
1 
 

 

The Use of LiDAR Remote Sensing in Measuring Forest Carbon Stocks 

 

 

 

 

 

Michael Alan Salopek 

North Huntingdon, Pennsylvania 

 

 

 

Bachelor of Arts, University of Virginia, 2012 

 

 

 

 

 

 

 

A Thesis presented to the Graduate Faculty 

of the University of Virginia in Candidacy for the Degree of 

Master of Arts 

 

 

Department of Environmental Sciences 

 

 

University of Virginia 

May, 2013 

 

 

 

  

  

  

  

 

 

 

 



2 
 

 

Table of Contents 

1. Introduction 

2. What is Lidar 

2.1 Overview 

2.2 What is Lidar 

2.3 Lidar Terminology 

2.4 Principles and Techniques 

2.5 Overview of Applications 

2.6 History 

3. The Use of Lidar in Biomass Estimation 

3.1 Systems 

3.1.1 Space-born 

3.1.2 Airborne 

3.1.3 Terrestrial 

3.2 Data Acquisition 

3.2.1 First Return, Last Return 

3.2.2 Multi Return 

3.2.3 Full Wave Form 

4. Methods and Models 

4.1 Data Pre Processing 

4.1.1 Filtering 

4.1.2 Interpolation 

4.1.3 DTM, DSM, CHM 

4.1.4 Quality Assessment 

4.2 Methods 

4.2.1 Single Tree Detection, Tree Characteristic Detection 

5. Examples of Studies in Estimating Carbon Stocks 

6. Conclusion 



3 
 

 

Abstract 

 Atmospheric carbon levels have increased dramatically since the industrial revolution, 

creating an increasing concern in forming a better understanding of the global carbon budget. A 

key part of this budget involves forest biomass and its ability to act as a source of carbon sink or 

carbon gain. It is understood that terrestrial areas serve as a large source of carbon sink in terms 

of the global carbon budget, however the degree of spatial variation, particularly with respect to 

densely vegetated areas, is less certain.  Advancements in LiDAR technology, an active remote 

sensing instrument, have been key to researchers’ abilities to accurately measure these types of 

forest parameters.  Lidar instrumentation can be used at three different scales including 

terrestrial, airborne, and space-born.  Researchers have developed strategies involving the use of 

airborne lidar coupled with satellite data to develop cost-effective, high-resolution maps of 

carbon stocks and emissions in these densely vegetated areas. Airborne lidar has helped these 

researchers to observe to effects of forest degradation and secondary growth at large scales, such 

as the Columbian Amazon, which saw an increase in regional carbon emission of 47% from 

1999 to 2009 dude to selective logging with an offset of only 18% provided by secondary 

growth. Great improvements have also been made with respect to space-born lidar data, 

particularly with the launch of ESA’s Biomass satellite, which is set for launch in 2020. Biomass 

will assay the entire range of global vegetation on a 6-month rotation, providing useful 

information to create an accurate representation of the global carbon cycle. This paper will 

highlight the importance of lidar remote sensing in estimating forest biomass, provide 

information on the instrument and data processing techniques, and discuss recent work involving 

the application of lidar data in highly productive regions. 
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1. Introduction 

 

In recent years much attention has been paid to estimating forest biomass due to its close 

relationship to carbon storage, which is crucial in understanding the carbon cycle in the 

environment. Biomass is typically defined as the oven-dry mass of the above ground portion of a 

particular group of vegetation (Brown, 1997, 2002), which can provide insight on how much 

carbon is stored in a given forested area. Global carbon emissions have increased since the 

industrial revolution.  According to the International Energy Agency (IEA), atmospheric levels 

approached 400 ppm in 2012.  An accurate estimation of terrestrial carbon storage is required to 

determine its role in the global carbon budget, to estimate the degree that anthropogenic 

disturbances such as land use are changing the cycle, and for monitoring mitigation efforts that 

rely on carbon sequestration through reforestation (Lefsky et al. 2002).   

Light detection and ranging, also known as LiDAR (or lidar), an active remote sensing 

technology, has been instrumental in the ability to accurately measure forest inventories. 

Traditional remote sensing systems detect vegetation cover using passive optical-imaging 

sensors. Passive systems use the variability in vegetation spectral responses from the visible and 

near-infrared spectral regions to assay vegetation condition. These passive systems have allowed 

for the use of widely accepted algorithms such as the Normalized Difference Vegetation Index 

(NDVI) which has been correlated to vegetation structural parameters such as Leaf Area Index 

(LAI) of canopy the canopy (Fallah Vazirbad and Karslioglu 2011).  

 Unlike passive optical imaging sensors, which usually provide detailed measurements of 

horizontal distribution in vegetation canopies, lidar systems can produce more accurate data in 
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both the horizontal and vertical dimensions (Lim et al., 2003). Although passive systems tend to 

be limited to a horizontal scope, some instruments are capable of producing three-dimensional 

imagery. For example, the Corona Satellite, which was declassified in 1995 was equipped with 

fore and aft cameras, pointing at a 15 degree angle, one forward and one backward. This 

orientation allowed for the creation of panoramic three-dimensional imagery (Greer 1960). 

Lidar-based instruments from space-borne, airborne, and terrestrial platforms combined with 

plot-level calibration provide a direct means of measuring forest characteristics, particularly 

aboveground carbon density (ACD), which were previously unachievable by passive remote 

sensing imagery (Asner et al., 2012).  

 Lidar remote sensing systems have been used to measure various kinds of forest 

parameters including tree height, crown size, diameter at breast height (DBH), canopy density, 

crown volume, tree species, and aboveground carbon density (Means et al., 1999, 2000).   

 

Although lidar instruments are capable of producing highly accurate data over vast areas, 

direct estimation of carbon storage in moderate to high biomass forests remains a major 

difficulty. While remote sensing has had considerable success in measuring vegetation 

characteristics in areas where plant canopy cover is relatively sparse, quantifying vegetation 

structure where LAI exceeds three has been less successful (Lefsky et al., 2002).  High LA1 

forests, which generally have high above-ground biomass, occur in the boreal, temperate and 

tropical regions. These forests cover less than 35% of the Earth's terrestrial surface, yet account 

for 67% of terrestrial net primary productivity (NPP) and 89% of terrestrial biomass (Lefsky et 

al., 2002).  Given their prominent role in global biogeochemistry and the likelihood that these 

highly productive areas could be essential for carbon sequestration, a better classification of high 



6 
 

biomass forests using remote sensing data is needed. This paper will discuss the role of lidar 

remote sensing in estimating forest biomass, provide information on the instrument itself, as well 

as highlight recent work in implementing lidar data in highly productive regions.   

 

2. What is Lidar 

 

This section will discuss the basic components and principles of lidar technology. It will 

include a description of how lidar works, commonly used terminology and their meaning, a brief 

overview of applications, as well as a section on the history and development of lidar. Later 

sections will go into further detail explaining how lidar is used in biomass estimation, methods 

and models of operation, as well as the discussion of key studies in recent years.  

2.1. Overview 

 

Lidar has become an established method for collecting very dense and accurate elevation 

data across landscapes, shallow-water areas, glacial ice, and other designated study sites. This 

active remote-sensing technique uses laser light pulses compared to radar remote-sensing 

methods, which uses radio waves. Lidar instruments are typically flown with planes or used via 

satellite to gather information. They can rapidly collect data points over vast areas.  

Lidar data can also be collected from ground-based mobile and stationary platforms. These 

later collection techniques are capable of producing extremely high accuracies and point 

densities, but they are limited to easily-accessible areas. The collection of elevation data using 

lidar has several advantages over most other methods. These advantages include higher 

resolutions, centimeter accuracies, and ground detection in forested terrain (NOAA 2012). The 
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following section will discuss the basics of lidar, common terminology, a brief history, and some 

common applications of lidar data. 

2.2. What is Lidar 

 

LiDAR is an acronym for light detection and ranging. This is a type of remote sensing 

technology that emits intense, focused beams of light and measures the time it takes for the 

reflected beams to be detected by the sensor. This information is then used to compute ranges, or 

distances, to objects. In this manner, lidar is analogous to radar or radio detection and ranging. 

However, lidar is based on discrete pulses of laser light, allowing it to accurately detect and 

locate much smaller objects. Lidar instruments are able to generate three-dimensional 

coordinates of the target object, such as x,y,z or latitude, longitude, and elevation, which are 

computed from 1) this time difference between the emission and return of the laser pulse, 2) the 

angle at which the pulse was emitted, and 3) the absolute location of the sensor on or above the 

Earth’s surface.  

As stated previously, there are two classes of remote sensing technologies, passive systems 

and active systems, which are differentiated by the source of energy used to detect the desired 

target. Lidar technologies are active systems because they emit pulses of light, i.e. the laser, and 

detect the light which is reflected back to the sensor. This ‘active’ nature allows lidar data to be 

collected at night when the air is usually clearer, however unlike radar, lidar cannot penetrate 

clouds, rain, or dust and must be used under fair weather conditions.  

Lidar instruments are able to measure the Earth’s surface very rapidly at sampling rates 

greater than 150 kilohertz and 150,000 pulses per second. The resulting product is a densely 

spaced network of highly accurate georeferenced elevation points (Figure 1), often called a point 
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cloud, that can be used to generate three dimensional representation of the Earth’s surface 

features. Typically, lidar derived elevations have absolute accuracies of about 15-30 centimeters 

for the older systems data and 10-20 centimeters for more recent devices, while relative 

accuracies are even better. The accuracy of lidar data is an important aspect, which will be 

discussed in further detail in later sections.  

 

 

Figure 1: An example of lidar point cloud data taken of a forest canopy. These types of images 

are made possible due to the ability to understand the position and orientation of the sensor when 

laser pulses are emitted, the calculation of the three-dimensional coordinate for each laser hit, 

and the ability to achieve multiple hits per square meter. (Forest Inventory Research Group at 

UMB-INA) 
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2.3. Lidar Terminology 

A discussion of lidar often includes technical terms that describe the level of accuracy, data 

collection, and the ensuing processing steps. Below is a list of several common terminologies 

and abbreviations associated with lidar as well as a brief description taken from the National 

Oceanic and Atmospheric Administration (NOAA 2012). 

LAS- and abbreviation for laser file format. The LAS file format is a public file format for the 

interchange of three dimensional point cloud data between data users. LAS is a binary file format 

that maintains information specific to the lidar nature of the data while not being overly complex.  

RMSE- abbreviation for root mean square error, which is a measure of the accuracy of the data. 

This is similar to the measure of standard deviation if there is no bias in the data.  

FVA- Fundamental Vertical Accuracy. A measure of the accuracy of the data in open areas at a 

95% confidence level. This is calculated from the RMSE using the equation           

    

Classification- data that have been processed to define the type of object from which the pulses 

have been reflected. The most common categorization is to classify the data sets for points that 

are considered “bare earth” and those that are not, which are “unclassified”. 

Return Number- many lidar systems are able to capture the first, second, third, and last return 

from a single laser pulse. The return number can be used to help determine what the reflected 

pulse is from such as the canopy, understory, or surface.  
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Point Spacing- a measure of how close the laser points are to each other, which is analogous to 

the pixel size of aerial images. The point spacing determines the resolution of the derived 

gridded products.  

Pulse Rate- the number of discrete laser emissions per second. Systems used more recently have 

been able to emit up to 300,000 pulses per second. More common data collection methods are on 

the order of 50,000 to 150,000 pulses per second.  

Intensity Data- a measurement of the strength of the laser return. These values represent how 

well the object reflected to wavelength of light used by the laser system (usually in nanometers).  

These data resemble a black and white photo but cannot be interpreted as such.  

RTK GPS (Real Time Kinematic GPS)- a satellite navigation that uses the carrier phase that 

transmits the Global Positioning System  signal instead of the GPS signal itself. The actual GPS 

signal has a frequency of about 1 megahertz, while the carrier wave has a frequency of about 

1500 megahertz. The carrier phase is much more costly to use, however it produces a much more 

accurate position in relation to its higher frequency.  

DEM or Digital Elevation Model- a surface created from elevation point data to represent the 

surface topography. A DEM is more often and easily used in a geographic information system 

(GIS) or computer-aided design (CAD) application than the raw point data it originates from.  
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2.4. Principles and Techniques 

 

The basic concepts of lidar technology are fairly straightforward (Figure 2). That is, measure 

the time it takes a laser pulse to strike an object then return to the sensor, which has a known 

location due to direct georeferencing systems, determine the distance using the travel time, 

record the laser angle, then compute where the reflecting object (surface, tree, canopy, etc.) is 

located in three dimensions using this information. However, to achieve such a high level of 

accuracy, this process is much more complicated. It is crucial to know the location of the 

airplane (within about one centimeter) as if flies at speeds over 100 miles per hour, shifting in all 

directions, while keeping track of hundreds of thousands of lidar pulses per second. Fortunately, 

several technologies have been implemented which make this type of rapid data capture possible 

including the use of the Global Positioning System (GPS) and precision gyroscopes which allow 

for an accurate measurement of the of the aircraft’s absolute location.  
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Figure 2: A schematic diagram of airborne lidar remote sensing. Georeferencing of lidar points 

uses GPS to derive the position of the aircraft, INS to determine the pointing direction of the 

sensor, and the lidar range to extrapolate the coordinates of a target point on the ground. Source: 

Geospatial Modeling and Visualization.  

 

Key advancements in Inertial Navigations Systems (INS) or Inertial Measuring Units (IMU) 

have been influential in making the exact positioning of the plane possible. These types of 

systems are capable of measuring movement in all directions and combining these measurements 

into a single position. Although major advances have been made, these systems are not perfect 

and lose precision after just a few seconds. To account for this lack of this lack of precision, a 

very highly sophisticated GPS unit, which records several types of signals from the GPS 

satellites, is used to “update or reset” the INS or IMU every few seconds. The GPS positions are 
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recorded by the plane and ground station with a known position. The ground station is used to 

provide a correction factor to the GPS position recorded by the plane.  

Much like the INS and IMU’s, lidar systems have improved considerably in recent years. 

Early commercial units were capable of 10,000 points or 10 kilohertz per second and were much 

larger. More recent instruments are lighter, compact, have higher angular precision, and can 

process multiple laser returns in the air. This is done by emitting a second laser pulse before 

returns from the previous laser shot are received, which allows for pulse rates of over 300,000 or 

300 kilohertz per second. Multiple return systems, which are quite common, can capture up to 

five returns per pulse. This can increase the amount of data by 30% or more (100,000 

pulses/second ~ 130,000 returns/second) and increases the ability to study the three-dimensional 

structure of features above the ground surface such as the forest canopy and understory. The 

different forms of data acquisition, including multiple returns, will be discussed in greater detail 

in later sections.  

2.5. Overview of Applications 

 

As stated previously, lidar has several advantages over many other remote sensing 

techniques. Chief among these advantages are high accuracies, high point density, large 

coverage, and the ability to resample quickly and efficiently. This allows for the possibility to 

map discrete changes at a very high resolution and cover large areas uniformly, quickly, and 

accurately.  Some common applications of lidar data include updating and creating flood maps, 

coastal change mapping, and forestry studies. The need for more accurate flood insurance maps 

was a major driver in the development and use of lidar data. It allowed researches to more 

accurately delineate flood boundaries, resulting in a more precise interpretation of flood 
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insurance policies. Mapping the coastal zone is an application the highlights the use of lidar data 

along with Geographic Information Systems (GIS), which increases the utility of both data sets. 

The coastal zone changes on very short timescales, is densely populated, and contains many 

natural habitats that are highly dependent on elevation. With an increasing concern over sea-level 

rise, lidar data can be applied to restoration solutions in critical areas, as well as sustainable 

planning to minimize future impacts. Forest biomass estimation often involves plot sampling 

which are then extrapolated to represent an entire forest stand. These methods are often very 

costly, time consuming, and make it difficult to study forested areas that are not easily 

accessible. Lidar data can be used to count trees and measure tree height, crown width, and 

crown depth. From these measurements, the standing volume of timber can be estimated on an 

individual tree basis, or at the stand level with a larger footprint. Although the use of lidar data 

covers a wide range of applications, this paper will focus more closely on its use in forest 

ecology, with a particular focus on biomass estimation.  

 

2.6. History 

 

Lidar technology was originally developed over 40 years ago for meteorological uses relating 

to mapping particles in the atmosphere. These ground based systems had far less positional 

complexity than airborne mapping devices. The development of global positioning systems in 

the 1980’s opened up the applications to moving sensors, or airborne lidar. Lidar gained further 

recognition in the 90’s with the development of the first commercial airborne lidar system, along 

with several government projects such as SHOALS and NASA’s Clementine project. With such 

a gain in popularity in recent years, the further development of lidar, along with its ability to 
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obtain large amounts of detailed data, has allowed for the standardization of data formats and 

processing techniques, making this instrument even more alluring to research scientists spanning 

a wide range of fields including meteorology, geology, transportation, ecology, agriculture, and 

archaeology. 

 

3. The Use of Lidar in Biomass Estimation 

 

Although lidar can be used for a variety of study areas this paper will focus more closely on 

its use in biomass estimation and measuring carbon storage in forested areas. Section 3 covers 

the systems of lidar including the three different types of platforms: space-borne, airborne, and 

terrestrial. It will also discuss how data is acquired using lidar technology in first and last return, 

multiple return, and full wave form.  

 

3.1. Systems 

 

Lidar systems make use of the time of flight principle of phase-based differences to measure 

the distances of objects. As discussed earlier, this is done by detecting the time interval between 

the sent and return laser pulses which are backscattered from an object. The lidar point cloud of 

returns generates a three-dimensional digital representation of the vegetation structure in which 

each point is identified by a set of XYZ coordinates (See figure 2) (Maas et al 2008, Cote et al 

2011).  

A lidar system consists of a laser ranging unit, a scanning instrument such as an oscillating 

mirror or rotating prism, and a direct geo-referencing navigation unit (which uses the global 
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positioning systems – GPS and inertial navigation system- INS discussed above). The choice of 

the platform depends mainly on the desired application and scale of study. Space-borne systems 

map the globe for researchers and experimental purposes. Airborne systems collect data for 

national or regional investigations. Terrestrial platforms are frequently used to produce three 

dimensional models of man-made structures or small scale natural resource studies such as small 

forested areas. With several different systems, the basic principle and technical specification for 

a sensor installed on a platform such as an Earth orbiting satellite, airplane, helicopter, tripod, or 

vehicle changes due to the variety of desired applications (Shan and Toth 2009).  

In most cases, commercial systems are designed to receive data from a small footprint, such 

as a 0.20-3.00 meter diameter depending on the flying height and beam divergence, with higher 

repetition frequency (Mallet and Bretar 2009).  These systems acquire a high point density and 

an accurate height determination. However, small footprint systems often miss tree tops which 

cause under estimation in tree height. Therefore, it is hard to define whether the ground has been 

detected under dense vegetation or not, making it difficult to estimate ground and tree heights 

(Dubayah and Blair 2000).  On the other hand, large footprint systems such as those with a 10-

70m diameter, increase the chance to hit both the ground and the tree top which eliminates the 

biases of small footprint systems. Therefore, the return waveform gives a record of vertical 

distribution of the captured surface within a wider area, providing important information for 

biomass estimation. The first experimental full waveform topographic systems were large 

footprint systems which were mostly carried by satellite platforms. At higher flying heights, 

pulses must be fired at a lower frequency and with a higher energy to penetrate into the forest 

canopy as much as possible (Fallah Vazirbad and Karslioglu 2011, Mallet and Bretar 2009).  
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3.1.1. Space-borne 

 

Until recently, the geoscience laser altimeter system (GLAS) was the only lidar operating 

space-born system. GLAS was an important part of the NASA earth science enterprise carried on 

the ice, cloud, and land elevation satellite (ICESat) from January 12, 2003 (Afzal et al., 2007).  

This instrument contained three lasers, each of which had a 1064 nm lidar channel for surface 

altimetry and dense cloud heights and a 532 nm lidar channel for the vertical distribution of 

clouds and aerosols (NASA, 2007).  The main objective of the GLAS instrument was to measure 

the ice sheet elevations and changes in elevation through time. Secondly, GLAS detected clouds, 

atmospheric aerosol vertical profiles, terrain elevation, vegetation cover, and sea ice thickness 

(Figure 3). ICESat was ultimately limited by the failure of the three lasers onboard GLAS in 

October 2009 and retired later in February 2010.  Fortunately, the European Space Agency has 

developed a new satellite known as BIOMASS which is set for launch in 2020. The Satellite will 

be equipped with a P-Band Synthetic Aperture Radar (PAR), which aid in the development of 

highly accurate maps of tropical, temperature and boreal forest biomass (ESA 2012).  As 

discussed earlier, these forest systems contain rather dense vegetation making it difficult to 

acquire data using terrestrial and airborne technology. BIOMASS will ultimately aid in 

improving the understanding of the global carbon cycle and reduce uncertainties of carbon stocks 

and fluxes associated with the terrestrial biosphere (ESA 2012).    
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Figure 3: An illustration of ice sheet elevation and cloud data over Antarctica taken from the 

GLAS instrument onboard ICESat in February 2003. Source: NASA 

 

Nevertheless, only a small number of studies have used airborne lidar data to evaluate the 

DTM which was derived from satellite laser altimetry GLAS data over forested areas. GLAS 

which only operated on board ICESat, records the full waveform returns, and provides a high 

precision elevation data with nearly global spatial coverage at a low end user cost (Fallah 

Vazirbad and Karslioglu 2011). Space-borne data are mainly used to model the global canopy 

height for evaluating carbon budget (Xing et al., 2010). Duong et al. (2007, 2009) compared 

terrain and feature heights derived from the satellite (GLAS) observations with a nationwide 

airborne lidar dataset (the Actual Height model of the Netherlands: AHN). Their findings 

showed little difference between the two derived heights with an average below 25 cm over bare 

ground and urban areas. Over forests, the differences were even smaller, but with a slightly 



19 
 

larger standard deviation of about 60 cm (Chen, 2010). Harding et al. (2001) used GLAS full 

waveform data to generate an average forest canopy height model (CHM). Their results 

highlighted the variations of important canopy attributes including height, depth, and the over-

story, mid-story, and under-story forest layers. Sun et al. (2007,2008) applied GLAS waveforms 

to estimate the forest canopy height in the flat area in Northern China mountains. They found 

that the ICESat-derived forest height indices were well correlated with the field-measured 

maximum forest height (       ). 

 

3.1.2. Airborne 

 

An extensive test of the laser profiler was performed at the Stuttgart University (1990) where 

Differential Global Positioning System (DGPS) and Inertial Measurement Unit (IMU) was 

integrated in the laser system for the first time, which provided precise positioning and 

orientation (attitude) of the airborne platform (Fallah Vazirbad and Karslioglu 2011). Soon after 

that, the scanning mechanism was designed by Optech Company (Canada - ALTM system). The 

laser profiler was developed in forestry research by NASA’s Goddard space flight center (GSFC) 

on the basis of Riegl laser rangefinder. It contained a 20 ns wide laser pulse and repetition rate of 

2 kHz. There are three main commercial suppliers of airborne laser scanning systems, Optech 

International Inc., Leica Geosystem, and Riegl which are producing data for the forest inventory 

and biomass estimation researches. Besides these commercial systems, a number of other 

systems built by US government research agencies are offered for scientific research purposes, 

like NASA, ATM, RASCAL, SLICER, Laser Vegetation Imaging Sensor (LVIS), and ScaLARS 

(Fallah Vazirbad and Karslioglu 2011). LVIS has been developed by NASA for topography 
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mapping, elevation, and forest coverage studies (Figure 4). A special design of scanning system 

such as the full waveform is required for the scanning of vegetation covered regions to capture 

the reflected pulse in different returns. This scanner has been used mostly throughout the United 

States (California, eastern states) and Central America (Costa Rica and Panama). It was also 

applied in Amazonian forests of Brazil to generate direct measurements of canopy height and a 

relative aboveground biomass map. (Shan and Toth, 2009) 

 

Figure 4: An example of NASA’s LVIS scan and beam pattern. This image contains 

approximately 100 beams across a 2km wide swath. Colors represent surface elevation (blue is 

low, white/yellow is high). Source: NASA 

Perhaps one of the most advanced and influential airborne systems developed in recent years 

is the Carnegie Airborne Observatory. The CAO is a unique aircraft equipped with specialized 

optical, chemical, and laser sensors, which together form AToMS, or the Airborne Taxonomic 

Mapping System. AToMS allowed its founder, Gregory Asner, and his team to create high-

resolution, three-dimensional maps of vegetation structure and plant communities throughout 

tropical forests. While typical satellite forest monitoring programs provide a breadth of coverage, 
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CAO offers immense detail, capturing images of individual trees at a rate of 500,000 or more per 

minute. This system has the ability to transform how tropical research is conducted. It can help 

alleviate uncertainties about carbon emissions from deforestation and different forms of forest 

management, both of which are critical to REDD, the U.N. program for Reducing Emissions 

from Deforestation and forest Degradation. The findings of the CAO and the use of lidar in 

tropical forest management will be discussed in further detail in later sections.  

 

3.1.3. Terrestrial 

 

Ground-based, or terrestrial, lidar systems are generally used in close-range, high accuracy 

applications, making them difficult to use in areas where large coverage is needed. The systems 

can be classified by two measuring techniques, pulse ranging or time of flight (TOF) and phase 

measuring technique. Other classifications are also available in relation to the angular scanning 

technique and coverage of scanner. These include Panorama, Hybrid, and Camera scanners. 

Panorama scanners carry out distance and angular measurements providing 360˚ angular 

coverage within the horizontal plane. Types of laser scanners, which perform unrestricted 

scanning around the rotation axis, fall in the category of Hybrid scanners. The third category of 

scanners carrying out distance and angular measurements over a limited angular range and in a 

specific field of view is called Camera scanners (Shan and Toth, 2009). For the range 

measurements, it is necessary to obtain information about the exterior orientation elements 

(positions and orientation or attitude angles) of platforms of the terrestrial laser scanner which 

can be detected during the calibration procedure. Sensitivity of tree volume estimates, which are 

related to different error sources in the spatial trajectory of the terrestrial lidar, has been analyzed 
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by (Palleja et al. ,2010) where they found that the tree volume is very sensitive to the errors in 

determining distance and orientation angle. Cote et al. (2011) proposed to estimate the tree 

structure attributes by means of terrestrial Lidar. They concluded that the main limitation of the 

use of terrestrial system was the effect of object shading and wind. When considering biomass 

estimation terrestrial laser scanning may best contribute as a support system to airborne and 

space-borne lidar.  

 

3.2. Data Acquisition 

 

The measurement process of the laser scanner can be represented by the frequency, intensity, 

phase, and the travel time of the sent and returned signal. The transmitted and received energy 

are formulated similar to the Radar equation (Shan and Toth, 2009). This can be expressed as an 

integral (Mallet and Bretar, 2009) and the range is measured in pulsed systems as seen below: 

                                                             Equation 1 

Where c is the speed of light, t is the two way laser light travel time, and R is the distance 

measured (Shan and Toth 2009).  The equation of the continuous waveform can be used as 

follows: 

      (    )                                                   Equation 2  

Where θ is the phase difference and λ is the wavelength which is operationally between 600 and 

1000nm (the Electromagnetic infrared range).  This interval is not eye-safe, therefore the 

optimum performance must be balanced against safety considerations (Fallah Vazirbad and 

Karslioglu 2011). 
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In addition to positional data, each lidar observation must also contain the scan angle for each 

shot together with the measurement of reflectance from the target. Since the calculation of range 

for the detected pulse involves the elapsed time, the precision of time measurement is of vital 

importance, especially considering that 7ns sensitivity is needed to distinguish 1m object. This 

plays a decisive role in the scanning of vegetated areas. In some methods a fraction is used as a 

constant in the sent and return pulse. In other methods, a centroid of the pulses is taken as a time 

of reference (Fallah Vazirbad and Karslioglu 2011).  

The characteristics of forest inventory from both discrete return (first, last, multi returns) and 

full waveform recordings are extensively studied by different Lidar approaches such as tree 

crown detection and biomass estimation (Harding et al., 2001; Coopes et al., 2004; Jang et al., 

2008; Brantberg et al., 2003), which will be further discussed below.  

  

3.2.1. First Return, Last Return 

 

Lidar systems can be categorized by the way they process the waveform reflections for each 

pulse as well as the size of the footprint they record. Systems that record footprints up to 100cm 

are often called small footprint systems which typically contain frequencies around 15kHz 

(Heritage and Large, 2009).  Early small footprint systems recorded the range only up to the first 

reflecting object of the first pulse in discrete returns. Fundamentally, a map of all first pulses 

would result in a model showing only the height of all surface objects. This requires the 

recording of the last reflecting object in each return signal if there is more than one reflectance, 

which is often referred to as the last pulse. Although the last pulse data has the potential to 

penetrate vegetation canopies, in can never be assumed that the last pulse actually reaches the 
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ground and is not reflected form a higher point of the canopy. Also, where low vegetation is 

involved, the first and last pulse may be too close together to generate a reliable range and 

ultimately leads to overestimation of the terrain height.  

Discrete returns have had considerable use in the literature. Coopes et al. (2004) used 

airborne discrete returns to indicate canopy crown and height while Lim and Treitz (2004) 

collected airborne discrete first and last returns to estimate aboveground biomass. First and last 

returns are also used by Thomas et al. (2006) but the effects of which are not explained on the 

results of canopy height models.  

Fallah Vazirabad and Karslioglu (2010) extracted the tree tops experimentally from the first 

pulse data because it contains more canopy returns than the ground ones. In discrete return 

systems, the small diameter of footprints and the high repetition rates of these systems allow for 

high spatial resolution, which can yield dense distributions of sampled points. Therefore, discrete 

return systems are preferred for detailed mapping of ground and canopy surface. Lastly, these 

types of data are readily and widely available, with ongoing and rapid development in forestry 

studies.  

3.2.2. Multi Return 

 

The capability of detecting different returns in the closely placed terrain surfaces depends on 

instrument parameters such as the laser pulse width (the shorter the better), detector sensitivity, 

response time, system signal to noise performance, and a few others. In the case of discrete 

returns more detectors are needed. With this technology the number of pulses between first pulse 

and last pulse is limited by the number of detectors. That is, the more detectors available, the 

more pulses that can be used. Thus, there are systems with a second and third pulse aside from 
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the first and last pulse record. In contrast to small footprint systems, large footprint systems (10-

100 m) open up the possibility of recording the entire return pulse. Discrete return airborne laser 

systems (ALS) have the benefit of providing data over a large area, but are restricted by their 

laser pulse return density (points ⁄m
2
 ratio). A system’s multiple return recording capabilities are 

able to produce a point cloud density between 1 and 20 points/m
2
 optimistically. Often this level 

of point density is unsatisfactory to produce a comprehensive 3D model, especially in the 

vertical view (Moorthy et al. 2011). 

When multiple return lidar is used the amount of signal returned as the pulse passes through 

the canopy triggers the recording of an x,y,z point location at several locations within the canopy 

and ground surface (see Figure 5).  As the laser pulse is reflected by the canopy and sub-canopy 

forest structure the amount of laser light available to record returns decreases with depth as it 

penetrates the vegetation. Therefore the number of first and second returns is typically much 

larger than additional or last of many returns. In order to detect the ground surface in dense 

forested areas it is often needed to increase the amount of energy per pulse, lower the flight 

altitude to decrease the pulse travel distance, or increase the pulse density.  
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Figure 5: An example of multiple lidar returns from an individual tree. The amount of laser light 

available decreases with depth in the forest canopy, making it difficult to survey densely forested 

areas. Source: Pennsylvania State University: Department of Geography. 

 

3.2.3. Full Wave Form 

 

The problems which are mentioned previously in first and last pulse systems for vegetated 

regions can be alleviated with full waveform technology (Shan and Toth, 2009). For full 

waveform lidar, energy is reflected back above a specific noise threshold and recorded for given 

time intervals (see Figure 6). The sensitivity of the sensor is at the level of a few photons per 

interval (typically 15 cm), and as a result, even small volumes of vegetation can influence the 

shape of the return waveform. The waveform data can be translated into a detailed description of 
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vertical canopy distribution (location, density, and volume), and can be used to model light 

transmittance in forest canopies. With full waveform lidar data, canopy heights can be calculated 

by converting the elapsed time difference between peaks in the amplitude into range values. The 

advantage of full waveform data is the fact that there is enough precision in the vertical recording 

for a better estimation of the vertical distribution of trees structure. These devices have been 

primarily designed for measuring vegetation properties. Extensive research (Harding et al, 2001; 

Lefsky et al., 2001, 2002; Reitberger et al., 2009) has shown that waveform shape is directly 

related to canopy biophysical parameters including canopy height, crown size, vertical 

distribution of canopy, biomass, and leaf area index.  

Harding et al. (2001) discussed the canopy height profile detection from full waveform raw 

data provided by SLICER. The advantages of full waveform recording include an enhanced 

ability to characterize canopy structure, the ability to concisely describe canopy information over 

increasingly large areas, and the availability of global data sets. Examples of these data include 

airborne systems such as SLICER and LVIS, and satellite data like of GLAS. The other 

advantage of full waveform systems is that they record the entire time varying power of the 

return signal from all illuminated surfaces on the canopy structure. It is also important to note 

that previous space-borne lidar data provides only full waveform recordings (Lefsky et al., 

2002). 

 



28 
 

 

Figure 6: In a full waveform lidar the entire return pulse is digitized and recorded. In a discrete 

multiple-return lidar only the peaks are recorded. The greater precision of full waveform lidar 

creates a more accurate representation of forest canopy structure compared to multiple return 

data (see Figure 5).Source: Pennsylvania State University: Department of Geography 

 

4. Methods and Models 

 

This section is organized into two parts containing data pre-processing and methods. Data 

pre-processing methods in turn are divided into four parts. In the filtering methods section some 

efficient algorithms are explained in minor detail. Apart from different interpolation methods the 

generation of the digital terrain model (DTM), digital surface model (DSM), and canopy height 

model (CHM) is also discussed. Quality assessment of laser data is carried out within section 



29 
 

4.1.4. Additionally, the quality of filtering methods, interpolation methods, DTMs, DSMs, and 

CHMs results and their performances are also evaluated. The methods section considers those 

methods used in biomass estimation as well as other single tree and tree characteristic detections. 

Later sections will discuss the applications of lidar using the models for biomass estimation, 

recognizing the advantages of lidar systems for biomass estimation.   

 

4.1. Data Pre Processing 

 

Data pre-processing is a critical step to consider when using lidar data. Choosing the proper 

filtering method plays an important role in the quality of results. In this way, the quality of the 

results cannot be expected to be better than the data accuracy itself. However, all interpolation 

methods are more than capable of generating precise three-dimensional models considering the 

vast quantity of readily available lidar data.  

 

4.1.1. Filtering 

 

The purpose of filtering is to remove vegetation points from the data.  Figure 7 shows all 

points before filtering (left) and the terrain points left after filtering is complete (right). The 

terrain points extracted from the point cloud of lidar data sets are used as an input to generate 

Digital Terrain Models (DTM). The first pulse data sets contain vegetation points and terrain 

points in the forest area. Numerous kinds of filtering methods have been developed to classify 

the terrain and vegetation points in the point cloud (Pfeifer et al., 2004; Tovari and Pfeifer, 

2005).  Different concepts for filtering, with different complexity and performance 
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characteristics have been proposed in mainly four categories such as morphological, progressive 

densification, surface based, and segmentation based filters. There are also developments, 

extensions, and variations for these filter methods.  

 

 

Figure 7: The use of filtering to remove vegetation points. This allows for the creation of DTM’s 

or digital terrain models. (Fallah Vazirabad and Karslioglu 2011).  

 

The morphological filter was derived by Vosselman (2000) from the mathematical 

morphology definition. This method assumes that the smaller the distances between a ground 

point and its neighboring points, the lesser the height difference, which allows for the proper 

identification and elimination of outliers. The progressive densification filter, which was 

developed by Axelsson (2000), works progressively by classifying points which belong to the 

ground. Surface based filters assume from the beginning that all the points lying on the ground 

form a surface. Then a fitting procedure is applied to extract the points which do not belong to 

the ground (Pfeifer et al. 2001).  Segmentation filters are developed as the fourth category. This 

method involves the division of points into segments which are located within defined thresholds 

such as the distance and height difference between neighbor points.  
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The experimental comparison of filtering algorithms with manual methods for DTM 

extraction is introduced by Sithole and Vosselman (2004) to show the suitability of filters with 

the terrain shape. In comparison with other filtering methods, the segment base filter has turned 

out to be a more reliable method in steep slope terrain extraction using a surface growing method 

(Fallah Vazirabad and Karslioglu 2011). The most important part in this method is the accuracy 

assessment and parameter tuning. These processes for the segmentation method are performed 

by Vazirabad and Karslioglu (2009) as shown in Figure 8.  Segmented terrain points are colored 

as brown and green while white points are assumed to be the vegetation points in forest area. 

 

Figure 8: An example of the segmentation method showing a point cloud from the vertical view 

(Fallah Vazirabad and Karslioglu 2011).  

 

4.1.2. Interpolation 

 

Interpolation is necessary to produce digital models from lidar point cloud data. The idea of 

interpolation is rather simple as is uses the nearest neighbor method to estimate elevation 

(Maune, 2007). This involves searching for the set of nearest points where a new elevation value 

is then selected as the same value of the nearest point as opposed to taking the average of all 

points. An important problem associated with the nearest neighbor method is the zigzag 
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appearance of the surface (see figure 8). This can be attributed to the selecting of the nearest 

point method by defining Voroni diagrams or Theissen polygons (Fallah Vazirabad and 

Karslioglu 2011). Because of this, some types of averaging methods should be applied to the set 

of known nearest elevation points. Therefore, a weighted average such as an inverse distance 

weighting (IDW) can be introduced which works with the distances between points (Monnet et 

al, 2010; Bater and Coops, 2009). 

In lidar data, especially in vegetated areas, distances are not related to the elevations. In 

contrast, kriging or geostatistical approaches provide better results (Heritage and Large, 2009). 

However, they require more mathematically complex and computationally intensive algorithms. 

Since dense data is always available, rapid interpolation methods such as the nearest neighbor 

are preferred to use for rough surfaces in the forest areas (Fallah Vazirabad and Karslioglu, 

2010). 

Riano et al. (2003) investigated the performances of spline and nearest neighbor interpolation 

methods to generate DTMs. Spline interpolation is a special form of piecewise polynomial. The 

interpolation error in the DTM can be small even when applying the low degree polynomial. 

They concluded that there were no large differences between the spline and nearest neighbor 

results while the spline computation was three times slower. Hollaus et al. (2010) described the 

derivation of DSM employing the least square fitting method to compare it with kriging 

interpolation. They introduced a moving least square fitting technique which selects the highest 

points in the search window as surface points. This technique finds the best fitting surface to the 

set of points by minimizing the sum of squares of the residuals of the points from surface. The 

results of this study showed that the least square fitting technique produced high precision DSM 



33 
 

on rough surfaces while it needs more computational time (Fallah Vazirabad and Karslioglu, 

2011). 

 

4.1.3. DTM, DSM, CHM 

 

The terrain model function, which is described in equations 3 and 4, is computed from 3D 

points where n is the number of points (Shan and Toth, 2009) (Equaiton 4).  Heights are stored at 

discrete, regularly aligned points, and the interpolated height as the height of the grid must be 

given within a grid mesh. These grid heights are obtained by interpolation methods explained 

previously in subsection 4.1.2. These methods consist of nearest neighbor, IDW, kriging, spline, 

and least square fitting.  

                                                       4   (   )                                                      Equation 3 

                                                                 (        )                                        Equation 4 

An alternative method to the interpolations is known as triangular irregular network (TIN) 

data structure. The original points are used for reconstructing the surface in the form of TIN. For 

large point sets, triangular networks are more effective than the time consuming methods which 

are mentioned before. Digital surface models (DSM) are generated from noise removed Lidar 

data and represent the canopy top model. Digital terrain model (DTM) is basically produced by 

the laser pulse returns which are assumed to be on the terrain. (van Aardt et al., 2008). By 

subtracting DTM from DSM, CHMs can be obtained which can be seen in Figure 9. This process 

results in a digital description of the difference between tree canopy points and the corresponding 

terrain points. 
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Figure 9: Example result of subtracting the DTM from the DSM, which provides a digital 

description of the difference between tree canopy points and the corresponding terrain points 

(Fallah Vazirabad and Karslioglu 2011). 

 

4.1.4. Quality Assessment 

 

Quality assessment is necessary for each step of pre-processing. Although the utilization of 

lidar technology has increased in different applications, the development of standard 

methodologies for the quality assurance of these systems and quality control of the derived data 

has not followed the same trend. A frequently adopted procedure for quality evaluation is the 

comparison of LiDAR data and ground control points. Aside from being expensive, this 
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approach is not accurate enough for the verification of the horizontal accuracy, unless 

specifically-designed targets are utilized. The filtering methods mentioned before are likely to 

fail facing with outliers in the data, complexity of the terrain, and small vegetation which is 

completely. Most of filter algorithms start with the minimum height in data. Thus the most 

effective error is the negative outliers which are originated from multi path errors and errors in 

range finder. The vegetation on the slope also produces difficulties in filter algorithms because of 

the reflected pulses returning from the neighbor points. Therefore, filtering methods need some 

initial threshold values, which are usually defined by experience and prior information about the 

data and terrain characteristics.  

Fallah Vazirabad and Karslioglu (2011) demonstrate that the quality of segmentation filter 

deteriorates with increasing point spacing of ALS point cloud looking at Type I and Type II 

errors (table 1). Large Type I error leads to a reduced DTM accuracy as a consequence, because 

many vegetation points will be included in DTM generation. The Type II error induces some 

effects resulting from the fact that measured elevation values in lidar data are replaced by 

interpolated values for DTM, which cause a zig-zag pattern in the DTM modeling (Figure 10). 
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Table 1: An example of Type I and Type II errors taken from Fallah Vazirabad and Karslioglu 

(2011).  

Filter 

Reduced 

Sum 

Terrain Off-terrain 

Original 

Terrain A B A+B 

Off-terrain C D C+D 

Sum A+C B+D (Total) T=(A+B+C+D) 

Type I = (B*100)/(A+B) & Type II = (C*100)/(C+D) 

Total Errors = (B+C)*100/T 

 

 

Figure 10: An example of poor filtering (left) and proper filtering (right). The zig-zag pattern 

created when replacing lidar elevation data with interpolated values for DTM is easily noticed in 

the left figure. (Fallah Vazirabad and Karslioglu 2011).  
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4.2. Methods 

 

Extracting forest characteristics from lidar data for biomass estimation can be classified into 

two categories, (1) height distribution with its statistical analysis and (2) single tree detection 

containing its location and characteristics. A conventional model of biomass estimation is 

introduced by Thomas et al. (2006), which is given as: b x dbh
2
 x height, where b is the 

coefficient. This equation was developed for the whole tree as well as the components of the 

stem wood, stem bark, branches, and foliage. Once the metrics (dbh and height) are measured for 

each plot, the equation can be established to estimate biomass and biomass components. The 

coefficient b is a variable which is related to the tree species. Measurements for the deriving of 

forest biomass include destructive sampling which is the input of regression modeling. For this, 

sample trees are measured, felled, and weighted (Popescu et al, 2004). The mass of components 

of each tree is then regressed to one or more dimensions of the standing tree. As discussed in the 

previously, biomass has also been estimated by means of formerly developed models using lidar, 

which relies on tree characteristics extraction such as height, dbh, and crown size. Crown size is 

not used directly in the estimation procedure but it is useful for extracting the tree species. All 

developed models and their parameters for biomass estimation must be calibrated on the basis of 

tree characteristics. For this, four models were studied by Salmaca (2007). These include the 

power function, log transformed model, fractional power transformation, and explanatory 

function. The Power function is developed for north of the United States, the Log transformed 

model is described by a linear function, the fractional power transformation is referred to 

linearized curvilinear model, and the explanatory function is constituted by a polynomial model 

(Fallah Vazirabad and Karslioglu 2011). Under these models the Log transformed model is 

recommended which delivers the results with the unit of kilogram per every tree (Fallah 
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Vazirabad, 2007). Accordingly, tree characteristics extraction by lidar data plays an important 

role in the biomass estimation model. 

Bortlot et al. (2005) proposed to locate trees by an image processing module using the data of 

small footprint Lidar system. This method assumes that the tree crown is circular, trees are taller 

than surroundings, and tree tops tend to be convex. The algorithm begins by generating a CHM 

and works by a shadow search method to find the crown boundaries which is related to tree tops. 

After defining a threshold and fitting the circles to the smoothed and generalized CHM, the 

circles should present the top of actual trees. The algorithm eliminates the small trees which are 

close to tall ones, because it searches for related high point neighboring. They conclude that tree 

heights are associated with canopy volume and therefore should be related to the biomass. They 

used the tree heights detected from image processing as variables for a stepwise multiple linear 

regression to find an equation for biomass prediction. They evaluated the results with highly 

significant (>95%) carrying out an efficient field measurement to calibrate the number of trees 

which are detected by an algorithm based on their height. Small trees are not included in this 

evaluation. 

Lefsky et al. (1999) developed equations relating height indices to canopy area and biomass. 

Their research indicated that there are some differences in the predictive ability of the height 

indices. These differences are small, and statistically non-significant. However, the canopy 

structure information, which is summarized in the median, mean, and quadratic mean canopy 

height indices, improved the stand canopy estimation related to the maximum canopy height. 

They defined the relation between tree height, H and dbh as:  

 dbh = (H/19.1)
2.1

.                           Equation 5 
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They concluded that the result of the model using stepwise multiple regressions causes a higher 

variance value than those from the simple linear regression referring to the CHM. However, the 

predictions of the stand attributes were less applicable to the CHM than the height indices. 

Stepwise multiple regressions of basal area and biomass using the canopy height profile vector as 

independent variables increase the importance of the field measured regression equations (Fallah 

Vazirabad and Karslioglu 2011). 

Fallah Vazirabad and Karslioglu (2009) investigated biomass estimation using the method of 

single tree detection. The lidar data segmentation filtering method was applied to point clouds to 

distinguish canopy points from the terrain points which are used for the generation of a DTM. 

The CHM was then obtained by subtracting the DSM (from original data) from DTM as 

discussed previously. A single tree detection method was employed to locate trees and detect the 

height of each tree top. The diameter at breast height (at 1.37 m from ground) was extracted from 

the close relation with the tree height which is defined by field measurements for the evaluation. 

A log transformed model could then be applied for biomass estimation on the basis of the dbh 

variable. 

 

4.2.1. Single Tree Detection, Tree Characteristic Detection 

 

The objective of many previous studies was to validate the tree detection, tree height 

estimation, crown size estimation for volume, and biomass estimation of different forest types. 

Nelson et al (1988) used discrete Lidar data to collect forest canopy height data. Two logarithmic 

equations were tested to find the best model. They used a height distribution method and 

analyzed a statistical approach. Falkowski et al (2006) described and evaluated spatial wavelet 
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analysis (SWA) techniques to estimate the location, height, and crown diameter of individual 

trees from Lidar data. Two dimensional hat wavelets were convolved with a CHM to identify 

local maxima within the wavelet transformation image. Their findings correlated well with 

estimated derived using established methods that required prior knowledge or the tree height-

crown diameter relationship. They suggested that the SWA could potentially allow for the 

automated, large scale, remote estimation of numerous tree characteristics.  

Anderson et al. (2006) developed a methodology for acquiring accurate individual tree height 

field measurements within 2 cm accuracy using a total station instrument. They utilized these 

measurements to establish the expected accuracy of tree height derived from small and large 

footprint lidar data. Their results showed that the accuracy of small footprint lidar data changes 

according to the tree species. The comparison has shown that tree heights, which are retrieved 

from small footprint lidar, are more accurate than the result of large footprint data. Hopkinson 

(2007) investigated the influence of flight altitude, beam divergence, and pulse repetition 

frequency on laser pulse return intensities and vertical frequency distributions within a vegetated 

environment. The investigation showed that the reduction in the pulse power concentration by 

widening the beam, increasing the flight altitude, or increasing the pulse repetition frequency 

results in slightly reduced penetration into short canopy foliage and increased penetration into 

tall canopy foliage, while reducing the maximum canopy return heights. 

Fallah Vazirabad and Karslioglu (2010) used a technique based on the searching for the local 

maximum canopy height to detect individual trees with variable window size and shape. The 

method detects tree location, number of trees, and the height of each single tree. The variable 

window size and shape solved the problems of small tree detection and not detectable CHM 

margin regions. They emphasized the importance of field measurements and reference 
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information evaluation. Popescu and Zhao (2008) developed a method for assessing crown base 

height for individual trees using lidar data in forests to detect single tree crowns. They also 

investigated the Fourier and wavelet filtering, polynomial fit, and percentile analysis for 

characterizing the vertical structure of individual tree crowns. Fourier filtering was used for 

smoothing the vertical crown profile. The investigation resulted in the detection of 80% of tree 

crown correctly. 

Moorthy et al. (2011) utilized terrestrial laser scanning to investigate the individual tree 

crown. From the observed 3D laser pulse returns, quantitative retrievals of tree crown structure 

and foliage were obtained. Vigorous methodologies were developed to characterize indicative 

architectural parameters, such as tree height (R
2
= 0.97, rmse = 0.21m), crown width (R

2
= 0.97, 

rmse = 0.13m), crown height (R
2
= 0.86, rmse = 0.14m), crown volume (R

2
= 0.99, rmse = 2.6m. 

It seems that the first pulse return from the upside view of an individual tree in terrestrial laser 

scanning brought about the low performance in crown height while the other characteristics were 

detected well. 

Riano et al. (2004) estimated leaf area index (LAI) and crown size using lidar data. They 

concluded that LAI was better estimated using larger search windows while the crown size was 

better estimated using small window size. They generated the vegetation height above the ground 

for each laser pulse using interpolated values extracted from DTM. They also applied spline 

function interpolation in order to obtain the height above the ground. However, in this work it is 

not specified whether the first or last return was used to extract the canopy height, which effects 

the results significantly. 
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5. Examples of Studies in Estimating Carbon Stocks 

 

As stated previously, remote sensing has had notable success in measuring vegetation 

characteristics in areas of low leaf area indices (>3). On the other hand, quantifying vegetation 

structure where LAI exceeds three has been less successful (Lefsky et al., 2002).  It is well 

known that high LA1 forests, which generally have high above-ground biomass, occur in the 

boreal, temperate and tropical regions. These forests cover less than 35% of the Earth's terrestrial 

surface, yet account for 67% of terrestrial net primary productivity (NPP) and 89% of terrestrial 

biomass (Lefsky et al., 2002). Gaining a better understanding of these areas above ground 

biomass values will allow for a more accurate estimation of terrestrial carbon storage, which will 

help to more properly evaluate the global carbon budget. 

It was not until recently that the use of lidar to monitor large scale tropical forest carbon 

stocks was even considered. The high diversity of Amazon forests, coupled with the relatively 

high cost of operation and small geographic coverage create two painstaking obstacles to 

consider when using this data collection method. However, in 2010 Asner and his colleagues 

showed that when combined with a strategic use of satellite data, airborne lidar can yield cost-

effective, high- resolution maps of forest carbon stocks and emissions. This potential was not 

previously realized at large geographic scales, which would be applicable to an international 

REDD (Reduced Emissions from Deforestation and Degradation program). REDD has the 

potential to connect carbon emitters with governments positioned to reduce forest carbon losses 

through monetary compensation, which could greatly reduce global carbon emissions. In 

addition to offsetting emissions, REDD could provide indirect support for biodiversity 

conservation through reduced habitat loss, thus providing a unique solution to the ongoing 
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tension between conservation interests and other land-use needs in tropical forest regions such as 

the Peruvian Amazon (Asner et al 2012). 

 Asner and his colleagues applied their new multi-scale, multi-temporal method to analyze 

carbon stocks and emissions throughout 4.3 million ha of Amazon forest in the Department of 

Madre de Dios, Peru, an area twice that of Costa Rica’s forests. The Madre de Dios region has 

undergone relatively moderate land-use change throughout the past several years. However, the 

paving of the Interoceanic Highway in 2006, along with new timber concessions and an increase 

in gold mining, land-use pressure has drastically increased (Asner et al. 2012). With such 

alterations to the landscape being made, Asner sought to better understand the sources of spatial 

and temporal variability in carbon stocks and emissions throughout this large region of the 

Amazon. The study approach involved four steps: the regional mapping of vegetation type and 

condition using moderate-resolution satellite data, regionally stratified large-scale sampling of 

vegetation canopy 3-D structure using airborne LiDAR, converting LiDAR vegetation structural 

data to aboveground carbon density using LiDAR allometrics which were developed at a limited 

number of field plots, and finally integrating the satellite maps with the calibrated lidar data to 

set a regional, high-resolution baseline carbon estimate, and mapping of carbon emissions into 

the future (Asner et al 2012).  

 Asner’s approach was able to discover previously unknown variation in carbon storage at 

multiple scales based on both geologic substrate and forest type. They found that from 1999 to 

2009, emissions from land use totaled 1.1% of the standing carbon throughout the region. They 

also found that types of forest degradation, such as selective logging, increased regional carbon 

emissions by 47% over deforestation alone, and secondary growth provided and offset of only 

18% against total gross emissions (Asner et al. 2012). Most countries in tropical regions rely on 
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tier-I estimates issued by the Intergovernmental Panel on Climate Change (IPCC) which are 

based on average carbon values assigned for biomes. When applied to this study area, the tier-I 

estimate indicated a much greater amount of above ground biomass, perhaps highlighting the fact 

that forest carbon densities are not homogeneous at a variety of scales. Although the estimations 

may be lower, Asner’s methods generate very high-resolution and accurate results, which would 

likely yield increased investment per unit of carbon. Developing monitoring capacities at higher 

accuracies and using procedures similar to those done by Asner’s group can ultimately provide 

an increased carbon credit, boosted carbon sequestration, and improved biodiversity protection. 

  Another benefit to this method of high-resolution carbon stock and emissions monitoring 

is the fact that the costs of implementation continue to decrease. Satellite data costs are 

decreasing, and most major data sources are free of charge to end users. The Carnegie Institution 

is making its CLASlite available for free to noncommercial organizations throughout the 

Amazon region. Lidar, like aerial photography in the 70’s and 80’s, is rapidly expanding 

throughout the world with uses in a range of environmental sectors, with airborne lidar mapping 

companies operating in the Americas, Europe, Africa, Asia, Australia, and the Pacific. The 

analysis of this 4.3 million ha project was done at a cost of less than $0.08/ha, while more recent 

work in Madagascar has reduced the cost to about $0.06/ha (Asner et al. 2012). Aside from its 

accuracy and cost effectiveness, this procedure can be scaled up to the national level. This 

ground breaking work done by Greg Asner and his colleagues can serve as a future framework 

for studies to follow. Further research can perhaps provide the necessary data for programs like 

REDD to gain a better understanding of the global carbon budget, particularly in diverse tropic 

regions, allowing them to better reduce global carbon emissions while increasing carbon storage. 
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Aside from the work done by Asner and colleagues at the Carnegie Airborne Observatory, 

several others have studied the capabilities of remote sensing in densely forested areas. Dubayah 

et al. (2010) measured forest structure and biomass dynamics over the tropical forests of La 

Selva Biological Station in Costa Rica. Their results comparing lidar footprints between study 

years showed canopy top height changes similar to those expected based on land cover types. 

Gibbs et al (2007) reviewed a range of methods, including lidar remote sensing, available to 

estimate national-level forest carbon stocks. They were able create the first complete set of 

national-level forest carbon stock estimates. Clark et al (2010) aimed to evaluate small footprint, 

discrete return lidar data for the estimation of aboveground biomass in a Costa Rican tropical 

rain forest landscape. They concluded that of all lidar and hyperspectral metrics analyzed, lidar 

vegetation height is the strongest predictor of biomass in densely forested areas. Although these 

researchers, and several others, were able to achieve some level of success in using lidar to 

measure forest characteristics in densely forested areas, they have all noted the need of a space-

borne system to map carbon stocks and flux at the broad spatial scales needed to support global 

carbon-emission regulation.  

Although the work done by those discussed above has caused great advancements in the 

understanding of the global carbon budget, the launch of ESA’s Biomass satellite will perhaps 

provide an unprecedented level of understanding of the world’s forests in the carbon cycle. 

Biomass will exploit the unique sensitivity of P-band SAR together with advanced retrieval 

methods to measure forest biomass, height, and disturbance across the entire biomass range 

every six months (ESA 2012).  Biomass marks a major step forward compared to existing and 

planned satellite missions because of the distinctive capabilities of P-band SAR. These include 

P-band’s high sensitivity to biomass, its ability to display temporal coherence over repeat phases 
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separated by several weeks allowing it to retrieve forest vertical structure for the first time from 

space, and lastly its high sensitivity to disturbances and temporal changes in biomass. By 

exploiting these capabilities Biomass will create a unique archive of information on the world’s 

forests, shedding new light on an accurate representation of the global carbon cycle.  

 

6. Conclusion 

 

Lidar remote sensing has proven to be a useful tool in the estimation of forest biomass 

receiving substantial attention in literature in recent years. Airborne lidar has the advantages of 

variable flying height systems and therefore collects more precise data with respect to terrain 

shape. There are many full waveform airborne lidar operational systems, but several substantial 

challenges still exist such as the vast data processing required and the ability to penetrate densely 

forested areas. The investigation on the point density of lidar data shows that having a sufficient 

number of points has a large impact on the filtering results. The results of segmentation filtering 

shows a high capability of adaptation in different landscapes, but it requires the right choice of 

segmentation parameters relating to the point density. Point spacing also plays an important role 

for the selection of the interpolation method with respect to the DTM, DSM, and CHM 

resolution. Although several advancements have been made in the use of lidar, more studies are 

required to continue the improvement of the various approaches discussed here. With a rising 

concern over the global carbon budget, further development of lidar systems, particularly space-

borne, will be crucial in mapping and monitoring the role of the world’s forests in carbon 

storage.   
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