmaintainsunderattackswithawiderange 347
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ofE-GCNacrossdifferentattackingperturbationsizes.Weobservedthatunderrelativelysmallat- 349
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biasthreshold⌘,andthefairnesssuperioritystillmaintains.Thiscorroboratesthattheestimation 354

strategiesadoptedinELEGANTaresafeinachievingfairnesscertification. 355
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4
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considerthetestsetswiththecorrespondingcertifieddefensebudgetbeinglargerthanthisthreshold 364
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Herewepresenttheexperimentalresultsof�and�withthemostwidelyusedGCNmodelbased 369

onGermanCreditinFig.3(a))andCreditDefaulterinFig.3(b),respectively.Wealsohavesimilar 370

observationsonotherGNNsanddatasets.Wesummarizethemainobservationsasfollows:(1) 371

Analysison�.Weobservethatmostcaseswithlarger�areassociatedwithalargerFCRcompared 372
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helpsrealizelargercertifieddefensebudgetsonnodeattributes,i.e.,theincreasingof�dominates 375

thetendencyof✏XgiveninTheorem4.Nevertheless,itisworthmentioningthatif�istoolarge, 376

theinformationencodedinthenodeattributescouldbeswampedbytheGaussiannoiseandfinally 377
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ofaddingrandomnoiseonnodeattributesandgraphtopology.Infact,existingworkshavepointed 327

outthatthedistributiondifferenceinthenodeattributevaluesandedgeexistenceacrossdifferent 328

subgroupsisasignificantsourceofbias[43,8,44].However,addingrandomnoiseonbothnode 329

attributesandgraphtopologymayreducesuchdistributionaldivergenceandmitigatebias. 330

alsocontributestobiasmitigation.Weconjecturethatsuchadvantageofdebiasingcouldbearesult 323

ofaddingrandomnoiseonbothnodeattributesandgraphtopology.Specifically,multipleexisting 324

workshavepointedoutthatthedistributiondifferenceinthenodeattributevaluesandedgeexistence 325

acrossdifferentdemographicsubgroupsisasignificantsourceofbias.However,addingrandomnoise 326

onbothnodeattributesandgraphtopologycouldbeabletoreducesuchdistributionaldivergence. 327

4.3RQ2:FairnessCertificationunderAttacks 328

Figure2:ThebiaslevelsofGCN,E-GCN,
FairGNN,andNIFTYunderfairnessattackson
GermanCredit.Theshadedbarindicatesthatthe
attackingbudgetsgobeyondthecertifiedbudgets.

ToanswerRQ2,weperformattacksonthe 329

fairnessofGCN,E-GCN,FairGNN(witha 330

GCNbackbone),andNIFTY(withaGCN 331

backbone).Consideringthelargesizeofthe 332

quadraticspacespannedbythesizeofpertur- 333

bations�Aand�Xmadebyattackers,we 334

presenttheevaluationunderfourrepresentative 335

(k�Ak0,k�Xk2)pairs.Wesetthethreshold 336

forbias⌘tobe50%higherthanthefairness 337

levelofthevanillaGCNmodeloncleandata. 338

Thisempiricallyhelpstoachieveahighcertifi- 339

cationsuccessfulrateunderlargeperturbations. 340

Wepresentthefairnesslevelsofthefourmod- 341

elsintermsof�EOinFig.2.Noetthatwe 342

alsohavesimilarobservationson�SPandother 343

GNNs/datasets.Wesummarizethemainobservationsasfollows:(1)Fairness.Wefoundthatthe 344

GCNmodelwiththeproposedframeworkELEGANTachievesthelowestlevelofbiasinallcasesof 345

fairnessattacks.ThisobservationisconsistentwiththesuperiorityinfairnessfoundinTable1,which 346

demonstratesthatthefairnesssuperiorityofELEGANTmaintainsunderattackswithawiderange 347

ofattackingperturbationsizes.(2)CertificationonFairness.Wenowcomparetheperformance 348

ofE-GCNacrossdifferentattackingperturbationsizes.Weobservedthatunderrelativelysmallat- 349

tackingperturbationsizes,i.e.,(2
0
,10�1

),(2
1
,10

0
),and(2

2
,10

1
),ELEGANTsuccessfullyachieves 350

certificationoverfairness,andthebiaslevelincreasesslowlyasthesizeofattacksincreases.Under 351

relativelylargeattackingperturbationsize,i.e.,(2
3
,10

2
),althoughtheattackingbudgetsgobeyond 352

thecertifiedbudgets,GCNunderELEGANTstillexhibitsafairnesslevelfarlowerthanthegiven 353

biasthreshold⌘,andthefairnesssuperioritystillmaintains.Thiscorroboratesthattheestimation 354

strategiesadoptedinELEGANTaresafeinachievingfairnesscertification. 355

4.4RQ3:ParameterStudy 356

ToanswerRQ3,weproposetoperformparameterstudyfocusingonthetwomostcriticalparameters, 357

�and�.Notethatontheonehand,onlyaproportionofthesampledtestsetscouldbesuccessfully 358

certifiedoverallsampledtestsets;ontheotherhand,thosetestsetsthataresuccessfullycertifiedmay 359

alsoassociatewithdifferentvaluesofcertifieddefensebudgets.Toexaminehow�and�influence 360

theeffectivenessofELEGANTintermsofbothFCRandcertifieddefensebudgets,wesetnumerical 361

rangesfor✏X(from0to1e1)and✏A(from0to2
4
)anddividethetworangesintogrids.Inboth 362

ranges,weconsiderthedividingvaluesofthegridsasthresholds.Undereachthreshold,weonly 363

considerthetestsetswiththecorrespondingcertifieddefensebudgetbeinglargerthanthisthreshold 364

assuccessfullycertifiedones,andthevaluesofFCRarere-computedaccordingly.Ourrationalehere 365

isthatwiththethresholds(for✏Xand✏A)increasing,ifFCRreducesslowly,thisdemonstratesthat 366

mostsuccessfullycertifiedtestsetsareassociatedwithlargecertifieddefensebudgets.However,if 367

FCRreducesfast,thenmostsuccessfullycertifiedtestsetsonlybearssmallcertifieddefensebudgets. 368

Herewepresenttheexperimentalresultsof�and�withthemostwidelyusedGCNmodelbased 369

onGermanCreditinFig.3(a))andCreditDefaulterinFig.3(b),respectively.Wealsohavesimilar 370

observationsonotherGNNsanddatasets.Wesummarizethemainobservationsasfollows:(1) 371

Analysison�.Weobservethatmostcaseswithlarger�areassociatedwithalargerFCRcompared 372

withthecaseswhere�isrelativelysmall.Inotherwords,largervaluesof�typicallymakeFCR 373

reduceslowerw.r.t.theincreasingof✏Xthreshold.Thisindicatesthatincreasingthevalueof� 374

helpsrealizelargercertifieddefensebudgetsonnodeattributes,i.e.,theincreasingof�dominates 375

thetendencyof✏XgiveninTheorem4.Nevertheless,itisworthmentioningthatif�istoolarge, 376

theinformationencodedinthenodeattributescouldbeswampedbytheGaussiannoiseandfinally 377
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Figure2:ThebiaslevelsofGCN,E-
GCN,FairGNN,andNIFTYunderfair-
nessattacksonGermanCredit.The
shadedbarindicatesthatcertifiedbud-
get✏Ak�Ak0or✏Xk�Xk2.
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differentattackingperturbationsizes.Weobservedthatunderrelativelysmallattackingperturbation 350

sizes,i.e.,(2
0
,10�1

),(2
1
,10

0
),and(2

2
,10

1
),ELEGANTsuccessfullyachievescertificationover 351

fairness,andthebiaslevelincreasesslowlyasthesizeofattacksincreases.Underrelativelylarge 352

attackingperturbationsize,i.e.,(2
3
,10

2
),althoughtheattackingbudgetsgobeyondthecertified 353

budgets,GCNunderELEGANTstillexhibitsafairnesslevelfarlowerthanthegivenbiasthreshold 354

⌘,andthefairnesssuperioritystillmaintains.Thiscorroboratesthattheestimationstrategiesadopted 355

inELEGANTaresafeinachievingfairnesscertification. 356

4.4RQ3:ParameterStudy 357

ToanswerRQ3,weproposetoperformparameterstudyfocusingontwomostcriticalparameters, 358

�and�.Toexaminehow�and�influencetheeffectivenessofELEGANTintermsofbothFCR 359

andcertifieddefensebudgets,wesetnumericalrangesfor✏X(from0to1e1)and✏A(from0to 360

2
4
)anddividethetworangesintogrids.Inbothranges,weconsiderthedividingvaluesofthe 361

gridsasthresholdsforcertificationbudgets.Inotherwords,undereachthreshold,weonlyconsider 362

thetestsetswiththecorrespondingcertifieddefensebudgetbeinglargerthanthisthresholdas 363

successfullycertifiedones,andthevaluesofFCRarere-computedaccordingly.Ourrationalehereis 364

thatwiththethresholds(for✏Xand✏A)increasing,ifFCRreducesslowly,thisdemonstratesthat 365

mostsuccessfullycertifiedtestsetsareassociatedwithlargecertifieddefensebudgets.However,if 366

FCRreducesfast,thenmostsuccessfullycertifiedtestsetsonlybearsmallcertifieddefensebudgets. 367

Herewepresenttheexperimentalresultsof�and�withthemostwidelyusedGCNmodelbased 368

onGermanCreditinFig.3(a))andCreditDefaulterinFig.3(b),respectively.Wealsohavesimilar 369

observationsonotherGNNsanddatasets.Wesummarizethemainobservationsasfollows:(1) 370

Analysison�.Weobservethatmostcaseswithlarger�areassociatedwithalargerFCRcompared 371

withthecaseswhere�isrelativelysmall.Inotherwords,largervaluesof�typicallymakeFCR 372

reduceslowerw.r.t.theincreasingof✏Xthreshold.Thisindicatesthatincreasingthevalueof� 373

helpsrealizelargercertifieddefensebudgetsonnodeattributes,i.e.,theincreaseof�dominates 374

thetendencyof✏XgiveninTheorem4.Nevertheless,itisworthmentioningthatif�istoolarge, 375

theinformationencodedinthenodeattributescouldbeswampedbytheGaussiannoiseandfinally 376

corrupttheclassificationaccuracy.Hencemoderatelylargevaluesfor�,e.g.,5e-1and5e0,are 377

recommended.(2)Analysison�.Wefoundthat(1)forcaseswithrelativelylarge�(e.g.,0.8and 378

0.9),theFCRalsotendstobelarger(comparedwithcaseswhere�issmaller)at✏Athresholdbeing 379

0.Suchatendencyisreasonable,sinceinthesecases,theexpectedmagnitudeoftheaddedBernoulli 380
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subgroupsisasignificantsourceofbias[43,8,44].However,addingrandomnoiseonbothnode 329

attributesandgraphtopologymayreducesuchdistributionaldivergenceandmitigatebias. 330

alsocontributestobiasmitigation.Weconjecturethatsuchadvantageofdebiasingcouldbearesult 323

ofaddingrandomnoiseonbothnodeattributesandgraphtopology.Specifically,multipleexisting 324

workshavepointedoutthatthedistributiondifferenceinthenodeattributevaluesandedgeexistence 325

acrossdifferentdemographicsubgroupsisasignificantsourceofbias.However,addingrandomnoise 326

onbothnodeattributesandgraphtopologycouldbeabletoreducesuchdistributionaldivergence. 327

4.3RQ2:FairnessCertificationunderAttacks 328

Figure2:ThebiaslevelsofGCN,E-GCN,
FairGNN,andNIFTYunderfairnessattackson
GermanCredit.Theshadedbarindicatesthatthe
attackingbudgetsgobeyondthecertifiedbudgets.

ToanswerRQ2,weperformattacksonthe 329

fairnessofGCN,E-GCN,FairGNN(witha 330

GCNbackbone),andNIFTY(withaGCN 331

backbone).Consideringthelargesizeofthe 332

quadraticspacespannedbythesizeofpertur- 333

bations�Aand�Xmadebyattackers,we 334

presenttheevaluationunderfourrepresentative 335

(k�Ak0,k�Xk2)pairs.Wesetthethreshold 336

forbias⌘tobe50%higherthanthefairness 337

levelofthevanillaGCNmodeloncleandata. 338

Thisempiricallyhelpstoachieveahighcertifi- 339

cationsuccessfulrateunderlargeperturbations. 340

Wepresentthefairnesslevelsofthefourmod- 341

elsintermsof�EOinFig.2.Noetthatwe 342

alsohavesimilarobservationson�SPandother 343

GNNs/datasets.Wesummarizethemainobservationsasfollows:(1)Fairness.Wefoundthatthe 344

GCNmodelwiththeproposedframeworkELEGANTachievesthelowestlevelofbiasinallcasesof 345

fairnessattacks.ThisobservationisconsistentwiththesuperiorityinfairnessfoundinTable1,which 346

demonstratesthatthefairnesssuperiorityofELEGANTmaintainsunderattackswithawiderange 347

ofattackingperturbationsizes.(2)CertificationonFairness.Wenowcomparetheperformance 348

ofE-GCNacrossdifferentattackingperturbationsizes.Weobservedthatunderrelativelysmallat- 349

tackingperturbationsizes,i.e.,(2
0
,10�1

),(2
1
,10

0
),and(2

2
,10

1
),ELEGANTsuccessfullyachieves 350

certificationoverfairness,andthebiaslevelincreasesslowlyasthesizeofattacksincreases.Under 351

relativelylargeattackingperturbationsize,i.e.,(2
3
,10

2
),althoughtheattackingbudgetsgobeyond 352

thecertifiedbudgets,GCNunderELEGANTstillexhibitsafairnesslevelfarlowerthanthegiven 353

biasthreshold⌘,andthefairnesssuperioritystillmaintains.Thiscorroboratesthattheestimation 354

strategiesadoptedinELEGANTaresafeinachievingfairnesscertification. 355

4.4RQ3:ParameterStudy 356

ToanswerRQ3,weproposetoperformparameterstudyfocusingonthetwomostcriticalparameters, 357

�and�.Notethatontheonehand,onlyaproportionofthesampledtestsetscouldbesuccessfully 358

certifiedoverallsampledtestsets;ontheotherhand,thosetestsetsthataresuccessfullycertifiedmay 359

alsoassociatewithdifferentvaluesofcertifieddefensebudgets.Toexaminehow�and�influence 360

theeffectivenessofELEGANTintermsofbothFCRandcertifieddefensebudgets,wesetnumerical 361

rangesfor✏X(from0to1e1)and✏A(from0to2
4
)anddividethetworangesintogrids.Inboth 362

ranges,weconsiderthedividingvaluesofthegridsasthresholds.Undereachthreshold,weonly 363

considerthetestsetswiththecorrespondingcertifieddefensebudgetbeinglargerthanthisthreshold 364

assuccessfullycertifiedones,andthevaluesofFCRarere-computedaccordingly.Ourrationalehere 365

isthatwiththethresholds(for✏Xand✏A)increasing,ifFCRreducesslowly,thisdemonstratesthat 366

mostsuccessfullycertifiedtestsetsareassociatedwithlargecertifieddefensebudgets.However,if 367

FCRreducesfast,thenmostsuccessfullycertifiedtestsetsonlybearssmallcertifieddefensebudgets. 368

Herewepresenttheexperimentalresultsof�and�withthemostwidelyusedGCNmodelbased 369

onGermanCreditinFig.3(a))andCreditDefaulterinFig.3(b),respectively.Wealsohavesimilar 370

observationsonotherGNNsanddatasets.Wesummarizethemainobservationsasfollows:(1) 371

Analysison�.Weobservethatmostcaseswithlarger�areassociatedwithalargerFCRcompared 372

withthecaseswhere�isrelativelysmall.Inotherwords,largervaluesof�typicallymakeFCR 373

reduceslowerw.r.t.theincreasingof✏Xthreshold.Thisindicatesthatincreasingthevalueof� 374

helpsrealizelargercertifieddefensebudgetsonnodeattributes,i.e.,theincreasingof�dominates 375

thetendencyof✏XgiveninTheorem4.Nevertheless,itisworthmentioningthatif�istoolarge, 376

theinformationencodedinthenodeattributescouldbeswampedbytheGaussiannoiseandfinally 377
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mostsuccessfullycertifiedtestsetsareassociatedwithlargecertifieddefensebudgets.However,if 369

FCRreducesfast,thenmostsuccessfullycertifiedtestsetsonlybearssmallcertifieddefensebudgets. 370

Herewepresenttheexperimentalresultsof�and�withthemostwidelyusedGCNmodelbased 371

onGermanCreditinFig.3(a))andCreditDefaulterinFig.3(b),respectively.Wealsohavesimilar 372

observationsonotherGNNsanddatasets.Wesummarizethemainobservationsasfollows:(1) 373

Analysison�.Weobservethatmostcaseswithlarger�areassociatedwithalargerFCRcompared 374

withthecaseswhere�isrelativelysmall.Inotherwords,largervaluesof�typicallymakeFCR 375

reduceslowerw.r.t.theincreasingof✏Xthreshold.Thisindicatesthatincreasingthevalueof� 376
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Figure2:ThebiaslevelsofGCN,E-
GCN,FairGNN,andNIFTYunderfair-
nessattacksonGermanCredit.The
shadedbarindicatesthatcertifiedbud-
get✏Ak�Ak0or✏Xk�Xk2.

�EO(%inlog2scale) 331

4.3RQ2:FairnessCertificationunderAttacks 332

ToanswerRQ2,weperformattacksonthefairnessof 333

GCN,E-GCN,FairGNN(withaGCNbackbone),and 334

NIFTY(withaGCNbackbone).Consideringthelarge 335

sizeofthequadraticspacespannedbythesizeofpertur- 336

bations�Aand�Xmadebyattackers,wepresentthe 337

evaluationunderfourrepresentative(k�Ak0,k�Xk2) 338

pairs.Wesetthethresholdforbias⌘tobe50%higher 339

thanthefairnesslevelofthevanillaGCNmodelonclean 340

data,sinceitempiricallyhelpstoachieveahighcertifica- 341

tionsuccessrateunderlargeperturbations. 342

Wepresentthefairnesslevelsofthefourmodelsinterms 343

of�EOinFig.2,andwealsohavesimilarobservationson�SPandotherGNNs/datasets.We 344

summarizethemainobservationsasfollows:(1)Fairness.WefoundthattheGCNmodelwiththe 345

proposedframeworkELEGANTachievesthelowestlevelofbiasinallcasesoffairnessattacks.This 346

observationisconsistentwiththesuperiorityinfairnessfoundinTable1,whichdemonstratesthat 347

thefairnesssuperiorityofELEGANTmaintainsevenunderattackswithinawiderangeofattacking 348

perturbationsizes.(2)CertificationonFairness.WenowcomparetheperformanceofE-GCNacross 349

differentattackingperturbationsizes.Weobservedthatunderrelativelysmallattackingperturbation 350

sizes,i.e.,(2
0
,10�1

),(2
1
,10

0
),and(2

2
,10

1
),ELEGANTsuccessfullyachievescertificationover 351

fairness,andthebiaslevelincreasesslowlyasthesizeofattacksincreases.Underrelativelylarge 352

attackingperturbationsize,i.e.,(2
3
,10

2
),althoughtheattackingbudgetsgobeyondthecertified 353

budgets,GCNunderELEGANTstillexhibitsafairnesslevelfarlowerthanthegivenbiasthreshold 354

⌘,andthefairnesssuperioritystillmaintains.Thiscorroboratesthattheestimationstrategiesadopted 355

inELEGANTaresafeinachievingfairnesscertification. 356

4.4RQ3:ParameterStudy 357

ToanswerRQ3,weproposetoperformparameterstudyfocusingontwomostcriticalparameters, 358

�and�.Toexaminehow�and�influencetheeffectivenessofELEGANTintermsofbothFCR 359

andcertifieddefensebudgets,wesetnumericalrangesfor✏X(from0to1e1)and✏A(from0to 360

2
4
)anddividethetworangesintogrids.Inbothranges,weconsiderthedividingvaluesofthe 361

gridsasthresholdsforcertificationbudgets.Inotherwords,undereachthreshold,weonlyconsider 362

thetestsetswiththecorrespondingcertifieddefensebudgetbeinglargerthanthisthresholdas 363

successfullycertifiedones,andthevaluesofFCRarere-computedaccordingly.Ourrationalehereis 364

thatwiththethresholds(for✏Xand✏A)increasing,ifFCRreducesslowly,thisdemonstratesthat 365

mostsuccessfullycertifiedtestsetsareassociatedwithlargecertifieddefensebudgets.However,if 366

FCRreducesfast,thenmostsuccessfullycertifiedtestsetsonlybearsmallcertifieddefensebudgets. 367

Herewepresenttheexperimentalresultsof�and�withthemostwidelyusedGCNmodelbased 368

onGermanCreditinFig.3(a))andCreditDefaulterinFig.3(b),respectively.Wealsohavesimilar 369

observationsonotherGNNsanddatasets.Wesummarizethemainobservationsasfollows:(1) 370

Analysison�.Weobservethatmostcaseswithlarger�areassociatedwithalargerFCRcompared 371

withthecaseswhere�isrelativelysmall.Inotherwords,largervaluesof�typicallymakeFCR 372

reduceslowerw.r.t.theincreasingof✏Xthreshold.Thisindicatesthatincreasingthevalueof� 373

helpsrealizelargercertifieddefensebudgetsonnodeattributes,i.e.,theincreaseof�dominates 374

thetendencyof✏XgiveninTheorem4.Nevertheless,itisworthmentioningthatif�istoolarge, 375

theinformationencodedinthenodeattributescouldbeswampedbytheGaussiannoiseandfinally 376

corrupttheclassificationaccuracy.Hencemoderatelylargevaluesfor�,e.g.,5e-1and5e0,are 377

recommended.(2)Analysison�.Wefoundthat(1)forcaseswithrelativelylarge�(e.g.,0.8and 378

0.9),theFCRalsotendstobelarger(comparedwithcaseswhere�issmaller)at✏Athresholdbeing 379

0.Suchatendencyisreasonable,sinceinthesecases,theexpectedmagnitudeoftheaddedBernoulli 380
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FIGURE 5.2. The bias levels of GCN, E-GCN, FairGNN, and NIFTY under
fairness attacks on German Credit. The shaded bar indicates that certified
budget ϵA ≤ ∥∆A∥0 or ϵX ≤ ∥∆X∥2. The y-axis is in logarithmic scale for
better visualization purposes.

fairness certification rate across all adopted GNN backbones and datasets. (2) Utility. We
found that compared with those vanilla GNN backbones, certified GNNs with ELEGANT also
exhibit comparable and even higher node classification accuracy values in all cases. Hence
we conclude that our proposed framework ELEGANT does not significantly jeopardize the
utility of the vanilla GNN models, and those certified GNNs with ELEGANT still bear a high
level of usability in terms of node classification accuracy. (3) Fairness. Although the goal of
ELEGANT is not debiasing GNNs, we observe that certified GNNs with ELEGANT achieve
better performances in all cases in terms of algorithmic fairness compared with those vanilla
GNNs. This demonstrates that the proposed framework ELEGANT also contributes to bias
mitigation. We conjecture that such an advantage of debiasing could be a mixed result of
(1) adding random noise on node attributes and graph topology (as in Section 5.1.3.2 and
Section 5.1.3.3) and (2) the proposed strategy of obtaining fair classification results (as in
Section 5.1.3.4). We provide a more detailed analysis in Section 5.1.4.9.
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!!!!
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Threshold

(A) FCR of certification for σ over node attributes

!!
!"!!
!"
Threshold

(B) FCR of certification for β over graph topology

FIGURE 5.3. Parameter study of σ over ϵX (a) and β over ϵA (b). Experi-
mental results are presented based on GCN over German credit and Credit
Defaulter for (a) and (b), respectively. Tendencies on other GNNs and datasets
are similar.

5.1.4.3 RQ2: Fairness Certification under Attacks

To answer RQ2, we perform attacks on the fairness of GCN, E-GCN, FairGNN (with a GCN
backbone), and NIFTY (with a GCN backbone). Considering the large size of the quadratic
space spanned by the sizes of perturbations ∆A and ∆X , we present the evaluation under
four representative (∥∆A∥0, ∥∆X∥2) pairs. We set the threshold for bias η to be 50% higher
than the fairness level of the vanilla GCN model on clean data, since it empirically helps to
achieve a high certification success rate under large perturbations.

We present the fairness levels of the four models in terms of ∆EO in Fig. 5.2. Note that we
utilize a vanilla GCN to predict the labels for test nodes to to obtain fair classification results
(as in Section 5.1.3.4), and we also have similar observations on other GNNs/datasets. (1)
Fairness. We found that the GCN model with the proposed framework ELEGANT achieves
the lowest level of bias in all cases of fairness attacks. This observation is consistent with the
superiority in fairness found in Table 5.1, which demonstrates that the fairness superiority of
ELEGANT maintains even under attacks within a wide range of attacking perturbation sizes.
(2) Certification on Fairness. We now compare the performance of E-GCN across different
attacking perturbation sizes. We observed that under relatively small attacking perturbation
sizes, i.e., (20, 10−1), (21, 100), and (22, 101), ELEGANT successfully achieves certification
over fairness, and the bias level increases slowly as the size of attacks increases. Under
relatively large attacking perturbation size, i.e., (23, 102), although the attacking budgets go
beyond the certified budgets, GCN under ELEGANT still exhibits a fairness level far lower
than the given bias threshold η, and the fairness superiority maintains. Hence the adopted
estimation strategies are safe in achieving fairness certification.

5.1.4.4 RQ3: Parameter Study

To answer RQ3, we propose to perform parameter study focusing on two most critical
parameters, σ and β. To examine how σ and β influence the effectiveness of ELEGANT
in terms of both FCR and certified defense budgets, we set numerical ranges for ϵX (from
0 to 1e1) and ϵA (from 0 to 24) and divide the two ranges into grids. In both ranges, we
consider the dividing values of the grids as thresholds for certification budgets. In other words,
under each threshold, we only consider the test sets with the corresponding certified defense
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also contributes to bias mitigation. We conjecture that such advantage of debiasing could be a result323

of adding random noise on both node attributes and graph topology. Specifically, multiple existing324

works have pointed out that the distribution difference in the node attribute values and edge existence325

across different demographic subgroups is a significant source of bias. However, adding random noise326

on both node attributes and graph topology could be able to reduce such distributional divergence.327

4.3 RQ2: Fairness Certification under Attacks328

Figure 2: The bias levels of GCN, E-GCN,
FairGNN, and NIFTY under fairness attacks on
German Credit. The shaded bar indicates that the
attacking budgets go beyond the certified budgets.

To answer RQ2, we perform attacks on the329

fairness of GCN, E-GCN, FairGNN (with a330

GCN backbone), and NIFTY (with a GCN331

backbone). Considering the large size of the332

quadratic space spanned by the size of pertur-333
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for bias ⌘ to be 50% higher than the fairness337

level of the vanilla GCN model on clean data.338
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cation successful rate under large perturbations.340

We present the fairness levels of the four mod-341

els in terms of �EO in Fig. 2. Noet that we342

also have similar observations on �SP and other343

GNNs/datasets. We summarize the main observations as follows: (1) Fairness. We found that the344

GCN model with the proposed framework ELEGANT achieves the lowest level of bias in all cases of345

fairness attacks. This observation is consistent with the superiority in fairness found in Table 1, which346

demonstrates that the fairness superiority of ELEGANT maintains under attacks with a wide range347

of attacking perturbation sizes. (2) Certification on Fairness. We now compare the performance348

of E-GCN across different attacking perturbation sizes. We observed that under relatively small at-349

tacking perturbation sizes, i.e., (20, 10�1), (21, 100), and (22, 101), ELEGANT successfully achieves350

certification over fairness, and the bias level increases slowly as the size of attacks increases. Under351

relatively large attacking perturbation size, i.e., (23, 102), although the attacking budgets go beyond352

the certified budgets, GCN under ELEGANT still exhibits a fairness level far lower than the given353

bias threshold ⌘, and the fairness superiority still maintains. This corroborates that the estimation354

strategies adopted in ELEGANT are safe in achieving fairness certification.355

4.4 RQ3: Parameter Study356

To answer RQ3, we propose to perform parameter study focusing on the two most critical parameters,357

� and �. Note that on the one hand, only a proportion of the sampled test sets could be successfully358

certified over all sampled test sets; on the other hand, those test sets that are successfully certified may359

also associate with different values of certified defense budgets. To examine how � and � influence360

the effectiveness of ELEGANT in terms of both FCR and certified defense budgets, we set numerical361

ranges for ✏X (from 0 to 1e1) and ✏A (from 0 to 24) and divide the two ranges into grids. In both362

ranges, we consider the dividing values of the grids as thresholds. Under each threshold, we only363

consider the test sets with the corresponding certified defense budget being larger than this threshold364

as successfully certified ones, and the values of FCR are re-computed accordingly. Our rationale here365

is that with the thresholds (for ✏X and ✏A) increasing, if FCR reduces slowly, this demonstrates that366

most successfully certified test sets are associated with large certified defense budgets. However, if367

FCR reduces fast, then most successfully certified test sets only bears small certified defense budgets.368

Here we present the experimental results of � and � with the most widely used GCN model based369

on German Credit in Fig. 3(a)) and Credit Defaulter in Fig. 3(b), respectively. We also have similar370

observations on other GNNs and datasets. We summarize the main observations as follows: (1)371

Analysis on �. We observe that most cases with larger � are associated with a larger FCR compared372

with the cases where � is relatively small. In other words, larger values of � typically make FCR373

reduce slower w.r.t. the increasing of ✏X threshold. This indicates that increasing the value of �374

helps realize larger certified defense budgets on node attributes, i.e., the increasing of � dominates375

the tendency of ✏X given in Theorem 4. Nevertheless, it is worth mentioning that if � is too large,376

the information encoded in the node attributes could be swamped by the Gaussian noise and finally377
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FIGURE 5.4. The utility of GCN, E-GCN, FairGNN, and NIFTY under fair-
ness attacks on German Credit. The shaded bar indicates that certified budget
ϵA ≤ ∥∆A∥0 or ϵX ≤ ∥∆X∥2.

budget being larger than this threshold as successfully certified ones, and the values of FCR
are re-computed accordingly. Our rationale here is that with the thresholds (for ϵX and ϵA)
increasing, if FCR reduces slowly, this demonstrates that most successfully certified test sets
are associated with large certified defense budgets. However, if FCR reduces fast, then most
successfully certified test sets only bear small certified defense budgets.

Here we present the experimental results of σ and β with the most widely used GCN model
based on German Credit in Fig. 5.3a and Credit Defaulter in Fig. 5.3b, respectively. We also
have similar observations on other GNNs and datasets. We summarize the main observations
as follows: (1) Analysis on σ. We observe that most cases with larger σ are associated with a
larger FCR compared with the cases where σ is relatively small. In other words, larger values
of σ typically make FCR reduce slower w.r.t. the increasing of ϵX threshold. This indicates
that increasing the value of σ helps realize larger certified defense budgets on node attributes,
i.e., the increase of σ dominates the tendency of ϵX given in Theorem 5.1.4. Nevertheless, it
is worth mentioning that if σ is too large, the information encoded in the node attributes could
be swamped by the Gaussian noise and finally corrupt the classification accuracy. Hence
moderately large values for σ, e.g., 5e-1 and 5e0, are recommended. (2) Analysis on β. We
found that (1) for cases with relatively large β (e.g., 0.8 and 0.9), the FCR also tends to be
larger (compared with cases where β is smaller) at ϵA threshold being 0. Such a tendency is
reasonable, since in these cases, the expected magnitude of the added Bernoulli noise is small.
Correspondingly, GNNs under ELEGANT perform similarly to vanilla GNNs, and thus an
η larger than the bias level of vanilla GNNs is easier to be satisfied (compared with cases
under smaller values of β); (2) for cases with relatively large β, the value of FCR reduces
faster (w.r.t. ϵA threshold) than cases where β is smaller. Therefore, we recommend that for
any test set of nodes: (1) if the primary goal is to achieve certification with a high probability,
then larger values for β (e.g., 0.8 and 0.9) would be preferred; (2) if the goal is to achieve
certification with larger certified defense budgets on the graph topology, then smaller values
for β (e.g., 0.6 and 0.7) should be selected.
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TABLE 5.2. Comparison between vanilla GNNs and certified GNNs under
ELEGANT over three popular GNNs across three real-world datasets. Here
ACC is node classification accuracy, and E- prefix marks out the GNNs under
ELEGANT with certification. ↑ denotes the larger, the better; ↓ denotes
the opposite. Different from the table in Section 5.1.4.2 (where the bias is
measured with ∆SP), the bias is measured with ∆EO here. Numerical values
are in percentage, and the best ones are in bold.

German Credit Recidivism Credit Defaulter
ACC (↑) Bias (↓) FCR (↑) ACC (↑) Bias (↓) FCR (↑) ACC (↑) Bias (↓) FCR (↑)

SAGE 67.3 ±2.14 41.8 ±11.0 N/A 89.8 ±0.66 6.09 ±3.10 N/A 75.9 ±2.18 10.4 ±1.59 N/A
E-SAGE 72.2 ±1.26 8.63 ±6.15 100 ±0.00 90.8 ±0.97 3.12 ±3.64 81.0 ±13.0 73.4 ±0.61 7.18 ±1.06 88.7 ±6.02

GCN 59.6 ±3.64 35.0 ±4.77 N/A 90.5 ±0.73 6.35 ±1.65 N/A 65.8 ±0.29 13.5 ±4.23 N/A
E-GCN 58.8 ±3.74 29.8 ±6.82 93.3 ±8.73 89.3 ±0.92 3.93 ±3.12 96.0 ±4.97 63.5 ±0.37 9.12 ±0.95 80.5 ±14.5

JK 63.3 ±4.11 37.7 ±15.9 N/A 91.9 ±0.54 5.26 ±3.25 N/A 76.6 ±0.69 8.04 ±0.57 N/A
E-JK 63.4 ±3.68 31.2 ±15.5 93.7 ±8.96 90.1 ±0.55 2.54 ±1.62 83.7 ±8.96 76.9 ±0.86 2.90 ±2.04 95.7 ±4.80

5.1.4.5 Evaluation of Model Utility

In Section 5.1.4.3, we present the comparison between ELEGANT and baseline models over
the fairness level under attacks. We now present the comparison over the utility under attacks.
Specifically, we utilize node classification accuracy as the indicator of model utility, and we
present the results in Fig. 5.4. The fairness-aware GNNs are found to exhibit better utility
compared with the vanilla GNNs, which is a common observation consistent with a series of
existing works [3, 47]. More importantly, we observe that the ELEGANT does not jeopardize
the performance of GNN compared with the utility of the vanilla GNN. This demonstrate a
high level of usability for ELEGANT in real-world applications.

5.1.4.6 Certification under Different Fairness Metrics

In Section 5.1.4.2, we present the experimental results based on the fairness metric of ∆SP,
which measures the exhibited bias under the fairness notion of Statistical Parity. We also
perform the experiments based on ∆EO, which measures the exhibited bias under the fairness
notion of Equal Opportunity. We present the experimental results in Table 5.2. We summarize
the observations below. (1) Fairness Certification Rate (FCR). We observe that ELEGANT
realizes large values of FCR (larger than 80%) for all three GNN backbones and three
attributed network datasets. Similar to our discussion in Section 5.1.4.2, this demonstrate that
for nodes in any randomly sampled test set, we have a probability around or larger than 80%
to successfully certify the fairness level of the predictions yielded by the GNN model with our
proposed framework ELEGANT. As a consequence, we argue that ELEGANT also achieves
a satisfying fairness certification rate across all adopted GNN backbones and datasets on the
basis of ∆EO. In addition, we also observe that the German Credit dataset bears relatively
larger values of FCR, while the values of FCR are relatively smaller with relatively larger
standard deviation values on Recidivism and Credit Defaulter datasets. A possible reason is
that we set the threshold (i.e., η) as a value 25% higher than the bias exhibited by the vanilla
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GNNs. Consequently, if the vanilla GNNs already exhibit a low level of bias, the threshold
determined with such a strategy could be hard to satisfy under the added noise. This evidence
indicates that the proposed framework ELEGANT tends to deliver better performance under
scenarios where vanilla GNNs exhibit a high level of bias with the proposed strategy. (2)
Utility. Compared with vanilla GNNs, certified GNNs with ELEGANT exhibit comparable
and even higher node classification accuracy values in all cases. Therefore, we argue that the
proposed framework ELEGANT does not significantly jeopardize the utility of the vanilla
GNN models in certifying the fairness level of node classification. (3) Fairness. We observe
that certified GNNs with ELEGANT are able to achieve better performances in terms of
algorithmic fairness compared with those vanilla GNNs. This evidence indicates that the
proposed framework ELEGANT also helps to mitigate the exhibited bias (by the backbone
GNN models). We conjecture that such bias mitigation should be attributed to the same reason
discussed in Section 5.1.4.2.

Algorithm 3 Certified Defense on the Fairness of GNNs
Input:

G: graph data with potential malicious attacks; fθ∗ : an optimized GNN node classifier; Vtrain, Vvalidation,
Vtest ∈ V: the node set for training, validation, and test, respectively; Vvul ∈ Vtest: the set of vulnerable
nodes that may bear attacks (on node attributes and/or graph topology); N1, N2: sample size for the set of
Bernoulli and Gaussian noise, respectively; η: a given threshold for the exhibited bias; α: the parameter
to indicate the confidence level (1− α) of the estimation; σ: the std of the added Gaussian noise; β: the
probability of returning zero of the added Bernoulli noise;

Output:
ϵA: the certified defense budget over the adjacency matrix A; ϵX : the certified defense budget over the
node attribute matrix X; Ŷ ′: the output node classification results from the certified classifier;

1: Sample a set of Bernoulli noise QB containing N1 samples;
2: Sample a set of Gaussian noise QG containing N2 samples;
3: for ωA ∈ QB do
4: for ωX ∈ QG do
5: Calculate and collect the output of fθ∗ under the noise of ωA and ωX ;
6: Calculate and collect the output of g based on the output of fθ∗ ;
7: end for
8: Under QG, collect the number of g returning 1 and 0 as n1 and n0, respectively;
9: Estimate the lower bound of returning c as Pg=c determined by the larger one between n1 and n0;

10: if n1 > n0 and Pg=1 is larger than 0.5 with a confidence level larger than 1− α or n1 < n0 and Pg=0 is
larger than 0.5 with a confidence level larger than 1− α then

11: Calculate and collect the value of ϵ̃X ;
12: else
13: return ABSTAIN
14: end if
15: end for
16: Collect the number of cases where n1 > n0 and estimate the lower bound of returning 1 as Pg̃X=1;
17: if Pg̃X=1 is larger than 0.5 with a confidence level larger than 1− α then
18: Calculate ϵX (out of the collected ϵ̃X ) and ϵA (based on the estimated Pg̃X=1);
19: Find Y ′ out of the collected output of fθ∗ ;
20: return Y ′, ϵX , and ϵA;
21: else
22: return ABSTAIN
23: end if
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FIGURE 5.5. An example illustrating how ELEGANT works with a different
order to achieve certified defense.

5.1.4.7 Ordering the Inner and Outer Defense

We first review the general pipeline to achieve certified fairness defense. Specifically, we first
model the fairness attack and defense by formulating the bias indicator function g. Then, we
achieve certified defense over the node attributes for g, which leads to classifier g̃X . Finally,
we realize certified defense for g̃X over the graph topology, which leads to classifier g̃A,X . In
general, we may consider the certified defense over node attributes and graph topology as the
inner certified classifier and outer certified classifier, respectively. Now, a natural question
is: is it possible to achieve certified defense in a different order, i.e., first achieve certified
defense over the graph topology (as the inner classifier), and then realize certified defense
over the node attributes (as the outer classifier)? Note that this is not the research focus of this
paper, but we will provide insights about this question. In fact, it is also feasible to achieve
certified defense in the reversed order compared with the approach presented in our paper.
We provide an illustration in Fig. 5.5. We follow a similar setting to plot this figure as in
Section 5.1.3.3. Specifically, in case (1), both Ai,j ⊕ 0 and Ai,j ⊕ 1 lead to a positive outcome
for g; in case (2), both Ai,j⊕0 and Ai,j⊕1 lead to a negative outcome. However, considering
the Gaussian distribution around Xi,j , samples will fall around case (1) with a much higher
number compared with case (2). Hence, in this example, it would be reasonable to assume
that the classifier with Bernoulli noise over graph topology (the inner certified classifier) will
return 1 with a higher probability. This example thus illustrates how certification following a
different order returns 1.

However, such a formulation bears higher computational costs in calculating the certified
budgets. The reason is that we are able to utilize a closed-form solution to calculate ϵX based
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on a set of Gaussian noise and the corresponding output from the bias indicator function.
However, based on a set of Bernoulli noise and the corresponding output from the bias
indicator function, we will need to solve the optimization problem given in Theorem 5.1.2
to calculate ϵA, which bears a higher time complexity than calculating ϵX . If we follow the
strategy provided in Section 5.1.3.4 to calculate the inner and outer certification budgets, the
certified budget of the inner certification will always be calculated multiple times, while the
certified budget of the outer certification will only be calculated once. Considering the high
computational cost of calculating ϵA, we thus argue that it is more efficient to realize the
certification over graph topology as the outer certified classifier.

5.1.4.8 Time Complexity Analysis

We now present a comprehensive analysis on the time complexity of ELEGANT. We present
the analysis from both theoretical and experimental perspectives.

Theoretical. The time complexity is linear w.r.t. the total number of the random perturbations
N , i.e., O(N). We perform 30,000 random perturbations over the span of node attributes
and graph structure. We note that the actual running time is acceptable since the certification
does not require re-training (which is the most costly process). In addition, all runnings do
not rely on the prediction results from each other. Hence they can be paralleled altogether
theoretically to further reduce the running time.

Experimental. We perform a study of running time, and we present the results in Table 5.3.
Specifically, we compare the running time of a successful certification under 30,000 random
noise samples and a regular training-inference cycle with vanilla GCN. We observe that
(1) although ELEGANT improves the computational cost compared with the vanilla GNN
backbones, the running time remains acceptable; and (2) ELEGANT has less running time
growth rate on larger datasets. For example, E-SAGE has around 10x running time on German
Credit (a smaller dataset) while only around 4x on Credit Default (a larger dataset) compared
to vanilla SAGE. Hence we argue that ELEGANT bears a high level of usability in terms of
complexity and running time.

TABLE 5.3. Comparison of running time (in seconds) on different datasets
using different methods.

German Recidivism Credit

SAGE 5.27 ± 0.38 34.14 ± 1.08 40.11 ± 0.36
E-SAGE 53.23 ± 1.31 137.12 ± 58.66 157.51 ± 37.21

GCN 5.59 ± 0.37 34.94 ± 1.16 40.59 ± 0.32
E-GCN 53.79 ± 30.19 212.94 ± 10.38 214.11 ± 10.31

JK 5.78 ± 0.43 34.68 ± 0.88 39.44 ± 1.56
E-JK 59.99 ± 25.01 238.37 ± 1.81 252.99 ± 17.03

5.1.4.9 Additional Results on Different GNN Backbones & Baselines

We perform additional experiments over two popular GNNs, including APPNP [112] and
GCNII [27], to evaluate the generalization ability of ELEGANT onto different backbones.
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TABLE 5.4. Performance comparison of classification accuracy. Numbers are
in percentage.

German Recidivism Credit

SAGE 67.3 ± 2.14 89.8 ± 0.66 75.9 ± 2.18
E-SAGE 71.0 ± 1.27 89.9 ± 0.90 73.4 ± 0.50

GCN 59.6 ± 3.64 90.5 ± 0.73 65.8 ± 0.29
E-GCN 58.2 ± 1.82 89.6 ± 0.74 65.2 ± 0.99

JK 63.3 ± 4.11 91.9 ± 0.54 76.6 ± 0.69
E-JK 62.3 ± 4.07 89.3 ± 0.33 77.7 ± 0.27

APPNP 69.9 ± 2.17 95.3 ± 0.78 74.4 ± 3.05
E-APPNP 69.4 ± 0.83 95.9 ± 0.02 74.6 ± 0.32

GCNII 60.9 ± 1.00 90.4 ± 0.95 77.7 ± 0.22
E-GCNII 60.4 ± 4.45 88.8 ± 0.24 77.6 ± 0.02

TABLE 5.5. Comparison of fairness (measured with ∆SP ). Numbers are in
percentage.

German Recidivism Credit

SAGE 50.6 ± 15.9 9.36 ± 3.15 13.0 ± 4.01
E-SAGE 16.3 ± 10.9 6.39 ± 2.85 8.94 ± 0.99

GCN 37.4 ± 3.24 10.1 ± 3.01 11.1 ± 3.22
E-GCN 3.52 ± 3.77 9.56 ± 3.22 7.28 ± 1.46

JK 41.2 ± 18.1 10.1 ± 3.15 9.24 ± 0.60
E-JK 22.4 ± 1.95 6.26 ± 2.78 3.37 ± 2.64

APPNP 27.4 ± 4.81 9.71 ± 3.57 12.3 ± 3.14
E-APPNP 13.1 ± 5.97 2.23 ± 0.04 10.8 ± 0.07

GCNII 51.4 ± 0.36 9.70 ± 3.37 7.62 ± 0.29
E-GCNII 24.9 ± 0.47 3.78 ± 0.93 1.72 ± 0.81

TABLE 5.6. Performance in FCR on different datasets and backbone GNNs.
Numbers are in percentage.

German Recidivism Credit

E-SAGE 98.7 ± 1.89 94.3 ± 6.65 94.3 ± 3.3
E-GCN 96.3 ± 1.89 96.0 ± 3.56 92.7 ± 5.19
E-JK 97.0 ± 3.00 89.5 ± 10.5 99.3 ± 0.47

E-APPNP 97.8 ± 3.14 87.1 ± 3.79 95.5 ± 6.43
E-GCNII 94.7 ± 5.27 92.9 ± 9.93 99.0 ± 1.41

We present all numerical results in Table 5.4 (in terms of accuracy), 5.5 (in terms of fairness),
and 5.6 (in terms of FCR). We observe that ELEGANT achieves comparable utility, a superior
level of fairness, and a large percentage of FCR. This verifies the satisfying usability of
ELEGANT, which remains consistent with the paper.
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TABLE 5.7. Comparison of fairness (measured with ∆SP ). Numbers are in
percentage.

German Recidivism Credit

SAGE 50.6 ± 15.9 9.36 ± 3.15 13.0 ± 4.01
E-SAGE 16.3 ± 10.9 6.39 ± 2.85 8.94 ± 0.99

GCN 37.4 ± 3.24 10.1 ± 3.01 11.1 ± 3.22
E-GCN 3.52 ± 3.77 9.56 ± 3.22 7.28 ± 1.46

JK 41.2 ± 18.1 10.1 ± 3.15 9.24 ± 0.60
E-JK 22.4 ± 1.95 6.26 ± 2.78 3.37 ± 2.64
[98] 14.8 ± 18.3 9.59 ± 0.65 3.84 ± 0.17

[207] 3.66 ± 0.52 8.04 ± 2.97 7.10 ± 5.10

In addition, we provide a detailed fairness comparison between ELEGANT and robust GNNs
from [98] and [207] in Table 5.7. We observe that the best performances still come from the
GNNs equipped with ELEGANT on all datasets. Hence we argue that ELEGANT exhibits
satisfying performance in usability, which remains consistent with the discussion in the paper.

Why ELEGANT Improves Fairness? We note that improving fairness is a byproduct of
ELEGANT, and our focus is to achieve certification over the fairness level of the prediction
results. We now provide a detailed discussion about why fairness is improved here. First, exist-
ing works found that the distribution difference in the node attribute values and edge existence
across different subgroups is a significant source of bias [47, 37, 63]. However, adding noise
on both node attributes and graph topology may reduce such distributional divergence and
mitigate bias. Second, As mentioned in Section 5.1.3.4, the proposed strategy to obtain the
output predictions in ELEGANT is to select the fairest result among the output set Ŷ ′, where
each output is derived based on a sample Γ′

A ∈ Ā′ (i.e., argminŶ ′π(Ŷ ′,Vtst) s.t. Ŷ ′ ∈ Ŷ ′).
Such a strategy provides a large enough probability to achieve certification in light of Pro-
position 1. Meanwhile, we point out that such a strategy also helps to significantly improve
fairness since highly biased outputs are excluded.

5.1.5 Related Work

Algorithmic Fairness in GNNs. Existing GNN works on fairness mainly focus on group fair-
ness and individual fairness [50]. Specifically, group fairness requires that each demographic
subgroup (divided by sensitive attributes such as gender and race) in the graph should have
their fair share of interest based on predictions [134]. Adversarial training is among the most
popular strategies [37, 50]. In addition, regularization [3, 63, 240], topology modification [47,
179], and orthogonal projection [148] are also commonly used strategies. On the other hand,
individual fairness it requires that similar individuals should be treated similarly [58], where
such similarity may be determined in different ways [104, 46]. Designing regularization terms
to promote individual fairness for GNNs is a common strategy [63, 46, 177].

GNN Defense Against Attacks. Existing works on GNN defense are categorized into five
mainstreams, namely adversarial training [220, 41, 198], graph data purification [61, 96,
206, 110], perturbation detection [223, 84, 97], and certified defense [171, 192, 10, 248, 89].
Among them, certified defense is the only approach that secures GNNs theoretically, such that
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attackers cannot find any adversary to fool the GNNs [171, 192, 10, 248, 89]. Note that most
certified defense approaches only secure the prediction for a specific data point (e.g., a node
in node classification). Different from them, ELEGANT enables us to secure the fairness
level for GNNs, which are affected by all predictions in the test set.

5.1.6 Conclusion

In this paper, we take initial steps to tackle a novel problem of certifying GNN node classifiers
on fairness. To address this problem, we propose a principled framework, ELEGANT, which
achieves certification on top of any optimized GNN node classifier associated with certain
perturbation budgets, such that it is impossible for attackers to corrupt the fairness level of
predictions within such budgets. Notably, ELEGANT is designed to serve as a plug-and-play
framework for any optimized GNNs ready to be deployed and does not rely on any assumption
over GNN structure or parameters. Extensive experiments verify the satisfying effectiveness
of ELEGANT. In addition, we also found ELEGANT beneficial to GNN debiasing, and
explored how its parameters influence the certification performance. We leave certifying the
fairness level of GNNs over other learning tasks on graphs as future works.
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5.2 A Flexible Framework of Certified Unlearning for
Graph Neural Networks

5.2.1 Introduction

Graph-structured data is ubiquitous among various real-world applications, such as online
social platform [74], finance system [193], and chemical discovery [85]. In recent years,
Graph Neural Networks (GNNs) have exhibited promising performance in various graph-
based downstream tasks [74, 245, 214, 222]. The success of GNNs is mainly attributed to its
message-passing mechanism, which enables each node to take advantage of the information
from its multi-hop neighbors [74, 111]. As a consequence, GNNs have been widely adopted
in a plethora of realms [246, 45, 243, 64, 211].

Despite the success of GNNs, their widespread usage has also raised social concerns about
the issue of privacy protection [209, 31, 244]. It is worth noting that, in practice, the
graph data used for training may contain sensitive personal information of the involved
individuals [209, 146, 204]. Once trained, these GNNs typically encode such personal
information in the learnable parameters. As a consequence, privacy leakage may happen when
the trained GNNs are deployed and exposed to potential attackers [146, 204]. For example,
the similarity of the health records between patients could provide key information for disease
diagnosis [239]. Therefore, GNNs can be trained on patient networks for disease prediction,
where the connections between patients indicate high similarity scores of their health records.
However, malicious attackers can easily reveal the patients’ health records that are used for
training via membership inference attack [146], which severely threatens privacy. Facing such
a threat of privacy leakage, legislation such as the General Data Protection Regulation (GDPR)
(GDPR 2016) [163], the California Consumer Privacy Act (CCPA) (CCPA 2018) [151], and
the Personal Information Protection and Electronic Documents Act (PIPEDA 2000) [1] have
emphasized the importance of the right to be forgotten [116]. Specifically, users should have
the right to request the deletion of their personal information from those learning models
that encode it. Such an urgent need poses challenges towards removing certain personal
information from the trained GNNs.

The need for information removal from these trained models has led to the development
of machine unlearning [14, 219]. Specifically, the ultimate goal of machine unlearning is
to remove information regarding certain training data from a previously trained model. A
straightforward approach is to perform model re-training. However, on the one hand, the
model owner may not have full access to the training data; on the other hand, re-training
can be prohibitively expensive even if training data is fully accessible [57]. To achieve more
efficient information removal, a series of existing works [14, 20, 86] proposed to directly
modify the parameters of the trained models. Nevertheless, most of these works only achieve
unlearning empirically and fail to provide any theoretical guarantee. This problem has led to
the emerging of certified unlearning [172, 70], which aims to develop unlearning approaches
with theoretical guarantee on their effectiveness. In the domain of graph learning, a few recent
works, such as [209, 31], have explored to achieve certified unlearning for GNNs. However,
a major limitation of these approaches is their low flexibility. First, most approaches are
designed to completely unlearn a given set of nodes or edges, while this may not comply
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with certain unlearning needs in real-world applications. For example, on a social network
platform, a user may decide to stop disclosing certain personal information to the GNN-based
friend recommendation model but continue using the platform. In such a case, the attribute
information of this user should then be partially removed from the GNN model, which protects
the user’s privacy and maintains algorithmic personalization as well. Therefore, it is desired
to develop flexible certified unlearning approaches for GNNs to handle unlearning requests
centered on node attributes. Second, existing certified unlearning approaches are mostly
designed for a specific type of GNNs [31] or the GNNs trained following a specially designed
objective function [209, 31]. However, various GNNs and objectives have been adopted for
diverse real-world applications, and thus it is also desired to develop more flexible certified
unlearning approaches for different GNNs trained with different objectives. Nevertheless,
existing exploration in developing flexible and certified unlearning approaches for GNNs
remains nascent.

In this paper, we study a novel and critical problem of developing a certifiable unlearning
framework that can flexibly unlearn personal information in graphs and generalize across
GNNs. We note that this is a non-trivial task. In essence, we mainly face three challenges.
(i) Characterizing node dependencies. Different from tabular data, the nodes in graph data
usually have dependencies with each other. Properly characterizing node dependencies thus
becomes the first challenge to achieve unlearning for GNNs. (ii) Achieving flexible unlearning.
Unlearning requests may be initiated towards nodes, node attributes (partial or full), and
edges. Meanwhile, various GNNs have been adopted for different applications, and most of
these GNNs have different model structures and optimization objectives. Therefore, achieving
flexible unlearning for different types of unlearning requests, GNN structures, and objectives
becomes the second challenge. (iii) Obtaining certification for unlearning. To reduce the risk
of privacy leakage, it is critical for the model owner to ensure that the information needed
to be removed has been completely wiped out before model deployment. However, GNNs
may have complex structures, and it is difficult to examine whether certain sensitive personal
information remains being encoded or not. Meanwhile, certified unlearning for GNNs usually
requires strict conditions (e.g., assuming that GNNs are trained under a specially designed
objective [209, 31]) and thus sacrifices flexibility. Properly certifying the effectiveness of
unlearning is our third challenge.

Our Contributions. We propose IDEA (flexIble anD cErtified unleArning), which is a
flexible framework of certified unlearning for GNNs. Specifically, to tackle the first two
challenges, we propose to model the intermediate state between the optimization objectives
with and without the instances (e.g., nodes, edges, and attributes) to be unlearned. Meanwhile,
four different types of common unlearning requests are instantiated, and GNN parameters after
unlearning can be efficiently approximated with flexible unlearning request specifications.
To tackle the third challenge, we propose a novel theoretical certification on the unlearning
effectiveness of IDEA. We show that our certification method brings an empirically tighter
bound on the distance between the approximated and actual GNN parameters compared to
other existing alternatives. We summarize our contributions as: (1) Problem Formulation.
We formulate and make an initial investigation on a novel research problem of flexible
and certified unlearning for GNNs. (2) Algorithm Design. We propose IDEA, a flexible
framework of certified unlearning for GNNs without relying on any specific GNN structures or
any specially designed objective functions, which shows significant value for practical use. (3)
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Experimental Evaluation. We conduct comprehensive experiments on real-world datasets
to verify the superiority of IDEA over existing alternatives in multiple key perspectives,
including bound tightness, unlearning efficiency, model utility, and unlearning effectiveness.

5.2.2 Preliminaries

5.2.2.1 Notations

We use bold uppercase letters (e.g., A), bold lowercase letters (e.g., x), and normal lowercase
letters (e.g., n) to denote matrices, vectors, and scalars, respectively. We represent an attributed
graph as G = {V , E ,X}. Here V = {v1, ..., vn} denotes the set of nodes, where n is the total
number of nodes. E ⊂ V × V represents the set of edges. X = {x1,1, ..., xn,c} is the set
of node attribute values, where c is the total number of node attribute dimensions, and xi,j

represents the attribute value of node vi at the j-th attribute dimension (1 ≤ i ≤ n, 1 ≤ j ≤ c).
We utilize fθ to represent a GNN model parameterized by the learnable parameters in θ.

In this paper, we focus on the commonly studied node classification task, which widely exists
in real-world applications. Specifically, we are given the labels of a set of training nodes Vtrn

(Vtrn ⊂ V) as Ytrn. Here Ytrn = {Y1, ..., Ym}, where Yi ∈ {1, ..., c} (1 ≤ i ≤ m) is the node
label of vi; c is the total number of possible classes; and m represents the number of training
nodes, i.e., m = |Vtrn|. Our goal here is to optimize the parameter θ of the GNN model f
with k message-passing layers as θ∗ w.r.t. certain objective function over Vtrn, such that fθ∗ is
able to achieve accurate predictions for the nodes in the test set Vtst (Vtst ∩ Vtrn = ∅).

5.2.2.2 Problem Statement

In this subsection, we formally present the problem formulation of Flexible and Certified
Unlearning for GNNs. We first elaborate on the mathematical formulation of certified
unlearning for GNNs. Specifically, certified unlearning requires that the unlearning strategy
have a theoretical guarantee of unlearning effectiveness. We adopt a commonly used criterion
for the effectiveness of unlearning, i.e., (ε− δ) Certified Unlearning. Here ε and δ are two
parameters controlling the relaxation of such a criterion. We present the definition of (ε− δ)
certified unlearning for GNNs below.

DEFINITION 5.2.1. (ε− δ) Certified Unlearning for GNNs. Let H be the hypothesis space
of a GNN model parameters and A be the associated optimization process. Given a graph G
for GNN optimization and a ∆G that characterizes the information to be unlearned, U is an
(ε− δ) certified unlearning process iff ∀ T ⊆ H, we have

Pr (U (G,∆G,A (G)) ∈ T ) ≤ eεPr (A (G ⊖∆G) ∈ T ) + δ, and

Pr (A (G ⊖∆G) ∈ T ) ≤ eεPr (U (G,∆G,A (G)) ∈ T ) + δ,

where G ⊖∆G represents the graph data with ∆G being removed.

The intuition of Definition 5.2.1 is that, once the two inequalities above are satisfied, the
difference between the distribution of the unlearned GNN parameters and that of the re-trained
GNN parameters over G ⊖∆G is bounded by a small threshold ε and relaxed by a probability
δ. We note that, different from most existing literature on GNN unlearning, the information to
be unlearned does not necessarily come from a node or an edge in Definition 5.2.1. Such an
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extension paves the way towards more flexible certified unlearning for GNNs. We formally
present the problem formulation of Flexible and Certified Unlearning for GNNs below.

PROBLEM 5.2.1. Flexible and Certified Unlearning for GNNs. Given a GNN model fθ∗

optimized over G and any request to unlearn information characterized by ∆G, our goal is to
achieve (ε− δ) certified unlearning over fθ∗ .

5.2.3 Unlearning Request Instantiations

We instantiate the unlearning requests characterized by ∆G, namely Node Unlearning Request,
Edge Unlearning Request, and Attribute Unlearning Request. We present an illustration in
Fig. 5.6.

Node Unlearning Request. The most common unlearning request in GNN applications is
to unlearn a given set of nodes. For example, in a social network platform, a GNN model
can be trained on the friendship network formed by the platform users to perform friendship
recommendation. When a user has decided to quit such a platform and withdrawn the consent
of using her private data, this user may request to unlearn the node associated with her
from the social network. In such a case, the information to be unlearned is characterized by
∆G = {∆V , κe(∆V), κx(∆V)}. Here κe and κx return the set of the direct edges and node
attributes associated with nodes in ∆V , respectively.

Edge Unlearning Request. In addition to the information encoded by the nodes, edges can
also encode critical private information and may need to be unlearned as well. In fact, it has
been empirically proved that malicious attackers can easily infer the edges used for training,
which directly threatens privacy [79]. In such a case, the information to be unlearned is
characterized by ∆G = {∅,∆E ,∅}.

Attribute Unlearning Request. Both requests above fail to represent cases where only node
attributes are requested to be unlearned. Here we show two common node attribute unlearning
requests. (1) Full Attribute Unlearning. In this case, all information regarding the attributes of
a set of nodes is requested to be unlearned. For example, a social network platform user may
withdraw the consent for the GNN-based friend recommendation algorithm to encode any of
its attributes during training. In such a case, the information to be unlearned is characterized
by ∆G = {∅,∅,∆X}, where for node vi, if xi,j ∈ ∆X , then ∀j ∈ {1, ..., c}, xi,j ∈ ∆X . (2)
Partial Attribute Unlearning. The attributes of a node may also be requested to be partially
unlearned. For example, in a social network, a user may withdraw the consent of using the
information regarding certain attribute(s) due to various reasons, e.g., feeling being unfairly
treated. However, this user may still continue using such a platform, and thus other attributes
should not be unlearned to ensure satisfying personalized service quality. In such a case, the
information to be unlearned is characterized by ∆G = {∅,∅,∆X}, where for node vi, if
xi,j ∈ ∆X , then ∃j ∈ {1, ..., c}, xi,j /∈ ∆X . Note that the two types of attribute unlearning
can be requested together. Hence, we utilize ∆X to characterize a mixture of both types of
attributes to be unlearned.

Based on the instantiations above, we denote ∆G = {∆V ,∆E ∪ κe(∆V),∆X ∪ κx(∆V)} as
a potential combination of all types of unlearning requests. Accordingly, we formally define
G ⊖∆G = {V\∆V , E\∆E\κe(∆V),X\∆X\κx(∆V)}.
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FIGURE 5.6. An illustration of common unlearning requests.

5.2.4 Methodology

In this section, we present our proposed framework IDEA, which aims to achieve flexible and
certified unlearning for GNNs. We first present the general formulation of flexible unlearning
for GNNs. Then, we introduce a unified modeling integrating different instantiations of
unlearning requests. We finally propose a novel theoretical guarantee on the effectiveness of
IDEA as the certification.

5.2.4.1 Flexible Unlearning for GNNs

We first present a unified formulation of flexible unlearning for GNNs. In general, our
rationale here is to design a framework to directly approximate the change in the (optimal)
learnable parameter θ∗ during unlearning. Specifically, we first review the training process
of a given GNN model f over graph data G. Then, we consider the training objective with
information of ∆G being removed as a perturbed training objective over G. We are now able
to analyze how the optimal learnable parameter θ∗ would change when the objective function
is modified. Note that we adopt a generalized formulation of such modification over the
objective function, such that our analysis can be adapted to different unlearning requests.

In a typical training process of a given GNN model f over graph data G, the optimal learnable
parameter θ∗ is obtained via solving the optimization problem of

argmin
θ

1

m

∑
vi∈Vtrn

L (θ, vi,G) , (5.2)

where a typical choice of L is cross-entropy loss in node classification tasks. Here we
consider that the computation of L also relies on other necessary information such as Ŷi

by default and omit them for simplicity. As a comparison, the optimal learnable parameter
trained over G ⊖∆G, which we denoted as θ̃∗, is obtained via solving the problem of

argmin
θ

1

m− |∆V|
∑

vi∈Vtrn\∆V

L (θ, vi,G ⊖∆G) . (5.3)

To study how the optimal parameters change when transforming from Eq. (5.2) to Eq. (5.3),
it is necessary to analyze how the objective function and optimal solution change between
the two cases. To systematically compare Eq. (5.2) and Eq. (5.3), here we define ϕk(·)
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as a function that takes a node and a graph as its input and outputs the set of nodes in the
computation graph of the input node (excluding the input node itself). Here a computation
graph is a subgraph centered on a given node with neighbors up to k hops away, where k is
the layer number of the studied GNN. We have the following proposition.

PROPOSITION 5.2.1. Localized Equivalence of Training Nodes. Given ∆G = {∆V ,∆E ,∆X}
to be unlearned and an objective L computed over fθ, L (θ, vi,G) = L (θ, vi,G ⊖∆G)
holds ∀vi /∈ ϕk(vj) ∪ {vj}, vj ∈ ∆V ∪ γe(∆E) ∪ γx(∆X ). Here γe and γx return the set of
nodes that directly connect to the edges in E and that have attribute(s) in X , respectively.

The intuition of Proposition 5.2.1 is that, under a given fθ, the value of L maintains the same
between Eq. (5.2) and Eq. (5.3) for those training nodes that are not topologically close to the
instances (i.e., nodes, attributes, and edges) in ∆G. To bridge Eq. (5.2) and Eq. (5.3), we then
propose a principled formulation to characterize their intermediate state. Specifically, we add
an additional term over Eq. (5.3) by defining θ∗

∆G,ξ with

θ∗
∆G,ξ := argmin

θ

1

m

∑
vi∈Vtrn

L (θ, vi,G) + ξ (Ladd − Lsub) . (5.4)

We then introduce the modeling of Ladd and Lsub. Specifically, we formulate Ladd with

Ladd = α1

∑
vi∈V1

L (θ, vi,G ⊖∆G) + α2

∑
vi∈V2

L (θ, vi,G ⊖∆G)

+α3

∑
vi∈V3

L (θ, vi,G ⊖∆G) + α4

∑
vi∈V4

L (θ, vi,G ⊖∆G) . (5.5)

Here α1, α2, α3, α4 ∈ {0, 1} are used to flag whether the requests of node unlearning, full
attribute unlearning, partial node attribute unlearning, and edge unlearning exist or not,
respectively. We now introduce V1, V2, V3, and V4. Specifically, V1 represents the set of
training nodes whose computation graph includes those nodes to be unlearned. We denote
the sets of nodes associated with ∆X when their unlearned attributes are replaced with any
non-informative numbers (e.g., 0) as V (Full)

x and V (Partial)
x for full and partial attribute unlearning,

respectively. V2 and V3 include training nodes whose computation graph includes attributes
to be unlearned fully and partially plus the nodes in V (Full)

x and V (Partial)
x , respectively; V4 is the

set of nodes whose computation graph includes those edges to be unlearned. Mathematically,
we formulate V1, V2, V3, and V4 as

V1 = ∪vi∈∆V (ϕk(vi) ∩ Vtrn) , (5.6)

V2 = V (Full)
x ∪ {vi : vi ∈ ϕk(vj) ∩ Vtrn, vj ∈ V (Full)

x }, (5.7)

V3 = V (Partial)
x ∪ {vi : vi ∈ ϕk(vj) ∩ Vtrn, vj ∈ V (Partial)

x }, (5.8)

V4 = ∪vi∈γe(∆E) (ϕk(vi) ∩ Vtrn) (5.9)

We then formulate Lsub as

Lsub = α1

∑
vi∈Ṽ1

L (θ, vi,G) + α2

∑
vi∈Ṽ2

L (θ, vi,G)

+α3

∑
vi∈Ṽ3

L (θ, vi,G) + α4

∑
vi∈Ṽ4

L (θ, vi,G) , (5.10)
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where Ṽ1 includes all nodes in ∆V and the training nodes within k hops away from the nodes
in ∆V; We denote the sets of nodes associated with ∆X with their vanilla attributes as Ṽ (Full)

x

and Ṽ (Partial)
x for full and partial attribute unlearning, respectively. Ṽ2 and Ṽ3 include training

nodes whose computation graph includes attributes to be unlearned fully and partially plus
the nodes in Ṽ (Full)

x and Ṽ (Partial)
x , respectively; Ṽ4 is the set of nodes whose computation graph

includes those edges to be unlearned, i.e., Ṽ4 = V4. Mathematically, we have

Ṽ1 = ∪vi∈∆V (ϕk(vi) ∩ Vtrn) ∪∆V , (5.11)

Ṽ2 = Ṽ (Full)
x ∪ {vi : vi ∈ ϕk(vj) ∩ Vtrn, vj ∈ Ṽ (Full)

x }, (5.12)

Ṽ3 = Ṽ (Partial)
x ∪ {vi : vi ∈ ϕk(vj) ∩ Vtrn, vj ∈ Ṽ (Partial)

x }, (5.13)

Ṽ4 = V4. (5.14)

We then have the complete formulation of Eq. (5.4) given Eq. (5.5) to (5.14). Based on the
modeling above, we have the optimal equivalence between Eq. (5.4) and Eq. (5.3) below.

LEMMA 3. Optimal Equivalence. The optimal solution to Eq. (5.4) (denoted as θ∗
∆G,ξ) equals

to the optimal solution to Eq. (5.3) (denoted as θ̃∗) when ξ = 1
m

.

Now we have successfully bridged the gap between Eq. (5.2) and Eq. (5.3) by modeling
their intermediate states with Eq. (5.4). More importantly, Lemma 3 paves the way towards
directly approximating θ̃∗ based on θ∗ by giving Theorem 5.2.1 below.

THEOREM 5.2.1. Approximation with Infinitesimal Residual. Given a graph data G, ∆G =
{∆V ,∆E ,∆X} to be unlearned, and an objective L computed over an fθ∗ , using θ∗+ 1

m
∆θ̄∗

as an approximation of θ̃∗ only brings a first-order infinitesimal residual w.r.t. ∥θ∗ − θ̃∗∥2,
where ∆θ̄∗ = −H−1

θ∗ (∇θLadd −∇θLsub), and Hθ∗ := ∇2
θ

1
m

∑
vi∈Vtrn

L (θ, vi,G).

We note that the approximation strategy above relies on the assumption that ∀Vi ∩ Vj = ∅
and ∀Ṽi ∩ Ṽj = ∅ for i, j ∈ {1, 2, 3, 4} when i ̸= j. However, it can also handle cases where
such an assumption does not hold. We show this in Proposition 5.2.2.

PROPOSITION 5.2.2. Serializability of Approximation. Any mixture of unlearning request
instantiations can be split into multiple sets of unlearning requests, where each set of un-
learning requests satisfies ∀Vi ∩ Vj = ∅ and ∀Ṽi ∩ Ṽj = ∅ for i, j ∈ {1, 2, 3, 4} when i ̸= j.
Serially performing approximation following these request sets achieves upper-bounded error.

Unlearning in Practice. The approximation approach given by Theorem 5.2.1 requires
computing the inverse matrix of the Hessian matrix, which usually leads to high computational
costs. Here we propose to utilize the stochastic estimation method [34] to perform estimation
based on an iterative approach, which reduces the time complexity to O(tp). Here t is the
total number of iterations adopted by the stochastic estimation method, and p represents the
total number of learnable parameters in θ.

5.2.4.2 Unlearning Certification

In this subsection, we introduce a novel certification based on Theorem 5.2.1. According to
the unlearning process given by Definition 5.2.1, our goal is to achieve guaranteed closeness
between θ̃∗ (i.e., the ideal unlearned parameter derived from Eq. (5.3)) and the approximation
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FIGURE 5.7. Distances between θ∗, θ̃∗, and θ̄∗. Here, θ∗ denotes the optimal
parameter before unlearning; θ̃∗ is the ideal optimal parameter after unlearn-
ing, which is obtained via re-training; θ̄∗ is an approximation of θ̃∗ give by
Theorem 5.2.1.

of such a parameter (denoted as θ̄∗). Then we are able to achieve certifiable unlearning
effectiveness.

Although certified unlearning for GNNs is studied by some recent explorations [209, 31],
these approaches can only be applied when the studied GNN model is trained following a
specially modified objective. In particular, such a modification requires adding an additional
regularization term of θ scaled by a random vector onto the objective, which is specially
designed for certification purposes. However, most GNNs are optimized following common
objectives (e.g., cross-entropy loss) instead of such a modified objective. Therefore, these
certified unlearning approaches cannot be flexibly used across different GNNs in real-world
applications. Here we aim to develop a certified unlearning approach based on Theorem 5.2.1,
such that it is not tailored for any optimization objective and thus can be easily generalized
across various GNNs. Towards this goal, we first review the ℓ2 distances between θ∗, θ̃∗, and
θ̄∗. We present an illustration in Fig. 5.7. It is difficult to directly analyze the ℓ2 distance
between θ̃∗ and θ̄∗. We thus start by analyzing the ℓ2 distance between θ∗ and θ̃∗. We found
that the ℓ2 distance between θ∗ and θ̃∗ is upper bounded under common assumptions, which
are widely adopted in other existing works tackling unlearning problems [209, 31, 70]. We
first present these assumptions below.

ASSUMPTION 1. For the training objective of a given GNN model, we have: (1) The loss
values of optimal points are bounded: |L (θ∗)| ≤ C and |L (θ̃∗)| ≤ C; (2) The loss function
L is L-Lipschitz continuous; (3) The loss function L is λ-strongly convex.

Based on Assumption 1, we now present the bound between θ∗ and θ̃∗ in Theorem 5.2.2.

THEOREM 5.2.2. Distance Bound in Optimals. The ℓ2 distance bound between θ̃∗ and θ∗ is
given by

∥θ̃∗ − θ∗∥2 ≤
L|∆V|+

√
4mλC|Ṽ|+ L2|∆V|2

mλ
. (5.15)
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Denote V (F+P)
x = V (Full)

x ∪ V (Partial)
x , and Ṽ is given by

Ṽ = V1 ∪ V4 ∪ {vi : vi ∈ ϕk(vj) ∩ Vtrn, vj ∈ V (F+P)
x }. (5.16)

Here the rationale of Ṽ is to describe the set of nodes whose computation graphs involve
any instance (i.e., nodes, attributes, and edges) to be unlearned. Noticing the relationship
between θ∗, θ̃∗, and θ̄∗ give by Fig. 5.7, we further show the bound between θ̃∗ and θ̄∗ in
Proposition 5.2.3.

PROPOSITION 5.2.3. Distance Bound in Approximation. The ℓ2 distance bound between θ̃∗

and θ̄∗ is given by

∥θ̃∗ − θ̄∗∥2 ≤
λ∥∆θ̄∗∥2 + L|∆V|+

√
4mλC|Ṽ|+ L2|∆V|2

mλ
. (5.17)

The rationale of Proposition 5.2.3 is to characterize the maximum ℓ2 distance between the
ideal unlearning optimal and the approximation of unlearning optimal given by Theorem 5.2.1.
Finally, based on Proposition 5.2.3, we are able to present the certification in Theorem 5.2.3.

THEOREM 5.2.3. Let θ∗ = A (G) be the empirical minimizer over G, θ̃∗ = A (G ⊖∆G) be
the empirical minimizer over G⊖∆G and θ̄∗ be an approximation of θ̃∗. Define ζ as an upper
bound of ∥θ̃∗ − θ̄∗∥2. We have U (G,∆G,A (G)) = θ̄∗ + b is an (ε− δ) certified unlearning
process, where b ∼ N (0, σ2I) and σ ≥ ζ

ε

√
2ln(1.25/δ).

Therefore, according to Theorem 5.2.3, we are able to achieve certified unlearning by adding
zero-mean Gaussian noise over the approximation derived from Theorem 5.2.1.

5.2.5 Experimental Evaluations

We empirically evaluate the performance of IDEA in this section. In particular, we aim to
answer the following research questions. RQ1: How tight can IDEA bound the ℓ2 distance
between the ideal optimal θ̃∗ and the approximation θ̄∗? RQ2: How well can IDEA improve
the efficiency of unlearning compared with re-training and other alternatives? RQ3: How
well can IDEA maintain the utility of the original GNN model? RQ4: How well can IDEA
unlearn the information requested to be removed from the GNN?

5.2.5.1 Experimental Setup

Downstream Task and Datasets. We adopt the widely studied node classification task
as the downstream task, which accounts for a wide range of real-world applications based
on GNNs. We perform experiments over five real-world datasets, including Cora [111],
Citeseer [111], PubMed [111], Coauthor-CS [174, 26], and Coauthor-Physics [174, 26]. These
datasets usually serve as commonly used benchmark datasets for GNN performance over node
classification tasks. Specifically, Cora, Citeseer, and PubMed are citation networks, where
nodes denote research publications and edges represent the citation relationship between any
pair of publications. The node attributes are bag-of-words representations of the publication
keywords. Coauthor-CS, and Coauthor-Physics are two coauthor networks, where nodes
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FIGURE 5.8. Bounds and actual value of the ℓ2 distance between θ̃∗ and θ̄∗,
i.e., ∥θ̃∗ − θ̄∗∥2, over Cora, CiteSeer and PubMed datasets. CEU Worst, CEU
Data Dependent, IDEA, and Actual represent the worst bound based on CEU,
the data-dependent bound based on CEU, the bound based on IDEA, and the
actual value of ∥θ̃∗ − θ̄∗∥2 derived from re-training, respectively.

represent authors and edges denote the collaboration relationship between any pair of authors.
We leave more dataset details, e.g., their statistics, in the online version2.

2See online version here: https://openreview.net/pdf?id=C7nFUdAdXR
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Backbone GNNs. To evaluate the generalization ability of IDEA across different GNNs, we
propose to utilize two types of GNNs, including linear and non-linear GNNs. In terms of
linear GNNs, we adopt the popular SGC [205]; in terms of non-linear GNNs, we adopt three
popular ones, including GCN [111], GAT [188], and GIN [222].

Unlearning Requests. We consider all unlearning requests presented in Section 5.2.3. For
each type of request, we perform experiments over a wide range of scales in terms of the
number of unlearned instances (e.g., nodes and edges). For experiments with fixed ratios, we
adopt a ratio of 5% to perform unlearning for nodes or edges unless otherwise specified.

Threat Models. To evaluate the effectiveness of the unlearning strategy, we propose to adopt
different types of threat models. Although IDEA is able to flexibly perform four different
types of unlearning requests, there are only limited threat models can be chosen from. In
our experiments, we adopt two state-of-the-art threat models, namely MIA-Graph [146] and
StealLink [79], for node membership inference attack and link stealing attack, respectively.

Baselines. We adopt five types of baselines for performance comparison. (1) Re-Training.
We adopt the re-training approach to obtain an ideal model based on the optimization problem
given by Eq. (5.3). (2) Exact Unlearning. We adopt the popular GraphEraser [26] as a
representative method for exact unlearning. Specifically, exact unlearning methods aim to
achieve the exact same probability distribution in the model space (after unlearning) compared
with the re-trained model. As a comparison, IDEA aims to approximate the distribution
of the re-trained model through unlearning. (3) Certified Unlearning. Finally, we adopt
two representative approaches for certified unlearning, namely Certified Graph Unlearning
(CGU) [30] and Certified Edge Unlearning (CEU) [209]. CGU is able to unlearn nodes,
attributes, and edges. However, it is only applicable for the SGC model. As a comparison,
CEU can be adapted to different GNNs. Nevertheless, it is specially designed for edge
unlearning.

Evaluation Metrics. We evaluate IDEA with different metrics to answer the four research
questions. (1) Bound Tightness. We propose to compare the numerical values of the bounds
given by IDEA, the bounds given by other baselines, and the actual ℓ2 distance of model
parameters yielded by re-training. A smaller bound on the ℓ2 distance indicates better tightness.
(2) Model Utility. We utilize the F1 score to measure the model utility after unlearning. A
higher F1 score indicates better performance. (3) Unlearning Efficiency. We utilize the
running time (in seconds) that the unlearning methods take to measure efficiency, and a
shorter running time indicates better efficiency. (4) Unlearning Effectiveness. We use the
attack successful rate after unlearning to measure unlearning effectiveness. Lower attack
successful rates indicate better effectiveness.

5.2.5.2 Evaluation of Bound Tightness

To answer RQ1, we first evaluate how tight the derived bound between θ̃∗ and θ̄∗ can be
across different GNNs, graph datasets, and unlearning ratios. We also compare the bound
derived based on IDEA and other bounds in existing works. To the best of our knowledge,
CEU [209] is the only existing certified unlearning approach that provides generalizable
bounds across different GNNs. In particular, CEU provides bounds over the objective
function after unlearning, and we adapt such bounds over the objective function to ℓ2 distance
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TABLE 5.8. F1 score on five real-world graph datasets under node classifica-
tion task. All numerical values are reported in percentage, and the F1 scores
given by the proposed framework IDEA are marked in bold.

Cora CiteSeer PubMed CS Physics

GCN

Re-Training 76.88 ± 0.3 67.27 ± 0.6 76.20 ± 0.0 86.79 ± 0.3 92.30 ± 0.0
Random 47.97 ± 0.5 46.25 ± 5.6 70.98 ± 0.1 80.64 ± 0.3 75.23 ± 0.1
BEKM 50.68 ± 2.0 46.85 ± 4.9 69.64 ± 0.1 80.30 ± 0.2 74.85 ± 0.1
BLPA 43.79 ± 2.2 40.24 ± 8.3 63.42 ± 5.7 85.10 ± 0.3 78.93 ± 0.5
IDEA 72.08 ± 1.2 61.56 ± 1.2 73.11 ± 0.0 86.13 ± 0.4 91.93 ± 0.1

SGC

Re-Training 76.14 ± 0.6 65.77 ± 0.0 75.90 ± 0.0 87.10 ± 0.1 92.01 ± 0.0
Random 46.00 ± 0.7 45.25 ± 3.0 69.03 ± 0.1 81.30 ± 0.3 80.81 ± 0.1
BEKM 48.83 ± 1.8 46.45 ± 0.4 69.76 ± 0.1 80.08 ± 0.2 74.87 ± 0.2
BLPA 63.59 ± 1.4 39.44 ± 2.8 62.98 ± 4.6 86.95 ± 0.1 87.38 ± 0.1
IDEA 72.94 ± 1.9 63.16 ± 1.0 73.63 ± 0.8 84.68 ± 0.3 91.21 ± 0.1

GIN

Re-Training 82.90 ± 0.6 74.27 ± 0.5 85.31 ± 0.6 90.28 ± 0.2 95.57 ± 0.2
Random 69.25 ± 6.3 51.85 ± 2.7 83.64 ± 1.2 89.17 ± 0.1 91.74 ± 0.5
BEKM 74.05 ± 3.5 65.17 ± 2.8 84.35 ± 0.3 89.39 ± 0.5 92.30 ± 0.3
BLPA 62.48 ± 2.9 55.06 ± 7.2 82.25 ± 1.6 62.29 ± 0.7 71.66 ± 1.4
IDEA 72.57 ± 2.8 66.37 ± 4.6 82.33 ± 0.2 88.48 ± 0.6 94.63 ± 0.1

GAT

Re-Training 83.76 ± 0.3 75.88 ± 0.1 85.02 ± 0.1 92.24 ± 0.1 95.28 ± 0.1
Random 58.18 ± 2.0 55.43 ± 4.3 68.20 ± 6.9 80.75 ± 0.1 78.26 ± 0.1
BEKM 64.20 ± 1.5 57.35 ± 2.8 71.67 ± 0.2 80.37 ± 0.3 77.47 ± 0.2
BLPA 60.88 ± 1.0 58.26 ± 2.6 67.34 ± 3.4 85.22 ± 0.2 86.12 ± 0.2
IDEA 84.38 ± 0.6 75.78 ± 0.9 84.92 ± 0.2 92.20 ± 0.2 95.41 ± 0.0

bounds between θ̃∗ and θ̄∗ based on the common assumption of the objective function being
Lipschitz continuous [209]. We compare the bounds and the ℓ2 distances below. (1) CEU
Worst Bound. We compute the theoretical worst bound derived based on CEU as a baseline of
the ℓ2 distance bound between θ̃∗ and θ̄∗. (2) CEU Data-Dependent Bound. We compute the
data-dependent bound derived based on CEU as a baseline of the ℓ2 distance bound between
θ̃∗ and θ̄∗. A data-dependent bound is tighter than the Worst Bound. (3) IDEA Bound. We
compute the bound given by Proposition 5.2.3 as the bound for the ℓ2 distance between θ̃∗

and θ̄∗. (4) Actual Values. We compare the bounds above with the actual ℓ2 distance between
θ̃∗ and θ̄∗. Note that we focus on edge unlearning tasks to analyze the tightness of the derived
bounds, since this is the only unlearning task CEU supports. We use Unlearn Ratio to refer to
the ratio of edges to be unlearned from the GNN.

We present the bounds and the actual value of the ℓ2 distance between θ̃∗ and θ̄∗ over a wide
range of unlearn ratios (from 1% to 10%), which covers common values, in Fig. 5.8. We
also have similar observations in other cases3. We summarize the observations below. (1)
From the perspective of the general tendency, we observe that larger unlearn ratios usually
lead to larger values in both the derived bounds and the actual ℓ2 distance between θ̃∗ and
θ̄∗. This reveals that a larger unlearn ratio tends to make the approximation of θ̃∗ (with the
calculated θ̄∗) more difficult, which is in alignment with existing works [209]. (2) From the
perspective of the bound tightness, we found that IDEA is able to give tighter bounds in all
cases compared with the bounds given by CEU, especially in cases with larger unlearn ratios.
This reveals that the approximation of θ̃∗ given by IDEA can better characterize the difference
between θ̃∗ and θ∗ compared with CEU.

3See online version for supplementary discussion and experimental results.

123



0.1% 1% 5% 10%
Unlearn Ratio

100

R
u

n
n

in
g

T
im

e
(l
og

10
)

Re-Training
BEKM

CGU
Random

BLPA
IDEA

FIGURE 5.9. Efficiency comparison between IDEA and other baselines in-
cluding retraining. Running time is measured with seconds in log scale.

5.2.5.3 Evaluation of Unlearning Efficiency

To answer RQ2, we then evaluate the efficiency of IDEA in performing unlearning. Specific-
ally, we adopt the common node unlearning task as an example, and we measure the running
time of unlearning in seconds. We note that CGU only supports performing unlearning on
SGC, and thus we adopt SGC as the backbone GNN for IDEA and all other baselines for a
fair comparison. We use Unlearn Ratio to refer to the ratio of training nodes to be unlearned
from the GNN. Here we present a comparison between IDEA and baselines on Cora dataset
in Fig. 5.9. We also have similar observations on other GNNs and datasets4. We summarize
the observations below. (1) From the perspective of the general tendency, we observe that
the running time of re-training does not change across different unlearning ratios. This is
because the number of optimization epochs dominates the running time of re-training, while
the total epoch number does not change no matter how many training nodes are removed.
However, the efficiency of all other baselines is sensitive to the unlearning ratio, and this is
because their running time is closely dependent on the total number of nodes to be unlearned.
Finally, we found that the running time of IDEA is not sensitive to the unlearn ratio. This is
because the number of nodes to be unlearned will only marginally influence the computational
costs associated with Theorem 5.2.1. The stable running time across different numbers of
nodes to be unlearned serves as a key superiority of IDEA over other baselines. (2) From the
perspective of time comparison, we found that IDEA achieves significant superiority over
all other baselines across the wide range of unlearning ratios, especially on relatively large
ones (e.g., 10%). Such an observation indicates that IDEA is able to perform unlearning with
satisfying efficiency, which further reveals its practical significance in real-world applications.

4See online version for supplementary discussion and experimental results.
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5.2.5.4 Evaluation of Model Utility

To answer RQ3, we now compare model utility after performing unlearning with IDEA and
other baselines. We note that GraphEraser is the only baseline that supports flexible generaliz-
ation across different GNN backbones. Therefore, we adopt the three variants of GraphEraser,
i.e., Random, BEKM, and BLPA, as the corresponding baselines for comparison. We adopt
the most common task of node unlearning, and we adopt the F1 score (of node classification)
to measure the model utility after re-training/unlearning. We present comprehensive empirical
results (including four different GNN backbones and all five real-world datasets) in Table 5.8.
In addition to the baselines, we also report the performance of re-training, i.e., the F1 score
given by a re-trained model with the unlearned nodes being removed from the training graph,
for comparison. We summarize the observations below, and similar observations are also
found in different settings5. (1) From the perspective of the general tendency, we observe
that unlearning approaches are usually associated with worse utility performance compared
with re-training. Such a sacrifice is usually considered acceptable, since these unlearning
approaches can bring significant improvement in efficiency compared with re-training. (2)
From the perspective of model utility, we found that IDEA achieves competitive utility com-
pared with other baselines. Specifically, compared with re-training, IDEA only sacrifices
limited utility performance in most cases, and shows better performance in certain cases.
Furthermore, IDEA shows consistent superiority compared with alternatives in most cases.

5.2.5.5 Evaluation of Unlearning Effectiveness

To answer RQ4, we compare the unlearning effectiveness of IDEA and other baselines.
Specifically, we utilize the state-of-the-art attack methods MIA-Graph and StealLink to
evaluate the unlearning effectiveness of node and edge unlearning tasks, respectively. To also
have CGU as a baseline, we adopt SGC as the backbone GNN to ensure a fair comparison. We
present the attack successful rates after node and edge unlearning in Table 5.9. All attacks are
performed over those unlearned nodes/edges, and thus a lower AUC score represents better
unlearning performance. In terms of node attributes unlearning, we note that to the best of our
knowledge, no existing membership inference attack method supports the associated attack.
Here we use the average loss value as an unlearning performance indicator. Specifically, we
perform partial attribute unlearning under different ratios (20%, 50%, 80%) of unlearn attribute
dimensions to the total attribute dimensions. Note that partial attribute unlearning aims to
twist the GNN model such that the GNN model behaves as if it were trained on those nodes
with the unlearn attribute values being set to non-informative numbers (as in Section 5.2.3).
Here we follow a common choice [30] to set such a number as zero. Accordingly, we evaluate
the performance with the average loss values regarding the nodes with the unlearn attributes
being set to zeros, and a lower loss value indicates better unlearning effectiveness. We present
the results in Table 5.10. Note that CGU only supports full attribute unlearning, while the
three variants of GraphEraser only support node/edge unlearning. Therefore, we perform
attribute unlearning and node unlearning for CGU and GraphEraser, respectively. Based
on the settings above, we have the observations below, and consistent observations are also
found under different settings6. (1) From the perspective of node and edge unlearning, we

5See online version for supplementary discussion and experiments.
6See online version for supplementary discussion and experiments.
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TABLE 5.9. Attack AUC scores after node and edge unlearning on Cora. The
results given by IDEA are marked in bold.

Node Unlearning (↓) Edge Unlearning (↓)
Random 50.38 ± 0.5 55.64 ± 2.8
BEKM 50.35 ± 1.2 51.81 ± 0.3
BLPA 50.30 ± 0.4 50.84 ± 3.4
CGU 54.67 ± 2.9 66.52 ± 0.6
IDEA 50.86 ± 1.8 50.11 ± 0.9

TABLE 5.10. Average loss values on Cora regarding the nodes with the
unlearn attributes being set to zeros. Ratio of unlearn node attribute dimensions
to all attribute dimensions varies across 20%, 50%, and 80%. Lower values
represent better performance, and results from IDEA are marked in bold.

20% (↓) 50% (↓) 80% (↓)
Random 1.32 ± 0.06 1.38 ± 0.06 1.35 ± 0.09
BEKM 1.41 ± 0.16 1.47 ± 0.14 1.39 ± 0.12
BLPA 1.47 ± 0.11 1.69 ± 0.37 1.50 ± 0.05
CGU 1.62 ± 0.02 1.73 ± 0.04 1.78 ± 0.06
IDEA 1.29 ± 0.01 1.31 ± 0.01 1.33 ± 0.01

observe that the attack AUC scores over IDEA are among the lowest in both unlearning tasks.
Noticing that the AUC scores given by IDEA are only marginally above 50%, the unlearned
node/edge information has been almost completely removed from the trained GNNs. (2)
From the perspective of attribute unlearning, IDEA exhibits the lowest average loss values in
all (attribute) unlearn ratios. This indicates the superior attribute unlearning performance.

5.2.5.6 Evaluation of Bound Tightness

In this subsection, we present additional experimental results regarding the bound tightness of
the proposed model IDEA. Specifically, here we adopt SGC as our backbone GNN model,
and we present the comparison between three bounds and actual value of the ℓ2 distance
bound between θ̃∗ and θ̄∗ in Figure 5.10.

We present an review of the introduction for the bounds and the ℓ2 distances below (as in
Section 5.2.5.2). (1) CEU Worst Bound. We compute the theoretical worst bound derived
based on CEU as a baseline of the ℓ2 distance bound between θ̃∗ and θ̄∗. (2) CEU Data-
Dependent Bound. We compute the data-dependent bound derived based on CEU as a baseline
of the ℓ2 distance bound between θ̃∗ and θ̄∗. Usually, data-dependent bound is tighter than the
CEU Worst Bound. (3) IDEA Bound. We compute the bound given by Proposition 5.2.3 as
the IDEA bound for the ℓ2 distance bound between θ̃∗ and θ̄∗. (4) Actual Values. We compare
the bounds above with the actual values of the ℓ2 distance between θ̃∗ and θ̄∗. In addition, we
also follow the wide range of unlearning ratios as presented in Section 5.2.5.2.

Below we summarize the observations, which remains consistent with the observations
presented in Section 5.2.5.2 and are also found on other GNNs and datasets. (1) From
the perspective of the general tendency, we observe that when the value of unlearn ratio is
increased (i.e., more edges are unlearned), it generally results in higher values for both the
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(A) Bounds vs. actual ℓ2 distance on Cora.
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(B) Bounds vs. actual ℓ2 distance on Citeseer.
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FIGURE 5.10. Bounds and actual value of the ℓ2 distance between θ̃∗ and θ̄∗,
i.e., ∥θ̃∗ − θ̄∗∥2, over Cora, CiteSeer and PubMed datasets. CEU Worst, CEU
Data Dependent, IDEA, and Actual represent the worst bound based on CEU,
the data-dependent bound based on CEU, the bound based on IDEA, and the
actual value of ∥θ̃∗ − θ̄∗∥2 derived from re-training, respectively.

obtained bounds and the actual ℓ2 distance between θ̃∗ and θ̄∗. This reveals that a higher
unlearn ratio tends to make approximating θ̃∗ (using the calculated θ̄∗) more difficult, which is
also consistent with prior research [209]. (2) From the perspective of the bound tightness, the
obtained results indicate that IDEA consistently provides tighter bounds than those produced
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TABLE 5.11. The running time (in seconds) of edge unlearning on Coauthor-
CS dataset based on GCN. CGU is excluded from comparison since its back-
bone only support SGC. The running time of IDEA is marked in bold.

0.1% 1% 5% 10%
Re-Training 170.0 ± 4.5 170.7 ± 5.6 169.8 ± 7.1 201.2 ± 14
Random 11.54 ± 0.8 11.09 ± 0.2 11.20 ± 0.2 11.07 ± 0.5
BEKM 9.66 ± 0.05 11.23 ± 0.3 10.88 ± 0.2 11.55 ± 0.3
BLPA 10.75 ± 0.1 10.71 ± 0.3 10.77 ± 0.2 10.94 ± 0.2
IDEA 2.823 ± 0.0 2.874 ± 0.1 2.851 ± 0.1 3.328 ± 0.1

by CEU across all scenarios, especially in cases with higher unlearn ratios. This suggests that
the approximation of θ̃∗ offered by IDEA can capture the distance between θ̃∗ and θ∗ more
accurately compared to CEU, especially for larger unlearn ratios.

5.2.5.7 Evaluation of Unlearning Efficiency

In this subsection, we present additional experimental results regarding the unlearning effi-
ciency on different tasks. Specifically, we have shown efficiency comparison between IDEA
and other baselines on node unlearning task in Section 5.2.5.3, and here we present additional
results under edge unlearning task based on GCN, with all other settings being consistent with
the experiments presented in Section 5.2.5.3. We show edge unlearning performance under a
wide range of unlearning ratios (i.e., the ratio of edges to be unlearned to the total number of
edges in the graph) from 0.1% to 10%. We present the experimental results in Table 5.11. We
observe that the running time of the three variants of GraphEraser does not change as much
as in Section 5.2.5.3 across the wide range of ratios. This is because GraphEraser perform
partition over the input graph, which results in different shards. Each shard will contribute
to the overall running time when the unlearn node/edge appear in such a shard. However,
the number of edges is much more than the number of nodes. As a consequence, unlearn
edges appears in most shards even if the unlearn ratio is as small as 0.1%. Hence most shards
contribute to the running time in most cases, leading to a more stable running time across all
ratios. Meanwhile, we also observe that IDEA not only achieves significantly less running
time compared with the re-training approach, but also costs less running time compared with
all other baselines. Such observation is consistent with the observation in Section 5.2.5.3,
and can also be found on other datasets and GNNs. This indicates the superiority of IDEA in
terms of the unlearning efficiency.

TABLE 5.12. AUC scores of attacks on Co-author CS based on GCN after
node and edge unlearning, respectively. The results given by IDEA is marked
in bold.

Node Unlearning (↓) Edge Unlearning (↓)
Random 51.51 ± 0.7 50.26 ± 0.4
BEKM 50.24 ± 0.8 50.26 ± 0.1
BLPA 51.42 ± 0.8 50.04 ± 0.2
IDEA 50.15 ± 0.8 50.02 ± 0.7
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TABLE 5.14. Node classification accuracy after edge unlearning. The results
marked with (U) and (R) are accuracy values derived from unlearning with
IDEA and from re-training, respectively. The accuracy values of IDEA are
marked in bold for the convenience of comparison.

0.1% 1% 5% 10%
Cora (U) 81.18 ± 0.9 81.18 ± 1.4 79.34 ± 0.8 78.35 ± 1.0
Cora (R) 84.50 ± 0.3 84.38 ± 0.3 82.41 ± 0.5 82.29 ± 0.3
CiteSeer (U) 69.87 ± 1.3 69.87 ± 0.8 68.47 ± 0.8 67.27 ± 0.6
CiteSeer (R) 74.97 ± 0.3 75.38 ± 0.5 72.97 ± 0.7 73.57 ± 0.7
PubMed (U) 81.02 ± 1.0 80.90 ± 0.9 79.63 ± 0.9 77.96 ± 0.8
PubMed (R) 84.99 ± 0.1 84.77 ± 0.0 83.82 ± 0.1 81.91 ± 0.1
CS (U) 88.62 ± 5.4 92.42 ± 0.3 91.58 ± 0.3 90.91 ± 0.7
CS (R) 91.89 ± 1.6 92.73 ± 0.3 92.82 ± 0.1 91.84 ± 0.2
Physics (U) 95.68 ± 0.4 95.64 ± 0.1 95.50 ± 0.3 95.19 ± 0.3
Physics (R) 96.11 ± 0.2 96.03 ± 0.2 96.00 ± 0.2 95.86 ± 0.2

TABLE 5.13. Average loss values regarding the nodes with the unlearn at-
tribute values being set to zero on CiteSeer. Lower values represents better
unlearning performance, and the results given by IDEA are marked in bold.

20% (↓) 50% (↓) 80% (↓)
Random 1.44 ± 0.09 1.43 ± 0.08 1.48 ± 0.12
BEKM 1.44 ± 0.06 1.50 ± 0.04 1.51 ± 0.09
BLPA 1.40 ± 0.19 1.45 ± 0.27 1.50 ± 0.09
IDEA 1.25 ± 0.01 1.28 ± 0.01 1.33 ± 0.02

5.2.5.8 Evaluation of Model Utility

We now present additional results for the evaluation of model utility. We have shown the node
classification accuracy comparison based on the SGC model in Section 5.2.5.4, and here we
show the node classification accuracy comparison between IDEA and re-training based on
the GCN model in Table 5.14. We maintain all other settings to be consistent with those in
Section 5.2.5.4. The model utility given by IDEA and re-training is compared across a wide
range of unlearn ratio values (from 0.1% to 10% ). We observe that the unlearning given
by IDEA only sacrifices limited utility compared with re-training, which remains consistent
with the observation in Section 5.2.5.4, and such an observation can also be found on other
datasets, unlearning tasks and GNNs. This indicates the satisfying usability of IDEA.

5.2.5.9 Evaluation of Unlearning Effectiveness

Finally, we present additional results for the evaluation of unlearning effectiveness. To evaluate
the generalization capability of IDEA, here we utilize a different GNN model (compared
with the results in Section 5.2.5.5), which is GCN, as the backbone. We adopt a consistent
evaluation protocol as shown in Section 5.2.5.5, and we present the experimental results of
node/edge unlearning and attribute unlearning in Table 5.12 and Table 5.13, respectively.
We found that, first, in terms of node and edge unlearning tasks, we observe that the attacks
on IDEA show the lowest attack successful AUC scores, which are marginally above 50%

129



(almost equivalent to random guess). This indicates the effectiveness of IDEA in performing
node and edge unlearning. Second, we observe that the average loss values given by IDEA
are the lowest among all baselines. Since the loss values are collected from the nodes whose
unlearn attribute values have already been set to zero, a lower loss value indicates better
unlearning effectiveness. Therefore, the satisfying effectiveness of IDEA is further validated.
Additionally, we note that these observations can also be found on other unlearning tasks,
datasets, and GNNs, which indicates the satisfying unlearning effectiveness of IDEA.

5.2.6 Related Work

Certified Machine Unlearning. The general desiderata of machine unlearning is to remove
the influence of certain training data on the model parameters, such that the model can
behave as if it never saw such data [219, 145, 14]. Re-training the model without making the
unlearning data visible is an ideal way to achieve such a goal, while it is usually infeasible in
practice due to various reasons such as prohibitively high computational costs. A popular way
to approach the goal of unlearning is to directly approximate the re-trained model parameters,
a.k.a., approximate unlearning [219, 186]. Certified machine unlearning is under the umbrella
of approximate unlearning, and it has stood out due to the capability of providing theoretical
guarantee on the unlearning effectiveness. A commonly used criterion of certified unlearning
is (ε− δ) certified unlearning [70, 172], which utilizes two parameters ε and δ to describe
the proximity between the re-trained model parameter distribution and approximated model
parameter distribution in the model space. In recent years, various techniques have been
proposed to achieve certified unlearning [241, 202, 139]. However, they overwhelmingly
focus on independent, identically distributed (i.i.d.) data and fail to consider the dependency
between data points. Therefore, they cannot be directly adopted to perform unlearning over
GNNs. Different from the works above, our paper proposes a certified unlearning approach
for GNNs, which necessitates the modeling of dependencies between instances in graphs
(e.g., nodes and edges).

Machine Unlearning for Graph Neural Networks. Over the years, GNNs have been
increasingly deployed in a plethora of applications [245, 210]. Similar to other machine
learning models, they also face the risk of privacy leakage, where the private information is
considered to be encoded in the training data [167]. Such a threat has prompted the emerging
of unlearning approaches for GNNs [26, 149, 29, 208]. However, these works only achieve
unlearning for GNNs empirically, failing to provide theoretical guarantee on the effectiveness.
To further strengthen the power of unlearning for GNNs and enhance the confidence of model
owners before model deployment, a few recent works have initiated explorations on certified
unlearning for GNNs. Wu et al. [209] propose CEU to unlearn edges that are visible to GNNs
during training, while edge unlearning is the only type of request it is able to handle. Chien
et al. [30] proposed a different certified unlearning approach for GNNs to also handle node
and attribute unlearning requests, while such an approach is only applicable to a specially
simplified GNN model. Meanwhile, these approaches can only handle limited types of
unlearning requests, which further jeopardizes their flexibility in real-world applications.
Different from these works, our paper proposes a flexible unlearning framework that can
handle different types of unlearning requests. On top of this framework, an effectiveness
certification is proposed without relying on specific GNN structures or objective functions.
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5.2.7 Conclusion

In this paper, we propose IDEA, a flexible framework of certified unlearning for GNNs.
Specifically, we first formulate and study a novel problem of flexible and certified unlearning
for GNNs, which aims to flexibly handle different unlearning requests with theoretical
guarantee. To tackle this problem, we develop IDEA by analyzing the objective difference
before and after certain information is removed from the graph. We further present theoretical
guarantee as the certification for unlearning effectiveness. Extensive experiments on real-
world datasets demonstrate the superiority of IDEA in multiple key perspectives. Meanwhile,
two future directions are worth further investigation. First, we focus on the common node
classification task in this paper, and we will extend the proposed framework to other tasks,
such as graph classification. Second, considering that GNNs may be trained in a decentralized
manner, it is critical to study GNN unlearning under a distributed setting.

131



CHAPTER 6

Conclusion and Future Directions

In this chapter, we first conclude the key research contributions of this dissertation, and then
discuss the future research directions in the area of fair graph machine learning.

6.1 Key Research Contributions

In this section, we summarize the research contributions in explanation, optimization, and
certification from the perspective of fairness for graph machine learning.

Fairness Explanation in Graph Machine Learning. In this research theme, we present two
research works that achieve explanation for Graph Neural Networks (GNNs) from the data
and model perspectives, respectively. We summarize their main contributions below.

In the first work, we propose an innovative framework to interpret, measure and mitigate
unfairness in GNNs at the level of individual training nodes. This contributes to the potential
for developing more transparent and fair graph machine learning methods. We summarize the
main contributions below. First, this work formulates a novel problem of GNNs by attributing
model bias to the influence of specific training nodes. This provides a new perspective
on understanding how bias arises in GNNs. Second, this work proposes a new fairness
metric called Probabilistic Distribution Disparity (PDD) which measures the bias exhibited in
the probabilistic outputs of GNNs. PDD provides finer granularity compared to traditional
fairness metrics computed on predicted labels, allowing it to better capture the influence
of individual training nodes on the bias exhibited by the model. Third, this work develops
an efficient algorithm named BIND to estimate the influence of each training node on the
exhibited bias (by the model) without requiring expensive retraining of GNNs. The algorithm
analyzes the training loss to characterize dependencies between nodes, which enables us to
characterize the non-IID nature of graph data. Finally, based on the experiments on real-world
datasets, it demonstrates: (1) PDD is consistent with traditional fairness metrics; (2) BIND
can efficiently and effectively estimate node influence on model bias; (3) Debiasing GNNs by
deleting harmful training nodes identified by BIND can reduce bias while preserving utility.

In the second work, we study a novel problem of providing structural explanations of bias
exhibited in GNNs. This research direction aims to improve the transparency of the fairness
levels of GNNs in terms of the graph structure. First, this work formulates the problem of
identifying two edge sets in a node’s computation graph that can maximally account for
the bias and maximally contribute to the fairness of the GNN’s prediction for that node.
Explaining both bias and fairness provides a more comprehensive understanding compared
to only explaining one aspect. Second, this work proposes a novel metric to quantify the
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bias in a node’s GNN prediction by measuring its contribution to the overall distribution
difference in the output space between different sensitive groups. This novel bias metric
enables quantitative explanations of bias. Third, this work introduces REFEREE, a novel
framework with two explainers that learn to identify the aforementioned edge sets while
remaining faithful to the original predictions. The two explainers work in a contrastive manner
to better distinguish bias-inducing and fairness-promoting edges. Finally, experiments on
real-world datasets demonstrate: (1) REFEREE outperforms baselines in identifying edges
that explain bias and fairness; (2) REFEREE’s explanations maintain high fidelity to the
original GNN’s predictions; (3) Removing edges identified by REFEREE as promoting bias
can effectively mitigate the overall bias of GNNs.

Fairness Optimization in Graph Machine Learning. In this research theme, we present
three research works that achieve GNN bias mitigation. Here, two works focus on the
commonly used group fairness notion, and one work aims to achieve bias mitigation from the
more granular individual fairness perspective. We summarize their contributions below.

While most prior work on fairness in graph mining has focused on group fairness with respect
to protected attributes, the first work explores the less-studied notion of individual fairness to
ensure GNNs treat similar nodes similarly. First, this work refines the notion of individual
fairness from a ranking perspective. Specifically, this paper defines individual fairness based
on the consistency between the similarity ranking of nodes to any given node in the input space
and the output space. Second, in this work, we proposes a novel plug-and-play framework
named REDRESS to optimize individual fairness in GNNs while preserving the model utility.
REDRESS optimizes GNN utility and individual fairness jointly in an end-to-end manner,
where the individual fairness promotion is achieved through a ranking-based optimization.
Third, extensive experiments in node classification and link prediction tasks on real-world
graphs demonstrate the superiority of REDRESS compared with other alternatives on both
fairness and utility metrics.

In the second work, we propose a novel framework named EDITS to mitigate the bias encoded
in the input graph data for GNNs in a model-agnostic manner. This enables training fairer
GNNs without needing to modify the GNN architecture or perform retraining. Specifically,
this work first formulates a novel problem of debiasing attributed networks used as input
for GNNs. We analyze how bias can arise from both node attributes and graph structure,
and how these propagate bias in GNNs. This provides insights into the sources of bias in
graph data. Second, we propose novel metrics to quantify attribute bias and structural bias in
attributed networks. These enable measuring bias directly in the input graph data. Third, we
develop a debiasing framework named EDITS to mitigate bias in both node attributes and
graph structure while preserving the GNN performance on downstream tasks. We use separate
modules for attribute debiasing and structural debiasing. EDITS works in a model-agnostic
way, i.e., it does not rely on the adopted GNN structure. Finally, based on experiments on
both synthetic and real-world datasets, we demonstrate: (1) the proposed bias metrics can
effectively quantify bias in graph data; (2) EDITS can successfully mitigate bias in the input
attributed networks; (3) using the debiased graph data from EDITS can reduce bias in the
predictions of various GNN models while maintaining utility.

In the third work, we take initial steps towards developing a fair knowledge distillation
framework for compressing GNNs while mitigating bias at the same time. Specifically, first,
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we formulate a novel problem of fair knowledge distillation for GNN-based teacher-student
frameworks. This draws attention to an understudied but critical fairness issue in GNN model
compression. Second, we propose a principled framework named RELIANT to learn a less
biased student GNN. A key innovation is learning a proxy of the model bias exhibited on
the training nodes, which enables debiasing the student model’s predictions by excluding the
bias proxy during inference. Importantly, RELIANT is designed to be agnostic to the specific
teacher and student model architectures, whcih allows it to be easily adapted to various
GNN knowledge distillation approaches. Third, we reformulate the debiasing objective using
differentiable polynomials to approximate bias under traditional fairness notions. This enables
RELIANT to be optimized in an end-to-end manner using efficient gradient-based techniques.
Finally, we conduct extensive experiments on multiple real-world datasets which demonstrate
that RELIANT can effectively debias the student model while maintaining comparable utility
as the teacher GNN across different knowledge distillation frameworks and GNN backbones.

Fairness Certification in Graph Machine Learning. This research theme serves as an early
investigation into the problem of achieving certification for GNNs from the perspective of
algorithmic fairness. We summarize the contributions of the two introduced works below.

In the first work, we formulates a novel research problem of certifying GNN classifiers on
their fairness levels. The goal is to obtain a classifier on top of an optimized GNN that
will be guaranteed not to exhibit bias above a given threshold under certain perturbation
budgets, no matter what perturbations are made to the node attributes and/or graph structure.
This work proposes a principled framework called ELEGANT to address this problem.
ELEGANT serves as a plug-and-play framework that can achieve certified fairness defense
for any optimized GNN ready to be deployed, without relying on assumptions about the
GNN structure or parameters. In particular, the proposed framework ELEGANT leverages
randomized smoothing techniques to defend against malicious attacks on both node attributes
and graph topology in a concurrent manner. It provides theoretical certification on the fairness
of GNNs under the perturbation budgets. Third, theoretical analysis is provided to derive
the certified perturbation budgets on node attributes and graph topology that ELEGANT
can take while provably maintaining the fairness of GNN predictions under a specified
threshold. Finally, extensive experiments on real-world datasets demonstrate the effectiveness
of the proposed framework in achieving high fairness certification rates across different
GNN backbones while maintaining comparable utility to the vanilla GNNs. Additionally,
ELEGANT is also shown to be beneficial for debiasing GNNs as a byproduct.

In the second work, we note that certain sensitive information such as gender or race can be
encoded in the GNNs in the training stage, and such information may bring more bias to the
model. Meanwhile, the consent (from the involved individuals) of using such information
can also be withdrawn. Therefore, it becomes a critical need to remove (i.e., unlearn) such
information from an optimized GNN model. Accordingly, we formulate a novel problem of
achieving flexible and certified unlearning for GNNs. We instantiate four types of practical
unlearning requests, including node, edge, full attribute, and partial attribute unlearning.
This expands the scope of GNN unlearning beyond the commonly studied node and edge
unlearning scenarios. We further design the IDEA framework to handle diverse unlearning
requests and provide theoretical guarantees on the unlearning effectiveness. Importantly,
IDEA is not tailored to specific GNN architectures or objective functions, enhancing its
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flexibility and generalizability. Then, we present the theoretical certification of the unlearning
effectiveness in IDEA. Such a certification provides tighter bounds on the distance between
the approximated and actual parameters after information removal than existing alternatives.
This strengthens the reliability of the unlearning process and boosts confidence in deploying
the unlearned models. Finally, we conduct comprehensive experiments on real-world datasets
to demonstrate the superiority of IDEA over state-of-the-art baselines in terms of bound
tightness, unlearning efficiency, model utility preservation, and unlearning effectiveness
against privacy attacks. These results highlight the practical significance of IDEA.

6.2 Future Directions

6.2.1 Short-Term Plan

Benchmarking Large-Scale Responsible Graph Machine Learning. Despite the significant
progress of responsible graph machine learning, there are still challenges deserving further
research, and the problem of benchmarking the performance of responsible graph machine
learning is among the most significant ones. Reasons include (1) existing works are under
inconsistent settings and (2) most existing works only perform experiments on graph datasets
with limited scales. Correspondingly, it becomes difficult to compare the performance across
different works, and their usability also remains unclear. Through large-scale benchmarking,
I aim to reveal their performances in not only fairness but also other related perspectives (e.g.,
model transparency and privacy), presenting a clear landscape of advances in responsible
graph machine learning.

Exploring Pareto Optimal for Responsible Graph Machine Learning. Existing efforts
towards responsible graph machine learning usually sacrifice the performance from other
perspectives such as utility (e.g., accuracy in node classification tasks). Nevertheless, it
remains unclear (1) whether it is possible to achieve responsible models at no or little costs;
and (2) where the theoretical Pareto optimal boundary of improving accountability versus
the model performance in utility is. Properly answering these questions is crucial, since
it is necessary to evaluate whether the cost is affordable or not before the deployment of
responsible graph machine learning models. Through this, I aim to reveal a clearer boundary
of costs in achieving accountability, and ultimately facilitate the benefits we gain from
responsible graph machine learning.

Building Privacy-Preserving Graph Machine Learning. If a graph machine learning model
potentially makes biased predictions, then there is a risk of privacy leakage. A preliminary
reason is that most biased predictions are dependent on the sensitive attributes regarding the
individuals involved, such as their gender, race, and occupation. For example, consider a
social network where nodes represent individuals and edges represent their social connections.
A graph-based recommendation system may inadvertently expose the likelihood of someone
belonging to a particular minority group based on the homogeneous nature of their immediate
network connections. This not only can lead to biased recommendations, but also risk
revealing the privacy of social connections for the involved individuals without their explicit
consent. Therefore, to facilitate responsible graph machine learning, it is an urgent need to
ensure that these models are privacy-preserving before deployment.
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6.2.2 Long-Term Plan

Facilitating Responsible AI in Human-Computer Interaction (HCI). A bigger picture
behind my current study is responsible AI, which directly benefits the interaction between
human and technology. Correspondingly, a huge potential of my research lies in facilitating
the development of intuitive, explainable, and privacy-preserving AI technologies tailored
for the next-generation HCI systems. The core of this research direction is developing
interactive frameworks that can seamlessly interpret and represent the nature of human
behavior, preferences, and cognitive processes when interacting with AI-driven interfaces.
The challenges in this domain arise from the complex human dynamics, emotions, and the vast
range of interaction modalities (e.g., voice and gestures). To address these, I will explore the
following pertinent questions: (1) How can we balance the automation of AI with the need of
users to control, ensuring that AI does not override human decisions in interactive scenarios?
(2) How can we amplify the generalization capacity of responsible AI models to help users
from different demographic subgroups interact and engage well with systems? (3) How can
we ensure the robustness and trustworthiness of AI models used for HCI systems, especially
when only ambiguous or incomplete user inputs and feedback are available? (4) How can
we design AI-powered HCI systems to ethically recognize and adapt to diverse cultural,
social, and personal user contexts to ensure a globally inclusive interaction experience? I am
firmly convinced that pioneering efforts in this domain will pave the way for more humane,
transparent, and adaptable AI systems that truly resonate with human needs and aspirations.
As part of my commitment to pave the advancement in this area, I will actively seek funding
opportunities.

Supporting Sustainable Decision-Making with AI. I have worked on bridging the gap
between responsible graph machine learning algorithms with inclusive decision-making.
However, in a higher level, how to achieve more sustainable decision-making with the help of
machine learning algorithms remains unanswered, e.g., promoting long-term societal benefits,
environmental health, and equitable growth. Therefore, there remain various interesting
research topics in bridging the gap between responsible AI algorithms and sustainable decision-
making. I believe it would continuously provide guidance to the next-generation AI, covering
a wide range of applications (e.g., bio-medicine, recommender system, epidemiological
study, economic analysis, and human-involved AI). In the future, I will mainly explore the
following questions in this area: (1) How can we measure the societal impact of AI-driven
decisions, especially on marginalized populations and social inequalities? (2) How can we
foster collaborations between AI and fields like environmental science and sociology to align
AI algorithms with sustainability goals? (3) How can we better detect and mitigate biases in
AI that influence crucial sustainability domains like conservation and public health? (4) How
can we enhance the transparency and explainability of AI models, ensuring stakeholders in
sustainable sectors fully understand and trust AI-driven recommendations and actions?

Investigating AI for Metropolitan Development. Responsible AI also plays a critical role
in facilitating metropolitan development, such as providing accountable suggestions to help
decision-making for urban planners. For example, with ethical AI technology, urban planners
are able to create a more inclusive environment for residents from different communities, and
thus the social good can be largely facilitated. Such a goal directly delivers a positive social
impact to residents, which is in accordance with the priorities outlined in the United Nations’
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17 Sustainable Development Goals (SDGs). In my Ph.D. study, I have rich research and
proposal submission opportunities in the domain of responsible AI, including different aspects
such as developing AI techniques to mitigate discrimination and facilitate inclusive decision-
making in ML model predictions [46, 47, 52] and improving ML model explainability to
provide feedback for human [51, 48, 137]. In the future, I will investigate the following
research questions: (1) How can we develop responsible AI frameworks to mitigate societal
biases and disparities between different demographic subgroups in urban planning? (2)
How can we utilize AI-powered frameworks to ensure that the metropolitan feedback and
monitoring system serves various demographic groups, especially marginalized populations?
and (3) How can we take advantage of the developed AI systems to foster community
engagement and implement iterative feedback mechanisms? (4) How can AI be utilized to
optimize resource allocation in urban planning, ensuring equitable access to essential services
and opportunities across different demographic groups?
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