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Abstract 
 

J. Patrick Meyer 
 

Finite mixture modeling is a popular tool for model based clustering. Research 

has shown that some data conditions or model misspecification can lead to the 

identification of spurious classes. However, the majority of research has focused on 

identifying the correct number of classes when the true number of classes is two or 

greater rather than the most basic hypothesis of a true one class distribution. The purpose 

of this study is to more fully explore the extent to which finite mixture models identify 

spurious classes when the true number of classes is one.  

Data were simulated to form single-component normal and nonnormal 

distributions. Mixture models with one to four components were fit and log likelihood 

based, classification based, and likelihood ratio based fit statistics were employed to 

identify the best fitting model. The eleven fit statistics evaluated 72 analysis by data 

conditions with 250 replications when using multivariate normal and multivariate skew 

normal component distributions and 125 replications when using the more 

computationally intensive multivariate skew t component distributions.  

The results showed that type of fit statistic, degree of data nonnormality, and type 

of component distribution accounted for the most variance in identifying the correct 

model. The ICL-BIC outperformed all other fit statistics and as data nonnormality 

increased, so did the identification of spurious classes. However, allowing the shape of 



 

 

component distributions to vary reduced spurious class identification and, when paired 

with the best performing fit statistics, eliminated the identification of spurious classes to 

within a reasonable statistical probability.  

This study did not examine the degree of inaccuracy in identifying the correct 

model – i.e. examining which model was preferred rather than identification of the 

correct model. Additionally, this study did not examine conditions where the correct 

model had more than one class and nonnormal components were used to fit the models. 

Further, this study made no attempt to evaluate other statistical considerations in the 

identification of the correct model such as the separation of class means and the 

proportion or number of cases in the classes.  

Key words: finite mixture model, spurious classes, fit statistics, nonnormal 

component distribution, simulation  
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Chapter 1 Introduction 

Finite mixture modeling (FMM) is a popular tool for model based clustering. It 

provides a number of advantages over traditional cluster analysis methods like 

hierarchical and K-means clustering. For one, FMM draws upon statistical theory for 

postulating a population model and deriving sample estimates of model parameters 

(Vermunt & Magidson, 2002). It is also insensitive to the scaling of observed variables, 

and it allows cases to be probabilistically assigned to clusters. Another advantage is that 

FMM provides for the development of nonarbitrary clustering criteria. These advantages 

make FMM an attractive alternative to traditional clustering methods. However, FMM 

has problems of its own that may hinder its efficacy in clustering observations.  

Bauer and Curran (2003a) write that a nonnormally distributed composite 

distribution is a necessary and perhaps even sufficient condition for the identification of 

nontrivial component distributions (i.e. clusters) giving rise to the data. The problem is 

that the converse is not true. Subpopulations and clusters represented by multiple 

component distributions are not a necessary condition for data to be nonnormally 

distributed. Data may be nonnormally distributed for a variety of valid reasons that have 

nothing to do with the presence of clusters in the data. For example, response times are 

known to be positively skewed and test scores are commonly platykurtic and negatively 

skewed (Keats & Lord, 1962). The result is that FMM will identify spurious classes when  
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applied to data generated from a single component nonnormal distribution (Bauer & 

Curran, 2003a). Consequently, researchers may arrive at erroneous conclusions about a 

substantive area of study. The problem of identifying spurious classes is not limited to 

FMMs under the conditions of classical test theory.  

Alexeev, Templin, and Cohen (2011) showed that an item response theory mixture 

Rasch model will identify spurious classes when it is fit to data generated as a three 

parameter logistic (3PL) or a two parameter logistic (2PL) model. Further, they showed 

that the likelihood of identifying spurious classes increases with the number of test items, 

the number of subjects, and the deviation of the slope parameter from the slope parameter 

assumed by the Rasch model—i.e. one.  

Bauer and Curran (2003a) demonstrated the influence of nonnormal distributions 

on spurious classes by testing one and two component mixture models. Others also 

limited their work to one and two component distributions (Muthen, 2003; Rindskopf, 

2003). Consequently, the number of spurious classes identified in nonnormal distributions 

was not fully appreciated. Bauer and Curran (2003b) later suggested that the problem of 

spurious classes may be even more serious than their initial analysis indicated where 

researchers could identify far more than two classes. They demonstrated that a four-class 

normal mixture model fit the single-component nonnormal data even better than the two-

class solution in their original paper.  

Mixture Modeling Applications 

FMM is a popular choice for cluster analysis. In education, it has been applied to 

test motivation theory (Pastor, Barron, Miller, & Davis, 2007), academic performance 
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standards (Brown, 2007; Alexeev, Templin, & Cohen, 2011; Kelava & Brandt, 2014), 

deficiency in mathematics understanding (Chan, Leu, & Chen, 2007), performance 

decline (Jin & Wang, 2014), identifying groups based on guessing behavior (Leong, 

Mahdi, & Ling, 2013) and test speededness (Bolt, Cohen, & Wollack, 2002; Meyer, 

2010). Additionally, FMM has been applied to differential item functioning (Cohen & 

Bolt, 2005; Frederickx, Tuerlinckx, De Boeck, & Magis, 2010; Cho & Cohen, 2010; 

Finch & Finch, 2013; Lee & Beretvas, 2014), as a follow up to identify causes of 

differential item functioning (Cohen & Bolt, 2005; Cho, Lee, & Kingston, 2012), and 

latent transition analysis following an intervention (Cho, Cohen, Bottge, 2013).  In the 

social sciences, it has been applied to aggression and harassment (Giang & Graham, 

2008), quality of life (Punzo, 2014), and profiling child maltreatment perpetrators 

(Yampolskaya, Greenbaum, & Berson, 2009). In addition, Hoijtink and Notenboom 

(2004) used mixture modeling to evaluate the stage model theory of the development of 

spelling ability in children. Büsch, Hagemann, and Bender (2010) evaluated a 

questionnaire assessing handedness and Freund, Tietjens, and Strauss (2013) examined 

the effects of using different Likert scale ranges for an assessment of physical self-

concept. McCrae, Chapman, and Christ (2006) searched for latent groups among children 

who had been sexually abused and Gebhardt, Rose, and Mitte (2013) used mixture 

models to evaluate the efficacy a median split procedure in correctly classifying persons 

who repress negative affect experiences. Other research used latent class cluster analysis 

to create profiles of eating disorders (Wade, Crosby, & Martin, 2006), develop four 

appraisal/coping styles used in stressful situations (Larsson, Kempe, & Starrin, 1988), 

describe the psychosocial adjustment of adolescents (Ding, 2006), examine latent classes 
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from personality data (Maij-de Meij, Kelderman, & van der Flier, 2008), heterogeneity of 

people who took the Chinese version of the Beck Depression Inventory—II (Wu & 

Huang, 2010), and assessment of lifetime prevalence of mental disorders (Almansa, 

Vermunt, Forero, & Alonso, 2014). Mixture modeling analysis has also been applied to 

data from fields such as business (Tuma & Decker, 2013), medicine (Bozdogan, 1994; 

Sawatzky, Ratner, Kopec, & Zumbo, 2012; Howe & Bozdogan, 2013; Hesser & 

Andersson, 2014; Lee & McLachlan, 2014; Muthén & Asparouhov, 2014), ornithology 

(McCrea, Morgan, & Cole, 2012), production / mechanical engineering (Yu, 2012), and 

transportation safety (Kim & Mahmassani, 2014; Park, Lord, & Lee, 2014). These 

applications of mixture modeling not only inform substantive areas of research, but also 

have implications for cluster members. Researchers must have confidence that clusters 

are accurately identified. 

In the context of cluster analysis, the purpose of finite mixture modeling is to 

estimate the model parameters and compute the probability that each observation belongs 

to each of the classes. The model is fit several times using a different number of classes 

and fit statistics allow the researcher to identify the model with the correct number of 

classes. Fit statistics can be broadly categorized into three types: information criteria 

based, classification based (entropy and entropy penalty), and likelihood ratio test based. 

Evaluating Competing Models 

Information criteria are a function of the log-likelihood and some other penalty 

imposed for model complexity. These fit statistics differ on the way the penalty is 

computed, but the penalty is necessary given that statistical models with more parameters 
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fit data better than similar models with fewer parameters. In the mixture modeling 

context, this means that models with more component distributions will fit better than 

those with fewer components. The penalty helps prevent over identifying the number of 

classes. The information criteria fit statistics employed in this study are: Akaike’s 

Information Criterion (AIC; Akaike, 1973), the Bayesian Information Criterion (BIC; 

Schwartz, 1978), the consistent AIC (CAIC; Bozdogan, 1987), and versions of the BIC 

and CAIC that are adjusted for sample size (Sclove, 1987). Although information criteria 

are the type of fit statistics most frequently used, classification type fit statistics are also 

considered in this study. 

Classification fit statistics use entropy, a measure of classification accuracy, as 

penalty when determining the fit of competing models. Essentially, the posterior 

probabilities of class membership are estimated and clearer assignment of cases to latent 

classes results in a better fit. When the separation among multivariate means of the 

component distributions for the classes is large, entropy, and the entropy penalty, should 

be smaller than when the multivariate means of the component distributions are closer 

together and assignment of cases to classes becomes less clear. This also implies that as 

the number of component distributions fitted to the data increase, the less clear the 

assignment of cases to classes becomes and, therefore, the larger entropy and entropy 

penalty becomes. Thus, the entropy and entropy penalty based fit statistics act to 

encourage the selection of a more parsimonious model. The entropy and entropy penalty 

based fit statistics employed in this study are: the Normalized Entropy Criterion (NEC; 

Celeux & Soromenho, 1996), the Classification Likelihood Criterion (CLC; Biernacki & 

Govaert, 1997), and the Integrated Classification Likelihood Criterion-BIC (ICL-BIC; 
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Biernacki, Celeux, & Govaert, 1998). The most recently developed type of fit statistic in 

this study are the likelihood ratio based fit statistics. 

The likelihood ratio test (LRT) is a nested model test. The LRT statistic is a 

widely used method for testing nested models that is chi-square distributed with degrees 

of freedom equal to the difference in the number of estimated parameters for the 

competing models. However, in the mixture modeling context, the LRT cannot be used to 

test models where the number of classes is nested. The reason for this is that the 

parameters of the k class model must be set to zero to specify the k – 1 model. That is to 

say the probability of being in the kth class must be set to zero. Since probabilities range 

from zero to one, the parameter is being set at the border of admissible space. 

Consequently, the LRT statistic is no longer asymptotically chi-square distributed 

(McLachlan & Peel, 2000). To overcome this distributional dilemma, researchers have 

proposed alternative methods for employing the LRT in evaluating the fit of models with 

nested component structures and two of these fit statistics are employed in this study: the 

bootstrap likelihood ratio test (BLRT; McLachlan, 1987) and the Lo, Mendell, and Rubin 

likelihood ratio test (LMR-LRT; 2001).  

The different formulations and methods of penalizing models that estimate a 

larger number of parameters can often lead to markedly different decisions based upon 

which fit statistic is used. To date there is no consensus on the “best” fit statistic and 

comparing the ability of the various fit statistics in identifying the correct number of 

classes provides important information for researchers seeking to uncover the true 

characteristics of the membership in their sample. 
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Efficacy of Fit Statistics 

Identifying the number of clusters in the data depends on the researcher’s choice 

of fit statistic. Two standards are of interest when evaluating the efficacy of a fit statistic. 

One standard is like statistical power; how often the correct number of clusters is 

identified when there really are clusters in the data. The second standard is like Type I 

error; how often multiple clusters are identified in the data when no clusters actually 

exist. A large portion of research on the efficacy of fit statistics in mixture modeling has 

focused on the first criteria while only a few have considered the second. 

Tofighi and Enders (2007) in a growth mixture modeling format examined a 

number of fit statistics and found that across conditions, the SABIC and the LMR-LRT 

outperformed all other tests. Henson, Reise, and Kim (2007) in a structural equation 

mixture modeling format examined a similar set of fit statistics and found that across 

conditions, the ICL-BIC and the CLC outperformed all other tests in selecting the true 

two class model. However, Nylund, Asparouhov, and Muthén (2007) found that the 

BLRT outperformed the other likelihood tests and the BIC outperformed the information 

criteria tests. McLachlan and Ng (2000) reported the results of three simulation studies 

and found that the ICL-BIC, the CLC, and the matrix based Laplace-Empirical Criterion 

(LEC; Roberts, Husmeier, Rezek, & Penny, 1998) identified the true model and, of these 

three, the ICL-BIC is the easiest to implement. While these studies examine the 

effectiveness of a variety of fit statistics in their role of determining the correct number of 

classes in a mixture distribution, they do not examine the most basic condition of fitting 

more than one normal distribution to a true single-class distribution.  
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Recently, Peugh and Fan (2013) compared the performance of fit statistics in a 

true one class condition. The results of their simulation, with 48 conditions and 200 

replications, found that the CLC, ICL – BIC, sample size adjusted ICL – BIC, CAIC, 

sample size adjusted CAIC, BIC, and D – BIC (Draper, 1995) all performed well. Oddly, 

Peugh and Fan (2013) did not use the NEC, aLMR – LRT, and the BLRT for the one-

class true model citing the undefined nature of the NEC and the boundary limitations 

associated with the aLMR – LRT and the BLRT. However, each of these statistics has 

been shown to be useful in identifying a correct one class model (Biernacki, Celeux, & 

Govaert, 1999; Lo, Mendell, & Rubin, 2001; McLachlan, 1987). Additionally, Peugh and 

Fan (2013) did not examine what effect different levels of skew and kurtosis of the 

overall distribution would have on the accuracy of the fit statistics. Li, Cohen, Kim, and 

Cho (2009) investigated the efficacy of fit statistics with a true one class condition using 

Bayesian estimation of IRT models. They found that the BIC correctly identified the true 

number of classes on all replications. While their findings support the use of BIC for 

determining the correct number of classes, the results are based on only 30 replications 

and it is unclear if the results could be replicated with maximum likelihood estimation of 

the IRT models. Bauer and Curran (2003a) examined the performance of fit statistics 

using a true one class distribution compared with a two class alternative mixture model 

under various conditions of nonnormality. Their findings showed that the ICL-BIC 

outperformed the other fit statistics. However, correct model selection became worse as 

sample size increased and as nonnormality became more extreme.  

Given the very recent implementation of fitting multivariate skew t distributions, 

there are no studies examining the efficacy of fit statistics in identifying the correct 



9 

 

number of classes when skew t component distributions are fit to an overall distribution. 

Additionally, of the three studies that focus on fitting skew t distributions, two 

(Asparouhov & Muthen, 2014; Muthen & Asparouhov, 2014) focus on growth mixture 

models rather than finite mixture models and limit the fits statistics to the AIC and BIC. 

Lee and McLachlan (2014) also limited the fit statistics to the AIC and BIC, but within a 

finite mixture context. They fit models to real data with known two class components and 

did not address the issue of a true one class distribution. Researchers who employ factor 

FMMs also tend to limit the selection of fit statistic to one of the information criteria 

statistics—AIC, BIC, etc. and the one study that specifically examined the identification 

of spurious classes within IRT—Alexeev, Templin, and Cohen (2011)—used only the 

BIC to determine model selection. 

The purpose of this study is to explore the extent to which finite mixture models 

identify spurious classes. This simulation study examines conditions when the observed 

data forms a single-component nonnormal distribution. Finite mixture models with one to 

four components were fitted and log likelihood based, classification (entropy and entropy 

penalty) based, and likelihood ratio based fit statistics were employed to identify the best 

fitting model. 

Overview, Design & Procedures 

Each data condition was replicated 250 times and one to four components were 

fitted to each condition’s distribution. Because of the amount of time required to calculate 

estimates from models fitting multivariate skew t component distributions, these 

conditions were limited to 125 replications. Log likelihood based, classification (entropy 
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and entropy penalty) based, and likelihood ratio based fit statistics were employed to 

identify the best fitting model. Additionally, for all models, each analysis is conducted 

using 500 random starts of 20 iterations to help avoid the problem of the EM algorithm 

resolving on local maxima as well as improving the probability of obtaining model 

convergence, particularly when fitting the four component models. The percentage of 

times each fit statistic identified a model with k number of components is computed, 

where k = 1, 2, 3, and 4. The outcome of interest is the percentage of times that the 

correct one class model fit the data best. For each of the 72 analysis by data conditions 

the percent number of replications that each fit statistic identified each of the one through 

four class models as the correct model was calculated. These were then combined into a 

single data set for analysis. The statistics program R was used to generate the data, the R 

package Mplus Automation was used to create, run, and extract summaries from the 

models run in Mplus 7.3, and R was used to create the analysis data set and conduct 

analyses using it.  
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Chapter 2 Literature Review 

Finite mixture modeling (FMM) is a popular tool for model based clustering. It 

provides a number of advantages over traditional cluster analysis methods like 

hierarchical and K-means clustering. For one, FMM draws upon statistical theory for 

postulating a population model and deriving sample estimates of model parameters 

(Vermunt & Magidson, 2002). It is also insensitive to the scaling of observed variables, 

and it allows cases to be probabilistically assigned to clusters. Another advantage is that 

FMM provides for the development of nonarbitrary clustering criteria. These advantages 

make FMM an attractive alternative to traditional clustering methods. However, FMM 

has problems of its own that may hinder its efficacy in clustering observations.  

Bauer and Curran (2003a) write that a nonnormally distributed composite 

distribution is a necessary and perhaps even sufficient condition for the identification of 

nontrivial component distributions (i.e. clusters) giving rise to the data. The problem is 

that the converse is not true. Subpopulations and clusters represented by multiple 

component distributions are not a necessary condition for data to be nonnormally 

distributed. Data may be nonnormally distributed for a variety of valid reasons that have 

nothing to do with the presence of clusters in the data. For example, response times are 

known to be positively skewed and test scores are commonly platykurtic and negatively 

skewed (Keats & Lord, 1962). The result is that FMM will identify spurious classes when  
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applied to data generated from a single component nonnormal distribution (Bauer & 

Curran, 2003a). Consequently, researchers may arrive at erroneous conclusions about a 

substantive area of study. The problem of identifying spurious classes is not limited to 

FMMs.  

Alexeev, Templin, and Cohen (2011) showed that an item response theory mixture 

Rasch model will identify spurious classes when it is fit to data generated as a three 

parameter logistic (3PL) or a two parameter logistic (2PL) model. Further, they showed 

that the likelihood of identifying spurious classes increases with the number of test items, 

the number of subjects, and the deviation of the slope parameter from the slope parameter 

assumed by the Rasch model—i.e. one. In fact, a single item in a 30-item test with a 

slope parameter of 2.5 was sufficient to cause the identification of spurious classes in all 

replications when the sample size was 10,000. However, with a smaller sample size 

(4,000), four items with slope parameters of 1.75 caused the identification of spurious 

classes in all replications, but four items with slope parameters of 1.5 did not result in the 

identification of any spurious classes. Although, it should be noted, this part of their 

examination of the problem spurious classes was limited to ten replications for each 

condition.  

Bauer and Curran (2003a) demonstrated the influence of nonnormal distributions 

on spurious classes by testing one and two component mixture models. Others also 

limited their work to one and two component distributions (Muthen, 2003; Rindskopf, 

2003). Consequently, the number of spurious classes identified in nonnormal distributions 

was not fully appreciated. Bauer and Curran (2003b) later suggested that the problem of 
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spurious classes may be even more serious than their initial analysis indicated where 

researchers could identify far more than two classes. They demonstrated that a four-class 

normal mixture model fit the single-component nonnormal data even better than the two-

class solution in their original paper.  

Taken together, these results suggest that the full extent of the problem with finite 

mixture models identifying spurious classes has not been fully explored. The purpose of 

this study is to explore the extent to which finite mixture models identify spurious 

classes. This simulation study examines conditions when the observed data forms a 

single-component nonnormal distribution. Finite mixture models with one to four 

components will be fitted and log likelihood based, classification (entropy and entropy 

penalty) based, and likelihood ratio based fit statistics will be employed to identify the 

best fitting model.  

Mixture Modeling Applications 

FMM is a popular choice for cluster analysis. In education, it has been applied to 

test motivation theory (Pastor, Barron, Miller, & Davis, 2007), academic performance 

standards (Brown, 2007; Alexeev, Templin, & Cohen, 2011; Kelava & Brandt, 2014), 

deficiency in mathematics understanding (Chan, Leu, & Chen, 2007), performance 

decline (Jin & Wang, 2014), identifying groups based on guessing behavior (Leong, 

Mahdi, & Ling, 2013) and test speededness (Bolt, Cohen, & Wollack, 2002; Meyer, 

2010). Additionally, FMM has been applied to differential item functioning (Cohen & 

Bolt, 2005; Frederickx, Tuerlinckx, De Boeck, & Magis, 2010; Cho & Cohen, 2010; 

Finch & Finch, 2013; Lee & Beretvas, 2014), as a follow up to identify causes of 
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differential item functioning (Cohen & Bolt, 2005; Cho, Lee, & Kingston, 2012), and 

latent transition analysis following an intervention (Cho, Cohen, Bottge, 2013).  In the 

social sciences, it has been applied to aggression and harassment (Giang & Graham, 

2008), quality of life (Punzo, 2014), and profiling child maltreatment perpetrators 

(Yampolskaya, Greenbaum, & Berson, 2009). In addition, Hoijtink and Notenboom 

(2004) used mixture modeling to evaluate the stage model theory of the development of 

spelling ability in children. Büsch, Hagemann, and Bender (2010) evaluated a 

questionnaire assessing handedness and Freund, Tietjens, and Strauss (2013) examined 

the effects of using different Likert scale ranges for an assessment of physical self-

concept. McCrae, Chapman, and Christ (2006) searched for latent groups among children 

who had been sexually abused and Gebhardt, Rose, and Mitte (2013) used mixture 

models to evaluate the efficacy a median split procedure in correctly classifying persons 

who repress negative affect experiences. Other research used latent class cluster analysis 

to create profiles of eating disorders (Wade, Crosby, & Martin, 2006), develop four 

appraisal/coping styles used in stressful situations (Larsson, Kempe, & Starrin, 1988), 

describe the psychosocial adjustment of adolescents (Ding, 2006), examine latent classes 

from personality data (Maij-de Meij, Kelderman, & van der Flier, 2008), heterogeneity of 

people who took the Chinese version of the Beck Depression Inventory—II (Wu & 

Huang, 2010), and assessment of lifetime prevalence of mental disorders (Almansa, 

Vermunt, Forero, & Alonso, 2014). Mixture modeling analysis has also been applied to 

data from fields such as business (Tuma & Decker, 2013), medicine (Bozodogan, 1994; 

Sawatzky, Ratner, Kopec, & Zumbo, 2012; Howe & Bozodogan, 2012; Hesser & 

Andersson, 2014; Lee & McLachlan, 2014; Muthen & Asparouhov, 2014), ornithology 
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(McCrea, Morgan, & Cole, 2012), production / mechanical engineering (Yu, 2012), and 

transportation safety (Kim & Mahmassani, 2014; Park, Lord, & Lee, 2014). These 

applications of mixture modeling not only inform a substantive area of research, but also 

have implications for cluster members. Researchers must have confidence that clusters 

have been accurately identified. However, the question of whether the correct number of 

clusters has been identified has been a concern since the first attempts to uncover 

unknown subpopulations within an overall distribution. 

 Historical Perspective 

Pearson (1894) was one of the first to apply a method of examining a distribution 

to determine its component parts. W.F.R. Weldon (1893) noted an asymmetrical 

distribution in his data on the ratio of forehead to body length in crabs and speculated 

whether this could indicate that the crabs were evolving into two subspecies. Weldon, 

realizing the limitations of his ability, asked his colleague, Pearson, to tackle the problem. 

Pearson employed a method-of-moments approach to create three models, each fitting 

two univariate normal distributions to the data; a process which included solving a ninth 

degree polynomial. Model 1 provided the best representation of the data with each 

normal distribution accounting for .4145 and .5855 respectively. After calculating the 

sixth moment, Pearson concluded that there was insufficient evidence to support the 

hypothesis of the existence of two subspecies and that the asymmetric distribution was 

the result of a naturally occurring variation in the population (Pearson, 1894). However, 

in a paper the following year, Pearson acknowledges the problem associated with 

identifying the correct number subpopulations in the data: 
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The question may be raised, how are we to discriminate between a true 

curve of skew type and a compound curve, supposing we have no reason 

to suspect our statistics a priori of mixture. I have at present been unable 

to find any general condition among the moments, which would be 

impossible for a skew curve and possible for a compound, and so indicate 

compoundedness. I do not, however, despair of one being found (Pearson, 

1895, p. 394). 

The moments method employed by Pearson presented a daunting, complex time 

consuming task; for this reason, the use of mixture modeling was impractical and 

frequently beyond the capability of many researchers. However, with the advent of 

accessible computing resources, researchers were once again able to address the question 

of potential unknown subpopulations within an overall population. 

Thorndike (1953), Cox (1957), and Fisher (1958) were among the first to propose 

methods of cluster analysis to identify classes within a population. However, it was 

MacQueen (1967) who formalized the K-means clustering method. K-means is the most 

popular form of cluster analysis and it is closely related to one of the simplest forms of 

FMM; both which postulate discrete latent classes with continuous indicator variables 

(see Kogan, 2007; Steinley, 2006). K-means clustering is an iterative procedure that 

begins with the researcher selecting the number of clusters to test. The process uses an 

algorithm developed independently by Lloyd (1957, 1982) and Forgy (1965). (Lloyd 

initially proposed his method at the Institute of Mathematical Statistics Meeting in 1957, 

but it was not published outside of Bell Laboratories, where he worked, until 1982.) The 
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algorithm estimates cluster means and each data point is assigned to a cluster based on its 

distance from the cluster means—i.e. each person is assigned to a cluster based on the 

nearness of their score to the cluster mean. Cluster means are then estimated again based 

on the cluster assignments. This process continues until a stable solution is achieved—i.e. 

people are no longer switching between clusters. Similarly FMM uses the expectation-

maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977) to calculate maximum 

likelihood estimates. The EM algorithm also employs an iterative procedure where prior 

parameter estimates permit the calculation of the probability of class membership in the 

E-step and this information is used to find parameter estimates that maximize the log-

likelihood  in the M-step. Parameter estimates from the M-step serve as prior estimates 

for the E-step in the next iteration. This process continues until convergence on a stable 

solution—i.e. changes in parameter estimates become very small.  

Although the two approaches are similar mixture modeling provides advantages 

over K-means clustering. Magidson and Vermunt (2002a, 2002b) and Vermunt (2011) 

showed the superiority of mixture modeling for cluster extraction and determining cluster 

membership for an individual set of scores. Stienley and Brusco (2011) had mixed results 

dependent upon the parameters imposed on the model; however, both Stienley and 

Brusco (2011) and McLachlan (2011) caution about generalization beyond this study. 

Further, Vermunt (2011) argues that many of the models investigated by Stienley and 

Brusco are rarely, if ever, seen in practical applications. Nonetheless, mixture modeling 

provides researchers many advantages over the traditionally used clustering approaches. 

It can model within and between class variance. It produces probability-based 

classification that allows the use of fit indices to evaluate the correct number of classes. It 
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does not require the standardization of variables. It can be used with either continuous, 

categorical, or a mixture of both types of indicator variables. It allows for the inclusion of 

other variables—i.e. demographics—to simultaneously describe the clustering solution 

rather than having to perform a separate discriminant analysis. Because of these 

advantages and the increased availability of high speed computing resources necessary 

for the complex calculations involved in the method, mixture modeling has grown in 

popularity as a method of cluster analysis. 

Regardless of whether method-of-moments, K-means clustering or FMM is used, 

determining the correct number of classes with a high degree of certainty remains elusive. 

This uncertainty is compounded further when there is no a priori hypothesized or known 

number of classes in the data. For instance, in the crab data analyzed by Pearson, he 

hypothesized the existence of two possible classes—subspecies. However, he 

acknowledges that he could have fit more than two normal distributions to the data, but as 

the number of mixtures increases the number of calculations would have increased 

exponentially (Pearson, 1894). Herein lays a major problem with the mixture modeling 

method. The number of distributions—mixtures—fitted to the data is discretionary based 

on how many classes the researcher hypothesizes, or suspects, may be in the data. The 

resulting models, with differing numbers of mixtures, are evaluated by how well they fit 

the data. When competing models fit the data equally well, it becomes extremely difficult 

to empirically determine the true nature of the distribution; particularly in the absence of 

strong theoretical justifications.  

 Finite Mixture Models  
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Multivariate Normal Mixture Model. A finite mixture model assumes a 

population density such that  

𝑓(𝐱;𝑝,𝜃) = ∑ 𝑝𝑘𝑔𝑘(𝐱;𝛉𝑘)𝐾
𝑘=1     2.1 

where 𝑝𝑘 represents the proportion of the overall distribution accounted for by the 𝑔𝑘 

component distributions with 𝛉𝑘 parameters.  The proportions 𝑝𝑘 must be greater than 

zero for all k and must sum to one. (Note the symbols 𝑝 and 𝑝𝑘 represent population 

parameters that are normally represented with the Greek letter π. However, equation 2.2 

includes the numeric value of π so the symbols 𝑝 and 𝑝𝑘 were used to avoid confusion.) 

While the component distributions can be of any distributional form, it is most common 

to assume a multivariate normal distribution (McLachlan & Basford, 1988; McLachlan & 

Peel, 2000). Under the assumption of multivariate normality the population density 

becomes 

𝑓(𝐱;𝑝,𝝁𝑘 ,𝚺𝑘) = �𝑝𝑘
𝑒𝑥𝑝 �− 1

2 (𝐱𝑖 − 𝛍𝑘)′Σ𝑘−1(𝐱𝑖 − 𝛍𝑘)�

2𝜋𝑚/2|Σ𝑘|1/2

𝐾

𝑘=1

                            2.2 

where 𝛍𝑘 is the mean vector with m dimensions and Σ𝑘 is the m x m covariance matrix 

for the kth class. Adhering to the assumption of multivariate normal component 

distributions may increase the likelihood of identifying spurious classes because the 

normal component distributions must be forced in to account for the thicker elongated tail 

of the skewed overall distribution (Asparouhov & Muthen, 2014). Therefore, relaxing the 

assumption of multivariate normal component distributions should allow the component 

distributions to more accurately represent the overall observed skewed distribution. One 
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recently developed method for relaxing the multivariate normal component assumption is 

the fitting of multivariate skew t distributions. 

 Multivariate Skew t Mixture Model. Lee and McLachlan (2014) show the 

derivation of an unrestricted multivariate skew t component distribution model and a 

restricted multivariate skew t component distribution model. They note that the restricted 

multivariate skew t model is not nested within the unrestricted model; however, when the 

skewing function is univariate, the models are the same. In other words, the restricted 

model estimates a univariate latent skew variable for fitting the component distributions, 

but the unrestricted model estimates a multivariate latent skew variable for fitting the 

component distributions. Consequently, the estimation of the unrestricted model takes 

considerably longer than the estimation of the restricted model. Additionally, maximum 

likelihood model estimation is not a straight forward process when estimating the 

unrestricted model. To calculate the intractable conditional expectations, in the E-step of 

the EM algorithm additional estimation procedures must be included such as Monte Carlo 

integration (Lin, 2010) or a one-step late approach (Lee & McLachlan, 2011). Both of 

these estimation methods increase computational time which can become burdensome 

particularly with high dimensional data. Since the restricted multivariate skew t model 

estimates a univariate latent skew variable, maximum likelihood estimation is 

accomplished via the EM algorithm without additional computational steps.  

 Asparouhov and Muthen (2014) argue that the assumption of a univariate latent 

variable responsible for skewness in the data is reasonable for data commonly used with 

structural equation and mixture models. Therefore, the estimation of a multivariate latent 
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skew variable may be unnecessary. Given this argument and that the restricted 

multivariate skew t model is a more parsimonious model with less computationally 

intensive model estimation, in most cases, it should be the preferred model. Following the 

notation of Lee and McLachlan (2014)—also used in Asparouhov and Muthen (2014)—

the assumed population density of g multivariate restricted skew t components is given 

by, 

𝑓(𝒀;𝚿) = �πℎ

g

h=1

𝑓(𝑦; 𝛍ℎ,𝚺ℎ,𝛅ℎ,υℎ                                         2.3 

where μh is a vector of means with m dimensions, 𝚺ℎ is a m x m covariance matrix, 𝛅ℎ is 

a vector of skew parameters with m dimensions, and 𝜐ℎ is the degrees of freedom. The 

mixing proportions  πℎ must be greater than or equal to zero and the sum of the mixing 

proportions must equal one. With this population density, the multivariate t distribution 

density function is, 

𝑡𝑚,𝜐(𝑦,µ,Ω) =
Γ �υ + 𝑚

2 � |𝛀|−1

(πυ)𝑚 2� Γ(ν2)[1 + 𝑑(𝑦)/ν](ν+𝑚)/2
                                   2.4 

where 

𝛀 =  𝚺 + 𝛅𝛅𝑇      2.5 

and 

𝑑(𝑦) = (𝑦 − 𝛍)𝑇𝛀−1(𝑦 − 𝛍)       2.6 
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It follows from the equations that the multivariate skew t becomes a multivariate t normal 

distribution when δ = 0, it becomes a multivariate skew normal distribution as ν  ∞, 

and when under both conditions, δ = 0 and ν  ∞, it becomes a multivariate normal 

distribution. The fitting of multivariate skew t distributions provides researchers with a 

tool that will enable them to more accurately model their observed data. In fact, the 

anticipated improvement in the correct identification of subpopulations within an overall 

population distribution brought about by the fitting of multivariate skew t distributions 

led Asparouhov and Muthen (2014) to assert that "Spurious class formation due to non-

normality and skewness will be eliminated" (p.6).  

 Up to this point I have focused on the conception of FMM in the context of 

distributions of observed data. However, the method—unlike K-means clustering—can 

be extended to the identification of classes based on latent variable differences by using a 

factor finite mixture model (FaFMM) or an item response theory finite mixture model 

(IRTFMM). 

 Factor Finite Mixture Models. FaFMM is based on the common factor model 

(Jöreskog, 1971) with the addition of a latent variable for class membership. The FaFMM 

should not be confused with the mixtures of factor analyzers model (McLachlan & Peel, 

2000). This model, also referred to as a mixture of factors model, is based on the 

exploratory factor model where variables are reduced to class specific factors. In FaFMM 

a single factor structure is assumed to hold for all classes. The FaFMM can be expressed 

with the regression equations: 

𝑦𝑖𝑘 = 𝝂𝑘 + 𝚲𝑦𝑘𝛈𝑖𝑘 + 𝛆𝑖𝑘     2.7 
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𝛈𝑖𝑘 = 𝐀𝐜𝑖 + 𝛇𝑖𝑘         2.8 

In the first equation, 𝑦𝑖𝑘 is the score on variable Y for individual i in the kth class, 𝝂𝑘 are 

the regression intercepts, 𝚲𝑦𝑘 are the factor loadings, 𝛈𝑖𝑘 is an individual’s score on the 

latent factor, and 𝛆𝑖𝑘 are the residuals that capture measurement error and variance 

attributable to factors not in the model. In the second equation A is the intercept(s) of the 

factor(s), 𝐜𝑖 is the individual’s standing on the multinomial latent class variable C, and 𝛇𝑖𝑘 

is the residual of the factor scores. Muthén and Shedden (1999) and Lubke and Muthén 

(2005) use a similar model specification, but also include the modeling of a continuous 

covariate and categorical class predictor variable.  

As with any comparison between groups using a common factor model, the model 

must meet the conditions of measurement invariance (MI) (Mellenbergh, 1989; Meredith, 

1993). MI means the differences between classes are attributable only to differences on 

the modeled latent factor(s) and not to class specific differences on variables not in the 

model. For MI to hold, three conditions must be met in progressively more restrictive 

order: equal factor loadings between classes, equal observed variable intercepts between 

classes, and equal residual variance between classes. If factor loadings are not equal 

between classes, then the observed variables have a differential influence on the class 

factor score that is due to some class specific characteristic rather than on the latent 

factor(s) of interest. If the intercepts of the observed variables are not equal between 

classes, then the mean responses of the classes on the observed variables is, in part, due 

to an unmodeled latent variable rather than the factor(s) of interest and any comparison 

based on factor scores is unwarranted because of the influence of the unmodeled latent 
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variable. Finally, in the most restrictive level of MI, if the residual variances are not equal 

between classes, then either the measurement errors and/or the class specific errors are 

not the same. Some researchers have suggested that the model is sufficiently invariant if 

the first two conditions of MI are met (Little, 1997; Widaman & Reise, 1997). However, 

Lubke and Muthén (2005) warn that making this assumption has pitfalls that can 

adversely affect the inferences made based on the model results and suggest a partial 

measurement invariance (PMI) evaluation. Bryne, Shavelson, and Muthén (1989) show 

how to evaluate PMI and show that class comparison based on factor score are still valid 

as long as invariance holds for at least two observed variables per factor and the varying 

parameters are modeled for their factor and class specific influence. For instance, if 

invariance of factor loadings holds and invariance of intercepts does not, the observed 

items that have varying class intercepts can be regressed on the latent class variable C 

and the latent factor variable. This model specification will account for the class specific 

variation in the intercept as well as the shared factor variation. While PMI is a feasible 

method for addressing some invariance issues, it complicates interpretation considerably 

and, if there are a sufficient number of observed variables, it may be simpler to remove 

the ones that are not invariant. Of course, as with any decision to remove a variable from 

the model, this action must be consistent with the theoretical underpinnings of the model. 

In sum, since FaFMM seeks to uncover latent classes based on their standing on a latent 

factor, it is imperative that model invariance holds. The invariance assumption is also 

critical to IRTFMM. However, within the framework of IRT the assumption of parameter 

invariance must be violated if more than one class is found through the data. 
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Mixture Item Response Models. One of the central assumptions of IRT is that 

item and person parameters are invariant in the population. Differential item function 

(DIF) analysis is a statistical evaluation testing whether examinees from different groups 

exhibit differing probabilities of responding correctly to an item after matching the 

examinees from both groups on a variable that measures the same construct that the item 

is intended to measure. In other words, do members of one group—e.g. females—have a 

different probability of correctly responding to an item than members of another group—

e.g. males—when the members of both groups are matched on their ability level. If DIF 

is found, then the item parameter estimates in the sample are not invariant with respect to 

those groups. IRTFMM can be conceptualized as a DIF analysis when unknown groups, 

classes, may exist in the sample. If examinees from the sample can be classified in such a 

way that item parameter estimates differ after matching the latent classes on ability, then 

the lack of item parameter invariance is an indicator of the existence of different classes 

in the sample.  

The different invariance requirements for FaFMM and IRTFMM stem directly 

from the theories underlying each approach. Classical Test Theory (CTT) focuses its 

analysis on the whole test—all of the items at once—and then works back to examine 

items. IRT focuses on the individual items and works forward to examine the whole test. 

This fundamental difference between the two theories influences how data are handled in 

application. CTT factor analysis uses a reduced form of the observed variables correlation 

matrix where the item communalities replace the diagonal elements of the matrix. The 

level of measurement of the item data determines which correlation matrix should be 

calculated. If the items are continuous, then a Pearson’s R matrix is appropriate. 
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However, when items are scored dichotomously—categorical right / wrong—or 

polytomously—ordinal partial credit based on which choice is made of a limited number 

of options—then the item scores will violate one of the assumptions for calculating 

Pearson’s r. While the R matrix can be calculated from the raw scores the relationship 

among the items will be underestimated. Therefore, with dichotomously scored item data 

a tetrachoric correlation matrix is appropriate and with polytomously scored data a 

polychoric correlation matrix is appropriate. Because of its focus on the item rather than 

on the whole test combination of items IRT does not concern itself with the calculation of 

correlation matrices because it uses raw item scores to calculate the probability of correct 

responses. With dichotomously scored data it models the probability of a right answer 

and with polytomously scored data it calculates step thresholds—the probability where 

selecting one score level and the next higher score level is fifty percent. IRT is not 

appropriate for items that are scored at the continuous level of measurement. 

A number of different IRTFMMs have been proposed and implemented including 

a mixture partial credit mixture model (Rost, 1991), a nominal response mixture model 

(Bolt, Cohen, & Wollack, 2001), a multilevel mixture model (Cho and Cohen, 2010), a 

multidimensional mixture model (De Jong & Steenkamp, 2010), and a multilevel 

multidimensional mixture model (Finch & Finch, 2013). However, the most basic form of 

IRTFMM is the mixture Rasch model (MRM; Rost, 1990). MRMs are used with 

dichotomously scored data where the probability of a response (xi) is expressed as: 

𝑝(𝒙|θ) = ∑ π𝑔𝑝(𝒙|𝑔 θ,𝑔)     2.9 
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where g is indicates class membership and the mixing proportions  π𝑔 must be greater 

than or equal to zero and the sum of the mixing proportions must equal one and 𝑝(𝒙|θ,𝑔) 

is the conditional probability of the response which is the product of response 

probabilities across all items, 

𝑝(𝒙|θ,𝑔) = �
exp (𝑥𝑖�θ − β𝑖𝑔�)

1 + exp (𝑥𝑖�θ − β𝑖𝑔�)

𝐼

𝑖=1

                                           2.10 

In the above equation, β𝑖𝑔 is the item difficulty for a class of respondents and θ is the 

person ability parameter. When θ = β𝑖𝑔 the probability of a correct response is .5 and 

classes are determined by differences in their item difficulty parameters. 

In the context of cluster analysis, the purpose of finite mixture modeling is to 

estimate the model parameters and compute the probability that each observation belongs 

to each of the classes. The model is fit several times using a different number of classes 

and fit statistics allow the researcher to identify the model with the correct number of 

classes. Fit statistics can be broadly categorized into three types: information criteria 

based, classification (entropy and entropy penalty) based, and likelihood ratio test based. 

Evaluating Competing Models 

Information criteria are a function of the log-likelihood and some other penalty 

imposed for model complexity. These fit statistics differ on the way the penalty is 

computed, but the penalty is necessary given that statistical models with more parameters 

fit data better than similar models with fewer parameters. In the mixture modeling 

context, this means that models with more component distributions will fit better than 
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those with fewer components. The penalty helps prevent over identifying the number of 

classes. The fit statistics employed in this study are reviewed below.   

Akaike’s Information Criterion (AIC; Akaike, 1973) is one of the earliest 

information criteria and is defined as  

AIC = −2 LL + 2p     2.11 

where LL is the maximized log likelihood and p is the total number of free parameters in 

the model. Unfortunately, the AIC is not theoretically consistent; selection of the correct 

model does not increase consistently as sample size nears infinity (Woodruffe, 1982). The 

Bayesian Information Criterion (BIC; Schwartz, 1978) is defined as 

BIC = −2 LL + p log N.      2.12 

Multiplying the total number of free parameters by the log of the sample size imbues BIC 

with a consistent quality (Haughton, 1988) and makes the criteria slightly more 

conservative than the AIC. Following the BIC, a consistent version of AIC (CAIC; 

Bozdogan, 1987) is defined as 

CAIC = −2 LL + p (log N + 1).           2.13 

The CAIC applies a more severe penalty on the number of parameters than does either 

BIC or AIC, and, therefore, tends to favor models with fewer parameters. 

Contemporaneously, Sclove (1987) proposed a sample size adjustment for information 

criteria given by the equation 

N* = (N + 2)/24     2.14 
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and N* replaces sample size (N) in the sample adjusted information criteria equations: 

SABIC = −2 LL + p log (N + 2)/24    2.15 

SACAIC = −2 LL + p (log ((N + 2)/24) + 1).          2.16 

This sample size adjustment to the AIC and BIC makes these consistent information 

criteria slightly more liberal than their non-adjusted forms.  

Classification (entropy and entropy penalty) based. Classification fit statistics 

use entropy, a measure of classification accuracy, as penalty when determining the fit of 

competing models. Essentially, the posterior probabilities of class membership are 

estimated and clearer assignment of cases to latent classes results in a better fit. When the 

separation among multivariate means of the component distributions for the classes is 

large, entropy, and the entropy penalty, should be smaller than when the multivariate 

means of the component distributions are closer together and assignment of cases to 

classes becomes less clear. This also implies that as the number of component 

distributions fitted to the data increase, the less clear the assignment of cases to classes 

becomes and, therefore, the larger entropy and entropy penalty becomes. Thus, the 

entropy and entropy penalty based fit statistics act to encourage the selection of a more 

parsimonious model. The most commonly used entropy and entropy penalty based fit 

statistics are the normalized entropy criterion (NEC; Celeux & Soromenho, 1996), the 

classification likelihood criterion (CLC; Biernacki & Govaert, 1997), and the integrated 

classification likelihood criterion-BIC (ICL-BIC; Biernacki, Celeux, & Govaert, 1998).  
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Entropy and entropy penalty fit statistics are based on the observation that the 

estimated log-likelihood of a model may be broken down into two component parts: 

 𝐿𝐿 = 𝐿𝐿𝑐 +  𝐸𝑁(𝜏̂)        2.17 

where LLc is the log-likelihood obtained if posterior probabilities of class membership are 

constrained to zero and one—one representing perfect classification—and 𝐸𝑁(𝜏̂) is 

entropy, which captures the error associated with the classification. Entropy is given as 

𝐸𝑁(τ�) = −��τ�𝑖𝑘

𝐾

𝑘−1

𝑁

𝑖−1

log τ�𝑖𝑘                                                       2.18 

where τ�𝑖𝑘 is the estimated posterior probability that individual i is a member of group k. 

Therefore, as entropy approaches zero, LL approaches LLc or perfect classification. Thus, 

entropy is a measure of classification quality with smaller values indicating higher 

quality.  

The NEC as proposed by Celeux and Soromenho (1996) is defined as 

NEC =
𝐸𝑁(τ�)

𝐿𝐿𝑘 − 𝐿𝐿𝑘=1
                                                                2.19 

where LLk is the log likelihood of a model with K component distributions. As the 

equations used for the calculation of the NEC show, the NEC is undefined when testing a 

K = 1 model. To address this issue Celeux and Soromenho (1996) and Biernacki, Celeux, 

and Govaert (1999) suggest a logical test where a model with K > 1 is preferred if the 

calculated NEC ≤ 1; if no K component model meets this criteria, then the K = 1 model is 

preferred. 
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The CLC (Biernacki & Govaert, 1997) is given as  

CLC = −2𝐿𝐿 +  2𝐸𝑁(𝜏̂)           2.20 

The entropy component of the CLC is undefined in the K = 1 model. However, the CLC 

can still be employed without the logical test necessary with the NEC. In the K = 1 

model, since there is only one distribution, the correct classification equals one and the 

entropy component of the CLC calculation becomes zero. Therefore, in the K = 1, the 

CLC reduces to –2LL which is used in comparison to the CLC statistics from the K > 1 

models where the penalty 2𝐸𝑁(𝜏̂) is greater than zero.  

The ICL–BIC uses entropy as an adjustment to the information criterion BIC and 

is defined as  

ICL − BIC =  −2𝐿𝐿 +  𝑝 log𝑁 + 2𝐸𝑁(𝜏̂).          2.21 

As in the CLC, in the K =1 model the 2𝐸𝑁(𝜏̂) penalty component of the formula is zero. 

Therefore, the ICL – BIC reduces to the BIC statistic in the one component model and 

subsequent K > 1 models will have a penalty (2𝐸𝑁(𝜏̂)) greater than zero. Since the ICL – 

BIC incorporates the penalties employed in the BIC and the CLC, it tends to be more 

conservative in model selection.  

Likelihood ratio test based. The likelihood ratio test (LRT) is a nested model test 

defined as  

LRT =  −2(𝐿𝐿𝑘−1 − 𝐿𝐿𝑘)          2.22 
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The LRT statistic is a widely used method for testing nested models that is chi-square 

distributed with degrees of freedom equal to the difference in the number of estimated 

parameters for the competing models. However, in the mixture modeling context, the 

LRT cannot be used to test models where the number of classes is nested. The reason for 

this is that the parameters of the k class model must be set to zero to specify the k – 1 

model. That is to say the probability of being in the kth class must be set to zero. Since 

probabilities range from zero to one, the parameter is being set at the border of admissible 

space. Consequently, the LRT statistic is no longer asymptotically chi-square distributed 

(McLachlan & Peel, 2000). To overcome this distributional dilemma, researchers have 

proposed alternative methods for employing the LRT in evaluating the fit of models with 

nested component structures: the bootstrap likelihood ratio test (BLRT; McLachlan, 

1987) and the Lo, Mendell, and Rubin likelihood ratio test (LMR-LRT; 2001).  

The BLRT is based on the bootstrap method (Efron, 1979) where a statistic is 

estimated on many sample distributions whose cases are drawn, with replacement, from 

the original distribution. This creates a sampling distribution of the statistic that is based 

on data from the original observed distribution and allows for the estimation of 

bootstrapped standard errors and confidence intervals for the statistic. In the context of 

mixture models and the LRT, the process is simply: 1) calculate the LRT for the original 

sample, 2) draw a bootstrap sample using the maximum likelihood estimated parameters 

from the null model (k – 1) and calculate the LRT for the sample, 3) repeat step 2 many 

times to create the true sampling distribution of the LRT statistic under the null 

hypothesis, and 4) compare the originally obtained LRT in step 1 with the distribution 

obtained after step 3 to get a p value that indicates whether the k – 1 (null) model should 
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be rejected in favor of the k (alternative) model (McLachlan, 1987; McLachlan & Peel, 

2000). 

Lo, Mendell, and Rubin (2001) extended the work of White (1982) and Vuong 

(1989) to mixture model applications. Vuong showed that the LRT statistic can be viewed 

as a weighted sum of independent random variables that are chi-square distributed with 

one degree of freedom. From this Lo, Mendell, and Rubin defined the LMR – LRT as 

LMR − LRT = 2�𝑙𝑜𝑔
𝑛

𝑗=1

𝑓(𝑋𝑗; θ�)
𝑔(𝑋𝑗; γ�)                                               2.23 

where γ� is the set of unknown parameters estimated under the null (k – 1) component 

model and θ�  is the set of unknown parameters estimated under the alternative (k) 

component model. In the same article Lo, Mendell, and Rubin proposed an adjustment to 

the LMR – LRT to improve its accuracy that they gave as 

aLMR − LRT =
LMR − LRT

1 + {(𝑝 − 𝑞) log𝑛}−1
                                          2.24 

where p and q are the number of independent chi-square distributed random variables for 

the alternative (k) and null (k – 1) models respectively. They note that as n  ∞ the 

adjustment {(𝑝 − 𝑞) log 𝑛}−1  0. The aLMR – LRT, and the LMR – LRT, result in a p 

value that indicates whether the k – 1 (null) model should be rejected in favor of the k 

(alternative) model. Jefferies (2003) contends that one of the assumptions in the 

mathematical proof for the LMR – LRT is not fully met for normal outcomes. However, 

Nylund, Asparouhov, and Muthén (2007) assert that the findings from the simulations 
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conducted by Lo, et al. (2001) provide sufficient evidence of the usefulness of the test in 

determining the number of classes in a distribution. 

 The purpose of the fit statistics is to aid the researcher in determining the number 

of component distributions in an overall distribution. Their different formulations and 

methods of penalizing models that estimate a larger number of parameters can often lead 

to markedly different decisions based upon which fit statistic is used. To date there is no 

consensus on the “best” fit statistic to use in determining the number of component 

distributions in an overall distribution. Comparing the ability of the various fit statistics in 

identifying the correct number of component distribution provides important information 

for researchers seeking to uncover the true characteristics of the membership in their 

sample.   

Efficacy of Fit Statistics 

Identifying the number of clusters or components in the data depends on the 

researcher’s choice of fit statistic. Two standards are of interest when evaluating the 

efficacy of a fit statistic. One standard is like statistical power. It concerns how often the 

correct number of clusters is identified when there really are clusters in the data. The 

second standard is like type I error. It concerns how often multiple clusters are identified 

in the data when no clusters actually exist. A large portion of research on the efficacy of 

fit statistics in mixture model has focused on the first criteria while only a few have 

considered the second. 

Table 1 shows the fit statistics compared in seven efficacy studies with an 

indication of the statistics that performed well relative to the others in the study. Many of 



35 

 

the statistics found in the other studies are not included in this study. The information 

criteria statistics not included in this study are D – BIC (Draper, 1995), deviance 

information criterion (DIC; Speigelhalter, Best, & Carlin, 1988), Efron information 

criteria (EIC; Ishiguro, Sakamoto, & Kitagawa, 1997), HQ (Hannan & Quinn, 1979), HT 

– AIC (Hurvich & Tsai, 1989), The classification (entropy penalty) statistic not included 

in this study is integrated classification likelihood criterion-(ICL; Biernacki, Celeux, & 

Govaert, 1998) without the BIC adjustment and the only likelihood ratio statistic not 

included is the stand alone LRT, which is not suitable for testing against a true one class 

condition. Other fit statistics such as the matrix based Laplace-empirical criterion (LEC; 

Roberts, Husmeier, Rezek, & Penny, 1998), two goodness of fit tests: the multivariate 

skewness test (MST) and multivariate kurtosis test (MKT) (Muthén, 2003), and the 

Bayesian pseudo-Bayes factor (PBF; Geisser & Eddy, 1979) and posterior predictive 

model checks (PPMC; Gelman, Carlin, Stern, & Rubin, 1996) are also not included in 

this study. 

Tofighi and Enders (2007) in a growth mixture modeling (GMM) format found 

that, across conditions, the SABIC and the LMR-LRT outperformed all other fit statistics 

they examined. Henson, Reise, and Kim (2007) in a structural equation mixture modeling 

format that, across conditions, the ICL-BIC and the CLC outperformed all other fit 

statistics in selecting the true two class model. However, Nylund, Asparouhov, and 

Muthén (2007) found that the BLRT outperformed the other likelihood tests and the BIC 

outperformed the information criteria tests. McLachlan and Ng (2000) reported the 

results of three simulation studies. They found that the ICL-BIC, the CLC, and the LEC 

identified the true model and, of these three, the ICL-BIC is the easiest to implement.  
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Table 1. 
Fit statistics by efficacy study. 
 

Bauer & 
Curran 
(2003a) 

Henson, 
Reise, & 

Kim 
(2007) 

Li, 
Cohen, 
Kim, & 

Cho 
(2009) 

McLachlan 
& Ng 
(2000) 

Nylund, 
Asparouhov, 

& Muthén 
(2007) 

Peugh 
& Fan 
(2013) 

Tofighi 
& 

Enders 
(2007) 

Information Criteria       
AIC x x x x x x x 
BIC x x x* x x* x* x 
CAIC x x   x x* x 
D-BIC      x*  
DIC   x     
EIC    x    
HQ      x  
HT-AIC      x  
SABIC  x   x x x* 
SACAIC      x* x 
SAD-BIC      x  
SAHT-AIC      x  
SAHQ      x  
 

Classification        

CLC x x*  x*  x*  
Entropy  x      
ICL    x    
ICL-BIC x* x*  x*  x*  
NEC x x    x  
SAICL-BIC      x*  

 
Likelihood Ratio       

aLMR-LRT  x    x  
BLRT     x* x  
LMR-LRT  x   x  x* 
LRT     x   
 

Other       

LEC    x*    
MST  x     x 
MSK  x     x 
PBF   x     
PPMC   x     
Note: SA proceeds sample size adjusted fit statistics and * indicates the statistic performed better 
than the others in the study. 
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While these studies examine the effectiveness of log likelihood based, 

classification (entropy and entropy penalty) based, and likelihood ratio test based fit 

statistics in their role of determining the correct number of classes in a mixture 

distribution, they do not examine the most basic condition of fitting more than one 

normal distribution to a true single class nonnormal distribution (i.e. the second standard 

of performance described above). Recently, Peugh and Fan (2013) compared the 

performance of the AIC, CAIC, BIC, D – BIC, HQ, HT – AIC, CLC, NEC, ICL – BIC, 

aLMR – LRT, and the BLRT using true k = 1 and true k = 3 models. (Also included were 

sample size adjusted versions of the information criteria fit statistics.) In their simulation, 

they varied sample size (300, 600, 900, 1200, 1500, and 3000), Mahalanobis distance—

separation of the multivariate means of the generated distributions creating the overall 

distribution—(.50, .80, 1.20, and 2.00), and dimensionality of the data (4 and 8 variables) 

with 200 replications for each of the 48 conditions. In the true k = 1 condition they fit 

models with 1, 2, and 3 components with homogeneous variances and then with 

heterogeneous variances. With the homogeneous variances the fit statistics that use 

entropy as a penalty—CLC, ICL – BIC, and the sample size adjusted ICL – BIC—

correctly identified the true k -1 model 100% of the time except for the N = 3000 

condition where they were 0% correct. All of the information criteria fit statistics failed 

(0% correct) to identify the correct model. When the variances of the component 

distributions were heterogeneous the fit statistics that use entropy as a penalty correctly 

identified the true k -1 model 100% of the time across all conditions. Additionally, the 

CAIC, sample size adjusted CAIC, BIC, and D – BIC also correctly identified the correct 

model 100% of the time across all conditions. Oddly, Peugh and Fan (2013) did not use 
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the NEC, aLMR – LRT, and the BLRT for the k = 1 true model citing the undefined 

nature of the NEC and the boundary limitations associated with the aLMR – LRT and the 

BLRT. However, each of these statistics has been shown to be useful in identifying a 

correct k = 1 model (Biernacki, Celeux, & Govaert, 1999; Lo, Mendell, & Rubin, 2001; 

McLachlan, 1987). Additionally, Peugh and Fan (2013) did not examine what effect 

different levels of skew and kurtosis of the overall distribution would have on the 

accuracy of the fit statistics.  

Li, Cohen, Kim, and Cho (2009) investigated the AIC, BIC, PBF, DIC, and PPMC 

using IRT models with Markov chain Monte Carlo (MCMC) estimation. (The versions of 

the AIC and BIC used in this study are the equivalent forms created by Congdon (2003) 

for use with MCMC model estimation.) They used 1PL, 2PL, and 3PL mixture models to 

examine true one class, true two classes, true three classes, and true four classes 

conditions with tests of 15 and 30 items and sample sizes of 600 and 1200, Each of the 48 

models were fit with mixtures from one to five classes. They found that the BIC correctly 

identified the true number of classes on all replications for the true one, two, and three 

class conditions across all other conditions and was nearly perfect in the four class 

condition except for the small sample size (600) 3PL model where it performed poorly. 

Regardless, the BIC outperformed all of the other fit statistics by a wide margin and the 

authors recommend its use with the one, two, and three parameter logistic mixture 

models. While their findings support the use of BIC for determining the correct number 

of classes, it should be noted that the results of their simulation study are based on only 

30 replications.  
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Bauer and Curran (2003a) examined the BIC, AIC, CAIC, ICL-BIC, NEC, and 

the CLC using a true k = 1 compared with a k = 2 alternative mixture model. Three 

conditions of non-normality were created by manipulating skewness and kurtosis 

(denoted skewness : kurtosis). Their choices were (0:0, 1:1, 1.5:6). Their finding showed 

that the ICL-BIC outperformed the other fit statistics. However, in the mixture model 

condition where skew = 1 and kurtosis = 1 for n = 200 within class variance allowed to 

vary the ICL-BIC selected the incorrect k = 2 solution 69.60% of the time and 92.51% 

when skew = 1.5 and kurtosis = 6. The problem became worse for n = 600 where the 

ICL-BIC, while still the best criterion, selected the incorrect k = 2 solution 91.08% of the 

time and 99.18% respectively (Bauer & Curran, 2003a).  

Muthén (2003) acknowledges the limitations of the BIC, and the other criteria that 

use the same basic information (i.e. the log likelihood), to distinguish between the two 

possibilities that a distribution contains more than one class or is one class nonnormal and 

suggests the use of additional covariates. Bauer and Curran (2003a) also suggest that 

additional covariates in the model could increase between class separations and improve 

the ability of the fit indices to identify the correct number of classes. Lubke and Muthén 

(2007) showed that the inclusion of covariates improved correct class assignment in a 

FaFMM. Of course, this assumes that the researcher has access to data regarding 

potentially salient covariates that were left out from the original model specification. 

Further, Tofighi and Enders (2007) found that the inclusion of covariates reduced the 

ability of the fit indices to correctly identify the number of classes, particularly in sample 

sizes less than 1000. Therefore, adding covariates may not help distinguish the correct 

model because model complexity is another factor that must be considered.  
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In practice, the importance of substantive theory in selecting the correct number 

of classes is not disputed (Bauer & Curran, 2003a; Muthén, 2003). However, as Bauer 

and Curran noted, when competing models fit the data equally well, it becomes extremely 

difficult to determine empirically the true nature of the distribution; particularly in the 

absence of strong theoretical justifications. 

Given the very recent implementation of fitting multivariate skew t distributions, 

there are no studies examining the efficacy of fit statistics in identifying the correct 

number of classes when skew t component distributions are fit to an overall distribution. 

Additionally, of the three studies that focus on fitting skew t distributions, two 

(Asparouhov & Muthen, 2014; Muthen & Asparouhov, 2014) focus on growth mixture 

models rather than finite mixture models and limit the fits statistics to the AIC and BIC. 

Lee and McLachlan (2014) also limited the fit statistics to the AIC and BIC, but within a 

finite mixture context. They fit models to real data with known k = 2 components and did 

not address the issue of a true k = 1 distribution. Researchers who employ FaFMMs  also 

tend to limit the selection of fit statistic to one of the information criteria statistics—AIC, 

BIC, etc. and the one study that specifically examined the identification of spurious 

classes within IRT—Alexeev, Templin, and Cohen (2011)—used only the BIC to 

determine model selection. 

 Therefore, the purpose of this study is to explore the extent to which finite 

mixture models identify spurious classes. This simulation study examines conditions 

when the observed data forms a single-component nonnormal distribution. Mixture 

models with one to four components will be fitted and log likelihood based, classification 



41 

 

(entropy and entropy penalty) based, and likelihood ratio based fit statistics will be 

employed to identify the best fitting model. 

 



42 

 

Chapter 3 Method 

Data were simulated with using R and models were run in Mplus 7.3 using the R 

package Mplus Automation. The study involves six conditions: (a) type of fit statistic, (b) 

type of component distribution, (c) type of component covariance structure, (d) sample 

size, (e) degree of dimensionality, and (f) degree of skewness and kurtosis. These 

conditions can be described generally as analysis conditions or data conditions. 

Analysis Conditions 

The study uses eleven different fit statistics from three general categories, log 

likelihood based, classification based, and likelihood ratio based. The log likelihood 

based fit statistics are, AIC, BIC, CAIC, SABIC, and SACAIC. The classification 

(entropy and entropy penalty) based fit statistics are, NEC, CLC, and ICL-BIC. Mplus 

reports entropy as relative entropy in its output. Relative entropy can be expressed as, 

𝑅𝐸𝑁(τ�) = 1 −
𝐸𝑁(τ�)
𝑁 log𝑘                                                      3.1  

where 𝐸𝑁(τ�) is entropy, N is the sample size, and k is the number of classes in the model. 

Since the entropy estimate is required for the calculation of the classification based fit 

statistics, entropy was calculated from relative entropy using the equation, 
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𝐸𝑁(τ�) = �1 − 𝑅𝐸𝑁(τ�)� 𝑁 log𝑘                                             3.2 

during the parameter extraction and fit statistic calculation processes. The final three fit 

statistics are the likelihood ratio based BLRT, LMR-LRT, and aLMR-LRT. Since 

McLachlan (1987) asserts that the BLRT is only appropriate for models that fit normally 

distributed component distributions, the fit statistic was not calculated for the nonnormal 

component distribution conditions. Three types of component distributions: multivariate 

normal, multivariate skew normal, and multivariate restricted skew t were used in the 

analysis. The final analysis condition employed two types of covariance structure. The 

first type allows the covariance matrix to differ among the individual class distributions. 

The second type freely estimated the covariance matrices, but constrained the matrices to 

be the same across classes. Table 2 summarizes the analysis conditions. 

Table 2. 
Summary of analysis conditions.* 

 Component Distribution Component Covariance 

A1 Multivariate Normal Unconstrained 
A2 Multivariate Normal Constrained 
A3 Multivariate Skew Normal Unconstrained 
A4 Multivariate Skew Normal Constrained 
A5 Multivariate Skew t Unconstrained 
A6 Multivariate Skew t Constrained 
*Analysis conditions A1 and A2 are evaluated by all eleven fit statistics. However, analysis 
conditions A3 to A6 are evaluated with only ten fit statistics – no BLRT. 

 

Data Conditions 
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Data are simulated with N = 500 and N = 2,000 cases. There are four and eight 

dimensions simulated to have a correlation of .52 among the variables. Population 

skewness and kurtosis are 0.00:0.00, 0.75:0.25, and 1.00:1.00. These values were selected 

to be consistent with values encountered in applied settings and for comparability to other 

research on mixture modeling. Table 3 summarizes the data conditions. 

Table 3. 
Summary of data conditions. 

 N Dimensions skew:kurtosis 

C1 500 4 variables 0.00:0.00 
C2 500 4 variables 0.75:0.25 
C3 500 4 variables 1.00:1.00 
C4 2000 4 variables 0.00:0.00 
C5 2000 4 variables 0.75:0.25 
C6 2000 4 variables 1.00:1.00 
C7 500 8 variables 0.00:0.00 
C8 500 8 variables 0.75:0.25 
C9 500 8 variables 1.00:1.00 
C10 2000 8 variables 0.00:0.00 
C11 2000 8 variables 0.75:0.25 
C12 2000 8 variables 1.00:1.00 

 

Two frequently used methods for simulating nonnormal data are the one proposed 

by Vale and Maurelli (1983) and the method proposed by Headrick (2002). There is some 

controversy over which method performs best and their relative performance may differ 

based on the degree of nonnormality being simulated (Olvera Astivia & Zumbo, 2014). 

Therefore, prior to simulating the data, both methods were tested using the 1.00:1.00 

level of the skew and kurtosis. (Simulation code for the Vale and Maurelli (1983) method 
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was adapted from code written by Cengiz Zopluoglu (2011) and the simulation code for 

the Headrick (2002) method was obtained through a link provided in Olvera Astivia and 

Zumbo (2014)). The results of the test indicated that the Vale and Maurelli method 

performed better than the Headrick method. Therefore, the Vale and Maurelli was used to 

simulate the data – 250 data sets for each data condition. A check of the simulated data 

showed that for most of the conditions on average target values of skew and kurtosis for 

the variables were achieved when using a criterion of 0.05 deviation from the median and 

mean centrality statistics. The exceptions to meeting this criterion occurred with the 

kurtosis parameter when the sample size was 500. In the four variable condition one 

variable had a – 0.06 deviation from the target median. With a kurtosis of 0.25 two of the 

variables had deviations of – 0.07 and – 0.06 from the target median value. When target 

kurtosis was 1.00 with four variables, deviations that exceeded the criterion were, - 0.15, 

- 0.22, - 0.12, and – 0.14 from the median and two variables had deviations of – 0.8 and – 

0.10 from the target mean. In the eight variable condition, with a target kurtosis of 0.25, 

five variables exceeded the criterion deviation from the median. The average deviation 

from the median for the five variables is – 0.07 with the largest being – 0.08 and the 

smallest – 0.051. Additionally, only one of the eight variables in the 0.25 kurtosis 

condition had a deviation from the mean greater than the criterion, - 0.053. When the 

target kurtosis was 1.00 all eight variables exceeded the 0.05 criterion from the median 

and five variables exceeded the criterion for the mean. The average deviation from the 

target median was – 0.14 with the largest deviation of – 0.23 and smallest of – 0.08. For 

the five variables that exceeded the criterion for the target mean the average deviation 

was – 0.08 with a largest deviation of – 0.09 and smallest deviation of – 0.06. While 
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mathematical adjustments to the simulation syntax code could have been applied to 

reduce these deviations, it was determined that for the sake of comparability and 

reproducibility that no adjustments should be made. Tables for the full simulation check 

and comparison between the two simulation methods as well as the R syntax code for the 

simulation methods can be found in Appendix A.  

Summary of Conditions 

Fully crossing all analysis and data conditions results in 72 different combinations 

for analysis that are evaluated with the fit statistics. For instance, analysis condition one 

(A1) crossed with data condition one (C1) produces the condition A1C1 that fits 

multivariate normal component distributions with unconstrained class covariance 

matrices to data with 500 cases and four variables whose distribution was simulated to 

have a skew of 0.00 and kurtosis of 0.00. Similarly, analysis condition six (A6) crossed 

with data condition twelve (C12) produces the condition A6C12 that fits multivariate 

skew t component distributions with class covariance matrices constrained to be equal to 

data with 2000 cases and eight variables whose distribution was simulated to have a skew 

of 1.00 and kurtosis of 1.00. 

Each data condition was replicated 250 times and one to four components were 

fitted to each condition’s distribution. Initially the number of component distributions that 

were to be fit was much higher. However, because of the additional computation required 

for the models and a substantial nonconvergence with these models, it was decided that 

four component models were sufficient because this number meets or exceeds the number 

of component distributions used in previous efficacy studies. Additionally, because of the 
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amount of time required to calculate estimates from models fitting multivariate skew t 

component distributions, these conditions were limited to 125 replications. Log-

likelihood based, classification (entropy and entropy penalty) based, and likelihood ratio 

based fit statistics were employed to identify the best fitting model. Additionally, for all 

models, each analysis is conducted using 500 random starts of 20 iterations to help avoid 

the problem of the EM algorithm resolving on local maxima as well as improving the 

probability of obtaining model convergence, particularly when fitting the four component 

models. The percentage of times each fit statistic identified a model with k number of 

components is computed, where k = 1, 2, 3, and 4. The outcome of interest is the 

percentage of times that the correct one class model fit the data best. For each of the 72 

conditions the percent number of replications that each fit statistic identified each of the 

one through four class models as the correct model was calculated. These were then 

combined into a single data set for analysis. Therefore, each fit statistic in the data set has 

a distribution of percentages for the one through four class solutions. Discussion of the 

results focuses on the distribution of the identification of the correct one class model. The 

mean of the distributions for each fit statistic is the average percent correct across the 72 

conditions. This can also be interpreted as the mean percent correct across 15,000 

replications. [(24 normal + 24 skew normal component distribution conditions x 250 

replications = 12,000 replications) + (24 skew t component distribution conditions x 125 

= 3,000 replications) = 15,000 total replications] As noted above, R was used to generate 

the data. The R package Mplus Automation is used to run the models in Mplus 7.3. 

Samples of Mplus Automation createModels syntax files, the runModels syntax, and the 

extractModelSummaries syntax are found in Appendix B. 
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Chapter 4: Results 

There are 72 fully crossed conditions fit with four separate class models evaluated 

by 11 fit statistics in the normal distribution conditions and ten fit statistics in both of the 

nonnormal distribution conditions. Across all data sets this results in 624,000 fit statistic 

calculations that took over 25,000 computation hours to make. The first step in reducing 

the complexity of the results was to calculate the percent number of times each fit 

statistic preferred each of the one through four class models in each of the 72 analysis by 

data conditions. The second step in reducing the complexity of the results was to run an 

ANOVA model using the percent correct identification of the true one class model as the 

dependent variable and each of the conditions (fit statistic, sample size, skew and 

kurtosis, number of variables, component distribution type, and component covariance 

type) as fixed factors. A main effects only model was chosen because of the large number 

of possible interaction effects – 57. The results of the main effects ANOVA and R2 effect 

sizes are presented in table 4. The results show that the skew and kurtosis condition is 

statistically significant and accounts for approximately 33% of the variance in percent 

correct true one class model. Additionally, type of fit statistic is also statistically 

significant and accounts for approximately 27% of the variance in percent correct true 

one class model. The type of component distribution, while statistically significant, only 

explains an additional 1.4% of the variance. Sample size, number of variables, and 

component covariance type were not statistically significant and the three effects 

combined accounted for less than 0.5% of the variance in percent correct true one class
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 model. In sum, this analysis suggests that evaluation of the results should focus on the 

skew and kurtosis condition, the fit statistic condition, and the type of component 

distribution condition. 

Table 4. 
Main effects and effect sizes from fixed effects ANOVA using percent correct true one 
class model as the dependent variable. 

 df SS MS F p R2 

Fit Statistic 10 403359 40336 53.39 < .001 .267 
Sample Size 1 2766 2766 3.66 .056 .002 
Skew and Kurtosis 2 493884 246942 326.84 < .001 .327 
Variables 1 2748 2748 3.64 .057 .002 
Component Distribution 2 20860 10430 13.80 < .001 .014 
Component Covariance 1 316 316 0.42 .518 < .001 
Residuals 774 584801 756    

       

Skew and Kurtosis 

The skew and kurtosis condition has three levels: skew = 0.00 and kurtosis = 0.00, 

skew = 0.75 and kurtosis = 0.25, and skew = 1.00 and kurtosis = 1.00. Table 5 shows the 

distribution of percent correct identification of the true one class model by skew and 

kurtosis condition. The table displays the mean, standard deviation, and five number 

summaries of the distribution of the percent correct true one class model for the three 

levels of the skew and kurtosis condition. The statistics in table 5 show that as the degree 

of skew and kurtosis increases, the identification of the true one class model decreases. 

For instance, the mean for the skew and kurtosis level of 0.00:0.00 is 86.33% correct but 

the mean for the skew and kurtosis level of 0.75:0.25 is 36.09% correct. Additionally, 
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Table 5. 
Distribution of percent correct identification of the true one class model by skew and 
kurtosis condition. (N = 248) 

 M SD Min Q1 MDN Q3 Max 

0.00:0.00 86.33 26.49 0.00 87.30 99.20 100.00 100.00 

0.75:0.25 36.09 39.30 0.00 0.00 17.40 73.30 100.00 

1.00:1.00 25.34 35.92 0.00 0.00 5.60 44.20 100.00 

 

at the median the correct one class model was identified 99.20% of the time at the skew 

and kurtosis level of 0.00:0.00; however, at the 0.75:0.25 level the median was only 

17.40% correct identification of the one class model. Closer examination of the 

frequencies of correct identification of the one class model revealed that in the 0.00:0.00 

level 100% correct identification occurred in 46.37% (n = 115) of the 248 data conditions 

where this level of skew and kurtosis was simulated. Additionally, over half 67.34% (n = 

167) of the data conditions with the 0.00:0.00 level of skew and kurtosis had a correct 

identification of 95% or greater. At the other end of the distribution 0% correct 

identification occurred in 1.21% (n = 3) and 4.84% (n = 12) had a correct identification 

rate of 5% or less. At the 0.75:0.25 level of skew and kurtosis100% correct identification 

occurred in 8.47% (n = 21) of the 248 data conditions where this level of skew and 

kurtosis was simulated. Additionally, 16.53% (n = 41) of the data conditions with the 

0.75:0.25 level of skew and kurtosis had a correct identification of 95% or greater. At the 

other end of the distribution for this level of skew and kurtosis 0% correct identification 

occurred in 34.68% (n = 86) 43.95% (n = 109) had a correct identification rate of 5% or 

less. For the 1.00:1.00 level of skew and kurtosis100% correct identification occurred in 
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4.84% (n = 12) of the 248 data conditions where this level of skew and kurtosis was 

simulated. Additionally, 11.69% (n = 29) of the data conditions with the 1.00:1.00 level 

of skew and kurtosis had a correct identification of 95% or greater. At the other end of the 

distribution for this level of skew and kurtosis 0% correct identification occurred in 

40.32% (n = 100) and almost half 49.60% (n = 123) had a correct identification rate of 

5% or less. Overall, these results show that higher skew and kurtosis values inhibit the 

ability to identify a true one class model. Of course, in this study model selection is based 

solely upon the fit statistics, which is the next largest source of variation accounting for 

the percent correct one class model identification. 

Fit Statistics   

The fit statistic condition has eleven categories: Akaike’s information criterion 

(AIC), Bayesian information criterion (BIC), consistent AIC (CAIC), sample size 

adjusted BIC (SABIC), sample size adjusted CAIC (SACAIC), normalized entropy 

criterion (NEC), classification likelihood criterion (CLC), integrated classification 

likelihood BIC (ICL-BIC), bootstrap likelihood ratio test (BLRT), Lo, Mendell, and 

Rubin likelihood ratio test (LMR-LRT), and adjusted LMR (aLMR-LRT). Table 6 shows 

the distribution of percent correct identification of the true one class model by fit statistic. 

The table groups the fit statistics into their respective categories of information criteria 

based, classification based, and likelihood ratio based test statistics. It displays the mean, 

standard deviation, and five number summaries of the distribution of the percent correct 

true one class model for the eleven different fit statistics. Each of the fit statistics was 

used in each of the 72 analysis by data conditions with the exception of the BLRT, which 
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is only calculated when fitting models with normally distributed components. Table 6 

shows that across all analysis and data conditions the classification based fit statistics 

Table 6. 
Distribution of percent correct identification of the true one class model by fit statistic. (N 
= 72) 

  M SD Min Q1 MDN Q3 Max 

Information Criteria        

 AIC 13.68 24.03 0.00 0.00 0.00 13.90 79.20 

 BIC 43.18 46.39 0.00 0.00 8.80 100.00 100.00 

 CAIC 46.16 46.75 0.00 0.00 22.60 100.00 100.00 

 SABIC 32.72 43.12 0.00 0.00 0.00 85.00 100.00 

 SACAIC 37.14 46.15 0.00 0.00 0.80 99.90 100.00 

Classification        

 NEC 70.42 35.73 0.00 45.20 88.00 98.40 100.00 

 CLC 71.06 35.98 0.00 89.30 100.00 100.00 100.00 

 ICL-BIC 88.22 23.75 6.40 89.30 100.00 100.00 100.00 

Likelihood Ratio        

 BLRT* 30.67 44.42 0.00 0.00 0.00 89.80 99.20 

 LMR-LRT 47.91 36.54 0.00 11.40 46.00 83.70 100.00 

 aLMR-LRT 48.25 36.64 0.00 11.40 46.00 85.20 100.00 

*Statistics for the BLRT are from the conditions fitting normal distributions (n = 24). 
 

outperformed the log likelihood and likelihood ratio test based fit statistics. The ICL-BIC 

outperformed all other fit statistics (M = 88.22%). It was the only fit statistic that was 

able to correctly identify the true one class model in all 72 analysis by data conditions – 

Min = 6.40% correct identification. At the first quartile of the percent correct 

identification distribution it had an 89.30% that rose to 100% correct identification at the 
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median of the distribution. A closer examination of the distribution showed that in 

55.56% (n = 40) of the analysis by data conditions the ICL-BIC identified the correct one 

class model 100% of the time. Additionally, in 72.22% (n = 52) of the analysis by data 

conditions the ICL-BIC had a 98.4% or greater accuracy in identifying the correct one 

class model. The next most accurate fit statistic was the CLC with a mean of 71.06 on the 

percent correct identification distribution. While the quartile values for the CLC are 

identical to the quartile values of the ICL-BIC, a closer examination of the CLC 

distribution of percent correct identification revealed that in 18.06% (n = 13) of the 

analysis by data conditions the CLC identified the correct one class model 100% of the 

time. Additionally, in 33.33% (n = 24) of the analysis by data conditions the CLC’s 

accuracy was 98.4% and in 47.22% (n = 34) of the conditions the CLC had a greater than 

95% accuracy in identifying the correct one class model. At the other end of the 

distribution for the CLC 0% correct identification occurred in 6.94% (n = 5) and 11.11% 

(n = 8) had a correct identification rate of less than 5%. These results show that the 

second best fit statistic – the CLC – had three times fewer instances of 100% and two 

times fewer instances of 98.4% or greater correct identification than the most accurate fit 

statistic – the ICL-BIC. The final classification fit statistic – the NEC – performed worse 

than the ICL-BIC and had slightly worse but very similar performance compared to the 

CLC. The NEC had a mean of 70.42 on the percent correct identification distribution. At 

the first quartile the NEC had a much smaller 45.20% correct than the 89.30% correct 

identification level in the first quartile of the other two entropy statistics. Additionally, 

whereas the ICL-BIC and the CLC reached the level of 100% correct at the median of 

their distributions, this level of accuracy was only attained at the maximum of the NEC 
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percent correct distribution. Further examination of the NEC distribution revealed that in 

15.28% (n = 11) of the analysis by data conditions the NEC identified the correct one 

class model 100% of the time. Additionally, in 29.17% (n = 21) of the analysis by data 

conditions the NEC’s accuracy was 98.4% and in 45.83% (n = 33) of the conditions the 

NEC had a greater than 95% accuracy in identifying the correct one class model. At the 

other end of the distribution for the NEC 0% correct identification occurred in 6.94% (n = 

5) and 9.72% (n = 7) had a correct identification rate of less than 5%. Although the NEC 

had, by a slight margin, the poorest performance of the classification fit statistics, it still 

outperformed the information criteria and likelihood ratio statistics.  

Likelihood ratio fit statistics. The aLMR-LRT had a slightly higher mean (M = 

48.25%) than the LMR-LRT (M = 47.91%) on the percent correct identification 

distribution. Their respective five number summaries were identical up to quartile three 

where the aLMR-LRT (85.20) was slightly higher than the LMR-LRT (83.70). However, 

closer examination of the distributions of percent correct identification revealed that the 

upper and lower ends of the respective distributions were the same for both statistics. In 

5.56% (n = 4) of the analysis by data conditions they identified the correct one class 

model 100% of the time. Additionally, in 8.33% (n = 6) of the analysis by data conditions 

their accuracy was 98.4% and in 16.67% (n = 12) of the conditions had a greater than 

95% accuracy in identifying the correct one class model. At the other end of the 

distributions, 0% correct identification occurred in 2.78% (n = 2) and 13.89% (n = 10) 

had a correct identification rate of less than 5%. Overall, there was very little difference 

between the LMR-LRT and the aLMR-LRT with the aLMR-LRT having a slightly better 

performance in identifying the correct one class model. The final likelihood ratio fit 
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statistic is the BLRT. The BLRT is only calculated for models fitting normal component 

distributions. Therefore, the percent correct identification distribution is a third the size (n 

= 24) of the distributions for the other fit statistics. Nonetheless, the BLRT had a 0% at 

the median of it correct identification distribution and did not achieve 100% accuracy on 

any of the analysis by data conditions (Max = 99.20%). Further inspection of the 

distribution revealed that 16.67% (n = 4) had greater than 95% accuracy in identifying 

the correct one class model. At the other end of the distribution a 0% correct 

identification occurred in 58.33% (n = 14) of the conditions and 66.67% (n = 16) had less 

than 5% correct. This pattern of inaccuracy is only exceeded by the information criterion 

AIC. 

Information criteria fit statistics. When looking at the overall distribution of 

percent correct identification the best performing information criteria fit statistic is the 

CAIC. It had a mean of 46.16% and an accuracy of 22.60% correct at the median of its 

distribution that rose to 100% at the third quartile. A closer inspection of the distribution 

revealed that in 33.33% (n = 24) of the analysis by data conditions the CAIC was 100% 

correct in identifying the true one class model and 36.11% (n = 26) had greater than 95% 

accuracy. At the other end of the distribution 30.56% (n = 22) had 0% correct and 43.06% 

(n = 31) had a correct identification accuracy of less than 5%. The BIC performed worse 

than the CAIC. The BIC had a mean of 43.18% and an accuracy of just 8.80% correct at 

the median of its distribution that rose to 100% at the third quartile. A closer inspection of 

the distribution revealed that in 33.33% (n = 24) of the analysis by data conditions the 

BIC was 100% correct in identifying the true one class model and the next highest 

percent was a single condition with a 94.40% accuracy. At the other end of the 
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distribution 38.89% (n = 28) had 0% correct and 44.44% (n = 32) had a correct 

identification accuracy of less than 5%. The SACAIC and the SABIC performed worse 

than, but with a similar pattern to, their nonsample size adjusted counter parts. The 

SACAIC had a mean of 37.14% and an accuracy of just 0.80% correct at the median of 

its distribution that rose to 99.90% at the third quartile. A closer inspection of the 

distribution revealed that in 25.00% (n = 18) of the analysis by data conditions the 

SACAIC was 100% correct in identifying the true one class model and 31.94% (n = 23) 

had greater than 95% accuracy. At the other end of the distribution 47.22% (n = 34) had 

0% correct and over half 54.17% (n = 39) had a correct identification accuracy of less 

than 5%. The SABIC performed worse than the SACAIC. The SABIC had a mean of 

32.72% and an accuracy of 0% correct at the median of its distribution that rose to 

85.00% at the third quartile. Closer inspection of the distribution revealed that in 13.89% 

(n = 10) of the analysis by data conditions the SABIC was 100% correct in identifying 

the true one class model and 23.61% (n = 17) had greater than 95% accuracy. At the other 

end of the distribution over half 51.39% (n = 37) of the conditions had 0% correct and 

over half 54.16% (n = 39) had a correct identification accuracy of less than 5%. By far 

the worst performing fit statistic was the AIC. It had a mean of 13.68% and an accuracy 

of only 13.90% at the third quartile and a maximum 79.20% (n = 1). In fact, a closer 

inspection of the distribution revealed that in only 13.89% (n = 10) of the analysis by data 

conditions did the AIC exceed 50% correct in identifying the true one class model. At the 

other end of the distribution over half 55.56% (n = 40) had 0% correct and over two 

thirds 68.06% (n = 49) had a correct identification accuracy of less than 5%. These 
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results taken as a whole allow us to construct a ranking of fit statistics based on their 

ability to identify the correct one class model. 

Summary ranking of fit statistics. When we examine the distributions of percent 

correct from table 6, we can see a ranking from best to worst: ICL-BIC, CLC, NEC, 

aLMR-LRT, LMR-LRT, CAIC, BIC, SACAIC, SABIC, BLRT, and AIC. However, if we 

look at 100% accuracy only, a different ranking emerges: ICL-BIC (55.56%, n = 40), 

CAIC (33.33%, n = 24), BIC (33.33%, n = 24), SACAIC (25.00%, n = 18), CLC 

(18.06%, n = 13), NEC (15.28%, n = 11), SABIC (13.89%, n = 10), aLMR-LRT (5.56%, 

n = 4), LMR-LRT (5.56%, n = 4). In this view of the results the CAIC and the BIC are 

tied in rank as are the LMR-LRT and its adjusted form aLMR-LRT while the BLRT and 

AIC are not ranked because they failed to meet the 100% criterion. While the CLC, NEC, 

aLMR-LRT, and LMR-LRT, except for the tie between the aLMR-LRT and LMR-LRT, 

maintained the relative rank amongst themselves, they have been moved down in rank by 

the CAIC, BIC, SACAIC and the SABIC has been ranked between them. This indicates 

that changing the analysis by data conditions has a much more drastic effect on the ability 

of the information criteria fit statistics to accurately identify the correct one class model. 

In essence, they are more consistent in succeeding or failing to identify the correct model 

across all the replications in a condition. One data condition that can influence whether 

the correct model is identified is nonnormality. The analysis condition that could account 

for nonnormality is component distribution type, which is the third largest source of 

variation explaining the percent correct true one class model. 

Component Distributions 
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The component distribution condition has three levels: multivariate normal, 

multivariate skew normal, and multivariate skew t. Table 7 shows the distribution of 

percent correct identification of the true one class model by component distribution 

condition. The table displays the mean, standard deviation, and five number summaries of 

the distribution of the percent correct true one class model for the three levels of the 

component distribution condition. The statistics in the table have been adjusted for no 

estimation of the BLRT in the nonnormal component distribution conditions. The 

statistics in table 7 show that the more the component distributions are allowed to vary 

their shape the identification of the true one class model increases. For instance, the mean 

for the normal distribution is 41.78% correct but the mean for the skew normal  

Table 7. 
Distribution of percent correct identification of the true one class model by distribution 
condition.* 

 M SD Min Q1 MDN Q3 Max 

Normal 41.78 44.15 0.00 0.00 20.00 95.20 100.00 

Skew 47.94 41.16 0.00 1.60 44.00 97.60 100.00 

Skew T 59.80 43.13 0.00 5.60 80.00 100.00 100.00 

*Statistics adjusted for no BLRT estimation in the nonnormal distribution conditions: 
normal (N = 264), skew and skew t (N = 240).  
 

distribution is 47.94% correct. Additionally, at the first quartile the correct one class 

model was identified 0% of the time in the normal component distribution condition; 

however, when the skew normal component distribution was used the correct 

identification at the first quartile was 1.60%. Closer examination of the frequencies of 
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correct identification of the one class model revealed that in the normal component 

distributions 100% correct identification occurred in 15.91% (n = 42) of the 264 analysis 

by data conditions that fit this type of distribution. Additionally, 25.38% (n = 67) of the 

analysis conditions that fit normal component distributions had a correct identification of 

95% or greater. At the other end of the distribution 0% correct identification occurred in 

36.74% (n = 97) and 45.08% (n = 119) had a correct identification rate of 5% or less. 

When skew normal component distributions were fit 100% correct identification occurred 

in 16.67% (n = 40) of the 240 analysis by data conditions. Additionally, 27.50% (n = 66) 

of the analysis conditions that used the skew normal component distributions had a 

correct identification of 95% or greater. At the other end of the distribution for this type 

of component distribution 0% correct identification occurred in 18.75% (n = 45) and 

27.50% (n = 66) had a correct identification rate of 5% or less. For the conditions where 

the skew t component distribution were fit, 100% correct identification occurred in 

27.50% (n = 66) of the 240 analysis by data conditions. Additionally, 42.50% (n = 102) 

of the conditions that fit skew t component distributions had a correct identification of 

95% or greater. At the other end of the distribution for this type of component distribution 

0% correct identification occurred in 19.58% (n = 47) and 24.58% (n = 59) had a correct 

identification rate of 5% or less. Overall, these results show that estimating additional 

parameters that allowed the shape of the component distributions to change increased the 

ability to identify a true one class model. However, as the initial ANOVA analysis 

showed, component distribution type accounted for only 1.4% of the variance in percent 

correct identification of the true one class model. Of course, when evaluating the ability 
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to identify the true one class model in this study, and in any study, that requires fitting 

multiple models on multiple data sets, it is important to examine model convergence. 

Model Convergence 

It is expected that less complex models will converge at a higher rate than more 

complex models. In other words, models fitted with fewer class component distributions 

are more likely to converge than models fitting more classes. Therefore, in this study it 

was expected that for each data replication the one class model would have the highest 

convergence rate and that the subsequent two through four class models would have 

decreasing rates of convergence. This expectation implies that if the one class model fails 

to converge on any given data replication, all of the subsequent two through four class 

models fitted to that data replication will also fail to converge. In practice the failure to 

converge of a more complex model is often taken as evidence in support of preference 

being given to a less complex model. To a certain extent this study follows this method of 

preference because, for each data replication, the best fitting model is selected based on 

the models that converged for that replication. However, in some of the analysis by data 

conditions in this study, the expected pattern of convergence was not achieved.   

The majority of the analysis by data conditions followed the expected pattern of 

convergence where the less complex one class models converged at a higher rate than the 

more complex two through four class models. However, in 27.78% (n = 20) of the 

conditions the true one class model failed to converge in at least one replication. Table 8 

shows the condition identifier, the percent that the one class model converged, and the 



61 

 

condition characteristics for the conditions where the one class model failed to converge 

on at least one replication. Tables C1 and C2 in Appendix C provide convergence rates  

Table 8. 
Percent convergence of one class model when 100% convergence was not achieved by 
condition and condition characteristics. 

 
% Distribution Covariance N Variables Sk:Ku 

A3C6 99.60 Skew Unconstrained 2000 4 1.00:1.00 
A4C6 99.60 Skew Constrained 2000 4 1.00:1.00 
A3C5 98.40 Skew Unconstrained 2000 4 0.75:0.25 
A4C5 98.40 Skew Constrained 2000 4 0.75:0.25 
A5C2 98.40 Skew t Unconstrained 500 4 0.75:0.25 
A5C3 92.00 Skew t Unconstrained 500 4 1.00:1.00 
A3C2 81.20 Skew Unconstrained 500 4 0.75:0.25 
A4C2 81.20 Skew Constrained 500 4 0.75:0.25 
A3C8 73.60 Skew Unconstrained 500 8 0.75:0.25 
A4C8 73.60 Skew Constrained 500 8 0.75:0.25 
A3C11 68.40 Skew Unconstrained 2000 8 0.75:0.25 
A4C11 68.40 Skew Constrained 2000 8 0.75:0.25 
A3C3 55.20 Skew Unconstrained 500 4 1.00:1.00 
A4C3 54.80 Skew Constrained 500 4 1.00:1.00 
A5C8 48.00 Skew t Unconstrained 500 8 0.75:0.25 
A3C12 46.80 Skew Unconstrained 2000 8 1.00:1.00 
A4C12 46.80 Skew Constrained 2000 8 1.00:1.00 
A3C9 14.80 Skew Unconstrained 500 8 1.00:1.00 
A4C9 14.80 Skew Constrained 500 8 1.00:1.00 
A5C9 6.40 Skew t Unconstrained 500 8 1.00:1.00 
 

for all conditions and models in the study. The percent column in table eight indicates 

that the failure of the one class model to converge ranged from one failure in conditions 

A3C6 and A4C6 to 213 failures in A3C9 and A4C9. (Condition A5C9 has the lowest 

percent of one class convergence, but 117 failures because the conditions that fit the 
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multivariate skew t component distribution were limited to 125 replications.) 

Examination of the distribution column indicates that 80% (n = 16) of the conditions 

where the one class model failed to converge at least once had fit multivariate skew 

normal component distributions and the other 20% (n = 4) of the conditions had fit 

multivariate skew t component distributions. The type of covariance matrices was more 

evenly split, 60% (n = 12) unconstrained and 40% (n = 8) constrained; however, the 

distinction between the types of covariance structure is irrelevant because in the one class 

model the covariance matrix is freely estimated in both types of covariance structures. 

The sample size condition was similarly split, 60% (n = 12) of the conditions had 500 

cases and 40% (n = 8) of the conditions had 2000 cases. The variables condition was 

evenly split (50%; n = 10) between the four variable level and the eight variable level; 

although the eight variable level is found more frequently at higher rates of failure. The 

skew and kurtosis condition was evenly split (50%; n = 10) between the 0.75:0.25  level 

and the 1.00:1.00 level; although the 1.00:1.00 level tends to be found more frequently at 

higher rates of failure. Notably absent from table eight are any conditions that had fit 

multivariate normal component distribution or any conditions where the data was 

simulated to have zero skew and zero kurtosis. Additionally, although few patterns 

emerge when the interaction of the analysis and data conditions present in table eight are 

considered, it should be noted that when the skew t component distribution appears, it is 

always paired with the smaller sample size of 500 cases. These findings for the failure of 

convergence of the one class model have important practical implications. 

In the context of practice, if the one class model fails to converge, a researcher 

could increase the number of random starts in an attempt to get the model to converge. 
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This is impractical and, more poignantly, unwarranted in the context of a simulation 

study. If the number of random starts were increased to encourage convergence, this 

would have to be done for all of the analyses in the simulation study. Changing the 

random starts analysis condition that was held constant would influence the results for the 

manipulated conditions in the study. Nonetheless, in practice, fitting a one class model 

successfully is an important step even if it is only intended as a comparison for more 

complex multi class models. The results have focused on the percent correct 

identification of the true one class model. This means that the replications where the one 

class model failed to converge reduced the percent correct identification by virtue of there 

being no one class model to select. This should have little effect on the on the relative 

ranking of the effectiveness of the fit statistics in identifying the correct one class model. 

However, in practice it may be more important to know the accuracy of the fit statistics 

when the one class model converged. Additionally, looking only at replications where the 

one class model converged should decrease the differences associated with levels of skew 

and kurtosis and increase the differences associated with the type of component 

distribution. Therefore, the results were reexamined using only the replications where the 

one class model converged.  

One Class Model Converged Replications 

Replications where the one class model failed to converge were removed and 

percent correct identification was recalculated for all fit statistics in all 72 analysis by 

data conditions. The recalculated percent correct identification then served as the 

dependent variable in a second ANOVA model. The results of the main effects ANOVA 
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and R2 effect sizes are presented in table 9. The results show that there were statistically 

significant effects for all of the conditions except for the number of variables condition. 

As in the first ANOVA model that used the percent correct identification dependent 

variable calculated using all replications, skew and kurtosis, fit statistic, and type of 

component distribution were the main contributors in explaining variation in the 

dependent variable. However, when using only the replications where the one class 

model converged, the fit statistic condition accounted for the most variance – 30%. The 

skew and kurtosis condition accounts for approximately 24% of the variance and the type 

of component distribution explains an additional 2.5% of the variance. The remaining 

three conditions combined accounted for less than 2% of the variance. 

Table 9. 
Main effects and effect sizes from fixed effects ANOVA using percent correct model 
calculated from replications where the one class model converged. 

 df SS MS F p R2 

Fit Statistic 10 475124 47512 55.88 < .001 .302 

Sample Size 1 20847 20847 24.52 < .001 .013 

Skew and Kurtosis 2 371940 185970 218.74 < .001 .236 

Variables 1 1765 1765 2.08 .150 .001 

Component Distribution 2 39544 19772 23.26 < .001 .025 

Component Covariance 1 5444 5444 6.40 .012 .003 

Residuals 774 658059 850    

       
Fit Statistics – Replications with One Class Model Convergence   

Table 10 shows the distribution of percent correct identification of the true one 

class model by fit statistic when using only the replications where the one class model 
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converged. The table groups the fit statistics into their respective categories of 

information criteria, classification based, and likelihood ratio based test statistics. It 

displays the mean, standard deviation, and five number summaries of the distribution of 

the percent correct true one class model for the eleven different fit statistics when using 

only the replications where the one class model converged. Since the BLRT is only 

calculated when fitting models with normally distributed components and the one class 

model converged for all replications in the conditions that fit normally distributed 

components, the BLRT distribution statistics are the same as in table 6 where the 

Table 10. 
Distribution of percent correct identification of the true one class model by fit statistic 
when using only replications where the one class model converged. (N = 72) 

  M SD Min Q1 MDN Q3 Max 

Information Criteria        

 AIC 16.01 26.55 0.00 0.00 0.00 26.53 81.70 

 BIC 47.42 47.27 0.00 0.00 37.62 100.00 100.00 

 CAIC 51.13 47.86 0.00 0.00 59.23 100.00 100.00 

 SABIC 35.40 44.00 0.00 0.00 0.00 90.62 100.00 

 SACAIC 40.20 47.13 0.00 0.00 0.80 100.00 100.00 

Classification        

 NEC 75.68 33.83 0.00 60.86 95.43 99.20 100.00 

 CLC 76.33 34.04 0.00 60.86 100.00 100.00 100.00 

 ICL-BIC 96.47 11.94 29.20 99.53 100.00 100.00 100.00 

Likelihood Ratio        

 BLRT* 30.67 44.42 0.00 0.00 0.00 89.80 99.20 

 LMR-LRT 54.14 37.23 0.00 19.30 51.84 92.56 100.00 

 aLMR-LRT 54.51 37.27 0.00 19.31 52.80 92.56 100.00 

*Statistics for the BLRT are from the conditions fitting normal distributions (n = 24). 
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percent correct one class identification distribution statistics are based on all replications. 

Table 10 shows that, as expected, all of the fit statistics, except the BLRT, performed 

better when using only the replications where the one class model converged. Notably, 

the mean of the ICL-BIC percent correct one class distribution was 96.47%. The 

distribution had a minimum of 29.20% and by the first quartile it was 99.53% correct. 

Additionally, as expected, the performance of the fit statistics relative to one another 

remained the same when examining only the replications where the one class model 

converged. For instance, on average the aLMR-LRT (M = 54.54%) and LMR-LRT (M = 

54.14%) outperformed the CAIC (M = 51.13%). However, at the median and third 

quartiles of their respective distributions the percent correct one class model 

identification was higher for the CAIC (Mdn = 59.23%, Q3 = 100.00%) than it was for 

either the aLMR-LRT (Mdn = 52.80%, Q3 = 92.56%) or the LMR-LRT (Mdn = 51.84%, 

Q3 = 92.56%). These results suggest that the CAIC is more consistent in its 

identification, or failure of identification, of the correct one class model on all of the 

replications within each condition. Examining the upper and lower ends of the percent 

correct true one class distributions for each of the fit statistics sheds greater light on how 

consistent the each fit statistic was in identifying, or failing to identify, the correct one 

class model on the replications within the conditions. 

Table 11 shows the percent and number of conditions at the levels of, 100% 

correct, 95% or greater correct, 5% or less correct, and 0% correct for each fit statistic 

when using only the replications where the one class model converged. As table 10 

shows, the ICL-BIC identified the correct one class model 100% of the time on all 

replications for 70.83% (n = 51) of the 72 analysis by data conditions. Additionally, it had 
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an accuracy 95% or greater for 88.89% (n = 64) of the analysis by data conditions. Of the 

remaining eight conditions, half were above 85% correct and the remaining four 

conditions were between 76.00% and 29.29% correct identification of the one class 

model. The other two classification based fit statistics – CLC and NEC - outperform 

Table 11. 
Percent and number of conditions in the upper and lower ends of the percent correct one class 
model distribution for each fit statistic when using only thee replications where the one class 
model converged.(N = 72) 

      100%     95% or greater      5% or less      0% 

  % n % n % n % n 

Information Criteria        

 AIC 0 0 0 0 66.67 48 55.56 40 

 BIC 36.10 26 40.28 29 44.44 32 38.89 28 

 CAIC 40.28 29 43.06 31 43.06 31 30.56 22 

 SABIC 13.89 10 25.00 18 54.17 39 51.39 37 

 SACAIC 26.39 19 34.72 25 54.17 39 47.22 34 

Classification         

 NEC 20.83 15 54.17 39 11.11 8 6.94 5 

 CLC 26.39 19 55.56 40 11.11 8 6.94 5 

 ICL-BIC 70.83 51 88.89 64 0 0 0 0 

Likelihood Ratio        

 BLRT* 0 0 16.67 4 66.67 16 58.33 14 

 LMR-LRT 8.33 6 20.83 15 15.28 11 2.78 2 

 aLMR-LRT 8.33 6 20.83 15 15.28 11 2.78 2 

*Statistics for the BLRT are from the conditions fitting normal distributions (n = 24). 
 

the information criteria and likelihood ratio test based fit statistics when looking at 95% 

or greater accuracy in identifying the correct one class model within the conditions. 
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However, with the exception of the SABIC and the AIC, the information criteria based fit 

statistics have an equal to or higher percent and number of conditions where they were 

100% accurate in identifying the correct one class model than either the CLC or the NEC. 

Additionally, the information criteria based fit statistics, with the exception of the AIC, 

had higher a percent and number of conditions in both the 100% and 95% or greater 

levels than did any of the likelihood ratio based statistics. However, at the other end of 

their respective distributions, with the exception of the BLRT, the information criteria 

based fit statistics had higher a percent and number of conditions in both the 5% or less 

and 0% levels than did any of the classification based or likelihood ratio based fit 

statistics. These results show that the information criteria fit statistics are more consistent 

in identifying, or failing to identify, the correct one class model across replications within 

a condition. Of course the other conditions influence the ability of the fit statistics to 

identify the correct one class model. When analyzing only the replications where the one 

class model converged, the skew and kurtosis condition accounted for the most variance 

(R2 = .236) in percent correct one class model identification after the fit statistic condition 

(R2 = .302). 

Skew and Kurtosis – Replications with One Class Model Convergence 

Table 12 shows the distribution of percent correct identification of the true one 

class model by the degree of data nonnormality when using only the replications where 

the one class model converged. It displays the mean, standard deviation, and five number 

summaries of the distribution of the percent correct true one class model for the three 

different levels of skew and kurtosis when using only the replications where the one class 
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model converged. The statistics in table 12 show that as the degree of skew and kurtosis 

increases, the identification of the true one class model decreases. As would be expected, 

since all of the one class models converged in the conditions with the skew and kurtosis 

level of 0.00:0.00, the distribution of the percent correct one class model is essentially 

identical whether using all replications or just replications where the one class model 

converged. However, using just the replications where the one class model converged did 

have an effect on the distribution 

Table 12. 
Distribution of percent correct identification of the true one class model by skew and 
kurtosis condition when using only the replications where the one class model converged. 
(N = 248) 

 M SD Min Q1 MDN Q3 Max 

0.00:0.00 86.42 26.50 0.00 87.60 99.20 100.00 100.00 

0.75:0.25 41.22 43.43 0.00 0.00 24.00 95.10 100.00 

1.00:1.00 34.71 40.72 0.00 0.00 9.00 80.00 100.00 

 

of the percent correct one class model identification in both the 0.75:0.25 level and the 

1.00:1.00 level of skew and kurtosis. At the 0.75:0.25 level the mean correct one class 

model distribution was 5.12% higher when using only the replications where the one 

class model converged. Additionally, although the minimum and the first quartile were 

the same, the median was 6.60% higher and the third quartile was 21.80% higher when 

using only the replications where the one class model converged. Similarly, at the 

1.00:1.00 level the mean correct one class model distribution was 9.37% higher when 

using only the replications where the one class model converged. Additionally, although 
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the minimum and the first quartile were the same, the median was 3.40% higher and the 

third quartile was 38.50% higher when using only the replications where the one class 

model converged. Overall, these results show that, although the effect is reduced, higher 

skew and kurtosis values inhibit the ability to identify a true one class model even under 

the condition that the one class model converged for the replications. Thus, nonnormality 

in the data decreases the probability of the fit statistics identifying the true one class 

model and increases the probability of the fit statistics identifying spurious classes. 

Examination of the fit statistics performance at the levels of skew and kurtosis 

revealed that for the conditions that examined simulated data with skew and kurtosis of 

0.00:0.00, only the ICL-BIC, the CAIC, and the BIC were 100% correct on all 

replications in the conditions. The next best performance was the SACAIC (98.78%), 

which is followed in order by the BLRT (91.90%), aLMR-LRT (91.20%), LMR-LRT 

(90.70%), SABIC (88.35%), CLC (80.05%), NEC (78.62%), and AIC (33.77%). In the 

conditions that examined data simulated at the 0.75:0.25 level of skew and kurtosis, none 

of the fit statistics were 100% accurate in identifying the correct one class model. 

However, the ICL-BIC was 100% correct on all replications in 18 of the 24 conditions. 

Its lowest percent correct was 98.25% on the A3C11 condition and it had an average of 

99.77% correct across all of the 24 conditions. The next best performance was the CLC 

with an average of 83.22% correct across all 24 conditions. The CLC was 100% correct 

on seven of the conditions and had a 95% or greater performance on an additional seven 

conditions. Examination of the remaining conditions with less than 95% accuracy, 

showed that all but one (A1C2) had eight variables and more than half had 500 cases. In 

the conditions that examined data simulated at the 1.00:1.00 level of skew and kurtosis, 
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none of the fit statistics were 100% accurate in identifying the correct one class model. 

However, the ICL-BIC was 100% correct on all replications in nine of the 24 conditions 

and had accuracy 95% or greater in an additional seven conditions. Its lowest percent 

correct was 29.20% on the A1C12 condition and it had an average of 89.63% correct 

across all of the 24 conditions. The next best performance was the CLC with an average 

of 65.47% correct across all 24 conditions. The CLC was 100% correct on seven of the 

conditions and had a 95% or greater performance on an additional four conditions at this 

level of data nonnormality. On over half of the conditions, the CLC had less than 95% 

accuracy. Of these 13 conditions, nine had eight variables and of the 13 condition, nine 

had 500 cases. Examining the eight conditions where the ICL-BIC was less than 95% 

accurate revealed that six had sample sizes of 500 cases and none of the conditions fit the 

skew t component distribution. This suggest that the analysis condition that could account 

for nonnormality is component distribution type, which is the third largest source of 

variation explaining the percent correct one class model when using just the replications 

where the one class model converged. 

Component Distributions – Replications with One Class Model Convergence 

Table 13 shows the distribution of percent correct identification of the true one 

class model by component distribution condition when using only the replications where 

the one class model converged. The table displays the mean, standard deviation, and five 

number summaries of the distribution of the percent correct true one class model for the 

three levels of the component distribution condition. The statistics in the table have been 

adjusted for no estimation of the BLRT in the nonnormal component distribution 
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conditions. The statistics in table 13 show that as the more the component distributions 

are allowed to vary their shape the identification of the true one class model increases. 

Since the one class model converged for all replications in the conditions that fit normally 

distributed components, the distribution statistics for the multivariate normal component 

distribution are the same as in table 7 where the percent correct one class identification 

distribution statistics are based on all replications. Table 13 shows that, as expected, when 

using only the replications where the correct one class model converged, the ability to 

identify the correct one class model improved for conditions that fit the multivariate skew 

normal and multivariate skew t component distributions. For instance, the mean for the 

multivariate skew normal distribution was 47.94% correct when using all replications, 

but the mean for the multivariate skew normal was 56.33% when using only the 

replications where the one class model converged. Similarly, the mean for the   

Table 13. 
Distribution of percent correct identification of the true one class model by distribution 
condition when using only replications where the one class model converged.* 

 M SD Min Q1 MDN Q3 Max 

Normal 41.78 44.15 0.00 0.00 20.00 95.20 100.00 

Skew 56.33 41.92 0.00 1.60 44.00 97.60 100.00 

Skew T 64.97 42.87 0.00 5.60 80.00 100.00 100.00 

*Statistics adjusted for no BLRT estimation in the nonnormal distribution conditions: 
normal (N = 264), skew and skew t (N = 240).  
 

multivariate skew t component distribution went from 59.80% correct to 64.97% correct 

when using only the replications where the one class model converged. Additionally, for 
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the multivariate skew normal components although the minimum was the same, the first 

quartile was 0.75%, the median was 26.80% higher and the third quartile was 1.55% 

higher when using only the replications where the one class model converged. Similarly, 

for the multivariate skew t component distributions although the minimum and the first 

quartile were the same, the median was 16.00% higher when using only the replications 

where the one class model converged. In both distributions – all replications and only 

replications where the one class model converged – the third quartile was 100.00%. 

Overall, these results show that allowing the component distributions to vary increases 

the ability of the fit statistics to identify a true one class model and that is enhanced under 

the condition that the one class model converged for the replications.  

Examination of the fit statistics performance when fitting different types of 

component distributions revealed that for the conditions that fit skew t component 

distributions, none were 100% correct on all replications in the conditions. However, the 

ICL-BIC was 100% correct on all replications in 21 of the 24 conditions and had 

accuracy 98% or greater in the other three conditions. Its lowest percent correct was 

98.40% on the A6C9 and A6C11 conditions and it had an average of 99.83% correct 

across all of the 24 conditions. The next best performance was the CLC with an average 

of 96.32% correct across all 24 conditions. The CLC was 100% correct on ten of the 

conditions and had a 95% or greater performance on an additional ten conditions when 

fitting multivariate skew t component distributions. In the conditions that fit multivariate 

skew normal components, none of the fit statistics were 100% accurate in identifying the 

correct one class model. However, the ICL-BIC was 100% correct on all replications in 

15 of the 24 conditions and had accuracy 95% or greater in an additional six conditions. 
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On the remaining three conditions it had accuracies of 91.24% (A4C3), 55.20% (A3C3), 

and 46.15% (A3C12) and it had an overall average of 95.00% correct across all of the 24 

conditions. The next best performance was the CLC with an average of 75.24% correct 

across all 24 conditions. The CLC was 100% correct on five of the conditions and had a 

95% or greater performance on an additional seven conditions. Notably, although the 

CAIC’s average accuracy (54.64%) was lower than the CLC, NEC (74.83%), aLMR-LRT 

(61.80%), and the LMR-LRT (61.50%), it had 100% correct accuracy on more conditions 

– nine – than any of those fit statistics and with a total of 10 conditions it trailed only the 

CLC and NEC, both with a total of 12 conditions, at the level of 95% or greater. In the 

conditions that fit multivariate normal component distributions, none of the fit statistics 

were 100% accurate in identifying the correct one class model. However, the ICL-BIC 

was 100% correct on all replications in 15 of the 24 conditions and had accuracy 95% or 

greater in an additional four conditions. Its lowest percent correct was 29.20% on the 

A1C12 condition and on the remaining four conditions it had accuracies of 92.80% 

(A1C3), 88.40% (A2C3), 85.20% (A1C9), and 76.00% (A1C12) and it had an overall 

average of 94.57% correct across all of the 24 conditions. The next best performances 

were the identically performing CLC and NEC with averages of 57.43% correct across all 

24 conditions. They were both 100% correct on four of the conditions and had a 95% or 

greater performance on an additional four conditions. Notably, although the CAIC 

(37.48%) and the BIC (35.60%) had average accuracies lower than the CLC, NEC, 

aLMR-LRT (43.77%), and the LMR-LRT (43.17%), they had 100% correct accuracy on 

more conditions – eight – than any of those fit statistics and they were tied with the CLC 

and NEC, eight total conditions, at the level of 95% or greater.  
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Overall, these results indicate that nonnormality, the type of component 

distribution, and choice of fit statistic all influence the identification of the correct model. 

The results show that even mild nonnormality in the data decreases the identification of 

the correct one class model and encourages the identification of spurious classes. 

Allowing the shape of the component distributions to vary increases the identification of 

the correct one class model and decreases the identification of spurious classes. However, 

the best method to increase the identification of the correct one class model and decrease 

the identification of spurious classes is the choice of fit statistic. The ICL-BIC 

outperformed all of the other fit statistics. On average, the other classification based fit 

statistics – CLC and NEC – outperformed the likelihood ratio based and information 

criteria based fit statistics. Also, on average, the likelihood ratio based aLMR-LRT and 

the LMR-LRT outperformed the information criteria based fit statistics. However, when 

comparing the number of conditions where the fit statistics had 100% accuracy, the 

information criteria based fit statistics, with the exception of the AIC, outperformed the 

likelihood ratio based fit statistics and, except for the AIC and the SABIC, they 

outperformed the classification based CLC and NEC. When comparing the number of 

conditions where the fit statistics had 95% or greater accuracy, the information criteria 

based fit statistics, with the exception of the AIC, outperformed the likelihood ratio based 

fit statistics, but they were outperformed the classification based CLC and NEC. This 

indicates that the information based statistics tend to me more consistent, whether correct 

or incorrect, across the replications within the data by analysis condition. 
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Chapter 5: Discussion 

Although, the study contained another analysis condition – type of component 

covariance matrices – and two other data conditions – sample size and number of 

variables – these conditions combined accounted for a relatively small amount of the 

variance in percent correct one class identification. Therefore, the results and the 

subsequent discussion focus on the three conditions that accounted for the majority of the 

variance in percent correct one class identification.  

The results indicate that the best method to increase the identification of the 

correct one class model and decrease the identification of spurious classes is the choice of 

fit statistic. However, nonnormality of the data and the type of component distribution 

also influence the identification of the correct model. The results showed that across all 

conditions the ICL-BIC outperformed all of the other fit statistics in identifying the 

correct one class model. Additionally, the results showed that even levels of mild 

nonnormality simulated in the data for this study decreases the identification of the 

correct one class model and encourages the identification of spurious classes. Further, 

allowing the shape of the component distributions to vary increases the identification of 

the correct one class model and decreases the identification of spurious classes. Since, in 

practice, a researcher would have the least control over the distribution of the data, the 

data condition of skew and kurtosis are discussed before proceeding to the analysis 

condition of type of component distribution. Further, since the fit statistics are the 
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evaluative tool for determining the model with the correct number of classes, much of the 

discussion regarding the fit statistics is interspersed within the discussion of the skew and 

kurtosis and type of component distribution conditions. 

Skew and Kurtosis 

 The levels of skew and kurtosis (skew:kurtosis) explored in this study were 

0.00:0.00, 0.75:0.25, and 1.00:1.00. As the results showed, across all other conditions, the 

greater the nonnormality in the data, the larger the failure rate was for identifying the 

correct model and, consequently, preference given for models with spurious classes.  In 

practice, when the data is normally distributed (0.00:0.00), there would be no 

distributional reason for a researcher to suspect that more than one class gave rise to the 

data (Bauer & Curran, 2003a). However, this level of skew and kurtosis was included as 

a baseline for the two levels of nonnormality. Theoretically it would be expected that, 

when given normal data, the fit statistics should prefer the one class model across all 

conditions on all replications. However, only the ICL-BIC, CAIC, and BIC met this 

100% correct across all replications within all conditions criterion. While the SACAIC 

(98.78%) was very close to meeting the criterion and the BLRT (91.90%), aLMR-LRT 

(91.20%), and LMR-LRT (90.70%) were all within 10% of the criterion, the SABIC 

(88.35%), CLC (80.05%), NEC (78.62%), and especially the AIC (33.77%) performed 

somewhat poorly at the level of skew and kurtosis where the one class model should be 

preferred as a matter of course. These results are similar to those that Bauer and Curran 

(2003a) found with a growth mixture model where the ICL-BIC, CAIC, and BIC all had 

perfect one class model identification and the AIC had similar poor performance. 
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However, the CLC and NEC had markedly better performance in Bauer and Curran 

(2003a) than in this study. It is unclear why this would occur, but it is likely that class 

assignment for individual cases becomes more definitive, and the error (entropy) 

becomes smaller, over five repeated measurements than when a single measurement is 

used as in this study. Additionally, Bauer and Curran used a method where an initial 

parameter estimate was used as a set of priors and then they used five random starts to try 

to avoid the problem of the likelihood function resolving on a local maximum. Using so 

few random starts may have been insufficient to avoid local maxima. This study used 500 

initial random starts with 20 final stage optimizations. If the likelihood function were to 

resolve on a local maximum, this would likely increase the separation between the 

modeled classes and, consequently, reduce the error in assigning cases to classes. The 

only other study that used normally distributed data, fit with normal component 

distributions, and a true one class condition was Peugh and Fan (2013). This study more 

closely matched the findings in the current study; however, the SACAIC was 100% 

correct versus 98.78% in this study and the CLC was 100% correct versus 80.05% in this 

study. Although it is unclear why this would occur, as in Bauer and Curran, Peugh and 

Fan used fewer random starts than in this study. Peugh and Fan used the default of 20 

initial random starts with 4 final stage optimizations for the one class model and doubled 

these values for the multiple class models.    

 When the first level of mild nonnormality as used to simulate the data, the 

average percent correct one class identification across all conditions was reduced by more 

than half – M = 86.42 at the 0.00:0.00 level and M = 41.22 at the 0.75:0.25 level. 

However, the effect was not consistent across the fit statistics. Across all replications in 
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18 out of 24 conditions the ICL-BIC was 100% correct and the next most accurate, the 

CLC, was 100% correct on seven conditions with 95% or greater accuracy on an 

additional seven conditions. The average percent correct identification for the ICL-BIC 

was 99.77% and its lowest percent correct was 98.25% on the A3C11 condition. The 

CLC had an average of 83.22% correct across all 24 conditions. Examination of the 

conditions where the CLC had less than 95% accuracy suggests that it may be better 

suited for data with fewer dimensions. 

 When the data was simulated to have skew = 1.00 and kurtosis = 1.00, the 

average percent correct one class identification went down – M = 34.71.  Once again the 

ICL-BIC outperformed all of the other statistics with an average accuracy of 89.63%. It 

was 100% correct on nine of the conditions and 95% or greater on an additional seven 

condition. The next best performance was the CLC with an average of 65.47% correct 

across all 24 conditions. The CLC was 100% correct on seven of the conditions and had a 

95% or greater performance on an additional four conditions. These results are 

considerably different than those found in Bauer and Curran (2003a) who also used a 

condition with skew = 1.00 and kurtosis = 1.00. In their study, the ICL-BIC, although still 

the best performer of the fit statistics they examined, failed to identify the correct one 

class model 91% of the time. The next best performing fit statistics – CLC and NEC – 

were almost 99% incorrect in their model selection. Of course, Bauer and Curran only fit 

normally distributed components. However, in this study, when examining only the 

conditions that fit normally distributed components, the ICL-BIC had an average percent 

correct one class model identification of 83.85% even though the condition where the 

ICL-BIC performed the worst (A1C12; 29.20% correct) fit normally distributed 
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components. Additionally, when examining only the conditions that fit normal 

components in this study the CLC had an average correct one class identification of 

46.05% and this includes three conditions where the CLC was less than one percent 

correct: A2C9, A1C9, and A1C12. Of these, the first two have 500 cases and the last one 

has 2000, the first has constrained covariance matrices and the second two unconstrained, 

and all three conditions have eight variables. It is unclear as to why the ICL-BIC, CLC, 

and NEC, which had an identical performance to the CLC, performed much better in this 

study. This could be due to the number of random starts used. Regardless of whether 

random starts and resolving on local maxima are responsible for the difference in the 

studies, the results in the current study agree that the amount of nonnormality in the data 

increases the identification of spurious classes; however, it does not appear that the 

nonnormality problem is as severe as previously reported. Nonetheless, recent 

improvements in statistical software have allowed for varying the shape of the component 

distributions that are fit in the model, which should mitigate the effect of data 

nonnormality on the identification of spurious classes. 

Component Distribution 

 The recent implementation of methods allowing for varying the shape of 

component distributions that are fitted to mixture models led Asparouhov and Muthen 

(2014) to assert that, "Spurious class formation due to non-normality and skewness will 

be eliminated" (p.6). The results of this study encourage partial credence to this rather 

strongly worded assertion. When multivariate skew normal and multivariate skew t 

component distributions where fit to the data, the average percent correct one class model 
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identification across all other conditions was higher than when multivariate normal 

component distributions were fit to the data. However, the identification of spurious 

classes was by no means eliminated. As with the effects of nonnormality in identifying 

spurious classes, it is important to consider the evaluative fit statistics in preventing the 

identification of spurious classes when nonnormal component distributions are fit to the 

data. 

 As with the nonnormality condition, the fit statistics that performed best were the 

classification based ICL-BIC and CLC. When multivariate skew normal components 

were fit to the data, the ICL-BIC was, on average, 95.00% correct in identifying the 

correct one class model and this average percent correct increased to 99.83% correct 

when multivariate skew t component distributions were fit to the data. The CLC had a 

similar, if somewhat less effective, performance with an average of 75.24% when 

multivariate skew normal component distributions were fit to the data and an average of 

96.32% when multivariate skew t components were fit to the data. These results, 

obviously, do not meet the strict criterion of elimination evoked by Asparouhov and 

Muthen (2014, p.6). However, these authors probably intended a less strict criterion of 

the elimination of the identification of spurious classes due to nonnormality within a 

reasonable statistical probability. Using this criterion, on average across all conditions, 

the ICL-BIC has a five percent error rate when multivariate skew normal components are 

fit to the data and less than one percent error when the multivariate skew t component 

distributions are fit to the data. Although the CLC had an unacceptably high error rate of 

almost 25% when multivariate skew normal components were fit to the data, its error rate 

was less than five percent when multivariate skew t component distributions were fit to 
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the data. In practice, given the improvement in correct model identification when 

multivariate skew normal and, more acutely, when multivariate skew t component 

distributions are fit to the data, one or the other, if not both, of the nonnormal types of 

component distribution should be fit to the data.  

Fitting nonnormal component distributions requires the assumption that the 

classes within an overall distribution should have a nonnormal distribution. In the social 

sciences, and in particular education, there are variables such as test scores and response 

times where nonnormality is a common occurrence (Keats & Lord, 1962). If a variable 

has, or is expected to have, a population nonnormal distribution, then it is not 

unwarranted to assume that subpopulations – classes within the population – will share 

the nonnormal quality. Of course, another consideration is the additional computation 

time required to estimate models fitting nonnormal components. The computation time 

associated with fitting nonnormal component distributions increases dramatically 

depending on the type of component distribution and the complexity of the model. For 

instance, frequently in this study, fitting a single four class model with multivariate skew 

t component distributions required in excess of eight hours of computation time. In 

practice, while the additional computation time is inconvenient, it is a small sacrifice for 

accurate research results. After all, if Pearson (1894) had the patience to calculate a ninth 

order polynomial by hand, we can certainly leave a computer running overnight to obtain 

accurate fit statistics. 

Fit Statistics        
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Across all analysis and data conditions the ICL-BIC was the most accurate fit 

statistic in identifying the correct one class mode. This finding is consistent with all four 

of the fit statistic efficacy studies that included the ICL-BIC (McLachlan & Ng, 2000; 

Bauer & Curran, 2003a, Henson, Reise, & Kim, 2007; Peugh & Fan, 2013). Additionally, 

in three of these studies, the CLC performed equal to the ICL-BIC and in Bauer and 

Curran (2003a), except for one condition where the two fit statistics performed equally, 

the CLC was the second best performing fit statistic, as it was in this study. Of the four 

studies, only Bauer and Curran (2003a) and Peugh and Fan (2013) examined a true one 

class condition and fit only normally distributed components and Peugh and Fan did not 

examine data nonnormality in the true one class condition. Nonetheless, as noted earlier 

the CLC performed better in the Peugh and Fan study on the one analysis by data 

condition it shared with this study. The remaining classification fit statistic – NEC – was 

not examined for the true one class condition in Peugh and Fan. In the Bauer and Curran 

study, the NEC had identical performance as the CLC and this equal performance was 

mirrored in this study in the conditions the two studies shared. Of course, as noted earlier, 

the performance of the CLC and NEC were not as good in this study. Regardless, this 

study is consistent with previous research that supports the use of classification fit 

statistics in identifying the correct model. 

The results of this study also show that, across all data by analysis conditions, on 

average the classification fit statistics performed better than the likelihood ratio and 

information criteria fit statistics. This finding concurs with findings in Henson, Reise, and 

Kim (2007) and Peugh and Fan (2013), which are the only other studies that also 

included fit statistics from all three general types of fit statistics. However, Henson, 
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Reise, and Kim investigated a true two class model in a SEM context while Peugh and 

Fan only employed the likelihood ratio based fit statistics in evaluating a true three class 

model. Additionally, Henson, Reise, and Kim was the only fit statistic efficacy study that 

compared the LMR-LRT to its adjusted form the aLMR-LRT. They found that the two fit 

statistics performed identically. However, in this study, although the two were similar in 

performance, the aLMR-LRT slightly outperformed its unadjusted form in line with the 

original expectations when they were first proposed (Lo, Mendell, & Rubin, 2001). The 

last and poorest performing likelihood ratio statistic was the BLRT. In fact, the only 

conditions where the BLRT performed reasonably well in identifying the true one class 

model were the ones that had normally distributed data (skew = 0 and kurtosis = 0); 

conditions where, in practice, there would be no reason to suspect a mixture of classes. 

The poor performance of the BLRT echoes the findings in Peugh and Fan (2013) when 

they examined a true three class model; they did not use the statistic in the true one class 

condition. The findings regarding the BLRT were considerably different in Nylund, 

Asparouhov, & Muthén (2007) where the fit statistic outperformed all of the other fit 

statistics in many of the conditions. However, these authors constrained the fitted class 

sizes and no such constraints were used in this study. On average, with the exception of 

the BLRT, the likelihood ratio based statistics outperformed the information criteria based 

fit statistics. However, when considering the number of conditions where the two types fit 

statistics had 95% or greater accuracy in identifying the correct one class model, all of the 

information criteria fit statistics, with the exception of the AIC, outperformed the 

likelihood ratio fit statistics. However, at the other end of their respective distributions, 

with the exception of the BLRT, the information criteria based fit statistics had higher a 
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percent and number of conditions in both the 5% or less and 0% levels than did any of the 

likelihood ratio based fit statistics. These results show that the information criteria fit 

statistics are more consistent in identifying, or failing to identify, the correct one class 

model across replications within analysis by data conditions. When looking of the 

relative performance of the information criteria fit statistics compared to one another, the 

best performing fit statistic was the CAIC followed by the BIC, SACAIC, SABIC, and 

the AIC. However, it should be noted that the best performing information criteria fit 

statistic – CAIC – had an average 51.13% correct one class model identification across 

all analysis by data conditions. This is somewhat mitigated by the fact that in 43.06% or 

31 of the 72 analysis by data conditions the CAIC had a 95% or greater accuracy in 

identifying the correct one class model. 

Conclusions 

 Not surprisingly, in a study with a true one class model, the most conservative fit 

statistics within each of the general fit statistic types, ICL-BIC, aLMT-LRT, and CAIC 

were the best performers in their categories. However, when the number of classes was 

greater than one, the most conservative fit statistic in the entire study – the ICL-BIC – has 

been found to underestimate the true number of classes (Puegh & Fan, 2013), while 

others have shown it to be the most effective in identifying the correct model (McLachlan 

& Ng, 2000; Henson, Reise, & Kim, 2007). Regardless, in practice, when faced with a 

nonnormal distribution where one might suspect that the distribution is actually a mixture 

of latent classes, the null hypothesis should be that the distribution is really a one class 

distribution. When the one class model is the null hypothesis, the best statistical defense 
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against a type one error is the most conservative fit statistic. Of course statistical 

protection against a type one error can lead to making a type two error; failing to reject 

the one class model when the distribution is really made up of two or more classes. 

Therefore, a researcher would want to consider a more liberal fit statistic to help avoid a 

type two error. Additionally, consistency is a desirable quality for reproducibility. 

Therefore, a recommendation for applied use of the results of this study is the adoption of 

a practice commonly used in other latent variable modeling – the use of multiple fit 

statistics in evaluating competing models. The process would use the ICL-BIC, aLMR-

LRT, and the BIC. The reason for selecting the BIC instead of the slightly more 

conservative CAIC is that, in this study, their performances were similar, the BIC has the 

consistent quality, and it is already a part of the Mplus output. While the aLMR-LRT is 

easily obtainable by requesting the TECH 11 output, Mplus does not calculate the ICL-

BIC. Therefore, the process would be to run the competing models; for instance a one 

class versus a two class model. If the BIC prefers the one class model to the two class 

model and the p value of the aLMR-LRT is greater than .05, then the one class model is 

statistically the best model. However, if the BIC prefers the two class model and the p 

value of the aLMR-LRT is close to .05, then the ICL-BIC can be calculated by converting 

the relative entropy reported in the Mplus output to entropy using equation 3.2 and 

adding this value to the BIC of the two class model. The ICL-BIC from the two class 

model is then compared to the BIC from the one class model. There is no calculation for 

the one class model because the error associated with class assignment is zero when there 

is only one class. Therefore, the entropy penalty drops away and in a one class model the 

ICL-BIC equals the BIC. Essentially, this tests whether the improvement in model fit to 
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the data when adding an additional class is sufficient to overcome the error associated 

with assigning cases to classes. Of course, as this study shows, allowing the component 

distributions to vary their shape increases the ability of the fit statistics to identify the 

correct one class model when the components are fit to a nonnormal distribution. 

Therefore, in practice, multiple sets of models with different types of component 

distributions should be fit.  

Models fitted with nonnormal component distributions will require fewer classes 

to model the data, but they also require considerably more computation time than models 

fit with normal component distributions. So, the process of fitting models with different 

types of component distributions begins with finding the best fitting model with normally 

distributed components. Then fit the nonnormal components model beginning with one 

fewer class than the result from the normal components modeling. The ICL-BIC and BIC 

can be used for the comparison between the models using different types of components; 

however, the aLMR-LRT is only appropriate for testing models within component types. 

If the fit statistics indicate a better fit for the nonnormal component model with one less 

class than the normal component model, then nonnormal component models are 

subsequently fit while reducing the number of classes one at a time until the best fitting 

model is found. 

Of course, while it was not practical to evaluate them in this study, in practice, 

statistics such as the separation of class means and the proportion of cases in each class 

are important considerations in determining whether the preferred solution makes 

theoretical sense. While improvements such as nonnormal component modeling have 
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brought us closer, to Pearson’s (1895) belief that a definitive statistical solution will be 

found for identifying the true number of classes in a distribution, this has yet to be 

achieved. Therefore, the overarching consideration in finite mixture modeling, as in other 

statistical modeling, remains and must be that the solution makes theoretical sense. 

Limitations and Future Research 

This study focused on the identification of a one class model versus models with 

two through four classes. It did not examine the degree of inaccuracy in identifying the 

correct model. For this, one would need to examine which model was preferred by the fit 

statistics rather than whether the fit statistics identified the correct model. A study of this 

nature would require fitting models with even more classes (e.g. six) than the number 

used in this study. Given the failure of convergence in some of the conditions in this 

study, a study fitting even more classes would require using even more random starts to 

encourage convergence, which would considerably increase the computation time 

required. Additionally, this study did not examine a condition where the correct model 

had more than one class. The only research examining conditions where the correct 

model had more than one class and fit models using nonnormal components, appear to be 

the studies introducing the implementation of the nonnormal component strategy 

(Asparouhov & Muthén, 2014; Lee & McLachlan, 2014; Muthén & Asparouhov, 2015). 

Therefore, future studies are needed to assess the effectiveness of nonnormal component 

distributions when the correct model is two or more classes. Further, as noted above, this 

study made no attempt to evaluate other statistical considerations such as the separation 

of class means and the proportion or number of cases in the classes. Future studies could 
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constrain acceptable solutions to those where the smallest class size contains an 

acceptable proportion or number of cases from the overall distribution for additional 

descriptive and simple statistical evaluations such as effect size evaluations of class mean 

differences. One final limitation is that throughout the analysis, as would be expected, the 

best log likelihood estimated by the EM algorithm was used on the models that 

converged. However, the individual models were not checked to ensure that the best log 

likelihood had been replicated through the random starts process. Therefore, there is no 

guarantee that every analysis converged to a global maximum.       
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Simulation Check Tables 

Table A1.  
Simulation check: Skewness in the four variable conditions. 
  Mdn M S Min Max 
N = 500 V1 0.00644 -0.00137 0.10657 -0.29189 0.26107 
Sk = 0.0 V2 0.00060 0.00253 0.11347 -0.38010 0.36509 
 V3 0.00264 0.00344 0.10304 -0.23825 0.36516 
 V4 0.00953 0.00195 0.10795 -0.30493 0.34742 
       
N = 500 V1 0.73953 0.74060 0.10639 0.44158 1.13850 
Sk = 0.75 V2 0.74261 0.75437 0.09408 0.49671 1.01562 
 V3 0.73908 0.74119 0.09237 0.52514 0.96335 
 V4 0.74332 0.74692 0.10233 0.48105 1.00232 
       
N = 500 V1 0.98100 0.98367 0.12876 0.66029 1.40420 
Sk = 1.0 V2 0.96638 0.97467 0.13216 0.64863 1.47419 
 V3 0.99071 0.99196 0.14340 0.66095 1.40980 
 V4 0.98430 0.98865 0.13159 0.69428 1.42614 
       
N = 2000 V1 -0.00722 -0.00672 0.05406 -0.18082 0.14364 
Sk = 0.0 V2 -0.00199 0.00091 0.05629 -0.16138 0.16827 
 V3 -0.00113 -0.00488 0.05486 -0.16965 0.13413 
 V4 -0.00930 -0.00620 0.05508 -0.15932 0.18076 
       
N = 2000 V1 0.74983 0.75014 0.05126 0.60617 0.87871 
Sk = 0.75 V2 0.75119 0.75061 0.05037 0.61638 0.90514 
 V3 0.75033 0.75032 0.04958 0.62396 0.87645 
 V4 0.74522 0.74807 0.05332 0.61225 0.93346 
       
N = 2000 V1 1.00185 0.99943 0.06630 0.81436 1.18227 
Sk = 1.0 V2 0.99841 1.00031 0.06700 0.81480 1.19638 
 V3 0.99640 0.99295 0.06817 0.83381 1.21450 
 V4 0.99236 0.99776 0.07090 0.80722 1.22962 
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Table A2.  
Simulation check: Kurtosis in the four variable conditions. 
  Mdn M S Min Max 
N = 500 V1 -0.03089 -0.02333 0.21157 -0.44070 0.84217 
Ku = 0.0 V2 -0.06099 -0.02820 0.20698 -0.43140 0.57475 
 V3 -0.03614 -0.01380 0.21716 -0.48677 0.85028 
 V4 -0.02956 -0.01812 0.21098 -0.44395 0.67821 
       
N = 500 V1 0.21549 0.24205 0.36890 -0.56489 1.92669 
Ku = 0.25 V2 0.21566 0.24731 0.32318 -0.52291 1.19469 
 V3 0.17656 0.22441 0.33178 -0.37962 1.38604 
 V4 0.19477 0.22670 0.32919 -0.56665 1.21531 
       
N = 500 V1 0.84701 0.91864 0.60345 -0.24797 3.78106 
Ku = 1.0 V2 0.77981 0.90251 0.57907 -0.18802 3.46289 
 V3 0.88123 0.97542 0.63828 -0.28707 3.40701 
 V4 0.86219 0.96084 0.61411 -0.24886 3.06473 
       
N = 2000 V1 -0.01297 -0.00859 0.09588 -0.24852 0.30156 
Ku = 0.0 V2 -0.02093 -0.01643 0.10160 -0.27496 0.30661 
 V3 -0.00064 -0.00277 0.10527 -0.28499 0.37057 
 V4 -0.01007 -0.00799 0.11166 -0.30247 0.38176 
       
N = 2000 V1 0.25147 0.25769 0.17396 -0.10263 0.85750 
Ku = 0.25 V2 0.23244 0.25340 0.17820 -0.19586 0.78112 
 V3 0.24449 0.24836 0.15525 -0.20309 0.63270 
 V4 0.22951 0.24903 0.17320 -0.12256 0.82839 
       
N = 2000 V1 0.98457 1.00692 0.31730 0.25870 2.27317 
Ku = 1.0 V2 0.97874 1.00174 0.30906 0.29825 2.00747 
 V3 0.95042 0.96975 0.31621 0.26938 1.85086 
 V4 0.94300 0.99070 0.34439 0.25778 2.22627 
Note: Bold type indicates statistic > 0.05 off target value. 
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Table A3.  
Simulation check: Skewness in the eight variable conditions with N = 500. 
  Mdn M S Min Max 
N = 500 V1 0.00548 0.00335 0.09489 -0.24453 0.27916 
Sk = 0.0 V2 -0.00971 -0.00579 0.10549 -0.33679 0.30212 
 V3 0.00898 0.01018 0.10259 -0.23419 0.31412 
 V4 0.00775 -0.00036 0.09776 -0.25336 0.26703 
 V5 -0.00126 0.00031 0.10282 -0.33431 0.27399 
 V6 0.00282 -0.00436 0.11376 -0.29371 0.28410 
 V7 -0.00285 0.00010 0.11644 -0.30165 0.28414 
 V8 0.00105 -0.00383 0.11343 -0.41642 0.26385 
       
N = 500 V1 0.73244 0.73618 0.10022 0.48151 1.01718 
Sk = 0.75 V2 0.73651 0.74032 0.10150 0.49554 1.03844 
 V3 0.74046 0.74761 0.10328 0.46291 1.12954 
 V4 0.74302 0.74406 0.09837 0.46913 1.03550 
 V5 0.72665 0.73413 0.10525 0.48845 1.02412 
 V6 0.74350 0.74911 0.10698 0.51163 1.06781 
 V7 0.74918 0.74864 0.10634 0.41320 1.08194 
 V8 0.74914 0.74369 0.09853 0.48491 1.07711 
       
N = 500 V1 0.98519 0.99363 0.13605 0.64779 1.45310 
Sk = 1.0 V2 0.96941 0.98005 0.12914 0.65074 1.34027 
 V3 0.96399 0.99196 0.14653 0.70919 1.45468 
 V4 0.96934 0.98402 0.13154 0.61147 1.43791 
 V5 0.97025 0.98582 0.13756 0.67751 1.47500 
 V6 0.99039 1.00235 0.14033 0.59925 1.54492 
 V7 0.97984 0.98059 0.13708 0.66531 1.46756 
 V8 0.98299 0.98589 0.12559 0.64247 1.41921 
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Table A4.  
Simulation check: Skewness in the eight variable conditions with N = 2000. 
  Mdn M S Min Max 
N = 2000 V1 0.00651 0.00287 0.05559 -0.13933 0.14273 
Sk = 0.0 V2 0.00105 0.00064 0.05563 -0.16832 0.13769 
 V3 0.00479 0.00419 0.05462 -0.14363 0.16518 
 V4 -0.00148 -0.00063 0.05462 -0.13359 0.13690 
 V5 -0.00107 -0.00144 0.05498 -0.16254 0.13922 
 V6 0.00486 0.00477 0.05556 -0.13159 0.16482 
 V7 0.00339 0.00022 0.05378 -0.11930 0.17532 
 V8 0.00860 0.00340 0.05441 -0.13595 0.15083 
       
N = 2000 V1 0.74580 0.74950 0.05141 0.62824 0.94845 
Sk = 0.75 V2 0.75448 0.75074 0.05214 0.57566 0.89710 
 V3 0.74800 0.74923 0.05391 0.62960 0.91133 
 V4 0.75390 0.75254 0.05152 0.62262 0.89305 
 V5 0.75292 0.75195 0.04984 0.59810 0.89295 
 V6 0.74992 0.75142 0.05381 0.60296 0.92688 
 V7 0.74951 0.74875 0.05122 0.60383 0.93427 
 V8 0.74690 0.75422 0.05040 0.63447 0.89189 
       
N = 2000 V1 0.99038 0.99649 0.06439 0.83977 1.17789 
Sk = 1.0 V2 1.00692 1.00499 0.06593 0.82900 1.18326 
 V3 1.00540 0.99971 0.06894 0.82974 1.18321 
 V4 0.99247 1.00226 0.06883 0.83443 1.18687 
 V5 0.99673 0.99806 0.06970 0.80678 1.18390 
 V6 0.99708 0.99562 0.06608 0.81898 1.16767 
 V7 0.99381 0.99618 0.06885 0.77883 1.26226 
 V8 0.99568 0.99932 0.07243 0.81685 1.19381 
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Table A5.  
Simulation check: Kurtosis in the eight variable conditions with N = 500. 
  Mdn M S Min Max 
N = 500 V1 -0.04248 -0.02059 0.20719 -0.51923 0.68186 
Ku = 0.0 V2 -0.03424 -0.00649 0.22912 -0.44216 0.73864 
 V3 -0.04834 -0.01141 0.22609 -0.41747 0.89718 
 V4 -0.01830 -0.00078 0.21281 -0.44111 0.57241 
 V5 -0.06954 -0.04587 0.20831 -0.47273 0.86098 
 V6 -0.02345 -0.00278 0.20760 -0.46639 0.64372 
 V7 -0.02129 -0.02095 0.20905 -0.53902 0.73668 
 V8 -0.01256 0.00555 0.22722 -0.49556 1.40011 
       
N = 500 V1 0.17566 0.20923 0.35297 -0.56870 1.35814 
Ku = 0.25 V2 0.20421 0.22088 0.31514 -0.40291 1.28213 
 V3 0.23026 0.25157 0.35782 -0.61434 1.71316 
 V4 0.18206 0.21606 0.31582 -0.57369 1.33482 
 V5 0.16688 0.19748 0.34172 -0.46256 1.73070 
 V6 0.18778 0.25912 0.38415 -0.49270 1.57075 
 V7 0.22823 0.23651 0.35479 -0.61093 1.62997 
 V8 0.19894 0.21899 0.32578 -0.48039 1.23943 
       
N = 500 V1 0.86363 0.96638 0.65438 -0.23057 3.8159 
Ku = 1.0 V2 0.87953 0.92066 0.57419 -0.24452 3.37294 
 V3 0.87283 0.96506 0.69388 -0.28591 3.87444 
 V4 0.84127 0.91316 0.60465 -0.08148 3.28883 
 V5 0.76797 0.90548 0.60655 -0.16215 2.81700 
 V6 0.92373 1.00698 0.63354 -0.17598 4.50836 
 V7 0.83015 0.91622 0.62208 -0.26429 3.40547 
 V8 0.87489 0.94223 0.57927 -0.21917 3.38764 
Note: Bold type indicates statistic > 0.05 off target value. 
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Table A6.  
Simulation check: Kurtosis in the eight variable conditions with N = 2000. 
  Mdn M S Min Max 
N = 2000 V1 -0.00903 -0.00585 0.09905 -0.24831 0.40077 
Ku = 0.0 V2 -0.00879 -0.00656 0.11506 -0.32764 0.36475 
 V3 0.00062 0.00305 0.11189 -0.26778 0.33758 
 V4 -0.01940 -0.01180 0.10966 -0.23555 0.33580 
 V5 -0.02061 -0.01027 0.11084 -0.26865 0.28535 
 V6 -0.02538 -0.00463 0.10824 -0.21832 0.61508 
 V7 -0.01626 -0.01343 0.10393 -0.29327 0.36824 
 V8 -0.01426 -0.01121 0.10388 -0.27410 0.26942 
       
N = 2000 V1 0.24433 0.25345 0.17424 -0.15167 0.94410 
Ku = 0.25 V2 0.23291 0.24347 0.17086 -0.24758 0.77270 
 V3 0.23572 0.24920 0.17630 -0.13273 0.95334 
 V4 0.25340 0.26416 0.18071 -0.20812 0.82448 
 V5 0.26169 0.26290 0.16867 -0.30199 0.73563 
 V6 0.22248 0.24538 0.18851 -0.12717 0.85507 
 V7 0.24164 0.24802 0.17777 -0.16254 0.99996 
 V8 0.25726 0.26532 0.18111 -0.14083 0.81751 
       
N = 2000 V1 0.95380 0.99232 0.30156 0.33886 1.92922 
Ku = 1.0 V2 1.02156 1.03083 0.31224 0.18418 2.20004 
 V3 0.97500 0.99814 0.32548 0.27436 1.85370 
 V4 0.96475 1.00803 0.32506 0.29719 2.16480 
 V5 0.97006 1.00167 0.34250 0.29317 2.46093 
 V6 0.97167 0.98398 0.29466 0.22910 1.94187 
 V7 0.95194 0.99403 0.32783 0.18680 2.74306 
 V8 0.98858 1.02766 0.35681 0.25557 2.48759 
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Comparison of Simulation Methods 

Table A7. 
Comparison of simulation methods for skewness target value 1.00.  
  Headrick (2002)  Vale & Maurelli (1983) 
  Mdn M S  Mdn M S 
Reps = 1000, N = 10000     
 V1 0.99814 0.99990 0.03722  0.99815 0.99998 0.03002 
 V2 0.99865 0.99995 0.03733  1.00008 0.99986 0.03011 
 V3 0.99790 0.99931 0.04080  0.99939 0.99919 0.03061 
 V4 0.99858 1.00053 0.03757  0.99828 0.99907 0.03004 
Reps = 1000, N = 2000     
 V1 0.99120 0.99769 0.07653  0.99168 0.99300 0.06493 
 V2 0.99144 0.99805 0.08425  0.99597 0.99596 0.06905 
 V3 0.99596 1.00161 0.07747  0.99337 0.99679 0.06795 
 V4 1.00111 1.00408 0.08164  0.99437 0.99710 0.06754 
Reps = 1000, N = 500     
 V1 0.97329 0.98760 0.14134  0.97870 0.98763 0.13291 
 V2 0.97711 0.98988 0.14381  0.98623 0.99521 0.13267 
 V3 0.96312 0.97821 0.13937  0.98519 0.99168 0.13879 
 V4 0.96634 0.98685 0.14913  0.98237 0.98989 0.13660 
Reps = 250, N = 2000     
 V1 1.00014 1.00867 0.08494  0.99225 0.99199 0.06969 
 V2 0.98852 0.99073 0.07269  0.98900 0.99487 0.06804 
 V3 1.00353 1.00709 0.08031  1.00163 0.99590 0.06783 
 V4 0.99816 0.99864 0.08458  0.99160 0.99749 0.06952 
Reps = 250, N = 500     
 V1 0.96702 0.98621 0.14403  0.97623 0.98309 0.13490 
 V2 0.95059 0.98032 0.15687  0.99965 0.99735 0.12848 
 V3 0.96172 0.96781 0.14040  0.99140 0.99793 0.13019 
 V4 0.94287 0.96921 0.15181  0.98553 0.99292 0.13648 
Note: bold type indicates statistic across methods closest to target and arrow indicates 
which method the mean is closest to median.  
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Table A8. 
Comparison of simulation methods for kurtosis target value 1.00. 
  Headrick (2002)  Vale & Maurelli (1983) 
  Mdn M S  Mdn M S 
Reps = 1000, N = 10000     
 V1 0.96883 1.00296 0.26149  0.98776 1.00135 0.14265 
 V2 0.95932 0.99104 0.22860  0.99259 1.00362 0.14122 
 V3 0.97049 1.00656 0.32501  0.98873 0.99671 0.14367 
 V4 0.96699 0.99820 0.25211  0.98685 0.99538 0.13841 
Reps = 1000, N = 2000     
 V1 0.89887 0.98216 0.47072  0.93310 0.96717 0.31247 
 V2 0.90301 0.98871 0.56669  0.95423 0.98104 0.32221 
 V3 0.90776 0.99609 0.46704  0.94956 0.98890 0.32947 
 V4 0.93723 1.01701 0.50987  0.95290 0.97842 0.31750 
Reps = 1000, N = 500     
 V1 0.76645 0.92531 0.73834  0.84957 0.94422 0.60829 
 V2 0.80317 0.91963 0.72645  0.88533 0.97293 0.61459 
 V3 0.75101 0.86159 0.69739  0.87205 0.97052 0.62977 
 V4 0.74186 0.92510 0.87262  0.83992 0.95750 0.64371 
Reps = 250, N = 2000     
 V1 0.95145 1.04945 0.54738  0.95384 0.96828 0.31665 
 V2 0.89255 0.94492 0.40937  0.91029 0.98352 0.31898 
 V3 0.94216 1.02231 0.47682  0.95882 0.97415 0.31814 
 V4 0.90128 1.00822 0.63977  0.94488 0.98815 0.34080 
Reps = 250, N = 500     
 V1 0.73625 0.94205 0.77557  0.83105 0.93639 0.67230 
 V2 0.69213 0.91904 0.93673  0.93256 0.97855 0.56160 
 V3 0.76285 0.85326 0.67843  0.94409 0.99338 0.60115 
 V4 0.62883 0.85229 0.84522  0.85431 0.99365 0.64878 
Note: bold type indicates statistic across methods closest to target and arrow indicates 
which method the mean is closest to median. 
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Simulation Code: R Syntax for Headrick (2002) 

#Code adapted from link in Astivia and Zumbo (2014) A cautionary note on the use of the Vale and Maurelli 
 #method to generate multivariate, nonnormal data for simulation purposes. Educational and Psychological  
 #Measurement, 1-17. DOI: 10.1177/0013164414548894 
 
 #https://psychometroscar.wordpress.com/headricks-5thorder-polynomial-method/ 
 
 #https://raw.githubusercontent.com/OscarOlvera/R-code-for-publications/master/Headrick02.md 
############################################################################################################
### 
 
f_skew <- function(x){ 
   
  sd.x <- sd(x) 
  mu3.x <- mean((x-mean(x))^3) 
  mu3.x/sd.x^3 
   
} 
 
f_kurt <- function(x){ 
   
  sd.x <- sd(x) 
  mu4 <- mean((x-mean(x))^4) 
  mu4/sd.x^4 - 3 
   
} 
 
 
f_gamma3 <- function(x){ 
  sd.x <- sd(x) 
  mu3 <- mean((x-mean(x))^3) 
  mu5 <- mean((x-mean(x))^5) 
  mu5/sd.x^5-10*mu3/sd.x^3 
} 
 
f_gamma4 <- function(x){ 
  sd.x <- sd(x) 
  mu3 <- mean((x-mean(x))^3) 
  mu4 <- mean((x-mean(x))^4) 
  mu6 <- mean((x-mean(x))^6) 
  mu6/sd.x^6-15*mu4/sd.x^4 + 45-10*mu3^2/sd.x^3-15 
} 
 
headrick02.poly.coeff <- function(skewness, kurtosis, gam3, gam4, control = list(trace = T, max.ntry = 10, obj.tol = 1e-10, n.valid.sol 
= 2)){ 
   
  gam1 <- skewness 
  gam2 <- kurtosis 
   
  gam <- c(gam1, gam2, gam3, gam4) 
   
  obj.fun <- function(x, gam){ 
     
    if(length(x) != 6){ 
      stop("coefficients of fifth-order polynomial should be length-six") 
    } 
     
    c0 <- x[1] 
    c1 <- x[2] 
    c2 <- x[3] 
    c3 <- x[4] 
    c4 <- x[5] 
    c5 <- x[6] 
     
    gam1 <- gam[1] 
    gam2 <- gam[2] 
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    gam3 <- gam[3] 
    gam4 <- gam[4] 
     
    eq.18 <- 0 + c0 + c2 + 3 * c4 
    eq.22 <- -1 + c1^2 + 2 * c2^2 + 24 * c2 * c4 +  
      6 * c1 * (c3 + 5 * c5) +  
      3 * (5 * c3^2 + 32 * c4^2 + 70 * c3 * c5 + 315 * c5^2) 
     
    eq.B1 <- -gam1 + 2 * ( 
      4 * c2^3 + 108 * c2^2 * c4 + 3 * c1^2 * (c2 + 6 * c4) +  
        18 * c1 * (2 * c2 * c3 + 16 * c3 * c4 + 15 * c2 * c5 + 150 * c4 * c5) +  
        9 * c2 * (15 * c3^2 + 128 * c4^2 + 280 * c3 * c5 + 1575 * c5^2) + 
        54 * c4 * (25 * c3^2 + 88 * c4^2 + 560 * c3 * c5 + 3675 * c5^2) 
      ) 
    eq.B2 <- -gam2 + 24 * ( 
      2 * c2^4 + 96 * c2^3 * c4 + c1^3 * (c3 + 10 * c5) +  
        30 * c2^2 * (6 * c3^2 + 64 * c4^2 + 140 * c3 * c5 + 945 * c5^2) + 
        c1^2 * (2 * c2^2 + 18 * c3^2 + 36 * c2 * c4 + 192 * c4^2 + 375 * c3 * c5 + 2250 * c5^2) +  
        36 * c2 * c4 * (125 * c3^2 + 528 * c4^2 + 3360 * c3 * c5 + 25725 * c5^2) +  
        3 * c1 * (45 * c3^3 + 1584 * c3 * c4^2 + 1590 * c3^2 * c5 + 21360 * c4^2 * c5 + 21525 * c3 * c5^2 +  
                    110250 * c5^3 + 12 * c2^2 * (c3 + 10 * c5) + 8 * c2 * c4 * (32 * c3 + 375 * c5)) +  
        9 * (45 * c3^4 + 8704 * c4^4 + 2415 * c3^3 * c5 + 932400 * c4^2 * c5^2 + 3018750 * c5^4 +  
               20 * c3^2 * (178 * c4^2 + 2765 * c5^2) + 35 * c3 * (3104 * c4^2 * c5 + 18075 * c5^3)) 
      ) 
    eq.B3 <- -gam3 + 24 * ( 
      16 * c2^5 + 5 * c1^4 * c4 + 1200 * c2^4 * c4 + 10 * c1^3 * (3 * c2 * c3 + 42 * c3 * c4 + 40 * c2 * c5 + 570 * c4 * c5) +  
        300 * c2^3 * (10 * c3^2 + 128 * c4^2 + 280 * c3 * c5 + 2205 * c5^2) +  
        1080 * c2^2 * c4 * (125 * c3^2 + 3920 * c3 * c5 + 28 * (22 * c4^2 + 1225 * c5^2)) +  
        10 * c1^2 * (2 * c2^3 + 72 * c2^2 * c4 + 3 * c2 * (24 * c3^2 + 320 * c4^2 + 625 * c3 * c5 + 4500 * c5^2) +  
                       9 * c4 * (109 * c3^2 + 528 * c4^2 + 3130 * c3 * c5 + 24975 * c5^2)) +  
        30 * c1 * (8 * c2^3 * (2 * c3 + 25 * c5) + 40 * c2^2 * c4 * (16 * c3 + 225 * c5) +  
                     3 * c2 * (75 * c3^3 + 3168 * c3 * c4^2 + 3180 * c3^2 * c5 + 49840 * c4^2 * c5 + 50225 * c3 * c5^2 + 294000 * c5^3) +  
                     6 * c4 * (555 * c3^3 + 8704 * c3 * c4^2 + 26225 * c3^2 * c5 + 152160 * c4^2 * c5 + 459375 * c3 * c5^2 + 2963625 * 
c5^3)) +  
        90 * c2 * (270 * c3^4 + 16905 * c3^3 * c5 + 280 * c3^2 * (89 * c4^2 + 1580 * c5^2) +  
                     35 * c3 * (24832 * c4^2 * c5 + 162675 * c5^3) +  
                     4 * (17408 * c4^4 + 2097900 * c4^2 * c5^2 + 7546875 * c5^4)) +  
        27 * c4 * (14775 * c3^4 + 1028300 * c3^3 * c5 + 50 * c3^2 * (10144 * c4^2 + 594055 * c5^2) +  
                     700 * c3 * (27904 * c4^2 * c5 + 598575 * c5^3) +  
                     3 * (316928 * c4^4 + 68908000 * c4^2 * c5^2 + 806378125 * c5^4)) 
      ) 
    eq.B4 <- -gam4 + 120 * ( 
      32 * c2^6 + 3456 * c2^5 * c4 + 6 * c1^5 * c5 +  
        3 * c1^4 * (9 * c3^2 + 16 * c2 * c4 + 168 * c4^2 + 330 * c3 * c5 + 2850 * c5^2) +  
        720 * c2^4 * (15 * c3^2 + 224 * c4^2 + 490 * c3 * c5 + 4410 * c5^2) +  
        6048 * c2^3 * c4 * (125 * c3^2 + 704 * c4^2 + 4480 * c3 * c5 + 44100 * c5^2) +  
        12 * c1^3 * (4 * c2^2 * (3 * c3 + 50 * c5) + 60 * c2 * c4 * (7 * c3 + 114 * c5) +  
                       3 * (24 * c3^3 + 1192 * c3 * c4^2 + 1170 * c3^2 * c5 + 20440 * c4^2 * c5 +  
                              20150 * c3 * c5^2 + 124875 * c5^3)) +  
        216 * c2^2 * (945 * c3^4 + 67620 * c3^3 * c5 +  
                        560 * c3^2 * (178 * c4^2 + 3555 * c5^2) +  
                        315 * c3 * (12416 * c4^2 * c5 + 90375 * c5^3) +  
                        6 * (52224 * c4^4 + 6993000 * c4^2 * c5^2 + 27671875 * c5^4)) +  
        6 * c1^2 * (8 * c2^4 + 480 * c2^3 * c4 +  
                    180 * c2^2 * (4 * c3^2 + 64 * c4^2 + 125 * c3 * c5 + 1050 * c5^2) +  
                    72 * c2 * c4 * (327 * c3^2 + 1848 * c4^2 + 10955 * c3 * c5 + 99900 * c5^2) +  
                    9 * (225 * c3^4 + 22824 * c3^2 * c4^2 + 69632 * c4^4 + 15090 * c3^3 * c5 +  
                           830240 * c3 * c4^2 * c5 + 412925 * c3^2 * c5^2 +  
                           8239800 * c4^2 * c5^2 + 5475750 * c3 * c5^3 + 29636250 * c5^4)) +  
        1296 * c2 * c4 * (5910 * c3^4 + 462735 * c3^3 * c5 +  
                            c3^2 * (228240 * c4^2 + 14851375 * c5^2) +  
                            175 * c3 * (55808 * c4^2 * c5 + 1316865 * c5^3) +  
                            3 * (158464 * c4^4 + 37899400 * c4^2 * c5^2 + 483826875 * c5^4)) +  
        27 * (9945 * c3^6 + 92930048 * c4^6 + 1166130 * c3^5 * c5 +  
                35724729600 * c4^4 * c5^2 + 977816385000 * c4^2 * c5^4 +  
                1907724656250 * c5^6 + 180 * c3^4 * (16082 * c4^2 + 345905 * c5^2) +  
                140 * c3^3 * (1765608 * c4^2 * c5 + 13775375 * c5^3) +  
                15 * c3^2 * (4076032 * c4^4 + 574146160 * c4^2 * c5^2 +  
                               2424667875 * c5^4) +  
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                210 * c3 * (13526272 * c4^4 * c5 + 687499200 * c4^2 * c5^3 +  
                              1876468125 * c5^5)) +  
        18 * c1 * (80 * c2^4 * (c3 + 15 * c5) + 160 * c2^3 * c4 * (32 * c3 + 525 * c5) +  
                     12 * c2^2 * (225 * c3^3 + 11088 * c3 * c4^2 + 11130 * c3^2 * c5 +  
                                    199360 * c4^2 * c5 + 200900 * c3 * c5^2 + 1323000 * c5^3) +  
                     24 * c2 * c4 * (3885 * c3^3 + 69632 * c3 * c4^2 + 209800 * c3^2 * c5 +  
                                       1369440 * c4^2 * c5 + 4134375 * c3 * c5^2 + 29636250 * c5^3) +  
                     9 * (540 * c3^5 + 48585 * c3^4 * c5 +  
                            20 * c3^3 * (4856 * c4^2 + 95655 * c5^2) +  
                            80 * c3^2 * (71597 * c4^2 * c5 + 513625 * c5^3) +  
                            4 * c3 * (237696 * c4^4 + 30726500 * c4^2 * c5^2 +  
                                        119844375 * c5^4) +  
                            5 * c5 * (4076032 * c4^4 + 191074800 * c4^2 * c5^2 +  
                                        483826875 * c5^4))) 
    ) 
     
    eqs <- c(eq.18, eq.22, eq.B1, eq.B2, eq.B3, eq.B4) 
    obj <- sum(eqs^2) 
     
    obj 
     
  } 
   
  OPT <- list() 
  ntry <- 0 
  cnt <- 0 
  while(ntry+1 < control[["max.ntry"]]){ 
     
    ntry <- ntry + 1 
    start <- rnorm(6, sd = .5) 
    opt <- nlminb(start = start, objective = obj.fun, scale = 10,  
                  lower = -2, upper = 2,  
                  control = list(trace = F, abs.tol = 1e-20, rel.tol = 1e-15, eval.max = 1e6, iter.max = 1e6), gam = gam) 
    #print(opt$objective) 
    if(opt$convergence == 0 && opt$objective <= control[["obj.tol"]]){ 
      cnt <- cnt + 1 
      OPT[[cnt]] <- opt 
      if(control[["trace"]]){ 
        #cat(cnt, "/", ntry, "\n", sep="") 
      } 
    } 
 
     
    if(length(OPT) >= control[["n.valid.sol"]] || (opt$objective <= min(1e-15, control[["obj.tol"]]) && opt$convergence == 0)){ 
      break 
    } 
  } 
   
  if(length(OPT) == 0){ 
    return(NULL) 
    stop(paste0("cannot find the coefficients of polynomial after ", control[["max.ntry"]], " attempts")) 
  } 
   
  min.obj <- 1e20 
  idx <- -1 
  for(i in 1:length(OPT)){ 
    #print(OPT[[i]]$objective) 
    if(OPT[[i]]$objective < min.obj){ 
      min.obj <- OPT[[i]]$objective 
      idx <- i 
    } 
  } 
  if(control[["trace"]]){ 
    #cat("minimum objective: ", min.obj, "\n", sep="") 
  } 
   
  coeff <- OPT[[idx]]$par 
  list(coeff = coeff, min.obj = min.obj) 
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} 
 
headrick02.corr.match <- function(poly.coeff, corr){ 
   
  obj.fun2 <- function(x, c0, c1, c2, c3, c4, c5, i, j, rho.Y){ 
     
    eq <- -rho.Y +  
      3*c0[j]*c4[i] + 3*c2[j]*c4[i] + 9*c4[i]*c4[j] + c0[i]*(c0[j] + c2[j] + 3*c4[j]) +  
      c1[i]*c1[j]*x + 3*c1[j]*c3[i]*x + 3*c1[i]*c3[j]*x + 9*c3[i]*c3[j]*x +  
      15*c1[j]*c5[i]*x + 45*c3[j]*c5[i]*x + 15*c1[i]*c5[j]*x +  
      45*c3[i]*c5[j]*x + 225*c5[i]*c5[j]*x + 12*c2[j]*c4[i]*x^2 +  
      72*c4[i]*c4[j]*x^2 + 6*c3[i]*c3[j]*x^3 + 60*c3[j]*c5[i]*x^3 +  
      60*c3[i]*c5[j]*x^3 + 600*c5[i]*c5[j]*x^3 + 24*c4[i]*c4[j]*x^4 +  
      120*c5[i]*c5[j]*x^5 +  
      c2[i]*(c0[j] + c2[j] + 3*c4[j] + 2*c2[j]*x^2 + 12*c4[j]*x^2) 
    obj <- eq^2 
    obj 
     
  } 
   
  k <- ncol(poly.coeff) 
   
  c0 <- as.vector(poly.coeff[1,], mode = "numeric") 
  c1 <- as.vector(poly.coeff[2,], mode = "numeric") 
  c2 <- as.vector(poly.coeff[3,], mode = "numeric") 
  c3 <- as.vector(poly.coeff[4,], mode = "numeric") 
  c4 <- as.vector(poly.coeff[5,], mode = "numeric") 
  c5 <- as.vector(poly.coeff[6,], mode = "numeric")   
   
    
  l <- 0 
  inter.corr <- diag(1, k) 
  obj <- matrix(NA, k , k) 
  for(i in 1:(k-1)){ 
    for(j in (i+1):k){ 
      l <- l + 1 
      rho.Y <- corr[i, j] 
      opt <- nlminb(start = rho.Y, objective = obj.fun2, scale = 10, lower = -1, upper = 1,  
                    control = list(trace = F, abs.tol = 1e-20, eval.max = 1e5, iter.max = 1e3),  
                    c0 = c0, c1 = c1, c2 = c2, c3 = c3, c4 = c4, c5 = c5, i = i, j = j, rho.Y = rho.Y) 
      if(opt$convergence == 0){ 
        inter.corr[i, j] <- opt$par 
        inter.corr[j, i] <- opt$par 
        obj[i, j] <- opt$objective 
      }else{ 
        stop("error in solving intermediate correlation") 
      } 
       
    } 
  } 
   
  list(inter.corr = inter.corr, obj = obj) 
   
} 
 
headrick02 <- function(n, mean, sd, corr, skewness, kurtosis, gam3=NaN, gam4=NaN, replication = 1, control = list(seed = NULL, 
trace = T, max.ntry = 5, obj.tol = 1e-10, n.valid.sol = 1)){ 
   
  ##setting up 
   
  if (! file.exists("compiled.txt")){ 
 print("Error: compiled.txt not found. Please change the working directory and try again.") 
 return 
  }  
   
    
  if(!is.null(control[["seed"]])){ 
    set.seed(control[["seed"]]) 
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  } 
   
 
  if(is.null(control[["trace"]])){ 
    control[["trace"]] <- T 
  } 
   
  if(is.null(control[["max.ntry"]])){ 
    control[["max.ntry"]] <- 5 
  } 
   
  if(is.null(control[["obj.tol"]])){ 
    control[["obj.tol"]] <- 1e-10 
  } 
   
  if(is.null(control[["n.valid.sol"]])){ 
    control[["n.valid.sol"]] <- 1 
  } 
   
  start = Sys.time()   
   
  k <- nrow(corr) 
 
   
  if (is.nan(gam3[1]) && !is.nan(gam4[1])){ 
 print("Error: Please provide both gam3 and gam4, or neither.") 
 return 
  } 
   
  if (is.nan(gam4[1]) && !is.nan(gam3[1])){ 
 print("Error: Please provide both gam3 and gam4, or neither.") 
 return 
  } 
   
  default_gam3 = F 
  default_gam4 = F 
   
  if(is.nan(gam3[1])){ 
    gam3 = pmax(skewness, kurtosis) 
 default_gam3 = T 
  } 
   
  if(is.nan(gam4[1])){ 
    gam4 = pmax(skewness,kurtosis)^2 
 default_gam4 = T 
  } 
   
  len <- c(length(mean), length(sd), length(skewness), length(kurtosis), length(gam3), length(gam4)) 
  if(var(len) != 0){ 
    stop("Lengths of mean, std, skewness, kurtosis, gam3 and gam4 must be equal") 
  } 
   
  if(len[1] != 1 && len[1] != k){ 
    stop("Inconsistent length/dim of moments and correlation") 
  } 
   
  if(len[1] == 1){ 
    mean <- rep(mean, k) 
    sd <- rep(sd, k) 
    skewness <- rep(skewness, k) 
    kurtosis <- rep(kurtosis, k) 
    gam3 <- rep(gam3, k) 
    gam4 <- rep(gam4, k) 
  } 
   
    for (i in 1:k){ 
 if (kurtosis[i] <= skewness[i]^2 - 2){ 
  cat("Error: the ", i," th component of kurtosis is not bigger than skewness squared minus 2.\n") 
  return 
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 } 
  } 
   
   
  ##Solve for coefficients c0-c5 using equation 18, 22, B1-B4 
   
  coeff <- NULL 
  obj.poly.coeff <- NULL 
  poly.coeff <- NULL 
  gam4_fit = rep(0,k) 
  gam3_fit = rep(0,k) 
   
  for(i in 1:k){    
  if (control[["trace"]]){ 
   cat("Time elapsed ", as.numeric(Sys.time()-start, units="secs") ," seconds. Start fitting c0 - c5 for 
distribution ", i, ".\n", sep="") 
  }  
  
  compiled = read.table("compiled.txt", header = T) 
  
  if (default_gam3 && default_gam4){ 
   matched = compiled[compiled["g1"]==skewness[i] & compiled["g2"]==kurtosis[i] & 
compiled["tol"]<=control[["obj.tol"]],] 
   if (nrow(matched)>0){ 
    if (control[["trace"]]){ 
     cat("Configuration found in compiled list. Compiled coefficients will be used. 
\n") 
    } 
    matched = matched[order(-matched$tol),] 
    curr.coeff = c(as.vector(matched[1,c("c0", "c1", "c2", "c3", "c4", "c5")])) 
    curr.obj = matched[1, "tol"] 
    gam3_fit[i] = matched[1, "g3"] 
    gam4_fit[i] = matched[1, "g4"] 
   } 
   else{ 
    j <- 1 
    j3 <- 1 
    poly.coeff <- NULL 
    upper = 4 
    step_size = 4 
    iterations = 0 
    while(j<=15 && j3<=15 && is.null(poly.coeff)){ 
     iterations = iterations + 1 
     tic = Sys.time() 
     gam3_fit[i] = gam3[i]/2*2^j3 
     gam4_fit[i] = gam4[i]/2*2^j 
     poly.coeff <- headrick02.poly.coeff(skewness[i], kurtosis[i], gam3_fit[i], 
gam4_fit[i], control = control) 
     if(is.null(poly.coeff)){ 
      if (control[["trace"]]){ 
       cat("Trial ",iterations," unsuccessful. Time spent: ", 
as.numeric(Sys.time()-tic, units="secs") , " seconds.\n", sep = "") 
      } 
      j3<-j3+1       
      if(j3==upper+1 && j<upper){ 
       j3 <- 1 
       j <- j+1 
      } 
      else if(j3==upper+1 && j==upper){ 
       input = "y" 
       cat("No solutions found after ", iterations," iterations. 
Do you want to continue searching? (y/n)\n", sep = "") 
       input = readline() 
       while(input!="y" && input !="n" && input != "Y" && 
input != "N"){ 
        cat("Invalid input. Please try again.\n") 
        input = readline() 
       } 
       if(input=="y" || input == "Y"){ 
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        j3 = 1 
        j = j + 1 
        upper = upper + step_size  
       
       } 
       if(input == "n" || input == "N"){ 
        break 
       } 
      } 
     } 
    }   
    if(!is.null(poly.coeff)){ 
     if (control[["trace"]]){ 
      cat("Trial ",iterations," successful. Time spent: ", 
as.numeric(Sys.time()-tic, units="secs") , " seconds.\n", sep = "") 
     } 
     curr.coeff = poly.coeff$coeff 
     curr.obj = poly.coeff$min.obj 
     to_append = matrix(c(skewness[i],kurtosis[i],curr.obj,gam3_fit[i], 
gam4_fit[i], curr.coeff), nrow=1) 
     write.table(to_append, "compiled.txt",append = T, row.names = F, col.names 
= F) 
    } 
     
    if (is.null(poly.coeff)){ 
     cat("Error: no solution found for the combination of skewness: ", skewness[i], 
"; kurtosis: ", 
      kurtosis[i], ".\n", sep = "") 
     return(NULL) 
    } 
   } 
  } 
   
  else{ 
   matched = compiled[compiled["g1"]==skewness[i] & compiled["g2"]==kurtosis[i]  
    & compiled["g3"] == gam3[i] & compiled["g4"] == gam4[i] 
    & compiled["tol"]<=control[["obj.tol"]],] 
   if (nrow(matched)>0){ 
    if (control[["trace"]]){ 
     cat("Configuration found in compiled list. Compiled coefficients will be used. 
\n") 
    } 
    matched = matched[order(-matched$tol)] 
    curr.coeff = c(as.vector(matched[1,c("c0", "c1", "c2", "c3", "c4", "c5")])) 
    curr.obj = matched[1, "tol"] 
    gam3_fit[i] = matched[1, "g3"] 
    gam4_fit[i] = matched[1, "g4"] 
   } 
   else { 
    gam3_fit[i]  = gam3[i] 
    gam4_fit[i] = gam4[i] 
    poly.coeff <- headrick02.poly.coeff(skewness[i], kurtosis[i], gam3_fit[i], gam4_fit[i], 
control = control) 
    if(is.null(poly.coeff)){ 
     cat("Error: no solution found for the combination of skewness: ", skewness[i], 
"; kurtosis: ", 
      kurtosis[i], " gam3: ", gam3_fit[i], "; gam4: ", gam4_fit[i], ".\n", 
sep = "") 
      return 
    } 
    else{ 
     curr.coeff = poly.coeff$coeff 
     curr.obj = poly.coeff$min.obj 
     to_append = matrix(c(skewness[i],kurtosis[i],curr.obj,gam3_fit[i], 
gam4_fit[i], curr.coeff), nrow=1) 
     write.table(to_append, "compiled.txt",append = T, row.names = F, col.names 
= F) 
    } 
   } 
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  } 
   
  coeff <- c(coeff, curr.coeff) 
  obj.poly.coeff <- c(obj.poly.coeff, curr.obj) 
 } 
  
 coeff = matrix(coeff, nrow = 6) 
  
 desired.moments <-data.frame(mean = mean, sd=sd, skewness = skewness, kurtosis = kurtosis, gam3 = gam3_fit, 
gam4=gam4_fit) 
 rownames(desired.moments) <- paste0("Y", 1:nrow(desired.moments)) 
 
 if (control[["trace"]]){ 
   cat("Finished fitting c0 - c5. Time elapsed ", as.numeric(Sys.time()-start, units="secs") ," seconds. 
\n", sep="") 
  } 
   
   summary.poly.coeff <- rbind(obj.poly.coeff, coeff) 
   colnames(summary.poly.coeff) <- paste0("Distribution ", 1:ncol(summary.poly.coeff)) 
   rownames(summary.poly.coeff) <- c("obj value @ convergence", paste0("c", 0:5)) 
   colnames(coeff) <- paste0("Distribution ", 1:ncol(summary.poly.coeff)) 
   rownames(coeff) <- paste0("c", 0:5) 
    
   ##Solve for intermediate correlation using equation 26 
   if(k>1){ 
   if (control[["trace"]]){ 
   cat("\nStart solving for intermediate correlation matrix...\n") 
     } 
    
   corr.match <- headrick02.corr.match(coeff, corr) 
   inter.corr <- corr.match$inter.corr 
   obj.corr.match <- corr.match$obj 
   colnames(inter.corr) <- paste0("Z", 1:ncol(inter.corr)) 
   rownames(inter.corr) <- paste0("Z", 1:nrow(inter.corr)) 
    
   colnames(obj.corr.match) <- paste0("Z", 1:ncol(obj.corr.match)) 
   rownames(obj.corr.match) <- paste0("Z", 1:nrow(obj.corr.match)) 
    
   if (control[["trace"]]){ 
   cat("Finished solving for intermediate correlation matrix. Time elapsed ", as.numeric(Sys.time()-
start, units="secs") ," seconds.\n", sep="") 
     } 
   } 
   else{ 
   inter.corr <- corr 
   colnames(inter.corr) <- paste0("Z", 1:ncol(inter.corr)) 
   rownames(inter.corr) <- paste0("Z", 1:nrow(inter.corr)) 
   
   } 
    
    c0 <- as.vector(coeff[1,], mode = "numeric") 
    c1 <- as.vector(coeff[2,], mode = "numeric") 
    c2 <- as.vector(coeff[3,], mode = "numeric") 
    c3 <- as.vector(coeff[4,], mode = "numeric") 
    c4 <- as.vector(coeff[5,], mode = "numeric") 
    c5 <- as.vector(coeff[6,], mode = "numeric") 
    library("MASS") 
     
    obs.mean = NULL 
    obs.sd = NULL 
    obs.skew = NULL 
    obs.kurt = NULL 
    obs.gam3 = NULL 
    obs.gam4 = NULL 
     
   for (replica in 1:replication){ 
    ## Generate intermediate normal distribution with desired intermediate correlation  
 
    Z <- mvrnorm(n, mu = rep(0, k), Sigma = inter.corr) 
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    Z2 <- Z^2 
    Z3 <- Z^3 
    Z4 <- Z^4 
    Z5 <- Z^5    
     
    ## Generate multivariate distribution with desired property 
     
    Y <- matrix(0, nrow = n, ncol = k) 
    for(i in 1:k){ 
    Y[, i] <- mean[i] + sd[i]*(c0[i] + c1[i] * Z[, i] + c2[i] * Z2[, i] + c3[i] * Z3[, i] + c4[i] * 
Z4[, i] + c5[i] * Z5[, i]) 
   } 
     
    obs.mean = rbind(obs.mean, apply(Y, 2, mean)) 
    obs.sd = rbind(obs.sd, apply(Y, 2, sd)) 
    obs.skew = rbind(obs.skew, apply(Y, 2, f_skew)) 
    obs.kurt = rbind(obs.kurt, apply(Y, 2, f_kurt)) 
    obs.gam3 = rbind(obs.gam3, apply(Y, 2, f_gamma3)) 
    obs.gam4 = rbind(obs.gam4, apply(Y, 2, f_gamma4)) 
  }   
     
     
  obs.moments <- data.frame(mean = apply(obs.mean, 2, mean), sd = apply(obs.sd, 2, mean), skewness = 
apply(obs.skew, 2, mean),  
      kurtosis = apply(obs.kurt, 2, mean), gam3 = 
apply(obs.gam3,2,mean), gam4 = apply(obs.gam4,2,mean)) 
  obs.moments.sd <- data.frame(mean = apply(obs.mean, 2, sd), sd = apply(obs.sd, 2, sd), skewness = 
apply(obs.skew, 2, sd),  
      kurtosis = apply(obs.kurt, 2, sd), gam3 = apply(obs.gam3,2,sd), 
gam4 = apply(obs.gam4,2,sd)) 
  rownames(obs.moments) <- paste0("Y", 1:nrow(obs.moments)) 
  rownames(obs.moments.sd) <- paste0("Y", 1:nrow(obs.moments.sd)) 
   
  obs.corr <- cor(Y) 
  rownames(obs.corr) <- paste0("Y", 1:nrow(obs.corr)) 
  colnames(obs.corr) <- paste0("Y ", 1:ncol(obs.corr)) 
   
  if (replication>1){ 
   obs.corr = NULL 
  } 
   
   if (control[["trace"]]){ 
   cat("\nDesired moments:\n") 
   print(desired.moments) 
    
   cat("\nSampling moments:\n") 
   print(obs.moments) 
    
   if (replication >1){ 
    cat("\nSampling moment standard deviations:\n") 
    print(obs.moments.sd) 
   } 
    
   if(replication == 1){ 
    cat("\nDesired correlation matrix:\n") 
    print(corr) 
    
    cat("\nSampling correlation matrix:\n") 
    print(obs.corr) 
   } 
   cat("\nTotal time elapsed ", as.numeric(Sys.time()-start, units="secs"), " seconds.\n", sep="") 
  } 
   
   list(obs = Y, obs.corr = obs.corr, obs.moments = obs.moments, obs.moments.sd = obs.moments.sd, desired.corr = corr, 
desired.moments = desired.moments, 
     summary.poly.coeff = summary.poly.coeff, inter.corr = inter.corr) 
    
} 
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############################################################################################################
######################## 
 
 
#Set-up 
 
library(moments) 
 
Sigm1<-cor <- matrix(c(1,.52,.52,.52,.52,1,.52,.52,.52,.52,1,.52,.52,.52,.52,1),4,4) #correlation matrix 
 
setwd("C:/Users/New User/Documents/Dissertation Code/") #set the working directory to the one where headrick02.R is located 
 
pathToData<-"C:/Users/New User/Documents/Dissertation Code/testHn500r250/" 
 
N <- 500 
mean <- c(rep(0,4)) 
sd <- c(rep(1,4)) 
Sigm1 
skewness <- c(rep(1.0,4)) 
kurtosis <- c(rep(1.0,4)) 
 
reps <- 250  
 
#simulate multiple data sets 
for(i in 1:reps){ 
 y<-as.data.frame(headrick02(N, mean, sd, Sigm1, skewness, kurtosis)$obs) 
 write.table(x=y, file=paste(pathToData, "x", i, ".txt", sep=""), sep=",", 
  row.names=FALSE, quote=FALSE, col.names=FALSE ) 
} 
 
#check skewnwss and kurtosis values 
simcheck<-matrix(NA, nrow=reps, ncol=8) 
for(i in 1:nrow(simcheck)){ 
 y<-read.table(file=paste(pathToData, "x", i, ".txt", sep=""), sep=",", 
  header=FALSE ) 
 simcheck[i,1]<-skewness(y[,1]) 
 simcheck[i,2]<-skewness(y[,2]) 
 simcheck[i,3]<-skewness(y[,3]) 
 simcheck[i,4]<-skewness(y[,4]) 
 simcheck[i,5]<-kurtosis(y[,1])-3 
 simcheck[i,6]<-kurtosis(y[,2])-3 
 simcheck[i,7]<-kurtosis(y[,3])-3 
 simcheck[i,8]<-kurtosis(y[,4])-3 
} 
 
mystats<-matrix(c(median(simcheck[,1]), mean(simcheck[,1]), sd(simcheck[,1]), median(simcheck[,5]), mean(simcheck[,5]), 
sd(simcheck[,5]),  
  median(simcheck[,2]), mean(simcheck[,2]), sd(simcheck[,2]), median(simcheck[,6]), mean(simcheck[,6]), 
sd(simcheck[,6]), 
  median(simcheck[,3]), mean(simcheck[,3]), sd(simcheck[,3]), median(simcheck[,7]), mean(simcheck[,7]), 
sd(simcheck[,7]), 
  median(simcheck[,4]), mean(simcheck[,4]), sd(simcheck[,4]), median(simcheck[,8]), mean(simcheck[,8]), 
sd(simcheck[,8])), 
  nrow=4, ncol=6, byrow=TRUE) 
 
write.table(x=mystats, file=paste(pathToData, "simcheck.txt", sep=""), sep=",", 
  row.names=FALSE, quote=FALSE, col.names=FALSE)  
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Simulation Code: R Syntax for Vale and Maurelli (1983) 

# 2011  
  
#University of Minnesota  
  
#Cengiz Zopluoglu  
  
#  Applications in R:   
  
#Generating Multivariate Non-normal Variables  
  
   
####################################################################  
#                     #  
#                     #  
# R Script to Generate Non-normal Distributions        #  
#                          #  
#                     #  
# Method described in:               #  
# Vale, C. & Maurelli, V. (1983). Simulating multivariate     #  
# nonnormal distributions. Psychometrika, 48(3):465-471.     #  
#                     #  
# Programmed by: Cengiz Zopluoglu           #  
# April 20,2011                 #  
####################################################################  
####################################################################  
  
#Inputs:   
#n , sample size   
#k , number of variables   
#cor , desired correlation matrix between bivariate non-normal variables, k x k   
#skew , a vector of k elements, skewness for the variables   
#kurt , a vector of k elements, kurtosis for the variables   
#k , number of variables   
##########################################################################   
  
library(moments) 
 
gen.nonnormal <- function(n,cor,skew,kurt,k) { #Start Main Function   
  
#Internal Function to compute the a,b,c,d for a variable given the skewness and  
#kurtosis. Use Newton-Raphson Iteration with a Jacobian matrix to solve the system of  
#non-linear equations. Equation 2,3, and 4 in Vale & Maurelli(1983)   
  
tol=.00001   
  
constant <- function(sk,ku,start){ #Start Internal Function 1   
  
#sk , desired skewness   
#ku , desired kurtosis   
#start, starting values for the iteratin, based on Fleishman(1978) using c(1,0,0)   
#is reasonable   
  
start=c(1,0,0)   
max.iter <- 500   
F <- function(x){   
  F <- matrix(0,nrow=3)   
  b=x[1]   
  c=x[2]   
  d=x[3]   
  F[1]= b^2+6*b*d+2*c^2+15*d^2-1   
  F[2]= 2*c*(b^2+24*b*d+105*d^2+2)-sk   
  F[3]=24*(b*d+c^2*(1+b^2+28*b*d)+d^2*(12+48*b*d+141*c^2+225*d^2))-ku   
  F   
 }   
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J <- function(x){   
  b=x[1]   
  c=x[2]   
  d=x[3]   
  j=matrix(0,ncol=3,nrow=3)   
  j[1,1]= 2*b+6*d   
  j[1,2]= 4*c   
  j[1,3]= 6*b+30*d  
  
  j[2,1]= 4*b*c+48*c*d   
  j[2,2]= 2*b^2+48*b*d+210*d^2+4   
  j[2,3]= 48*b*c+420*c*d   
  j[3,1]=24*d+48*c^2*b   
  j[3,2]=48*c+48*c*b^2+1344*c*b*d+6768*c*d^2   
  j[3,3]=24*b+672*c^2*b+576*d+3456*b*d^2+6768*d*c^2+21600*d^3   
  j   
 }   
  
x0 <- start   
fx <- F(x0)   
jx <- J(x0)   
d <- solve(J(x0))%*%F(x0)   
iter <- 0   
  
d=det(J(x0))   
if (identical(all.equal(d,0),TRUE))   
{cat("Jacobian has no inverse. Try a different initial point.","\n")   
break}   
  
while((abs(d)> tol) && (iter < max.iter)) {   
  x0 <- x0-solve(J(x0))%*%F(x0)   
  d <- solve(J(x0))%*%F(x0)   
  fx <- F(x0)   
  jx <- J(x0)   
  iter <- iter+1   
 }   
x0   
} #End internal function 1  
   
#Compute the constants a,b,c, and d for each variable with a desired skewness and  
#kurtosis   
  
constants <- matrix(nrow=k,ncol=4)   
 for(i in 1:k) {   
  constants[i,2:4]=t(constant(skew[i],kurt[i],start=c(1,0,0)))   
  constants[i,1]=-(constants[i,3])   
 }   
  
#Internal Function to solve the polynomial function to find the intermediate  
#correlation between two normal variables for a given desired correlation between two  
#non-normal variables and constants a,b,c,d Use Newton-Raphson iteration to  
#approximate the root   
  
solve.p12 <- function(r12,a1,a2,b1,b2,c1,c2,d1,d2) { #Start Internal Function 2   
  
 max.iter=500   
 start=.5   
  
 ftn <- function(p12) {   
  a <-((b1*b2+3*b1*d2+3*d1*b2+9*d1*d2)*p12)+((2*c1*c2)*p12^2)+((6*d1*d2)*p12^3)-r12   
  b <-(b1*b2+3*b1*d2+3*d1*b2+9*d1*d2)+((4*c1*c2)*p12)+((12*d1*d2)*p12^2)   
  c(a,b)   
 }   
  
p12 <- start   
fx <- ftn(p12)   
iter <- 0   
while((abs(fx[1]) > tol) && (iter < max.iter)) {   
  p12 <- p12-fx[1]/fx[2]  
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  fx <- ftn(p12)   
  iter <- iter+1   
 }   
p12   
} #End Internal Function 2   
  
#Compute the intermediate intercorrelation matrix required for normal variables   
#These normal variables are used to construct non-normal variables   
  
inter <- matrix(0,k,k)   
 for(i in 1:k) {   
  for(j in 1:k) {   
   inter[i,j]=solve.p12(cor[i,j],constants[i,1],constants[j,1],constants[i,2],constants[j,2],constants[i,3], 
   constants[j,3],constants[i,4],constants[j,4])   
  }   
 }   
diag(inter) <- 1   
  
#Compute the multivariate normal variables based on the intermediate intercorrelation #matrix   
#Eigen decomposition of correlation matrix   
  
U <- eigen(inter)$vectors   
L <- eigen(inter)$values   
b <- U%*%diag(sqrt(L))   
  
#Creating independent multivariate normal variables   
  
normal <- matrix(nrow=n,ncol=k)   
 for(i in 1:k) { normal[,i]=rnorm(n,0,1) }   
  
#Creating correlated multivariate normal variables   
  
d <- as.data.frame(normal%*%t(b))   
  
#Creating correlated non-normal multivariate variables from correlated multivariate #normal variables using constants a,b,c, and d   
  
nonnormal <- as.data.frame(matrix(nrow=n,ncol=k))   
 for(i in 1:k) {   
  nonnormal[,i]=constants[i,1]+ constants[i,2]*d[,i]+constants[i,3]*d[,i]^2+constants[i,4]*d[,i]^3   
 }   
nonnormal   
} #End Main function  
  
   
  
  
  
  
#Create two functions to compute the skewness and kurtosis of a variable:   
  
kurt <- function(x) {   
  m4 <- mean((x-mean(x))^4)   
  kurt <- m4/(sd(x)^4)-3   
  kurt   
 }   
skew <- function(x) {   
  m3 <- mean((x-mean(x))^3)   
  skew <- m3/(sd(x)^3)   
  skew   
 }   
  
#Check if the function gen.nonnormal() does what you expect:   
  
#1) Set the parameters   
  
n <- 2000 # sample size  
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r12=.52 # correlation between v1 and v2   
r13=.52 # correlation between v1 and v3 
r14=.52 # correlation between v1 and v4 
r15=.52 # correlation between v1 and v5   
r16=.52 # correlation between v1 and v6 
r17=.52 # correlation between v1 and v7 
r18=.52 # correlation between v1 and v8 
r23=.52 # correlation between v2 and v3 
r24=.52 # correlation between v2 and v4 
r25=.52 # correlation between v2 and v5 
r26=.52 # correlation between v2 and v6 
r27=.52 # correlation between v2 and v7 
r28=.52 # correlation between v2 and v8 
r34=.52 # correlation between v3 and v4 
r35=.52 # correlation between v3 and v5 
r36=.52 # correlation between v3 and v6 
r37=.52 # correlation between v3 and v7 
r38=.52 # correlation between v3 and v8 
r45=.52 # correlation between v4 and v5 
r46=.52 # correlation between v4 and v6 
r47=.52 # correlation between v4 and v7 
r48=.52 # correlation between v4 and v8 
r56=.52 # correlation between v5 and v6 
r57=.52 # correlation between v5 and v7 
r58=.52 # correlation between v5 and v8 
r67=.52 # correlation between v6 and v7 
r68=.52 # correlation between v6 and v8 
r78=.52 # correlation between v7 and v8 
   
cor <- matrix(c(1,r12,r13,r14,r15,r16,r17,r18, 
     r12,1,r23,r24,r25,r26,r27,r28, 
     r13,r23,1,r34,r35,r36,r37,r38, 
     r14,r24,r34,1,r45,r46,r47,r48, 
     r15,r25,r35,r45,1,r56,r57,r58, 
     r16,r26,r36,r46,r56,1,r67,r68, 
     r17,r27,r37,r47,r57,r67,1,r78, 
     r18,r28,r38,r48,r58,r68,r78,1),8,8) #correlation matrix  
 
av1 <- 1.00 
av2 <- 1.00 
vec1 <- c(av1,av1,av1,av1,av1,av1,av1,av1) 
vec2 <- c(av2,av2,av2,av2,av2,av2,av2,av2) 
  
sk <- vec1 
ku <- vec2 
#sk <- c(1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0) #desired level of skewness for each variable   
#ku <- c(1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0) # desired level of kurtosis for each variables   
k <-8 # number of variables   
  
#2) Generate multivariate non-normal data with desired level of skewness and kurtosis   
  
nonnormal <- gen.nonnormal(n,cor,sk,ku,k)   
  
#3) See if it’s enough for you (It’s not always perfect, and does not work for all combinations of skewness and kurtosis)   
  
nonnormal <- gen.nonnormal(n,cor,sk,ku,k)   
mean(nonnormal[,1]);mean(nonnormal[,2]);mean(nonnormal[,3]);mean(nonnormal[,4]); 
 mean(nonnormal[,5]);mean(nonnormal[,6]);mean(nonnormal[,7]);mean(nonnormal[,8])   
sd(nonnormal[,1]);sd(nonnormal[,2]);sd(nonnormal[,3]);sd(nonnormal[,4]); 
 sd(nonnormal[,5]);sd(nonnormal[,6]);sd(nonnormal[,7]);sd(nonnormal[,8])   
skew(nonnormal[,1]);skew(nonnormal[,2]);skew(nonnormal[,3]);skew(nonnormal[,4]); 
 skew(nonnormal[,5]);skew(nonnormal[,6]);skew(nonnormal[,7]);skew(nonnormal[,8])   
kurt(nonnormal[,1]);kurt(nonnormal[,2]);kurt(nonnormal[,3]);kurt(nonnormal[,4]); 
 kurt(nonnormal[,5]);kurt(nonnormal[,6]);kurt(nonnormal[,7]);kurt(nonnormal[,8])   
cor(nonnormal)   
#hist(nonnormal[,1])   
#hist(nonnormal[,2])   
#hist(nonnormal[,3])   
#require(MASS)  
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#bivn.kde1 <- kde2d(nonnormal[,1],nonnormal[,2], n = 50)   
#bivn.kde2 <- kde2d(nonnormal[,1],nonnormal[,3], n = 50)   
#bivn.kde3 <- kde2d(nonnormal[,2],nonnormal[,3], n = 50)   
#persp(bivn.kde1, phi = 30, theta = 30,xlab="X")   
#persp(bivn.kde2, phi = 30, theta = 30,xlab="X")   
#persp(bivn.kde3, phi = 30, theta = 30,xlab="X")  
 
 
#simulate multiple data sets 
 
pathToData<-"C:/Dissertation/SIMDATA8/c6/" 
 
reps <- 250 
 
#simulate multiple data sets 
for(i in 1:reps){ 
 y<-as.data.frame(gen.nonnormal(n,cor,sk,ku,k)) 
 write.table(x=y, file=paste(pathToData, "x", i, ".txt", sep=""), sep=",", 
  row.names=FALSE, quote=FALSE, col.names=FALSE ) 
} 
 
#check skewnwss and kurtosis values 
 
simcheck<-matrix(NA, nrow=reps, ncol=16) 
 
for(i in 1:nrow(simcheck)){ 
 y<-read.table(file=paste(pathToData, "x", i, ".txt", sep=""), sep=",", 
  header=FALSE ) 
 simcheck[i,1]<-skewness(y[,1]) 
 simcheck[i,2]<-skewness(y[,2]) 
 simcheck[i,3]<-skewness(y[,3]) 
 simcheck[i,4]<-skewness(y[,4]) 
 simcheck[i,5]<-kurtosis(y[,1])-3 
 simcheck[i,6]<-kurtosis(y[,2])-3 
 simcheck[i,7]<-kurtosis(y[,3])-3 
 simcheck[i,8]<-kurtosis(y[,4])-3 
 simcheck[i,9]<-skewness(y[,5]) 
 simcheck[i,10]<-skewness(y[,6]) 
 simcheck[i,11]<-skewness(y[,7]) 
 simcheck[i,12]<-skewness(y[,8]) 
 simcheck[i,13]<-kurtosis(y[,5])-3 
 simcheck[i,14]<-kurtosis(y[,6])-3 
 simcheck[i,15]<-kurtosis(y[,7])-3 
 simcheck[i,16]<-kurtosis(y[,8])-3 
 
} 
 
mystats<-matrix(c(median(simcheck[,1]), mean(simcheck[,1]), sd(simcheck[,1]), min(simcheck[,1]), max(simcheck[,1]), 
  median(simcheck[,5]), mean(simcheck[,5]), sd(simcheck[,5]), min(simcheck[,5]), max(simcheck[,5]), 
  median(simcheck[,2]), mean(simcheck[,2]), sd(simcheck[,2]), min(simcheck[,2]), max(simcheck[,2]), 
  median(simcheck[,6]), mean(simcheck[,6]), sd(simcheck[,6]), min(simcheck[,6]), max(simcheck[,6]), 
  median(simcheck[,3]), mean(simcheck[,3]), sd(simcheck[,3]), min(simcheck[,3]), max(simcheck[,3]), 
  median(simcheck[,7]), mean(simcheck[,7]), sd(simcheck[,7]), min(simcheck[,7]), max(simcheck[,7]), 
  median(simcheck[,4]), mean(simcheck[,4]), sd(simcheck[,4]), min(simcheck[,4]), max(simcheck[,4]), 
  median(simcheck[,8]), mean(simcheck[,8]), sd(simcheck[,8]), min(simcheck[,8]), max(simcheck[,8]), 
  median(simcheck[,9]), mean(simcheck[,9]), sd(simcheck[,9]), min(simcheck[,9]), max(simcheck[,9]), 
  median(simcheck[,13]), mean(simcheck[,13]), sd(simcheck[,13]), min(simcheck[,13]), max(simcheck[,13]), 
  median(simcheck[,10]), mean(simcheck[,10]), sd(simcheck[,10]), min(simcheck[,10]), max(simcheck[,10]), 
  median(simcheck[,14]), mean(simcheck[,14]), sd(simcheck[,14]), min(simcheck[,14]), max(simcheck[,14]), 
  median(simcheck[,11]), mean(simcheck[,11]), sd(simcheck[,11]), min(simcheck[,11]), max(simcheck[,11]), 
  median(simcheck[,15]), mean(simcheck[,15]), sd(simcheck[,15]), min(simcheck[,15]), max(simcheck[,15]), 
  median(simcheck[,12]), mean(simcheck[,12]), sd(simcheck[,12]), min(simcheck[,12]), max(simcheck[,12]), 
  median(simcheck[,16]), mean(simcheck[,16]), sd(simcheck[,16]), min(simcheck[,16]), max(simcheck[,16])), 
  nrow=8, ncol=10, byrow=TRUE) 
 
write.table(x=mystats, file=paste(pathToData, "simcheck.txt", sep=""), sep=",", 
  row.names=FALSE, quote=FALSE, col.names=FALSE)  
 
mystats
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R Syntax for Creating Mplus Input Files  
 
library(MplusAutomation) 
 
 
#Change the last statement to change Mplus model (i.e. a1 to a6) 
#Change file name var4 to var8 for data conditions 7 through 12. 
 
createModels("C:/Dissertation/MplusFiles/var4/a1.txt") 
 
#This calls the file that contains the instructions for creating the Mplus input files: 
 
[[init]] 
iterators = condition datanum classes; 
condition = 1:6; 
datanum = 1:250; 
classes = 1:4; 
filename = "x[[datanum]]-class-[[classes]]-a1.inp"; 
outputDirectory = "C:/Dissertation/MplusFiles/var4/c[[condition]]/a1/o[[datanum]]"; 
[[/init]] 
 
TITLE: a1 
 
DATA: FILE IS C:\Dissertation\SIMDATA4\c[[condition]]\x[[datanum]].txt; 
VARIABLE: NAMES ARE x1-x4; 
CLASSES = c ([[classes]]); 
ANALYSIS: TYPE = MIXTURE; 
          STARTS = 200 50; 
          STITERATIONS = 20; 
          ALGORITHM = EM; 
   PROCESSORS = 8; 
   DISTRIBUTION = NORMAL; 
 [[classes > 1]] 
  K-1STARTS = 200 50; 
  LRTSTARTS = 200 50 200 50; 
   
 [[/classes > 1]] 
   
   
 
MODEL: 
  %OVERALL% 
             x1 WITH x2 x3 x4; 
      x2 WITH x3 x4; 
      x3 WITH x4; 
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 [[classes > 1]] 
 [[classes = 2]] 
  %c#1% 
             x1 WITH x2 x3 x4; 
      x2 WITH x3 x4; 
      x3 WITH x4; 
 
  %c#1% 
             x1 WITH x2 x3 x4; 
      x2 WITH x3 x4; 
      x3 WITH x4; 
 [[/classes = 2]] 
            
 [[classes = 3]] 
  %c#1% 
             x1 WITH x2 x3 x4; 
      x2 WITH x3 x4; 
      x3 WITH x4; 
 
  %c#2% 
             x1 WITH x2 x3 x4; 
      x2 WITH x3 x4; 
      x3 WITH x4; 
 
  %c#3% 
             x1 WITH x2 x3 x4; 
      x2 WITH x3 x4; 
      x3 WITH x4; 
 [[/classes = 3]] 
 
 
 [[classes = 4]] 
  %c#1% 
             x1 WITH x2 x3 x4; 
      x2 WITH x3 x4; 
      x3 WITH x4; 
 
  %c#2% 
             x1 WITH x2 x3 x4; 
      x2 WITH x3 x4; 
      x3 WITH x4; 
 
  %c#3% 
             x1 WITH x2 x3 x4; 
      x2 WITH x3 x4; 
      x3 WITH x4; 
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  %c#4% 
             x1 WITH x2 x3 x4; 
      x2 WITH x3 x4; 
      x3 WITH x4; 
 [[/classes = 4]] 
 
 [[/classes > 1]] 
 
            
OUTPUT: TECH1 TECH8 [[classes > 1]] TECH11 TECH14 [[/classes > 1]]; 
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R Syntax for Running the Created Mplus Input Files 
 
library(MplusAutomation) 
  
#This will open the created Mplus input files, run each in turn, and return output files. 
 
 
#Be sure that the path object refers to the correct model folder which will 
#match the name of the createModels file. 
 
numConditions = 6 
datanum = 250 
basePath<-"C:/Dissertation/MplusFiles/var4/" 
for(i in 1:numConditions){ 
 path<-paste(basePath, "c", i, "/a1/", sep="") 
 
 for(j in 1:datanum){ 
  path2<-paste(path, "o", j, sep="") 
  runModels(path2, recursive=TRUE, replaceOutfile="always") 
 } 
} 
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R Syntax for Extracting Mplus Output and Calculating Fit Statistics 
 
library(MplusAutomation) 
library(stringi) 
 
 
#Be sure that the fitpath object below refers to the correct model folder. 
 
#Also change the condition folder (c1, c2, c3,...) in both the fitpath 
#object and the write.table file statement at the end of the loop. 
 
datanum = 250 
fitpath<-"C:/Dissertation/MplusFiles/var4/c1/a1/" 
for(j in 1:datanum){ 
 path3<-paste(fitpath, "o", j, sep="") 
 x=extractModelSummaries(path3,recursive=TRUE) 
 
 for(i in 1:datanum){ 
 
 File=x$Filename 
 n<-x$Observations 
  
  nParx<-c(x$Parameters) 
 nPar<-if(is.null(nParx)) (c(NA,NA,NA,NA)) else nParx 
 
  LLx<-c(x$LL) 
 LL<-if(is.null(LLx)) (c(NA,NA,NA,NA)) else LLx 
 ll2<--2*LL 
  
 class <- as.integer(stri_sub(File,-9,-9)) 
  
  ENx<-c(x$Entropy) 
  ENy<-if(is.null(ENx)) (c(NA,NA,NA,NA)) else ENx   
  ENa<-replace(ENy,1,1)    
 EN<- ((1-ENa)*(n*log(class))) 
 
  BLRTKM1LLx<-c(x$BLRT_KM1LL) 
 BLRTKM1LL<-if(is.null(BLRTKM1LLx)) (c(NA,NA,NA,NA)) else BLRTKM1LLx 
 
  BLRTpx<-c(x$BLRT_PValue) 
 BLRTp<-if(is.null(BLRTpx)) (c(NA,NA,NA,NA)) else BLRTpx 
 
  LMRKM1LLx<-c(x$T11_KM1LL) 
 LMRKM1LL<-if(is.null(LMRKM1LLx)) (c(NA,NA,NA,NA)) else LMRKM1LLx 
 
  LMR2xLLDiffx<-c(x$T11_VLMR_2xLLDiff) 
 LMR2xLLDiff<-if(is.null(LMR2xLLDiffx)) (c(NA,NA,NA,NA)) else LMR2xLLDiffx 
 
  LMRPDiffx<-c(x$T11_VLMR_ParamDiff) 
 LMRPDiff<-if(is.null(LMRPDiffx)) (c(NA,NA,NA,NA)) else LMRPDiffx 
 
  LMRMeanx<-c(x$T11_VLMR_Mean) 
 LMRMean<-if(is.null(LMRMeanx)) (c(NA,NA,NA,NA)) else LMRMeanx 
 
  LMRSDx<-c(x$T11_VLMR_SD) 
 LMRSD<-if(is.null(LMRSDx)) (c(NA,NA,NA,NA)) else LMRSDx 
 
  LMRpx<-c(x$T11_VLMR_PValue) 
 LMRp<-if(is.null(LMRpx)) (c(NA,NA,NA,NA)) else LMRpx 
 
  aLMRx<-c(x$T11_LMR_Value)  
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 aLMR<-if(is.null(aLMRx)) (c(NA,NA,NA,NA)) else aLMRx 
 
  aLMRpx<-c(x$T11_LMR_PValue) 
 aLMRp<-if(is.null(aLMRpx)) (c(NA,NA,NA,NA)) else aLMRpx 
 
 aic<-ll2+(2*nPar) 
 bic<-ll2+(nPar*log(n)) 
 caic<-ll2+(nPar*(log(n)+1)) 
 sabic<-ll2+(nPar*(log((n+2)/24))) 
 sacaic<-ll2+(nPar*(log((n+2)/24)+1)) 
 clc<-ll2+(2*EN) 
 iclbic<-ll2+(2*EN)+(nPar*log(n)) 
  
  
 aicR=rank(aic, na.last = "keep", ties.method = "first") 
 bicR=rank(bic, na.last = "keep", ties.method = "first") 
 caicR=rank(caic, na.last = "keep", ties.method = "first") 
 sabicR=rank(sabic, na.last = "keep", ties.method = "first") 
 sacaicR=rank(sacaic, na.last = "keep", ties.method = "first") 
 clcR=rank(clc, na.last = "keep", ties.method = "first") 
 iclbicR=rank(iclbic, na.last = "keep", ties.method = "first") 
  
 fit1=data.frame(File=File,class=class,LL=LL,ll2=ll2,EN=EN,aic=aic,bic=bic,caic=caic, 
   sabic=sabic,sacaic=sacaic,clc=clc,iclbic=iclbic,aicR=aicR,bicR=bicR,caicR=caicR, 
  
 sabicR=sabicR,sacaicR=sacaicR,clcR=clcR,iclbicR=iclbicR,BLRTKM1LL=BLRTKM1LL, 
  
 BLRTp=BLRTp,LMRKM1LL=LMRKM1LL,LMR2xLLDiff=LMR2xLLDiff,LMRPDiff=LMRPDiff, 
  
 LMRMean=LMRMean,LMRSD=LMRSD,LMRp=LMRp,aLMR=aLMR,aLMRp=aLMRp) 
 
 conv=ifelse(sum(fit1$aicR)==10, 1, NA) 
 
 fit2=data.frame(File=File,class=class,LL=LL,ll2=ll2,EN=EN,aic=aic,bic=bic,caic=caic, 
   sabic=sabic,sacaic=sacaic,clc=clc,iclbic=iclbic,aicR=aicR,bicR=bicR,caicR=caicR, 
   sabicR=sabicR,sacaicR=sacaicR,clcR=clcR,iclbicR=iclbicR,conv=conv, 
  
 BLRTKM1LL=BLRTKM1LL,BLRTp=BLRTp,LMRKM1LL=LMRKM1LL,LMR2xLLDiff=LMR2xLLDif
f, 
  
 LMRPDiff=LMRPDiff,LMRMean=LMRMean,LMRSD=LMRSD,LMRp=LMRp,aLMR=aLMR, 
   aLMRp=aLMRp) 
 
 } 
 write.table(fit2, file = "H:/Results/A1C1Results",  
   append = TRUE, sep = " ", na = "NA", col.names = FALSE) 
} 
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Table C1. 
Convergence rates for the one through four class models for analysis conditions one 
through three and data conditions one through twelve. 
Condition 1N 1P 2N 2P 3N 3P 4N 4P 
A1C01 250 100 198 79.2 172 68.8 139 55.6 
A1C02 250 100 250 100 243 97.2 218 87.2 
A1C03 250 100 250 100 248 99.2 233 93.2 
A1C04 250 100 186 74.4 180 72 144 57.6 
A1C05 250 100 250 100 249 99.6 250 100 
A1C06 250 100 250 100 248 99.2 249 99.6 
A1C07 250 100 232 92.8 212 84.8 206 82.4 
A1C08 250 100 250 100 237 94.8 226 90.4 
A1C09 250 100 249 99.6 244 97.6 238 95.2 
A1C10 250 100 236 94.4 223 89.2 215 86 
A1C11 250 100 250 100 250 100 249 99.6 
A1C12 250 100 250 100 250 100 250 100 
A2C01 250 100 250 100 250 100 249 99.6 
A2C02 250 100 250 100 250 100 250 100 
A2C03 250 100 250 100 250 100 250 100 
A2C04 250 100 246 98.4 230 92 168 67.2 
A2C05 250 100 250 100 250 100 250 100 
A2C06 250 100 250 100 250 100 250 100 
A2C07 250 100 249 99.6 250 100 249 99.6 
A2C08 250 100 250 100 250 100 250 100 
A2C09 250 100 250 100 250 100 250 100 
A2C10 250 100 250 100 247 98.8 235 94 
A2C11 250 100 250 100 249 99.6 250 100 
A2C12 250 100 250 100 250 100 250 100 
A3C01 250 100 196 78.4 201 80.4 158 63.2 
A3C02 203 81.2 179 71.6 137 54.8 96 38.4 
A3C03 138 55.2 162 64.8 117 46.8 58 23.2 
A3C04 250 100 229 91.6 226 90.4 210 84 
A3C05 246 98.4 235 94 212 84.8 185 74 
A3C06 249 99.6 242 96.8 213 85.2 175 70 
A3C07 250 100 191 76.4 105 42 28 11.2 
A3C08 184 73.6 96 38.4 36 14.4 12 4.8 
A3C09 37 14.8 115 46 28 11.2 8 3.2 
A3C10 250 100 222 88.8 194 77.6 126 50.4 
A3C11 171 68.4 245 98 170 68 141 56.4 
A3C12 117 46.8 244 97.6 181 72.4 153 61.2 
Note: conditions when one class model did not converge 100% in bold type. 
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Table C2. 
Convergence rates for the one through four class models for analysis conditions four 
through six and data conditions one through twelve. 
Condition 1N 1P 2N 2P 3N 3P 4N 4P 
A4C01 250 100 244 97.6 243 97.2 243 97.2 
A4C02 203 81.2 242 96.8 240 96 243 97.2 
A4C03 137 54.8 243 97.2 248 99.2 243 97.2 
A4C04 250 100 249 99.6 247 98.8 236 94.4 
A4C05 246 98.4 250 100 248 99.2 247 98.8 
A4C06 249 99.6 250 100 249 99.6 248 99.2 
A4C07 250 100 247 98.8 248 99.2 242 96.8 
A4C08 184 73.6 225 90 237 94.8 241 96.4 
A4C09 37 14.8 198 79.2 242 96.8 235 94 
A4C10 250 100 248 99.2 249 99.6 248 99.2 
A4C11 171 68.4 250 100 247 98.8 244 97.6 
A4C12 117 46.8 248 99.2 247 98.8 248 99.2 
A5C01 125 100 99 79.2 93 74.4 56 44.8 
A5C02 123 98.4 82 65.6 51 40.8 33 26.4 
A5C03 115 92 69 55.2 35 28 20 16 
A5C04 125 100 111 88.8 115 92 95 76 
A5C05 125 100 123 98.4 119 95.2 107 85.6 
A5C06 125 100 124 99.2 124 99.2 110 88 
A5C07 125 100 96 76.8 64 51.2 55 44 
A5C08 60 48 28 22.4 13 10.4 10 8 
A5C09 8 6.4 22 17.6 9 7.2 4 3.2 
A5C10 125 100 103 82.4 94 75.2 38 30.4 
A5C11 125 100 122 97.6 83 66.4 47 37.6 
A5C12 125 100 118 94.4 48 38.4 23 18.4 
A6C01 125 100 125 100 125 100 125 100 
A6C02 125 100 122 97.6 122 97.6 119 95.2 
A6C03 125 100 123 98.4 123 98.4 117 93.6 
A6C04 125 100 123 98.4 121 96.8 118 94.4 
A6C05 125 100 123 98.4 125 100 124 99.2 
A6C07 125 100 125 100 124 99.2 125 100 
A6C08 125 100 125 100 124 99.2 125 100 
A6C09 125 100 124 99.2 125 100 123 98.4 
A6C10 125 100 122 97.6 122 97.6 121 96.8 
A6C11 125 100 125 100 125 100 125 100 
A6C12 125 100 125 100 125 100 125 100 
Note: conditions when one class model did not converge 100% in bold type. 
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