
Designing Robust Control Rules for Stochastic
Engineered Systems

A Thesis Presented to
The Faculty of of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment
of the Requirements for the Degree

of Doctorate of Philosophy

Department of Systems and Information Engineering

By
Hossein Kavianihamedani

June 2024

ACKNOWLEDGMENTS

Before I thank anyone else, I must express my profound gratitude for Dr. Julianne Quinn.

Dr. Quinn has not only been my mentor, but has also been someone I can turn to for

motivation and guidance. I would not be where I am today without her constant support.

Of course, I also owe my thanks to my committee members: Dr. Negin Alemazkoor, Dr.

Laura Barnes, Dr. Antonios Mamalakis, and Dr. Seokhyun Chung. You all have played a

crucial role in the culmination of my doctorate.

I would also like to thank the entirety of the University of Virginia’s Research Comput-

ing Department. In particular, I’d like to extend my appreciation to Dr. Ruoshi Sun who

played an influential role in assisting with my experiments. I’d like to wholeheartedly

thank each one of you, I couldn’t have done it without you.

Needless to say, I also owe much of my experience to my labmates within the Quinn

Group: Samarth Singh, Sarah Jordan, Jared Smith, Daniel Lassiter, Mashood Ur Rahman,

and Kajol Basnet. Each and every one of you has been instrumental to my success. I

deeply appreciate the time we’ve spent working together and the friendship we built,

which I am confident will last a lifetime.

Last and certainly not least, I would like to thank my friends and family, who have

supported me every second during my pursuit of higher education. I thank my mom

and dad for all the sacrifices they made, my brothers who always supported me, and

especially my partner Leah, who encouraged and stood by me throughout this journey. I

would also like to thank the sand volleyball community in Charlottesville. I was fortunate

enough to be a part of this community while pursuing my PhD studies.

i

ABSTRACT

Limited availability of in-situ hydrological data stands as a challenge to modeling and

managing water resources systems. This is because effective water infrastructure plan-

ning and management requires an understanding of natural system processes and their

interactions with the built environment; yet limited in-situ data requires the estimation

of model parameters describing these processes through calibration. Such parametric

model uncertainty can have significant implications for infrastructure design; however,

it is often ignored in the design stage. In response to this pressing issue, this research

proposes to improve the quantification and management of uncertainty in hydrologi-

cal models. First, we introduce innovative diagnostic tools to assess the performance

of Markov Chain Monte Carlo (MCMC) algorithms in calibrating complex physical mod-

els with high-dimensionality and multimodality using analytical test problems as bench-

mark examples. Second, we propose to utilize our knowledge of effective algorithms

gained through the first study to quantify parametric uncertainty in a Stormwater Man-

agement Model (SWMM) of an urbanizing system. We then propose to design stochastic

multi-objective control rules for flood risk reduction that are robust to this uncertainty.

The latter step will contribute to the literature through two papers: The first study will

introduce Evolutionary Multi-Objective Direct Policy Search (EMODPS) to the stormwa-

ter control literature and compare it with Deep Deterministic Policy Gradient (DDPG),

which has been used in designing stormwater control rules. The second study will pro-

vide insights into how to most effectively design stormwater control rules that account

for parametric hydrological model uncertainty. This research promises to advance our

understanding of how to better quantify and manage uncertainty in water resources sys-

tems.

ii

CONTENTS

Acknowledgements i

Abstract ii

List of Tables vi

List of Figures vii

List of Symbols and Abbreviations xv

1 Introduction 1

2 New Diagnostic Assessment of MCMC Algorithm Effectiveness, Efficiency, Re-

liability, and Controllability 5

2.1 Abstract . 5

2.2 Introduction . 6

2.3 Algorithms . 11

2.3.1 Metropolis Hastings (MH) . 11

2.3.2 Adaptive Metropolis (AM) . 13

2.3.3 Differential Evolution Adaptive Metropolis (DREAM) 14

2.4 Computational Experiment . 16

2.5 Metrics . 19

2.5.1 Gelman-Rubin (GR) diagnostic . 19

2.5.2 Kullback-Leibler Divergence (KLD) 21

2.5.3 Wasserstein Distance (WD) . 22

iii

2.6 Test Problems . 23

2.6.1 High-Dimensional Test Problem . 24

2.6.2 Bimodal Test Problem . 24

2.7 Results and Discussion . 25

2.7.1 Diagnostics on 100D MVN Test Problem 25

2.7.2 Diagnostics on 10D Bimodal Mixed-Gaussian Test Problem 31

2.8 Conclusions . 37

2.9 Code and Data . 40

3 Tackling Complexity: EMODPS vs. DDPG for Multi-Objective Reinforcement

Learning 41

3.1 Abstract . 41

3.2 Introduction . 42

3.3 Algorithms . 47

3.3.1 EMODPS . 47

3.3.2 DDPG . 49

3.4 Case Study . 54

3.5 Computational Experiment . 56

3.6 Results and Discussion . 59

3.6.1 Performance of Optimized EMODPS and DDPG Policies 59

3.6.2 Understanding Optimized EMODPS and DDPG Policies 62

3.7 Discussion and Conclusions . 69

3.8 Code and Data . 71

4 Designing Stormwater Control Rules Under Parametric Uncertainty 72

4.1 Abstract . 72

iv

4.2 Introduction . 73

4.3 Methods . 76

4.3.1 Case Study . 76

4.3.2 Bayesian Calibration . 77

4.3.3 Robust Optimization . 80

4.4 Results and Discussion . 85

4.4.1 Parameter Calibration Results . 85

4.4.2 Parameterization Selection Results . 86

4.4.3 Performance of Optimized and Re-simulated Policies With Differ-

ent Optimization Methods . 87

4.4.4 Understanding Optimized and Re-simulated Policies With Differ-

ent Optimization Methods . 90

4.5 Conclusions and Future Work . 94

4.6 Code and Data Availability . 96

5 Conclusions and Future Work 97

A Appendix 100

A.1 Figures . 100

B Appendix 108

B.1 Figures . 108

Bibliography 111

v

LIST OF TABLES

2.1 Ranges of algorithmic hyperparameters sampled uniformly by Latin hy-

percube sampling. 20

3.1 Tuned Hyperparameters for RL and Deep Learning Components 53

3.2 DDPG and EMODPS states, actions, and objectives 58

4.1 SWMM model parameters to be calibrated. 78

vi

LIST OF FIGURES

2.1 Experimental design of this study. For each algorithm and test problem,

calibration is performed across a Latin hypercube sample of algorithm

hyperparameters for multiple seeds. Performance metrics are computed

based on the proximity of the estimated posterior to the true posterior. The

reliability of the algorithm is illustrated by CDFs of the probability of at-

taining certain performance levels on the metrics, while the effectiveness,

efficiency and controllability are illustrated in control maps of the average

performance metric as a function of the number of function evaluations

(NFE) and chains. This figure is adapted from Reed et al. (2013). 17

2.2 (a-e) Control maps for the 100D MVN test problem illustrating the aver-

age Wasserstein distance (WD) across random seeds as a function of the

number of function evaluations (NFE) and number of chains for (a) MH

without optimization, (b) AM without optimization, (c) DREAM, (d) MH

with optimization, and (e) MH with optimization. (f) Attainment maps il-

lustrating the probability of attaining different WDs (shown on the y axis)

across all seeds and hyperparameters for each algorithm. 26

2.3 Posterior marginals of the 50th dimension of the 100D MVN test problem

when using the hyperparameter closest to (a) the least number of chains

and the most NFE, (b) the highest number of chains and the most NFE, (c)

the median number of chains and the median NFE, (d) the least number of

chains and the least NFE, and (e) the most number of chains and the least

NFE. 29

vii

2.4 (a-e) CDFs of WD across random seeds for each hyperparameter on the

100D MVN test problem. The color of the hyperparameter indicates the

value of the parameter to which that algorithm’s WD was most sensitive.

(f) Decomposition of how much variance in WD is explained by each hy-

perparameter and their interaction for each algorithm. 30

2.5 Attainment and control maps of each algorithm on the 10D Bimodal test

problem based on (a-d) WD, (e-h) GR diagnostic of the first dimension,

(i-l) KLD. 31

2.6 Comparison of the estimated MH marginal posterior of the first dimension

of the 10D bimodal test problem from individual chains and across chains

using select hyperparameter sets with (a) a high GR and low KLD and (d)

the reverse; (b) a high GR and low WD and (e) the reverse; and (c) a high

KLD and low WD and (f) the reverse. 32

2.7 Control maps showing the number of seeds (out of 25) of each algorithm

that achieved (a-d) KLD<1, (d-f) WD<120, and (g-i) both on the 10D Bi-

modal test problem. 34

2.8 (a-c) CDFs of KLDs across random seeds for each hyperparameter. The

color of the CDF indicates the value of the hyperparameter to which that

algorithm’s KLD is most sensitive. (d) Decomposition of how much vari-

ablity in KLD is explained by each hyperparameter and their interaction

for each algorithm. (e-g) Comparison of the estimated marginal posterior

of the first dimension of the 10D bimodal test problem from individual

chains and across chains using select hyperparameter sets with (e) KLD

near 0, (f) KLD near 10 and (g) KLD near 20. 36

3.1 Schematic of the stylized stormwater system used in this study. 55

viii

3.2 Feedback control loop of the optimization process. Rainfall data is passed

to PySWMM, which initializes the state variables. The states (pond depths

and rainfall forecast) are input to operating polices, which determine the

actions to be taken (% of the pond orifices to open). PySWMM executes

those actions, updates the state variables, and the process repeats. At each

time step (for DDPG) or the end of the simulation (for EMODPS), objectives

are computed based on the simulation. Finally, this process is coupled with

an optimizer to update the operating policies to reduce simulated flooding. 57

3.3 Illustration of the simulation-optimization approach to training DDPG and

EMODPS networks. In DDPG, the states from the PySWMM environment

are passed to the actor and critic networks, which then output the actions

to be taken by the environment. The actor and critic networks are then

updated by the TD error and the process repeats. In EMODPS, the states

are passed to the policy function (here, NCRBFs), which outputs the actions

to be taken. An optimization algorithm then optimizes the parameters of

the policy function. 60

3.4 (a) Objective values of optimized control policies of EMODPS and DDPG

algorithms on the training set. Note the DDPG solutions do not form a

Pareto set, as some solutions found for certain sets of weights were dom-

inated by others. (b) Objective values of the optimized control policies in

panel (a) when re-simulated on the test set. The best solution on each ob-

jective and a compromise solution from each formulation are indicated in

panel (b) and selected for further analysis. 61

ix

3.5 Time series of states, actions, and objectives of the DDPG and EMODPS

policies with the lowest downstream flooding in the test set over the pe-

riod of May 15 - Sep 1, 1998. (a,b) Perfect 24-hour rainfall forecast and stor-

age pond depths of SP1 and SP2, (c,d) orifice openness of O1 and O2, and

(e,f) flooding downstream and upstream for selected (DDPG, EMODPS)

solutions. 63

3.6 Time series of states, actions, and objectives of the DDPG and EMODPS

policies with the lowest upstream flooding in the test set over the period

of May 15 - Sep 1, 1998. (a,b) Perfect 24-hour rainfall forecast and storage

pond depths of SP1 and SP2, (c,d) orifice openness of O1 and O2, and (e,f)

flooding downstream and upstream for selected (DDPG, EMODPS) solu-

tions. 66

3.7 Time series of states, actions, and objectives of the DDPG and EMODPS

compromise policies in the test set over the period of May 15 - Sep 1, 1998.

(a,b) Perfect 24-hour rainfall forecast and storage pond depths of SP1 and

SP2, (c,d) orifice openness of O1 and O2, and (e,f) flooding downstream

and upstream for selected (DDPG, EMODPS) solutions. 67

4.1 Trace plots of (a) N Imperv, (b) Max Infiltration Rate, and (c) Drying Time

values sampled by each chain of DREAM over the course of the search after

removing burn-in . 86

4.2 K-mean clustering plot - displaying Within-Cluster Sum of Squares (WCSS)

vs number of clusters. 87

x

4.3 (a) Objective values of optimized control policies of MAP, MORO, and Min-

Max along with synthetic truth as determined . (b) Objective values of the

control policies in panel (a) when re-simulated on the synthetic truth. A

compromise solution from each formulation based on their performance

in panel (a) is selected for further analysis, and their corresponding re-

simulated values on the synthetic truth are shown in panel (b). 88

4.4 KDE plots showing the differences between optimization solutions and

their re-simulation over synthetic truth data across MAP, MORO, and Min-

Max methods for upstream (a) and downstream (b) flooding objectives . . . 90

4.5 Time series of states, actions, and objectives of the MAP, MORO, and Min-

Max policies over the period of Jun-Sep 1995. (a=d) Perfect 24-hour rainfall

forecast and storage pond depths of SP1 and SP2, (e-h) orifice openness of

O1 and O2, and (i-l) upstream and downstream flooding for compromise

solutions from MAP, MORO, Min-Max, and the Synthetic Truth 92

A.1 (a-e) Control maps illustrating the average Kullback-Leibler Divergence

(KLD) across random seeds on the 100D MVN test problem as a function

of the number of function evaluations (NFE) and number of chains for.(f)

Attainment maps illustrating the probability of attaining different KLDs

across all seeds and hyperparameters for each algorithm. 100

A.2 (a-e) Control maps illustrating the average Gelman-Rubin (GR) diagnostic

of the first dimension of the 100D MVN test problem across random seeds

as a function of the number of function evaluations (NFE) and number of

chains.(f) Attainment maps illustrating the probability of attaining differ-

ent WDs across all seeds and hyperparameters for each algorithm. 101

xi

A.3 Posterior marginals of the 1st dimension of the 100D MVN test problem

when using the hyperparameter closest to (a) the least number of chains

and the most NFE, (b) the highest number of chains and the most NFE, (c)

the median number of chains and the median NFE, (d) the least number of

chains and the least NFE, and (e) the most number of chains and the least

NFE. 102

A.4 Posterior marginals of the 100th dimension of the 100D MVN test problem

when using the hyperparameter closest to (a) the least number of chains

and the most NFE, (b) the highest number of chains and the most NFE, (c)

the median number of chains and the median NFE, (d) the least number of

chains and the least NFE, and (e) the most number of chains and the least

NFE. 102

A.5 (a-e) Cumulative distribution functions (CDFs) of Kullback-Leibler Diver-

gence (KLD) across random seeds for each hyperparameter on the 100D

MVN test problem. The color of the hyperparameter indicates the value

of the parameter to which that algorithm’s WD was most sensitive. (f)

Decomposition of how much variablity in KLD is explained by each hy-

perparameter and their interaction for each algorithm. 103

A.6 (a-e) Cumulative distribution functions (CDFs) of the Gelman-Rubin (GR)

diagnostic of the first dimension across random seeds for each hyperpa-

rameter on the 100D MVN test problem. The color of the hyperparam-

eter indicates the value of the parameter to which that algorithm’s WD

was most sensitive. (f) Decomposition of how much variablity in GR is

explained by each hyperparameter and their interaction for each algorithm. 104

xii

A.7 Comparison of the estimated marginal posterior of the 5th dimension of

the 10D bimodal test problem from individual chains and across chains

using select hyperparameter sets with (a) a high GR and low KLD and (d)

the reverse; (b) a high GR and low WD and (e) the reverse; and (c) a high

KLD and low WD and (f) the reverse. 105

A.8 Comparison of the estimated marginal posterior of the 10th dimension of

the 10D bimodal test problem from individual chains and across chains

using select hyperparameter sets with (a) a high GR and low KLD and (d)

the reverse; (b) a high GR and low WD and (e) the reverse; and (c) a high

KLD and low WD and (f) the reverse. 106

A.9 (a-c) Cumulative distribution functions (CDFs) of Wasserstein distance

(WD) across random seeds for each hyperparameter on the 10D bimodal

problem. The color of the hyperparameter indicates the value of the pa-

rameter to which that algorithm’s WD was most sensitive. (d) Decompo-

sition of how much variablity in WD is explained by each hyperparameter

and their interaction for each algorithm. 106

A.10 (a-c) Cumulative distribution functions (CDFs) of the Gelman-Rubin (GR)

diagnostic of the first dimension of the 10D bimodal problem across ran-

dom seeds for each hyperparameter. The color of the hyperparameter in-

dicates the value of the parameter to which that algorithm’s WD was most

sensitive. (d) Decomposition of how much variablity in WD is explained

by each hyperparameter and their interaction for each algorithm. 107

xiii

A.11 Comparison of the estimated marginal posterior of (a-c) the 5th dimen-

sion of the 10D bimodal test problem and (d-f) the 10th dimension from

individual chains and across chains using select hyperparameter sets with

(a,d) KLD near 0, (b,e) KLD near 10 and (c,f) KLD near 20. 107

B.1 Quantile-quantile plots of residuals in depths at ponds 1 and 2 simulated

by SWMM with one Latin hypercube sample of parameter values over their

ranges compared to the synthetic truth when using (a-b) normal distribu-

tion, (c-d) Student-t distribution, (e-f) Cauchy distribution, (g-h) Asymmet-

ric Laplace distribution. 109

B.2 Log-likelihood of residuals in depths at ponds 1 and 2 vs. Nash-Sutcliffe

Efficiency (NSE) between simulations and observations under one Latin

hypercube sample of SWMM parameters if using (a-b) normal likelihood

function, (c-d) Student-t likelihood function, (e-f) Cauchy likelihood func-

tion, (g-h) Asymmetric Laplace likelihood function. 110

xiv

LIST OF SYMBOLS AND ABBREVIATIONS

AM . . Adaptive Metropolis

ANN . . Artificial Neural Networks

CDF . . Cumulative Distribution Function

DDPG . Deep Deterministic Policy Gradients

DE . . . Differential Evolution

DRAM . Delayed Rejection Adaptive Metropolis

DREAM Differential Evolution Adaptive Metropolis

DPS . . Direct Policy Search

EMODPS Evolutionary Multi-Objective Direct Policy Search

ESS . . Effective Sample Size

GR . . . Gelman-Rubin

KDE . . Kernel Density Estimate

KLD . . Kullback-Leibler Divergence

LH . . . Latin hypercube

MAP . . Maximum A-Posteriori

MCMC . Markov Chain Monte Carlo

MH . . Metropolis-Hastings

MPC . . Model Predictive Control

MOEAs Multi-Objective Evolutionary Algorithms

MORL . Multi-Objective Reinforcement Learning

MORO . Multi-Objective Robust Optimization

MSE . . Mean Squared Error

xv

MVN . Multi-Variate Normal distribution

NCRBFs Nonconvex Gaussian Radial Basis Functions

NFE . . Number of Function Evaluations

O1 . . . Orifice 1

O2 . . . Orifice 2

RBC . . Rule Based Control

RBFs . . Radial Basis Functions

RL . . . Reinforcement Learning

RTC . . Real Time Control

S1 . . . Subwatershed 1

S2 . . . Subwatershed 2

SUs . . Service Units (

SSE . . Sum of Squared Errors

SWMM Stormwater Management Model

TD . . . Temporal Distance

WCSS . Within Cluster Sum of Squares

WD . . Wasserstein Distance

xvi

CHAPTER 1

Introduction

Decision making systems must contend with inherent uncertainties (Chankong &

Haimes, 2008; Koutsoyiannis & Economou, 2003; Srikrishnan et al., 2022). These un-

certainties could be structural uncertainties in the governing relationships that define

how the system functions, parametric uncertainties within the structural relationships,

or stochastic uncertainty in exogenous forcing (Srikrishnan et al., 2022). All these uncer-

tainties can significantly impact the outcomes and effectiveness of decisions, making it

crucial to account for them in the decision making process (Marchau et al., 2019; Lem-

pert et al., 2013; Giuliani & Castelletti, 2016). This becomes even more challenging when

optimizing complex systems with multiple conflicting objectives (Quinn et al., 2017).

One important real-world application of multi-objective decision making under un-

certainty is in managing stormwater systems. Between 1980 and 2010, the urban land

area in the United States expanded by 43% (Demographia), and it is expected to grow by

an additional 43% by 2050 (Nowak & Walton, 2005). This urban expansion brings with

it heightened risks of increased flooding. For instance, a study examining streamflows

across the United States since 1980 revealed that with every 1% increase in impervious

surface area, annual flood magnitudes, on average, increased by 3.3% (Blum et al., 2020).

These risks will be further exacerbated by more frequent and severe weather events asso-

ciated with climate change (Coumou & Rahmstorf, 2012). To mitigate the impact of rising

flood risks, there will be a need for enhanced control of stormwater infrastructure.

Stormwater control decisions regarding flood mitigation are usually guided by

physically-based models that suffer from significant parametric uncertainty. However,

decision making frameworks applied to inform flood control in stormwater systems of-

ten focus strictly on designing for stochastic uncertainty from precipitation, potentially

1

under climate change(Dotto et al., 2012, 2014). Yet ignoring parametric uncertainty could

have severe consequences. Oftentimes, multiple combinations of hydrological model pa-

rameters can yield similar performance in simulating values close to observations, called

“equifinality” (Beven & Binley, 1992, 2014). These different possible parameter values

may have different design implications. Therefore, it is crucial to identify system designs

that are robust to parametric uncertainty and can be implemented with minimal expected

regrets (Lempert, 2003; Marchau et al., 2019).

Bayesian inference methods can be utilized to characterize parameter uncertainty by

updating prior beliefs about parameters and deriving their posterior distributions (Lim

et al., 2006; Ning & You, 2017; Xie et al., 2023). Monte Carlo Markov Chain (MCMC) is

a well-known statistical method used to estimate these posterior distributions and has

been applied in stormwater and hydrology studies (Castelletti & Soncini-Sessa, 2007;

Vrugt et al., 2009; ?). However, employing MCMC can be computationally expensive,

especially for models with a large number of parameters. Moreover, existing metrics

(Gelman & Rubin, 1992; Vallender, 1974) and diagnostics (Roberts, 1992; Ritter & Tanner,

1992; Mykland et al., 1995) for assessing MCMC performance primarily focus on conver-

gence rate and often neglect other critical aspects. These include the sensitivity of the

algorithm’s efficiency to hyperparameter settings, the consistency of the algorithm across

various problem ranges, and the speed at which the algorithm estimates the posterior

distributions.

While choosing the right statistical method to characterize parameter uncertainty is

important, selecting the appropriate optimization tool is equally significant. Stormwater

systems are inherently complex and involve multiple conflicting objectives (Di Matteo

et al., 2017; Kumar et al., 2022). Control rules in these systems must be designed effi-

ciently to meet various stakeholder requirements, such as mitigating flooding, improving

2

water quality, or ensuring habitat protection (Kumar et al., 2022). Deciding on a solution

to balance these conflicting objectives is often best informed by deliberation over a set

of diverse, “non-dominated” trade-off policies, known as the Pareto front. Unfortunately,

prior studies on stormwater optimization have only searched for a single policy to balance

conflicting objectives, rather than illustrating the full Pareto front of different policies and

their trade-offs to stakeholders (Saliba et al., 2020; Yu et al., 2022). Additionally, because

no studies have performed multi-objective optimization of stormwater control rules, the

stormwater literature lacks a comprehensive comparison of alternative approaches to

finding a Pareto front. It is not clear whether it is better to use value-based reinforcement

learning approaches that have been used for single-objective problems (Bowes et al., 2021,

2022) with different weights on the conflicting objectives, or policy-based reinforcement

learning with a multi-objective evolutionary algorithm, as has been done in the reservoir

operations literature (Giuliani et al., 2021). This gap underscores the need for a compre-

hensive evaluation of multi-objective reinforcement learning algorithms to enhance the

decision-making process in stormwater management.

In this thesis, we seek to address these gaps in the literature to advance robust opti-

mization methods for multi-objective stormwater control. Multi-objective robust control

requires 1) selecting an appropriate algorithm for uncertainty quantification, 2) selecting

an appropriate algorithm for multi-objective reinforcement learning (MORL), and 3) de-

termining how to couple the uncertainty quantification with the reinforcement learning

algorithm to design control rules that are robust to it. We devote one chapter to each of

these steps.

First, in chapter 2, we present new diagnostics to assess MCMC algorithms in terms

of their effectiveness (ability to accurately find representative posterior modes), efficiency

(speed of posterior characterization), reliability (consistency across different random

3

seeds), and controllability (insensitivity to hyperparameter variation) (Kavianihamedani

et al., 2024). The findings from this study can help users select the right MCMC algorithm

for their specific problem. For example, if a problem is low-dimensional or known to be

unimodal, engineers may choose one algorithm based on our findings, whereas if it is

high-dimensional or its modality is unknown, they may choose another.

Second, in chapter 3, we introduce Evolutionary Multi-Objective Direct Policy Search

(EMODPS) (Giuliani et al., 2016) to the stormwater control literature. We then compare

the performance of this strictly policy-based RL approach in generating a Pareto front of

control rules with that of a value-based RL approach that has been used in the stormwa-

ter control literature for single-objective problems: Deep Deterministic Policy Gradient

(DDPG) (Mullapudi et al., 2020; Bowes et al., 2021). This study provides insights into how

to most effectively design stormwater control rules for multiple conflicting objectives.

Lastly, in chapter 4, leveraging the insights from the first two studies, we design

a robust optimization framework to address parameter uncertainty in multi-objective

stormwater control. We introduce two robust optimization approaches: Multi-Objective

Robust Optimization (MORO), which designs control rules to optimize the posterior-

weighted average of multiple likely parameterizations, and Min-Max Optimization,

which designs control rules considering the worst-case of the likely parameterizations.

These are compared with the traditional approach of simply designing control rules to

the Maximum A-Posteriori (MAP) parameter set. The findings from this study can help

decision-makers incorporate robust optimization strategies into their systems, thereby

improving stormwater management.

Finally, the overarching insights across all three of these studies is summarized in

chapter 5, along with a discussion of areas for future work.

4

CHAPTER 2

New Diagnostic Assessment of MCMC Algorithm Effectiveness, Efficiency,

Reliability, and Controllability

This chapter is largely reproduced from the following publication:

Kavianihamedani, H., Quinn, J.D., & Smith, J.D. (2024). New Diagnostic Assessment

of MCMC Algorithm Effectiveness, Efficiency, Reliability, and Controllability. IEEE

Access. 12, 42385-42400.

2.1 ABSTRACT

Markov Chain Monte Carlo (MCMC) is a robust statistical approach for estimating pos-

terior distributions. However, the significant computational cost associated with MCMC

presents a considerable challenge, complicating the selection of an appropriate algorithm

tailored to the specific problem at hand. This study introduces a novel and compre-

hensive framework for evaluating the performance of MCMC algorithms, drawing in-

spiration from diagnostics used for multi-objective evolutionary algorithms. We em-

ploy visualizations to evaluate key algorithmic characteristics: Effectiveness (the abil-

ity to accurately find representative posterior modes, quantified by the Kullback-Leibler

Divergence (KLD) and Wasserstein Distance (WD)), Efficiency (the speed of posterior

characterization), Reliability (consistency across different random seeds), and Control-

lability (insensitivity to hyperparameter variation). Evaluating three prominent MCMC

algorithmsMetropolis-Hastings (MH), Adaptive Metropolis (AM), and Differential Evo-

lution Adaptive Metropolis (DREAM)on high-dimensional and bimodal test problems,

our analysis uncovers several insights. First, across algorithms, the number of func-

tion evaluations most controls performance on the high-dimensional problem, while the

5

number of chains most controls performance on the bimodal problem. While this sug-

gests similar controllability across algorithms, differences emerge on the other algorith-

mic characteristics. For high numbers of functions evaluations, AM performs best on the

high-dimensional problem, while for low (<5) and high (>15) chain counts, MH and AM

perform best on the bimodal problem, as measured by KLD. However, outside these spe-

cific cases, DREAM consistently demonstrates superior efficiency and reliability, making

it a robust choice for both high-dimensional and multimodal problems. These findings

can inform MCMC algorithm selection for Bayesian inference applications, as well as

hyperparameterization of the chosen algorithm. More importantly, the diagnostics rep-

resent a generalizable contribution to research on MCMC diagnostics that can be used to

evaluate and inform the design of new algorithms.

2.2 INTRODUCTION

Bayesian inference can be used to estimate the parameters, θ, of a model and their associ-

ated uncertainty, given the available data. This is useful for informing robust engineering

designs that can tolerate this uncertainty; see example applications in Lim et al. (2006);

Mandur & Budman (2012, 2014); Campbell & How (2015); Liang & Mahadevan (2015);

Ning & You (2017); Xie et al. (2023). The approach relies on Bayes’ theorem in which

the modeler uses their knowledge of the system’s physical behavior and mathematical

constraints to develop a prior probability distribution for the parameters, p(θ), that is up-

dated by the likelihood of observing the data x, p(x|θ). This allows the estimation of the

posterior probability of that parameter set given the observed data, p(θ|x):

p(θ|x) = p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

. (2.1)

6

The posterior distribution represents the uncertainty of the model parameters to which

we would like engineering designs to be robust.

Markov Chain Monte Carlo (MCMC) is a powerful statistical method used to estimate

posterior distributions. MCMC uses a Monte Carlo simulation to sample from a Markov

Chain whose transition probabilities from the current point in the chain to the next pro-

posed point in the parameter space are determined by the relative posterior density of the

current and proposed locations. In the long run, the distribution sampled by the Markov

chain will become stationary and represent the true posterior distribution. However, us-

ing posterior estimates from MCMC prematurely before the algorithm has converged to

its stationary distribution could result in a poor characterization of uncertainty, and con-

sequently over- or under-designed systems. As such, a vast body of literature has focused

on developing diagnostics to assess the convergence of MCMC search processes (see re-

views of MCMC diagnostics by Cowles & Carlin (1996); Roy (2020)). Specifically, these

diagnostics focus on determining 1) how many initial iterations should be discarded as

“burn-in” because they are far from the posterior mode and not representative of the sta-

tionary distribution; and 2) how many iterations are sufficient to stop the algorithm, as

the chain has converged to its stationary distribution (Jones & Hobert, 2001).

In some cases, one can calculate these numbers theoretically. For example, if it can be

shown through drift and minorization criteria (Rosenthal, 1995) that the chain converges

at an exponential rate, a bound on the number of burn-in iterations needed for the total

variation distance between the estimated and true posterior to reach some tolerance can

be calculated (Roberts & Tweedie, 1999). A similar estimation can be performed using

Wasserstein distance (Durmus & Moulines, 2015). With respect to the total number of

iterations, if a Central Limit Theorem exists for some function g of the samples X (such

as their mean or variance), one can estimate the sample size needed for g(X) to converge

7

to its true value at some confidence level (Roy, 2020).

Unfortunately, for black box-type parameter estimation problems that are common in

engineering, no such theoretical bounds can be estimated (Geyer, 2011). Instead, MCMC

users must rely on visual or quantitative metrics of convergence, many of which require

running multiple chains (Cowles & Carlin, 1996). Visual MCMC diagnostics monitor the

progress of the search using graphical tools like trace plots, histograms, and correlograms.

These visual aids cannot identify with certainty that a chain has converged, but they can

identify problems that indicate it has not. For example, trace plots of the chain location

vs. iterations illustrate if the chains are getting stuck, moving too slowly due to high

auto-correlation, or trending and therefore not yet stationary; histograms indicate if the

posterior estimates across chains are inconsistent with one another; and correlograms

indicate if the autocorrelation in the chains is too high, reducing the effective sample

size (ESS) (Roy, 2020). Plots of more complex chain statistics have also been proposed

(Roberts, 1992; Ritter & Tanner, 1992; Mykland et al., 1995), but these are problem or

algorithm-specific.

Because graphical plots can only identify problems in convergence, these diagnostics

are typically complemented by numerical convergence metrics that provide more objec-

tive stopping criteria. The most common metric, the Gelman-Rubin (GR) diagnostic, cal-

culates the ratio of the variance across chains to the average within-chain variance, with

a value < 1.1 recommended as a stopping criterion (Gelman & Rubin, 1992). In multi-

variate settings, i.e. when calibrating multiple parameters, one can enforce this across

all parameters or use the multivariate adaptation of the metric (Brooks & Gelman, 1998).

Another common stopping criterion is a threshold of the (multivariate) Effective Sam-

ple Size (mESS), which accounts for autocorrelation in the chain (Robert et al., 2004; Vats

et al., 2019). Heidelberger & Welch (1983) perform hypothesis tests for stationarity of the

8

Markov chain at different points in the chain to determine how much to remove as burn-

in because the null hypothesis that the chain is stationary is rejected when that portion

is included. In a similar vein, others perform hypothesis tests comparing kernel density

estimates across pairs of chains to determine if they have the same distribution (which is

assumed to be the stationary distribution). Metrics for such tests include the L-1 distance

(Yu et al., 1995), Hellinger distance (Boone et al., 2014) or Kullback-Leibler Divergence

(KLD) (Dixit & Roy, 2017). If any of these graphical or quantitative diagnostics indicates

non-convergence, adjustments to the search process can be made, such as “thinning” the

chain by only retaining every k samples to reduce auto-correlation, modifying the proba-

bility of using different operators that are used to propose new chain locations, adapting

the algorithm’s hyperparameters (e.g. covariance matrix) to improve exploration, or sim-

ply extending the search duration (Gelman et al., 2013).

While these metrics are useful for identifying if an individual search process has not

converged, they provide limited insights into how to improve convergence. The con-

ventional approach of manually tuning algorithmic hyperparameters to improve per-

formance can be laborious, and recommended default ranges may not always perform

well. Ideally, an algorithm should exhibit robustness to its hyperparameterization and

be primarily controlled by the number of function evaluations (NFE) (Hadka & Reed,

2012; Reed et al., 2013). However, existing diagnostics do not measure this controllabil-

ity. Furthermore, simply diagnosing performance of an individual search process does

not provide insights into which algorithms perform well on which class of problems, and

which are robust across problems. To address these limitations, we propose new diag-

nostic tools to evaluate MCMC algorithms and inform the choice of suitable methods for

specific types of inverse problems.

Drawing from diagnostics used to evaluate the performance of multi-objective evo-

9

lutionary algorithms (Hadka & Reed, 2012; Reed et al., 2013), in this study, we present a

novel and comprehensive framework for evaluating MCMC algorithm performance. Our

approach provides visualizations that show existing diagnostic metrics in a new way, il-

lustrating the following algorithmic characteristics:

• Effectiveness: A measure of the ability of an MCMC algorithm to find a posterior

mode (or multiple modes) that is (are) representative of the true uncertainty, and

to characterize the full posterior distribution. Existing metrics include L-1 distance,

Hellinger distance, and KLD.

• Efficiency The speed with which the posterior is able to be characterized. Existing

metrics include the ESS and mESS.

• Reliability: How consistently the algorithm is able to characterize the posterior

across different random seeds. This is typically quantified by the GR diagnostic.

• Controllability: The insensitivity of an algorithm’s efficiency to its hyperparameter-

ization, a desirable property so that the user does not have to fine-tune hyperpa-

rameters to achieve good performance. This is not typically quantified in MCMC

diagnostics.

Diagnosing these features collectively across algorithmic hyperparameters and ran-

dom seeds fills an important gap in the literature that only diagnoses convergence of

a single search process, ignoring algorithmic controllability across hyperparameteriza-

tions. The visualizations we produce of these characteristics can inform the choice of a

robust MCMC algorithm and corresponding hyperparameterization, whose convergence

can then be assessed using existing diagnostics. As such, our new MCMC diagnostics

play a complementary role to existing MCMC diagnostics.

10

Our study is organized as follows. Section briefly describes the MCMC algorithms

we compare 2.3, Section 2.4 outlines the experimental design used for this comparison,

Section 2.5 lists the metrics used to quantify performance, and Section 2.6 introduces the

test problems on which the algorithms are evaluated. We illustrate the results of this

computational experiment and our new diagnostics in Section 2.7. Finally, we close with

our conclusions about MCMC algorithm performance illustrated by our new diagnostics

in the conclusions.

2.3 ALGORITHMS

In this section, we describe the three Bayesian estimation algorithms examined in our

study: Metropolis-Hastings (MH), Adaptive Metropolis (AM), and Differential Evolution

Adaptive Metropolis with a snooker update and sampling from an archive of past states

(DREAM(ZS)). These algorithms serve as powerful tools for exploring and sampling from

complex parameter spaces in Bayesian analysis. While there are other algorithms for

Bayesian estimation, we limit our exploration to these three for illustrative purposes of

our new diagnostics. However, our diagnostics can be extended to other algorithms.

All algorithms were implemented using the BayesianTools package in R (Hartig et al.,

2023), which provides general-purpose MCMC samplers for Bayesian statistics. This

package offers a wide range of functionalities for efficient implementation and analy-

sis of Bayesian models, making it an accessible tool for conducting advanced Bayesian

inference tasks, such as comparing alternative algorithms.

2.3.1 Metropolis Hastings (MH)

The MH algorithm (Metropolis et al., 1953; Hastings, 1970) is a widely used MCMC

method that enables sampling from complex posterior distributions. First, an initial pa-

11

rameter set θ0 is sampled from the prior distribution and then new parameters θ′ are

generated (proposed) from a proposal distribution that is centered about the current lo-

cation. MH proposes new parameter sets by using a symmetric proposal distribution,

typically a multivariate normal distribution (MVN), as is implemented in BayesianTools.

This is referred to as Gaussian mutation. A proposed move is accepted with probability

α, determined by equation 2.2:

α = min
(
1,

p(θ′|x)g(θt|θ′)
p(θt|x)g(θ′|θt)

)
(2.2)

where g(θ′|θt) is the probability of proposing parameters θ′ given the current parameters

are θt, and g(θt|θ′) is the reverse. Note that, g(θ′|θt) = g(θt|θ′) if the proposal distribution

is symmetric. This is referred to as the Metropolis step, or accept-reject step.

In BayesianTools, the initial samples of the chain can be optimized at an estimate of

the maximum of the posterior distribution, with the goal of reducing the amount of burn-

in by starting in a high posterior density region. This is controlled by a binary hyper-

parameter Optimize = True or False. If true, BayesianTools utilizes the Brent algorithm

(Brent, 1971) for single-parameter estimation problems, and the Nelder-Mead algorithm

(Nelder & Mead, 1965) for multi-dimensional problems, both of which are derivative-free.

Nelder-Mead algorithm may converge to a non-stationary point (McKinnon, 1998), and it

is a local optimizer, therefore it may not do well on multi-modal problems. The other hy-

perparameters of MH algorithm are the total number of function evaluations, the number

of chains, and percent of function evaluations to remove as burn-in (see Table 3.1 for a list

of the hyperparameters in each algorithm).

12

2.3.2 Adaptive Metropolis (AM)

MH provides a foundational framework for Bayesian inference and has been successfully

applied in various fields. However, one limitation of MH is the fixed proposal distri-

bution, which may not effectively explore high-dimensional or multi-modal parameter

spaces. To address this limitation and improve exploration efficiency, the AM algorithm

(Haario et al., 2001) incorporates adaptive strategies for updating the covariance of the

proposal distribution throughout the search. This adaptation is determined by the points

sampled during the MCMC process. By adaptively updating the proposal covariance,

AM strikes a balance between exploration and exploitation in the parameter space. It al-

lows the algorithm to explore regions of high uncertainty by increasing the variance when

uncertainty across sampled points is high, leading to better mixing of the Markov chains.

However, it also allows the algorithm to exploit regions of high probability density by

decreasing variance when uncertainty across sampled points is low, thus improving con-

vergence. While this may be unnecessary for low-dimensional problems for which MH

may be faster, the adaptive nature of AM makes it more effective in high-dimensional pa-

rameter spaces and when dealing with complex posterior distributions. This adaptivity

enhances the exploration capabilities of the algorithm, resulting in improved efficiency

and convergence rates (Roberts & Rosenthal, 2009). In BayesianTools, adaptation is con-

trolled by two hyperparameters: AdaptStart, which indicates the percent of evaluations

after burn-in at which adaptation begins, and AdaptInterval, which indicates the fraction

of remaining evaluations after AdaptStart at which adaptation occurs.

We allow AM to be employed with delayed rejection, also called Delayed Rejection

Adaptive Metropolis (DRAM) (Haario et al., 2006). In DRAM, once a proposed point

has been rejected, instead of proceeding to the next time step and remaining in the cur-

rent state, a second-stage proposal is made that depends on both the current state and

13

the state that was just proposed and rejected. The second-stage proposal is then accepted

or rejected based on a modified acceptance probability that preserves reversibility of the

Markov chain. This can be repeated multiple times, the number of which is controlled in

our experiment by the parameter DRlevels (see Table 3.1). We also allow for optimization

of initial starting points in the AM search, controlled by a binary Optimize hyperparam-

eter, as in MH.

2.3.3 Differential Evolution Adaptive Metropolis (DREAM)

While the ability to adapt the proposal distribution through AM can speed up conver-

gence with respect to MH, it is still limited by using a single proposal operator (typically,

Gaussian mutation). The DREAM(ZS) algorithm (Laloy & Vrugt, 2012) is a population-

based MCMC method that advances AM further by adding additional proposal opera-

tors to the AM algorithm: differential evolution (DE) and a snooker update (S). This can

further enhance exploration on high-dimensional, multi-modal problems, but may come

at the expense of deeper exploitation of high-posterior regions. For simplicity, we refer to

this algorithm as simply “DREAM” throughout the remainder of the chapter.

The population of DREAM refers to the states of multiple chains, as well as an archive

of their past states. These are used jointly to propose new chain locations using operators

beyond Gaussian mutation, including DE and a snooker update, which are accepted ac-

cording to the Metropolis rule. DE is a vector translational operator originally developed

for use in evolutionary optimization algorithms (Storn & Price, 1997). Mathematically,

DE can be described by equations 2.3-2.4 (Vrugt et al., 2009):

θ′i = θi,t + γ(1 + e)

[
p∑

n=1

θj(n) −
p∑

m=1

θk(m)

]
+ ϵN(0, 1) (2.3)

14

γ =
2.38√
p ∗ d

(2.4)

where θi,t and θ′i are the current and proposed states of the i-th chain, respectively; θj(n)

and θk(m) are the n-th and m-th of p samples from the archive of current or past states of

the j-th and k-th chains, respectively; d is the problem dimension (i.e., number of model

parameters); e is a constant chosen by the user to scale γ if desired (Ter Braak & Vrugt

(2008) choose the default value of γ in equation 2.4 to yield acceptance rates close to 0.44

for d = 1 and 0.23 for large d, which have been shown numerically and theoretically to

be optimal acceptance rates for random walk Metropolis (Gelman et al., 1996; Roberts

& Rosenthal, 2001)); and ϵ is the variance of a Gaussian mutation after DE translation,

whose value is also chosen by the user.

The DE translation in equation 2.3 is typically only applied to some of the dimensions.

These are referred to as “crossover points” and the number of crossover points is deter-

mined by the nCr parameter. The value of this parameter can be updated throughout

the search with frequency determined by the parameter UpdateInterval. Similarly, the

archive of past states, Z, is updated with frequency zUpdateFrequency.

A snooker update is another vector translational operator originally proposed by

Gilks et al. (1994) to adapt sampling in the direction of the highest density. DREAM(ZS)

uses an updated snooker proposal operator developed by Ter Braak & Vrugt (2008), de-

scribed mathematically by equation 2.5:

θ′i = θi,t + γs(θ
P
j,t − θPk,t) (2.5)

where γs is another constant hyperparameter of the algorithm, while θPj,t and θPk,t are or-

thogonal projections of θj,t and θk,t onto the line θi,t− θn,t, where θn,t is the current state of

another chain, n.

15

The additional operators of DREAM, as well as its use of an archive and interaction

across chains, serve several beneficial purposes. The archive, which maintains a history

of accepted samples from all chains, enables a more efficient exploration of the param-

eter space and improved mixing of the chains. By sampling from the past archive, the

algorithm gains access to valuable information about the posterior distribution, enhanc-

ing its ability to explore diverse regions and locate multiple modes. The incorporation of

DE and snooker moves within DREAM(ZS) further enhances exploration by introducing a

stochastic perturbation mechanism. This mechanism helps to overcome local optima and

encourages the chains to traverse the posterior distribution more effectively. Finally, the

interaction across chains allows for greater exploration and facilitates convergence to the

same posterior across chains (Laloy & Vrugt, 2012; Nishihara et al., 2014).

2.4 COMPUTATIONAL EXPERIMENT

In order to evaluate the performance of the MCMC algorithms used in this study, a com-

prehensive experimental setup was devised, representing the key contribution of this pa-

per. The experimental design, which is inspired by Hadka & Reed (2012) and Reed et al.

(2013), aims to assess the effectiveness, efficiency, reliability, and controllability of the

MCMC algorithms in converging to the true posterior distribution.

Figure 2.1 illustrates the experimental design that enables this assessment. The first

step is to generate a Latin hypercube (LH) sample of algorithmic hyperparameters. Here

we use a sample of 1000. Two of the hyperparameters are the number of function evalua-

tions (NFE) and number of chains. For each of the LH samples, MCMC is performed with

the corresponding hyperparameters and the posteriors are estimated empirically. The fi-

nal posteriors consist of the elements from all chains, excluding the initial burn-in period.

For instance, with 1000 iterations, 5 chains, and a 100-iteration burn-in, the resulting pos-

16

of chains#

of chains#

of chains#

of chains#

of chains#

of chains#

Pa
ra

m P

Pa
ra

m P

Pa
ra

m P

Estimated
Posteriors

Hyperparameter
Samples Metrics Attainment Control Maps

True
Estimated

True
Estimated

True
Estimated

Figure 2.1: Experimental design of this study. For each algorithm and test problem, cali-
bration is performed across a Latin hypercube sample of algorithm hyperparameters for
multiple seeds. Performance metrics are computed based on the proximity of the esti-
mated posterior to the true posterior. The reliability of the algorithm is illustrated by
CDFs of the probability of attaining certain performance levels on the metrics, while the
effectiveness, efficiency and controllability are illustrated in control maps of the average
performance metric as a function of the number of function evaluations (NFE) and chains.
This figure is adapted from Reed et al. (2013).

terior consists of (1000 - 100) * 5 = 4500 chain locations. Since the Monte Carlo aspect of

MCMC is random, this process is repeated for multiple random seeds, here 25.

Next, several metrics of the algorithm’s effectiveness are computed (described in Sec-

tion 2.5) for each random seed of each LH sample. The reliability in achieving these met-

rics is visualized by a Cumulative Distribution Function (CDF) across random seeds, also

called an “attainment map” as it illustrates the probability of attaining different metric

values. The efficiency is visualized by a contour map of the average metric across random

seeds of each LH sample, shown on a 2D projection of the LH samples’ NFE and number

of chains. The sooner effective values are reached vs. NFE, the more efficient the algo-

17

rithm. This plot, also called a “control map”, illustrates how controllable the algorithm is;

the noisier the contour map the less its performance is controlled by the NFE and number

of chains and more by its other hyperparameters.

We also measure controllability quantitatively by performing variance-based sensi-

tivity analysis, decomposing how much variance in the performance metric is explained

by each hyperparameter. The more variance explained by NFE (and subsequently, the

number of chains), the more controllable the algorithm, as these are the easiest hyper-

parameters for the user to set. The fraction of the variance in the performance metric Y

explained by the i-th hyperparameter Xi individually is denoted its first-order sensitivity

index, Si:

Si = Vi/V ar(Y) (2.6)

Vi = V ar(E[Y |Xi]). (2.7)

Any remaining variability is assumed to be explained by interactions across hyperparam-

eters. Sensitivity indices were estimated using the method of Plischke et al. (2013) using

the Python SALib package (Herman & Usher, 2017).

The ranges of the hyperparameters for the LH samples are detailed in Table 3.1. These

ranges were informed by values from the literature and were carefully selected to cover

a broad spectrum of possible configurations, ensuring a thorough exploration of the al-

gorithm’s behavior (Laloy & Vrugt, 2012) and (Hartig et al., 2023). By varying the hy-

perparameters, we not only are able to assess the algorithm’s controllability, but also

to identify the settings that yield optimal results for different types of problems (e.g.

high-dimensional or multi-modal). Sensitivity to additional hyperparameters could be

explored in future work, such as the initial covariance matrix of the Gaussian proposal

18

distribution, or the interval of samples that should be dropped via thinning. Sensitivity

to thinning could be further investigated to determine the extent that autocorrelation de-

creases the effective sample size which also increases the standard error estimates of the

posterior mean. Investigating the sensitivity on an MCMC algorithm’s performance to

the thinning interval could inform the choice of effective ranges to reduce the impact of

autocorrelation on the reliability of MCMC simulations.

The experimental framework was implemented on the Rivanna high-performance

computing cluster at the University of Virginia. The insights derived from this experi-

ment can provide guidance for selecting appropriate algorithms and corresponding con-

figurations for inverse problems with the tested characteristics, as well as inform how to

develop new algorithms with improved controllability by adapting more sensitive hyper-

parameters throughout the search. Finally, it illustrates a new framework for evaluating

MCMC algorithms developed in the future.

2.5 METRICS

To evaluate the effectiveness of the MCMC algorithms, we use three performance met-

rics that quantify different aspects of convergence: the GR diagnostic (Gelman & Rubin,

1992), KLD (Kullback & Leibler, 1951), and WD (Dobrushin, 1970). These metrics provide

valuable insights into the quality of the MCMC samples and the approximation of the

target distribution.

2.5.1 Gelman-Rubin (GR) diagnostic

The GR diagnostic is a widely used measure to assess convergence when multiple, inde-

pendent MCMC chains are employed and the true posterior is unknown. It compares the

within-chain variance to the between-chain variance:

19

Table 2.1: Ranges of algorithmic hyperparameters sampled uniformly by Latin hypercube
sampling.

Hyperparameters across algorithms
Hyperparameter Description Range

NFE Number of function evaluations 10,000-200,000
nChains Number of chains 2-20
Burn-in Percent of function evaluations to discard 1-20

Additional MH and AM hyperparameters
Optimize Binary variable indicating whether to optimize

the starting locations
0 (no) or 1 (yes)

Additional AM hyperparameters
AdaptStart Percent of Evaluations after Burn-in at which

adaptation begins
0.5-5

AdaptInterval Fraction of remaining evaluations after Adapt-
Start at which adaptation occurs

0.1-1

DRlevels Number of levels for a delayed rejection sampler 1-2 (integer)
Additional DREAM(ZS) hyperparameters

Adapt Portion of iterations used in adaptation 0-1
P(snooker) Probability of a snooker update at each iteration 0-1

nCr Number of crossover points, i.e. dimensions of
the current state changed in the proposal

1-5

p Number of state pairs used to generate proposal
with DE

1-3

ϵ Variance of Gaussian mutation of DE translation
(equation 2.3)

0-0.00005

e Constant in equation 2.3 for DE proposal com-
putation

-0.1-0.1

UpdateInterval Interval number of iterations at which
P(crossover) is updated

1-20

zUpdateFrequency Interval number of iterations of evaluations after
burn-in at which the archive is updated

1-20

20

R̂ =

√
V̂

Ŵ
(2.8)

where V̂ is the estimated marginal posterior variance of the target parameter across all

chains and Ŵ is the estimated average within-chain variance of the target parameter. A

GR value close to 1 indicates convergence to the same variance across chains, making it

an easy-to-interpret metric. The GR diagnostic is computed using BayesianTools.

We note that the GR diagnostic is meant to be used to ensure convergence to the same

variance across independent chains, and is therefore not an appropriate measure of conver-

gence for DREAM since the chains communicate. This communication will likely result

in a low GR early in the search, even if the algorithm has not converged. However, con-

sistent variance across chains may not be an appropriate measure of convergence even in

the case of independent chains, as the chains could represent consistently poor approx-

imations of the true posterior. Despite these limitations, GR is still the most commonly

employed MCMC convergence metric when the posterior is unknown, including for the

DREAM algorithm (Laloy & Vrugt, 2012). As such, we still compute the GR for all al-

gorithms, but also compute additional performance metrics that allow us to assess the

utility of GR as an MCMC performance metric.

2.5.2 Kullback-Leibler Divergence (KLD)

GR is a proxy measure of convergence used when the true posterior is unknown. How-

ever, as discussed above, it can prematurely indicate convergence, particularly when the

true posterior is multi-modal. For test problems where the true posterior is known, we

can assess convergence using the KLD. KLD measures the difference between two prob-

ability distributions, DKL(P ∥ Q), as the integrated divergence in probability of one pdf

P (θ) (here, the estimated posterior) to another Q(θ) (here, the true posterior):

21

DKL(P ∥ Q) =

∫
P (θ) log

(
P (θ)

Q(θ)

)
dθ (2.9)

KLD is commonly used in Bayesian statistics to assess the approximation of the true

posterior distribution obtained from an MCMC algorithm when the true posterior is

known, as is the case on test problems. It provides a measure of the dissimilarity be-

tween the approximate and true posterior distributions, allowing for flexible comparison

of distributions with different parametric forms. However, the choice of the reference

distribution (P vs. Q) can influence the results, as the measure is not symmetric. While

there is a symmetric measure of KLD (Jeffrey’s divergence)(Jeffreys, 1948), we simply set

the reference distribution to the true posterior for consistency. We use the R function

KL.divergence in the FNN library to computed KLD (Boltz et al., 2007, 2009).

2.5.3 Wasserstein Distance (WD)

The WD, or “Earth mover’s distance” is another measure of the similarity between two

distributions. It measures the minimum transport distance to transform one probability

distribution into another (Kantorovich, 1960). It can be used in MCMC diagnostics to

compare the true posterior distribution to the estimated posterior distribution obtained

from the algorithm:

W(P,Q) = inf
γ∈Γ(P,Q)

∫ ∫
∥x− y∥ dγ(x, y) (2.10)

where W (P,Q) represents the WD between distributions P and Q; inf denotes the infi-

mum, which represents the minimum value over all possible transports γ that move mass

from P to Q; Γ(P,Q) is the set of all joint probability distributions γ(x, y) with marginals

P and Q; and ∥x− y∥ represents a chosen distance metric between points −→x and −→y in the

22

underlying space.

The WD provides a measure of the discrepancy between two distributions, consid-

ering their underlying structure (Vallender, 1974). It can handle distributions with dif-

ferent supports. However, it can be computationally demanding, especially for high-

dimensional distributions. Additionally, the choice of the distance metric may influence

the results. To estimate WD, we generate n points −→y from the true posterior Q where n

is equal to the total number of samples −→x from the MCMC chains after removing burn-

in, which represent the estimated posterior P . The WD between these sets of points is

computed using the Sinkhorn approximation (Cuturi, 2013) from the Python geomloss

library, with transport distance between two points quantified by Euclidean distance.

Comparing the KLD and WD, KLD quantifies how dissimilar the estimated posterior

probability is at each point θ compared to the true posterior probability, while WD com-

pares how far the distributions are from one another in parameter-space. As such, KLD

may be a better approximation of how close the estimated posterior is from the truth,

while WD may be a better approximation of how far the search is from finding the true

posterior in parameter-space.

2.6 TEST PROBLEMS

Because MCMC is typically applied to estimate the parameters of complex physical mod-

els, it would be useful to apply our diagnostics to such models. However, the KLD and

WD metrics require a known posterior, so one would have to set a synthetic true param-

eter set to apply our diagnostics to a physical model. The posterior would then be a dirac

delta function at the synthetic truth, and the KLD would be infinite. However, the WD

could still be computed as the average Euclidean distance between all chain elements and

the synthetic truth. This would capture closeness of the estimated posterior to the truth

23

in parameter space, but not probability space. Because of these challenges, we simply fo-

cus our diagnostics on two analytical test problems that address two prevalent challenges

encountered in complex models: high dimensionality and multi-modality.

2.6.1 High-Dimensional Test Problem

Physical and data driven systems often involve a large number of interconnected vari-

ables, leading to high-dimensional parameter spaces. To simulate such scenarios, we em-

ploy a 100-dimensional multivariate normal distribution with a mean of [0]d and covari-

ance Σ where the off-diagonal elements σi,j = 1
2

√
i ∗ j ∀i ̸= j and the diagonal elements

σi,i = i. This test problem is commonly used to represent high-dimensional data (Vrugt

et al., 2009).

The choice to target high dimensionality is motivated by the need to develop robust

techniques capable of effectively exploring and optimizing parameter spaces in physical

and statistical models. Relevant model applications span a wide range of fields including

but not limited to machine learning (Radovanovic et al., 2010), climate (Cannon, 2018),

and finance (Heaton et al., 2016).

2.6.2 Bimodal Test Problem

Multi-modal behavior, characterized by the simultaneous existence of distinct modes or

regions of high probability in the parameter space, is a prevalent phenomenon observed

in various domains, including machine learning and statistics (Choi & Lee, 2019), natural

language processing (Wang et al., 2020), climate modeling (Mann & Park, 1994), and eco-

nomics (Giles et al., 2010), where data often exhibits multiple diverse patterns or states.

To address this characteristic, we employ a 10-dimensional bimodal mixed Gaussian dis-

tribution as our multi-modal test problem. The bimodal mixed Gaussian distribution con-

24

sists of two distinct modes, each following a Gaussian distribution with means of [−5]d

and [5]d and a common covariance matrix Σ = I , the identity matrix. The mode with

mean [−5]d occurs with probability 1/3 and the mode with mean [5]d with probability

2/3. By employing such a distribution, we can assess the ability of our proposed ap-

proach to effectively locate and characterize multiple optima within the parameter space,

a key challenge encountered in physical modeling.

2.7 RESULTS AND DISCUSSION

2.7.1 Diagnostics on 100D MVN Test Problem

In this section, we present our diagnostics on the 100D MVN test problem. Figure 2.2

displays two sets of maps to illustrate the controllability, reliability, and efficiency of the

MCMC algorithms using the WD metric: Control and Attainment Maps. SI Figures S1-

S2 show the same maps for the KLD and GR of the first dimension, respectively, which

revealed similar findings for KLD as presented in Figure 2.2, while all algorithms did

well on GR across hyperparameterizations. Because our sensitivity analysis revealed that

MH and AM were most sensitive to whether or not optimization was used to initialize

the starting locations of each chain, we present these maps separately for the cases where

optimization = True vs. False, yielding five algorithms for the comparison: MHnoOpt,

MHopt, AMnoOpt, AMopt, and DREAM.

The control maps in Figures 2.2a-2.2e illustrate the average WD between the estimated

and true posterior across 25 random seeds as a function of the algorithm’s chain count (x-

axis) and number of function evaluations (NFE; y-axis). The sooner a low value in blue

is reached along the y-axis, the more efficient the search is. Noise in the control maps in-

dicates less controllability, i.e. greater sensitivity to other hyperparameters beyond NFE

and number of chains. Some hyperparameter combinations failed to yield posterior dis-

25

a) b) c)

d) e) f)

Figure 2.2: (a-e) Control maps for the 100D MVN test problem illustrating the average
Wasserstein distance (WD) across random seeds as a function of the number of function
evaluations (NFE) and number of chains for (a) MH without optimization, (b) AM with-
out optimization, (c) DREAM, (d) MH with optimization, and (e) MH with optimization.
(f) Attainment maps illustrating the probability of attaining different WDs (shown on the
y axis) across all seeds and hyperparameters for each algorithm.

tributions and are shown as gray.

When using optimization to initialize chain locations, MH and AM both perform very

poorly (Figures 2.2d-2.2e). MH yields high WD across all combinations of chains and

NFE (Figure 2.2d). AM’s adaptation begins to improve performance at low chain counts

(Figure 2.2e), but both algorithms perform much better when optimization is not used to

initialize chain locations (Figures 2.2a-2.2b). We investigate the reason optimization per-

forms poorly through additional visual diagnostics of the estimated marginal posterior

distributions in Figure 2.3. Without optimization, MH and AM show slower convergence

26

at higher chain counts (Figures 2.2a-2.2b), indicating that for high-dimensional but uni-

modal problems, it is better for these algorithms to maximize iterations of a few chains to

increase exploitation than to spread them across chains to increase exploration. DREAM

(Figure 2.2c) is less hampered by spreading its iterations across chains thanks to the in-

teraction between them, whereby the states of multiple chains are used to propose new

chain locations. This insensitivity to chain count results in more controllability and ro-

bustness in DREAM’s performance. However, its robustness does come at the expense of

optimality under certain configurations, as AM’s adaptation initially slows convergence,

but ultimately results in better posteriors. Consequently, AM with low chain counts is the

best choice if one is not computationally limited and knows their problem is unimodal,

but DREAM is the best choice if one is more computationally limited.

In addition to finding posteriors that match the true posterior across hyperparameters,

we would also like algorithms that do this reliably across random seeds. We investigate

this for the 100D MVN problem using attainment maps in Figure 2.2f, which illustrate the

probability of attaining different WDs across random seeds. The more blue the attainment

map, the higher the probability of attaining low WDs, i.e. the more reliably effective the

algorithm is. MH and AM with optimization are shown to be not only inefficient, but

unreliable, with a low probability of attaining low WDs. AM without optimization has

the highest probability of achieving the lowest WDs (e.g. lowest WD achieved 50% of

the time); however, this comes at the expense of increased variability as the probability of

attaining near optimal WDs is much lower than both MH and DREAM. We see from the

control maps that the higher WDs occur at higher chain counts and lower NFE. DREAM

has the highest probability of attaining near-optimal WDs, proving to be not only the

most robustly efficient across hyperparameters, but also the most reliably efficient across

random seeds.

27

To verify the patterns seen in the control maps, we illustrate the posterior marginals

for a random seed from the hyperparameter nearest each corner and the centroid of the

control maps. Figure 2.3 illustrates these marginals for the 50th dimension of the 100D

MVN, while SI Figures S3-S4 show them for the 1st and 100th dimensions, respectively,

which yield similar conclusions. Across algorithms, as the NFE increases (higher plots),

the posterior distributions tend to more closely approach the true posterior (black), with

the exception of MH with optimization (light green), which performs poorly across hy-

perparameters. AM with optimization (light blue) also poorly matches the true posterior,

but moves in the right direction as NFE increases for low chain counts. MH and AM

without optimization (dark green and dark blue) ultimately come closest to the true pos-

terior, but DREAM (red) performs better when the chain count is high but NFE is low

(Figure 2.3e), illustrating its improved robustness at the expense of optimality. Further

investigation is needed to understand why using optimization to initialize chains in MH

and AM does not direct the search toward the true, single mode. It appears the Nelder-

Mead optimization does not converge to the true mode, instead initializing the search in

different regions of the space for different chains, and the algorithm takes a long time to

explore beyond those estimated modes toward the truth.

Finally, we combine our illustration of reliability and controllability in Figure 2.4,

which illustrates the CDF of WD for each hyperparameter. SI Figures S5-S6 show the

same for the KLD and GR of the first dimension, respectively. In Figure 2.4, the color of

each CDF represents the value of the hyperparameter that most explains variability in

WD (yellow=low, purple=high). This hyperparameter is indicated by the variance de-

composition shown in Figure 2.4f. The steeper the CDF, the more reliable the algorithm;

the closer the CDFs are to 0, the more effective it is; and the more sensitive the algorithm

is to NFE (blue), the more controllable it is. Fortunately, NFE is the most influential hyper-

28

0.000

0.025

0.050

0.075

−20 0 20

de
ns

ity

0.00

0.02

0.04

0.06

−20 0 20

de
ns

ity0.000

0.025

0.050

0.075

−20 0 20
de

ns
ity0.000

0.025

0.050

0.075

−20 0 20

de
ns

ity

0.000

0.025

0.050

0.075

−20 0 20

de
ns

ity

True Posterior

AM_NoOpt
AM_Opt
DREAM

MH_NoOpt
MH_Opt

Increasing # of chains

In
cr

ea
si

ng
 N

FE
a) b)

c)

d) e)

Figure 2.3: Posterior marginals of the 50th dimension of the 100D MVN test problem
when using the hyperparameter closest to (a) the least number of chains and the most
NFE, (b) the highest number of chains and the most NFE, (c) the median number of chains
and the median NFE, (d) the least number of chains and the least NFE, and (e) the most
number of chains and the least NFE.

parameter across all algorithms except for MHopt, which is most sensitive to the number

of chains (orange). AMopt is also fairly sensitive to the number of chains. This sensitiv-

ity to the number of chains, and the multimodal nature of the posteriors estimated by

these algorithms in Figure 2.3, suggests that the optimization may be resulting in differ-

ent chains converging to different modes near their starting locations, which may not be

near the true mode.

Analyzing the CDFs, they are steep for nearly all algorithms and hyperparameters,

indicating reliability across random seeds. However, they are far more consistently close

to 0 for DREAM, which aligns with the findings illustrated by the control maps. Across

all algorithms, as the most explanatory hyperparameter increases, the CDFs tend to con-

verge toward lower WD values. This is desirable for the algorithms that are most sensitive

29

a) b) c)

d) e) f)

Figure 2.4: (a-e) CDFs of WD across random seeds for each hyperparameter on the 100D
MVN test problem. The color of the hyperparameter indicates the value of the parameter
to which that algorithm’s WD was most sensitive. (f) Decomposition of how much vari-
ance in WD is explained by each hyperparameter and their interaction for each algorithm.

to NFE. Among these algorithms (all but MHopt), DREAM exhibits the greatest sensitiv-

ity to other parameters beyond the number of chains (green) and interactions between

hyperparameters (red). This suggests that although this algorithm is robust across hy-

perparameters, the additional operators do reduce controllability. This could perhaps be

reduced by adapting their values and probabilities throughout the search as has proven

successful in multi-objective evolutionary algorithms (Reed et al., 2013), something that

could be explored in future work on algorithm development.

30

a) b) c) d)

e) f) g) h)

i) j) k) l)

Figure 2.5: Attainment and control maps of each algorithm on the 10D Bimodal test prob-
lem based on (a-d) WD, (e-h) GR diagnostic of the first dimension, (i-l) KLD.

2.7.2 Diagnostics on 10D Bimodal Mixed-Gaussian Test Problem

Here, we present our diagnostics assessing the performance of MH, AM, and DREAM on

the 10D Bimodal Mixed-Gaussian test problem. Interestingly, unlike for the 100D MVN,

the performance of MH and AM was not sensitive to whether optimization was used to

initialize chain locations, so we include all hyperparameters together in our visualiza-

tions. We hypothesize that the different estimated modes across chains from the Nelder-

Mead algorithm was less problematic than for the 100D MVN problem because there is

in fact more than one mode on the bimodal problem.

Similar to the 100D MVN test problem, we display the control and attainment maps on

the bimodal problem for the three MCMC algorithms in Figure 2.5. However, unlike for

the 100D MVN problem, different metrics yielded different conclusions, so we show these

31

0.0

0.1

0.2

0.3

−10 0 10

de
ns

ity

High GR − Low KLD

0.0

0.1

0.2

0.3

0.4

−10 0 10

High GR − Low WD

0.0

0.1

0.2

0.3

0.4

−10 0 10

High KLD − Low WD

0.0

0.1

0.2

0.3

−10 0 10

de
ns

ity

Low GR − High KLD

0.0

0.1

0.2

0.3

0.4

−10 0 10

Low GR − High WD

0.0

0.1

0.2

0.3

0.4

−10 0 10

All Chains

True Posterior

Chain_1
Chain_2
Chain_3
Chain_4
Chain_5
Chain_6
Chain_7

Low KLD − High WD

GR vs KLD GR vs WD KLD vs WD

a) b) c)

d) e) f)

Figure 2.6: Comparison of the estimated MH marginal posterior of the first dimension
of the 10D bimodal test problem from individual chains and across chains using select
hyperparameter sets with (a) a high GR and low KLD and (d) the reverse; (b) a high GR
and low WD and (e) the reverse; and (c) a high KLD and low WD and (f) the reverse.

maps for all three metrics: WD (Figures 2.5a-2.5d), GR of the first dimension (Figures 2.5e-

2.5h), and KLD (Figures 2.5i-2.5l).

Examining the control maps, it’s clear that DREAM exhibits better performance in

achieving lower values of GR and WD (Figures 2.5d and 2.5h) compared to MH (Figures

2.5b and 2.5f) and AM (Figures 2.5c and 2.5g). DREAM also appears more controllable,

with low GR values regardless of the NFE and number of chains, and WD improving

for higher NFE. On the contrary, WD is poor for MH and AM regardless of the hyper-

parameterization, while GR is controlled primarily by NFE. DREAM is also shown to be

more reliable on these metrics by the attainment maps (Figures 2.5a and 2.5e), as DREAM

has a higher probability of achieving lower values of WD and GR across random seeds

32

than MH and AM. However, we should note the comparison on GR is not fair since the

DREAM chains are not independent, thus potentially providing a false sense of improved

convergence.

This false sense of improved convergence is confirmed by the control and attainment

maps of KLD, which tell a different story. On this metric, all three algorithms show good

performance in achieving low values of KLD, and in fact, MH and AM seem to outper-

form DREAM in achieving lower KLD values across hyperparameterizations and seeds.

This is particularly true when employing a small (near 2) or high (near 20) number of

chains, with all algorithms performing similarly at moderate numbers of chains (near 10).

One can also see that the number of chains appears to be the controlling hyperparameter

for this metric, similar to GR for MH and AM, but different from WD for DREAM.

To understand why conclusions about which algorithms perform best differ under

these different metrics, we selected individual hyperparameterizations from the Latin hy-

percube sample of MH that yielded high values of one metric and low values of another.

Figure 2.6 compares the true posterior marginal of the first dimension (black) to the es-

timated posterior marginals when using the elements of each individual chain of these

hyperparameterizations (colored lines), as well when using the elements from all chains

(red, dashed line). SI Figures S7-S8 show similar results for the 5th and 10th dimensions.

Analyzing the GR vs KLD plots (Figures 2.6a and 2.6d), we see that individual chains

from the LH sample with a low KLD and high GR tend to find only one mode. Since

these modes differ across chains, the GR diagnostic is high. However, the proportion

of chains finding each mode is similar to those mode’s likelihood, resulting in a close

approximation to the true posterior across chains, i.e. a low KLD. Conversely, individual

chains from the LH sample with a high KLD and low GR each converge to the same mode,

resulting in low GR values. However, that mode is the less probable one, resulting in a

33

a) b) c)

d) e) f)

g) h) i)

Figure 2.7: Control maps showing the number of seeds (out of 25) of each algorithm that
achieved (a-d) KLD<1, (d-f) WD<120, and (g-i) both on the 10D Bimodal test problem.

high KLD. These results confirm what we would expect from theory (Dixit & Roy, 2017).

Moving on to the GR vs WD plots (Figures 2.6b and 2.6e), we see similar phenomena.

Individual chains from the LH sample with a high GR and low WD each identify different

modes of the distribution, but in similar proportions to their likelihood, resulting in a

close approximation to the true posterior across them. Conversely, individual chains from

the LH sample with a high WD and low GR only detect the less likely mode. These

findings again confirm theoretical understandings of these metrics, and illustrate that the

GR diagnostic can be a poor metric of convergence on multi-modal problems, raising the

question of how to best diagnose convergence on problems with unknown posteriors.

34

Understanding the disagreement between WD and KLD values requires more inves-

tigation. Figure 2.6c reveals that the selected LH sample with a high KLD and low WD

only detects the more likely mode of the distribution. This results in a high KLD because

the posterior probabilities diverge significantly in the less likely mode. However, the WD

is fairly low because the cost of transporting some of the density in the more probable

mode to the less probable mode is small. Individual chains from the LH sample with a

high WD and low KLD (Figure 2.6f) find different modes, but in near opposite propor-

tions to their true likelihood. This results in a high WD because it is much more costly to

transport excess density from the less likely mode to the more likely mode. However, the

divergence between the estimated and true posterior is less significant since both modes

are found, just not in the right proportions.

Figures 2.6c and 2.6f reveal the importance of considering multiple metrics to as-

sess algorithm performance, as both WD and KLD are capturing important elements of

distribution closeness, while failing to capture others. Consequently, in Figure 2.7, we

show control maps combining KLD and WD to see which algorithms perform best on

both. These figures illustrate the number of seeds yielding KLDs<1 (Figures 2.7a-2.7c),

WDs<120 (Figures 2.7d-2.7f), and both (Figures 2.7g-2.7i), with darker blue indicating a

higher number of seeds. Consequently, these maps illustrate all four diagnostic metrics:

reliability is indicated by the number of random seeds meeting thresholds of acceptable

effectiveness; controllability is illustrated by a lack of noise in reliability, with its value

a function primarily NFE or chains; and efficiency is indicated by increased reliability at

lower NFE. Consistent with Figure 2.6, we see that MH and AM meet the KLD thresh-

old across more hyperparameterizations than DREAM, particularly at low NFE, while

DREAM meets the WD threshold more often. Combining these, we see that MH and AM

are able to meet both thresholds more often for low NFE (in about 5-10 seeds for <50,000

35

0.0

0.1

0.2

0.3

0.4

−10 0 10

de
ns

ity

LHS With KLD Close to 0

0.0

0.1

0.2

0.3

0.4

−10 0 10

All Chains

True Posterior

Chain_1

Chain_10

Chain_11
Chain_12
Chain_13
Chain_14
Chain_15
Chain_16
Chain_17
Chain_18
Chain_19

Chain_2
Chain_3
Chain_4
Chain_5
Chain_6
Chain_7
Chain_8
Chain_9

LHS With KLD Close to 10

0.0

0.1

0.2

0.3

0.4
LHS With KLD Close to 20

−10 0 10

d)c)b)a)

g)f)e)

Figure 2.8: (a-c) CDFs of KLDs across random seeds for each hyperparameter. The color
of the CDF indicates the value of the hyperparameter to which that algorithm’s KLD
is most sensitive. (d) Decomposition of how much variablity in KLD is explained by
each hyperparameter and their interaction for each algorithm. (e-g) Comparison of the
estimated marginal posterior of the first dimension of the 10D bimodal test problem from
individual chains and across chains using select hyperparameter sets with (e) KLD near
0, (f) KLD near 10 and (g) KLD near 20.

NFE compared to <5 seeds for DREAM), while DREAM meets both thresholds more of-

ten for >50,000 NFE. Thus, for multimodal problems, it may be best to use MH or AM if

computationally limited, and DREAM otherwise.

Finally, to hone further in on algorithmic reliability, we show CDFs of the KLD metric

for each algorithm in Figure 2.8. We choose the KLD metric since it better captures di-

vergence in probability estimates from the true posterior. We also show CDFs of WD and

GR of the first dimension in SI Figures S9-S10. As suspected from the control maps, the

sensitivity analysis in Figure 2.8d illustrates that the KLD of all algorithms is primarily

36

controlled by the number of chains (orange). Consequently, for each hyperparameter, we

color the CDF of its WD across random seeds by its associated number of chains, with

yellow being low (2 chains) and purple being high (20 chains).

For MH and AM, we can see that low KLDs occur for high chain counts (Figures

2.8a-2.8c), while the trend vs. number of chains is less pronounced for DREAM. This

is likely due to DREAM’s higher sensitivity to other hyperparameters. We also observe

three distinct clusters of KLD values at approximately 0, 10, and 20, particularly for MH

and AM. Plotting the marginal posteriors of the first dimension from LH samples of MH

with KLDs near these values in Figures 2.8e-2.8g, we see that a KLD near 0 indicates that

the algorithm successfully captures both modes in close to perfect proportions, while a

value near 10 suggests most chains captured only the more likely mode, and a value near

20 signifies detection of solely the less likely mode. These distinct KLD values make their

measure of performance more intuitive than the WD values (see SI Figure S11), indicating

it may be a clearer, although less precise performance measure for multimodal problems.

2.8 CONCLUSIONS

This study introduced novel diagnostics for comparing MCMC algorithms in terms of

their effectiveness, efficiency, reliability, and controllability via control and attainment

maps. This fills an important gap in the MCMC literature, as existing diagnostics solely

focus on diagnosing the effectiveness and efficiency of an individual search process, not

on diagnosing its consistency (i.e. reliability and controllability) across multiple search

processes with different random seeds and hyperparameter configurations. The findings

from these new diagnostics have the potential to reduce the time required for hyperpa-

rameter tuning. While the diagnostics themselves require a non-trivial computational

experiment, they can be performed on computationally cheap test problems with known

37

posteriors, as done here. Users can then leverage the findings from these diagnostics to

choose the most efficient algorithm and corresponding hyperparameter configuration to

calibrate a more computationally expensive real-world problem with similar characteris-

tics to the test problems. Existing MCMC diagnostics can then be applied to the single

calibration run of the real-world problem to assess convergence of that individual search

process. As such, our new diagnostics fill a complementary role to existing diagnostics:

our diagnostics can inform the choice of algorithm, while existing diagnostics can then

assess convergence using that algorithm.

We illustrate how our diagnostics can reveal which algorithm is most effective, effi-

cient, controllable and reliable by applying them to three widely used MCMC algorithms

– MH, AM, and DREAM – on test problems characterized by high dimensionality and bi-

modality, attributes commonly found in physical systems. The diagnostics offered valu-

able insights into the performance of these algorithms on different types of problems, as

well as on which performance metrics should be used to evaluate algorithms in different

contexts. In the context of the high-dimensional (100D) MVN test problem, our analysis

revealed a notable sensitivity of MH and AM to the binary optimization hyperparame-

ter, ironically resulting in sub-optimal performance when using optimization to initialize

chains. While, MH and AM without optimization exhibited improved convergence and

closer alignment with the true posterior distribution, these algorithms needed significant

NFE to do so, especially when using multiple chains. In contrast, DREAM consistently

demonstrated strong performance, as evidenced by both control and attainment maps.

For the 10D Bimodal Mixed-Gaussian test problem, DREAM continued to perform well,

achieving lower WD and GR values compared to MH and AM. However, when consid-

ering the KLD metric, MH and AM displayed competitive performance, particularly in

scenarios involving a smaller number of chains.

38

These conflicting findings across performance metrics on the bimodal problem anal-

ysis revealed intricate trade-offs between WD, GR, and KLD values, shedding light on

their strengths and weaknesses in assessing algorithm performance. Critically, it was

highlighted that low GR values do not necessarily indicate convergence, just consistent

variance across chains. This is particularly uninformative if the chains are consistent only

because they are not independent, but communicate as in DREAM. In reality, the chains

may represent consistently poor approximations of the true posterior. Consequently, mul-

tiple metrics could be used to assess MCMC convergence on problems with unknown

posteriors, and further research is needed on developing alternative convergence met-

rics for such problems. For algorithm development, test problems with known posteriors

could be used for performance assessment to avoid these biases. When the true posterior

is known, WD and KLD represent better measures of performance, but capture different

aspects of that performance. KLD is a better measure of how close the estimated proba-

bilities of different parameter values are to their true probabilities, while WD is a better

measure of how close those two distributions are in parameter space. For multi-modal

problems, KLD may then be more appropriate.

Finally, the analysis in this paper also points to new avenues of research. First, an

important area of future research is in applying these diagnostics to assess not only ef-

ficiency in the mean estimate of the posterior, but in the variance of that estimate. As

discussed in the introduction, because of the Markovian property of MCMC algorithms,

consecutive elements in the chain are not independent. This autocorrelation can reduce

the effective sample size of the chain, thereby increasing the Monte Carlo error, and cor-

responding standard error of the posterior mean estimate. Future work could investigate

how this uncertainty changes across hyperparameter configurations and random seeds

by making control and attainment maps of the standard error of the posterior mean esti-

39

mate across chains. Such analysis could also include thinning of the chain as a hyperpa-

rameter, whereby only every k elements in the chain are retained, to see what impact that

hyperparameter has on the standard error.

Second, the finding that while DREAM was robust, it did exhibit greater sensitivity to

its additional hyperparameters suggests DREAM’s controllability could be improved by

adapting its probability of using its different proposal operators based on their success

in proposing new chain locations that are accepted. This idea comes from the observa-

tion in the literature that performance of multi-objective evolutionary algorithms can be

improved by adapting the probability of using different operators based on their success

in generating non-dominated solutions (Hadka & Reed, 2013). In testing such proposed

advancements for MCMC, performance metrics such as KLD and WD could be used to

evaluate performance on known test problems. The visual diagnostics proposed here can

then be used to evaluate and inform the design and hyperparameterization of such new

MCMC algorithms.

2.9 CODE AND DATA

We provide the scripts written to generate synthetic data and do the analysis in this study

in our Zenodo repository.1 Code development history may also be found on our GitHub

repository.2

1https://zenodo.org/records/10433119
2https://github.com/hosseinkavianih/New-Diagnostics-Assessment-For- MCMC

40

CHAPTER 3

Tackling Complexity: EMODPS vs. DDPG for Multi-Objective Reinforcement

Learning

3.1 ABSTRACT

Reinforcement learning (RL) is used frequently to optimize control rules for engineer-

ing systems. When these systems have multiple conflicting objectives, RL becomes more

challenging. Applicable multi-objective optimization approaches differ depending on

whether a value-based or policy-based RL method is used. In value-based methods, the

value needs to be composed of a weighted sum of the multiple objectives. A gradient-

based solver then seeks to find the actions that maximize the value for every state and

stage. In policy-based RL methods, the optimizer simply needs to find the best parame-

ters of a policy that maps the states to actions. This can be achieved using multi-objective

evolutionary algorithms (MOEAs). However, the literature lacks comparative studies

identifying whether it is better to find a non-dominated set of alternative control rules us-

ing policy-based RL with an MOEA, or value-based RL with a gradient-based solver and

different weights on the objectives. For the first time, this study benchmarks Evolution-

ary Multi-Objective Direct Policy Search (EMODPS), a policy-based RL method, against

Deep Deterministic Policy Gradients (DDPG), an actor-critic RL method that includes

both policy optimization and value-approximation. The system consists of two storage

ponds for urban stormwater that each have an orifice at the bottom that can control the

rate of outflow from the ponds for flood control. The objectives are to minimize flooding

upstream (at the storage ponds) and downstream. Our findings reveal that EMODPS gen-

erates more robust trade-off solutions than DDPG with simpler hyperparameter tuning,

making it a preferred choice for real-world, multi-objective applications.

41

3.2 INTRODUCTION

Many complex control problems have conflicting objectives (Zaniolo et al., 2021; Vam-

plew et al., 2011; Liu et al., 2014). There are two main approaches for designing control

rules for such systems (Liu et al., 2014). The first is to find a single control rule that best

balances all the objectives. Methods that attempt to achieve this include the weighted

sum method that weights the objectives based on their importance, elicited from stake-

holders (Konak et al., 2006), the sequential method that optimizes for each objective in

sequence by priority (Nakayama et al., 2009), or the min-max method that seeks to maxi-

mize the worst-performing objective (Lin, 2005). The second approach to multi-objective

optimization does not seek to find one dominant solution in hopes that it best balances

the conflicting objectives; rather it finds a set of policies that are “non-inferior” or “non-

dominated”, meaning between any pair of solutions, improvement on one objective must

come at the expense of performance on at least one other objective. These policies, which

collectively form the “Pareto front” (Pareto, 1964), represent alternative solutions stake-

holders can choose from (Vamplew et al., 2008; Jin et al., 2001). Finding a Pareto front

of alternative solutions is often preferable in complex systems, as it is difficult to know

a priori how to formulate a single objective function to best capture stakeholders’ prefer-

ences (Vamplew et al., 2008). In fact, stakeholders often choose different policies from the

Pareto front than their elicited preferences would imply (Hobbs et al., 1992).

If one seeks to find a Pareto front of control rules, the best approach is typically to

apply multi-objective reinforcement learning (MORL) (Hayes et al., 2022). RL is a sub-

category of machine learning in which agents are trained to make sequential decisions

that maximize the “rewards” they receive through interacting with the environment. The

rewards (or penalties) the agents receive based on their actions allow them to learn opti-

mal policies through trial and error. The objective function in RL is to maximize cumu-

42

lative rewards over time by navigating through the environment spatially and/or tem-

porally (Ding et al., 2020). There are various RL categories that can be used for control

tasks. These can be categorized into model-based and model-free methods (Zhang & Yu,

2020). Model-based methods utilize knowledge on the transition probability from state st

at stage t to state st+1 at stage t + 1 given an action at. These methods can be efficient if

the model is known, but slow if it has to be learned, or inaccurate if the given model is a

poor representation of the true world (Zhang & Yu, 2020). As such, model-free methods

are growing increasingly popular.

Within model-free RL, approaches can be categorized as either value-based, such as

Q-learning (Watkins & Dayan, 1992; Nachum et al., 2017), or policy-based, such as Direct

Policy Search (DPS) (Rosenstein & Barto, 2001; Giuliani et al., 2016). Value-based meth-

ods estimate Q(st, at), the expected present and future value Q at stage t associated with

taking action at from state st under the optimal policy π∗ (Watkins & Dayan, 1992). A

gradient-based solver then seeks to find the actions that maximize the value for every

state and stage (i.e. the optimal policy π∗) based on the current estimate of the Q func-

tion. This estimate is updated as actions are taken and rewards received. Policy-based

methods do not require estimating the value function Q; rather they simply estimate the

optimal policy at = π∗
θ(st), defined as a simple state-action mapping determined by pa-

rameters θ (Rosenstein & Barto, 2001). The best parameters θ can be estimated iteratively

based on rewards received from implementing the current best estimate of the optimal

policy or using simulation-optimization based on the cumulative reward at the end of the

simulation (Giuliani et al., 2017). Either gradient-based or heuristic optimization algo-

rithms can be used to optimize the policy function. Some RL methods, called actor-critic

methods, include both value-based and policy-based elements (Konda & Tsitsiklis, 1999),

in which the “actor” learns the optimal policy, while the “critic” learns the value of the

43

actions being taken.

When optimizing control rules for multiple objectives using value-based methods, the

value function needs to be composed of a weighted sum of those objectives to compute

the gradient. This is true for the reward function when using gradient-based solvers with

policy-based methods as well. Therefore, if one wants to obtain a Pareto set of alternative

non-dominated control rules, they have to repeat the optimization process for multiple

combinations of weights on the component objectives (Chankong & Haimes, 2008). How-

ever, when using heuristic optimization methods with policy-based RL, multi-objective

evolutionary algorithms (MOEAs) can be used to find a Pareto set of non-dominated poli-

cies in one optimization (Coello, 2018). MOEAs can also capture non-convex regions of

the Pareto front that weighting methods may miss (Chiandussi et al., 2012). However,

MOEAs can be slow to converge, questioning whether it is better to perform MORL us-

ing policy-based methods with MOEAs, or value-based methods with a gradient-based

solver and different weights on the objectives.

In this study, we seek to answer this question by comparing Evolutionary Multi-

Objective Direct Policy Search (EMODPS) (Giuliani et al., 2016), a policy-based RL

method coupled with an MOEA, and Deep Deterministic Policy Gradients (DDPG) (Lilli-

crap et al., 2015), an actor-critic method using alternative weights on competing objectives

to represent the reward function. DDPG and EMODPS have been used in recent years to

optimize complex control systems (Yan & Xu, 2020; Zatarain Salazar et al., 2016). Both ap-

proaches have known pros and cons, but it is not clear which is most effective for MORL.

DDPG has been known for its efficiency on problems with a continuous action space

(Duan et al., 2016; Ding et al., 2020). However, it has multiple issues that hamper its

ability on real-time control (RTC) problems. First, DDPG suffers from the exploration-

exploitation trade-off where it may converge to a sub-optimal solution due to over-

44

exploitation or, conversely, fail to converge due to over-exploration, resulting in a noisy

action set (Vinyals et al., 2017; Hao et al., 2023). Additionally, hyperparameter tuning in

DDPG is often laborious due to the need for two distinct sets of hyperparameters: one

for the reinforcement learning components, such as the actor and critic learning rates,

discount factor, and exploration noise, and another for the deep learning components de-

scribing the value and policy functions, including the number of hidden layers, hidden

units, and choice of optimizer. Tuning all these parameters can be very time-consuming

and computationally expensive (Liessner et al., 2019; Ashraf et al., 2021; Kiran & Ozy-

ildirim, 2022). While transfer learning can be used in DDPG to leverage previously

learned policies or features to accelerate training in new but related tasks (Li et al., 2022),

it is not always straightforward, and previously learned policies may not be available.

There are workarounds for increasing the probability of convergence without transfer

learning, such as using a replay buffer (Hou et al., 2017) or adding noise (Plappert et al.,

2017) to actions to prevent premature convergence, but applying these techniques and

tuning hyperparameters for new control systems remain challenging.

EMODPS on the other hand, is effective in deriving a diverse Pareto set by coupling

policy search with an MOEA, avoiding modeling the value function (Zaniolo et al., 2021;

Zatarain Salazar et al., 2017). However, there are challenges with applying it as well.

First, prior definition of policy architecture is not always easy and requires trial and error

experiments or analytical intuition (Zaniolo et al., 2021). This is important since it defines

the search space for the control policies and therefore requires the user to fine-tune this to

the problem. Another issue is a tendency for the algorithm to over-fit the policy param-

eters during the simulation and not generalize well for the unseen data (Giuliani et al.,

2016; Zaniolo et al., 2021). Finally, the exploration-exploitation tradeoff applies to MOEAs

as well (Herrera et al., 1996).

45

An effective way to evaluate the performance of alternative methods to finding a

Pareto set of a multi-objective control rules for engineering systems is to benchmark them

on real-world problems. Example applications in the literature include control of au-

tonomous vehicles (Yan et al., 2022), smart grids (Sauerteig & Worthmann, 2020), supply

management (Reich et al., 2021), and water resources management (Giuliani et al., 2017;

Tabas & Samadi, 2024; Giuliani et al., 2021). Within water resources management, a clas-

sic problem is stormwater control, which can support flood protection, pollution control,

and environmental flows. Several studies have proposed using value-based RL methods

to mitigate flooding in stormwater systems. Mullapudi et al. (2020) leveraged deep Q-

learning to train agents to control valves in a distributed urban water system to improve

flood control rules. Saliba et al. (2020) proposed DDPG for real-time stormwater control

for flood mitigation, addressing the challenge of uncertain data. Bowes et al. (2021) simi-

larly coupled DDPG with a stylistic urban storm water system and compared the results

with model predictive control (MPC) and rule-based control (RBC). Bowes et al. (2022)

then expanded on this to include multiple objectives for flood control and water quality,

but utilizing a single reward function encompassing these two goals. Consequently, in

this and all prior studies, solutions were represented as a single policy rather than show-

ing the Pareto front of different policies and their trade-offs. This is one of the research

gaps that we aim to address in our paper by utilizing DDPG to obtain a Pareto front of

alternative control rules.

Another gap we seek to fill is to introduce EMODPS for urban stormwater control. Al-

though many studies have explored value-based or actor-critic RL methods for stormwa-

ter control, there has been no research implementing EMODPS as a strictly policy-based

RL tool for such systems. In this study, we integrate EMODPS with a hypothetical ur-

ban stormwater system, inspired by the work of Bowes et al. (2021), and conduct a com-

46

parative analysis with DDPG, as an actor-critic method for MORL that has been used

for stormwater control before, but only for single-objective problems. To the best of our

knowledge, such a methodological comparison has not been conducted previously, and

we believe it can shed light on the strengths and weaknesses of these approaches for real-

time control of systems with conflicting objectives. To achieve this, we design a stylistic

stormwater control problem featuring conflicting flooding objectives in different areas of

the stormwater system and assess the Pareto fronts derived by EMODPS and DDPG.

Our paper is organized as follows. Our methods are described in Sections 3.3-3.5. Sec-

tion 3.3 briefly describes the RL algorithms we study and compare, Section 3.4 outlines the

case study for this comparison, and Section 3.5 introduces the computational experiment

we performed for the comparison. We display the results of the optimization experiments

and the analysis in Section 3.6. Finally, we discuss our conclusions about which method

provides better trade-offs in our stormwater system, and note areas for future work in

Section 3.7.

3.3 ALGORITHMS

In this section, we describe EMODPS and DDPG as the two reinforcement learning algo-

rithms examined in our study. These algorithms serve as powerful tools for addressing

complex control problems in various domains, ranging from robotics and autonomous

systems to finance and environmental systems.

3.3.1 EMODPS

EMODPS has two main elements: functions describing control policies and evolution-

ary algorithms that optimize the parameters of those functions. The main strength of

EMODPS is its ability to handle multiple conflicting objectives simultaneously. This ca-

47

pability is crucial in stormwater systems management, where decisions must involve di-

verse trade-offs such as minimizing flood risk, minimizing water quality impacts, and

maintaining natural flows (Bowes et al., 2022). EMODPS has three steps: parameteriza-

tion, simulation, and optimization (Koutsoyiannis & Economou, 2003). It parameterizes

control rules within a family of functions, simulates operations with those rules, and then

couples the simulation with a multi-objective evolutionary algorithm (MOEA) to opti-

mize the parameters of the control rules in order to achieve better values of the objective

functions in the simulation.

The parameterization step involves finding parameters θ of a policy π that maps states

to actions: at = πθ(st). To parameterize our control policies, we represent π using non-

convex Gaussian Radial Basis Functions (NCRBFs) with an additional constant. Gaussian

RBFs are a type of neural network with Gaussian activation functions. They are universal

approximators, making them suitable for representing control policies in multi-objective

systems. Recent studies have shown that Gaussian RBFs offer advantages over Artificial

Neural Networks (ANNs) with hyperbolic tangent activation functions in terms of their

usability, simplicity, and generalization capabilities (Giuliani et al., 2016; Zaniolo et al.,

2021).

Equation 3.1 shows the general form of π using non-convex RBFs with a constant,

where the parameters to be optimized are θ = [αk, ci,j, bi,j, w
k
i]:

akt = αk +
N∑
i=1

wk
i exp

(
−

S∑
j=1

(st,j − ci,j)
2

b2i,j

)
. (3.1)

Here akt represents the action to be taken from the k-th agent at stage t, normalized be-

tween 0 and 1, st,j represents the value of the j-th of S state variables at stage t, normalized

between 0 and 1, and N denotes the total number of Gaussian NCRBFs. The parameters

representing the decision variables are wk
i , the weight associated with the i-th RBF for the

48

k-th agent, ci,j and bi,j , the center and radius of the i-th RBF associated with the j-th state

variable, and αk, an additional constant term for the k-th agent. For convex RBFs, the

weights are constrained to sum to 1, but we relax this constraint for the NCRBFs. Note

that the number of decision variables depends on the number of RBFs, N . This is the

one hyperparameter for EMODPS that needs to be tuned when using NCRBFs, but other

tuning components include the state variables and the parametric form of the policy (e.g.

using a functional form other than NCRBFs, such as convex RBFs or ANNs with different

activation functions).

For the simulation component of EMODPS, we simulate control rules using the

PySWMM package in Python. PySWMM is a Python wrapper for running the Stormwa-

ter Management Model (SWMM) in a Python environment (McDonnell et al., 2020). More

details are provided in Section 3.4.

Finally, we employ the Borg MOEA as the optimization tool for EMODPS using its

single-master parallel Python wrapper (Hadka & Reed, 2013). Borg is an adaptive MOEA

that has consistently shown superior performance on nonlinear, discontinuous, multi-

objective engineering problems (Reed et al., 2013; Zatarain Salazar et al., 2016). Through

multi-objective optimization, Borg identifies a Pareto-optimal set of solutions that are

non-dominated relative to each other, meaning no single solution outperforms any other

across every objective. To achieve this, Borg utilizes adaptive mutation and crossover op-

erators, adaptive population sizes, and epsilon-dominance archiving, among other fea-

tures.

3.3.2 DDPG

The DDPG algorithm is an actor-critic reinforcement learning method designed for envi-

ronments with continuous action spaces (Lillicrap et al., 2015). It combines elements of

49

deep learning for function approximation and the deterministic policy gradient for sta-

ble and efficient learning of the policy and value functions. The key components of the

DDPG algorithm include an actor network that learns the policy function and a critic net-

work that estimates the value function, each of which is represented by a deep neural

network. The actor network determines the best action to take in a given state, while the

critic network evaluates the actions taken by the actor.

The actor network describes the current policy of the agent, πθ(st), The behavioral

policy that gives the actual actions taken by the agent adds noise to this network:

at = πθ(st) +N (0, σ2) (3.2)

where σ2 is the variance of normally distributed exploration noise. The exploration noise

helps the agent explore the environment more effectively. In our implementation, we uti-

lize the Ornstein-Uhlenbeck method for generating noise (Uhlenbeck & Ornstein, 1930).

This method produces auto-correlated noise, preventing the noise from canceling out the

overall dynamics of the system. Initially, the variance of the noise is set to 0.2, then it

gradually decreases to 0.01 over the course of training (note: at ∈ [0, 1]). This gradual

decrease encourages exploration in the early stages, then transitions to exploitation as the

learning process progresses.

The critic network is represented as Qϕ(st, at) where ϕ are parameters of the value

function. Both the actor and critic networks are updated throughout the simulation based

on rewards received from utilizing the policy function. We utilize a replay buffer to

store past experiences encountered during interactions with the environment. The re-

play buffer serves two primary purposes. First, it acts as a memory pool where experi-

ences are stored, allowing the algorithm to sample mini-batches of experiences randomly

during training. This random sampling breaks the temporal correlation in consecutive

50

experiences and significantly improves sample efficiency and stability. Second, DDPG is

an off-policy algorithm, which means it learns from experiences generated by a behav-

ior policy that includes noise (equation 3.2) rather than the current policy being learned

(that without noise, πθ(st)). The replay buffer facilitates off-policy learning by providing

a diverse set of experiences for training both the actor and critic networks (Hou et al.,

2017).

The DDPG algorithm further leverages target networks to stabilize training through

delayed updates of target values. This strategy helps to reduce variance in performance

and enhances the convergence of the learning process. The parameters of the target actor

and target critic networks (θ′ and ϕ′, respectively) are initialized as the parameters of the

current actor and critic networks (θ and ϕ, respectively), as shown by equations 3.3-3.4).

θ′ ← θ (3.3)

ϕ′ ← ϕ (3.4)

The parameters of the current actor network are updated in an off-policy way through

gradient descent with batches of experience (denoted as B):

∇θJ(θ) =
1

B

B∑
i=1

∇aQϕ(si, a)|a=πθ(si)∇θπθ(si). (3.5)

where J(θ) denotes the average value of the current policy across batches. Following the

update of the actor network, the critic network is updated to close the distance between

performance of the current and target actor networks.

The target actor network is denoted as π
target
θ′ (st), and the target critic network is de-

noted as Qtarget
ϕ′ (st, at). The target Q-value, yt, can be determined using the Bellman Equa-

51

tion:

yt = rt + γQ
target
ϕ′ (st+1, π

target
θ′ (st+1)) (3.6)

In this context, rt is the reward function at time step t and γ is the discount factor. The

critic network is updated by minimizing the temporal distance error between the target

and current Q-value, penalized by a regularization term determined by the hyperparam-

eter λ:

Lcritic =
1

2

[
yt −Qϕ(st, at)

]2
+ λ

∑
i

ϕ2
i (3.7)

Finally, after updating the parameters of the current actor and critic networks as out-

lined above, the parameters of the target actor and critic networks are updated as a

weighted average of the parameters in the current and target networks:

θ′ ← τθ + (1− τ)θ′ (3.8)

ϕ′ ← τϕ+ (1− τ)ϕ′ (3.9)

In this context, τ is the update rate parameter that controls the rate at which the target

actor and critic networks are updated. This parameter is usually small to achieve a soft

update and can be treated as a hyperparameter.

To ensure optimal performance of our neural network, we conducted extensive hyper-

parameter tuning prior to model training. This consisted of an initial grid search across

three values each of learning rates and batch sizes, followed by iterative tuning on less

sensitive hyperparameters (see Table 3.1). The learning rates of the actor and critic net-

works are critical hyperparameters that control the step size during gradient descent op-

timization (∇ in equation 3.5). By fine-tuning the learning rate, we aim to strike a balance

52

between training convergence speed and stability, crucial for efficient learning in DDPG.

If the actor network updates faster than the critic network, the estimated Q-value may

become inaccurate, as it would be based on outdated policies (?). Given this, we selected

0.0001, 0.0005, and 0.001 as learning rates to test for the actor network, and 0.001, 0.005,

and 0.01 for the critic network to perform the grid search. We found the best perfor-

mance with learning rates of 0.0001 for the actor and 0.001 for the critic. Additionally, we

explored batch sizes of 8, 16, and 32 to determine the optimal number of samples used

in each training iteration. A batch size of 8 achieved the lowest temporal distance error

during the grid search.

Table 3.1: Tuned Hyperparameters for RL and Deep Learning Components

Hyperparameter Value
RL Hyperparameters
Actor Learning Rate 0.0001
Critic Learning Rate 0.001
Discount Factor, δ 0.99
Batch Size, B 8
Exploration Noise σinitial = 0.2, σfinal = 0.01
Replay Buffer Size 1,500,000
Deep Learning Hyperparameters
Number of Hidden
Layers

2

Hidden Units 32 (first layer) and 16 (second layer)
Activation Function
of Non-output Lay-
ers

Leaky ReLU (α = 0.01)

Output Layer Activa-
tion Functions

Sigmoid (actor) and Linear (critic)

Optimizer Adam
Regularization L2-norm with λ = 0.01

In addition to the learning rate and batch size, we explored other hyperparameters,

primarily related to the structure of the actor and critic networks, via trial and error. We

summarize the tuned hyperparameter values in Table 3.1. As seen in the table, our actor

53

and critic neural networks each comprise three layers: an input layer with three neurons,

followed by two hidden layers with 32 and 16 neurons, respectively, and an output layer.

The input and hidden layers use a Leaky ReLu activation function with hyperparameter

α = 0.01:

f(x) = max(x, αx) (3.10)

where x is the input and f(x) the output. For the actor network, the output layers consist

of two neurons, representing continuous actions between 0 and 1, which were captured

by sigmoid activation functions. For the critic network, the output layer consists of a

single neuron, representing the value associated with a given action and state, which

was captured by a linear activation function. This architecture was designed to capture

complex relationships and make precise continuous action predictions (between [0,1])

within the DDPG framework.

3.4 CASE STUDY

In order to evaluate the performance of EMODPS and DDPG in a multi-objective setting,

we present a stylized stormwater system inspired by the work of Bowes et al. (2021) (see

Figure 3.1). This system is designed to replicate the environmental conditions observed in

an urban catchment located in Norfolk, Virginia, USA. It consists of two subcatchments,

two storage ponds acting as storage units (SP1 and SP2) for flows from those subcatch-

ments, and a network of connected pipes leading from the ponds to the system outfall.

The two subcatchments have the same area, width, slope, impervious cover, and rough-

ness coefficients. The two ponds have the same maximum depth, initial depth, and rating

curve, but SP1 is at a 5 meter higher elevation. The key control features of this system are

orifices at ponds 1 and 2, denoted O1 and O2, that allow us to control the rate at which

54

Figure 3.1: Schematic of the stylized stormwater system used in this study.

water is released from the storage ponds. This control over the discharge rate plays a cru-

cial role in managing flood volumes upstream (at the storage ponds) and downstream,

optimizing the system’s overall performance.

The objectives of this study are: 1) to minimize total upstream flooding, quantified

as the sum of overflows at storage ponds 1 and 2; and 2) to minimize total downstream

flooding, quantified as flooding at links 1 and 2. These objectives can be formulated

mathematically as:

55

Minimize: O1 = (Overflow SP1 +Overflow SP2) (3.11)

Minimize: O2 = (Flooding Link 1 + Flooding Link 2) (3.12)

These objectives are computed over a simulation of historical rainfall from the Norfolk

airport.

3.5 COMPUTATIONAL EXPERIMENT

To assess the performance of EMODPS and DDPG, a thorough computational experiment

was conducted. For a fair comparison, optimization with DDPG and EMODPS each was

done using the same total number of computational service units (SUs). The simula-

tions of the stormwater system were conducted using the U.S. Environmental Protection

Agency’s Stormwater Management Model (SWMM), version 5. Control rules were imple-

mented using the PySWMM package in Python, as depicted in Figure 3.2. More detailed

features of the system such as parameters values, storage ponds depths, orifice size, and

length of pipes can be found in the SWMM input files in our Github repository.1

The objectives in each optimization are to minimize flooding both upstream and

downstream. To achieve this, three state variables were selected to inform actions: the

depths at ponds 1 and 2, and a 24-hour perfect forecast of rainfall obtained from obser-

vational data. Future work could explore utilizing forecasts with error, as in Saliba et al.

(2020), or for different lead times and lengths, but we fix this for simplicity here. The state

variables inform the optimizer on how to adapt its policy/policies to mitigate flooding

both upstream and downstream. Figure 3.3 displays the state-action dynamics, showing

1https://github.com/hosseinkavianih/Tackling-Complexity-EMODPS-vs-DDPG

56

Figure 3.2: Feedback control loop of the optimization process. Rainfall data is passed
to PySWMM, which initializes the state variables. The states (pond depths and rainfall
forecast) are input to operating polices, which determine the actions to be taken (% of
the pond orifices to open). PySWMM executes those actions, updates the state variables,
and the process repeats. At each time step (for DDPG) or the end of the simulation (for
EMODPS), objectives are computed based on the simulation. Finally, this process is cou-
pled with an optimizer to update the operating policies to reduce simulated flooding.

how the actions and states are updated through interacting with the stormwater system.

The actions prescribed by the policies correspond to the percentage of opening of orifices

O1 and O2 in each 15-minute time step. Upon executing PySWMM, objective values are

computed from the simulation, and the policies are optimized to minimize flooding both

upstream and downstream.

To do this, we need to design a proper objective function for both DDPG and

EMODPS. The Borg MOEA can take the objectives in Equations (3.11) and (3.12) as they

are. The algorithm then iterates through the candidates that minimize these two functions

over the course of the simulation horizon. However, DDPG uses a single reward and

57

Table 3.2: DDPG and EMODPS states, actions, and objectives

States Actions Objectives

• Depth at SP1 (m)

• Depth at SP2 (m)

• 24-hr rainfall forecast
(mm/day)

• % openness of O1

• % openness of O2

• Downstream flooding
(m3/hr)

• Upstream flooding
(m3/hr)

value function, and therefore cannot derive a Pareto set of alternative solutions in one op-

timization. Usually, a penalty or reward is supplied to represent the objective value. The

value and policy functions are then updated and the next action is taken with the updated

policy to further improve the objective. However, since we have two objectives here and

need to derive a Pareto front from DDPG to have a fair comparison with EMODPS, we

need a reward function that includes both component objectives of upstream and down-

stream flooding. To address this issue, we develop a DDPG reward function that assigns

weights to different objectives. Natarajan & Tadepalli (2005) suggest using fixed weights

for multiple objectives, while Abels et al. (2019) propose adaptive weights for different

objectives. We used fixed weights assuming a fixed set of preferences over the simula-

tion, but vary them for different optimizations to capture alternative values.

Our reward function was:

R(st, at) = −ω1

∑
Flooding_Upstream

Max Flooding_Observed

−ω2

∑
Flooding_Downstream

Max Flooding_Observed

(3.13)

ω1 ∈ (0, 0.05, 0.1, 0.15, . . . , 0.95, 1)

ω2 = 1− ω1.

(3.14)

58

To derive a Pareto front of alternative solutions, we suggest a vector of weights as <

ω1, ω2 >. By having ω1 = 1−ω2 and varying ω1 between 0 and 1, we explore all the regions

of the Pareto front, from where downstream flooding is penalized more than upstream

flooding to the reverse. We selected increments of 0.05 for the weights, resulting in 21

combination of weights and therefore 21 control rules.

Lastly, we divided our rainfall data into two sets: one for training and one for test-

ing. We trained our models on approximately four months of rainfall data, from June to

September 1995. This specific period was chosen to include a variety of rainfall events

with different intensities and durations. Additionally, considering the computational ex-

penses and the need for hyperparameter tuning, a four-month training duration seemed

reasonable. Each of the 21 control rules were trained for 12 GPU hours. Since each GPU

hour equates to 3 service units (SU), while each CPU hour equates to 1 SU, the EMODPS

optimization was run for 12 hours on 3 nodes with 21 cores/node, resulting in the same

computational time.

To determine which algorithm generalizes better to unseen data, for the testing phase,

we selected a period spanning roughly four years, from June 1996 to August 1999. This

longer testing period was chosen because the policies optimized during training are ap-

plied without further optimization during testing, reducing computational demands.

Moreover, using a longer testing period allows us to better evaluate the reliability of these

solutions over new events.

3.6 RESULTS AND DISCUSSION

3.6.1 Performance of Optimized EMODPS and DDPG Policies

In this section, we present our results from the optimization. Figure 3.4 displays the objec-

tive values obtained by optimized solutions from each algorithm on both (a) the training

59

Figure 3.3: Illustration of the simulation-optimization approach to training DDPG and
EMODPS networks. In DDPG, the states from the PySWMM environment are passed to
the actor and critic networks, which then output the actions to be taken by the environ-
ment. The actor and critic networks are then updated by the TD error and the process
repeats. In EMODPS, the states are passed to the policy function (here, NCRBFs), which
outputs the actions to be taken. An optimization algorithm then optimizes the parame-
ters of the policy function.

set and (b) the test set. For each of these plots, the x-axis represents the upstream flooding,

i.e. the average hourly sum of overflows at the two ponds, and the y-axis represents the

downstream flooding, i.e. the average hourly sum of flooding at links 1 and 2.

In Figure 3.4a, we see that the EMODPS solutions form a true Pareto set, while the

DDPG solutions do not. Because EMODPS uses an MOEA as the solver, all solutions

are guaranteed to be non-dominated. On the other hand, not all DDPG solutions are

non-dominated since solutions are discovered by independently optimizing control rules

with varying weights assigned to the two different objectives rather than with a non-

dominated sorting algorithm. Not only are some of the DDPG solutions dominated by

other DDPG solutions, but all of them are dominated by the EMODPS solutions. There-

fore, EMODPS is more capable of finding policies that can minimize both objectives in

this system.

To confirm the EMODPS policies do not overfit to the training set, we re-simulate

the optimized policies from each algorithm over the test set. The objective values over

60

Compromise
Policies

Lowest
Upstream
Flooding
Policies

Lowest
Downstream

Flooding
Policies

Figure 3.4: (a) Objective values of optimized control policies of EMODPS and DDPG
algorithms on the training set. Note the DDPG solutions do not form a Pareto set, as
some solutions found for certain sets of weights were dominated by others. (b) Objective
values of the optimized control policies in panel (a) when re-simulated on the test set.
The best solution on each objective and a compromise solution from each formulation are
indicated in panel (b) and selected for further analysis.

the test set are shown in Figure 3.4b. Note that the EMODPS solutions are no longer

all non-dominated, as they are being tested on a different time series. Policies that were

non-dominated during the training period are not guaranteed to remain non-dominated

during the testing period. Degradation occurs with respect to both objective values, but

more so for upstream flooding. While all DDPG policies were dominated by at least one

EMODPS policy in training, the best DDPG solutions for minimizing upstream flooding

become non-dominated with respect to the EMODPS solutions on the test set. However,

the best DDPG solutions for minimizing downstream flooding are still greatly dominated

by several EMODPS solutions. Additionally, EMODPS continues to offer better compro-

mise solutions that balance both objectives, with DDPG missing this region entirely.

61

3.6.2 Understanding Optimized EMODPS and DDPG Policies

To understand how the EMODPS control rules are able to achieve such strong perfor-

mance compared to the DDPG control rules, we select three different solutions from each

algorithm to investigate further. These solutions, highlighted in Figure 3.4b, are those

with the lowest downstream flooding, the lowest upstream flooding, and a compromise

solution. We see from Figure 3.4b that the DDPG solution with the lowest upstream

flooding actually does better on this objective than the EMODPS solution with the lowest

upstream flooding, although it does increase downstream flooding by a similar amount,

making the two policies non-dominated with respect to one another. The DDPG solution

with the lowest downstream flooding, however, performs much worse on this objective

than the EMODPS solution with the lowest downstream flooding, with only a minor de-

crease in upstream flooding. Most notably, the EMODPS compromise solution outper-

forms the DDPG compromise solution on both objectives. To understand how this can

be, we plot the time series of states (rainfall forecast and pond depths), actions (orifice

opening), and objectives (upstream and downstream flooding).

Figures 3.5, 3.6, and 3.7 display these time series for the policies minimizing down-

stream flooding, upstream flooding, and the compromise, respectively, with the selected

DDPG policy shown in the left column and the selected EMODPS policy in the right col-

umn. In each of these sets of plots, panels (a) and (b) show the state variables: the storage

pond depths on the left axis, and the perfect 24-hr rainfall forecast on the right axis from

the top down. Panels (c) and (d) show the resulting actions taken in response to these

state variables: the % openness of O1 and O2. Finally, panels (e) and (f) show the vol-

ume of flooding downstream on the left axis, and upstream on the right axis. For visual

clarity, only a 3.5-month period within the four-year testing phase is shown in Figures

3.5-3.7. Specifically, we focus on mid-May through the end of August of 1998, a period

62

Figure 3.5: Time series of states, actions, and objectives of the DDPG and EMODPS poli-
cies with the lowest downstream flooding in the test set over the period of May 15 - Sep 1,
1998. (a,b) Perfect 24-hour rainfall forecast and storage pond depths of SP1 and SP2, (c,d)
orifice openness of O1 and O2, and (e,f) flooding downstream and upstream for selected
(DDPG, EMODPS) solutions.

that includes a variety of rainfall events with different intensities. Lastly, we performed

a square root transformation on the upstream flooding values for visualization purposes.

This adjustment was necessary because the magnitudes of upstream flooding are signif-

icantly higher than downstream flooding; upstream flooding just occurs less frequently,

leading to similar average values.

First, we investigate the solutions that favor the downstream flooding objective. In

Figure 3.5c, we see that during this period, the Best DDPG Downstream Flooding Solution

63

shuts O1 at all times and keeps O2 open at all times. Shutting O1 results in SP1 staying

full at 6 m at all times, while opening O2 allows SP2 to drain (Figure 3.5a). However, SP2

is not able to drain water as quickly as it enters; consequently the depth in SP2 increases

with each storm, and then empties afterward (Figure 3.5a). The filling of SP2 during

the storm slows down outflows from the pond, decreasing downstream flooding (Figure

3.5e). However, if SP2 emptied slower, downstream flooding could be decreased further.

The fast emptying of SP2 means it rarely reaches its maximum storage, so overflows from

this pond are rare, but significant (see three large spikes in upstream flooding near the

end of June, July, and August). There is also relatively frequent, but small upstream

flooding during other periods despite lower rainfall because SP1 is always full, leading

to overflows.

This approach to coordinating the pond operations is clearly not as effective as it could

be. The Best EMODPS Downstream Flooding Solution keeps O1 about 15% open at all

times, while alternating O2 between about 15% and 20% open during wet and dry peri-

ods, respectively, when the pond is partially full vs. empty (Figure 3.5d). Keeping each

orifice partially open allows the ponds to drain faster than if they were fully closed, but

slower than if they were fully open. This strikes a balance between goals of draining fast

to reduce overtopping and consequent upstream flooding, and draining slowly to reduce

downstream flooding. This balance is also achieved within events from changing the

percent openness in response to state variables. Increasing the O1 opening when SP1 is

empty also allows SP1 to initially fill fast when a new storm comes in, but then reducing

the O1 opening during the storm slows outflows during the event.

The effectiveness of this coordination in better balancing between the two objectives is

evident in the downstream and upstream flooding time series in Figures 3.5e-f. The Best

EMODPS Downstream Flooding Solution barely experiences any downstream flooding

64

because the ponds effectively fill and slowly drain during each storm event. The ponds

do fill a little more frequently for the Best EMODPS Downstream Flooding Solution than

for the corresponding DDPG solution, resulting in four significant spikes in upstream

flooding from overflows instead of only three. However, the EMODPS policy experiences

less frequent small upstream flooding events since SP1 isn’t full at all times. As such,

the Best EMODPS Downstream Flooding Solution achieves far less downstream flood-

ing with only a marginal increase in upstream flooding compared to the corresponding

DDPG solution.

If one instead wants to minimize upstream flooding, Figure 3.6 displays the states,

actions and objectives of the solutions from DDPG and EMODPS favoring this objective.

Analyzing the Best DDPG Upstream Flooding Solution, we see this policy chooses to

keep both orifices fully open at almost all times (Figure 3.6c). This results in the ponds

being empty most of the time, except for when they quickly fill during storms. Yet just

as quickly as the ponds fill, they drain (Figure 3.6a), resulting in significant downstream

flooding. This does minimize the times that the ponds are full, though, resulting in only

three spikes in upstream flooding from overflows, similar to the Best DDPG Downstream

Flooding Solution, but with less frequent nuisance upstream flooding since SP1 is no

longer full at all times.

The Best EMODPS Upstream Flooding Solution performs similarly in terms of flood-

ing, but through very different actions. It keeps O1 open about 40% and O2 about 50%

during dry periods, and then increases the openness in response to rainfall forecasts or

pond depths, with the magnitude of openness increasing proportional to the magnitude

of the forecast/pond depth (Figure 3.6d). Because the orifices are not fully open at all

times, they drain slower after storm events, decreasing the magnitude of downstream

flooding events for the Best EMODPS Upstream Flooding Solution compared to the Best

65

Figure 3.6: Time series of states, actions, and objectives of the DDPG and EMODPS poli-
cies with the lowest upstream flooding in the test set over the period of May 15 - Sep 1,
1998. (a,b) Perfect 24-hour rainfall forecast and storage pond depths of SP1 and SP2, (c,d)
orifice openness of O1 and O2, and (e,f) flooding downstream and upstream for selected
(DDPG, EMODPS) solutions.

DDPG Upstream Flooding Solution (Figure 3.6f vs. 3.6e). However, since the orifices are

also not fully closed, the ponds don’t fill so fast that they overtop any more frequently

or significantly than for the Best DDPG Upstream Solution (Figure 3.6b vs. 3.6a). Con-

sequently, the increase in upstream flooding for the Best EMODPS Upstream Flooding

solution is only marginal compared to the Best DDPG Upstream Flooding Solution, with

both only experiencing overtopping for three events in this period.

In each of the prior two figures, the EMODPS and DDPG policies were non-dominated

66

Figure 3.7: Time series of states, actions, and objectives of the DDPG and EMODPS com-
promise policies in the test set over the period of May 15 - Sep 1, 1998. (a,b) Perfect 24-
hour rainfall forecast and storage pond depths of SP1 and SP2, (c,d) orifice openness of
O1 and O2, and (e,f) flooding downstream and upstream for selected (DDPG, EMODPS)
solutions.

with respect to one another. However, the EMODPS policy often represented a better

compromise. For example, the Best Downstream Flooding Solution for EMODPS was

much better on that objective but only marginally worse on the Upstream Flooding objec-

tive compared to the corresponding DDPG solution. The ability of EMODPS to find better

compromise policies is highlighted more strongly by examining policies in the “knee” of

each formulation’s Pareto set, like those we have labeled Compromise Policies in Figure

3.4.

67

Looking at the actions of these policies in Figure 3.7, we see that the DDPG Com-

promise Solution attempts to balance opposing objectives by operating the two ponds in

opposing ways. Similar to the Best DDPG Downstream Solution, the DDPG Compromise

Solution keeps one orifice open at all times (this time O1 instead of O2), and the other near

closed (this time O2 instead of O1). However the near-closed orifice does partially open

in response to forecasts or pond depths for the DDPG Compromise solution (Figure 3.7c).

This slows how quickly the ponds fill, reducing the magnitude of upstream flooding for

the DDPG Compromise Solution during the three overtopping events compared to the

Best DDPG Downstream Flooding Solution (Figure 3.7e vs. 3.5e). However, the DDPG

Compromise Solution still experiences fairly frequent downstream flooding events.

The EMODPS Compromise Solution, however, greatly decreases the frequency of

these events (Figure 3.5f). Similar to the Best EMODPS Downstream Flooding solution,

this policy keeps O2 about 15% full during dry periods and O1 about 20% full, dropping

that to 15% in response to forecast rainfall or increasing pond depths. However O2 is

more responsive to state information for the EMODPS Compromise Solution, similar to

the Best EMODPS Upstream Flooding Solution. Consequently, we see that the EMODPS

Compromise Solution achieves a balance in performance through a blend of actions be-

tween the two extreme policies.

For the EMODPS Compromise Solution, five events in this 3.5-month period trigger

the almost complete opening of the orifice in response to the pond being full (Figure 3.5d).

Similar to the Best EMODPS Downstream Flooding Solution, the 15-20% opening of the

orifices when the ponds are not full allow these ponds to drain slow enough to decrease

the frequency of downstream flooding for the EMODPS Compromise compared to the

DDPG Compromise (Figure 3.7f vs. 3.7e). However, similar to the Best EMODPS Up-

stream Flooding Solution, the sudden opening of O2 in response to SP2 reaching capacity

68

allows this pond to drain faster and reduce the frequency of overtopping events caus-

ing Upstream Flooding (four events for the EMODPS Solution in Figure 3.5f compared to

three events for the DDPG Solution in Figure 3.5e). Thus EMODPS is able to find a better

steady-state openness for dry periods, and better response to state variables during wet

periods to compromise across objectives.

3.7 DISCUSSION AND CONCLUSIONS

This work addressed an open question in the literature on MORL: “Is it more effective

to use strictly policy-based RL with MOEAs as optimizers or actor-critic-based RL with

gradient-based solvers and different weights on multiple objectives?” To answer this

question, we compared two prominent RL methods from each category on a stylized

stormwater control problem with two conflicting objectives of minimizing downstream

and upstream flooding: EMODPS for policy-based MORL, and DDPG for actor-critic-

based MORL. While DDPG has been used in the literature to optimize RTC in stormwater

systems, to the best of our knowledge, EMODPS has not been utilized in this context,

adding another layer of novelty to this work.

Our study revealed the strengths and weaknesses of these methods and their effective-

ness in deriving real-time control rules for conflicting objectives. We found that, while

both methods were strong in optimizing rules for one of the two objectives (upstream

flooding), EMODPS was significantly more capable of deriving effective solutions across

all regions of the Pareto front, and in particular, in generating robust compromise so-

lutions for the studied stormwater system. This was true in both training and testing

periods, with EMODPS finding a better converged and more diverse Pareto set, with

fewer gaps along the front. The reward function formulated for the DDPG method was

designed to assign weights to two conflicting objectives, allowing it to continuously tran-

69

sition from favoring the upstream flooding objective to favoring the downstream flood-

ing objective, and exploring trade-offs in between. However, the Pareto set on the test

set clustered in two regions favoring one or the other objective, with few compromise

solutions. As such, the weighting method was not as effective as utilizing an MOEA with

EMODPS.

It is important to note that in the initial experiments with DDPG, the solutions were

even less diverse than those presented in this study. The improved diversity was achieved

through a thorough hyperparameter tuning. Hyperparameter tuning for DDPG involves

tuning two sets of hyperparameters:

• RL hyperparameters: actor and critic learning rates, discount factor, batch size, ex-

ploration noise, and replay buffer size.

• Deep learning hyperparameters: number of hidden layers, hidden units, activation

functions, optimizer, and regularization parameters.

EMODPS requires far less hyperparameter tuning, simply requiring one to decide on the

functional form of the policy and the number of basis functions.

Finally, the comparison in this paper also provided valuable insights into how to best

control stormwater ponds to favor reduction in downstream flooding, upstream flood-

ing, or a compromise between the two. Downstream flood reduction was best achieved

by keeping orifices partially open (in this system at about 15-20%) to balance between

slowly draining ponds to reduce downstream flooding, and slowly filling them to reduce

the probability of overtopping and causing upstream flooding. Other systems will likely

settle on different values depending on the storage volumes and inflow rates, but the in-

sights of partially opening the orifices likely remain. If one wants to minimize upstream

flooding, keeping the ponds fully open is most effective for slowly filling and quickly

draining the ponds to reduce overtopping. However, effective compromise solutions can

70

be achieved by balancing the behavior of downstream-favoring and upstream-favoring

solutions by maintaining partial openness at most times to favor downstream flood re-

duction, until a forecast or high storage depth triggers complete openness to favor up-

stream flood reduction.

In conclusion, the insights from this paper are useful for informing 1) the choice of RL

method to find a Pareto set of alternative multi-objective control rules, and 2) the design

of stormwater control rules for flooding in different parts of a stormwater system. While

policy-based methods with MOEAs were found to outperform actor-critic methods with

gradient-based solvers in this study, future work should investigate whether those con-

clusions hold for problems with more than two objectives. We hypothesize that the ben-

efits of EMODPS over DDPG will only increase for such problems, as the non-dominated

sorting of MOEAs should mitigate the curse of dimensionality associated with optimiz-

ing for multiple objectives using the weighting approach. Finally, it is important to note

that both the training and testing in this study utilized the same simulation model. Of

course, no simulation model perfectly represents the true system. Future work should

investigate how to best design control rules given uncertainty in the true representation

of the system, accounting for both parametric and structural uncertainty, as well as model

error.

3.8 CODE AND DATA

Code development history for DDPG, EMODPS, and post-processing may be found on

our GitHub repository.2

2https://github.com/hosseinkavianih/Tackling-Complexity-EMODPS-vs-DDPG

71

CHAPTER 4

Designing Stormwater Control Rules Under Parametric Uncertainty

4.1 ABSTRACT

Robust optimization methods have been utilized in the literature to optimize real-time

control rules (RTCs) in stormwater systems. However, previous studies have focused on

characterizing climate change or future development uncertainties and neglected param-

eter uncertainty in their optimization strategies. This study addresses this gap by de-

signing a robust optimization framework for a stylized urban stormwater system aimed

at mitigating flooding. We first leverage Differential Evolution Adaptive Metropolis

(DREAM) to characterize parameter uncertainty, using prior information of parameters, a

Student-t distribution as the likelihood function, and a synthetic truth to evaluate MCMC

model convergence. We then compare three optimization strategies: 1) the traditional

Maximum A-posteriori (MAP) approach for designing RTCs to optimize performance

on the most likely parameterization, 2) Multi-Objective Robust Optimization (MORO)

for designing RTCs to optimize performance over a posterior-weighted average of mul-

tiple likely parameterizations, and 3) Min-Max optimization for designing RTCs to op-

timize performance in the worst-case of the likely parameterizations. Comparing these

strategies against optimization to the synthetic true parameterization, MORO emerged

as the most effective in achieving a compromise policy for minimizing flooding objec-

tives in multiple locations, while Min-Max optimization reported objective values that

were closer to their values on the synthetic truth. The insights from this study can help

decision-makers incorporate robust optimization strategies into their systems, improving

the effectiveness of stormwater management.

72

4.2 INTRODUCTION

Decision-making for engineering systems is often informed by simulation models that

abound with uncertainties (Chankong & Haimes, 2008; Coello, 2018; Koutsoyiannis &

Economou, 2003). Srikrishnan et al. (2022) categorize uncertainties in simulation mod-

els into three types: structural, parametric, and sampling. Structural uncertainty refers to

uncertainty in the mathematical or rule-based representation of the model, parametric un-

certainty refers to uncertainty in the values of internal model parameters, and sampling

uncertainty refers to stochastic variability in exogenous forcings to the model. These un-

certainties can significantly impact the outcomes and effectiveness of decisions, making it

crucial to account for them in the decision-making process (Marchau et al., 2019; Lempert

et al., 2013; Giuliani & Castelletti, 2016). This consideration becomes especially signifi-

cant when optimizing engineering designs for complex systems with multiple conflicting

objectives (Quinn et al., 2017).

Robust optimization encompasses various methods aimed at protecting decision-

makers from such inherent uncertainties Wasko et al. (2021); Dittrich et al. (2016). Ro-

bust optimization methods are typically classified based on their level of risk aversion

McPhail et al. (2018). For example, min-max optimization is frequently used to design

for the worst-case scenario across possible outcomes (Wald, 1949). More risk-neutral ap-

proaches instead design systems to work best in expectation (Bartholomew & Kwakkel,

2020; Shavazipour et al., 2021).

Many studies have employed robust optimization to address uncertainties in diverse

fields such as logistics and supply chain management (Cacchiani et al., 2020), energy sys-

tems (Shen et al., 2020), and water resources systems (Quinn et al., 2017). Our study

focuses on stormwater systems, optimizing their control rules to mitigate flooding. In

the literature, several studies have characterized uncertainties in stormwater systems,

73

primarily addressing those due to climate change or future urban development (Dotto

et al., 2012, 2014; Kleidorfer et al., 2009). To enhance decision making under these con-

ditions, Bahrami et al. (2019) developed a stormwater management system using genetic

algorithms to design control rules robust to future development uncertainties. Yu et al.

(2022) leveraged a stochastic system for urban stormwater management measures, mak-

ing them robust to future precipitation data from Global Circulation Models (GCMs). Oh

& Bartos (2023) developed a model-predictive control (MPC) algorithm that is robust to

uncertainties in both pollution forecasts and water quality measurements.

However, in addition to such sampling uncertainty, stormwater models often suffer

from substantial parametric uncertainty due to the lack of sufficient sensing data for cal-

ibration. While many papers address climate change and model uncertainty in their

stormwater decision-making processes (Kleidorfer et al., 2009; Dotto et al., 2012), none

focus on optimizing control rules for stormwater systems that are robust to parameter

uncertainty. This is concerning because designing based on a single assumed parameter

set may result in significant over- or under-investment. For example, prior work by Smith

et al. (2024) found that reforestation plans for flood control underestimate the needed

investment for a reduction of 20% in high flows by 18% when designing to the most

likely parameter set, but only by 11% when using robust optimization across posterior-

weighted parameter sets. This was the first study to use formal likelihood measures to

quantify parametric uncertainty for robust stormwater design, and to quantify its bene-

fits by comparing to performance optimized to a synthetic true parameter set. The few

prior studies in which parameter uncertainty had been considered in stormwater system

design (Jia & Culver, 2006; Jiang et al., 2017; Xu et al., 2020) used informal Generalized

Likelihood Uncertainty Estimation (GLUE) (Beven & Binley, 1992) which can result in

great over- or under-estimation of uncertainty (Stedinger et al., 2008; Montanari, 2005),

74

leading to the same design concerns of over or under-investment.

In this study, we seek to address a gap in the literature by characterizing parameter

uncertainty in an urban stormwater model and then designing control rules to mitigate

flooding that are robust to that uncertainty. The characterization process involves ad-

justing model parameters to fit observed data and improve the models predictive perfor-

mance. However, this process is not without its challenges. Oftentimes, multiple param-

eter combinations can yield similar performance, called “equifinality” (Beven & Binley,

1992, 2014). These different possible parameter values may have different design implica-

tions. Consequently, it is important to quantify and design for this uncertainty. To achieve

this, we leverage Markov Chain Monte Carlo (MCMC), a prominent Bayesian calibration

method that has been shown in the literature to be a powerful statistical tool for modeling

parameter uncertainty.

In order to evaluate the effectiveness of our robust optimization approach, we set syn-

thetic true values for model parameters so that we can determine how well the robust

optimization approaches perform in reality, something that cannot be assessed in the real

world. However, being able to assess performance in a synthetic case where we know the

truth provides evidence for which approaches are most likely to generalize to such real-

world cases. Using the synthetic true parameter values, we simulate “observed” data

from our physical model and then calibrate the model to try to fit to these observations

using MCMC. We then select a diverse set of likely parameter sets from the calibration

to which we optimize controls rules using robust optimization. Following Smith et al.

(2024), we compare two different robust optimization schemes: Multi-Objective Robust

Optimization (MORO) (Kwakkel et al., 2015; Bartholomew & Kwakkel, 2020) and Min-

Max optimization (Wald, 1949). For comparison, we also optimize to the parameter set

with the Maximum A-posteriori Probability (MAP), the more traditional approach that

75

ignores parameter uncertainty. MAP provides the most likely parameter set values de-

rived through the Bayesian calibration step, but there is a concern about what happens if

the likely parameter set is not the synthetic truth. We hypothesize that MORO and Min-

Max will be more likely to perform well on the synthetic truth because they account for

multiple likely parameterizations (Kavianihamedani et al., 2024; Laloy & Vrugt, 2012).

Our study is organized as follows. Our methods are described in Section 4.3. Section

4.3.2 describes the Bayesian calibration process, Section 4.3.1 outlines the case study, and

Section 4.3.3 highlights the robust optimization methods we performed for the compar-

ison. We display the results of the optimization experiments and the analysis in Section

4.4. Finally, we discuss our conclusions about which optimization strategy provides bet-

ter trade-offs in our stormwater system, and note areas for future work in Section 4.5.

4.3 METHODS

In this section, we describe our methodology and experiments to design robust control

rules for a stormwater system. First, we introduce the case study and objectives of robust

optimization, then we introduce Bayesian calibration method for calibrating the hydro-

logical model parameters. Lastly, we explain the different optimization formulations and

how we select parameterizations to implement our experiments.

4.3.1 Case Study

We propose to calibrate the same stylistic SWMM model in chapter 3 shown in Figure

3.1a. The optimization objectives of this case study are also the same as before: minimize

total upstream and downstream flooding.

76

4.3.2 Bayesian Calibration

We leverage Bayesian calibration as a powerful statistical technique to estimate the proba-

bility distribution of SWMM model parameters based on the similarity of their simulated

ponds depths to those simulated under the synthetic truth. This method enables us to

use prior knowledge of parameter values in similar systems and data simulated under

the synthetic truth to form a posterior joint distribution of parameters that reflects up-

dated priors. The following subsections detail the selection of parameters for calibration,

the formulation of the likelihood function, and the algorithm employed for Bayesian cal-

ibration.

4.3.2.1 Parameter Selection

We choose a subset of SWMM model parameters to calibrate based on their sensitivity,

as discussed in the literature. These parameters, listed in Table 4.1, play pivotal roles in

influencing the model’s behavior and performance.

To establish the parameter priors for calibration, we refer to the uncertainty levels rec-

ommended in “Rules for Responsible Modeling” (James, 2003). We apply an uncertainty

level within this range as a multiplier on a base value (that used in chapter 3) of each

parameter to obtain the calibration range, i.e. calibration range = base value ± base value

× uncertainty level. We set the synthetic true parameter values to be the same as the

base value parameters used in the chapter 3, meaning the synthetic truth in this case is

always the median of the calibration range. The synthetic truth is used in the SWMM

model to simulate the “observed” output that we seek to calibrate to. The synthetic truth,

uncertainty level, and resulting calibration range are listed in Table 4.1.

77

Table 4.1: SWMM model parameters to be calibrated.

Synthetic Uncertainty Uncertainty Parameter
Parameter Description True Level in Level Calibration

Value Literature Applied Range
Width (m) Width of

overland flow
1000 50 - 100% 50% 500 - 1500

Slope (%) Gradient of
subcatchments

0.5 10 - 100% 55% 0.225 -
0.775

N Imperv
(s/m1/3)

Manning’s
roughness
coefficients for
impervious
surfaces

0.01 10 - 25% 17.5% 0.00825 -
0.01175

N perv
(s/m1/3)

Manning’s
roughness
coefficients for
pervious
surfaces

0.16 50 - 100% 75% 0.04 - 0.28

Minimum
Infiltration

Rate
(mm/hr)

Equivalent to
soil’s saturated
hydraulic
conductivity

0.5 25 - 50 % 37.5% 0.3125 -
0.6875

Decay
constant

(hr−1)

Infiltration rate
decay constant
for Horton
curve

4 25 - 50 % 37.5% 2.5 - 5.5

Drying time
(days)

Time for fully
saturated soil to
dry

7 50 - 100 % 75% 1.75 - 12.25

4.3.2.2 Likelihood Function

Bayesian calibration requires estimation of the likelihood of each parameter set. To deter-

mine an appropriate likelihood function, we generated a Latin hypercube sample of 100

parameter combinations over their calibration range. We then ran SWMM for these pa-

rameter sets with the orifices 20% open at all times. For each simulation, we computed the

residuals, ϵ, between simulated and “observed” depths in storage ponds 1 and 2, where

78

“observed depths” are defined as those simulated by the model with the synthetic true

parameter values. For each simulation, we then computed the likelihood of the residu-

als assuming different distributions: normal, Student t, Cauchy, and asymmetric Laplace.

For each distribution, we made Q-Q plots of the empirical vs. fitted quantiles (QQ-plots)

for each pond, and plots of the log-likelihood vs. Nash-Sutcliffe Efficiency (NSE) (Mc-

Cuen et al., 2006), between simulated and observed depths at each pond. The best distri-

bution was then chosen subjectively based on which QQ-plots most closely matched and

which log-likelihoods were most strongly positively related to the performance metrics.

QQ-plots are shown for one of the Latin hypercube samples of parameter values with the

ponds 20% open in Appendix B Figure B.1, and of NSE vs. log-likelihood in Appendix B

Figure B.2. Based on this comparison, the Student-t distribution was chosen. Equations

4.1-4.3 display the final form of the likelihood function.

logL =
T∑
t=1

log
(
f1(x1,t)

)
+

T∑
t=1

log
(
f2(x2,t)

)
(4.1)

fi(xi,t) =
Γ(νi+1

2
)

√
πνiΓ(

νi
2
)

(
1 +

x2
i,t

νi

)−(νi+1)/2

(4.2)

xi,t =
ϵi,t − µi

σi

(4.3)

where ϵi,t are the residuals at time t for pond i, T is the number of time steps in the

simulation, and νi, µi, and σi are parameters of the Student-t distribution for the pond i

residuals.

79

4.3.2.3 Algorithm

To perform Bayesian calibration, we need an effective search algorithm to derive the

joint posterior of the model parameters given their prior ranges and likelihood function.

Among different statistical methods, MCMC is a robust candidate for this task. In chapter

2, we observed that the DiffeRential Evolution Adaptive Metropolis algorithm (DREAM)

was the most reliable and effective MCMC algorithm tested on both test problems. There-

fore, we chose it as our MCMC algorithm. We ran DREAM using the PyDREAM package

in Python for 100,000 iterations and 15 chains. The parameters of the Student-t distribu-

tion were not included in the Bayesian estimation, only the 7 parameters listed in Table

4.1 for each of the 2 SWMM subcatchments, resulting in 14 calibration parameters. For

each MCMC sample, the Student-t distribution parameters were simply estimated using

Maximum Likelihood Estimation as part of the scipy.stats library in Python.

4.3.3 Robust Optimization

After performing Bayesian calibration and deriving the joint posterior of the 14 SWMM

parameters, we introduce robust optimization methods to design control rules that gen-

eralize well across different likely SWMM parameter sets.

4.3.3.1 Optimization Methods

In this study, we optimize stormwater control rules using three multi-objective optimiza-

tion strategies. The first strategy optimizes control rules using the SWMM parameter set

with the maximum a posteriori (MAP) probability from the Bayesian calibration. The

other two strategies select a diverse set of likely parameter sets from the calibration and

optimize performance in expectation across them, or in the worst case. We call these

multi-objective robust optimization (MORO) and min-max robust optimization (Min-

80

Max), respectively. We evaluate the performance of the MAP, MORO, and Min-Max opti-

mizations by re-simulating their optimized control rules on the synthetic true parameter-

ization. For reference, we also optimize control rules to the synthetic truth (Truth) to see

what performance levels could be achieved in absence of uncertainty.

Mathematically, the multi-objective optimization of formulation f can be written in

the following form:

Minimize |Of | = |Of
1 , O

f
2 | (4.4)

where Of is a vector of two objective functions representing upstream and downstream

flooding, but summarized differently across parameterizations for each formulation f .

In the Truth formulation Of
1 and Of

2 are the total overflows at ponds 1 and 2, and total

flooding at links 1 and 2, respectively, under the synthetic true parameter set. These are

quantified by Equations 4.5-4.6:

OTruth
1 = (Overflow SP1,θTruth

+Overflow SP2,θTruth
) (4.5)

OTruth
2 = (FloodingLink1,θTruth

+ FloodingLink2,θTruth
) (4.6)

where θTruth represents the synthetic true parameter set.

In the MAP optimization method, the objectives OMAP
i are computed in the same way,

but replacing θTruth with θMAP , the parameter set with the maximum a-posterior proba-

bility:

θMAP = argmax
θ

P (θ|ϵ) = argmax
θ

p(ϵ|θ)p(θ)∫
p(x|θ)p(θ)dθ

. (4.7)

Here θ represents a vector of SWMM parameters, ϵ denotes the residuals in Pond 1 and

81

Pond 2 depths, P (θ|ϵ) is the posterior probability of θ given ϵ, and p(ϵ|θ) is the likelihood

of ϵ given θ. θMAP represents the mode of the posterior distribution and is often employed

as a point estimate in Bayesian inference.

Unlike MAP, MORO seeks to minimize the objectives over a selection of parameter

sets with different likelihood values. This method minimizes the likelihood-weighted av-

erage of the objective values derived from a set of likely SWMM model parameterizations,

including MAP:

OMORO
i =

∑
θ

(
Lθ∑
θ Lθ

Oi,θ

)
(4.8)

Here, Lθ is the likelihood of the parameterization θ and Oi,θ is the i-th objective value in

that parameterization.

The third and final strategy is min-max robust optimization (Min-Max). This approach

aims to minimize the worst objective value across the same set of selected parameter sets

used for MORO, ensuring that the solution is robust against the most adverse of these

conditions. The min-max objectives can be described as follows:

OMinMax
i = max

θ
Oi,θ (4.9)

4.3.3.2 Parameterizations Selection

Computation of both OMORO
i and OMinMax

i requires the selection of different parameter

sets θ to which we would like our control rules to be robust. Ideally, we would select all

parameter sets with a high likelihood, but this may not be computationally tractable. To

reduce the number of parameter sets, we can choose a selection among those with high

likelihood that capture a diverse set of parameter values, dropping sets that are similar

to others, providing little additional value to the robust optimization. To achieve this, we

82

apply k-means clustering to all unique parameter sets sampled after burn-in to discover

clusters with similar characteristics, and then choose only one representative parameter

set from each cluster. K-means clustering aims to partition a collection of n parameter

sets y1,y2, . . . ,yn into k clusters C1, C2, . . . , Ck such that the within-cluster sum of squares

is minimized:

argmin
C

k∑
i=1

∑
y∈Ci

∥y −mi∥2 (4.10)

• C = {C1, C2, . . . , Ck} represents the set of clusters.

• mi is the centroid of cluster Ci.

• ∥y −mi∥2 is the squared Euclidean distance between parameter set y and the cen-

troid mi.

The K-means algorithm first chooses k initial centroids m1,m2, . . . ,mk. After that,

it assigns each parameter set yj to the cluster with the nearest centroid (equation 4.11).

Lastly, it updates the centroids by calculating the mean of all points assigned to each

cluster:

C(t)i =
{
yj : ∥yj −m

(t)
i ∥2 ≤ ∥yj −m

(t)
l ∥

2, ∀l, 1 ≤ l ≤ k
}

(4.11)

m
(t+1)
i =

1

|C(t)i |

∑
yj∈C

(t)
i

yj (4.12)

To determine the appropriate number of clusters, we apply the elbow method. We run

the K-means clustering algorithm for a range of cluster numbers, and for each k, calculate

the SSE (equation 4.10). We then plot the SSE values against the number of clusters k. The

83

optimal number of clusters is identified at the point where the SSE begins to decrease at

a slower rate, forming an “elbow” in the plot. After specifying the number of clusters,

we identify the parameterization closest to the centroid of each cluster and designate it

as one of the likely parameter sets, except in the case that the cluster includes the MAP

parameterization. For that cluster, we instead select the MAP parameterization. This

ensures that MAP is included as one of the likely parameterizations in both the MORO

and MAP strategies.

4.3.3.3 Computational Implementation

For each optimization, we designed control rules for the two ponds using Evolutionary

Multi-Objective Direct Policy Search (EMODPS) (Giuliani et al., 2016) with the Borg multi-

objective evolutionary algorithm (Hadka & Reed, 2013) as the solver, as this approach

displayed superior performance in finding a diverse Pareto-front compared to Deep De-

terministic Policy Gradients (DDPG) (Lillicrap et al., 2015) in chapter 3. We used the

control policy formulation with Non-Convex Radial Basis Functions (NCRBFs) described

by Equation 3.1. For fairness, each optimization was performed using the same computa-

tional resources: 3 nodes with 21 cores/node for 10 hours, totaling 630 core-hours. Note,

since the objective functions for MORO and MAP require running the SWMM model k

times across the k selected parameter sets, they can therefore perform only about 1/k as

many function evaluations over this time. We assess whether providing additional likely

parameterizations to inform the control rules is worth this computational hit by evalu-

ating the performance of the optimized policies from each formulation on the synthetic

truth.

84

4.4 RESULTS AND DISCUSSION

4.4.1 Parameter Calibration Results

In this section, we present our results for the Bayesian calibration of SWMM parameters

using the DREAM algorithm. Figure 4.1 displays the trace plots of parameter posterior

values across different chains at different iterations of the search. Iteration values range

from 10,000 to 100,000, as we discarded the first 10% of the iterations as burn-in. From the

total 14 calibrated parameters, we choose 3 to illustrate different convergence scenarios.

Figure 4.1 shows the trace plots for (a) Manning’s N of impervious surfaces (N Im-

perv), (b) max infiltration rate, and (c) soil drying time. For N Imperv, we can see the

algorithm chains converge to a single mode, but one that is different from the synthetic

truth (Figure 4.1a). For the max infiltration rate, we see some chains converging to a value

of 0.49, which is close to the true value of 0.5; however others converge to values between

0.45-0.46, suggesting there may be some equifinality in this parameter, whereby different

values can achieve similar performance in simulating pond depths that are close to the

synthetic observations. For the drying time, we see different dynamics still, as the poste-

rior values are relatively noisy and do not converge to a single value, suggesting there is

great uncertainty in this parameter. This suggests the drying time does not strongly in-

fluence the model’s ability to simulate values close to the synthetic observations of pond

depths. However, that does not necessarily mean control rules won’t influence outcomes

differently in model runs with different values of initial deficit. These results reinforce the

study’s motivation to consider multiple likely parameterizations in designing robust ro-

bust control rules under parameter uncertainty. If parameters estimated by the calibration

are (a) incorrect, (b) equifinal, or (c) highly uncertain, choosing a single set of parameters

for design could have severe consequences.

85

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Iteration

0.0085

0.0090

0.0095

0.0100

0.0105

0.0110

0.0115

Ch
ai

n
Va

lu
e

- N
 Im

pe
rv

(s
/m

1/
3)

N Imperv(s/m1/3)- Subwatershed 1

Truth
Min/Max value

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Iteration

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Ch
ai

n
Va

lu
e

- M
in

 In
fil

tra
tio

n
Ra

te
 (m

m
/h

r)

Min Infiltration Rate (mm/hr) - Subwatershed 2

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Iteration

2

4

6

8

10

12

Ch
ai

n
Va

lu
e

- D
ry

in
g

Ti
m

e
(d

ay
s)

Drying Time (days) - Subwatershed 1

Figure 4.1: Trace plots of (a) N Imperv, (b) Max Infiltration Rate, and (c) Drying Time
values sampled by each chain of DREAM over the course of the search after removing
burn-in

4.4.2 Parameterization Selection Results

After deriving the posterior values for different parameters, we apply k-means clustering

to determine the number of distinct parameterizations to use for the robust optimization

formulations. Based on the within-cluster sum of squares (WCSS) values, we choose 4

86

Selected
of clusters

Figure 4.2: K-mean clustering plot - displaying Within-Cluster Sum of Squares (WCSS)
vs number of clusters.

clusters as the optimal number (see Figure 4.2). This choice is justified as the WCSS de-

creases at a slower rate beyond this point. After specifying the number of clusters, we first

identify which cluster the MAP parameterization falls within. For the remaining clusters,

we find the parameterizations closest to their centroids. We then designate these three

parameter sets and the MAP parameterization as the likely parameter sets to be used for

the robust optimization formulations (MORO and Min-Max).

4.4.3 Performance of Optimized and Re-simulated Policies With Different Optimiza-

tion Methods

In this section, we present the results of the three different optimization (MAP, MORO

and Min-Max) strategies and the optimization to the synthetic truth. Similar to Figure 3.4

in the previous chapter, Figure 4.3a displays the objective values obtained by the policies

of each strategy based on their own formulation of the objective functions. Figure 4.3b

87

Compromise
Solutions

Compromise
Solutions

(a) Objective Values in Own Formulation (b) Objective Values on Synthetic Truth

Figure 4.3: (a) Objective values of optimized control policies of MAP, MORO, and Min-
Max along with synthetic truth as determined . (b) Objective values of the control policies
in panel (a) when re-simulated on the synthetic truth. A compromise solution from each
formulation based on their performance in panel (a) is selected for further analysis, and
their corresponding re-simulated values on the synthetic truth are shown in panel (b).

shows the objective values when those policies are re-simulated using SWMM with the

synthetic true parameter set. These values are of course unchanged for the policies opti-

mized to the synthetic truth (red stars). Note that this Pareto front is the same as the one

derived in chapter 3.

In Figure 4.3a, we observe that the three optimization strategies differ considerably

from each other in the objective values they obtain. The objective values of the policies

optimized using the MAP strategy largely dominate those of both MORO and Min-Max,

and even the synthetic truth. However, domination of the synthetic truth suggests these

objective values are an overestimation of what they can truly achieve. Between MAP

and MORO, the perceived objective values of MORO’s solutions are slightly better than

88

those of Min-Max. This is not surprising given the Min-Max strategy reports the worst

objective value achieved across parameterizations, while MORO reports the posterior-

weighted average.

To determine which strategy is actually superior, Figure 4.3b shows the performance

of the policies optimized to each strategy when re-simulated over the synthetic truth.

Here we see that across all formulations, the objective values of the policies generally

degrade on the synthetic truth – even the Min-Max policies that reported the worst ob-

jective value obtained across the parameterizations selected for optimization. To quantify

this degradation, Figure 4.4 shows the kernel density estimate (KDE) of the differences

in objective values between the optimized and re-simulated solutions for the different

optimization strategies. The closer the peak of the KDE is to zero, the smaller the dif-

ference between optimization and re-simulation across policies, indicating the objective

values from the optimization more closely reflect what can be achieved in reality. Posi-

tive values indicate superior objective values could be achieved than what was found in

optimization, while negative values indicate the reverse.

From Figure 4.4, we observe that the peak for Min-Max is closer to zero for both ob-

jectives than for MORO and MAP. Not surprisingly, the lower tail of the Min-Max distri-

bution is also less negative on both objectives, indicating it is less likely to underestimate

flooding by nature of minimizing the worst case across objectives. Following Min-Max,

MORO’s peak is next closest to zero on both objectives. However, MORO does have a

longer lower tail than MAP on the upstream flooding objective, indicating it is more likely

to underestimate upstream flooding, but the reverse is true for downstream flooding.

Overall, these findings suggest engineers should use Min-Max optimization for this

problem if they are most concerned with the objective values from the optimization re-

flecting values close to what can truly be achieved, particularly if they want to reduce the

89

(a) Upstream Flooding Objective (b) Downstream Flooding Objective

Figure 4.4: KDE plots showing the differences between optimization solutions and their
re-simulation over synthetic truth data across MAP, MORO, and Min-Max methods for
upstream (a) and downstream (b) flooding objectives

chances of underestimating flooding. However, it is important to note that the Min-Max

objective values may be more accurate, but still worse than for the other formulations. As

such, this should not be one’s only decision criterion.

4.4.4 Understanding Optimized and Re-simulated Policies With Different Optimiza-

tion Methods

Figures 4.3-4.4 show performance across all policies from each formulation, but stake-

holders will ultimately choose only one. Between the three strategies, there is no obvious

“winner” in this respect; MAP seems to find the strongest policies for individual objec-

tives, but MORO seems to find the strongest policies in the compromise region Figures

4.3. Assuming stakeholders would like to reduce both upstream and downstream flood-

ing, we compare the actions taken by policies that would be selected as compromises

90

based on the objective values from each strategy’s own formulation. Compromise poli-

cies were defined as those with the minimum distance to an ideal point with no upstream

or downstream flooding. These policies are highlighted in Figure 4.3a, and their true

objective values are shown in Figures 4.3b.

First off, we see that the Min-Max policy identified as the best compromise solution

actually strongly favors upstream flooding on the synthetic truth. The MORO and MAP

compromise policies, however, continue to balance both objectives under the true pa-

rameterization relative to the other policies from their formulation. Between these two

solutions, MORO dominates MAP, suggesting benefits of considering multiple parame-

terizations in the optimization. The MORO Compromise is also the closest of these so-

lutions to that of the synthetic truth, suggesting this formulation is most favorable for

selecting a compromise.

Similar to the second study (Chapter 3), we also display the time series of states (rain-

fall forecast and pond depths), actions (orifice openings), and objectives (upstream and

downstream flooding) for the selected compromise solutions in Figure 4.5. In each set of

plots, panels (a)-(d) show the state variables: the storage pond depths on the left axis, and

the perfect 24-hour rainfall forecast on the right axis coming down from the top. Panels

(e)-(h) display the resulting actions taken in response to these state variables: the percent-

age openness of O1 and O2. Finally, panels (i)-(l) present the volume of flooding, with

downstream flooding on the left axis and upstream flooding on the right axis. Time series

drawn for this analysis cover the majority of the optimization period from mid-June till

September, 1995.

First, we investigate the actions of the Synthetic Truth Compromise to see what ac-

tions would be taken to balance both objectives if the true parameterization were known.

As we saw in chapter 3, this solution operates both ponds similarly, moving the orifice

91

Figure 4.5: Time series of states, actions, and objectives of the MAP, MORO, and Min-Max
policies over the period of Jun-Sep 1995. (a=d) Perfect 24-hour rainfall forecast and stor-
age pond depths of SP1 and SP2, (e-h) orifice openness of O1 and O2, and (i-l) upstream
and downstream flooding for compromise solutions from MAP, MORO, Min-Max, and
the Synthetic Truth

between 15-20% open in each pond in response to changes in the pond depth or forecast

(Figure 4.5h), decreasing the opening at the beginning of the storm to reduce downstream

flooding, and increasing the opening when full to reduce upstream flooding. This results

92

in the ponds filling as storms come in (Figure 4.5d), which almost completely prevents

downstream flooding (Figure 4.5l). However, only once do the ponds completely fill (Fig-

ure 4.5d) causing upstream flooding (Figure 4.5l).

The other three compromise solutions behave differently. Each of them has an “equi-

librium” orifice opening that differs for the two ponds to try to balance upstream and

downstream flooding. For one of these ponds, it is similarly around 20% for each com-

promise; however it is higher for the other. The higher equilibrium openness results in

faster draining of the corresponding ponds, leading to greater downstream flooding for

all of these solutions (Figures 4.5i-l). However, the faster draining generally reduces the

chance of filling the ponds and causing overtopping, thereby decreasing Upstream flood-

ing for the MORO and Min-Max Compromise solutions compared to the Truth Compro-

mise (Figures 4.5j-l). This is further facilitated by the orifices opening more to drain the

ponds as they fill. For the MORO and Min-Max Compromise Solutions, the opening oc-

curs in unison at each pond (Figures 4.5f-g); however the MAP Compromise generally

only changes actions in pond 2, and actually decreases pond openness after first increas-

ing it (Figure 4.5e). This results in greater pond overflow, leading to more upstream flood-

ing for this solution compared to the Truth Compromise despite pond 2 having a higher

equilibrium openness that should drain it faster (Figure 4.5i).

These differences highlight the benefits of the robust optimization strategies in iden-

tifying compromise policies that can balance both flooding objectives. MORO and Min-

Max perform relatively better than MAP, as their actions are more coordinated and dy-

namic in response to the system’s needs. This responsiveness in opening both pond

orifices during flood events allows them to drain quickly and reduce the probability of

overtopping and causing significant upstream flooding, while maintaining similar down-

stream flooding from similar equilibrium orifice opening levels.

93

4.5 CONCLUSIONS AND FUTURE WORK

This work addresses a significant gap in the stormwater literature in designing control

rules that account for parametric uncertainty in the stormwater model used for design.

While many studies have incorporated uncertainties from climate change or future devel-

opment scenarios into the design of stormwater systems, none have developed optimiza-

tion frameworks that are robust to parameter uncertainty. To address this gap, we present

two robust optimization approaches, MORO and Min-Max, to optimize real-time control

rules that minimize flooding objectives in the studied stormwater system. We compare

the performance of both approaches to the traditional MAP optimization approach that

does not account for parameter uncertainty based on how each optimization approach

performs on a synthetic true parameter set. This allows us to assess which approach is

most effective.

The need for robust optimization approaches in designing stormwater control rules is

first highlighted in our study by the significant parameter uncertainty in SWMM model

parameters discovered through our Bayesian calibration. We find MCMC algorithms

sometimes converge to the wrong value, converge to multiple values, or exhibit great

uncertainty.This suggests that relying solely on MAP as the most likely parameter set for

designing control rules may not the most reliable strategy. Instead, this study underscores

the importance of using MORO and Min-Max strategies as robust optimization methods.

These approaches incorporate a broader range of likely parameterizations, enabling the

design of more robust and reliable control rules compared to the traditional MAP strategy.

Comparing these formulations on our stormwater control problem, we find all so-

lutions tend to underestimate the amount of flooding that would actually occur under

the synthetic truth. The worst underestimation of upstream flooding occurred under the

MORO formulation, while the worst for downstream flooding occurred for the MAP for-

94

mulation. The objective values of solutions optimized using the Min-Max strategy were

closest to the values achieved on the synthetic truth, providing more accurate estimates

of the performance that can be achieved in reality.

However, accuracy is not the only important metric to consider, but performance as

well. MAP found solutions that did best on individual objectives when re-evaluated on

the synthetic truth, but MORO and Min-Max found better compromise policies. Compar-

ing the time series of states, action values, and flooding objectives for these compromise

policies across MAP, MORO, and Min-Max provided valuable insights into the dynamics

of these policies. MORO and Min-Max demonstrated more responsive and coordinated

actions to state information, showcasing their robustness in adjusting the openness of

O1 and O2 to prevent flooding. The MORO compromise solution was most effective,

achieved the closest performance to the Synthetic Truth Compromise on both upstream

and downstream flooding.

In conclusion, this paper presents two key insights: 1) stormwater models can exhibit

great parametric uncertainty, as illustrated by our Bayesian calibration, and 2) using ro-

bust optimization to design real-time control rules to be robust to this uncertainty is an

effective way to find policies that either 1) provide more accurate objective value esti-

mates (Min-Max optimization) or 2) provide superior compromise performance. These

insights could be valuable for decision-makers in stormwater management systems to fa-

cilitate the design of control rules under parameter uncertainty. Future work could repeat

this experiment using multiple synthetic truth values to ensure the findings themselves

are robust across possible true parameterizations. One could also explore including al-

ternative parameters in SWMM beyond those currently addressed in the literature based

on a system-specific sensitivity analysis. We hypothesize that this could improve MCMC

search performance and convergence. Furthermore, this research opens new avenues

95

for applying these methodologies to hydrology models beyond SWMM, testing them on

more complex models with additional parameters, and scaling them up for larger models.

4.6 CODE AND DATA AVAILABILITY

The code development history for the Bayesian calibration step, as well as the EMODPS

optimization strategies (Truth, MAP, MORO, and Min-Max) and post-processing steps,

can be found on our GitHub repository.1

1https://github.com/hosseinkavianih/SWMM-Calibration

96

CHAPTER 5

Conclusions and Future Work

This dissertation advances our understanding of how to best design stochastic engineered

systems to be robust to parametric uncertainty. Three distinct studies are presented that

each contribute to this overall mission.

we first advance the diagnostics of MCMC algorithms to visualize their effectiveness,

efficiency, reliability, and controllability. This addresses an important gap in the MCMC

literature, as existing diagnostics solely focus on diagnosing the effectiveness and effi-

ciency of an individual search process, not on diagnosing its consistency across multi-

ple search processes with different random seeds and hyperparameter configurations.

We illustrate the developed diagnostics on three MCMC algorithms - Metropolis Hast-

ings (MH), Adaptive Metropolis (AM), and Differential Evolution Adaptive Metropo-

lis (DREAM) using test problems characterized by high dimensionality and bimodality,

characteristics commonly found in engineered systems.

Our published study (Kavianihamedani et al. (2024)) provides key insights into

the performance of MCMC algorithms. Most notably, we find DREAM consistently

demonstrates superior efficiency and reliability, making it a robust choice for both high-

dimensional and multimodal problems. The findings of this paper can inform MCMC

algorithm selection for Bayesian inference applications, as well as hyperparameterization

of the chosen algorithm. Future work could focus on enhancing the DREAM algorithm

by adapting the probability of using its different proposal operators based on their suc-

cess rates in proposing new chain locations that are accepted. We hypothesize that this

adjustment could improve DREAM’s controllability and overall search performance.

In the second study, we highlight the importance of finding the Pareto front of optimal

solutions to better understand the trade-offs in stormwater management systems. For the

97

first time, we introduce Evolutionary Multi-Objective Direct Policy Search (EMODPS), a

policy-based reinforcement learning (RL) method, to the stormwater literature and com-

pare its performance to Deep Deterministic Policy Gradients (DDPG), an actor-critic RL

method that includes both policy optimization and value approximation and has been

used to optimize stormwater management rules. We benchmark these two algorithms

in optimizing real-time control (RTC) rules for a stylized system consisting of two stor-

age ponds for urban stormwater, each with a bottom orifice to control the outflow rate

for flood control. The objectives are to minimize flooding both upstream (at the storage

ponds) and downstream.

Findings from the second study demonstrate that EMODPS generates more robust

trade-off policies than DDPG with simpler hyperparameter tuning, making it a preferred

choice for real-world, multi-objective applications. Insights from this study can guide

decision-makers in designing effective stormwater control rules to minimize flooding

in stormwater management systems. Future work can investigate whether EMODPS

outperforms DDPG with more than two objectives. However, we hypothesize that

EMODPS’s advantages will increase over DDPG due to its built-in non-dominated sort-

ing of policies, whereas DDPG will face the curse of dimensionality.

Finally, in the last study, we bridge the insights from both the first and second studies

to design robust, multi-objective stormwater control rules that address parametric un-

certainty in hydrological models. Leveraging the findings from the first paper (Kavian-

ihamedani et al. (2024)), we use DREAM to calibrate the SWMM model parameters and

account for their uncertainty. Capitalizing on the second study, we then use EMODPS to

design control rules for the system that account for this uncertainty. For that, we introduce

two robust optimization methods, MORO and Min-Max, and compare their performance

with the traditional MAP method.

98

The findings of this last study demonstrate the benefits of leveraging robust optimiza-

tion in stormwater control systems. We observe MORO derives the best compromise

policy and closest one to the compromise from the Pareto set optimized to the synthetic

truth. We also find Min-Max re-simulated policies over the synthetic true parameter set

are closest in performance to the optimized objective values among all three strategies.

Insights of this study could be valuable for decision makers in stormwater management

systems to improve the design of control rules under parameter uncertainty. For example,

stakeholders can use this study’s findings to choose which optimization approach to use

to account for parameter uncertainty: MORO to find a strong compromise or Min-Max

to have a more accurate estimate of performance. Future work could repeat this exper-

iment using multiple synthetic true parameter values to ensure the findings themselves

are robust to this assumption.

99

APPENDIX A

Appendix

A.1 FIGURES

a) b) c)

d) e) f)

Figure A.1: (a-e) Control maps illustrating the average Kullback-Leibler Divergence
(KLD) across random seeds on the 100D MVN test problem as a function of the number
of function evaluations (NFE) and number of chains for.(f) Attainment maps illustrating
the probability of attaining different KLDs across all seeds and hyperparameters for each
algorithm.

100

a) b) c)

d) e) f)

Figure A.2: (a-e) Control maps illustrating the average Gelman-Rubin (GR) diagnostic
of the first dimension of the 100D MVN test problem across random seeds as a function
of the number of function evaluations (NFE) and number of chains.(f) Attainment maps
illustrating the probability of attaining different WDs across all seeds and hyperparame-
ters for each algorithm.

101

0.0

0.1

0.2

0.3

0.4

0.5

−5.0 −2.5 0.0 2.5 5.0

de
ns

ity

0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5 5.0

de
ns

ity0.0

0.1

0.2

0.3

0.4

0.5

−5.0 −2.5 0.0 2.5 5.0

de
ns

ity

True Posterior

AM_noOpt
AM_Opt
DREAM

MH_noOpt
MH_Opt

0.0

0.2

0.4

0.6

−5.0 −2.5 0.0 2.5 5.0

de
ns

ity

0.0

0.2

0.4

0.6

−5.0 −2.5 0.0 2.5 5.0

de
ns

ity

Increasing # of chains

In
cr

ea
si

ng
 N

FE

a) b)

c)

d) e)

Figure A.3: Posterior marginals of the 1st dimension of the 100D MVN test problem when
using the hyperparameter closest to (a) the least number of chains and the most NFE, (b)
the highest number of chains and the most NFE, (c) the median number of chains and the
median NFE, (d) the least number of chains and the least NFE, and (e) the most number
of chains and the least NFE.

0.000

0.025

0.050

0.075

0.100

−50 −25 0 25 50

de
ns

ity

0.000

0.025

0.050

0.075

−50 −25 0 25 50

de
ns

ity0.00

0.02

0.04

0.06

−50 −25 0 25 50

de
ns

ity0.000

0.025

0.050

0.075

0.100

0.125

−50 −25 0 25 50

de
ns

ity

0.00

0.02

0.04

0.06

−50 −25 0 25 50

de
ns

ity

True Posterior

AM_NoOpt
AM_Opt
DREAM

MH_NoOpt
MH_Opt

Increasing # of chains

In
cr

ea
si

ng
 N

FE

a) b)

c)

d) e)

Figure A.4: Posterior marginals of the 100th dimension of the 100D MVN test problem
when using the hyperparameter closest to (a) the least number of chains and the most
NFE, (b) the highest number of chains and the most NFE, (c) the median number of chains
and the median NFE, (d) the least number of chains and the least NFE, and (e) the most
number of chains and the least NFE.

102

a) b) c)

d) e) f)

Figure A.5: (a-e) Cumulative distribution functions (CDFs) of Kullback-Leibler Diver-
gence (KLD) across random seeds for each hyperparameter on the 100D MVN test prob-
lem. The color of the hyperparameter indicates the value of the parameter to which that
algorithm’s WD was most sensitive. (f) Decomposition of how much variablity in KLD is
explained by each hyperparameter and their interaction for each algorithm.

103

a) b) c)

d) e) f)

Figure A.6: (a-e) Cumulative distribution functions (CDFs) of the Gelman-Rubin (GR)
diagnostic of the first dimension across random seeds for each hyperparameter on the
100D MVN test problem. The color of the hyperparameter indicates the value of the
parameter to which that algorithm’s WD was most sensitive. (f) Decomposition of how
much variablity in GR is explained by each hyperparameter and their interaction for each
algorithm.

104

0.0

0.1

0.2

0.3

0.4

−10 0 10

de
ns

ity

0.0

0.1

0.2

0.3

0.4

−10 0 10
0.0

0.1

0.2

0.3

0.4

−10 0 10

0.0

0.1

0.2

0.3

0.4

−10 0 10

de
ns

ity

0.0

0.1

0.2

0.3

0.4

−10 0 10
0.0

0.1

0.2

0.3

0.4

−10 0 10

High GR − Low KLD High GR − Low WD High KLD − Low WD

High KLD − Low GR High WD − Low GR

All Chains

True Posterior

Chain_1
Chain_2
Chain_3
Chain_4
Chain_5
Chain_6
Chain_7

High WD − Low KLD

GR vs KLD GR vs WD KLD vs WD

a) b) c)

d) e) f)

Figure A.7: Comparison of the estimated marginal posterior of the 5th dimension of the
10D bimodal test problem from individual chains and across chains using select hyper-
parameter sets with (a) a high GR and low KLD and (d) the reverse; (b) a high GR and
low WD and (e) the reverse; and (c) a high KLD and low WD and (f) the reverse.

105

0.0

0.1

0.2

0.3

0.4

−10 0 10

de
ns

ity

0.0

0.1

0.2

0.3

0.4

−10 0 10
0.0

0.1

0.2

0.3

0.4

−10 0 10

0.0

0.1

0.2

0.3

0.4

−10 0 10

de
ns

ity

0.0

0.1

0.2

0.3

0.4

−10 0 10
0.0

0.1

0.2

0.3

0.4

−10 0 10

High GR − Low KLD High GR − Low WD High KLD − Low WD

High KLD − Low GR High WD − Low GR

All Chains

True Posterior

Chain_1
Chain_2
Chain_3
Chain_4
Chain_5
Chain_6
Chain_7

High WD − Low KLD

GR vs KLD GR vs WD KLD vs WD

a) b) c)

d) e) f)

Figure A.8: Comparison of the estimated marginal posterior of the 10th dimension of the
10D bimodal test problem from individual chains and across chains using select hyper-
parameter sets with (a) a high GR and low KLD and (d) the reverse; (b) a high GR and
low WD and (e) the reverse; and (c) a high KLD and low WD and (f) the reverse.

d)c)b)a)

Figure A.9: (a-c) Cumulative distribution functions (CDFs) of Wasserstein distance (WD)
across random seeds for each hyperparameter on the 10D bimodal problem. The color of
the hyperparameter indicates the value of the parameter to which that algorithm’s WD
was most sensitive. (d) Decomposition of how much variablity in WD is explained by
each hyperparameter and their interaction for each algorithm.

106

d)c)b)a)

Figure A.10: (a-c) Cumulative distribution functions (CDFs) of the Gelman-Rubin (GR)
diagnostic of the first dimension of the 10D bimodal problem across random seeds for
each hyperparameter. The color of the hyperparameter indicates the value of the param-
eter to which that algorithm’s WD was most sensitive. (d) Decomposition of how much
variablity in WD is explained by each hyperparameter and their interaction for each al-
gorithm.

0.0

0.1

0.2

0.3

0.4

−10 0 10

de
ns

ity

LH With KLD Close to 0

0.0

0.1

0.2

0.3

0.4

−10 0 10

LH With KLD Close to 10

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

−10 0 10

de
ns

ity

0.0

0.1

0.2

0.3

0.4

−10 0 10
0.0

0.1

0.2

0.3

0.4

−10 0 10

LH With KLD Close to 20

All Chains

True Posterior

Chain_1

Chain_10

Chain_11
Chain_12
Chain_13
Chain_14
Chain_15
Chain_16
Chain_17
Chain_18
Chain_19

Chain_2
Chain_3
Chain_4
Chain_5
Chain_6
Chain_7
Chain_8
Chain_9

−10 0 10

D
im

en
si

on
 5

D
im

en
si

on
 1

0

a) b) c)

d) e) f)

Figure A.11: Comparison of the estimated marginal posterior of (a-c) the 5th dimension
of the 10D bimodal test problem and (d-f) the 10th dimension from individual chains and
across chains using select hyperparameter sets with (a,d) KLD near 0, (b,e) KLD near 10
and (c,f) KLD near 20.

107

APPENDIX B

Appendix

B.1 FIGURES

108

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure B.1: Quantile-quantile plots of residuals in depths at ponds 1 and 2 simulated by
SWMM with one Latin hypercube sample of parameter values over their ranges com-
pared to the synthetic truth when using (a-b) normal distribution, (c-d) Student-t distri-
bution, (e-f) Cauchy distribution, (g-h) Asymmetric Laplace distribution.

109

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure B.2: Log-likelihood of residuals in depths at ponds 1 and 2 vs. Nash-Sutcliffe Ef-
ficiency (NSE) between simulations and observations under one Latin hypercube sample
of SWMM parameters if using (a-b) normal likelihood function, (c-d) Student-t likelihood
function, (e-f) Cauchy likelihood function, (g-h) Asymmetric Laplace likelihood function.

110

BIBLIOGRAPHY

Abels, A., Roijers, D., Lenaerts, T., Nowé, A., & Steckelmacher, D. (2019). Dynamic
weights in multi-objective deep reinforcement learning. In International conference on
machine learning, (pp. 11–20). PMLR.

Ashraf, N. M., Mostafa, R. R., Sakr, R. H., & Rashad, M. (2021). Optimizing hyperparame-
ters of deep reinforcement learning for autonomous driving based on whale optimiza-
tion algorithm. Plos one, 16(6), e0252754.

Bahrami, M., Bozorg-Haddad, O., & Loáiciga, H. A. (2019). Optimizing stormwater low-
impact development strategies in an urban watershed considering sensitivity and un-
certainty. Environmental monitoring and assessment, 191, 1–14.

Bartholomew, E., & Kwakkel, J. H. (2020). On considering robustness in the search phase
of robust decision making: A comparison of many-objective robust decision making,
multi-scenario many-objective robust decision making, and many objective robust op-
timization. Environmental Modelling & Software, 127, 104699.

Beven, K., & Binley, A. (1992). The future of distributed models: model calibration and
uncertainty prediction. Hydrological processes, 6(3), 279–298.

Beven, K., & Binley, A. (2014). Glue: 20 years on. Hydrological processes, 28(24), 5897–5918.

Blum, A. G., Ferraro, P. J., Archfield, S. A., & Ryberg, K. R. (2020). Causal effect of im-
pervious cover on annual flood magnitude for the united states. Geophysical Research
Letters, 47(5), no–no.

Boltz, S., Debreuve, E., & Barlaud, M. (2007). knn-based high-dimensional kullback-
leibler distance for tracking. In Eighth International Workshop on Image Analysis for Mul-
timedia Interactive Services (WIAMIS’07), (pp. 16–16). IEEE.

Boltz, S., Debreuve, E., & Barlaud, M. (2009). High-dimensional statistical measure for
region-of-interest tracking. IEEE Transactions on Image Processing, 18(6), 1266–1283.

Boone, E. L., Merrick, J. R., & Krachey, M. J. (2014). A hellinger distance approach to
mcmc diagnostics. Journal of Statistical Computation and Simulation, 84(4), 833–849.

Bowes, B. D., Tavakoli, A., Wang, C., Heydarian, A., Behl, M., Beling, P. A., & Goodall,
J. L. (2021). Flood mitigation in coastal urban catchments using real-time stormwater
infrastructure control and reinforcement learning. Journal of Hydroinformatics, 23(3),
529–547.

111

Bowes, B. D., Wang, C., Ercan, M. B., Culver, T. B., Beling, P. A., & Goodall, J. L. (2022).
Reinforcement learning-based real-time control of coastal urban stormwater systems to
mitigate flooding and improve water quality. Environmental Science: Water Research &
Technology, 8(10), 2065–2086.

Brent, R. P. (1971). An algorithm with guaranteed convergence for finding a zero of a
function. The computer journal, 14(4), 422–425.

Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of itera-
tive simulations. Journal of computational and graphical statistics, 7(4), 434–455.

Cacchiani, V., Qi, J., & Yang, L. (2020). Robust optimization models for integrated train
stop planning and timetabling with passenger demand uncertainty. Transportation Re-
search Part B: Methodological, 136, 1–29.

Campbell, T., & How, J. P. (2015). Bayesian nonparametric set construction for robust
optimization. In 2015 American Control Conference (ACC), (pp. 4216–4221). IEEE.

Cannon, A. J. (2018). Multivariate quantile mapping bias correction: an n-dimensional
probability density function transform for climate model simulations of multiple vari-
ables. Climate dynamics, 50, 31–49.

Castelletti, A., & Soncini-Sessa, R. (2007). Bayesian networks and participatory modelling
in water resource management. Environmental Modelling & Software, 22(8), 1075–1088.

Chankong, V., & Haimes, Y. Y. (2008). Multiobjective decision making: theory and methodology.
Courier Dover Publications.

Chiandussi, G., Codegone, M., Ferrero, S., & Varesio, F. E. (2012). Comparison of multi-
objective optimization methodologies for engineering applications. Computers & Math-
ematics with Applications, 63(5), 912–942.

Choi, J.-H., & Lee, J.-S. (2019). Embracenet: A robust deep learning architecture for mul-
timodal classification. Information Fusion, 51, 259–270.

Coello, C. A. C. (2018). Multi-objective optimization.

Coumou, D., & Rahmstorf, S. (2012). A decade of weather extremes. Nature climate change,
2(7), 491–496.

Cowles, M. K., & Carlin, B. P. (1996). Markov chain monte carlo convergence diagnostics:
a comparative review. Journal of the American Statistical Association, 91(434), 883–904.

Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport.
Advances in neural information processing systems, 26.

112

Demographia (????). Urbanization in the united states from 1945. http://demographia.
com/db-1945uza.htm. Accessed: 2020-09-07.

Di Matteo, M., Dandy, G. C., & Maier, H. R. (2017). Multiobjective optimization of dis-
tributed stormwater harvesting systems. Journal of Water Resources Planning and Man-
agement, 143(6), 04017010.

Ding, Z., Huang, Y., Yuan, H., & Dong, H. (2020). Introduction to reinforcement learning.
Deep reinforcement learning: fundamentals, research and applications, (pp. 47–123).

Dittrich, R., Wreford, A., & Moran, D. (2016). A survey of decision-making approaches for
climate change adaptation: Are robust methods the way forward? Ecological Economics,
122, 79–89.

Dixit, A., & Roy, V. (2017). Mcmc diagnostics for higher dimensions using kullback leibler
divergence. Journal of Statistical Computation and Simulation, 87(13), 2622–2638.

Dobrushin, R. L. (1970). Prescribing a system of random variables by conditional distri-
butions. Theory of Probability & Its Applications, 15(3), 458–486.

Dotto, C. B., Mannina, G., Kleidorfer, M., Vezzaro, L., Henrichs, M., McCarthy, D. T., Freni,
G., Rauch, W., & Deletic, A. (2012). Comparison of different uncertainty techniques in
urban stormwater quantity and quality modelling. Water research, 46(8), 2545–2558.

Dotto, C. B. S., Kleidorfer, M., Deletic, A., Rauch, W., & McCarthy, D. T. (2014). Impacts
of measured data uncertainty on urban stormwater models. Journal of hydrology, 508,
28–42.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016). Benchmarking deep
reinforcement learning for continuous control. In International conference on machine
learning, (pp. 1329–1338). PMLR.

Durmus, A., & Moulines, É. (2015). Quantitative bounds of convergence for geometrically
ergodic markov chain in the wasserstein distance with application to the metropolis
adjusted langevin algorithm. Statistics and Computing, 25, 5–19.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013).
Bayesian data analysis. CRC press.

Gelman, A., Roberts, G. O., Gilks, W. R., et al. (1996). Efficient metropolis jumping rules.
Bayesian statistics, 5(599-608), 42.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences. Statistical science, 7(4), 457–472.

113

http://demographia.com/db-1945uza.htm
http://demographia.com/db-1945uza.htm

Geyer, C. J. (2011). Introduction to markov chain monte carlo. Handbook of markov chain
monte carlo, 20116022, 45.

Giles, D. E., et al. (2010). Hermite regression analysis of multi-modal count data. Eco-
nomics Bulletin, 30(4), 2936–2945.

Gilks, W. R., Roberts, G. O., & George, E. I. (1994). Adaptive direction sampling. Journal
of the Royal Statistical Society: Series D (The Statistician), 43(1), 179–189.

Giuliani, M., & Castelletti, A. (2016). Is robustness really robust? how different definitions
of robustness impact decision-making under climate change. Climatic Change, 135, 409–
424.

Giuliani, M., Castelletti, A., Pianosi, F., Mason, E., & Reed, P. M. (2016). Curses, trade-
offs, and scalable management: Advancing evolutionary multiobjective direct policy
search to improve water reservoir operations. Journal of Water Resources Planning and
Management, 142(2), 04015050.

Giuliani, M., Lamontagne, J., Reed, P., & Castelletti, A. (2021). A state-of-the-art review
of optimal reservoir control for managing conflicting demands in a changing world.
Water Resources Research, 57(12), e2021WR029927.

Giuliani, M., Quinn, J. D., Herman, J. D., Castelletti, A., & Reed, P. M. (2017). Scalable
multiobjective control for large-scale water resources systems under uncertainty. IEEE
Transactions on Control Systems Technology, 26(4), 1492–1499.

Haario, H., Laine, M., Mira, A., & Saksman, E. (2006). Dram: efficient adaptive mcmc.
Statistics and computing, 16, 339–354.

Haario, H., Saksman, E., & Tamminen, J. (2001). An adaptive Metropolis algorithm.
Bernoulli, 7(2), 223–242.

Hadka, D., & Reed, P. (2012). Diagnostic assessment of search controls and failure modes
in many-objective evolutionary optimization. Evolutionary computation, 20(3), 423–452.

Hadka, D., & Reed, P. (2013). Borg: An auto-adaptive many-objective evolutionary com-
puting framework. Evolutionary computation, 21(2), 231–259.

Hao, J., Yang, T., Tang, H., Bai, C., Liu, J., Meng, Z., Liu, P., & Wang, Z. (2023). Explo-
ration in deep reinforcement learning: From single-agent to multiagent domain. IEEE
Transactions on Neural Networks and Learning Systems.

Hartig, F., Minunno, F., & Paul, S. (2023). BayesianTools: General-Purpose MCMC and SMC
Samplers and Tools for Bayesian Statistics. R package version 0.1.8, https://github.com/
florianhartig/BayesianTools.

114

https://github.com/florianhartig/BayesianTools
https://github.com/florianhartig/BayesianTools

Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their
applications. Biometrika, 57, 97.

Hayes, C. F., Rădulescu, R., Bargiacchi, E., Källström, J., Macfarlane, M., Reymond, M.,
Verstraeten, T., Zintgraf, L. M., Dazeley, R., Heintz, F., et al. (2022). A practical guide
to multi-objective reinforcement learning and planning. Autonomous Agents and Multi-
Agent Systems, 36(1), 26.

Heaton, J., Polson, N. G., & Witte, J. H. (2016). Deep learning in finance. arXiv preprint
arXiv:1602.06561.

Heidelberger, P., & Welch, P. D. (1983). Simulation run length control in the presence of
an initial transient. Operations Research, 31(6), 1109–1144.

Herman, J., & Usher, W. (2017). Salib: An open-source python library for sensitivity
analysis. Journal of Open Source Software, 2(9), 97.

Herrera, F., Lozano, M., et al. (1996). Adaptation of genetic algorithm parameters based
on fuzzy logic controllers. Genetic Algorithms and Soft Computing, 8(1996), 95–125.

Hobbs, B. F., Chankong, V., Hamadeh, W., & Stakhiv, E. Z. (1992). Does choice of mul-
ticriteria method matter? an experiment in water resources planning. Water Resources
Research, 28(7), 1767–1779.

Hou, Y., Liu, L., Wei, Q., Xu, X., & Chen, C. (2017). A novel ddpg method with prioritized
experience replay. In 2017 IEEE international conference on systems, man, and cybernetics
(SMC), (pp. 316–321). IEEE.

James, W. (2003). Rules for responsible modeling. Tech. rep., CHI Guelph, Ontario.

Jeffreys, H. (1948). Theory of probability, section 3.23.

Jia, Y., & Culver, T. B. (2006). Robust optimization for total maximum daily load alloca-
tions. Water Resources Research, 42(2).

Jiang, Q., Su, H., Liu, Y., Zou, R., Ye, R., & Guo, H. (2017). Parameter uncertainty-based
pattern identification and optimization for robust decision making on watershed load
reduction. Journal of hydrology, 547, 708–717.

Jin, Y., Olhofer, M., & Sendhoff, B. (2001). Dynamic weighted aggregation for evolutionary
multi-objective optimization: Why does it work and how. In Proceedings of the genetic
and evolutionary computation conference, (pp. 1042–1049).

Jones, G. L., & Hobert, J. P. (2001). Honest exploration of intractable probability distribu-
tions via markov chain monte carlo. Statistical Science, (pp. 312–334).

115

Kantorovich, L. V. (1960). Mathematical methods of organizing and planning production.
Management science, 6(4), 366–422.

Kavianihamedani, H., Quinn, J. D., & Smith, J. D. (2024). New diagnostic assessment of
mcmc algorithm effectiveness, efficiency, reliability, and controllability. IEEE Access, 12,
42385–42400.

Kiran, M., & Ozyildirim, M. (2022). Hyperparameter tuning for deep reinforcement learn-
ing applications. arXiv preprint arXiv:2201.11182.

Kleidorfer, M., Deletic, A., Fletcher, T., & Rauch, W. (2009). Impact of input data uncer-
tainties on urban stormwater model parameters. Water Science and Technology, 60(6),
1545–1554.

Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic
algorithms: A tutorial. Reliability engineering & system safety, 91(9), 992–1007.

Konda, V., & Tsitsiklis, J. (1999). Actor-critic algorithms. Advances in neural information
processing systems, 12.

Koutsoyiannis, D., & Economou, A. (2003). Evaluation of the parameterization-
simulation-optimization approach for the control of reservoir systems. Water Resources
Research, 39(6).

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The annals of mathe-
matical statistics, 22(1), 79–86.

Kumar, S., Guntu, R. K., Agarwal, A., Villuri, V. G. K., Pasupuleti, S., Kaushal, D. R.,
Gosian, A. K., & Bronstert, A. (2022). Multi-objective optimization for stormwater man-
agement by green-roofs and infiltration trenches to reduce urban flooding in central
delhi. Journal of Hydrology, 606, 127455.

Kwakkel, J. H., Haasnoot, M., & Walker, W. E. (2015). Developing dynamic adaptive
policy pathways: a computer-assisted approach for developing adaptive strategies for
a deeply uncertain world. Climatic Change, 132, 373–386.

Laloy, E., & Vrugt, J. A. (2012). High-dimensional posterior exploration of hydrologic
models using multiple-try dream (zs) and high-performance computing. Water Re-
sources Research, 48(1).

Lempert, R. J. (2003). Shaping the next one hundred years: new methods for quantitative, long-
term policy analysis. Rand Corporation.

Lempert, R. J., Bryant, B. P., Collins, M. T., Hackbarth, A., LaTourrette, T., Reville, R. T.,
Popper, S. W., Mijere, C., Groves, D. G., Keller, K., et al. (2013). Making good decisions
without predictions: Robust decision making for planning under deep uncertainty.

116

Li, Z., Wen, X., Lu, Z., & Jing, W. (2022). A ddpg-based transfer learning optimization
framework for user association and power control in hetnet. In 2022 IEEE International
Conference on Communications Workshops (ICC Workshops), (pp. 343–348). IEEE.

Liang, C., & Mahadevan, S. (2015). Bayesian sensitivity analysis and uncertainty integra-
tion for robust optimization. Journal of Aerospace Information Systems, 12(1), 189–203.

Liessner, R., Schmitt, J., Dietermann, A., & Bäker, B. (2019). Hyperparameter optimization
for deep reinforcement learning in vehicle energy management. In ICAART (2), (pp.
134–144).

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wier-
stra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

Lim, A. E., Shanthikumar, J. G., & Shen, Z. M. (2006). Model uncertainty, robust optimiza-
tion, and learning. In Models, Methods, and Applications for Innovative Decision Making,
(pp. 66–94). INFORMS.

Lin, J. G. (2005). On min-norm and min-max methods of multi-objective optimization.
Mathematical programming, 103(1), 1–33.

Liu, C., Xu, X., & Hu, D. (2014). Multiobjective reinforcement learning: A comprehensive
overview. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(3), 385–398.

Mandur, J., & Budman, H. (2012). A polynomial-chaos based algorithm for robust op-
timization in the presence of bayesian uncertainty. IFAC Proceedings Volumes, 45(15),
549–554.

Mandur, J., & Budman, H. (2014). Robust optimization of chemical processes using
bayesian description of parametric uncertainty. Journal of Process Control, 24(2), 422–
430.

Mann, M. E., & Park, J. (1994). Global-scale modes of surface temperature variability on
interannual to century timescales. Journal of Geophysical Research: Atmospheres, 99(D12),
25819–25833.

Marchau, V. A., Walker, W. E., Bloemen, P. J., & Popper, S. W. (2019). Decision making under
deep uncertainty: from theory to practice. Springer Nature.

McCuen, R. H., Knight, Z., & Cutter, A. G. (2006). Evaluation of the nash–sutcliffe effi-
ciency index. Journal of hydrologic engineering, 11(6), 597–602.

McDonnell, B. E., Ratliff, K., Tryby, M. E., Wu, J. J. X., & Mullapudi, A. (2020). Pyswmm:
the python interface to stormwater management model (swmm). Journal of open source
software, 5(52), 1.

117

McKinnon, K. I. (1998). Convergence of the nelder–mead simplex method to a nonsta-
tionary point. SIAM Journal on optimization, 9(1), 148–158.

McPhail, C., Maier, H. R., Kwakkel, J. H., Giuliani, M., Castelletti, A., & Westra, S. (2018).
Robustness metrics: How are they calculated, when should they be used and why do
they give different results? Earth’s Future, 6(2), 169–191.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).
Equation of state calculations by fast computing machines. The journal of chemical
physics, 21(6), 1087–1092.

Montanari, A. (2005). Large sample behaviors of the generalized likelihood uncertainty
estimation (glue) in assessing the uncertainty of rainfall-runoff simulations. Water re-
sources research, 41(8).

Mullapudi, A., Lewis, M. J., Gruden, C. L., & Kerkez, B. (2020). Deep reinforcement
learning for the real time control of stormwater systems. Advances in water resources,
140, 103600.

Mykland, P., Tierney, L., & Yu, B. (1995). Regeneration in markov chain samplers. Journal
of the American Statistical Association, 90(429), 233–241.

Nachum, O., Norouzi, M., Xu, K., & Schuurmans, D. (2017). Bridging the gap between
value and policy based reinforcement learning. Advances in neural information processing
systems, 30.

Nakayama, H., Yun, Y., & Yoon, M. (2009). Sequential approximate multiobjective optimization
using computational intelligence. Springer Science & Business Media.

Natarajan, S., & Tadepalli, P. (2005). Dynamic preferences in multi-criteria reinforcement
learning. In Proceedings of the 22nd international conference on Machine learning, (pp. 601–
608).

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The com-
puter journal, 7(4), 308–313.

Ning, C., & You, F. (2017). Data-driven adaptive nested robust optimization: general
modeling framework and efficient computational algorithm for decision making under
uncertainty. AIChE Journal, 63(9), 3790–3817.

Nishihara, R., Murray, I., & Adams, R. P. (2014). Parallel mcmc with generalized elliptical
slice sampling. The Journal of Machine Learning Research, 15(1), 2087–2112.

Nowak, D. J., & Walton, J. T. (2005). Projected urban growth (2000–2050) and its estimated
impact on the us forest resource. Journal of Forestry, 103(8), 383–389.

118

Oh, J., & Bartos, M. (2023). Model predictive control of stormwater basins coupled with
real-time data assimilation enhances flood and pollution control under uncertainty. Wa-
ter Research, 235, 119825.

Pareto, V. (1964). Cours d’économie politique, vol. 1. Librairie Droz.

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., Asfour, T.,
Abbeel, P., & Andrychowicz, M. (2017). Parameter space noise for exploration. arXiv
preprint arXiv:1706.01905.

Plischke, E., Borgonovo, E., & Smith, C. L. (2013). Global sensitivity measures from given
data. European Journal of Operational Research, 226(3), 536–550.

Quinn, J. D., Reed, P. M., Giuliani, M., & Castelletti, A. (2017). Rival framings: A frame-
work for discovering how problem formulation uncertainties shape risk management
trade-offs in water resources systems. Water Resources Research, 53(8), 7208–7233.

Radovanovic, M., Nanopoulos, A., & Ivanovic, M. (2010). Hubs in space: Popular near-
est neighbors in high-dimensional data. Journal of Machine Learning Research, 11(sept),
2487–2531.

Reed, P. M., Hadka, D., Herman, J. D., Kasprzyk, J. R., & Kollat, J. B. (2013). Evolutionary
multiobjective optimization in water resources: The past, present, and future. Advances
in water resources, 51, 438–456.

Reich, J., Kinra, A., Kotzab, H., & Brusset, X. (2021). Strategic global supply chain network
design–how decision analysis combining milp and ahp on a pareto front can improve
decision-making. International Journal of Production Research, 59(5), 1557–1572.

Ritter, C., & Tanner, M. A. (1992). Facilitating the gibbs sampler: the gibbs stopper and the
griddy-gibbs sampler. Journal of the American Statistical Association, 87(419), 861–868.

Robert, C. P., Casella, G., Robert, C. P., & Casella, G. (2004). The metropolishastings
algorithm. Monte Carlo statistical methods, (pp. 267–320).

Roberts, G. O. (1992). Convergence diagnostics of the gibbs sampler. Bayesian statistics, 4,
775–782.

Roberts, G. O., & Rosenthal, J. S. (2001). Optimal scaling for various metropolis-hastings
algorithms. Statistical science, 16(4), 351–367.

Roberts, G. O., & Rosenthal, J. S. (2009). Examples of adaptive mcmc. Journal of computa-
tional and graphical statistics, 18(2), 349–367.

Roberts, G. O., & Tweedie, R. L. (1999). Bounds on regeneration times and convergence
rates for markov chains. Stochastic Processes and their applications, 80(2), 211–229.

119

Rosenstein, M. T., & Barto, A. G. (2001). Robot weightlifting by direct policy search. In
International joint conference on artificial intelligence, vol. 17, (pp. 839–846). Citeseer.

Rosenthal, J. S. (1995). Minorization conditions and convergence rates for markov chain
monte carlo. Journal of the American Statistical Association, 90(430), 558–566.

Roy, V. (2020). Convergence diagnostics for markov chain monte carlo. Annual Review of
Statistics and Its Application, 7, 387–412.

Saliba, S., Bowes, B., Adams, S., Beling, P., & Goodall, J. (2020). Mitigation of flooding
in stormwater systems utilizing imperfect forecasting and sensor data with deep deter-
ministic policy gradient reinforcement learning.

Sauerteig, P., & Worthmann, K. (2020). Towards multiobjective optimization and control
of smart grids. Optimal Control Applications and Methods, 41(1), 128–145.

Shavazipour, B., Kwakkel, J. H., & Miettinen, K. (2021). Multi-scenario multi-objective ro-
bust optimization under deep uncertainty: A posteriori approach. Environmental Mod-
elling & Software, 144, 105134.

Shen, F., Zhao, L., Du, W., Zhong, W., & Qian, F. (2020). Large-scale industrial energy
systems optimization under uncertainty: A data-driven robust optimization approach.
Applied Energy, 259, 114199.

Smith, J. D., Quinn, J. D., & Band, L. E. (2024). Comparing robust optimization approaches
for addressing hydrologic model uncertainty in infrastructure planning: A green infras-
tructure example. Authorea Preprints.

Srikrishnan, V., Lafferty, D. C., Wong, T. E., Lamontagne, J. R., Quinn, J. D., Sharma, S.,
Molla, N. J., Herman, J. D., Sriver, R. L., Morris, J. F., et al. (2022). Uncertainty analysis
in multi-sector systems: Considerations for risk analysis, projection, and planning for
complex systems. Earth’s Future, 10(8), e2021EF002644.

Stedinger, J. R., Vogel, R. M., Lee, S. U., & Batchelder, R. (2008). Appraisal of the general-
ized likelihood uncertainty estimation (glue) method. Water resources research, 44(12).

Storn, R., & Price, K. (1997). Differential evolution-a simple and efficient heuristic for
global optimization over continuous spaces. Journal of global optimization, 11(4), 341.

Tabas, S. S., & Samadi, V. (2024). Fill-and-spill: Deep reinforcement learning policy gra-
dient methods for reservoir operation decision and control. Journal of Water Resources
Planning and Management, 150(7), 04024022.

Ter Braak, C. J., & Vrugt, J. A. (2008). Differential evolution markov chain with snooker
updater and fewer chains. Statistics and Computing, 18, 435–446.

120

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. Physical
review, 36(5), 823.

Vallender, S. (1974). Calculation of the wasserstein distance between probability distribu-
tions on the line. Theory of Probability & Its Applications, 18(4), 784–786.

Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., & Dekker, E. (2011). Empirical evalu-
ation methods for multiobjective reinforcement learning algorithms. Machine learning,
84, 51–80.

Vamplew, P., Yearwood, J., Dazeley, R., & Berry, A. (2008). On the limitations of scalarisa-
tion for multi-objective reinforcement learning of pareto fronts. In AI 2008: Advances in
Artificial Intelligence: 21st Australasian Joint Conference on Artificial Intelligence Auckland,
New Zealand, December 1-5, 2008. Proceedings 21, (pp. 372–378). Springer.

Vats, D., Flegal, J. M., & Jones, G. L. (2019). Multivariate output analysis for markov chain
monte carlo. Biometrika, 106(2), 321–337.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S., Yeo, M., Makhzani,
A., Küttler, H., Agapiou, J., Schrittwieser, J., et al. (2017). Starcraft ii: A new challenge
for reinforcement learning. arXiv preprint arXiv:1708.04782.

Vrugt, J. A., Ter Braak, C., Diks, C., Robinson, B. A., Hyman, J. M., & Higdon, D. (2009).
Accelerating markov chain monte carlo simulation by differential evolution with self-
adaptive randomized subspace sampling. International journal of nonlinear sciences and
numerical simulation, 10(3), 273–290.

Wald, A. (1949). Statistical decision functions. The Annals of Mathematical Statistics, (pp.
165–205).

Wang, D., Su, J., & Yu, H. (2020). Feature extraction and analysis of natural language
processing for deep learning english language. IEEE Access, 8, 46335–46345.

Wasko, C., Westra, S., Nathan, R., Orr, H. G., Villarini, G., Villalobos Herrera, R., & Fowler,
H. J. (2021). Incorporating climate change in flood estimation guidance. Philosophical
Transactions of the Royal Society A, 379(2195), 20190548.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8, 279–292.

Xie, Y., Feng, K., Du, M., Wang, Y., & Li, L. (2023). Robust optimization of stamping
process based on bayesian estimation. Journal of Manufacturing Processes, 101, 245–258.

Xu, H., Ma, C., Xu, K., Lian, J., & Long, Y. (2020). Staged optimization of urban drainage
systems considering climate change and hydrological model uncertainty. Journal of hy-
drology, 587, 124959.

121

Yan, Y., Du, H., He, D., & Li, W. (2022). Pareto optimal information flow topology for
control of connected autonomous vehicles. IEEE Transactions on Intelligent Vehicles, 8(1),
330–343.

Yan, Z., & Xu, Y. (2020). A multi-agent deep reinforcement learning method for cooper-
ative load frequency control of a multi-area power system. IEEE Transactions on Power
Systems, 35(6), 4599–4608.

Yu, B., et al. (1995). Estimating l1 error of kernel estimator: Monitoring convergence of
markov samplers. cahier de recherche, Technical report, Dept. of Statistics, University of
California, Berkeley.

Yu, Y., Chen, L., Xiao, Y., Chang, C.-C., Zhi, X., & Shen, Z. (2022). New framework for
assessing urban stormwater management measures in the context of climate change.
Science of the Total Environment, 813, 151901.

Zaniolo, M., Giuliani, M., & Castelletti, A. (2021). Neuro-evolutionary direct policy search
for multiobjective optimal control. IEEE Transactions on Neural Networks and Learning
Systems, 33(10), 5926–5938.

Zatarain Salazar, J., Reed, P. M., Herman, J. D., Giuliani, M., & Castelletti, A. (2016). A di-
agnostic assessment of evolutionary algorithms for multi-objective surface water reser-
voir control. Advances in water resources, 92, 172–185.

Zatarain Salazar, J., Reed, P. M., Quinn, J. D., Giuliani, M., & Castelletti, A. (2017). Balanc-
ing exploration, uncertainty and computational demands in many objective reservoir
optimization. Advances in water resources, 109, 196–210.

Zhang, H., & Yu, T. (2020). Taxonomy of reinforcement learning algorithms. Deep rein-
forcement learning: Fundamentals, research and applications, (pp. 125–133).

122

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	List of Symbols and Abbreviations
	Introduction
	New Diagnostic Assessment of MCMC Algorithm Effectiveness, Efficiency, Reliability, and Controllability
	Abstract
	Introduction
	Algorithms
	Metropolis Hastings (MH)
	Adaptive Metropolis (AM)
	Differential Evolution Adaptive Metropolis (DREAM)

	Computational Experiment
	Metrics
	Gelman-Rubin (GR) diagnostic
	Kullback-Leibler Divergence (KLD)
	Wasserstein Distance (WD)

	Test Problems
	High-Dimensional Test Problem
	Bimodal Test Problem

	Results and Discussion
	Diagnostics on 100D MVN Test Problem
	Diagnostics on 10D Bimodal Mixed-Gaussian Test Problem

	Conclusions
	Code and Data

	Tackling Complexity: EMODPS vs. DDPG for Multi-Objective Reinforcement Learning
	Abstract
	Introduction
	Algorithms
	EMODPS
	DDPG

	Case Study
	Computational Experiment
	Results and Discussion
	Performance of Optimized EMODPS and DDPG Policies
	Understanding Optimized EMODPS and DDPG Policies

	Discussion and Conclusions
	Code and Data

	Designing Stormwater Control Rules Under Parametric Uncertainty
	Abstract
	Introduction
	Methods
	Case Study
	Bayesian Calibration
	Robust Optimization

	Results and Discussion
	Parameter Calibration Results
	Parameterization Selection Results
	Performance of Optimized and Re-simulated Policies With Different Optimization Methods
	Understanding Optimized and Re-simulated Policies With Different Optimization Methods

	Conclusions and Future Work
	Code and Data Availability

	Conclusions and Future Work
	Appendix
	Figures

	Appendix
	Figures

	Bibliography

